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EXTRACT FROM THE PREFACE TO THE FIRST EDITION

This book is designed for financial professionals to understand how the vast bulk of OTC
derivatives are used, structured, priced and hedged, and ultimately how to use such
derivatives themselves. A wide range of books already exist that describe in conceptual
terms how and why such derivatives are used, and it is not the ambition of this book to
supplant them. There are also a number of books which describe the pricing and hedging of
derivatives, especially exotic ones, primarily in mathematical terms. Whilst exotics are an
important and growing segment of the market, by far the majority of derivatives are still
very much first generation, and as such relatively straightforward.

For example, interest rate swaps constitute over half of the $100 trillion OTC derivative
market, and yet there have been few books published in the last decade that describe how
they are created and valued in practical detail. So how do many of the professionals gain
their knowledge? One popular way is ‘‘learning on the job’’, reinforced by the odd training
course. But swap structures can be quite complex, requiring more than just superficial
knowledge, and probably every professional uses a computer-based system, certainly for
the booking and regular valuation of trades, and most likely for their initial pricing and risk
management. These systems are complex, having to deal with real-world situations, and
their practical inner details bear little resemblance to the idealised world of most books. So
often, practitioners tend to treat the systems as black boxes, relying on some initial and
frequently inadequate range of tests, and hoping their intuition will guide them. The
greatest sources of comfort are often the existing customer list of the system (they can’t
all be wrong!) and, if the system is replacing an old one, comparative valuations.

The objective of this book is to describe how the pricing, valuation and risk management
of generic OTC derivatives may be performed, in sufficient detail and with various alter-
natives, so that the approaches may be applied in practice. It is based upon some 15 years
of varying experience as a financial engineer for ANZ Merchant Bank in London, as a
trainer and consultant to banks worldwide, and as Director of Financial Engineering at
Lombard Risk Systems responsible for all the mathematics in the various pricing and risk
management systems.

The audience for the book is, first, traders, sales people and front-line risk managers. But
increasingly such knowledge needs to be more widely spread within financial institutions,
such as internal audit, risk control, and IT. Then there are the counterparties such as
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organisations using derivatives for risk management, who have frequently identified the
need for transparent pricing. This need has been exacerbated in recent years as many
developed countries now require that these organisations demonstrate the effectiveness
of risk management, and also perform regular (usually annual) mark-to-market. Similarly,
organisations using complex funding structures want to understand how the structures are
created and priced. Turning to the other side, many fund managers and in particular hedge
funds are also using derivatives to manage their risk profile, and then to report using one of
the Value-at-Risk techniques. This has been particularly true since the collapse of Long
Term Capital Management, despite the fact that most implementations of VaR would
not have recognised the risk. Other potential readers are the auditors, consultants, and
regulators of the banks and their client organisations.

PREFACE TO THE SECOND EDITION

Many of the above statements are still true. The swap market has continued to grow
six-fold over the intervening years, to a staggering $328 trillion. Yet, there has been little
published to provide guidance and assistance to the professionals in the market. Why was it
thought useful to write a second edition? There were two main reasons. First, many readers
had suggested changes and developments, which I thought appropriate to include. Second,
the exponential growth in credit default swaps and structured securities identified areas
which were little discussed in the first edition. This edition attempts to redress that
omission.
Institutions offer derivatives with a wide range of maturities, ranging from a few hours

(used to provide risk management over the announcement of an economic figure) to
perpetuals (i.e. no upfront maturity defined). There is however a golden rule when pricing
derivatives, namely always price them off the market that will be used to hedge them. This
leads to the first separation in the interest rate swap market between:

Chapter 2: The short end of the curve, which uses cash, futures and occasionally FRAs
to hedge swaps. This chapter first discusses the derivation of discount factors
from cashrates, and concentrates on the range of alternative approaches that
may be used. It then looks at the derivation of forward interest rates, and
how FRAs may be priced using cash and futures. The convexity effect is
highlighted for future discussion. Finally an approach is introduced that
does not require discounting, but permits the introduction of a funding cost.

Chapter 3: The medium to long end of the curve. The highly liquid interbank market
typically trades plain swaps (usually known as ‘‘generic’’ or ‘‘vanilla’’), very
often between market makers and intermediaries. These are hedged in other
financial markets, typically futures for the shorter exposures and bonds for
the longer ones. This chapter concentrates initially on the relationship
between the bond and swap markets, and how generic swap prices may be
implied. It concludes by developing various techniques for the estimation of
discount factors from a generic swap curve.

Chapter 4: The end-user market provides customers with tailored (i.e. non-generic)
swaps designed to meet their specific requirements. Such swaps are not
traded as such, but created as one-off structures. This chapter describes a
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range of simple non-generic swaps, and discusses various techniques for
pricing them, including one that requires no discounting. Finally two
approaches to the ongoing valuation of an existing (seasoned) swap are
demonstrated.

Chapter 5: Swaps are often used to restructure new or existing securities. This chapter
describes some initial structures, par asset packaging and par maturity asset
packaging, that are commonly used.

Chapter 6: Credit derivatives effectively evolved from the asset packaging or securitisa-
tion markets. The chapter first discusses total return swaps as being the
earliest form of credit derivative, but then moves rapidly on to its successor,
single-name credit default swaps. The chapter is in three parts. First, a broad
description of the mechanics of the market, especially following the Big and
Small Bangs in 2009. Second, an analysis of the relationship between asset
packaging and the hedging of CDSs, leading to a discussion around the
credit basis. Third, a derivation of implied forward default probabilities
from CDS prices using a couple of slightly different approaches. This in
turn allows the pricing of non-generic CDSs such as forward starts,
amortising and floating rate.

Chapter 7: This discusses a range of more complex swaps known generally as mismatch
swaps. This includes structures such as yield curve (also known as CMSs), in
arrears, average rate, and compound. The chapter and its appendix
re-introduce the concept of convexity-adjusted pricing more formally.

Chapter 8: This introduces a range of what are often called cross-market swaps. These
involve the normal interbank floating rate (or indeed a fixed rate) on one
side, and another reference rate drawn from another market on the other
side, such as an overnight rate, or a base rate, or a mortgage rate, or an
inflation rate, or an equity return, and so on. The main purpose of these
swaps is to permit people with exposures in the other market to gain access
to the range of risk management instruments that exists in the interbank
market.

Chapter 9: The earliest swap structures were cross-currency swaps, although this market
has been long overtaken by interest rate swaps. Nevertheless they possess
some unique characteristics and structures. This chapter starts with the
fundamental CCS building block, the cross-currency basis swap, and
explores its characteristics, uses, pricing and hedging. This employs a novel
approach: worst case simulation. The role of CCBSs in the derivation of
cross-currency discount factors is also explored. The main other types of
swaps are then discussed: fixed–floating, floating–floating, diff, and quanto–
diff. Fixed–fixed swaps occupy a special place because they are a general case
of long-term FX forward contracts, so the pricing and hedging of these is
considered in some detail. Finally swap valuation is revisited because, in the
CCS market, such swaps are frequently valued annually and the principals
reset to the current exchange rate.

Chapter 10: There is an active market in many currencies in medium to long-term options
on forward interest rates, usually known as the cap and floor market. Such
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structures are intimately linked to swaps for two reasons: first, because
combinations of options can create swaps and, second, swaps are generally
used to hedge them. In many banks, they are actually traded and risk-
managed together. This chapter reviews a range of different option structures
and touches albeit briefly on option pricing. Volatility plays a crucial role
and various techniques for estimation, including transformation from par to
forward as well as volatility smiles and volatility spaces, are described in
detail. These options are also frequently embedded in many swap structures,
and the breakdown and pricing of a range of structures is discussed. There is
also an active market in options on forward swaps (aka swaptions or swop-
tions) which, not unnaturally, is closely related to the swap market. The
pricing and embedding of swaptions is described. The chapter concludes with
two sections on FX options. These options are mainly traded OTC, although
there is some activity on a few exchanges such as Philadelphia. The first
section concentrates on the pricing of these options, and how it may be
varied depending on the method of quoting the underlying currencies.
The second section shows how traders would dynamically create a delta-
neutral hedge for such an option, together with the hedging errors through
time.

Chapter 11: This chapter concentrates on more complex swaps arising from the need to
swap structured securities. It starts by discussing the swapping of range
accruals. It goes on to price structures such as callable bonds, Bermudan
swaptions and path-dependent products such as target accrual redemption
notes and snowballs using both numerical trees and Libor-based simulation.

Chapter 12: In the early days of the swap market, swap portfolios were risk-managed
either using asset–liability methods such as gapping or the more advanced
institutions used bond techniques such as duration. By the late 1980s a
number of well-publicised losses had forced banks to develop more appro-
priate techniques such as gridpoint hedging. These (in today’s eyes)
traditional approaches stood the banks in good stead for the next decade.
This chapter describes the main techniques of both gridpoint and curve
hedging, taking into account both first and second-order sensitivities. In
passing, mapping cashflows to gridpoints is also discussed. The use of swap
futures, as a relatively new hedging instrument, is also considered. The
chapter then extends risk management to interest rate options. Most texts
discuss the ‘‘Greeks’’ using short-dated options; unfortunately the discussion
often does not apply to long-term options, and so their different character-
istics, especially as a function of time, are examined. The effectiveness of
some optimisation techniques to construct robust hedges are examined as an
alternative to the more traditional delta–gamma methods. Finally, the chap-
ter shows how the same techniques can be used to create an inflation hedge
for a portfolio of inflation swaps.

Chapter 13: Risk management however is not a static subject, but has evolved rapidly
during the latter half of the 1990s and beyond. Traditional risk management
operates quite successfully, but there is a very sensible desire by senior
management to be able to assess the riskiness of the entire trading operation
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and even wider. The traditional risk measures are not combinable in any
fashion and cannot be used. Value-at-Risk was developed as a family of
approaches designed very much to address this objective. It is now being
developed further to encompass not only market risk but also credit and even
operational risks into the same set of measures.1 This chapter describes the
major approaches used to estimate VaR: delta, historic and Monte Carlo
simulations, as well as second-order delta–gamma approaches. The advan-
tages and disadvantages of each approach are discussed, along with various
extensions such as extreme value theory and sampling strategies. The meas-
urement of spread VaR and equity VaR using either individual stocks or a
stock index are also considered. Finally, stress testing or how to make
significant moves in the properties of the underlying risk factors (especially
correlation) is described.

The book is supported by a full range of detailed spreadsheet models, which underpin all
the tables, graphs and figures in the main text. Some of the models have not been described
in detail in the text, but hopefully the instructions on the sheets should be adequate. Many
of the models are designed so that the reader may implement them in practice without
much difficulty.

Many of the ideas, techniques and models described here have been developed over the
years with colleagues at both ANZ and Lombard Risk Systems, and through various
consulting assignments with a wide range of banks across the world.

BIOGRAPHY
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trainer, specialising in complex derivatives and risk management. He spent seven years as
Director of Financial Engineering at Lombard Risk, where he was responsible for the
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Explanatory note: The vast majority of spreadsheets refer to a base spreadsheet called
‘‘Market Data’’. Under current Excel rules, this needs to be opened should the reader wish
to save any model.

In most cases, there is one spreadsheet containing all the models for each chapter. The
nomenclature is clear: for example, ‘‘Ch 2 Short-term Swaps’’ contains all the models for
Chapter 2. There are however some exceptions, where some models are contained in
separate spreadsheets. These usually involve models containing either optimisation or
Monte Carlo simulation, when it is recommended that these models should be run with
all other spreadsheets closed. This refers in particular to Chapters 8 and 11, running LPI
and BGM simulations, respectively. The names of the individual spreadsheets are included
in the list below:

2.1 Market data

2.2 Worksheet to calculate a discount factor from a set of cash rates

2.3 Worksheet to demonstrate the concepts of discounting

2.4 Worksheet to calculate forward rates from a set of cash rates

2.5 Worksheet to calculate a forward curve from a set of cash rates—II

2.6 Worksheet to use futures to calculate a FRA

2.7 Pricing a money market swap using futures and cash

2.8 Pricing a money market swap off a futures strip

2.9 The construction of a discount curve when futures are not evenly spaced—correcting for the

date mismatches in the futures

2.10 Pricing a money market swap off a futures strip—version 2

2.11 Pricing a money market swap off a futures strip using forward valuing

3.1 Market data

3.2 Worksheet to generate the cashflows of a generic USD swap

3.3 Worksheet to demonstrate the discovery of a synthetic par bond

3.4 Worksheet to generate the fixed cashflows of a generic USD swap

3.5 Worksheet to calculate a discount curve using linear interpolation on the swap curve and

different methods on the discount curve

3.6 Details of Hermitian interpolation

3.7 Worksheet to calculate a discount curve using Hermite interpolation on the swap curve and

different methods on the discount curve

3.8 Worksheet to calculate a discount curve using an optimisation approach

3.9 Building a blended curve using optimisation

Worksheets

(see the accompanying CD inside the back cover)



4.1 Market data

4.2 Pricing of non-generic swap—1/5 forward starting—using hedging swaps

4.3 Pricing of non-generic swap—1/5 forward starting—using NPA

4.4 Pricing of non-generic swap—1/5 forward starting—using implied forwards

4.5 Pricing of non-generic swap—1/5 forward starting—using a formula

4.6 Pricing of non-generic Swap—1/5 forward starting—using the reference rate method and

implied forwards

4.7 Pricing of non-generic swap—5-year amortising—using hedging swaps

4.8 Pricing of non-generic swap—5-year amortising—using NPA

4.9 Pricing of non-generic swap—5-year amortising—using implied forwards

4.10 Pricing a non-generic swap using hedging swaps

4.11 Pricing a non-generic swap using notional principal amounts

4.12 Pricing a non-generic swap using implied forwards

4.13 Pricing a non-generic swap using implied forwards and forward valuing

4.14 New market data for valuations

4.15 Valuing a non-generic swap using NPA

4.16 Valuing a non-generic swap using implied forwards

5.1 Market data

5.2 Diagram of the impact of the Accord on capital

5.3 Creating a simple par asset swap with a bond trading below par

5.4 Creating a simple par maturity asset swap with a bond trading below par

5.5 Creating a simple discount asset swap with a bond trading below par

5.6 Forward valuing an asset swap

6.1 Market data

6.2 Creating a simple par maturity asset swap

6.3 Estimating the Z-spread for a bond

6.4 Hedging a generic CDS

6.5 Modelling a CDS on a quarterly basis

6.6 Modelling a CDS on a monthly basis

6.7 Estimating FDP curve using quarterly time periods

6.8 Hermitian interpolation

6.9 Estimating FDP curve using monthly time periods

6.10 Estimating FDP curve using daily time periods

6.11 Estimating forward default probability curve using optimisation on a quarterly basis

6.12 Estimating forward default probability curve using optimisation on a monthly basis

6.13 Estimating forward default probability curve by fitting a Nelson–Siegel curve

6.14 Modelling a 3-year knock-out forward starting CDS

6.15 Modelling a 3-year no-knock-out forward starting CDS

6.16 Pricing a floating credit default swap

6.17 Constant maturity credit default swap pricing with no convexity adjustment

6.18 Estimated volatilities and correlations for convexity adjustment

6.19 Constant maturity credit default swap pricing with convexity adjustment

6.20 Valuing an old CDS

Spreadsheet ‘‘Ch 6 Credit-adjusted Pricing’’

6.21 Market data for credit-adjusted pricing

6.22 Modelling the forward IR envelope

6.23 Worksheet to summarise modelling swap exposure and to plot potential future exposure
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6.24 Estimation of PELs for IRS and CCS

6.25 Graph of IRS PEL

6.26 Graph of CCS PEL

6.27 Worksheet to calculate the credit adjustment on the pricing of an IRS

6.28 Graph of accumulative default probabilities

6.29 Credit adjustment for a range of maturities and for diferent rating counterparties

Spreadsheet ‘‘Ch 6 Appendix Modelling a Portfolio CDS’’

6.30 Market data for Appendix to Chapter 6

6.31 Base sector correlations and recovery rates

6.32 Accumulative default probabilities

6.33 Original portfolio—with full details

6.34 Constructed asset correlation matrix from sectoral factors

6.35 This worksheet runs a single scenario to calculate the PV of payments to be made under the

CDS

6.36 This worksheet runs a single antithetic scenario to calculate the PV of payments to be made

under the CDS

6.37 This worksheet will run a range of scenarios (currently 500 normal and 500 antithetic), build a

loss distribution and fit a Weibull distribution

7.1 Market data

7.2 Pricing an in-arrears swap

7.3 Creating a customised average rate swap

7.4 Creating a compound swap

7.5 Pricing a constant maturity swap—using sa reference rate

7.6 Pricing a constant maturity swap—using qu reference rate paying sa

7.7 Pricing a constant maturity swap—using sa reference rate paying qu

7.8 Pricing a participation constant maturity swap—using sa reference rate

7.9 Estimating the convexity effect of a generic IRS using forward rates

7.10 Pricing a constant maturity swap: how does it change in value for a shift in the forward curve

Spreadsheet ‘‘Ch 7 Appendix Convexity Structures’’

7.11 Market data: extracted from market data worksheet for Chapter 7 Appendix

7.12 Pricing an in-arrears swap with CX adjustments

7.13 Pricing an in-arrears swap via simulation to assess CX

7.14 Creating a customised average rate swap with CX adjustment

7.15 Turbo-swaps—pricing a 4-year qu/qu swap with CX adjustment

7.16 Pricing a constant maturity swap with convexity adjustment

7.17 Pricing a constant maturity swap with CX adjustment—using Hagan’s model

7.18 Pricing a constant maturity swap with convexity adjustment and timing adjustment

7.19 Measuring the convexity effect of a constant maturity swap under parallel shifts

7.20 Measuring the scale of the convexity effect of a constant maturity swap by simulation

Spreadsheet ‘‘Ch 7 Measuring the Convexity Effect in an IRS Using BGM’’

7.21 Market data

7.22 This worksheet estimates a parametric forward–forward volatility curve

7.23 Correlation matrix

7.24 This calculates the expression pk; i ¼ �ðiÞ � �ðk; iÞ
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7.25 Generation of forward curves

7.26 Modelling the change in value of generic spot swaps

Spreadsheet ‘‘Ch 8 Cross-market and Other Market Swaps’’

8.1 Market data

8.2 Modelling an EONIA swap

8.3 Some basis swap quotes

8.4 Modelling CP–Libor swaps

8.5 Modelling Muni–Libor swaps

8.6 Example of fixed notional equity swap—without randomness

8.7 Example of fixed notional equity swap—with randomness

8.8 Example of variable notional equity swap—without randomness

8.9 Example of variable notional equity swap—with randomness

8.10 Example of cross-currency fixed notional equity swap—without randomness

8.11 Example of cross-currency fixed notional equity swap—with randomness

8.12 Example of cross-currency variable notional equity swap—without randomness

8.13 Example of cross-currency variable notional equity swap—with randomness

Spreadsheet ‘‘Ch 8 Inflation Swap Models’’

8.14 Static gilt data

8.15 Static index-linked data

8.16 Dynamic data input page

8.17 Input RPI data

8.18 Worksheet to calculate the dirty price of non-linked gilts from the yield

8.19 Building a gilt discount curve using a parametric Nelson–Siegel curve

8.20 Worksheet for modelling all the non-index-linked gilt cashflows for N–S modelling

8.21 Building a gilt discount curve by bootstrapping

8.22 Worksheet for modelling all the non-index-linked gilt cashflows for bootstrapping

8.23 Worksheet displaying constructed zero-coupon curves from non-index-linked gilts

8.24 Building a forward inflation curve using Nelson–Siegel curves

8.25 Worksheet for modelling all the index-linked gilt cashflows for use in an N–S model

8.26 Building a forward inflation curve by bootstrapping

8.27 Worksheet for modelling all the index-linked gilt cashflows for use in a bootstrapping model

Spreadsheet ‘‘Ch 8 Building an Inflation Curve by Optimisation’’

8.28 Static index-linked data

8.29 Input RPI data

8.30 Worksheet displaying constructed zero-coupon curves from Chapter 8 inflation swap models

8.31 Building a forward inflation curve by optimisation

8.32 Worksheet for modelling all the index-linked gilt cashflows for use in the optimisation model

Spreadsheet ‘‘Ch 8 Inflation Swap Models’’

8.33 Mid zero-coupon inflation swap curve—taken from market quotes

8.34 Example of pricing a payer’s YoY inflation swap with no convexity adjustment

8.35 Examples of market-based volatilities (shown in red) for inflation

8.36 Example of pricing a payer’s YoY inflation swap with convexity

8.37 Sheet for valuing a fixed–floating inflation swap out of spot
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Spreadsheet ‘‘Ch 8 LPI Inflation Swap’’

8.38 Libor sheet for interpolation

8.39 RPI curve

8.40 Sheet for simulating a fixed–floating LPI inflation swap
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This is the second edition. Much has changed since the first was written in 2000. For the
first seven years of the new century, the derivative market continued to grow at an
exponential pace. From 2008, its growth reversed, albeit not by much, as the global
economic recession bit. In terms of notional amount, it reduced by just over 13% in the
second half of 2008, to just under USD600 trillion. Between the publication of the first
edition and the writing of the second, there have been some major developments. Two in
particular stand out: the growth in the credit transfer market, and the massive issuance of
complex securities enabling investors to earn potentially higher returns by taking on more
risks.1 Hence the requirement for a second edition, which addresses both of these topics in
considerable detail.

1.1 INTRODUCTION

In the 1970s there was an active Parallel Loan market. This arose during a period of
exchange controls in Europe. Imagine that there is a UK company that needs to
provide its US subsidiary with $100 million. The subsidiary is not of sufficiently good
credit standing to borrow the money from a US bank without paying a considerable
margin. The parent however cannot borrow the dollars itself and then pass them on to
its subsidiary, or provide a parent guarantee, without being subject to the exchange
control regulations which may make the transaction impossible or merely extremely
expensive.

The Parallel Loan market requires a friendly US company prepared to provide the
dollars, and at the same time requiring sterling in the UK, perhaps for its own subsidiary.
Two loans with identical maturities are created in the two countries as shown. Usually the
two principals would be at the prevailing spot FX rate, and the interest levels at the market
rates. Obviously credit is a major concern, which would be alleviated by a set-off clause.
This clause allowed each party to off-set unpaid receipts against payments due. As the spot
and interest rates moved, one party would find that their loan would be ‘‘cheap’’, i.e. below
the current market levels, whilst the other would find their loan ‘‘expensive’’. If the parties
marked the loans to market—in other words, valued the loans relative to the current
market levels—then the former would have a positive value and the latter a negative
one. A ‘‘topping-up’’ clause, similar in today’s market to a regular mark-to-market and
settlement, would often be used to call for adjustments in the principals if the rates moved
by more than a trigger amount.

1
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As exchange controls were abolished, the Parallel Loan became replaced with the
back-to-back Loan market whereby the two parent organisations would enter into the
loans directly with each other. This simplified the transactions, and reduced the operational
risks. Because these loans were deemed to be separate transactions, albeit with an off-
setting clause, they appeared on both sides of the balance sheet, with a potential adverse
effect on the debt/equity ratios.

The economic driving force behind back-to-back loans is an extremely important
concept called ‘‘comparative advantage’’. Suppose the UK company is little known in
the US; it would be expensive to raise USD directly. Therefore borrowing sterling and
doing a back-to-back loan with a US company (who may of course be in exactly the reverse
position) is likely to be cheaper. In theory, comparative advantage cannot exist in efficient
markets; in reality, markets are not efficient but are racked by varieties of distortions.
Consider the simple corporate tax system: if a company is profitable, it has to pay tax; if a
company is unprofitable, it doesn’t. The system is asymmetric; unprofitable companies do
not receive ‘‘negative’’ tax (except possibly in the form of off-sets against future profits).
Any asymmetry is a distortion, and it is frequently feasible to derive mechanisms to exploit
it—such as the leasing industry.

2 Swaps and Other Derivatives



Cross-currency swaps were rapidly developed from back-to-back loans in the late 1970s.
In appearance they are very similar, and from an outside observer only able to see the
cashflows, identical. But subtly different in that all cashflows are described as contingent
sales or purchases, i.e. each sale is contingent upon the counter-sale. These transactions,
being forward conditional commitments, are off-balance sheet. We have the beginning of
the OTC swap market!

Cross-currency Swap 

UK plc US Corp

sale of £60m

sale of $100m

UK plc US Corp

£ sale

$ sale

UK plc US Corp

resale of £60m

resale of $100m

The structure of a generic (or vanilla) cross-currency swap is therefore:

. initial exchange of principal amounts;

. periodic exchanges of interest payments;2

. re-exchange of the principal amounts at maturity.

Notice that, if the first exchange is done at the current spot exchange rate, then it possesses
no economic value and can be omitted.

Interest rate, or single-currency swaps, followed soon afterwards. Obviously exchange of
principals in the same currency makes no economic sense, and hence an interest swap only
consists of the single stage:

. periodic exchanges of interest payments;

where interest is calculated on different reference rates. The most common form is with one
side using a variable (or floating) rate which is determined at regular intervals, and the
other a fixed reference rate throughout the lifetime of the swap.

1.2 APPLICATIONS OF SWAPS

As suggested by its origins, the earliest applications of the swap market were to assist in the
raising of cheap funds through the comparative advantage concept. The EIB–TVA trans-
action in 1996 was a classic example of this, and is described in the box below. The overall
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benefit to the two parties was about $3 million over a 10-year period, and therefore they
were both willing to enter into the swap.

Comparative Advantage:

European Investment Bank–Tennessee Valley Authority swap

Date: September 1996

Both counterparties had the same objective: to raise cheap funds. The EIB, being an
European lender, wanted deutschmarks. The TVA, all of whose revenues and costs
were in USD, wanted to borrow dollars. Their funding costs (expressed as a spread
over the appropriate government bond market) are shown in the matrix below:

USD DEM

EIB T þ 17 B þ 13

TVA T þ 24 Bþ 17
Spread 7 bp 4 bp

Whilst both organisations were AAA, the EIB was deemed to be the slightly better
credit.

If both organisations borrowed directly in their required currency, the total funding
cost would be (approximately—because strictly the spreads in different currencies are
not additive) 37 bp over the two bond curves.

However, the relative spread is much closer in DEM than it is in USD. This was for
two reasons:

. the TVA had always borrowed USD, and hence was starting to pay the price of
excess supply;

. it had never borrowed DEM, hence there was a considerable demand from
European investors at a lower rate.

The total cost if the TVA borrowed DEM and the EIB borrowed USD would be only
34 bp, saving 3 bp pa.

The end result:

. EIB issued a 10-year $1 billion bond;

. TVA issued a 10-year DM1.5 billion bond; and

. they swapped the proceeds to raise cheaper funding, saving roughly $3 million over
the 10 years.

This was a real exercise in Comparative Advantage; neither party wanted the currency
of their bond issues, but it was cheaper to issue and then swap.

