VPM's DR VN BRIMS, Thane

Programme: MMS (2015-17)

Second Semester Examination April 2016

Subject	Operations Research		
Roll No.		Marks	60 Marks
Total No. of Questions	7	Duration	3 Hours
Total No. of printed pages	3	Date	18.04.2016

Note: Q1 is compulsory and solve any FOUR from the remaining SIX questions. Q1) 20 Marks (Compulsory)

Answer the following with justification of your answer.	(2 *10 =20)
inches and remaining transference or year anteness	(/

- 1.) Assignment can be made in a square matrix of size "n"when the minimum number of lines in a Reduced-Cost Table with which all zeros can be covered is:
 - a. Exactly equal to n.
- b. Equal to or greater than n.
- c. Equal to or less than n.
- d. Less than or greater than n.
- 2.) Which of the following statements is true about converting primal into dual?
 - a. The RHS of each constraint must be >= 0.
 - b. No of decision variables become no of constraints.
 - c. All constraints of the given problem need to be \leq type.
 - d. All constraints should be converted into "==" type.
- 3.) The feasible region is bounded by points having coordinates (12, 0), (0, 18), (0, 20), (16, 16) and (18, 0) respectively. The objective function is Min 5X1+4X2. Which of these will be solution?
 - a. First

- b. Second
- c. Third
- d. Fourth
- 4.) In linear programming, sensitivity analysis is a technique to:
 - a. Allocate resources optimally.
 - b. Minimize cost of operations.
 - c. Spell out relation between objective & variables.
 - d. Determine how optimal solution to LPP changes in response to problem inputs:
- 5.) CPM is: a. Critical Project Management
- b. Critical Path Management

- c. Critical Path Method
- d. Crash Project Method

- 6.) Mark the wrong statement:
 - a. A project is a set of activities that can be performed in a certain logical sequence.
 - b. A network represents relationship among the activities of a project.
 - c. An arrow representing an activity can have any length and shape.
 - d. An activity cannot be represented by more than one arrow but an arrow can represent one or more activities.
- 7.) In simulation, mark the false statement:
 - a. The objective variable can be only 1. only 1.
- b. The variable under control need not be
- b. Random numbers used can be of 3 digits. d. The random numbers must be between 00-99.
- 8.) It is known that in a project, an activity 4-6 has duration of six days and total float of three days. The E and L times at node 4 are 8 and 11 respectively and at node 6, both are 17. Which of the following is a true statement about 4-6?
 - a. Its total float is two days.
- b. Its total float is 0.
- b. It is a critical activity.
- d. The Earliest Start of this activity is 11.
- 9.) A transportation problem is balanced when:
 - a. Total capacity & Total demand are equal and no. of sources is = to no. of destinations.
 - b. TC and TD are equal irrespective of the number of sources and destinations.
 - c. Number of sources matches with number of destinations.
 - d. Some of the routes are prohibited.

- 10.) Mark the wrong statement:
 - a. An unbalanced transportation problem can be converted into a balanced transportation problem through the addition of an appropriate slack variable.
 - b. In North-West Corner Rule, first allocation is always made by beginning from the upper-left hand corner of the tableau.
 - c. The North-West Corner Rule provides a systematic but inefficient method of finding initial solution to a transportation problem.
 - d. It is necessary to make number of sources and destinations equal before applying N-W Corner Rule.

Q2) Any two from (a) or (b) or (c) ——— (5x2) = 10 Marks

a) Solve the following problem with cost no.s by North-West Corner Method OR Least Cost Method.

From\To	D	E	F	Supply		
Α	6	4	1	50		
В	3	8	7	40		
С	4	4	2	60		
Demand	20	95	35	150		

b) Find the optimal solution for the cost and supply/demand matrix as given below

Supply points		Summly			
points	D ₁	D_2	D ₃	D ₄	Supply
Α	19	30	50	10	7
В	70	30	40	60	9
С	40	8	70	20	18
Demand	5	8	7	14	

c) Describe the computational procedure of the optimality test in a transportation problem.

Q3) Any two from (a) or (b) or (c) ——— (5x2) = 10 Marks

a) Assign workers 1, 2, 3, 4 to jobs A, B, C, D. Time taken by workers for different jobs is given in the matrix:

Workers		Jobs				
vvorkers	Α	В	С	D		
1	45	40	51	67		
2	55	40	61	53		
3	49	52	48	64		
4	41	45	60	55		

b) The inter-arrival times of customers in a Banks in minutes is given.

2,5,8,4,6,15,18,22,5,15. The service time is uniform at 8 minutes

Simulate the event of arrivals using the following random numbers. Find total waiting time.

Random numbers 12 45 3 67 89 45 34 1 8 29

c) Describe the computational procedure for the allocation of salesman problem.

Q4) Any two from (a) or (b) or (c) ———
$$(5x2) = 10$$
 Marks

Assume that two firms are competing for market share for a particular product. Each firm is considering what promotional strategy to employ for the coming period. Assume that the following payoff matrix describes the increases in market share of Firm A & the decreases in market share for Firm B. Determine the optimal strategies.

	Firm B								
Firm A	No Promotion	No Promotion Moderate Promotion Much Promotion							
No Promotion	5	0	-10						
Moderate Promotion	10	6	2						
Much Promotion	20	15	10						

- a) Which firm would be the winner, in terms of market share?
- b) Would the solution strategies necessarily change if original matrix is transposed?

- c) What would be the solution if a constant of 12 is added to original matrix?
- Q5) Any two from (a) or (b) or (c) ——— (5x2) = 10 Marks
 - (a) Solve the problem given below:

Maximize Z
$$5 X1 + 6 X2$$

Subject to $3 X1 + 2 X2 <= 30$
 $X1 + 4 X2 <= 36$
 $X1 + 4 X2 <= 24$

- (b) Explain the economic significance of dual.
- (c) Form and solve dual..

Maximise
$$8 X1 + 6 X2 + 8 X3$$

Subject to $2 X1 + X2 + X3 \le 80$
 $X1 + 3 X2 + 2 X3 \le 90$

Q6) Any two from (a) or (b) or (c) ——— (5x2) = 10 Marks

The following tables give the activities in a construction project along with cost.

Activity	Predecessor	Time (days)	Cost (Rs)		
			Crash	Normal	Crash	
Α	-	4	3	60	90	
В	-	6	4	150	250	
С	-	2	1	38	60	
D	A	5	3	150	250	
E	С	2	2	100	100	
F	A	7	5	115	175	
G	D, B, E	4	2	100	240	

Indirect cost varies as follows

municul cost varies a	3 10110113							
Days:	14	13	12	11	10	9	8	7
Cost (Rs):	500	400	250	175	100	75	50	35

- a) Draw the network diagram
- b) Expected project completion time
- c) Using crash costs, find the project duration which will require minimum project cost.

Q7) Any two from (a) or (b) or (c) ——— (5x2) = 10 Marks

- a) Patients enter the doctor's clinic with average inter-arrival time of 12 minutes .The average service time for the patient is 10 minutes. Find proportion of time doctor is idle. Find average length of system & queue.
- b) The weight of a special purpose brick is 5 kg and it contains two basic ingredients B1, and B2. B1 costs Rs. 5 per kg and B2 costs Rs. 8 per kg. Strength consideration dictates that the brick contains not more than 4 kg of B1 and a minimum of 2kg of B2. Since the demand for the production is likely to be related to the price of the brick. Formulate a LPP problem ONLY and solve it graphically.
- c) What is meant by feasible region? Why this must be a well-defined boundary for the maximization problem?

3