It was quickly realised that swaps, especially being off-balance sheet instruments, could
also be effective in the management of both currency and interest rate medium-term risk.
The commonest example is of a company who is currently paying floating interest, and who
is concerned about interest rates rising in the future; by entering into an interest rate swap
to pay a fixed rate and to receive a floating rate, uncertainty has been removed.
To ensure that the risk management is effective, the floating interest receipts under the

swap must exactly match the interest payments under the debt. Therefore the swap must
mirror any structural complexities in the debt, such as principal repayment schedules, or
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options to repay early, and so on. Usually a swap entered into between a bank and a
customer is tailored specifically for that situation. This book will provide details of many of
the techniques used to structure such swaps.

A well-known and very early example of the use of swaps is the one conducted between
the World Bank and IBM in August 1981—described in the box below. This swap had the
reputation of kick-starting the swap market because it was performed by two extremely
prestigious organisations, and received a lot of publicity which attracted many other end-
users to come into the market. It was the first long-term swap done by the World Bank,
who is now one of the biggest users of the swap market.

World Bank–IBM Swap

Date: August 1981

This is a simplified version of the famous swap. The two counterparties have very different
objectives.

IBM had embarked upon a world-wide funding programme some years earlier, raising money
inter alia in deutschmarks and Swiss francs. The money was remitted back to the US for general
funding. This had created a FX exposure, because IBM had to convert USDs into DEMs and
CHFs regularly to make the coupon payments. Over the years the USD had significantly
strengthened, creating a gain for IBM. It now wished to lock in the gain and remove any future
exposure.

The World Bank had a policy of raising money in hard currency; namely DEM, CHF and yen.
It was a prolific borrower, and by 1981 was finding that its cost of funds in these currencies was
rising simply through an excess supply of WB paper. Its objective, as always, was to raise cheap
funds.

Salomon Brothers suggested the following transactions:

(a) The WB could still raise USD at relatively cheap rates, therefore it should issue two euro-
dollar bonds:
. one matched the principal and maturity of IBM’s DEM liabilities equivalent to $210
million;

. the other matched IBM’s Swiss franc liabilities equivalent to $80 million.
Each bond had a short first period to enable the timing of all the future cashflows to match.

(b) There was a 2-week settlement period, so WB entered into a FX forward contract to:
. sell the total bond proceeds of $290 million;
. buy the equivalent in DEM and CHF;

(c) IBM and WB entered into a two-stage swap whereby:
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so that IBM converted its DEM and CHD liabilities into USD, and the WB effectively raised hard
currencies at a cheap rate. Both achieved their objectives!

1.3 AN OVERVIEW OF THE SWAP MARKET

From these earliest beginnings, the swap market has grown exponentially. As the graph
shows, the volume of interest rate swap business now totally dominates cross-currency
swaps,3 suggesting that risk management using swaps is commonplace.

The graph is shown in terms of notional principal outstanding, i.e. the principals of all
swaps transacted but not yet matured; for the cross-currency swap described above, this
would be recorded as [$100mþ £60m �S]/2 where S is the current spot rate. The market
has shown a remarkable and consistent growth in activity.

6 Swaps and Other Derivatives
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It is arguable whether this is a very appropriate way of describing the current size of the
market, although it certainly attracts headlines. Many professionals would use ‘‘gross
market value’’ or total replacement cost of all contracts as a more realistic measure. This
measure had been in broad decline as banks improve their risk management, and are
unwilling to take on greater risks due to the imposition of capital charges. However, as
can be seen from the figures below, the gross value increased in the second half of 2008,
especially in interest rate and credit derivatives, due to the dramatic movements in these
markets.

A brief overview of the OTC derivative market is shown in the table below. Probably
the most important statistic is that, despite all the publicity given to more exotic transac-
tions, the overwhelming workhorse of this market is the relatively short-term interest rate
swap.

The derivative markets continue to grow at an astounding rate—why? There are two
main sources of growth—breadth and depth:

. financial markets around the world have increasingly deregulated over the past 30 years,
witness activities in Greece and Portugal, the Far East and Eastern Europe. As they
do, cash and bond markets first develop followed rapidly by swap and option
markets;

. the original swaps were done in relatively large principal amounts with high-credit
counterparties. Banks have however been increasingly pushing derivatives down into
the lower credit depths in the search of return. It is feasible to get quite small transac-
tions, and some institutions even specialise in aggregating retail demand into a wholesale
transaction.

A brief overview of the current state of the derivative market (in December 2008)

(extracted from the semiannual BIS surveys)

The total OTC derivative market was estimated to be just under $600 trillion, mea-
sured in terms of outstanding principal amount, broken up as shown below (in US
billions):

Notional principal Gross values

Dec-06 Dec-07 Jun-08 Dec-08 Jun-08 Dec-08

FX 40,271 56,238 62,983 49,753 2,262 3,917
Forwards 19,882 29,144 31,966 24,562 802 1,732
Swaps 10,792 14,347 16,307 14,725 1,071 1,588
Options 9,597 12,748 14,701 10,466 388 597

IR 291,582 393,138 458,304 418,678 9,263 18,420
FRAs 18,668 26,599 39,370 39,262 88 153
Swaps 229,693 309,588 356,772 328,114 8,056 16,573
Options 43,221 56,951 62,162 51,301 1,120 1,694

Equity 7,488 8,469 10,177 6,494 1,146 1,113
Commodity 7,115 8,455 13,229 4,427 2,209 955
CDS 28,650 57,894 57,325 41,868 3,172 5,652
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Notional principal Gross values

Dec-06 Dec-07 Jun-08 Dec-08 Jun-08 Dec-08

S–N CDS 17,879 32,246 33,334 25,730 1,889 3,695
M–N CDS 10,771 25,648 23,991 16,138 1,283 1,957

Unallocated 39,740 71,146 81,708 70,742 2,301 3,831

Exchange-traded 70,444 79,078 82,008 57,876

The table shows the fairly dramatic slowdown and then drop during 2008, especially
with equity, commodity and credit-related derivatives, but also the increase in gross
value.

Maturity FX IRS

Under 1 year 65% 33% of total market
1–5 years 19% 33%
Over 5 years 16% 34%

The above table shows that the majority of FX derivatives, predominantly forwards,
are under 1 year in maturity, interest rate derivatives are typically much longer,
averaging between 5 and 10 years. The Eurozone, UK and US routinely now trade
swaps out to 50 years. In terms of currencies, the major ones have little changed over
the past 10 years. The main development is the increased rise in euro products, and the
relative decline in USD.

Currency Percentage of market share of IR derivatives

Dec-08

USD 36.6%
Euro 38.7
Yen 14.1
GBP 7.4
Sw Fr 1.2
Can $ 0.7
Sw Kr 1.3

1.4 THE EVOLUTION OF THE SWAP MARKET

The discussion below refers to the evolution of the early swap market in the major
currencies during the 1980s. It is however applicable to many other generic markets as
they have developed.
There are typically three phases of development of a swap market:

1. In the earliest days of a market, it is very much an arranged market whereby two swap
end-users would negotiate directly with each other, and an ‘‘advisory’’ bank may well
extract an upfront fee for locating and assisting them. This was obviously a slow

8 Swaps and Other Derivatives



market, with documentation frequently tailored for each transaction. The main banks
involved are investment or merchant banks, long on people but low on capital and
technology as of course they were taking no risk. Typical counterparties would be
highly rated, and therefore happy to deal directly with each other.

A B 

Bank 

The first swap markets in the major currencies were even slower, as there was con-
siderable doubt about the efficacy of swaps. End-users were dubious about moving the
activities off-balance sheet, and there was apprehension that the accounting rules
would be changed to force them back on-balance sheet. The World Bank–IBM swap
(described above) played a major role in persuading people that the swap market was
acceptable.

2. In the second phase, originally early to mid-1980s, commercial banks started to take an
increasing role providing traditional credit guarantees.

A B Bank 

The counterparties now would both negotiate directly with the bank, who would
structure back-to-back swaps but take the credit risk, usually for an on-going spread
not an upfront fee. The normal lending departments of the bank would be responsible
for negotiating the transaction and the credit spread. The documentation is now more
standardised and provided by the bank. This role is often described as acting as an
‘‘intermediary’’, taking credit but not market risk.

The role of intermediary may also be encouraged by external legislation. In the UK
for example, if a swap is entered into by two non-bank counterparties, the cashflows
are subject to withholding tax. This is not true if one counterparty is a bank.

3. The concept of a market-making bank originally developed by the mid to late 1980s,
whereby a bank would provide swap quotations upon request. This would mean that
they would be dealing with a range of counterparties simultaneously, and entering into
a variety of non-matching swaps. With increased market risk, such banks required
considerably more capital, pricing and risk management systems, and very standar-
dised documentation. The swap market became dominated by the large commercial
banks who saw it as a volume, commoditised business.

These banks would be typically off-setting the market risk by hedging in another
market, usually the equivalent government bond market as this is the most liquid.
Therefore banks with an underlying activity in this market are likely to be at a
competitive advantage. Local domestic banks usually have close links with the local
government bond market, and hence they are frequently dominant in the domestic
swap market. Probably the only market where this is not the case is the USD market,
where the markets are so large that a number of foreign banks can also be highly active
and competitive.
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It might be worth making the point here that banks frequently and misleadingly talk
about ‘‘trading’’ swaps, as if a swap were equivalent to a spot FX transaction which is
settled and forgotten about within two days. A swap is actually a transaction which has
created a long-term credit exposure for the bank. The exposure is likely to remain on
the bank’s books long after the swap ‘‘trader’’ has been paid a bonus and has left the
bank. From this perspective, swaps fit much more comfortably within the traditional
lending departments with all the concomitant credit-controlling processes and not
within a treasury which is typically far more lax about credit.

This link with the bond market has meant that a bank may well adopt different roles in
different markets. For example, a Scandinavian bank such as Nordea Bank would be a
market-maker in the Scandinavian and possibly some of the Northern European curren-
cies. On the other hand, it would act as an intermediary in other currencies. For example, if
a customer wanted to do a South African rand swap, it would enter into it taking on the
credit risk, but immediately laying off the market risk with a rand market-making bank.
In this context, the 1996 EIB–TVA swap was interesting. The deal was brokered by

Lehmann Brothers, but who played no role in the swap. At one point the swap had been
out for tender from a bank but (rumour has it) the bid was a 1 bp spread. Why, asked the
two counterparties, do we need to deal with a bank at all, especially given that we are both
AAA which is better than virtually all banks? So they dealt directly! As the relative credit
standing of banks declines, the market may well see more transactions of this nature—back
full circle.
One cannot really talk about a ‘‘global’’ swap market. There are obviously some global

currencies, notably USD, yen and the euro, which are traded 24 hours a day, and when it
would be feasible to get swaps. But most swap markets are tied into their domestic markets,
and hence available only during trading hours.
Swap brokers still play an important role in this market. Their traditional role has been

to identify the cheapest suitable counterparty for a client, usually on the initial basis of
anonymity. This activity creates liquidity and a uniformity of pricing, to the overall benefit
of market participants. However, as the markets in the most liquid currencies continue to
grow, the efficiency provided by a broker is less valued and their fees have been increasingly
reduced to a fraction of a basis point. They are being forced to develop more electronic
skills to survive.

1.5 CONCLUSION

The story of the swaps market has been one of remarkable growth from its beginnings only
some 30 years ago. This growth has demonstrated that there is a real demand for the
benefits swaps can bring, namely access to cheap funds and risk management, globally.
Furthermore, the growth shows little sign of abating as swap markets continue to expand
both geographically as countries deregulate and downwards into the economy. As we enter
into 2009 and beyond, have derivatives suddenly become irrelevant?4 In my view, certainly
not. The measurement and management of risk, whether it be interest rate, foreign
exchange rate, credit and so on, is, and will remain, critical for all organisations. To
suddenly deny the main mechanism for managing these risks is simply irrational. What
is, of course, important is to ensure that users of derivatives understand and can assess
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derivatives, or at least employ people that do. I very much hope that this book will play
some small role in the continued use of derivatives, and assisting the orderly development
of the market, by ensuring that people are well-trained in their understanding of the
pricing, structuring and risk management of swaps and related derivatives.
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OBJECTIVE

The main objective of this chapter is to provide an introduction to the construction and
pricing of short-term IRS using futures contracts. However, because a simple swap may be
regarded as an exchange of two streams of cashflows which occur at different points in the
future, extensive use is made of the concept of discounting. The chapter therefore begins
with a brief discussion on the time value of money, and demonstrates how implied discount
factors may be derived from the cash market. Because rates are only available at discrete
maturities, interpolation is a necessary technique; and there are a number of different
approaches which end up with different results. The chapter then discusses how to estimate
forward rates, and how to price FRAs first off the cash market and then off the futures
market. This leads naturally to the pricing and hedging of short-term IRS off a futures
strip. Examination of the hedging reveals a convexity effect which is discussed in more
detail in Chapter 7 and its Appendix. Finally, an alternative approach to pricing swaps
without discounting is briefly discussed.

2.1 DISCOUNTING, THE TIME VALUE OF MONEY AND

OTHER MATTERS

Today’s date is Monday 4 February 2008; you have just been offered a choice of
transactions:

Deal 1: to lend $10 million and to receive 3.25% for 3 months;
Deal 2: to lend $10 million and to receive 2.95% for 12 months.

Which do you find more attractive?
The current London rates at which you could normally deposit money are 3.145% pa

and 2.89625% pa for 3 and 12 months, respectively;1 we will assume that the credit-
worthiness of the counterparty is beyond question. Comparing the transactions with these
market rates, the 3-month deal is 10.5 bp above the market, whilst the 12-month deal is
only 5 bp. Intuitively you favour the first transaction, but wish to do some more analysis to
be certain.

2

Short-term Interest Rate Swaps

1 These market rates imply a negative curve, with long-term rates lower than short-term rates. This is unusual, as the cost of
borrowing generally increases with maturity due to a charge for the loss of control of the money. But this inversion of the curve
reflects a lack of supply at the short end, reflecting conditions following the current ‘‘credit crunch’’.



These market rates suggest that the following transactions are currently available:2

Dates Days 3mo. cash 12mo. cash

4-Feb-08
6-Feb-08 �10,000,000 �10,000,000
6-May-08 90 10,078,625.00
6-Feb-09 366 10,294,452.08

where negative signs indicate payments, and positive or no sign
receipts.

Note the following:

a. Whilst the rates are being quoted on 4 February, they are with effect from 6 February.
In other words, there is a 2-day settlement period between the agreement of the
transaction and its start. On 6 February, the counterparty’s bank account would be
credited with $10 million. This is the normal convention in the USD market, although
it is feasible to organise a ‘‘same day’’ transaction. Conventions vary between markets;
for example, the GBP convention is normally ‘‘same day’’.

b. Interest rates are invariably quoted on a ‘‘per annum’’ basis, even if they are going to
be applied over a different period. It is therefore necessary to have a convention that
translates the calendar time from, say, 6 May 2008 back to 6 February 2008 into years.
The USD money market, in common with most money markets, uses an ‘‘Actual/360’’
daycount convention, i.e. calculates the actual number of days:

6 May 2008�6 February 2008¼ 90 days

and then divides by 360 to convert into 0.2500 years. The other common convention
is ‘‘Actual/365’’, which is used in the sterling market and many of the old
Commonwealth countries. The cashflow at the end of 3 months is given by:

$10,000,000 � ð1þ 3:145% � 0:2500Þ ¼ $10,078,625:00

c. Payments can only be made on business days, and therefore a convention has to be
applied to determine the appropriate date if the apparent cashflow date is a non-
business day. The most popular is the ‘‘modified following day’’ convention, i.e. the
operating date moves to the next business day unless this involves going across a
month-end, in which case the operating date moves to the last business day in the
month.

The concept of discounting will be used extensively throughout this book. The ‘‘time value
of money’’ suggests that the value of money depends upon its time of receipt; for example,
$1 million received today would be usually valued more highly than $1 million to be
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received in 1 year’s time because it could be invested today to generate interest or profits in
the future. If Ct represents a certain cashflow to be received at time t > 0, then a discount
factor DFt relates this cashflow to its value today (or present value) C0 by

C0 ¼ Ct �DFt

Note that this does not presuppose any source or derivation of the discount factor.
The present value of each of these two market-based transactions may be easily

calculated as:

�$10,000,000þ $10,078,625:00 �DF3

and

�$10,000,000þ $10,294,452:08 �DF12

where DF3 and DF12 are the 3 and 12-month discount factors, respectively. The market
rates are obviously freely negotiated, and we will assume that, at the moment of entering
into the transactions, the transactions represent no clear profit to either party. In other
words, at inception the transactions would be deemed to be ‘‘fair’’ to both parties, and
hence have a zero net value. Hence, we can solve for the two discount factors, i.e.
DF3 ¼ 0.992199 and DF12 ¼ 0.971397, respectively. A general formula for discount
factors from the money markets is:

DFt ¼ 1=ð1þ rt � dtÞ ð2:1Þ

where dt is the length of time (in years) and rt is the rate (expressed as a % pa).
Turning back to the two original transactions, these will generate the following

cashflows:

Dates Deal 1 Deal 2

4-Feb-08
6-Feb-08 �10,000,000 �10,000,000
6-May-08 10,081,250
6-Feb-09 10,299,917

PV¼ 2,604.52 5,308.28

The present values are determined using the discount factors derived from the market rates.
Thus we can see, perhaps against our intuition, that the second transaction would be the
more profitable of the two. This is of course because the deal is longer: 10.5 bp over 3
months is roughly half of 5 bp over a year.

This is of course ignoring market realities such as bid–offer or bid–ask spreads
(or ‘‘doubles’’ as they are frequently called). In practice, most analysis uses mid-rates,
i.e. the arithmetic average between bid and offer, simply to enable the statement of
‘‘fairness’’ to be made, and subsequently adjusted for various spreads. These issues will
be discussed in more detail later; for the current discussion they will be ignored.
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The current money market data readily available is:

Today’s date: 4-Feb-08 Rates

Start date: 6-Feb-08
7-day 13-Feb-08 3.2175%
1-month 6-Mar-08 3.1813%
3-month 6-May-08 3.1450%
6-month 6-Aug-08 3.0975%
12-month 6-Feb-09 2.89625%

Discount factors at each of the maturities can be easily calculated as above, i.e.:

Today’s date 4-Feb-08 Rate DFs

Start date 6-Feb-08
7-day 13-Feb-08 3.2175% 0.999375
1-month 6-Mar-08 3.1813% 0.997444
3-month 6-May-08 3.1450% 0.992199
6-month 6-Aug-08 3.0975% 0.984582
12-month 6-Feb-09 2.89625% 0.971397

You are now offered the opportunity to purchase today a riskless $100m due to be paid on
6 November 2008. What value would you place on this transaction? To answer this
question, the discount factor on 6 November is required—but how to calculate it? The
obvious approach is ‘‘interpolation’’, but this raises two questions:

. What is interpolated: cash rates or discount factors?

. How is the interpolation calculated: linear, polynomial, exponential, etc.? with
associated questions ‘‘do the answers change the valuation?’’ and ‘‘are there any ‘right’
answers?’’. The simple answers to the latter questions are ‘‘yes’’ and ‘‘no, but some are
better than others’’! The results from some popular methods are shown below:

Calculation of the discount factor on 6-Nov-08

Linear Cubic Linear Cubic Log-linear
interpolation interpolation interpolation interpolation interpolation
of rates of rates of DFs of DFs of DFs

2.997% 3.027%
DFs DFs
0.977699 0.977483 0.977989 0.977558 0.977967

PV¼ 97,769,912 97,748,286 97,798,944 97,755,783 97,796,722
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where:

. ‘‘linear’’ is simply straight-line interpolation;

. ‘‘cubic’’ implies fitting a cubic polynomial of the form aþ b : tþ c : t2 þ d : t3 through the
four neighbouring points and solving for fa; b; c; dg;

. ‘‘log-linear’’ is the straight line interpolation of the natural logarithm of the discount
factors (this last one is often suggested as a discount curve is similar to a negative
exponential curve).

The deal value fluctuates by some $50,000 or roughly 5 bp, which, whilst perhaps not
significant, is certainly worthwhile. It is more common practice to interpolate rates rather
than discount factors at the short end of the curve. This is probably because it would be
perfectly feasible to get a quote for a rate out to 6 November for depositing, and of course
the two transactions should be arbitrage-free.

Cash rates are of course spot rates, i.e. they all start out of ‘‘today’’. The cash curve may
be used to estimate forward rates, i.e. rates starting at some point in the future.
For example, if we knew that we would receive $100 million on 6 May 2008 for, say,
3 months, we could lock in the investment rate today by calculating the 3/6 rate.3 Forward
rates are usually estimated using an arbitrage argument as follows:

1. We could borrow $100 million for 3 months at 3.1450%, the repayment cashflow4

would be 100m � (1þ 3.1450% � 0.250)¼ 100,786,250.00.
2. The $100 million could then be lent out for 6 months at 3.0975%, this would generate a

cashflow of 100m � (1þ 3.0975% � 0.506)¼ 101,565,958.33.

At the end of the 3 months, the borrowing has to be repaid. Assume the repayment is to be
financed by borrowing for another 3 months at the rate r3=6, thus generating a new liability:

100,786,250:00 � ð1þ r3=6 � d3=6Þ
where d3=6 ¼ 0.256 is the length of time at the end of 6 months. For the transactions to
break even:

100,786,250:00 � ð1þ r3=6 � 0:256Þ ¼ 101,565,958:33

The implied 3/6 rate is 3.0272%.
A general expression for a forward rate Ft=T , from t to T , is:

Ft=T ¼ f½ð1þ rT � dTÞ=ð1þ rt � dtÞ� � 1g=ðT � tÞ ð2:2Þ
However, to use this expression, the rates must be zero-coupon spot rates with maturities t
and T . These are generally available when T is under 1 year, but are unlikely to be available
for longer maturities. A more widely used expression for longer dated forward rates is:

Ft=T ¼ fðDFt=DFTÞ � 1g=ðT � tÞ ð2:3Þ
using discount factors estimated off the discount curve (which of course is synonymous for
cash rates).
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Returning to the cash curve above, we want to estimate the 3-monthly forward rates, 3/
6, 6/9 and 9/12. To do this, we need to estimate the 9-month discount factor DF9. The table
below shows it being estimated in a variety of ways, and the resulting forward rates.

Calculation of discount factor on 6-Nov-08

Linear Cubic Linear Cubic Log-linear
interpolation interpolation interpolation interpolation interpolation
of rates of rates of DFs of DFs of DFs

2.997% 3.027%
DFs DFs
0.977699 0.977483 0.977989 0.977558 0.977967

3 mo. forward rates

3/6 3.0272% 3.0272% 3.0272% 3.0272% 3.0272%
6/9 2.7547% 2.8419% 2.6377% 2.8116% 2.6467%
9/12 2.5387% 2.4515% 2.6556% 2.4817% 2.6467%

The impact of the different methods on the forward rates is quite dramatic, showing
differences of up to 20 bp. Contrast this with the difference in the discount factors, which
in the previous example only reached 5 bp.

2.8%

2.9%

3.0%

3.1%

3 monthly 

forward rates

Li i l i f

2.2%

2.3%

2.4%

2.5%

2.6%

2.7%

3/6 6/9 9/12

Linear interpolation of rates

Cubic interpolation of rates

Linear interpolation of DF's

Cubic interpolation of DF's

Log linear interpolation of DF's

To understand why, rewriting eq. (2.3) as:

Ft=T ¼ fðDFt �DFTÞ=DFTg=ðT � tÞ
highlights the fact that a forward rate is related to the gradient of the discount curve and is
therefore much more sensitive to small differences in the estimates. To demonstrate this
more clearly, the table below calculates a 15-day forward rate curve using all the five
different methods of interpolation:
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15-day forward curve

Linear Cubic Linear Cubic Log-linear

interpolation interpolation interpolation interpolation interpolation

of rates of rates of DFs of DFs of DFs

6-Feb-08
21-Feb-08 3.2043% 3.2023% 3.1899% 3.1958% 3.1910%
7-Mar-08 3.1528% 3.1535% 3.1637% 3.1609% 3.1632%
22-Mar-08 3.1456% 3.1253% 3.1077% 3.1416% 3.1136%
6-Apr-08 3.1237% 3.1120% 3.1117% 3.1224% 3.1136%
21-Apr-08 3.1019% 3.1080% 3.1157% 3.1033% 3.1136%
6-May-08 3.0802% 3.1075% 3.1198% 3.0843% 3.1136%
21-May-08 3.0667% 3.0673% 3.0078% 3.0785% 3.0175%
5-Jun-08 3.0474% 3.0496% 3.0115% 3.0588% 3.0175%
20-Jun-08 3.0282% 3.0312% 3.0153% 3.0361% 3.0175%
5-Jul-08 3.0091% 3.0113% 3.0191% 3.0105% 3.0175%
20-Jul-08 2.9900% 2.9895% 3.0229% 2.9820% 3.0175%
4-Aug-08 2.9710% 2.9650% 3.0267% 2.9505% 3.0175%
19-Aug-08 2.8560% 2.9372% 2.6769% 2.9160% 2.6896%
3-Sep-08 2.8067% 2.9057% 2.6254% 2.8785% 2.6392%
18-Sep-08 2.7712% 2.8697% 2.6283% 2.8380% 2.6392%
3-Oct-08 2.7358% 2.8287% 2.6311% 2.7945% 2.6392%
18-Oct-08 2.7005% 2.7821% 2.6340% 2.7479% 2.6392%
2-Nov-08 2.6654% 2.7293% 2.6369% 2.6983% 2.6392%
17-Nov-08 2.6303% 2.6697% 2.6398% 2.6457% 2.6392%
2-Dec-08 2.5954% 2.6027% 2.6427% 2.5900% 2.6392%
17-Dec-08 2.5606% 2.5278% 2.6456% 2.5312% 2.6392%
1-Jan-09 2.5259% 2.4444% 2.6486% 2.4694% 2.6392%
16-Jan-09 2.4912% 2.3518% 2.6515% 2.4044% 2.6392%
31-Jan-09 2.4567% 2.2496% 2.6544% 2.3364% 2.6392%

The average difference between the highest and lowest curves is 11.4 bp.
In practice, whilst there is no ‘‘right’’ method, most people interpolate the cash rates

using either linear if the cash curve is relatively flat, or polynomial if the curve is quite steep.

2.2 FORWARD RATE AGREEMENTS (FRAs) AND INTEREST

RATE FUTURES

A FRA is an agreement between two counterparties whereby:

. seller of FRA agrees to pay a floating rate interest and to receive a fixed interest rate;

. buyer of FRA agrees to pay the fixed interest and to receive the floating interest

on an agreed notional principal amount, and over an agreed forward period.
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For example, a company is a payer of 3-month floating interest on $100 million of
debt. The company is concerned about interest rates rising, and on 4 February 2008 it buys
a $100 million 3/6 FRA at a fixed rate of 3.0272% from a bank. The following operations
occur:

4 May 2008: 3mo. $ Libor is fixed with effect from 6 May 2008
6 August 2008: net cash settlement (L� 3.0272%) � $100m � (6 August–6 May)/360

is paid.

This is shown from the point of view of the company, and will be positive if L > 3.0272%
or negative if L < 3.0272%. Hence, the company is locked into the fixed rate even if rates
do rise over the period from 4 February to 4 May.
In practice, the net amount is discounted back to 6 May 2008 using the recent Libor

fixing, i.e.:

fðL� 3:0272%Þ � 100m � ð6 August� 6 MayÞ=360g=½1þ L � ð6 August � 6 MayÞ=360�

and paid then. The usual reason given for this market convention is a reduction in the credit
exposure between the two parties:

a. On 4 February, the current exposure is assumed to be zero, i.e. the FRA would have a
zero valuation for both parties.

b. However, there is a ‘‘potential future exposure’’ over the period from 4 February
to 4 May which would fluctuate as the estimate of the Libor fixing on 4 May
varies. If the estimate rises, then the FRA has a negative value for the bank and hence
the company has a credit exposure on the bank; conversely, if the estimate falls, then
the FRA has a positive value for the bank, and it has a credit exposure on the
company.

c. On 4 May, the official Libor fixing is known, which then fixes the net settlement
amount and crystallises the residual credit exposure.

d. The two parties could wait until 6 August with one of them having this known residual
exposure. By making the payment immediately on 6 May, this 3-month residual risk is
removed.

As banks are required to place capital against all credit exposures, and capital has a cost,
retaining the residual exposure could be expensive. Discounting the net settlement amount
therefore appears to favour the bank, as it implies that for a given credit limit and amount
of capital, the bank could effectively do twice the total business in 3/6 FRAs. The impact of
discounting on reducing the total credit exposure obviously declines as the time to the
fixing date lengthens.
The benefit to the company is less clear. Whilst the value of the net settlement remains

constant whether discounted or not, most companies neither mark-to-market nor are
overly concerned about credit exposures. The cashflows from the FRA and from the
underlying debt are not on the same dates, therefore creating a mismatch which may cause
accounting and tax problems. It is highly unlikely that the company could reproduce the
undiscounted net settlement, as it would not be able to deposit or borrow at Libor flat for
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an odd cashflow, irrespective of its credit worthiness. It is perfectly feasible for banks to
provide non-discounted FRAs5 at a price, but this is seldom done.

We saw in Section 2.1 how a forward rate may be created by spot money market
transactions. However, FRAs are off-balance sheet whereas cash trades are on-balance
sheet, which is not a good mix. If a liquid interest rate (or deposit) futures market exists,
then this is much more likely to be used to price and to hedge FRAs. A brief reminder
about futures contracts:

. equivalent to standardised FRA contracts, traded through exchanges;

. standardised notional principal amounts, maturity dates and underlying interest
rates;

. futures are deemed to be credit risk-free as each contract is guaranteed by the exchange—
to achieve this, when entering into a contract, each party must place an initial margin
with the exchange (sufficient to cover an extreme movement in the market) plus a
variation margin because each contract is valued and settled daily.

For example: the most liquid contract in the world is the 3-month Eurodollar traded on
Chicago Mercantile Exchange:

. notional principal amount is $1 million;

. maturity dates: third Wednesday of a delivery month;

. delivery months: March, June, September and December;6

. in theory, 40 contracts (i.e. spanning the next 10 years) are open at any time; in practice,
there is good liquidity in the near 16–20 contracts;

. underlying interest rate: 3-month USD Libor quoted on a ‘‘price’’ basis; on
4 February 2008, the quote for March 08 contract was 97.000, implying that the market
was anticipating the 3-month Libor rate out of 19 March 2008 to be (100� 97.000)/
100¼ 3.000%;

. price movement is a minimum of half a tick, i.e. 0.005 with the exception of the nearest
contract with a quarter-tick movement;

. initial margin: $1,013 per contract paid to the exchange; variation margin:
$1,000,000 � 1 bp � (90/360)¼ $25 per basis point movement per contract has to be paid
or received daily (notice this simplistically assumes 3 months is equal to 0.25 of a year,
and does not use Actual/360).

The current quotes for Eurodollar futures contracts are:

Maturity date Price Implied rate

March 08 March 19 97.000 3.000%
June 08 June 18 97.410 2.590%
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Given these rates, we wish to price the FRA above by estimating the fair 3-month rate out
of 6 May: this is usually done by simple linear interpolation between neighbouring implied
futures rates as shown below (for full details see Worksheet 2.6):

2.9%

3.2%

2.5%

2.7%

19 March 08 18 June 086 May 08

As:

6 May�19 March ¼ 48 days

18 June�6 May ¼ 43 days

linear interpolation gives:

ð43=91Þ � 3:00%þ ð48=91Þ � 2:59% ¼ 2:784%

The reason for writing the interpolation in this fashion is that it provides a clear indication
of the contribution of each futures contract, i.e. March provides 47%, June 53%, to the
price estimate of the FRA. Leading on from that, it also provides a clear indication of the
futures required to hedge the FRA; the bank has sold $100 million of a 3/6 FRA, therefore
100 futures contracts need to be sold to hedge it in the proportion of 47March contracts, 53
June contracts.
Why do we sell futures, given that the bank has sold the FRA? The bank is paying

the floating rate on the FRA, and is therefore concerned about rates rising. Futures
are quoted on a price basis, i.e. the bank sells the March contract at 97.00. If rates
then rise, the price will fall, and the bank can buy the contract back at a lower price.
The profit gained—the variation margin—should hopefully offset the loss on the
FRA.
How good is this hedge? This will be discussed conceptually first, and then in detail later.

Consider first of all a 10 bp parallel shift in the 3-month forward rate curve. The bank
would have to pay $10,000,000 � 10 bp � (91/360)¼ $25,555 extra on the FRA. It would
receive a total of $25 � 10 contracts � 10 bp¼ $25,000 from the two futures contracts. The
small mismatch of $555 is due to the different daycount conventions. So the hedge is fairly
effective; in theory, the size of the futures hedge could have been adjusted slightly, but this
is obviously impractical.
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2.9%

3.2%

2.5%

2.7%

6 May 0819 March 08 18 June 08

Next a rotational shift, pivoting around 1 May 2008. This results in the following shifts:

2 8%

2.9%

2.9%

3.0%

3.0%

3.1%

21 June
shift =     

12.9bp

2.6%

2.6%

2.7%

2.7%

2.8%

2.8%

shift = 

1.5bp

shift =       

14.4bp

19 March 08 6 May 08 18 June 08

The impact can be calculated as:

March contract: �12.9 bp value¼ �$15,239
June contract: þ14.4 bp value¼ þ$18,989
FRA contract: þ1.5 bp value¼ �$ 3,833
Net effect: �$83

The hedge appears to be quite effective against both parallel and rotational shifts.
However, if the curvature of the forward rate curve changes, for example both futures
rates decrease but the FRA rate remains constant, then the hedge will fail.

As time passes, the hedge needs to be rebalanced as the proportions of the two contracts
change. Eventually the March contract will expire, leaving the FRA hedged only with the
June contract. This exposes the bank to rotational risk for the remainder of the contract.



This may be reduced by selling more June and by buying some September contracts, but
this is unlikely to be very effective given the short time to the FRA fixing. By this, we mean
that the correlation between the remainder of the FRA contract and the September
contract is likely to be quite small, and hence a large degree of curve risk has been
introduced. The time of greatest risk therefore when hedging a FRA with futures is when
the shorter of the bracketing contracts has matured. The only way of removing this residual
risk completely is to sell an IMM FRA, i.e. when the FRA fixing date falls on a futures
maturity date, so it may be hedged with a single contract.
From a credit perspective, is the above approach correct? Futures are effectively

risk-free due to the margining process, whereas FRAs are OTC products. Hence, are
the rates from futures appropriate as implied FRA rates? In fact, OTC derivative markets
make extensive use of collateralisation to reduce the implicit credit risk; this will be
discussed in more detail in Chapter 3. Therefore, futures and FRA rates appear to be
comparable.

2.3 SHORT-TERM SWAPS

There are some other issues that we need to discuss, and these will be done in the context of
a more complex example. A money market swap is a short-dated swap typically priced and
hedged using a futures strip. The swap will be:

. notional principal amount of $100 million;

. 1-year maturity, starting on 4 February 2008;

. to receive fixed F annual Actual/360;

. to pay 3-month Libor quarterly.

In this context, the ‘‘fair price’’ of a swap is the fixed rate F such that the net present value
of the swap is zero. The structure of the swap is:

4 Feb 08 First Libor fixing (= current 3mo. cash rate 3.145%)
6 Feb 08 Start of swap (start of interest accruing on both sides)
4 May 08 Second Libor fixing
6 May 08 First floating payment ¼ $100,000,000 � 3.145% � (6 May–6 Feb)/360

¼ $78,625
4 August 08 Third Libor fixing
6 August 08 Second floating payment¼ $100,000,000 �L � (6 August–6 May)/360
4 Nov 08 Fourth Libor fixing
6 Nov 08 Third floating payment
8 Feb 09 Final cashflow: fourth floating payment

and single fixed receipt ¼ $100,000,000 �F � (6 Feb 09–6 Feb 08)/360

Note that, whilst described in detail above, the distinction between the fixing date of a
floating reference rate and the start of the accruing period will generally be ignored unless it
has some special significance. Future examples will tacitly assume that the fixing takes place
on the start date of each period.
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The current market information out of 4 February 2008 is:

Cash rates Futures prices

6-Feb-08
13-Feb-08 3.2175% March 08 97.000
6-Mar-08 3.1813% June 08 97.410
6-May-08 3.1450% September 08 97.520
6-Aug-08 3.0975% December 08 97.495
6-Feb-09 2.89625% March 09 97.395

We will look at various ways of determining F , and then will return to hedging. As with all
swaps, the main issue is what to do about the unknown forward floating rates?

Whilst there are a variety of approaches that may be used to address this, as we shall see
later, using the futures to estimate the forward Libor rates as we did on the FRA and
subsequently hedge them is a very natural choice. The first Libor is of course fixed today to
be the current 3mo. cash rate. The second Libor is none other than the 3/6 rate: we
estimated this using the March and June futures above to be 2.784%. Similarly, we can
estimate the other two Libor fixings, which are the 6/9 and 9/12 rates, respectively, off the
futures strip as follows:

6=9: ½ð42 � 2:590%Þ þ ð49 � 2:480%Þ�=91 ¼ 2:531%

9=12: ½ð41 � 2:480%Þ þ ð50 � 2:505%Þ�=91 ¼ 2:494%

These calculations are shown in column [1] of Worksheet 2.7. Hence, floating cashflows can
be constructed; see column [2].

The next step is to present-value the cashflows. This requires estimation of appropriate
discount factors. The most obvious choice is to derive them from the cash rates as above,
interpolating the rates as required; this values the floating side to be �$2,731,936 as shown
in columns [3] and [4]. To calculate the fixed rate, we could either calculate it analytically or
numerically:

. The value of the fixed side for F ¼ 1 is simply:

$100,000,000 � [(6 Feb 09–6 Feb 08)/360] � 0.971397¼ $98,758,696

For the swap to be fairly priced, F ¼ $2,731,936/$98,758,696¼ 2.7663%. This will work
in this situation as the present value of the fixed side is linear in terms of the fixed rate;
this is true in many relatively simple structures, as we will see later.

. Alternatively, we could guess the fixed rate, construct the cashflow in column [6],
calculate the present value of the fixed side, and if it is not the same as the floating
PV, adjust the guess. A good starting point would be to use the average of the floating
rates, i.e. 2.738% and adjusted from quarterly to annual using the formula
ð1þ rqu=4Þ4 ¼ ð1þ rannÞ, i.e. 2.7666%; this gives a net PV of $28. But the starting point
seldom matters as the iterations are well behaved. When pricing transactions in a
spreadsheet, most people make extensive use of the Goal Seek or Solver functions to
do this type of calculation. There are probably two reasons why this is so popular:
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e it directly generates the actual cashflows likely to happen under this swap, which is
extremely useful for checking the structure;

e the method may be easily modified to enable the pricer to calculate a fixed rate that
will generate a desired profit (non-zero net PV) for the transaction.

As before, the hedges for the three unknown Libor fixings (it is assumed that the first Libor
rate has already been fixed, and therefore cannot be hedged) may be calculated:

6=9: ð42=91Þ � 100 ¼ 46 June and ð49=91Þ � 100 ¼ 54 September

9=12: ð75=91Þ � 100 ¼ 45 September and ð16=91Þ � 100 ¼ 55 December

A total of 300 contracts are required, as shown in column [6].
Next, let us explore the effectiveness of this. For example, assume that the futures prices

shift as shown below:

Shift in futures

prices (bp)

Mar-08 �25
Jun-08 �50
Sep-08 �100
Dec-08 �75

This will give rise to new Libor estimates, as shown in column [9], and the resulting change
in the swap cashflows in [10]. The margin cashflows from the futures hedge are calculated in
column [11]; for example:

March: 47 contracts ��25 bp shift in price � $25 per bp¼ $29,375 received

We can see that the total changes in the swap cashflows in column [10] sum to
�$514,621, and the total receipts under the futures hedge in [11] sum to $503,750.
The amounts are very similar, but not equal because of the differences in daycounts as
discussed above (the resulting hedge ratio of 1.02 is roughly the ratio of the length of
3 months under the swap convention of Act/360 and under the futures convention
being equal to 1

4 of a year, which suggests that about 306 contracts are actually required)
(see Worksheet 2.7).
However, column [10] ignores the timing of the cashflows and simply adds them up.

The hedge is said to be a ‘‘cash hedge’’. In practice, the futures would pay the receipts on
margin received today, whilst the additional payments under the swap would only occur on
the payment dates. To make the results comparable, the changes in swap cashflows need to
be discounted back, as in column [12]. In this case, the swap is very slightly overhedged, i.e.
the changes in the value of the swap are smaller than the off-setting changes in the value of
the futures receipts. The graph below shows the impact of a parallel shift in the futures
prices, and it demonstrates that we are net short of futures contracts.
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There is however a serious practical flaw in the model, in that it uses futures for
estimating the future Libor fixings, and cash rates for deriving the discount factors. The
hedge only protected against movements in the futures prices, and assumed that the
discount factors remained constant. But both markets are providing information over
the 12-month period; some of the information must therefore be complementary, and
possibly contradictory. Shifts in the futures should also imply shifts in the cash rates,
which has been ignored.

The discounting process is going to have to be rebuilt, this time using a set of
non-redundant or parsimonious market information. Because futures, by definition, are
not spot rates, we need at least one spot cash rate; this will ensure that the discount factors
discount back to today. The more general approach is to use a cash-to-first-futures (CTFF)
rate. This is a cash rate that matures, in this case, on 19 March 2008; by interpolating the
cash curve, CTFF¼ 3.174%.

Define DFðt1; t2Þ to be a forward discount factor that will discount a cashflow at time t2
back to time t1. Obviously DFðt1; t3Þ ¼ DFðt1; t2Þ �DFðt2; t3Þ. Initially, assume that the
implied futures rates apply from the maturity of one futures contract to the next one, eg.
the implied March rate of 3.000% applies from 19 March until 18 June, the rate of 2.590%
from 18 June until 17 September, etc. In this case we can build a discount curve as follows:

1. DF(0, 19 March)¼ (1þ 42/360 � 3.174%)�1¼ 0.996311 (the usual simple DF).
2. DF(19 March, 18 June)¼ (1þ 91/360 � 3.000%)�1¼ 0.992474;

DF(0, 18 June)¼ 0.996311 � 0.992474¼ 0.988813.
3. DF(18 June, 17 September)¼ (1þ 91/360 � 2.590%)�1¼ 0.993496;

DF(0, 17 September)¼ 0.988813 � 0.993496¼ 0.982381, etc.

This cash & futures discount curve will now change as the futures prices shift. The
following strategy can be adopted:

. Estimate the Libor fixings off 3mo. cash and the futures strip as before.

. Calculate the DFs on the swap dates by interpolating the DFs from the futures dates by
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e converting the DFs into zero-coupon rates by zt ¼ �lnðDFtÞ=t, see column [2];
e linearly interpolating the zero rates in column [6];
e transforming back to discount factors using DFt ¼ expf�zt : tg in column [7].

This method of interpolating the discount curve is widely used, often under the name of
‘‘continuously compounded interpolation’’, and some of its implications will be explored
later. The fair price for the swap is now 2.7646%—see column [8]—a mere change of 0.2 bp
(see Worksheet 2.8).
In practice, futures are not exactly 3 months apart; sometimes they gap, sometimes

overlap. If it is deemed necessary, then one approach is as follows (see Worksheet 2.9
for precise details):

1. Convert the simple interest rates in column [1] into daily compounded rates in [2] to
place them all on the same basis.

2. Create a set of non-overlapping contiguous periods as shown in [3] and [4].
3. For periods that are uniquely defined, simply copy over the compounded rates.
4. For periods that are undefined, such as 15 to 21 June, take the average of the two

neighbouring periods, i.e. 0.5 � (6.152%þ 6.447%)¼ 6.300%.
5. For periods that are defined twice, such as 20 to 21 September, again take the average.
6. Once column [5] has been completed, then convert the rates back to simple interest and

calculate the discount curve in the usual way; see columns [6] and [7].

The pricing difference in this case is negligible. However, such an approach can be
invaluable for the estimation of short-dated forwards of FRAs over a gap or overlap.
An alternative way of pricing the swap (see Worksheet 2.10) is:

. estimate the Libor fixings off 3mo. cash and the futures strip as before;

. calculate the DFs from the estimated Libor strip directly—this requires no interpolation.

The fair price is 2.7647%, a change of only 0.01bp. This approach is very efficient, but can
only really be used when the cashflows are quarterly (as in this case), whereas the other
approach is more general.
The alternative approaches, whilst more efficient and correct than the original model,

have made no significant difference to the pricing. However, now return to the hedging of
this swap. Because futures affect the swap through both the estimation and discounting
processes, it is easiest to use numerical perturbation to estimate the impact of changing
market conditions. In turn, each of the futures prices were perturbed downwards by 1 bp
(equivalent to a rate increase of 1 bp, which is conventional), and the change in the value of
the swap noted; see column [9] headed PV01 (Present Value of 1 bp, also known as PVBP)
in either of the two above worksheets. This is often called ‘‘blipping’’ a curve, i.e. take a
curve of rates, perturb one rate, note the change in value, return the perturbed rate to its
original value and move on to the next rate. The hedge amounts are now calculated by
dividing the PV01 by, in this case, $25 for a Eurodollar future to give the number of futures
contracts required. The end result is frequently described as a value or ‘‘tailed’’ hedge.
The effectiveness of the hedge, in contrast with the previous one, is shown below. For

small changes, the net effect is very close to zero, as expected. But, more interestingly,
another phenomenon has arisen, namely that the net effect is always positive! The transac-
tion plus hedge cannot lose irrespective of what happens to rates. This is an example of
what is known as a ‘‘convexity (or gamma) effect’’.
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2.4 CONVEXITY BIAS IN FUTURES

How does this convexity bias arise? Consider a very simple situation, namely selling an
IMMFRA at a rate of FFRA and selling a single deposit futures at a rate of Ffutures to hedge.
Obviously the tenor of the rates and the dates all match. So, would we expect FFRA and
Ffutures to match as well? Consider what happens when rates move. If, for example, rates go
up, the FRA has to pay out a higher cashflow, whereas the futures will receive margin. But
the key question is when? The futures margin is received immediately, but the increased
FRA cashflow is only paid away at some date in the future. The longer the FRA, the
greater the difference between the PV of the increased FRA cashflow and the margin
cashflow.

Assume that we wish the cashflows to match dates; we will therefore invest the futures
margin until the cashflow date on the FRA. But at what rate can we invest? As we surmised,
rates have gone up, therefore at a high rate, which must be beneficial. The converse of this is
true if rates drop—see diagram below.

Rates  

Lose on 

FRA 

Receive 

margin on 

futures 

Invest the 

margin at a 

high rate 

Rates  
Gain on 

FRA 

Pay margin 

on futures 

Borrow the 

margin at a 

low rate 



This is a second-order win–win situation, investing at high rates, borrowing at low rates.
If we think of a futures contract in the same way as a FRA:

If the seller is gaining from this situation, the buyer must be losing. As compensation
therefore, the buyer will want to receive a higher rate, which suggests that in practice,
Ffutures > FFRA. The theoretical adjustment that should be made is approximately:

Ffutures � FFRA ¼ ð1� e�’Þ : ð1þ G :FfuturesÞ=G

where ’ ¼ 1
2
v2 : t2 :G;

G is the tenor of the rate (in years);
t is the time to the start of the forward rate;
v is the instantaneous volatility, estimated by � :Ffutures=ð1þ G :FfuturesÞ;
� is the normal forward rate volatility usually taken from the cap market.

This expression was derived using the HJM approach—see later—and assumes continuous
margining and constant volatility, i.e. no reversion. It is feasible to derive formulae with
these effects, see for example Flesaker,7 but they are negligible in practice.
The table on the opposite page shows that the adjustment is small for under say 2 years,

and was therefore ignored by many people for quite a long time. In 1992, the spread
between swaps and the unadjusted futures curve was very close to zero. However, as
the Eurodollar futures market at the CME was extended to 10 years in 1993, and practi-
tioners started pricing swaps off 5-year futures strips, the adjustments became exponen-
tially sizeable and were taken into account.
The adjustment in the 5-year forward rate calculated above is approximately 18 bp. In

practice, this adjustment was estimated to be in the range 12 to 22 bp over the period from
1989 to 1994 with an average of 17 bp.8 Obviously, to use the futures rates in the estimation
of Libor forward rates and swap discount factors, the adjustment factors should be
deducted from the implied rates before they are used in (say) the production of a blended
curve. The swap curve should therefore trade below the futures curve; typically, it is about
6 bp below for a 5-year swap, and about 18 bp for a 10-year one.
When discussing convexity in this case, one needs to be very careful. The convexity bias

was discovered by future valuing the margin payments to the end of the FRA. We could of
course have done exactly the reverse, namely taken the change in cashflow under the FRA
and present-valued it. In this case, we would have found that the FRA would have had
positive convexity relative to the futures contract. In a PV world, constant margin futures
contracts are strictly linear with the movement in rates (sometimes called ‘‘tangential’’
contracts), and all non-margined contracts possess convexity. However, the original dis-
cussion was from the angle that the futures had convexity, to place them consistently into a
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non-margined world. Convexity effects for more complex swaps will be discussed in
Chapter 7.

2.5 FORWARD VALUING A SWAP

Before we finish with this structure, we are going to price the swap from a different point of
view. The swap bank is paying the floating, receiving fixed. This implies that, at the end of
the first quarter, it has to find $786,250 to pay away. Where does it get the money? Assume
the money could be borrowed at Libor flat for a period of three months:

$786,250 � ð1þ 0:256 � 2:7837%Þ ¼ $791,843

At the end of the period, the borrowing would have to be repaid, presumably by another
borrowing. But of course another payment of $711,399 is also due. The new amount to be
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Futures Futures Forward Adjustment

price volatility (bp)

Mar-95 9254 9.71% 0.01
Jun-95 9334 10.09% 0.06
Sep-95 9315 10.97% 0.16
Dec-95 9310 12.49% 0.36
Mar-96 9302 13.70% 0.70
Jun-96 9296 14.55% 1.15
Sep-96 9287 15.04% 1.72
Dec-96 9290 15.13% 2.25
Mar-97 9286 15.36% 2.97
Jun-97 9283 15.73% 3.89
Sep-97 9276 16.26% 5.12
Dec-97 9277 16.94% 6.60
Mar-98 9272 17.29% 8.17
Jun-98 9269 17.29% 9.56
Sep-98 9261 16.95% 10.78
Dec-98 9262 16.26% 11.25
Mar-99 9257 15.73% 12.04
Jun-99 9252 15.36% 13.04
Sep-99 9244 15.15% 14.43
Dec-99 9245 15.10% 15.86
Mar-00 9238 15.05% 17.69
Jun-00 9232 15.00% 19.72
Sep-00 9224 14.95% 21.84
Dec-00 9225 14.89% 23.52
Mar-01 9218 14.83% 25.76
Jun-01 9212 14.76% 28.04
Sep-01 9204 14.70% 30.57
Dec-01 9208 14.63% 32.23
Mar-02 9292 14.56% 27.44



borrowed is $791,843þ $711,399¼ $1,503,243. This process is then continued until the end
of the year; at this point, a single fixed cashflow is received which can be used to repay all
the borrowings. For the swap to be fair, the net cashflow on the maturity date should be
zero. Solving for the fair fixed rate gives 2.7647%, exactly the same as before. This is a
demonstration of a very important fact: discounting off a Libor curve is exactly the same as
reinvesting at the implied forward rates (see Worksheet 2.11).
This approach permits a further consideration. An alternative view is that swap cash

payments are tantamount to lending the counterparty money. What would be a fair rate for
this counterparty, bearing in mind its relative creditworthiness? For example, if we assume
that we would only lend to this particular counterparty at Liborþ 100 bp, how should the
pricing on the swap be adjusted? If we use this rate Liborþ 100 bp as our effective
borrowing cost in each period, then the new fair price for the swap can be calculated.
In this case, the fixed rate rises by about 4 bp to 2.770%.
Conventionally, swap pricing assumes that banks can always fund themselves at Libor

flat. In reality, this is seldom the case. This forward-valuing approach can be applied to
embed the bank’s funding cost into a swap. It will be applied to more complex transactions
later.
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OBJECTIVE

The previous chapter discussed short-term IRS, priced and hedged off a futures strip. Such
a strip will not go out very far, and medium to long-term swaps are much more closely
related to the bond market. This chapter first introduces a generic or ‘‘vanilla’’ swap, and
shows how it may be regarded either as an exchange of cashflows, or as a link between two
distinct markets. The pricing of a generic swap is then explored, first through the concept
of comparative advantage, and then through the mechanism of hedging the two sides
separately. During this latter process, we discuss a widely held belief in the swap market,
namely the floating side of a generic swap including notional principals has no value. This
leads us on to identification of the fixed side as a par bond, and to a discussion of the
relationship between the bond and swap market. Hedging swaps with bonds to protect
against interest rates changing adversely is quite common, but we also explore what would
happen to such a hedge if the rates do not move: namely, cost-of-carry issues. Finally the
chapter concludes with the description of various ways, some bad but popular and some
good, to imply discount factors for a given set of generic market data.

3.1 GENERIC INTEREST RATE SWAPS

A generic or ‘‘plain vanilla’’ interest rate swap (a term probably first coined by the swap
group at Salomon Brothers in the mid-1980s) is the simplest form of medium-term IRS.
These constitute the vast bulk of interbank trading. Because of their maturity, they are
associated far more with an underlying bond market than a deposit futures market for
hedging. A generic USD swap is defined in Table 3.1.

The important elements of the definition are:

. The minimum maturity typically reflects the length of the liquid futures market: this is
obviously currency-specific.

. The maximum maturity usually indicates the end of the very liquid swap market for
which the bid–offer spread is tightest and constant. Brokers’ quotes for US dollars are
currently on a 3 bp spread out for 50 years—see screenshot overleaf—whereas sterling,
for example, is on a 4 bp spread for the first two years, but then widens rapidly after that
to 17 bp for 50 years. The bid–offer spreads quoted by an individual active trader would
be much tighter than this; for the major currencies, typically down to 0.5 bp;

. The settlement date depends on the convention in the floating rate reference market. For
example, in US dollars, euros and most currencies, this would be 2 business days after the
trade date. For sterling and many of the old Commonwealth currencies, it is the same
day, and so on.

. A generic swap is a ‘‘spot’’ swap, therefore the fixed rate is the current market rate.

3
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Table 3.1 Generic US dollar swap terms

Maturity 5–50 years
Trade date Date of agreeing to enter into the swap
Settlement date 2 business days after trade date

Fixed side
Fixed coupon Current market rate
Frequency Annual
Daycount Act/360
Pricing date Trade date

Floating side
Floating index USD 3-month Libor
Spread None
Payment frequency Tenor of the floating index
Daycount Act/360
Reset frequency Tenor of floating index
First coupon Current market rate for index

Premium/discount None

Screen shot showing USD swap curve on 15 February 2008 (source: ICAP plc).
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. The frequency of the fixed side usually matches the frequency of the coupon in the
hedging government bond market; for example, sterling swaps are semi-annual reflecting
the semi-annual coupons in the gilts market. But there are exceptions to this, such as
USD where the swaps are usually quoted annually whilst the T-bond pays semi-
annually, and the South African market where the swaps are quoted quarterly whilst
the bonds pay semi-annually.

. The daycount convention on the fixed side again often but not invariably matches the
underlying bond conventions. US T-bonds are Act/Act, the fixed side of the swaps is
usually quoted Act/360; euro government bond are also Act/Act, but euro swaps are
quoted 30/360; sterling uses Act/365 for both bonds and swaps. If the USD swap is
quoted on an ACT/360 basis, then it is often described as being on a money market basis;
if the convention is 30/360, it is said to be on a bond basis.

. The floating side almost invariably follows the convention in the domestic money
market. For US dollars and Euribor, Libor is fixed two business days before the start
of each floating or roll-over period, and paid at the end of the period using the Act/360
daycount convention. Therefore the first fixing is the current Libor rate.

. It is important that the tenor of the floating rate, its frequency of reset fixings, and
the frequency of payment all match: for example, if the floating rate is 3mo. Libor,
then Libor is re-fixed at the beginning of each 3-month period and paid at the end of each
3-month period. It is perfectly feasible to get mismatch swaps, where these conditions are
not true, such as using 6mo. Libor but paying every 3 months as we shall see later, but
these are not generic swaps. Some of the generic swaps traded in the domestic US
market, with reference rates such as the weekly T-bill fixings, violate these conditions;
these will be discussed later.

. Finally there is no spread on the floating rate, nor any lump sum payments, indicating
that both counterparties deem the swap to be ‘‘fair’’, i.e. its initial value at mid-rates
should be zero.

Interestingly, whilst the definition includes a statement on the range of possible
maturities of a generic swap, it does not include any guidance as to the likely size of
the underlying principal to which the interest rates are applied. Market practice
would probably imply $10m–$50m; that is not to say that larger swaps could not be
obtained relatively routinely, it is just that the bid–offer spread on the pricing might be
slightly wider.

Table 3.2 shows the cashflows generated by a 7-year generic US dollar swap. Notice that,
as in the earlier money market swap example, the periods are adjusted for non-business
days, and the receipts on the fixed side of the swap reflect these adjustments. This is in
contrast with the bond market, when interest will also only be paid on a business day but
the amount will not vary. It is necessary to take these different conventions into account
when structuring a bond–swap package, as we shall see later. The Libor values, other than
the first fixing, are of course not known.

A generic swap is usually considered as an agreement to exchange two streams of
cashflows, one calculated with reference to a fixed rate of interest and the other with
reference to a floating rate. We can however change the frame of reference if we pretend
that the notional principal amounts (NPA) are also exchanged at the beginning and end of
the swap, as shown in Table 3.3.

The (pretend) exchange does not affect the economic reality of the swap, as the NPAs are
assumed to be paid and received simultaneously at the start and end of the swap. However,
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the swap may now be thought of as:

. buying a fixed rate bond (albeit with slightly uneven coupon payments);

. either: issuing or selling a Floating Rate Note at Libor flat
or: borrowing money on the money markets.

In either case, it may be considered as an instrument that links together two distinct
markets.

Table 3.2 Cashflows of a generic 7-year swap

Trade date: 4-Feb-08
Settlement date: 6-Feb-08
Notional principal: 100 million
Maturity: 7 years
To receive fixed rate: 3.885% ANN, Act/360
To pay floating rate: 3mo. Libor
First Libor fixing: 3.145%

Days Fixed Floating

(Act/360) cashflows cashflows

6-Feb-08
6-May-08 0.250 �786,250
6-Aug-08 0.256 �Libor
6-Nov-08 0.256 �Libor
6-Feb-09 0.256 3,949,750.00 �Libor
6-May-09 0.247 �Libor
6-Aug-09 0.256 �Libor
6-Nov-09 0.256 �Libor
8-Feb-10 0.261 3,960,541.67 �Libor
6-May-10 0.242 �Libor
6-Aug-10 0.256 �Libor
8-Nov-10 0.261 �Libor
7-Feb-11 0.253 3,928,166.67 �Libor
6-May-11 0.244 �Libor
8-Aug-11 0.261 �Libor
7-Nov-11 0.253 �Libor
6-Feb-12 0.253 3,928,166.67 �Libor
7-May-12 0.253 �Libor
6-Aug-12 0.253 �Libor
6-Nov-12 0.256 �Libor
6-Feb-13 0.256 3,949,750.00 �Libor
6-May-13 0.247 �Libor
6-Aug-13 0.256 �Libor
6-Nov-13 0.256 �Libor
6-Feb-14 0.256 3,938,958.33 �Libor
6-May-14 0.247 �Libor
6-Aug-14 0.256 �Libor
6-Nov-14 0.256 �Libor
6-Feb-15 0.256 3,938,958.33 �Libor
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Table 3.3 Cashflows of a generic swap with notional exchange

Fixed Floating

cashflows cashflows

6-Feb-08 �100,000,000 100,000,000
6-May-08 �786,250
6-Aug-08 �Libor
6-Nov-08 �Libor
6-Feb-09 3,949,750 �Libor
6-May-09 �Libor
6-Aug-09 �Libor
6-Nov-09 �Libor
8-Feb-10 3,960,542 �Libor
6-May-10 �Libor
6-Aug-10 �Libor
8-Nov-10 �Libor
7-Feb-11 3,928,167 �Libor
6-May-11 �Libor
8-Aug-11 �Libor
7-Nov-11 �Libor
6-Feb-12 3,928,167 �Libor
7-May-12 �Libor
6-Aug-12 �Libor
6-Nov-12 �Libor
6-Feb-13 3,949,750 �Libor
6-May-13 �Libor
6-Aug-13 �Libor
6-Nov-13 �Libor
6-Feb-14 3,938,958 �Libor
6-May-14 �Libor
6-Aug-14 �Libor
6-Nov-14 �Libor
6-Feb-15 103,938,958 �(Liborþ 100,000,000)

3.2 PRICING THROUGH COMPARATIVE ADVANTAGE

There are various ways of pricing financial instruments. Probably the most common is to
price an instrument relative to similar instruments already in the marketplace. But this begs
the questions as to how do the first instruments receive their price. A second approach is to
estimate the cost of replicating the instrument using financial instruments drawn from
other, more liquid, financial markets. However, the oldest method is to identify a price
which will provide both the seller and the buyer with some perceived economic benefit, i.e.
an arbitrage price. This last method was most common in the early days of the swaps
market, but as the market has grown in size and increased in speed, the first and second
approaches are far more prevalent. Nevertheless it is important to understand the last, as
fundamentally it is this rationale that drives the market.
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Recall the EIB–TVA swap described in Chapter 1. Briefly, the EIB wished to borrow
DEM, and the TVA USD; their funding costs are shown below:

USD DEM

EIB T þ 17 B þ 13

TVA T þ 24 Bþ 17
Spread 7 bp 4 bp

We could use this information to price a swap. Remember, the upshot was that the EIB
issued a USD bond at T þ 17 bp, and the TVA issued a DEM bond at Bþ 17 bp as shown
below. They entered into a swap, where m is the ‘‘price’’. What is a fair price?

TVA 

B + 17 

B

T + m

EIB 

T + 17 

If we look at their net costs of funds:

EIB TVA

Cost of bond �ðT þ 17Þ �ðBþ 17Þ
Receipt on swap þT þm þB
Payment under swap �B �ðT þmÞ
Net cost �ðBþ 17�mÞ �ðT þ 17þmÞ

To make the swap attractive to both parties, the net costs must be less than funding directly
in the markets, i.e: 17�m < 13 bp for EIB, and 17þm < 24 bp for TVA.
The margin therefore must lie in the range of 4 < m < 7. If the advantage were divided

equally, then m ¼ 51
2
bp.

The underlying principle is that the two counterparties will both perceive a benefit from
entering into a swap at some agreed price. It is important to stress that the key word is
perceive, namely it is feasible for two parties to do a swap if they have strongly held but
diametrically opposite views as to the future movement of interest rates. More likely
however is when the parties have asymmetric advantages, for example different access
to markets. It is frequently argued that such arbitrages will disappear as markets become
more efficient. However, there are many sources that consistently distort markets such as
governments with asymmetric taxation and cheap subsidisation, investors with arbitrary
credit limits, capital regulations on banks with existing exposures, different perceptions of
credit pricing, and so on, that suggest the arbitrages will continue.
It is possible to create a matrix of comparative advantage, which may be used to identify

opportunities. Consider the following (simplified) US market data:
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Bond market Interbank money market

US government B L� 12 bp
Governmental agencies Bþ 3 L� 10 bp
Banks Bþ 25 L
Financial institutions Bþ 35 Lþ 5 bp
Prime corporates Bþ 50 Lþ 10 bp
Lower credit corporates Bþ 100 Lþ 40 bp

This table conveys two main messages, namely that the cost of borrowing increases as the
creditworthiness of the borrower decreases, and secondly that the relative cost of borrow-
ing is typically much lower in the floating rate market than in the fixed rate market. There
are a variety of reasons for this:

. Because the floating rates are reset periodically back to the current market rates, the
potential credit exposure for the lender on fixed interest payments is considerably greater
than on floating payments.

. Margins are in part determined by supply and demand, with the floating rate loan
market usually being far larger and more liquid than the fixed rate bond market.

The second message can lead to potential swap opportunities. If we take an extreme (and
totally unrealistic) situation, suppose:

. US Government wished to borrow floating;

. Lower-credit Corporate wished to borrow fixed.

If each went directly to the relevant market, this would cost a total of
ðL� 12Þ þ ðBþ 100Þ ¼ Bþ Lþ 88 bp (assuming that the basis points in the two markets
are ‘‘additive’’). However, the Lower-credit Corporate only pays 52 bp more than the
Government in the floating market, compared to at least 100 bp in the fixed market.
Therefore a cheaper way of raising the money would be for:

. Government to borrow fixed rate at B;

. Lower-credit Corporate to borrow floating rate at Lþ 40 bp; and

. enter into a swap with each other

resulting in a total cost of Bþ Lþ 40 bp, ie. saving 48 bp. The figure below shows the
current arrangement:

B
B L + 40bp 

Government Lower Corporate 

Libor  m 
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Using the same argument as above, namely ‘‘what margin m would make this transaction
attractive to both counterparties?’’, we can calculate the net cost of funds for each party:

Government Lower-credit Corporate

Net cost of funds �ðL�mÞ �ðBþ 40þmÞ

To make this transaction attractive to them both, 12 < m < 60. For example, assume that
m ¼ 40 bp. The net funding cost to the Government is L� 40 bp; a saving of 28bp. The
Corporate funds itself at Bþ 80 bp; a saving of 20bp. Both parties achieve cheaper funding,
with a total saving as expected of 48 bp divided between them.
The source of the saving is that the Government, as the stronger credit, is prepared to

take a different credit view on the Lower-credit Corporate than the fixed rate market. This
is tempered by the fact that the Government is not taking a risk on the principal amount of
the borrowing, merely on the difference between the fixed and floating swap payments. In
practice, the pricing of the swap would be by negotiation, and obviously the stronger credit
has considerably more power. Also a bank would be typically acting as an intermediary
and credit guarantor, and would require part of the savings.
Such an example is extreme and unrealistic. A more realistic matrix of comparative

advantage may be as follows:

Table 3.4 Matrix of comparative advantage

US Govern- Banks Financial Prime Lower-credit

govern- mental institutions corporates corporates

ment agencies

US Government — 1 13 18 28 48
Governmental agencies — 12 17 27 47
Banks — 5 15 35
Financial institutions — 10 30
Prime corporates — 20

where the figures are: (difference in fixed funding) less (difference in floating funding)

This suggests the apparent savings that may be made between pairs of counterparties; for
example, a bank entering into a swap with a prime corporate credit might achieve an
overall saving of 15 bp.

3.3 THE RELATIVE PRICING OF GENERIC IRSs

In this section, we wish to explore the relationship between the swap market and other
financial markets, so that we may be able to understand relative swap pricing. Just to
remind ourselves, when a generic swap is first entered into, the two counterparties perceive
themselves as being in equal positions. To be more precise, each of the two counterparties
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perceive that the total value of the anticipated receipts is not less than the total value of the
anticipated payments. If we assume the two counterparties use the same valuation process,
and that they have the same access to the market, then this reduces to:

‘‘Value of Receipts¼Value of Payments’’

or alternatively

‘‘Net Value of Swap¼ 0’’

If this equality were not true, then one party would deem itself to be disadvantaged
and refuse to enter into this freely negotiated contract until the appropriate changes were
made.

As we have already seen, a generic swap may be broken down into streams of cashflows,
some generated with reference to a fixed interest rate, others possibly with reference to a
variable rate. When we discussed the valuation of cashflows in money market swaps, we
either discounted them back to the day of analysis, which is the commonest method, or
future-valued them to the end of the swap. We will use discounting as the main method of
analysis, and therefore the above expression may be modified to:

‘‘Present Value of Receipts¼Present Value of Payments’’

We showed above how a generic swap may also be represented as two synthetic
instruments, a fixed rate bond (with slightly uneven coupon) and a money market
transaction involving principal cashflows at the beginning and end. Assume this swap
has the maturity of T , and just consider the floating side, which we have assumed to be
paying. The PV of the payments is (assuming a notional principal of 1):

þ1�
X

k

Lk � dk �DFk �DFT summing from k ¼ 1 to T

where dk is the length of time from tk�1 to tk;
Lk is the forward rate fixed at tk�1 and paid at tk.

The general formula for a forward rate—see Chapter 2—is:

Lk ¼ ½ðDFk�1=DFkÞ � 1�=dk
Substituting into the above:

PV ¼ þ1�
X

k

ðDFk�1 �DFkÞ �DFT ¼ 0 as DF0 ¼ 1

An intuitive interpretation of this result may be gained from the following. Consider the
cashflows on the floating side:

a. receive $100 million upfront;
b. pays interest at Libor flat;
c. repay the $100 million at maturity;

as shown below:
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$ 100 million

$ Libor

$ 100 million

What do we do with the (notional) $100m received upfront. The obvious answer is to lend it
out. Assume that we are a bank that can borrow or lend/deposit money at Libor�margin
within a marketplace, as shown below. The overall economic value of this floating transac-
tion therefore depends solely upon the achievable margin, and not upon the particular
levels of Libor. In particular, if the margin were zero, then the transaction would also have
a zero value, which would lead in turn to the following statement:

‘‘Value of a generic floating side of a swap, including the notional principals, is zero’’

which was of course what we proved earlier:

$ 100 million $ 100 million 

$ Libor $ Libor ± m margin  

$ 100 million $ 100 million

Understanding this aspect of swaps is absolutely key to the pricing of swaps. Suppose, in
the example above, that the margin for depositing is �10 bp. The floating side would
therefore be effectively making a running loss of $100m � 10 bp¼ $100,000 pa or roughly
$700,000 over the lifetime of the swap. This money would have to be recovered from the
fixed side, which would have to be increased by (roughly) 10 bp above the current market,
thus making it uncompetitive. Alternatively, if the $100m could have been lent out at a
margin above Libor, then this value could have been used to subsidise the fixed side of the
swap. So swap pricing should depend in part directly upon the abilities of banks to raise or
to place money in their various local money markets; this in turn depends upon their
creditworthiness and the liquidity of the market. For example, one highly rated European
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bank was able to raise funds a few years ago at an average cost of {Libor� 6 bp}, whereas
for most of the 1990s, Japanese banks have been unable to borrow USD at Libor, but have
had to pay a ‘‘Japanese premium’’ which ranged up to some 40 bp.

However, in practice, many banks assume, implicitly or explicitly, that the funding
margin for the purpose of pricing swaps is Libor flat. The European bank above, for
example, had instructed its swap desk to assume a funding cost of Libor flat for pricing
purposes, so that the prices are not being subsidised by the bank’s credit rating.1 Many
swap-pricing systems do not permit a true funding cost to be entered, but tacitly assume
Libor flat.

It could be argued that if a swap portfolio is relatively flat, ie. the payments and receipts
approximately balance, then this assumption is unnecessary. Unfortunately portfolios are
seldom flat, unless they have been constructed over an entire economic cycle. When interest
rates are perceived high, then most end users wish to pay floating and to receive fixed. The
reverse is true when rates are low. Therefore demand for new swaps is frequently one-way
round, creating an imbalance for a market maker.

A generic swap is a medium-term instrument; in this instance, the counterparties are
committed to meeting their obligations for 7 years. How realistic is it to assume their
creditworthinesses will remain constant, and hence their ability to raise or to deposit
money, over the lifetime of the swap? The average funding cost for USD of one of the
largest US banks increased to {Liborþ 2 bp} during the height of the S&L crisis in the late
1980s. All its swap pricing—plus P&L and bonuses—had been calculated on the basis of
Libor flat, so suddenly its (extremely large) swap portfolio started to haemorrhage profits!

Nevertheless, the assumption of zero margin is widely made, and we will (albeit with
reservations) do the same for the remainder of this book. We will however show how to
modify the pricing to include the funding cost for some structures later in the book.2

3.4 THE RELATIONSHIP BETWEEN THE BOND AND

SWAP MARKETS

Turning to the fixed side of the swap, we can immediately therefore conclude that:

‘‘Value of the fixed side of a generic swap, including the notional principals, is zero’’

because the net value must equal zero. However, this synthetic ‘‘bond’’ satisfies three
conditions:

. its current price is par, i.e. $100m;

. it is redeemed at par at maturity;

. the first period is a full period, or alternatively the accrued interest is zero.

Bonds that satisfy these conditions are known as par (yield) bonds, with the property that
the yield to maturity equals the coupon of the bond. For the generic 7-year swap, the fixed
rate is 3.885% ANN Act/360 whilst its yield is 3.884%—see Worksheet 3.2. The very slight
difference is due to the impact of non-business days.
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side on a swap could be extremely expensive, and hence highly unattractive. Ignoring the impact of funding on swap pricing during
this time could be literally life-threatening for a swap desk.
2 As indeed we have already done so for the money market swap using forward valuing.
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Let us now turn the argument on its head. We are a swap market maker who has just
been asked to make a price for a generic 7-year swap. We could turn to the bond market to
identify the current yield of a 7-year par bond. Obviously such a bond will not be trading,
but it can be estimated by interpolating the benchmark curve to give 3.051%.
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Unfortunately, the most liquid bond market in most countries is the governmental market,
which is by definition deemed to be of a higher credit rating than the average interbank
swap market, generally considered to be somewhere between AA� and Aþ. This implies
that the equivalent bond yield is likely to be lower than that quoted in the swap market.
Nevertheless, it is a starting point.
Bond yields are interpolated3 from the benchmark bonds, the most liquid being 2, 5, 10

and 30 years maturity. The table shows mid-spreads and mid-swap rates.

US benchmark bonds

Time to YTM Spread Yieldþ ANN Change Swap

maturity sa spread daycount rates

06-Feb-08
Jan-10 1.942 1.94% 87.00 2.8100% 2.830% 2.791% 2.795%
Jan-13 4.945 2.66% 86.00 3.5200% 3.551% 3.502% 3.505%
Nov-17 9.781 3.58% 70.00 4.2800% 4.326% 4.267% 4.265%
May-37 29.290 4.34% 48.00 4.8200% 4.878% 4.811% 4.815%

04-Feb-15 7.000 3.051% 85.00 3.9009% 3.939% 3.885% 3.885%

To convert from the bond yield, which is quoted on a semi-annual Act/Act basis, to a
swap basis requires the following calculations:

. take the 7-year bond yield of 3.051%;

. add the spread of 85 bp¼ 3.901%;

. convert the bond to annual by (1þ 0.5 � 3.901%)2�1 ¼ 3.939%;

. convert the daycount by multiplying by (360/365)¼ 3.885%.

(Note: there may be small differences due to rounding; see Worksheet 3.3 for more details.)

3 The US Treasury currently uses a quasi-cubic Hermite spline function for interpolation—see http://www.treas.gov/offices/
domestic-finance/debt-management/interest-rate/yieldmethod.html for details.
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So the first and most important reason for the swap spread is the difference in credit
between the underlying bond market and the interbank swap market. In the mid-1990s, the
South African swap market was frequently quoted at very little spread off the government
(and paristatal, i.e. quasi-governmental organisation) bond curve. One reason was the
major financial institutions were perceived, locally at least, to be as creditworthy as the
government. Indeed the long end of the swap was often significantly, i.e. 30 or 40 bp, below
the bond curve. There was a similar situation in Italy at the same time, when certain Italian
organisations could raise money more cheaply in the international bond market than the
Italian government.

But there are other influences on the apparent spread. As we have already suggested,
demand for paying or receiving swaps is seldom balanced, but depends upon the perception
of the economic cycle. If rates are perceived to be low and therefore likely to increase, most
end users want to pay fixed, receive floating. The market maker, observing the high demand
for paying fixed, will in turn increase the fixed quote which is effectively equivalent to
widening the spread. In this fashion the demand will be managed. Conversely, when rates
are perceived to be high and will only come down, then the spread is reduced. An extreme
case of this occurred in the early 1990s in Germany, when interest rates were increased
substantially to fund the reunification, driving the swap spread down until at times it
became negative! Obviously such an arbitrage situation is seldom sustainable for long
periods. The spread in yen swaps often used to go negative in the run-up to the banking
financial year-end of March, as Japanese banks would enter into swaps to pay floating,
receive fixed from Western banks. For a normal, positive, swap curve, the floating rates
would initially be below the fixed rate, and therefore the Japanese bank would make an
immediate accrual profit.

A third major reason for the spread is the cost of hedging a swap portfolio. Consider a
simple situation in which a bank has just entered into a swap to pay fixed, receive floating.
The swap could be hedged by buying a specific bond, as follows:

Bond market

Bank 

F(ixed) 

Floating 

Fixed

coupon 

Buy the 

bond 

Cash desk 

Money to buy 

the bond 

Floating 

interest 



For reasons of liquidity, the bond is likely to be governmental. If interest rates fall, the
swap loses in value, but the bond value increases. Hopefully, if the hedge is calculated
correctly, one will off-set the other, as we shall see in Chapter 12.
But suppose rates do not change at all. Do we make money, lose money or remain flat?

Over 1 day, we will:

. pay accrued interest F on the swap;

. receive accrued interest C on the bond;

. receive accrued floating interest L on the swap;

. pay accrued floating interest L on the borrowing.

Assuming the bond is trading close to par, in other words the nominal amount of the bond
to be bought would be similar to the notional principal of the swap, then every day we
would effectively lose fðF � CÞ � P � 1� dayg where ðF � CÞ represents the swap spread,
as the Libor cashflows would cancel. This carry-cost must be included in the pricing. In
normal circumstances, such a hedge would only be held for a short period, so the total
carry-cost over this period would then be spread over the lifetime of the swap, and as such
would be fairly negligible. However, if the swap market was very illiquid, so that the hedge
would have to sit in place for a long period, then the carry-cost would become very
significant and would drive the fixed rate F closer to the bond coupon C. This is part
of the argument in South Africa in the mid-1990s, as to why the swap spread was so close to
zero.
In practice, the market maker is more likely to use the bond repurchase (or ‘‘repo’’)

market than the cash market, as this allows practitioners to go long or short bonds more
efficiently and cheaply. Briefly, the repo market operates as follows. Consider an investor
who owns a bond. He can partially fund his bond position by borrowing money and
providing the bond as collateral. Usually the interest charged on the borrowing, the repo
rate, is lower than Libor, as the credit risks are lower due to the collateralisation. He is
said to have sold a repo transaction, or alternatively to have bought a ‘‘reverse repo’’
transaction (the two are mirror images of each other).
The repo market is very closely related to the ‘‘sale-and-buy-back’’ market. This latter

involves the sale of a security to a counterparty, with an agreed repurchase price on an
agreed date in the future. The repurchase price is usually a neutral forward price, and
therefore higher than the sale proceeds due to the accrual of coupon. The major difference
between the two markets is ownership. In a repo transaction, the ownership of the bond
remains with the original buyer of the bond who is entitled to any coupon payments or
other events. Ownership in a sale-and-buy-back transfers during the lifetime of the transac-
tion, and the counterparty receives the coupon payments. Repos are becoming more
popular than sale-and-buy-back, principally because the transactions are cleaner as many
participants are using them for hedging purposes and do not want the added complication
of dealing with cashflows.
To ensure that the bond provides adequate security, the lender usually defines a

collateral margin or ‘‘haircut’’. Suppose the investor wishes to borrow $100m. He would
be required to place bonds exceeding that value by say 2% as collateral. If interest rates
start to rise, the value of the collateral bond decreases. The additional 2% acts as a safety
margin for the lender so that the loan would be fully collateralised during this interest rate
rise. The size of the haircut also depends on the liquidity of the bond; if it is relatively
illiquid, then the lender will demand a higher haircut to cover the risks if the borrower
defaults and the bond has to be sold into an adverse market. During the late 1990s and
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early 2000s, the US andWestern European governments moved into budget surpluses, with
the concomitant decline in the size of their bond markets. Repo transactions were extended
to non-governmental bonds, but with increases in the haircut.

Most repos are transacted on a general collateral (GC) basis, i.e. a general interest rate is
applied irrespective of the security. If you wanted a specific bond as collateral, then this
may be said to be ‘‘on special’’, whereby the interest rate may be higher or lower than the
GC rate. For example, we describe below how inflation swaps may be hedged using index-
linked bonds; these bonds are usually on special due to the limited supply and excess
demand.

The repo market is highly liquid in many countries, but repo transactions are generally
very short-term—approximately 80% of USD repos are overnight, and most European
repos are under 14 days. Repo rates can be quite volatile, reflecting changes in supply and
demand for the bonds.

Coming back to the swap, the bank could fund the bond position by buying a reverse
repo transaction, i.e. borrowing the bulk of the money from the repo market and providing
the bond as collateral. There is likely to be a small positive accrued gain on the floating
transactions, because the collateralised repo rate is likely to be below Libor. Let us assume
that the floating side of the swap is quarterly; 3-month Libor is therefore fixed at the
beginning of the quarter, to be paid at the end. But the repo is short-term, and so would
have to be rolled over if the hedge were to be held for the full quarter. Hence, even if repo
rates are initially below the Libor fixing, it is possible for them to rise over the quarter and
convert the gain into a further carry-cost. All of this adds to the risks of hedging, and hence
to the cost.

It would be feasible to obtain a ‘‘term’’ repo, i.e. one agreed for a fixed period of time
such as 3 months to match the Libor tenor. However, the rate on such a repo is likely to be
higher than the GC rate, and nearer to Libor. Another aspect to consider is flexibility; does
the bank really wish to hedge this swap fully for 3 months, or will the hedge change as
additional swap transactions are done?

An additional source of risk is the ‘‘basis’’. The repo, bond and swap markets are all
traded markets in their own rights, and whilst linked by arbitrage constraints, also have
their individual characteristics. Basis risk is the term used to describe the risk of one market
moving, possibly due to some internal factors, relative to the other markets. If a bank
enters into a swap, it initially possesses a position which is open to the movement of
both short and long interest rates. By then entering into a counter position in the bond
market, the bank has attempted to reduce its long interest risk by substituting basis risk.
In some circumstances, as we shall see later, basis risk may be greater than the initial
interest rate risk, which suggests that that specific hedge is increasing overall risk not
reducing it.

The concept of ‘‘comparative advantage’’ drives many capital market transactions. This
was discussed in Chapter 1 and in Section 3.2, but briefly re-stated in this context it
proposes that a bond issuer will issue a bond into the market where there is the greatest
demand, hence pay the lowest yield or conversely receive the highest price, and subse-
quently swap it into the funds actually required. A bond is designed very much to meet the
specific requirements of the investor community, and derivatives are then used to transform
the bond into the specific requirements of the issuer. Very commonly, to assist the
investors, newly issued bonds are quoted as a spread over some appropriate governmental
reference bond. As we have seen above, swaps are also frequently derived as a spread over
the bond curve. We can therefore have the following situation:
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where S is the swap spread, S 0 the issuance spread. Concentrating just on the swap, and
employing the following rather dubious manipulations (broadly correct but only exactly
correct under certain circumstances):

. deduct the swap spread S from both sides;

. add the issuance spread S 0 to both sides;

we end up with a swap:

The objective of the issuer, as always, is to obtain cheap, i.e. sub-Libor, funding. This is
true when S > S 0, namely when the swap spread is wide and/or the issuance spread is tight.
Under these circumstances, there will be a number of swapped bond issues. Simple supply
and demand arguments suggest that the increased issuance will drive S 0 up, and the swap
counterparty will reduce S, hence closing the issuance window.
Consider the plight of a potential bond issuer. The swap market is currently trading at a

wide spread to the bond market, but for some reason the potential issuer will not be in a
position to issue for another 3 months. However, if he waits that long, it is likely that the
window will be closed. Therefore he would like to do a ‘‘spreadlock’’ swap today, which
locks in today’s spread S0, but which starts in 3 months’ time:

Notice that he does not care what happens to the bond yield B over the 3-month period, as
that will be negated by the absolute level of the bond issue. To understand such a swap, we
will examine it from the point of view of the counterparty, say a bank:



The bank has two sources of risk: Libor may drop over the lifetime of the swap, and the
bond yield may rise over the next 3 months. The bank can hedge the first by entering into
an off-setting generic swap today, matching the maturities:

Bank 

Libor 

B3 + S0

Libor

B0 + S0

Note that this commits the bank to pay a fixed but unhedged Libor cashflow out at the end
of the first period. Simultaneously, the bank does a (ideally 3-month) repo to lend money
and to receive repo interest plus the reference bond as collateral. The bank then sells the
bond into the market, with the intention of buying it back in 3 months’ time.

Consider what may happen at the end of the 3-month period, when the repo terminates.
First assume rates do not move. From the bank’s perspective, it will:

. pay accrued Libor, but receive accrued repo;

. receive accrued fixed¼ B0 þ S0, but pay accrued coupon on the bond when repurchased.

Remember that currently S0 is quite wide, so it is likely that S0 will exceed {Libor� repo},
and that the bank has a negative carry-cost.

Now assume rates do move over the period:

. If rates increase such that B3 > B0, the bond price will have decreased so that the bank
can repurchase it cheaply and make a profit that should off-set the running loss from the
two swaps.

. Conversely, if rates decrease so that B3 < B0, the running profit should off-set the
increase in bond price.

The amount of bond to be repoed is determined by the need to match the bond gain or loss
with the swaps’ losses or gains. The nominal amount of the bond may therefore not match
the notional principal of the swap, which will result in some accrued mismatches which
must also be included in the pricing, i.e. some margin usually deducted from S0 to
compensate for the hedging costs.

Spreadlocks are often quoted in terms of this margin. For example:

Table 3.5 Spreadlock swaps as spread over mid-swap rates

Spreadlock swap rates

Treasuries Mid-swap Forward start period !
Maturity (yield) (bp spread) 1 yr 2 yr 3 yr 5 yr 10 yr

1 yr 6.29% 112 bp �9 �8 �6 �2 2
2 yr 6.79 72 16 15 14 14 12
3 yr 6.72 83 0 0 0 0 0
5 yr 6.65 99 7 6 5 4 3
10 yr 6.42 131 6 5 4 3 2
30 yr 6.15 156 8 7 6 4 2
Source: Prebon Yamane, owned by Tullet Prebon plc.
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Spreadlocks only really occur during issuance windows for the reasons explained. As we
shall see later, they should also be supplied during periods of investor demand, but for
some reason the market does not appear to respond in that fashion.

3.5 IMPLYING A DISCOUNT FUNCTION

At this point, we have discussed generic swaps and their relationship with the money
market and, in more detail, the bond market. Interest rate swaps may be thought of as
the arbitrage hinge between the two markets. This idea will be explored in more detail
when asset packaging is considered. We are now going to move on and assume that we
can observe the various traded markets, and to discover what information we may
imply.

Table 3.6 Current USD market data

Today’s date: 4 February 2008
Spot: 6 February 2008

Libor cash Act/360 Mid swap rates

7-day 11-Feb-08 3.218% 2 yr 08-Feb-10 2.795%
1-mo 04-Mar-08 3.181% 3 yr 07-Feb-11 3.035%
3-mo 04-May-08 3.145% 4 yr 06-Feb-12 3.275%
6-mo 04-Aug-08 3.098% 5 yr 06-Feb-13 3.505%
12-mo 04-Feb-09 2.896% 6 yr 06-Feb-14 3.715%

7 yr 06-Feb-15 3.885%
Deposit futures 8 yr 08-Feb-16 4.025%

Mar-08 19-Mar-08 97.000 9 yr 06-Feb-17 4.155%
Jun-08 18-Jun-08 97.410 10 yr 06-Feb-18 4.265%
Sep-08 17-Sep-08 97.520 12 yr 06-Feb-20 4.435%
Dec-08 17-Dec-08 97.495 15 yr 06-Feb-23 4.615%
Mar-09 18-Mar-09 97.395 20 yr 07-Feb-28 4.755%
Jun-09 17-Jun-09 97.220 25 yr 07-Feb-33 4.805%
Sep-09 16-Sep-09 97.040 30 yr 08-Feb-38 4.815%
Dec-09 16-Dec-09 96.850 ANN Act/360 against 3m Libor

Mar-10 17-Mar-10 96.665
Jun-10 16-Jun-10 96.495
Sep-10 15-Sep-10 96.340
Dec-10 15-Dec-10 96.200
Mar-11 16-Mar-11 96.060
Jun-11 15-Jun-11 95.930
Sep-11 21-Sep-11 95.800
Dec-11 21-Dec-11 95.675
Mar-12 21-Mar-12 95.565

We have already seen how to estimate discount factors from cash and futures rates. Now
consider the 2-year swap; the fixed cashflows including the notional principal at the
beginning and end are:
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Table 3.7 Fixed cashflows from 2-year generic swap

Trade date: 4-Feb-08
Settlement date: 6-Feb-08
Notional principal: 100 million
Maturity: 7 years
To receive fixed rate: 2.795% ANN, Act/360
To pay floating rate: 3mo. Libor

Fixed cashflows

6-Feb-08 �100,000,000.00
6-Feb-09 2,841,583.33
8-Feb-10 102,849,347.22

As we have already discussed, the value of these cashflows should be zero:

�100,000,000þ 2,841,583:33 �DF1 þ 102,849,347:22 �DF2 ¼ 0

where DFt is the discount factor at time t (in years). Because we know the cash and
futures rates, we can estimate DF1 from (one of ) these markets, and hence solve the
equation for DF2. Which market would be better? Cash transactions are on-balance sheet,
and usually carry some form of regulatory liquidity asset requirement; the rates therefore
have to contain a component for this. Furthermore, as the majority of OTC swaps are
collateralised, then futures or FRA rates are probably more appropriate. In detail, if
DF1 ¼ 0.972661 from the futures market, then DF2 ¼ 0.945423.

This process may be repeated sequentially along the swap curve implying the annual
discount factors. This is frequently called a ‘‘zero-coupon bootstrapping’’ process, and the
phrase ‘‘bootstrapping a curve’’ is in common usage. It means:

. the initial discount factor is estimated from another market, usually the futures, FRA or
cash depending what is available with good liquidity;

. the process then progresses sequentially up the swap curve.4

One necessary condition for the process is that swap rates must be known at annual
intervals. Imagine the situation: we have just calculated DF10 and the next known rate
is S12 as shown above. When we generate the cashflows for the 12-year swap, we will get the
following:

Daycount Cashflow

11 year 6-Feb-19 4,496,597.22
12 year 6-Feb-20 104,496,597.22
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i.e. two cashflows each with an unknown discount factor, but only one valuation equation.
It is common therefore to ‘‘complete’’ the swap curve, estimating the missing points on the
curve by some means of interpolation, usually either linear or some form of cubic.
A general bootstrapping expression can be easily derived. Assume we know DFj for

j ¼ 1; 2; . . . ;T � 1, and now consider a generic swap of maturity T to receive floating, pay
fixed:

1. The present value of the floating side is simply 1�DFT as shown above.
2. The present value of the (paid) fixed side is:

PVfixed ¼ �ST �
X

j

�j �DFj ¼ �ST �QT

where �j is the appropriate fixed side daycount;
QT ¼ P

j �j �DFj summed from j ¼ 1 to T ¼ QT�1 þ �T �DFT .

3. As the net value of the swap must be zero:

1�DFT � ½ST �QT�1 þ ST � �T �DFT � ¼0 ) DFT ¼ð1� ST �QT�1Þ=ð1þ ST � �TÞ

Suppose we wish to construct the curve of 3-monthly forward rates (as this is the tenor of
the floating side of generic USD swaps). We have annual discount factors, but need to
estimate them every 3 months! Again, we need to interpolate in some fashion. There are of
course many ways of interpolating, but three are popular:

. Linear interpolation of the DFs

i.e. DFt ¼ DFi�1 þ fðDFi �DFi�1Þ=ðTi � Ti�1Þg � ðt� Ti�1Þ for i � 1 � t � i

or DFt ¼ DFi�1 þ fgradientg � ðt� Ti�1Þ

. Linear interpolation of ln(DF)—effectively assuming the discount curve follows a
negative exponential.

. Linear interpolation of the equivalent zero-coupon rates. In turn these rates may be
e continuously compounded: DFt ¼ expð�zt � tÞ
e discretely compounded: DFt ¼ ð1þ zt=nÞ�t � n

We saw quite significant differences when we used different methods of interpolating short
cashrates: the impact now will be even more dramatic. The results are summarised in the
graphs below, generated in Worksheet 3.5.
The first graph shows linear interpolation of the swap curve followed by different

methods for interpolating the discount curve. All three methods show large jumps in
the forward curve; these are the result of poor interpolation on the original swap curve.
Linear interpolation of the discount curve gives rise to the characteristic ‘‘Bart Simpson’’
curve with the regular fluctuations, whereas both zero-coupon and log-linear interpolation
do appear to smooth these out. Continuously compounded zero coupon is probably the
best of the three methods.
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To understand why linear is so unacceptable, consider the following exaggerated simple
situation:

DF 

timet1 t2 t3

where a discount curve is known at time t1 and t3 but interpolated at t2. Two methods of
interpolation are shown: linear and non-linear. We calculate the forward rates from t1 to t2
and from t2 to t3 using:

F12 ¼ ½ðDFt1
=DFt2

Þ � 1�=ðt2 � t1Þ and F23 ¼ ½ðDFt2
=DFt3

Þ � 1�=ðt3 � t2Þ

Because DFL
t2 > DFNL

t2 by construction, this means that:

F L
12 < FNL

12 and F L
23 > FNL

23

If we accept that the non-linear approximation of the curve is more accurate, the forward
rates from the linear interpolation will oscillate around the non-linear forwards, resulting
in the characteristic zig-zagging.
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The second graph shows a cubic Hermite5 interpolation of the swap curve, followed by
zero-coupon interpolation of the discount curve. The large jumps have been removed, and
whilst the forward curve is perhaps better, it is still showing discontinuities. Worst still, the
forwards from the two approaches after about 10 years may follow the same broad shape,
but diverge significantly. The average difference between the two curves is quite small, only
0.6 bp. This is to be expected, as the fixed rate on a generic swap can be thought of as
(roughly) the average of the forward rates, and both forward curves would correctly price
all the generic swaps. However, the differences fluctuate from �30 bp to þ35 bp, which
implies that the pricing of a structured, non-generic, swap could be significantly different.
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Linear interpolation of swap curve

Producing smooth forward curves from a bootstrapping methodology should not be
underestimated; it is extremely difficult in practice. Most computer systems use complex
algorithms involving smooth ‘‘guide’’ curves to assist the interpolation.
There is another difficulty with bootstrapping. The market data used went out 30 years.

As we can see from the above screenshot, it is perfectly feasible to get swaps out to 50 years
in the major currencies. However, there is a problem. Using the bootstrapping formula, it is
easy to show that:

DFt ¼ f1� ð1�DFt�1Þ � ðSt=St�1Þg=ð1þ �t :StÞ

For DFt > 0 as required, this means that ð1�DFt�1Þ � ðSt=St�1Þ < 1. As t increases,
ð1�DFt�1Þ tends to 1. Therefore, if the curve is rising at the long end,6 i.e.
ðSt=St�1Þ > 1, it is feasible for ð1�DFt�1Þ � ðSt=St�1Þ > 1 for some t less than the longest
maturity, and hence DFt < 0! For the USD market data above, as it is declining at the long
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Hermite interpolation model in Worksheets 3.6 and 3.7.
6 Suppose there were the following quotes: S20 ¼ 6.0%, S30 ¼ 6.2% and S50 ¼ 6.3%. Naive interpolation would almost certainly
guarantee St=St�1 > 1, with subsequent failure.



end, this phenomenon does not occur. On the other hand it has been observed in some
euro swap curves beyond 35 years. Unfortunately there is nothing inherent in the boot-
strapping process that will guarantee that the discount curve will be asymptotic to the time
axis. When it does occur, it is a serious problem as most systems cannot cope and break
down.

The real difficulty is that the market provides information only at a small set of
maturities. Unfortunately the bootstrapping algorithm requires all rates at the intervening
maturities to be estimated, and then these estimated rates are treated as if they had
exactly the same validity as the original rates from the market. Therefore the interpolation
methodology is critical.

Most practitioners look at the forward curve as a measure of appropriateness. This is
because the forward curve is effectively the gradient of the discount curve, so any small
misalignment in the latter is magnified in the former. Looking at the forward curves
above, the one using linear interpolation was rejected because it fluctuated so much.
But the other two curves were little better, as they both had significant discontinuities.
A measure of a ‘‘good’’ curve is often taken to be its overall smoothness, defined in some
fashion.

These observations lead to an alternative approach to the derivation of discount and
forward curves. Using the expressions above, we can write that the net present value of a
swap with maturity T is:

NPVT ¼ ST :QT � ð1�DFT Þ

which is of course a linear function in DFs. We know that:

NPVT ¼ 0 for all T 2 foriginal maturitiesg

Mathematically, how can we define a ‘‘good’’ forward curve? There are a variety of
approaches, but a very simple one is to estimate the overall changes in the gradient of
the curve, which may be approximated by

Smooth ¼
X

i

fFðtiþ1; tiÞ � Fðti; ti�1Þg2

Constraints on the discount factors such as DFt > DFtþ1 > DFtþ2 � � � > 0 could also be
included, but in practice these should be unnecessary, indeed worrying if required.7

Worksheet 3.8 demonstrates one model for this approach, in which 3-monthly forward
rates are treated as the unknown variables (except for the first four which are fixed off the
cash and futures curves); see column [1]. A smoothing function is created as described
above in column [2]. The discount factors and Qs are calculated from the forward rates in
columns [3] and [4]. Finally the net value of each of the generic swaps is shown in column E.
The objective is to ensure that all net values are zero whilst Smooth is minimised; the
worksheet uses the Solver algorithm. The final forward curve is shown below, compared
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with the Hermite interpolated bootstrapping curve: this latter curve was used as the starting
point for the optimisation. As one can see, it is considerably smoother than the boot-
strapped curve, and yet remains arbitrage-free.8
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3.6 BUILDING A BLENDED CURVE

So far in this book we have seen a number of different financial instruments—cash, futures,
swaps—being used to build discount curves. It is conventional in some countries, typically
ones that do not possess a liquid futures markets, to incorporate FRAs as well. Further-
more it is feasible to use bonds and bond futures, although less likely due to the disparate
implied creditworthiness and the limited range of maturities. In practice a group of traders
and risk managers would build a curve from a mixture of instruments in segments—this is
usually known as ‘‘blending’’, for example:

. cash for the first 3 months;
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8 Running the optimisation does take longer than bootstrapping, even with a good starting curve. One swap trader I know, Bo
Nielsen currently at Nordea in Denmark, runs both the optimisation and the bootstrapping algorithms at the beginning of the day,
and records the differences between the resulting forward curves. When any market point shifts, he then re-bootstraps the curve
and then applies the differences to get a new smooth forward curve. If there is a substantial move in the curve, then he runs a new
optimisation and starts afresh.



. interest rate futures for first 3 years;

. interest swaps from 2 years onwards.

The location of the breakpoints will depend upon liquidity and knowledge of when which
instruments will be used for hedging. There are two different ways of tackling this problem
of building a curve. First, the segments may overlap—see the cash and futures above, and
the diagram below—and in that case some weighting information usually has to be
provided about the relative importance of each market. The result is likely to be relatively
smooth (especially if the weighting is applied gradually) but, and this is a big but, will not
be arbitrage-free in the overlap portions. For example, any generic swap that matured in
the overlap period between futures and swaps, and was used in the construction of the
curve, would not be priced back to zero!

cash futures swaps

1. Overlap, weight and average 2. No overlap

The alternative is to remove the overlaps as shown in the second diagram. Arbitrage-
freeness is maintained which from a market practitioner’s perspective is highly desirable.
But the problem now is how to achieve the handover between the segments in the
smoothest possible fashion.

Developing a satisfactory balance between arbitrage-freeness and smoothness whilst
using bootstrapping is extremely difficult, and many arcane multi-layer algorithms have
been developed. The optimisation model described above however may be used to tackle
the problem more directly.

For example, assume we wish to build a curve using the data above, namely short cash, a
3-year strip of futures and swaps from 2 years onwards. Note that there is a deliberate
overlap between the futures and the swaps. The optimisation approach will be used to build
two curves (see Worksheet 3.9 for details):

. An arbitrage-free curve. The worksheet builds a smooth forward curve whilst correctly
pricing all the market data. Unlike the previous optimisation model (which used Value),
an arbitrage error is defined as a mismatch between the market rates and the implied
futures and swap rates.

. A smooth curve. The worksheet constructs a single objective function OF:

OF ¼ w � SS þ ð1� wÞ � Smooth

where SS ¼ P
squared errors fitting the rates, and w is set to 90%. The definition of

error as explained above ensures that SS and Smooth are comparable.
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The ranges of the market data were specifically chosen so that constructing an arbitrage-
free curve across all the data would be difficult. This is displayed in the spike around the
3-year point, as the futures come to an end, with the subsequent ripples along the curve as
the algorithm tries to make the overall curve smooth. The smooth curve is no longer
arbitrage-free: the average error across all rates is 0.15 bp. The example highlights the
need to select the relevant market data extremely carefully, and indeed different traders
may well want to use different sets of data for calibration. The optimisation approach
removes the need for complex blending difficulties, and can make the tradeoff between
arbitrage-freeness and smoothness quite explicit using a form of regression with multiple
objectives. Whilst not easy to demonstrate within a spreadsheet formulation, probably the
best overall approach is to model instantaneous forward rates rather than discrete tenor
ones as above.
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OBJECTIVE

Given discount and forward curves, we can now start to price and value swaps that are
structured for end-users. These are commonly known as non-generic, as they frequently
possess aspects tailored to the user’s requirements. Two common structures, namely
forward start and amortising, plus a more complex one are analysed in some detail and
three alternative approaches are described. In passing, a very real practical problem is
observed and an alternative known as the ‘‘reference rate’’ method. Forward valuing as an
alternative to discounting is then reintroduced. Finally swap valuation is discussed using
two alternative approaches.

4.1 THE PRICING OF SIMPLE NON-GENERIC SWAPS:

FORWARD STARTS

Whilst the vast bulk of swaps traded between banks, or at least between market-makers,
are generic, most swaps conducted with non-banking counterparties are non-generic. Such
swaps are usually structured to meet their specific requirements. In this chapter, we shall
discuss how to price such swaps. We will start with some relatively simple structures,
known as ‘‘par non-generic swaps’’ because, as we shall see, they can be cash-hedged with
par generic swaps.

For example, suppose a company is currently paying quarterly floating interest on $100
million of debt maturing in 5 years’ time. The treasurer believes that interest rates will
continue to stay low for at least another year, but will continue to rise after that. Instead of
entering into an ordinary 5-year swap to pay fixed annually, receive floating, she is
considering a 1/5 forward starting swap. This means that the fixed rate would be agreed
today, unlike the spreadlock swap, but the swap would only start in 1 year’s time with a
length of 4 years. Note that the usual convention for forward swaps is the same as for
FRAs, namely {start/end}; an alternative is to use a phrase such as ‘‘1 into a 4-year
swap’’—if in any doubt, spell it out!

The cashflows from the swap would be as shown in Table 4.1 (from a bank’s point of
view).

The rate quoted, and remember this is a fair mid-rate so that the bank would be likely to
add a spread onto the fixed rate, is some 16 bp higher than the current 5 year swap rate of
3.505%. Why is this, and how did the bank arrive at its quote?

There are a number of ways to approach this. First, let us consider how a bank might
hedge such a transaction using generic instruments. Obviously its main concern is that
Libor might rise over the lifetime of the swap. Libor could therefore be hedged by entering

4
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into two generic swaps:

Table 4.1 Cashflows of a 1/5 swap

Notional principal: USD 100m
Fixed rate: 3.671% ANN
Floating rate: Quarterly
Current 5-year swap rate: 3.505%
Current 1-year swap rate: 2.896%

Dates Floating side Fixed

6-Feb-08
6-May-08
6-Aug-08
6-Nov-08
6-Feb-09
6-May-09 �Libor
6-Aug-09 �Libor
6-Nov-09 �Libor
8-Feb-10 �Libor 3,742,196
6-May-10 �Libor
6-Aug-10 �Libor
8-Nov-10 �Libor
7-Feb-11 �Libor 3,711,606
6-May-11 �Libor
8-Aug-11 �Libor
7-Nov-11 �Libor
6-Feb-12 �Libor 3,711,606
7-May-12 �Libor
6-Aug-12 �Libor
6-Nov-12 �Libor
6-Feb-13 �Libor 3,731,999



The 5-year generic swap offsets the Libor payments of the forward start, but also generates
Libor receipts in the first year. The 1-year swap is required to offset these receipts.

The bank will be paying 3.505% ANN over 5 years, and receiving 2.896% in the first
year. Thus there is a shortfall in the first year of 61 bp which will have to be recovered over
the next four. Therefore we would expect the forward start swap rate to be approximately:

3:505%þ 61 bp=4 ¼ 3:657%

crudely spreading the 61 bp over the 4 years. Worksheet 4.2 calculates this more accurately
by taking the time value of money into account. Column [1] shows the fixed cashflows from
the forward start, with the fixed cashflows from the two generic swaps in columns [2] and
[3]. As we require the swap to have a zero value, we find that this is achieved by a forward
rate of 3.671%.1

Pricing such non-generic swaps always revolves around what to do with the floating side.
We saw in the discussion on bootstrapping that we would regard a money account that
paid the floating reference flat as having no economic value. This applies equally to a
forward starting money transaction as it does to a spot one. Assume that the bank
exchanges the principal amount of $100 million with the swap counterparty twice, once
at the start of the first floating period, and reverses the exchange on the last payment date,
as shown in the box below:

Money account Counterentries

6-Feb-08
6-May-08
6-Aug-08
6-Nov-08
6-Feb-09 100,000,000 �100,000,000
6-May-09 �Libor
6-Aug-09 �Libor
6-Nov-09 �Libor
8-Feb-10 �Libor
6-May-10 �Libor
6-Aug-10 �Libor
8-Nov-10 �Libor
7-Feb-11 �Libor
6-May-11 �Libor
8-Aug-11 �Libor
7-Nov-11 �Libor
6-Feb-12 �Libor
7-May-12 �Libor
6-Aug-12 �Libor
6-Nov-12 �Libor
6-Feb-13 �Libor� 100,000,000 100,000,000

Clearly these have no economic impact on the value of the swap. However, the floating side
has now become equivalent to the money account (with zero value) plus the two remaining
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principal cashflows. The worksheet shows the swap consisting of the money account in
column [1] and the counterentries in column [3]. The fair price of the swap is of course the
same as before (see Worksheet 4.3).
The alternative and equivalent argument is, of course, that the value of the floating side is

simply 1�DFend.
Yet another approach would be to imply the Libor rates directly off the discount curve in

the usual fashion. This is most straightforward, as shown in Worksheet 4.4). The implied
rates are shown in column [1], and the resulting cashflows in [2]).
For a straightforward fixed–floating swap, the fixed rate may be thought of as some

(albeit complex) average of the floating rates. For example, using implied 12-monthly
forward rates, their simple average is close to the 5-year swap rate as shown below:

Implied 12mo. forward rates

Year 0/1 2.896%
Year 1/2 2.691%
Year 2/3 3.542%
Year 3/4 4.053%
Year 4/5 4.520%
Average over all 5 years 3.541%
Actual 5-year rate 3.505%

The forward starting swap rate must be approximated by the average over years 1 to 5 only,
i.e. 3.702%. As the forward curve is rising, omitting the first rate will increase the average
and hence the 1/5 forward swap rate will be higher than the 5-year spot rate.
The pricing of a forward start can also be estimated directly. From the previous chapter,

the value of the fixed and floating sides of a unitary generic swap must be Fn �Qn and
1�DFn, respectively. By extension, the value of the sides of a forward start must be
Fs=n � ½Qn �Qs� and ½DFn �DFs�. Therefore (see Worksheet 4.5):

F1=5 ¼ ½DF5 �DF1�=½Q5 �Q1� ¼ ½0:971397� 0:838308�=½4:613187� 0:987587� ¼ 3:671%

This is a very fast way of pricing forward starts, and will be used later.
We have seen three approaches to the pricing of this forward start swap:

. using hedging swaps to cancel the unknown Libors;

. converting the floating side into a zero-value money account by adding notional
principal amounts to both sides;

. implying the Libor rates off the discount curve.

Each one is removing, in some fashion, the unknown floating rates. However, all three
methods are consistent with each other.
Swap-pricing systems such as used by market-makers are likely to use the last two

methods, fair pricing swaps at mid-rates for subsequent adjustment. Whilst the Notional
Principal Amount (NPA) method is more traditional, harking back to the relationship with
the bond market, the Implied Forward (IF) method which had its foundations in the
futures market has probably overtaken it in popularity. IF is certainly more flexible and
is also safer in the sense that it estimates what the actual cashflows would be if the curves
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remained valid. This may become more evident when we look at some more complex
structures.

Many banks however act as an intermediary, particularly in foreign illiquid currencies.
This involves doing a non-generic swap with a customer and therefore taking on the credit
exposure, but immediately passing on most of the market risk by entering into hedging
swaps with a market-maker. In this case, the hedging swaps would include a bid–offer
spread which should then be reflected in the pricing of the non-generic swap.

There is however a very real practical problem. This is because the swap dates are all
driven from the start date, whereas each period in the cash market is independent. The
following is an extract from the swap dates (the 2-day settlement period is not mentioned as
it does not affect this argument):

Adjusted for

Swap dates 3 months later business days

6-Nov-09 6-Feb-10 8-Feb-10
8-Feb-10 8-May-10 10-May-10
6-May-10 6-Aug-10 6-Aug-10

For example, consider what happens on 8 February 2010. The actual Libor rate fixed at
that time in the cash market would be based on the period from 8 February 2010 until the
end of the 3-month period, including non-business days, namely 10 May 2010. However,
the swap cashflow would be calculated from the swap dates, i.e. from 8 February to 6 May
2010. The value of this cashflow would be:

PV ¼ P � Fð8 Feb, 10 MayÞ � ðt6May � t8FebÞ �DF6May

However, the NPA method implicitly assumes:

PV ¼ P � Fð8 Feb, 6 MayÞ � ðt6May � t8FebÞ �DF6May

which simplifies to P � fDF8Feb �DF6Mayg. Therefore, despite its wide popularity, the
NPA approach is not entirely consistent with reality. Is this effect significant? Worksheet
4.6 has incorporated this, estimating the forward rates to match the cash market and then
applying them over the swap dates. Columns [1] and [2] show the swap dates and the
discount factors out of those dates, columns [3] and [4] the adjusted end dates for each
period and associated discount factors. Column [5] calculates the tenor of each forward
rate, and [6] the level of the forward rate. Finally the cashflows are calculated using the
dates in [1] and the length of time shown in [7]. The new price for the forward swap is about
5.5 bp lower, highly significant given a 2 bp bid–offer spread.

A more theoretical statement of this problem is as follows:

. Calculate a set of dates S1;S2; . . . 3 months apart out of the start date.

. Adjust these dates onto business dates, giving Sa
1;S

a
2; . . . The length of time between

these dates will sometimes be greater than 3 months, and sometimes shorter.
. Estimate the end of a 3mo. rate out of the adjusted dates, i.e. Ei ¼ Da

i þ 3 months.
. Adjust these dates to give Ea

1;E
a
2; . . .

. Implied 3-monthly forward rates would then be calculated from Da
i to Ea

i ; this estimate
would be consistent with the physical cash market.
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. But in the multiperiod instrument, it would be applied from Da
i to Da

iþ1 which is
inconsistent.

For practical purposes, this approach is termed the ‘‘reference rate’’ methodology, as the
forward rates follow the physical reference market. In contrast, the earlier method is to
imply and then to apply forward rates over the period Da

i to Da
iþ1; for obvious reasons this

has been termed the ‘‘period date’’ approach. The reference rate method is theoretically
correct; however, the period date method would appear to be the approach widely used in
practice.

4.2 ROLLERCOASTERS

Another common structure is the ‘‘rollercoaster’’ swap. Consider again a company that is
currently paying floating interest on some debt, and wishes to swap into fixed. Instead of
the debt being a ‘‘bullet’’, i.e. being drawn down and subsequently repaid as a single lump
sum, it is very common for the debt to have agreed drawdown and repayment schedules.
Obviously the swap must have the same underlying principal structure. Common names for
such structures are ‘‘step-up’’—when the notional principal increases in steps, ‘‘step-down
or amortising’’—when the principal decreases. Rollercoaster is the general name suggesting
the principal rising and falling.
It is important to note that the changes in the principal amount are defined in advance,

and are not altered by subsequent events. There is a class of swaps, one example of which is
‘‘index amortising’’, where the principal amount changes as a function of some external
events such as increases or decreases in the floating rate fixings. These will be considered
later. To be specific, we will look at the pricing of a 5-year amortising swap, whereby the
principal amount starts at $100 million and declines at the end of each year by $20 million
as shown:

1 2 3 4 5 

100 

 80 

 60 

 40 

 20 

The bank will be receiving the fixed rate, paying Libor. It is shown like this because this also
gives an idea how to hedge the Libor payments, namely by doing five swaps:

1. 20m 5-year swap to pay fixed @ 2.8963%, to receive Libor.
2. 20m 4-year swap to pay fixed @ 2.7950%, to receive Libor.
3. 20m 3-year swap to pay fixed @ 3.0350%, to receive Libor.
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4. 20m 2-year swap to pay fixed @ 3.2750%, to receive Libor.
5. 20m 1-year swap to pay fixed @ 3.5050%, to receive Libor.

We can quickly produce a crude estimate of the fair amortising rate by averaging these
generic swaps, i.e.

ð5 � 3:5050%Þþð4 � 3:2750%Þþð3 � 3:0350%Þþð2 � 2:7950%Þþð1 � 2:8963%Þ
ð5þ 4þ 3þ 2þ 1Þ ¼ 3:214%

Notice that a weighted average was calculated, reflecting the total contribution of each
hedging swap. A more precise calculation is shown in Worksheet 4.7: the amortising
principal is shown in column [1], the cashflows using the estimated amortising swap
rate in column [2], and the fixed cashflows from the hedging swaps in columns [3] to
[7]. As usual, the estimated rate of 3.209% is such that the net cashflows have zero
value.

To employ the NPA method, we have to do some more work. Under this approach, a
stream of Libor payments f�L;�L;�L; . . .g can be replaced by f�P � � � þ Pg, signifying a
payment of the principal on the first fixing date and receiving the principal on the last
payment date. We have the following structure on the floating side of the swap, as shown in
the box on the left:

Original swap Adding the NPAs Counterentry

cashflows

6-Feb-08 100 þ100 �100
6-May-08 100 �L �L
6-Aug-08 100 �L �L
6-Nov-08 100 �L �L
6-Feb-09 80 �L �L� 100 þ80 þ100� 80
6-May-09 80 �L �L
6-Aug-09 80 �L �L
6-Nov-09 80 �L �L
8-Feb-10 60 �L �L� 80 þ60 þ80� 60
6-May-10 60 �L �L
6-Aug-10 60 �L �L
8-Nov-10 60 �L �L
7-Feb-11 40 �L �L� 60 þ40 þ60� 40
6-May-11 40 �L �L
8-Aug-11 40 �L �L
7-Nov-11 40 �L �L
6-Feb-12 20 �L �L� 20 þ20 þ40� 20
7-May-12 20 �L �L
6-Aug-12 20 �L �L
6-Nov-12 20 �L �L
6-Feb-13 �L �L� 20 þ20

The first four cashflows are based on a principal of $100m. Add the principal amount on
the first fixing day and subtract it on the last payment day as shown in the small box.
A counterentry would have to be made to ensure that the swap value has not been changed.
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Under our assumptions the cashflows in the small box have zero value, so we are left only
with the counterentries. This process is then repeated throughout the lifetime of the swap,
with the result that the floating leg has been completely replaced with a simple fixed
cashflow, namely f�100;þ20;þ20;þ20;þ20;þ20g. Worksheet 4.8 shows the swap
reduced to two columns: column [1] is the cashflows on the fixed side of the swap, and
column [2] the strip of principal amounts, with a total net value of zero.
The third approach is to use the implied forwards. These have been calculated in

column [1] of Worksheet 4.9 in the usual way, the cashflows are then generated using
the amortising principals and finally the net cashflows discounted and shown to have a
value of zero.

4.3 PRICING OF SIMPLE NON-GENERIC SWAPS: A MORE

COMPLEX EXAMPLE

Finally, to complete this section, we will apply these approaches to a slightly more complex
swap. A company has some debt on which it is paying 6mo. Liborþ 70 bp. The debt has the
following principal structure:

$40m in year 1
$85m in year 2

$120m in year 3
$80m in year 4
$50m in year 5

i.e. a rollercoaster structure. The company proposes to restructure its debt so that it will
pay 6mo. Libor on a constant principal amount of $65m spread over a 6-year period. What
margin should be applied to the Libor to make this a fair swap?
First we will consider the hedging swap approach. The rollercoaster side is shown below:

40m 

85m 

120m

80m

50m 

1 2 3 4 5 



To decide how to hedge this, the trick is to always start at the far end and work backwards.
From the bank’s point of view, it has to pay Liborþ 70 bp on this structure, therefore it
could hedge the Libor payments by entering into:

5-year $50m swap to pay fixed, receive Libor

That will hedge the Libor payment it has to make in the final year. Working back, it will do

4-year $30m swap to pay fixed, receive Libor

and

3-year $40m swap to pay fixed, receive Libor.

We now have the following situation:

in which the Libor payments to be made in the last three years are matched, but the first
two years are now overhedged. To rectify this, we will do:

2-year $35m swap to receive fixed, pay Libor

and

1-year $45m swap to receive fixed, pay Libor

so that now all the Libor payments to be made by the bank will be matched by Libor
receipts. Turning to Worksheet 4.8, column [1] contains the cashflows for the 70 bp margin
that has to be paid, whilst columns [2] to [6] are the fixed cashflows from the portfolio of
five hedging swaps which have replaced the rollercoaster Libor payments.

The other side of the swap is more easily dealt with. The Libor receipts may be matched
by a single 6-year swap to receive fixed, as shown in column [8], and the cashflows from the
calculated balancing margin of 39.9 bp are shown in column [7]. The overall swap may be
seen to be fair as its total discounted value is zero.
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The NPA approach may be applied as follows. The rollercoaster side may be
represented as shown below:

. the floating cashflows are broken up into strips, each based upon a constant principal
amount;

. the NPAs are then added on the first fixing date of each strip, and subtracted on the last
payment date, as shown in the boxes;

. counterentries have to be made to ensure that the value of the swap remains
constant;

. we can then argue that the value of cashflows in each box is zero, so we are left just with
the counterentries that are shown in column [1] of Worksheet 4.11.

Original swap Adding the NPAs Counterentry

cashflows

6-Feb-08 40 þ40 �40

6-Aug-08 40 �L �L

6-Feb-09 85 �L �L� 40 þ85 þ40� 85

6-Aug-09 85 �L �L

6-Feb-10 120 �L �L� 85 þ120 þ85� 120

6-Aug-10 120 �L �L

7-Feb-11 80 �L �L� 120 þ80 þ120� 80

8-Aug-11 80 �L �L

6-Feb-12 50 �L �L� 80 þ50 þ80� 50

6-Aug-12 50 �L �L

6-Feb-13 �L �L� 50 þ50

The Libor leg based upon the constant principal may be replaced simply by principals
at the start and end of the swap: see column [3] of Worksheet 4.11.
The IF approach is, as usual, straightforward. Once the implied forwards are calculated,

the two Libor cashflow streams may be constructed: see columns [1] and [3] of Worksheet
4.12.

4.4 FORWARD VALUING AS AN ALTERNATIVE TO

DISCOUNTING—REVISITED

Consider the last structure. Based upon the IF approach, the accumulative net cash is
shown in the graph below. It shows that the swap counterparty initially deposits money,
but rapidly becomes a net recipient of nearly $4m.
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As discussed in Chapter 3, discounting off the swap curve is exactly equivalent to assuming
that all money is deposited or lent at Libor flat. This is demonstrated in column [3]; each
cashflow is rolled over at the appropriate Libor rate for the period, and the accumulated
balance at the end of the swap is zero.

However, if we regarded the swap as effectively a financing vehicle for receiving money
from and lending money to the counterparty, then we would be likely to inflict margins on
these activities. Let us assume that:

. We would only pay Libor� 25 bp on deposits from this particular counterparty.

. We would expect to receive Liborþ 50 bp on loans to this counterparty.

We could then use the forward-valuing approach discussed in Chapter 2 to estimate the
new breakeven margin of 41.2 bp (see Worksheet 4.13).

This approach obviously has wide application, but in particular when there is a
considerable disparity of credit rating between the two counterparties, and when there
is a significant element of embedded loan or deposit.

This section has concentrated purely on embedded loans and deposits, and assumed that
the implied forward rates also prevail in the future. Of course, the forward rates are
stochastic, and hence the exposure that will actually occur depends upon the future move-
ments of rates and is unknown. There are however techniques for estimating this ‘‘potential
future exposure’’, and incorporating it into the pricing of a swap—these are discussed in
Section 6.7.

4.5 SWAP VALUATION

The swap has been agreed, traded between the counterparties and recorded in a bank
trading book. Banks are generally required by their regulators to mark their trading books
to market every day. The main purpose of this is to establish the current value of a
portfolio, so that the bank management has a clear idea of the trading assets and liabilities.
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Mark-to-market is not without controversy. It was introduced in recognition that, unlike a
traditional bank loan, it is feasible to trade in and out of derivative (and other traded
securities) positions. Therefore it would seem sensible to establish the current value of a
traded position, just in case the bank wished to liquidate it.
The traditional alternative was ‘‘accrual accounting’’; consider a bank buying a bond at

95 with an annual coupon of 7% and a full redemption at 100 on maturity. If an accrued
approach were applied, the capital gain of (100� 95) would be spread evenly over the
remaining lifetime of the bond, on the assumption that the bond was to be held until
maturity. Mark-to-market on the other hand would try to establish the current price
for that bond at the end of each time period, and use the change in value as the simple
P&L on the bond. Accrual accounting is gradually but surely disappearing as it is
becoming increasingly feasible for banks to sell away all kinds of past exposures. Tradi-
tional lending required the bank to hold the loan to maturity; now there is a burgeoning
secondary loan market, banks are securitising entire loan portfolios, credit derivatives
allow the transfer of the credit exposures for a price and so on. The original concept of
taking on a static risk for a given return has disappeared, and hence mark-to-market is
becoming increasingly common across all bank activities, actively encouraged by the
banking regulators.
However, the market in ‘‘old’’ or ‘‘seasoned’’ OTC derivatives is hardly active. It would

be virtually impossible to obtain a price for a swap traded sometime ago, although
obviously for unwinding purposes it is still feasible albeit seldom efficient. Therefore what
passes for mark-to-market is usually ‘‘mark-to-model’’. This operates for a seasoned swap
as follows:

1. Using the current market levels of generic instruments, build a discount curve.
2. Interpolate the discount curve to obtain discount factors on the relevant swap

dates.
3. Value the swap

We shall see this below. This process raises a number of issues, such as:

. What are the relevant market levels for this particular swap, and where are they?

. As we have already seen, the process of estimating the relevant discount factors is not
unique.

. This process will produce a mid-valuation, which is unlikely to be achievable in the event
of an unwind.

This suggests that different banks may well produce different daily valuations for the same
transaction. There have been a number of well-publicised instances where P&L controllers,
i.e. back-office people responsible for the daily P&L, have had to rely upon the traders of
the original transaction to advise them as to the current levels of the relevant rates with
disastrous consequences. Hardly the outcome originally envisaged by the advocates of
mark-to-market! There are a number of market initiatives trying to overcome this,
such as banks valuing each other’s books, and closed or public clubs circulating market
information.
As an example of swap valuation, we will consider the complex rollercoaster swap we

have just priced above. Its details were, from the bank’s point of view:
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To pay 6mo. Liborþ 70 bp on the following structure:

$40m in year 1
$85m in year 2

$120m in year 3
$80m in year 4
$50m in year 5

To receive 6mo. Liborþ 39.9 bp on $65m for 6 years

The swap was traded on 4 February 2008, and the first Libor fixing was 3.0975%.
Today’s date is 4 March 2008. Over the 3-week period, rates have moved up slightly but

because the swap is floating–floating, it is difficult to predict whether its value will be
positive or negative.

As with swap structuring, the key to valuation is what to do about the unknown Libor
fixings. Using generic swaps to cancel these is not feasible because of the mismatch in the
dates. Therefore there are really only two common approaches:

1. Inserting the notional principal amounts to create a par FRN with zero value.
2. Implying the forward rates directly off the discount curve.

The first stage is to construct the new discount curve. This is shown in Worksheet 4.14. The
discount factors on the relevant swap dates are then estimated by using zero-coupon
interpolation—see columns [1] and [2].

Let us consider the two sides of the swap separately. The first Libor cashflow on the
rollercoaster side is shown in column [3]; remember that this cashflow is to cover the
interest over a full 6-month period, i.e. from 6 February to 6 August 2008, and the Libor
fixing is known as it occurred at the beginning of the period. The remaining Libor
fixings are unknown, but these may be replaced by notional principals in the usual
fashion. For example, the Libor payment due on 6 February 2009 would have been fixed,
ignoring the 2-day settlement, on 6 August 2008, i.e. the cashflow date of the previous
fixing:

Libor cashflows Adding NPAs Counterentries

6 August 2008 L fixing þ40m �40m
6 February 2009 �40m �L � 0.511 �40m � ð1þ L � 0:511Þ þ40m

By adding the NPAs, we have created a single-period money account with zero value, and
with the above counterentries. This may be repeated throughout the lifetime of the swap,
resulting in column [4]. Finally the margin cashflows in column [5] must also be paid (see
Worksheet 4.15).

A similar analysis on the straight side of the swap produces columns [6]–[8]. Finally all
the cashflows are netted and then discounted, using the DFs in column [4] of course, to
produce a negative valuation of $762,456.
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Using Implied Forwards is equally straightforward. The unknown Libors are esti-
mated in the usual way: see column [3]. Columns [5] and [8] contain the implied Libor
cashflows. All the cashflows may then be netted and discounted to produce the same
valuation (see Worksheet 4.16).
Both methods produce mid-valuations and are therefore interchangeable. However, the

NPA approach is the one embedded in regulatory capital calculations such as the BIS
Accord and the EU Capital Adequacy Directive. This allows swaps, and similar deriva-
tives, to be treated in a consistent fashion to bonds and other physical instruments. There is
also another advantage to the NPA approach: consider the two Net Cashflow columns. As
time progresses, and market rates change, the IF column changes daily, whilst the NPA
column remains constant until the known Libor cashflows are actually made and a new
fixing declared. Thinking about a large swap portfolio, it is possible to represent it by a
relatively static ‘‘cash ladder’’; this possesses numerous computational advantages for risk
calculations.
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OBJECTIVE

The previous chapter discussed so-called ‘‘par non-generic swaps’’, i.e. ones that can
effectively be created from generic swaps. There are, of course, many complex swaps which
cannot be created in that way. This chapter concentrates on the asset packaging or
securitisation of securities, i.e. swapping the cashflows from the security into a different
form. Only relatively simple interest rate asset swaps will be considered in this chapter;
cross-currency and more complex swaps will be discussed in Chapters 9 and 11.

The first capital Accord, implemented by the major banks from 1988 onwards,
introduced the requirement for banks to hold capital to act as a cushion against, initially,
credit, and subsequently, market, risk. Let us define two types of capital:

. economic—the actual amount of capital required to act as an adequate (in some sense)
cushion against credit risk;

. regulatory—the amount of capital required under the regulations.

The original Accord was extremely simplistic, and made no regulatory capital distinction
between loans to very credit-worthy and to very credit-risky corporates, as shown below.

From a bank’s perspective, a loan to a good credit has to be over-capitalised, and hence
appears expensive. This anomaly provided an additional impetus, above the concept of
comparative advantage as described in Chapter 1, to the growth in disintermediation,
namely the raising of funds by the direct issuance of securities by good-quality organisa-
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tions. Invariably, when such securities are issued, they are then swapped to meet the precise
funding requirement of the issuer. For example: in October 2007, the EIB issued a bond
linked to Ghanaian cedis. Did the EIB have a funding requirement for cedis? Probably
not1; it was almost certainly swapped into floating euros, as shown below.

Issuer 

Investor 

Swap c/p 

Security 

cashflows 

Security cashflows

Funding cost

Hedging into the 

derivative markets 

What’s in it for the three parties? The investor is taking the risk–return profile of the
security; in the example above, the high coupon of 10.75% pa in cedis may of course
weaken. The issuer will swap the security into a desired currency whilst achieving a target
funding cost. The swap counterparty will earn spreads/fees through the swap, plus
potential returns through the hedging.
So far, only the swapping of new securities has been considered. There is also an active

secondary asset swap market, in which investors buy securities cheaply, and then swap the
cashflows into some desired profile such as a spread over the floating cost of funding the
security purchase. There was a brief discussion in Chapter 3, which demonstrated that
issuers achieved cheap funding when the swap spread was wider than the issuance spread.
A similar but reverse argument holds in the secondary market, thus implying that the
difference between the spreads should lie within a fairly narrow corridor, and arbitrage may
occur if it ventures outside. The asset swap required in either case has the same basic
structure. This chapter describes two main forms of asset packaging, namely par packages
and par maturity packages. It shows how asset swaps may be reduced to a single form,
which enables the breakeven funding margin to be calculated very easily. Finally, forward
valuing is re-introduced to enable funding costs to be incorporated into pricing.

5.1 CREATION AND PRICING OF A PAR ASSET SWAP

Consider the secondary market. The basic concept is extremely simple, and occurs in three
basic steps:

1. An ‘‘investor’’ borrows some money, say 100, at a floating reference rate plus margin.
2. The money is used to purchase a physical security; any excess or shortfall will be paid

away or received under the swap.
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3. The ‘‘unwanted’’ cashflows from the security are paid away under a swap, to receive
floating rate plus (hopefully, a larger) margin. At redemption, the capital sum is used to
repay the borrowing, and again any excess or shortfall paid or received under the swap.

This process is shown below for a fixed coupon bond.

Consider the swap cashflows from the investor’s point of view. In the left-hand swap, the
actual cashflows that would occur are shown, where DP is the dirty (purchase) price of the
security, including the estimated implied forward rates. Note the immediate lump sum of
(100�DP), which may be positive or negative, is paid upfront on the swap. The right-hand
swap results by rearranging the swap cashflows, separating the floating principal of 100 and
putting it on the other side.

�(100�DP) þDP �100
þLþ m2 þL þm2

�C þLþ m2 �C þL þm2

þLþ m2 þL þm2

�C þLþ m2 �C þL þm2

þLþ m2 þL þm2

�C þLþ m2 �C þL þm2

þLþ m2 þL þm2

�C þLþ m2 �C þL þm2

þLþ m2 þL þm2

�C þLþ m2 �C þL þm2

þLþ m2 þL þm2

�C�ðR� 100Þ þLþ m2 �C�R þL þ 100 þm2
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As we can assume that the cashflows in the dotted box have a zero value—as discussed
earlier, the swap is therefore reduced to:

(a) the value of the security, PVsecurity;
(b) the value of the margin cashflows.

As we know that the overall value of the swap under either representation should be zero,
we can solve for the breakeven margin m2. Alternatively, we can write directly:

m2 ¼ �10; 000 � PVsecurity=½Qfloating � Principal on floating side�
where Qfloating ¼

P
dt �DFt as defined above.

As a specific example, consider the following bond (see Worksheet 5.3 for details):

Issuer Charter Communications
Credit rating CCCþ
Maturity = 10-Jan-2013
Coupon = 10.25% SA
Redemption = 100
Clean price = 93.0000

First, the dirty price of the bond is calculated by adding the accrued coupon to the clean
price. The swap is then represented twice. First using the actual cashflows occurring under
the swap; column [1] shows the cashflows resulting from the bond being paid away on the
swap, and column [3] the floating cashflows based upon the implied Libor rates and the
breakeven margin of 766 bp pa. The second representation uses the Notional Principal
approach; the bond cashflows are shown in column [2], and the breakeven margin
cashflows alone in column [4]. Finally, the margin is also calculated directly using the
above formula. Notice that in this model there is a short first floating receipt, from 6
February to 10 April which then lines up the subsequent cashflows and ensures that both
sides of the swap, and hence the package, finish on the same date.
Consider the NP approach in a little more detail. If we were to wear a bond hat, i.e.

discounting the bond cashflows using the YTM, then the pay side of the swap would value
to zero. Hence the breakeven margin would also be zero. Asset packaging wouldn’t work!
But we have valued the bond cashflows off the IBOR curve, which is considerably lower
and hence values the future bond cashflows more highly. The bond YTM reflects the
CCCþ creditworthiness of the issuer, whilst the swap curve assumes a general credit rating
similar to the IBOR market, namely about Aþ.
This discussion summarises the typical traditional approaches to credit within the two

markets. The bond market has a well-developed sense of credit-adjusted returns as repre-
sented by the existence of multiple spread curves. Transactions in the interbank swap
market are generally collateralised, as discussed in Section 6.7. Hence a dealer is much
more likely to ascertain whether there is any spare credit capacity in the overall dealing
limit with the counterparty, and if so make a price irrespective of the creditworthiness of
the counterparty. Transactions with end-users may be based upon credit-adjusted swap
pricing. Initially this met with little success as obviously the banks became uncompetitive,
but following the economic crises in the Far East and Eastern Europe in 1997–9, and
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with the introduction of the new Accord, pricing has become more credit-sensitive. The
modelling of credit-adjusted pricing will be discussed in Section 6.7.

At the end of the packaging process, typically performed by a professional, the investor
will receive:

. details of the bond;

. identification of the swap counterparty;

. details of the swap plus resulting margin over Libor;

plus full supporting documentation on the bond purchase from say EuroClear, and an
ISDAMaster Agreement for the swap. The investor becomes the owner of the two separate
components, which would enable one to be sold off later if required. Obviously the investor
is responsible for the swap obligations if the bond defaults. It is feasible to find a third party
such as a bank to take on the credit risks of the bond—as discussed later—but there would
be a compensating charge.

Therefore asset packaging is to some extent an arbitrage between the two valuation
approaches in the two markets. The margin being earned by the investor is not ‘‘profit’’,
but a recompense for the risk that, if the bond defaults, he will still have to make the swap
payments. Whether the margin is adequate or not is obviously a judgement which provides
stimulus to the market.

5.2 CREATION AND PRICING OF A PAR MATURITY

ASSET SWAP

The maturity of the above package matches the maturity of the bond, namely about 4 years
and 11 months. In many cases, the investor does not want such an irregular maturity, but
would want a regular maturity such as exactly 5 years long. In this case the argument is
more subtle as the dates and maturity of the floating side of the swap do not match the
dates and maturity of the bond cashflows. Using the above bond’s dates, the bond redeems
on 10 January 2013, whereas the package matures on 6 February 2013, a mismatch of
about a month. Under the IF approach, this must also give rise to two additional swap
cashflows: namely, the payment of the bond redemption amount on 10 January 2013, and
the receipt of the par amount on 6 February 2013.

However, if we again assume a synthetic exchange of package principal, then the swap
reverts back to the common form, namely the bond cashflows on the pay side, and the
floating margin on the receive side. As the pay side of this swap is identical to the previous
par swap, the value of the two receive sides must also be the same. The value of a receive
side can be written as:

PV ¼ m � Principal �
X

di �DFi ¼ m � P �QT ¼ constant

As the maturity of the par maturity swap is greater than that of the par swap, hence
Qparmaturity > Qpar, this implies that mparmaturity < mpar. Indeed, we could use this relation-
ship to calculate the new margin approximately. As shown inWorksheet 5.4, the breakeven
margin is 755 bp, a reduction of some 1.3%.
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5.3 DISCOUNTING, EMBEDDED LOANS AND

FORWARD VALUING

This relationship gives rise to another idea. Suppose the investor has a target margin to
achieve. By reducing the principal amount provided by the investor, the margin must
increase. But if the principal is lower than the dirty price of the bond, how can the packager
buy the bond in the first place? Simple, embed the balance of the money as a borrowing
from the swap counterparty!
For example, assume that the investor only provides 90 to buy the package. There is an

immediate shortfall of 5.93, which is to be received upfront. At the maturity of the bond,
the investor is repaid the 90, and the balance of 10 (¼ 100� 90) is paid away on the swap.
Everything else follows as before, giving rise to a very handsome breakeven margin of
851 bp on a principal amount of 90 (see Worksheet 5.5).
Why does this work? Suppose the bond defaults, so that all future cashflows are lost.

The investor argues that he will lose his investment, namely the 90, but no more!!2 There-
fore the swap counterparty is taking on some of the credit risk of the bond issuer. What is
the implied rate of interest on this embedded loan? Through the discounting process, it is
IBOR flat. But that is the fair rate for an Aþ exposure, not a CCCþ. The counterparty is
said to be subsidising the investor by absorbing some of the credit risk without receiving
compensation. This is an example of a situation that arises in many structured swaps,
namely they contain embedded loans and deposits. Consider a simpler example: the implied
forward IR curve is positive, and you enter into a receiver’s swap. This suggests that, near
the beginning of the swap, you will be a net recipient of cash, whereas (if the forward rates
remain constant as implied by the curve) you become a net payer of cash at the end. In
another language, you borrow upfront and repay at the end; the implied rate of interest on
the loan is IBOR flat. We can however employ the forward-valuing technique discussed in
Chapter 3. Instead of discounting, any cashflow received has to be invested at some rate,
and any cashflow paid has to be borrowed at a (typically different) rate. A money account is
created, and the breakeven margin is calculated so that the balance of the account at the
end of the package is zero. If the investment/borrowing rates are assumed to be a zero
spread to the forward IBOR curve, then the margin is once again 846 bp. However, if the
borrowing margin is set to IBORþ 50 bp (and zero for deposit margin), then the breakeven
margin reduces to 846 bp (see Worksheet 5.6).

5.4 FURTHER EXTENSIONS TO ASSET PACKAGING

This chapter has concentrated on relatively simple asset packaging, and tried to introduce
some basic structures such as par and par maturity packages. The chapter ended with the
application of forward-valuing packages, as they often involve lumpy cashflows. The
swapping of more complex securities, especially involving embedded options, is discussed
in Chapter 11, where more advanced modelling techniques are introduced.
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BACKGROUND AND OBJECTIVE

The modern credit markets, whereby organisations and individuals transfer credit risk,
started in the late 1980s as the result of classic securitisation. Financial institutions in the
US were granting residential mortgages, gathering them into large portfolios, and then
selling the resultant cashflows to investors. Hence the credit risks on the mortgages were
being transferred to the investors. When the economy turned down in the late 1980s,
defaults started to rise, and investors become nervous. In response, total return swaps
were developed. In essence these are very simple:

Cashflows from mortgage portfolio

“Risk free” cashflows

Investor 

Cashflows from 

mortgage 

portfolio 

TRS c/p 

The mortgage-related credit-risky cashflows are paid away in return for ‘‘risk-free’’
cashflows.

In the US, there was a well-established and active secondary loan market. The loan
documentation allowed banks to enter into a loan with a customer, and then sell the loan to
a third party. Banks in Europe however had no such opportunities; loans had to respect
customer confidentiality and were not transferable. The creation of TRSs enabled Euro-
pean banks to retain the loans on their balance sheets, whilst transferring the credit risk.
This provided significant impetus to the development of the credit derivative market. This
chapter starts by describing the first form of credit derivatives, namely total return swaps,
and then its successor, single-name credit default swaps. Details of the market operations
are provided, as this is a market with a number of unique conventions which are extremely
important for users to understand. The relationship between CDSs and the corporate bond
market are explored, and the pricing and hedging of generic CDSs developed. Based upon
that, implied probabilities of credit events are then derived from CDS prices, which in turn
permits the pricing of more complex structures such as forward start and amortising CDSs
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and CDS swaptions (see Chapter 10). Multiname CDSs are briefly discussed, and the
Appendix describes a copula simulation approach for the modelling of credit portfolios.
Finally, building upon this work, the credit-adjusted pricing of swaps is discussed.

6.1 TOTAL RETURN SWAPS

Table 6.1 summarises the termsheet of a TRS executed in December 2005 between two
counterparties, A and B. Party A has bought the Reference Obligation, namely a 5-year
AAA floating-rate note paying 3-month C¼uriborþ 75 bp. The size of the purchase, defined
as the initial Reference Amount, is C¼25 million.
Under Section 2, Party A pays to Party B any interest received on the note. In return,

Party B will pay C¼uriborþ 12.5 bp based on a principal equal to the Reference Amount. In
addition, if the issuer of the note (partially or fully) defaults at any time so that the
Reference Amount is reduced, Party B must make a payment equal to the reduction to
Party A.
To ensure the risk-free nature of B’s payments, under Section 6 collateral of C¼5 million

has to be initially posted with A. This collateral will earn C¼uriborþ 10 bp. Why does B
want to enter into such a transaction? The return on the C¼5m collateral is
C¼uriborþ5 � ð75� 12:5Þ þ 10 ¼ C¼uriborþ 3.225%; a very significant return for effectively
taking AAA risk.

Table 6.1 Total Return Swap transaction

1. Background

Trade date: [10 December 2005].
Effective date: [12 December 2005].
Scheduled termination date: [27 December 2010].
Termination date: The earliest of (i) the scheduled termination date, as

adjusted in accordance with the business day convention,
(ii) a termination date following a designated early termi-
nation event, and (iii) the date on which the Reference
Amount is reduced to zero.

Reference Obligation: Maturity: [27 December 2010].
Issued by a SPV Coupon: 3-month C¼uriborþ [0.75]%.
Indicative rating by S&P: AAA.
Reference Amount: EUR 25,000,000 subject to principal reductions under the

Reference Obligation due to its terms and conditions.
Business days: London, New York and TARGET settlement date.

2. Payments by Party A

Party A payment amount: The amount of any interest (other than principal
repayment or prepayment), if any, actually received by a
holder of the initial Reference Amount of the Reference
Obligation.

Payment dates: Same business day on which Party A receives the Party A
payment amount (if any), commencing on the first such
date to occur after the effective date and ending on the
termination date.
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3. Payments by Party B

Party B first payments
Party B notional amount: Reference Amount.
Floating rate: 3-month C¼uriborþ [0.125%].
Payment dates: [The 27th of each March, June, September and

December].

Party B second payments
Party B second payment amount: Capital depreciation (if any).
Payment date: Each date when a capital depreciation occurs.

4. Capital depreciation Any reduction in the aggregate principal amount of
the Reference Obligation in accordance with its terms
and conditions or any amount defined as capital
depreciation under condition 5 (see below).

5. Early termination event If the Reference Obligation is redeemed in whole or
otherwise matures on any day prior to the scheduled
termination date, then, notwithstanding the scheduled
termination date, this transaction shall terminate on
such day and such day shall be the termination date.
The capital depreciation for this purpose shall be an
amount equal to the then-outstanding aggregate princi-
pal amount of the Reference Obligation minus the
actual amount paid by the obligor to holders of such
Reference Obligation.

6. Documentation Party B will enter into an ISDA master agreement and
Credit Support Annex (CSA) with Party A, each to be
governed by English law under the following terms:

(a) Party B shall agree to provide an amount of credit
support to Party A on the effective date equal to
20% of the initial Reference Amount; this amount
to be the minimum amount until the termination
date.

(b) Party B agrees to pay additional amounts of credit
support when the valuation plus [5.4]% of the initial
Reference Amount exceeds the existing balance of
credit support.

(c) The valuation will be calculated daily by Party A.
(d) The valuation shall be calculated using Party A’s

proprietary models.
(e) Party A will pay interest on Party B’s credit support

balance at the following rates:
(i) First EUR 5m at 3-month Euriborþ 0.10%

and
(ii) any additional amount at EONIA flat.
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The above TRS is said to have a leverage of five, indicating the amount of protection being
received by Party A. In the early and mid-1990s, the main counterparties were hedge funds.
The financial markets over this period were very benign with few defaults, and TRSs with
leverages of 10, 20 or even 30 were not uncommon!! The actual amount of protection being
provided with these leverages should be, but seldom was, questioned. The Russian crisis in
August 1998, and the subsequent collapse and rescue of the hedge fund Long Term Capital
Management, put an effective end to such high leverage.

6.2 CREDIT DEFAULT SWAPS

However, the TRSmarket had already been dying for some years. The classic TRS involves
an exchange of principal-based periodic cashflows plus the element of credit protection.
The value of a TRS would fluctuate not only upon perceived changes in the riskiness of the
Reference Obligation, but also on changes in the levels of interest rates, just like a corporate
bond. Credit Default Swaps were developed in response to the demand for a cleaner form
of credit transfer.
Based upon the situation above, a CDS could provide Party A with protection as

follows:

Party A buys a CDS from Party B; A pays a regular premium (in the above example,
62.5 bp) to B and in return, if the principal on the Reference Obligation is reduced, receives
a principal payment to cover that loss. CDSs look, for all intents and purposes, and behave
very much as insurance policies, providing protection if an Event occurs. Table 6.2 shows
some example premiums: these are quoted on a per annum basis, and paid quarterly in
arrears, usually on an ACT/360 basis. Once a payment has been made, then usually the
swap stops; in other words, it is a one-claim instrument.
There are however some important conventions:

1. In December 2002, the CDS market moved to standardised payment (coupon) dates,
namely 20th of March, June, September and December, or the next business day. This
was to assist the trading of CDSs; if a trader sells a CDS on one day, and then buys a
hedging CDS from a different counterparty a week later, the two premium dates will
exactly match. Hence, if today’s date is 4 February 2008, a 5-year swap would mature on
20 March 2013—note: the final maturity date does not have to be a business day.
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Table 6.2 Example CDS premiums, 24 June 2005

ShortName Tier Av 6m 1y 2y 3y 5y 7y 10y 15y 20y 30y Recovery
Rating (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Hellenic Rep SNRFOR A 0.06 0.09 0.13 0.18 0.22 0.29 0.31 0.34 0.40 37.86
Russian Fedn SNRFOR BBB 0.43 0.49 0.63 0.77 1.01 1.21 1.40 1.60 1.65 1.71 28.84
Rep. South Africa SNRFOR BBB 0.15 0.15 0.25 0.38 0.61 0.78 0.94 1.12 1.15 1.25 28.23
Hong Kong Spl Admin SNRFOR A 0.06 0.07 0.08 0.10 0.15 0.18 0.22 0.30 32.50

Region
People’s Rep China SNRFOR A 0.12 0.13 0.18 0.22 0.30 0.37 0.47 0.57 0.56 0.65 31.13
Société Air France SNRFOR Unrated 0.19 0.23 0.32 0.43 0.64 0.79 0.98 1.06 1.07 1.11 39.12
ABN AMRO Bk NV SNRFOR AA 0.03 0.05 0.07 0.08 0.12 0.15 0.19 0.25 39.86
ABN AMRO Bk NV SUBLT2 A 0.07 0.11 0.14 0.21 0.26 0.33 0.40 0.41 19.88

Ford Mtr Co SNRFOR BB 2.16 2.29 3.61 5.08 5.97 6.14 6.34 6.27 6.30 6.37 39.48
Gen Mtrs Corp SNRFOR BB 2.73 2.96 4.57 6.36 7.41 7.62 7.75 7.77 7.79 7.80 39.25

Source: Markit Group Limited—all data provided as is, with no warranties.



2. CDSs are traditionally traded on a T þ 1 basis, namely protection starts at 00:01 on the
next business day after the transaction date, and finishes at 23:59 on the maturity date. If
the trade date is within 30 (calendar) days of the first coupon date, then no coupon is
paid on that date, but the first coupon is paid on the second coupon date using a long
first period (this is known as the stub convention).

3. If the underlying Reference Entity is so risky that the premium exceeds 10% pa paid
quarterly, then the pricing conventionally switches to ‘‘upfront’’ with a running spread
of 500 bp pa. For example, assume that the fair premium is deemed to be 12% pa; the
buyer of the CDS would have to make an upfront payment of PV{700 bp pa over the
anticipated lifetime of the CDS}1 plus an additional 500 bp pa paid quarterly. If an
Event occurs, then a ‘‘clawback’’ clause dictates how much of the upfront payment
would have to be repaid by the seller to the buyer.

This market is rapidly growing, and currently covers about 5,000 Reference Entities. Most
of the entities have a credit rating either in the lower part of the investment grade band or
the upper part of the high-yield band—typically ranging from A to BB. Following the
downgrading of Ford and General Motors in May 2005 out of investment grade, high-yield
names have been expanding most rapidly. The depth of the market is extremely variable,
and only the top 250 names or so maintain good liquidity. Supply and demand is a very
important contributor to pricing in this market, and premium volatility is extremely high
(possibly ten times greater than in the IR swap markets).2

Whilst a CDS appears to be a relatively simple transaction, there have been three important
difficulties with the market. First, a CDS is usually written on a specific Reference Entity,
and not on a specific Reference Obligation. If the entity undergoes organisational restruc-
turing (in the jargon, suffers a Succession Event), what might happen to the CDS? For
example, in 2000 a UK company called National Power split itself into two separate
companies, Innogy and International Power. Innogy took the majority of NP’s assets,
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whilst IP took the majority of NP’s obligations. NP then effectively became a risk-free shell
company. What would happen to a CDS written on NP? Would it be cancelled? Remain on
NP? Transfer to Innogy, or to IP, or split into two and transfer to both? The standard
document in force at the time did not permit either cancellation or splitting under these
circumstances. If the CDS remained on NP, then the buyer still has to pay the original
premium but now on a shell that cannot suffer an event. If it transfers to Innogy, then the
buyer has to pay the original premium on a company that is less risky than the old NP,
whereas if it transfers to IP, then the buyer has now protection on a riskier company. The
documentation was very unclear, and the self-interests of buyers and sellers were very much
to the fore. The succession section was rewritten in 2003, but there have been unanticipated
events subsequently (especially in 2005–7 as the result of the activities of private equity
funds), that have caused disruptions to the market.

Second, has a publicly notifiable Credit Event actually occurred? The standard
documentation recognises three Events for companies, namely bankruptcy, failure to
payment (usually subject to a grace period and materiality threshold) and restructuring
of one or more obligation; for sovereigns, moratorium and repudiation are recognised.
Restructuring is defined as:

1. A unilateral change to material terms of any Obligation.
2. The mandatory exchange of Obligations for new Obligations with different terms due to

a deterioration in the creditworthiness of the Reference Entity.

For example, in 2000 Conseco, an US insurer, renegotiated the terms of some maturing
bank debt, pushing the redemption date out by 15 months whilst increasing the spread over
Libor from 50 to 250 bp. Clearly an Event had occurred but at whose instigation? The
banks or the company? Those banks participating in the renegotiations had not lost any
money at that point, indeed it may be argued they were on better terms, and yet were able
to make a claim. Non-banks often point to conflicts of interest around such an Event. Yet
the vast majority of CDSs written on investment grade entities recognise restructuring; it is
common practice not to recognise restructuring for high-yield entities. The Basel Accord
also contributes here, only permitting a maximum of 60% capital relief if restructuring is
excluded as an event.

Restructuring also introduces the opportunity of gaming, because the swap stops after a
recognised Event. If a Restructuring has occurred, both the buyer and seller have to make a
decision: is the Event to be recognised, or would it be better to wait for a hard Event to
occur? If the buyer thinks the losses would be greater under a hard Event, then he would
prefer to wait, whereas the seller would prefer to trigger immediately.

Third, once an Event has occurred, how is the size of payment to be determined? In 2007,
about 75% of CDSs were physical-settled. Consider the example above, and assume the
principal on the note had been reduced through an Event. The owner of the note could
deliver the impaired value note to the seller of the CDS, and receive the full face value of
C¼25 million in cash. Some 24% of CDSs were cash-settled. This would require the buyer
and the seller of the CDS to agree the market value of the note after the Event, and then the
buyer pays {C¼25m�Value} to the seller. A small proportion are fixed-settled, whereby the
buyer and seller agree a fixed percentage of the principal—typically 60%—upfront that
would be paid if an Event occurred.

In 2004, physical-settled CDSs represented nearly 90% of the market. Delphi, a large US
car component manufacturer, went into bankruptcy in October 2005. Before the Event, its
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bonds had been trading at about 49% of face value; after the Event, they leapt to 72%!!
This implied a net payment to the CDS buyer of 38% of the principal. Later Fitch
estimated a fair price for the bonds was less than 10% of face value. Why did the bond
price rise so dramatically? It has been estimated that about 90% of CDS buyers do not have
the underlying exposure, but are merely speculating on price changes. When the Event
occurred, all buyers of physical-settled CDSs must deliver an acceptable security to receive
payment. The rule is very simple: no delivery, no payment—as some buyers have found to
their cost. The impact of this ‘‘squeeze’’, as it is known, has been getting worse as the CDS
market has been doubling in size each year, whereas the underlying stock of deliverable
securities has been relatively static. The move towards cash-settled is hardly surprising; the
current difficulty here is the length of time the buyer needs to wait after the Event until the
market value of some Reference Asset has settled down following the fluctuations of
physical settlement. Currently, these CDSs are taking over 3 months on average to settle,
with some such as Parmalat over 6 months.
The Event at Conseco highlighted another difficulty. Whilst it was the maturing bank

debt that was being renegotiated, Conseco also had some long-dated subordinate debt as
well. The price of the renegotiated debt fell to 92% of face value, whereas the price of
the subordinate debt fell to 68%. The buyer of a CDS can select, within certain fairly
wide criteria, which physical security (or even portfolio of securities) to deliver. Not
surprisingly, buyers of Conseco CDSs tried to deliver the subordinate debt, including
the banks involved in the restructuring! After market discussions, the standard ISDA
documentation was changed in 2003 to permit three alternative delivery clauses in the
event of a restructuring:

. Modified Restructuring—the maturity of a deliverable security cannot exceed 30 months
beyond the maturity of the restructured debt;

. Modified Modified Restructuring—the maturity of a deliverable security cannot exceed
60 months beyond the maturity of the restructured debt;

. Full (or complete) Restructuring—there is no maturity constraint.

In practice, most investment grade CDSs in the US are traded on a MR clause, whereas
MMR is often used in Europe and FR in the rest of the world. This does give rise to
parallel pricing; a FR CDS is likely to cost 10–20% more than a No-R CDS on the same
name. Following extensive industrial discussions, some further conventions were agreed to
be implemented on 8th April 2009 (so-called Big Bang day!). Some of these conventions
were global, and some confined, at least in the first instance, to the US market. For
example:

. The world was to be divided into five regions: Americas, Japan, Asia ex-Japan, EMEA,
Australia/NZ. A Determination Committee (DC) consisting of 15 voting members, plus
some non-voting, drawn from both the buy and sell sides of the industry, would be
elected for each region.

. If you think a Credit Event has occurred within the last 60 days from today, then the DC
must be approached for a decision. The implication of this move is that buying a CDS
today gives you coverage from {Today� 60 days} all the way through until maturity
date; note that coverage is no longer linked to the trade date. The implication of this new
convention is that two swaps traded on different dates will now provide exactly the same
coverage.
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. Similarly, if you think a Succession Event has occurred within the last 90 days from
today, then the DC must be approached for a decision and a statement about the
outcome.

. Unhappiness over the settlement procedures led some market participants to take part
voluntarily in a Credit Event Auction (CEA) process. This required market-makers in a
relevant security issued by the Reference Entity to agree (through a complex bidding
process3) an average price for that security some 30 calendar days after the Event. Buyers
of the CDS would then either receive {100�Price} as a cash settlement, or physical
settlement, at their choice. The new convention is that CEAs will become compulsory for
all CDS settlements.

. In the US, Restructuring will no longer be a recognised Event for normal CDSs,
although it may still be possible to get an illiquid one with it. It is unlikely that Europe
will follow this convention for various legal reasons, mainly that Chapter 11 bankruptcy
(which allows an entity to restructure whilst under protection) does not really exist. In
July, a Restructuring CEA was introduced; if the buyer has triggered the recognition of
the Event, then there are maturity restrictions on which instruments are deliverable.

. In the US, payments for CDSs will be on an upfront basis, with 100 bp and 500 bp pa
running spreads for investment grade and non-investment grade names, respectively.
Due to the wider range of credits in Europe, running spreads are 25 bp, 100 bp, 500 bp
and 1,000 bp pa, with also 300 bp and 750 bp spreads pemitted for recouponing an
existing CDS (the objective is to ensure that the upfront payment is not too large).

One other problem, namely the slowness of agreed documentation and confirmations,
which the FSA and Fed Reserve complained about in 2005, is being addressed, and
increasingly standardised documentation and electronic-trading platforms are being used.
The market has a target to get trades entered in the internal systems on the same day, and
confirmations to be issued by T þ 5, from mid-2009.

Whilst the original form of CDS permitted the delivery of any acceptable security, such
as a bond or an assignable loan, in practice the market priced and hedged using traded
bonds, as described in Section 6.3. But the bulk of corporate funding, especially in the non-
US, is through bank loans. Loans are typically less risky than bonds for a variety of
reasons: stronger covenants, closer bank relationships, material change clauses, higher
recovery rates, and therefore the price of a CDS protecting a loan should be lower than
that based on bonds. The loan CDS market started in November 2005, and has grown
extremely rapidly. Entering into a swap, or buying an option, involved a potential credit
exposure on the counterparty. The precise size of this exposure is unknown, as it depends
upon movements in the financial markets, as discussed in more detail in Section 6.7.
Contingent CDSs, providing credit protection over derivative transactions, have been
available since 2002.

Reverting back to the earliest days of the credit markets, it is now feasible to get,
especially in the US, Asset-Backed CDSs. These usually work on a pay-as-you-go basis.
An investor buys an asset-backed security which would generate anticipated cashflows, and
simultaneously buys an ABCDS for some regular premium. If the cashflow in any period is
lower than anticipated for whatever reason, then the ABCDS seller makes good the
shortfall, and the swap then continues.

Credit Derivatives 87

3 See, for example, A CEA Primer and The Results of the Lehmann Brothers Auction, both published by Creditex in October 2008,
for further details.



6.3 PRICING AND HEDGING OF GENERIC CDSs

Assume a trader has just sold a CDS; she could hedge the transaction by selling a corporate
bond issued by the same Reference Entity. How much of the bond should she sell? We will
approach this question in a number of stages.
Imagine the following situation: you wish to value a cashflow of (say) 1 unit to be

received at time T in the future. Obviously the simple answer is to discount it:
PV ¼ 1 �DFT . If the cashflow is credit-risky, then the appropriate discount factor could
be estimated from traded securities which carry similar risk. Thus the T-bond curve would
give risk to credit risk-free DFs, whilst a BBB curve would generate credit-adjusted
DFBBBs. Assume that the riskiness of the cashflow is due to the possibility of an Event:

T

p

1 p

1 

R 

If p is the probability of an Event, and R < 1 the outcome when an Event occurs, then the
expected outcome is Ef1g ¼ p � Rþ ð1� pÞ � 1 ¼ 1� p � ð1� RÞ. If we were to experience
this situation many times, then Ef1g is the anticipated outcome; this is no longer
uncertain, and therefore we can write PV ¼ Ef1g �DFT ;risk-free. Arbitrage suggests that
the value of the cashflow should be the same using either approach; namely,
DFT ;BBB ¼ Ef1g �DFT ;risk-free.
Now consider the properties of a generic Floating Rate Note, issued at par¼ 100, paying

Libor flat on a periodic basis, and redeemed at par. If it is assumed that the note cashflows
are discounted at Libor, using the above argument, then the value of the note immediately
after the coupon payment must be par. Therefore consider any period of the note: assume
this starts at time 0 and finishes at time 1. The value of the note at time 1 before the coupon
payment is 100 � ð1þ d01 � L01Þ where L is the Libor fixing at the beginning of the period
and d the length of the period. The value of the note at some time t during the period is
given by:

Vt ¼ 100 � ð1þ d01 � L01Þ=ð1þ dt1 � Lt1Þ ¼ Clean priceþAccrued

The above trader does the following transactions:

1. Sells a CDS on some Reference Entity for a regular premium of m pa.
2. Buys a ‘‘risk-free’’ FRN with matching maturity for 100, generating Libor. (Of course,

Libor is not really risk-free, but represents a prime interbank rate; this point will be
addressed later.)

3. Sells a risky FRN for 100, assuming the same credit risk as under the CDS, generating
Liborþ s (spread)
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If the CDS does not suffer an Event, then the Libor rates cancel and the net effect is an
income of (m� s) pa.

Now assume the Entity suffers an Event at time T . The CDS must be settled, and the
FRNs unwound:

. For CDSs assume the risky FRN is delivered, therefore size of payment¼ 100� PT

where PT is the clean price of the note. However, because the premium is paid in arrears,
the buyer must pay the outstanding accrued of 100 � d0T �m.

. The risk-free FRN has to be sold for its clean price plus accrued, and the risky one
bought back for its clean price of PT plus accrued fLþ sg. It can be easily shown that the
net income here (to a first order) is 100� PT þAccrued s, irrespective of what has
happened to Libor since the fixing date.

Hence the net effect is simply accrued fm� sg pa as before. This implies that, in the absence
of riskless profits, the CDS premium m should equal the spread s over Libor for a FRN
with the same maturity and issuer credit risk as the CDS. The spread can be estimated using
the par maturity packaging techniques discussed in Chapter 5.

For example: suppose we wish to price a 5-year CDS, and the following bond is
available:

Issuer: xxx
Maturity: 23 July 2013
Coupon: 5.25% ANN
Clean price: 96.375

If today’s date is 4 February 2008, a 5-year swap would mature on 20 March 2013
(remember—standardised roll dates), there would be 21 premium payments assuming
no Event, and the first period would be a short stub. Worksheet 6.2 is constructed as
before; the breakeven margin of 240 bp is calculated in three ways.

Note that the bond matures about 4 months after the CDS, which implies an embedded
loan in the asset swap. Ideally, the funding and credit implications for this loan should be
factored into the swap spread.

This margin can also be directly calculated using the asset-swapping formula from the
previous chapter, namely:

Margin ¼ �10,000 � PVSecurity=ðQ � PrincipalÞ ¼ �10,000 � �11:455=ð4:772 � 100Þ
¼ 240 bp

This margin is called the ASW (asset swap) spread, and is widely available on trading
screens.

As a quick-and-dirty approach approximation, traders often calculate the bond’s
Z-spread s, which is calculated from:

Dirty price of bond ¼
X

t

CFt � expf�ðZt þ sÞ � tg

where Zt is the (continuously compounded) zero-coupon rate for the appropriate cashflow
time t implied from the swap curve (see Worksheet 6.3). As zero rates are spot rates, usually
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the Z-spread is higher than the ASW spread, but this depends upon the steepness of the
curve. In this particular case, the breakeven Z-spread is 226 bp. As the Z-spread also
ignores the actual maturity and frequency of the CDS, it is a gross approximation. There
are other spreads sometimes quoted, such as:

. I-spread: YTM of bond–swap rate of correct tenor

. T-spread: YTM of bond–YTM of (interpolated) government bond.

How well does this model replicate the actual CDS prices quoted in the market? Define the
CDS basis as: CDS premium�ASW spread; both are usually taken from the bid side of the
two markets. There are various structural factors that have been ignored above that move
the basis; the most important ones are probably:

. For a positive Basis:
e the buyer possesses a delivery option for physical-settled CDSs;
e the buyer may possess undisclosed information about the Reference Entity—this is

often called the moral hazard premium;
e corporate bonds may have material change clauses;
e if the bond is trading below par, then the actual loss on the bond is likely to be less

than the payout on the swap;
e Libor is not a risk-free rate, hence the spread for good names may be small or even

negative.
. For a negative Basis:

e the credit risk between the buyer and seller of the CDS is asymmetric in favour of the
seller—although many CDSs are collateralised;

e the funding cost for many traders is above Libor, whereas the asset-packaging
techniques, as discussed in Chapter 5, often implicitly assume a Libor-flat cost;

e shorting corporate bonds usually means borrowing the bond under a repo
agreement; these tend to be highly illiquid and hence expensive.

The net effect of these factors is that the Basis has tended over the years to average at about
10–20 bp above zero. But, as mentioned above, supply and demand does play a major role,
and the volatility of premiums is very high, causing the basis to fluctuate significantly. Beta
is a concept drawn from the Capital Asset Pricing Model, and measures relative volatility;
the CDS market is said to have a high beta relative to the cash (physical bond) market. An
example of a typical beta trade would be, if the trader thinks that the creditworthiness of an
Entity is likely to deteriorate, to:

. buy a CDS;

. buy a corporate bond.

If the trader is correct, the value of the CDS would rise faster than the drop in the value of
the bond.
There have been a number of recent studies about the efficiency of the CDS market. The

following graph was published in a working paper from the Bank of International

90 Swaps and Other Derivatives



Settlement.4 The topmost line shows the basis (for 5-year CDSs) as defined above;
ignoring the hiatus at the end of 2001, the basis fluctuates a lot, but is on balance positive.
The other curves are spreads over different T-bond curves; the fact that all of these are
permanently skewed away from zero provides evidence that Libor is used as the base risk-
free rate.

The main events at the end of 2001 were the collapses of Enron and Worldcom; the
reaction of the market demonstrates the high beta of the CDS market relative to the cash
market.

There is one further reason why the basis is, on average, positive. Assume that the basis is
significantly negative; a risk-less5 profit could be made by buying an asset package and
simultaneously buying a CDS to hedge the credit risk. In theory, a risk-less profit could also
be achieved if the basis was positive, but shorting packages is far less efficient.

As this market has developed, increasingly investors of non-governmental securities have
been arguing that the return on the security (as a swap spread) must exceed the risk-free
return plus the CDS premium. Such activity naturally brings the basis into line.

Just as generic IRSs are priced off the governmental bond curve, as discussed in Chapter
3, so are generic CDSs priced off the corporate bond market. However, in each case, there
is no perfect relationship between them, which is why, at the end of the day, trading is an
art and not merely a science.

How might a trader hedge a CDS using a corporate bond, albeit accepting basis risk?
If the margin shifted by 1 bp, the risky FRN and hence the CDS increased in value by
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$47,723 per $100m nominal. A similar shift caused the bond price to reduce by $47,678.
Hence the hedge ratio is: $100m � 47,723/47,678¼ 100.1m to be sold (see Worksheet 6.4).

6.4 MODELLING A CDS

Consider a bought CDS of some maturity T . Subdivide its maturity up into time slices, Dt.
These slices can be as fine as desired. Assume that both credit events and premium
payments can only occur at the end of a time slice.6 Under these circumstances, the lifetime
of the CDS is:

1 0 2 3 4 

p3 

1 – p3 

p4 

1 – p4 

p2 

1 – p2 

p1 

1  p1 

Define:

. pk as the probability of an Event occurring at the end of period k, as shown. This will be
called a Forward Default Probability (FDP) to fit in with the conventions of credit
modelling, although strictly it is an Event probability.

. Sk as the probability that the CDS survives at least to the end of period k:

Sk ¼
Y

j

ð1� pjÞ ¼ Sk�1 � ð1� pkÞ; where S0 ¼ 1

. Hk as the conditional probability that the CDS survives until period k� 1, but suffers an
Event at the end of period k (often called Hazard7): Hk ¼ Sk�1 � pk.

Assume, for the moment, that the FDPs are known, and that the anticipated payout on the
CDS if an Event were to occur is (1� R). R is conventionally currently set to 40% of the
notional principal P for investment grade names in the CDS market. The expected kth
cashflows on the two sides of the swap are:

. Premiumk: P �m � Dtk � Sk�1;

. Paymentk: P � ð1� RÞ �Hk.
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Notice that Sk�1 is the probability of paying the kth premium; that is because premiums are
paid in arrears, and accrued premium has to be paid. Hence, the breakeven premium8 is
given by:

m ¼ ð1� RÞ �
X

k

Hk �DFk=
X

k

Dtk � Sk�1 �DFk

where the DFks are ‘‘risk-free’’ discount factors taken off the IBOR curve. See Worksheet
6.5 where a time slice is assumed to be a quarter of a year; for the given FDPs in column [1],
first the Survival and Hazard rates are calculated, and then the expected cashflows are
discounted. The breakeven margin is 741.4 bp pa (this may seem very high, but was in fact
taken from a General Motors curve as discussed below.

Obviously, assuming an Event can only occur at the end of a quarter is unrealistic. How
would the model change if we assume, for example, shorter time periods such as monthly?
The diagram shows the CDS over a quarter:

1 0 2 3

p1 

1  p1 

p2 

1 – p2 

p3 

1 – p3 

Payout received

1 mos. accrued paid 

Payout received

2 mos. accrued paid 

Payout received

Qu premium 

paid

There is a probability of H1 that there will be an Event at the end of the first month; in this
case, both a payout would be received but also 1 month’s accrued has to be paid. Similarly,
there is a probability of H2 that there will be an Event at the end of the second month; in
this case, 2 months’ accrued has to be paid. At the end of the quarter, the premium has to be
paid with probability S3, irrespective of whether an Event occurs or not. If there is an
Event, then a payout would be received as before. More generally, if we assume that a
quarter is divided into Q slices, the expected value on the premium side for a given quarter
is:

m �
X

q¼1 toQ�1

dq �Hq �DFq þ dQ � SQ�1 �DFQ

� �

where dq is the length of time from the start of the quarter until the end of the qth slice.
The payment side of the swap is simply summed over all slices for all quarters as before
(see Worksheet 6.6).

The JP Morgan model is becoming an industry standard. This assumes that Events will
only occur, on average, at the middle of a quarter. Under this assumption, the expected
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values are:

on the premium side: m � f0:5 � dQ �HQ �DFQ�1
2
þ dQ � SQ �DFQg

on the pay side: ð1� RÞ �HQ �DFQ�1
2

The difference in end-result between the two approaches is a small fraction of a basis point.
How are the FDPs estimated? It is common practice to imply them from the quotes in the

CDS market, just as implied forward rates are taken off the IRS curve. A General Motors
modified restructuring strip will be used as an example, see Table 6.2.

Table 6.2 GM CDS prices

Maturity (years) CDS prices (%)

0.5 2.728
1 2.964
2 4.572
3 6.362
5 7.414
7 7.619

10 7.751
15 7.770
20 7.790
30 7.800

The most common approach, just as with the normal IRS curve, is bootstrapping. This
generally operates in two steps. First, the CDS curve is interpolated to estimate CDS prices
on a quarterly basis—Hermitian interpolation (as discussed in Chapter 3) has been used in
the examples below to do this. Quarterly is used because that is the normal payment
frequency of the premium. Second, a modelling frequency has to be selected. Initially,
as above, choose a quarterly frequency, and assume that the FDPk, k ¼ 1; . . . ;N � 1, have
been estimated. Using the formula:

m �
X

k

Dtk � Sk�1 �DFk ¼
X

k

ð1� RÞ �Hk �DFk

it can be easily solved for pN , as HN is the only term that depends upon it (see Worksheet
6.7).
However, if we wish to model Q slices per quarter, then the basic model described above

can be used. However, the CDS prices off the curve cannot be estimated more finely than
quarterly because the premium frequency must be retained. Therefore the bootstrapping
has too many degrees of freedom, and another assumption is required. It is common to
assume that either the FDP or the Hazard rate9 remains constant over all slices in a given
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quarter. Using the above formula, given we have already estimated SN�1, we guess a single
constant value pN for all the pq’s, estimate Hq and SQ�1, and hence solve for the breakeven
premium of CDSN . But, as this premium is already known off the curve, the correct value
for pN can be found. Worksheet 6.9 demonstrates this on a monthly basis using Hermitian
interpolation, and there is a daily model on the CD (Worksheet 6.10).

Adopting such a piecewise constant approach must result in first-degree discontinuities.
Other approaches are perfectly feasible, such as piecewise linear or optimisation (see
Worksheets 6.11 and 6.12), as described in Chapter 3—see graph below. Instead of
constructing an arbitrage-free probability curve, some banks build regression curves such
as Nelson–Siegel instead—see Worksheet 6.13.
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Does the use of Q slices per quarter make a significant difference to the eventual
pricing? Provided that the FDPs are implied consistently from the market curve, then
pricing differences in structured CDSs is generally less than 1 bp. Worksheets 6.5 and 6.6
referred to above priced a 5-year GM swap, once quarterly and once monthly. As they were
using implied probabilities from the same curve, the swaps produced exactly the same
premium.

Are these implied probabilities good predictors of real-world events? In the same way
that implied forward IRs are poor predictors of future spot IRs, or FX forwards are poor
predictors of future spot FXs, numerous studies10 have concluded that the default prob-
abilities are not good real-world predictors. From a purely trading perspective, that is
irrelevant as only relative prices are important; the same applies to hedging as the prob-
abilities do reflect the true cost. But for an end-user, buying or selling long-term credit
protection, the implication is important. Increasingly, with the implementation of the
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Internal Rating Based (IRB) approach in the new Basel Accord in many countries from
2008, which requires banks to estimate validated probabilities and recovery rates,
cheapness/dearness analysis of CDS prices based upon real-world evidence is becoming
more common. This in turn may drive a convergence of the CDS market to the real world.
But whilst the estimated percentage of speculators in the CDS market remains extremely
high, such a convergence is unlikely.

6.5 PRICING AND VALUING NON-GENERIC CDSs

Once the FDPs have been estimated from a given CDS strip, they may then be used to
price non-generic CDSs, such as forward-starting and amortising CDSs as well as
options11 on CDSs, to value old CDSs, and indeed other credit-related structures such
as total return swaps, in an internally consistent fashion. For example, based upon the
above data, consider a 3-year CDS starting in 2 years’ time. There are two questions on
conventions:

. If today’s date is 4 February 2008, when does such a swap start? This is complicated
by the use of standardised roll dates. The first roll date is 20 March 2008, and the
swap would start 2 years later on 22 March 2010 (bearing in mind non-business
days).

. If there is an Event before the swap starts, what happens? The usual convention is that
the swap is knocked out, i.e. cancelled with no obligations on either side. Suppose the
swap was a no-knock-out, and assume an Event occurs that forces the Reference Entity
into bankruptcy so that no further events can occur. The buyer of the CDS would still
have to pay the committed premium over the lifetime of the swap! The same convention
is used in the CDS option structures.

The breakeven margin for the forward-starting swap is 1056 bp, considerably higher than
the spot 5 year swap, but that reflects the steepness of the forward curve over the first 5 years
(see Worksheet 6.14).
To model the no-knock-out version, the Hazard rates remain as before, but the

probability of survival on 22 March 2010 is 100%. Using SN ¼ SN�1 �HN , the remaining
Survival rates can be estimated; the breakeven margin is now 854 bp. The reduction reflects
the probability of 15.68% that GM will suffer an Event before the swap starts, but the
buyer would still have to pay the premium—see Worksheet 6.15.
Other structures such as

. FRNs which pay Libor plus a spread with redemption of principal at maturity, but
where the note cashflows may cease;

. CDSs where the premium is not fixed over the lifetime, but is refixed at the beginning of
each period—see Worksheet 6.16 for an example (not surprisingly, the ‘‘floating’’ version
of a generic CDS has a zero margin);

. constant maturity CDSs, where the premium of each period is linked to a longer term
CDS rate ( just like a yield curve swap). As expected, just like a yield curve swap, this
swap may
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also possess considerable convexity.12 Worksheets 6.17 and 6.19 price such a CDS
without and with convexity adjustment, respectively.

. contingent CDSs, where the underlying exposure on the Entity is itself a derivative, and
therefore is subject to fluctuations in the financial markets;

. total return swaps, which consist of an exchange of risk-free and risky cashflows;

may all be handled using the implied FDPs.
The valuation of old CDSs is easier than the valuation of IRSs because of the standard-

ised roll dates. Consider, for example, a 5-year $100m GMCDS traded on 15 August 2006,
with a premium of 650 bp pa. This swap will mature on 20 September 2011. From today’s
date of 4 February 2008, there are 15 periods left. By using today’s implied FDP and
discount curves, the expected cashflows can be built as before, and the net valuation is
$1,152,169 (see Worksheet 6.20).

6.6 BASKET AND PORTFOLIO CDSs

The discussion above has revolved around single-name CDSs. It is also feasible to obtain
basket and portfolio CDSs. The difference between a basket and a portfolio is mainly
semantic, a basket is a small portfolio with generally less than a dozen entities, whereas a
portfolio CDS can be written on a portfolio of several hundred or thousands of entities.
The main products are different:

. First-to-Default is probably the most common form of basket CDS: if any one of the
entities in the basket suffers an Event, then a payout is made and the CDS stops. These
are generally sold as providing cheaper protection than buying a set of individual single-
name CDSs, on the assumption that more than one event is highly unlikely. There are
also N-to-Default CDSs, which will make N payouts before stopping, and Nth-Loss
CDSs, which only pay on theNth event. These structures are probably less common now
than 10 years ago.

. A portfolio CDS is equivalent to an N-to-Default CDS, where N is equal to the number
of entities in the portfolio. As the portfolio is large, the probability of all entities suffering
an Event, and hence the swap stopping prior to maturity, is remote. These CDS are
generally tailored to provide protection over a large portfolio, with no secondary market.
They are an integral part of the synthetic CDO market, used by banks to transfer credit
risk from a portfolio to buyers of CDO tranches.

Since June 2004, products based upon credit indices have been the largest and fastest
growing part of the credit transfer market. These indices are based upon the performance
of a standardised portfolio of entities. The most liquid indices are the iTraxx Europe and
the US CDX, plus various subindices—see box for further details.

The modelling and pricing of portfolio products is a significant topic in its own right. An
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outline of the commonly used underlying theory and methods is described in Section 6.8
(Appendix).

Credit indices

In June 2004, the formation of iTraxx Europe and the US CDX indices was
announced. This has been followed by indices in other regions such as Japan, Asia
ex-Japan, Australasia, Emerging Markets and so on. Each index was based upon a
carefully constructed portfolio with the following criteria:

. 125 entities drawn in a specified number from seven industrial sectors;

. each entity must be investment grade;

. each entity must have been actively traded in the CDS market over the previous six
months.

As entities may be downgraded, or their trading reduces, each composition of the
portfolio is ‘‘rolled’’ every 6 months, in March and September, to ensure the index is
up to date. The level of each index is fixed everyday as the equally weighted average of
the single-name CDS prices on each entity. There are currently four fixings, based
upon 3, 5, 7 and 10-year CDS maturities. The graph below shows iTraxx Series (Roll)
8, based on 5-year quotes:

There are also subindices, formed from the entities in each industrial sector (and with
two indices representing senior and subordinated debt for the financial sector). There
is also a cross-over index which is made up of 50 names which are BBB or worse, active
in the CDS market and on Negative Outlook by a rating agency.

There are three main products available which may be bought on any given day:

. Index-linked notes: these pay 3m C¼uriborþ level of index on purchase day quarterly.
The notional principal is reduced by 0.8% (¼ 1/125) each time an entity suffers an
Event.

. Index-linked CDSI: the seller receives level of index on purchase day quarterly, but
has to make a payment of 0.8% when an Event occurs. These are, in theory,
physically settled, but given the squeezes in 2005 onwards, may well become
cash-settled.
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. Tranches of the index portfolio: different slices of the portfolio can be purchased.
Each will pay a quoted rate over, typically, a 5-year period, but losses on the
portfolio may reduce the notional principal.

Index-linked products are popular because they represent a wide cross-section of
credit exposures within the region, and also possess good market liquidity at least
in the current series.

6.7 CREDIT EXPOSURE UNDER SWAPS

When a generic swap is first agreed with a counterparty, its value is zero. As time passes,
and rates move, the value will change to be either positive or negative. If the value is
positive, then we have a credit exposure on the counterparty. If he (or she) does not fulfil his
obligations under the swap, then the positive value cannot be realised. A distinction is made
between the current credit exposure (CCE) to a counterparty and the potential future
exposure (PFE). When a swap is first agreed, the CCE¼ 0, but there is still a PFE linked
with the potentially favourable movement in rates in the future. This distinction is in the
Basel Accord, which requires capital to be allocated against both CCE and PFE. This will
be discussed in this section.

Associated with this concept is the use of credit-adjusted pricing, i.e. adjusting the price
of a derivative to incorporate some margin that reflects the potential loss if the counter-
party defaulted at some stage during the derivative’s lifetime. In the early days of the
derivatives market, when counterparties all tended to be of good credit, such adjustments
were seldom made. During the earlier part of this century, credit-adjusted pricing became
more common for transactions that were not collateralised. But even then, competitive
pressures were sufficiently large that it is possible for a poor-credit counterparty to
access flat unadjusted prices. Nevertheless, as more countries adopt the second Accord,
with its risk-based capital approach,13 there is increasing pressure to impose credit-adjusted
pricing.

The accountants have also made an impact; FAS 157 requires banks to deduct the
expected loss (known as the Credit Value Adjustment) due to counterparty credit risk
from the fair valuation of derivative positions. Most banks have adopted two approaches:

1. Charge traders for the incremental CVA at the time of the transaction.
2. Create a central Credit Portfolio Management activity, which has responsibility for

levying the above charge, and then managing the overall credit risk; this CPM is often
a profit centre.

Some banks have taken the concept further, and charge for unexpected losses (i.e. tail
losses greater than expected—see Section 6.8 (Appendix) for further details). The concept
of CVA questions the widespread use of credit limits—are limits redundant provided all
credit exposures are properly priced? However, for a number of reasons, such as:

. it is computationally extremely challenging to estimate CVA in real time;

. the credit models have known limitations;
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. the credit markets are not sufficiently liquid, especially after the crisis in 2007–9, to
enable all credit risks to be hedged efficiently;

. the use of CVA increases potential pro-cyclical risk, namely a lower charge in a rising
economy;

the demise of limits is premature.
We will consider one simple approach to measure PFE, and to introduce credit-adjusted

pricing based upon a generic IRS. Assume we have a current curve of forward interest rates
F0 ¼ fF0;0;F0;1;F0;2; . . .g where F0;T is the estimate today of the forward rate that fixes at
time T . We also assume a known volatility curve �0;T—this is an ATM curve of volatilities
of the forward rates, implied from the cap market. If we assume that the forward rates
follow a log-normal process,14 we can write:

Ft;T ¼ F0;T � expfð�T � 1
2
�2
0;TÞ : tþ �0;T :

ffiffi
t

p
: "g

This describes the possible evolution of the Tth forward rate through time, where " is a unit
normal random variable. The drift �T is small in practice for interest rates, and will be
ignored for this discussion but see Section 11.4 for more details. As it is assumed that " is
drawn from a unit normal distribution, �5% probability bounds can be constructed:

F up
t;T ¼ F0;T � expf� 1

2
�2
0;T : tþ 1:645�0;T :

ffiffi
t

p g
F down

t;T ¼ F0;T � expf� 1
2
�2
0;T : t� 1:645�0;T :

ffiffi
t

p g
These imply that there is a 5% chance that the ‘‘actual’’ forward rate will lie above F up

t;T , 5%
that it will lie below F down

t;T and hence 90% that it will lie in between.
Worksheet 6.22 has taken the current 12-month forward curve out for 20 years, and

evolved it through time using a volatility curve. Obviously, as time passes, the forward rates
are fixed and then drop off. The graph below shows the new forward curves evolving:
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14 See the discussion on Libor-based simulation in Section 11.4 for more details.
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These are usually called ‘‘95% curves’’ for reasons explained later. Box 1 in Worksheet 6.9
‘‘Modelling forward exposure’’ shows the evolution over the first year: column [5] shows
the expected evolution of the curve, and columns [4] and [6] show the upper and lower
bounds.

The next step is to calculate how the valuation of a swap would change. Consider
a vanilla swap to pay fixed which matures at T ; its value at time t is
fð1�DFt;TÞ � S0;T �Qt;Tg. So, given the current swap curve, we can take the forward
curve which has been evolved out for 1 year, calculate the new discount curve DF1;T and
values of Q1;T , and hence calculate the value of the swaps. This is demonstrated in Box 2 of
Worksheet 6.9 ‘‘Modelling forward exposure’’. The valuation is done after net payment of
the cashflows at the end of the first year, hence the 1-year swap has zero value. It may be
more valid to include this payment in the valuation on the grounds that, if a default were to
occur, it is likely to occur before payment; the model would be simple to modify.

It is a valid assumption that I am only concerned with my exposure on the counterparty,
and not the exposure of the counterparty on me. Hence, if rates rise, the swap will gain in
value for me, and so will my PFE. The evolution of the swap value through time can be
tracked based on the 5% evolved curves, producing the 95% potential future exposure
(PFE) envelope, i.e. there is a 5% chance that my exposure may exceed this. The graph
below demonstrates the classical exposure (expressed in terms of Notional Principal
Amount) rising as rates rise, and then dropping back to zero by maturity due to the
continued receipt of cashflows. From the graph, the maximum exposure for the 12-year
swap is about 22% of the NPA: this is often called the Peak Exposure Limit (PEL).
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Worksheet 6.24 contains an extract from a Bank of England report,15 estimating the PELs
for an IRS and a CCS under a range of maturities and probability envelopes—these data
are graphed in Worksheets 6.25 and 6.26. These results formed the foundation for the
capital setting in the first Basel Accord published in 1987.

The 95% anticipated loss in the tth period under this swap, following the envelope, is
Ht � PFEt where Ht can be estimated either from the CDS market as above or using
historic data: Worksheet 6.27 uses historic cumulative default data published by Moody’s.
The PV of expected losses across the lifetime of the swap is

P
Ht � PFEt �DFt. The

expected PV of 1 bp received through the lifetime of the swap is
P

St � dt �DFt=10,000
expressed as a percentage of NPA.16 Therefore, the required adjustment in the price—and

15 Report 1361d: Potential Credit Exposure on IR and FX Related Instruments, Bank of England, 1987.
16 The term St �DFt is often referred to as a credit-adjusted discount factor or CADF.



note that this assumes that only the counterparty is likely to default: I will not adjust my
prices to take into account the probability that I might default—is:

10,000 �
X

Ht � PFEt �DFt=
X

St � dt �DFt

This adjustment was calculated on the basis that the margin had to be sufficient to cover a
95% loss: the results are summarised in Worksheet 6.29. This is quite pessimistic; the first
Basel Accord operated on the basis of a 50% loss, i.e. the adjustment should cover the
average credit loss. This also ignores any possibility that the swap might have a current
mark-to-market loss, in which case the counterparty has a credit exposure on you. But this
follows the regulations, which state that the credit exposure has to be calculated as:

maxf0; current exposureg þ PFE

It would be straightforward to change the model for the adjustment to reflect
maxf0; current exposureþ PFEg.
The new Basel Accord permits this approach directly through the use of Expected

Positive Exposure (EPE) which is defined as the average of the PFE over the lifetime of
the swap. The EPE is then used to determine the regulatory capital charge for counterparty
credit risk.17

6.8 APPENDIX: AN OUTLINE OF THE CREDIT

MODELLING OF PORTFOLIOS

The objective is to provide a brief outline as to how credit-sensitive portfolios may be
modelled, and hence how a portfolio CDS might be priced. What makes this modelling
difficulty? As a portfolio is merely a collection of entities, and we know how to model
individual entities from Section 6.4, then can we simply just combine them together? The
simple answer is no; we know that the behaviour of entities is not independent of each
other, but is correlated. It is the existence of this correlation that makes the modelling
of portfolios considerably more difficult, and the performance of products written on
portfolios less predictable.
There are two main approaches used, full random simulation and semi-analytic (or

quasi-simulation). The second approach is widely used when the underlying portfolio is
sufficiently large (typically, at least 100 entities) and well diversified, so that appeals to the
central limit theorem and hence normality are justified. For example, the methodology is
usually used to model CDS written on iTraxx indices. Details of this class of approaches
really fall outside the scope of this book.18

We will approach full simulation in a number of stages. First, for a given time horizon T ,
we will assume that we know, for each entity k in the portfolio:

. The size of exposure Ek.

. The probability of the entity defaulting within the time horizon, Pk;T . This may, of
course, be implied from the single-name CDS market if available.
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17 See pp. 260–262 of International Convergence of Capital Measurement and Capital Standards and p. 14 of The Application of
Basel II to Trading Activities and the Treatment of Double Default Effects, published by Basel Committee of Banking Supervision in
June 2006 and April 2005, respectively.
18 See, for example, P. Schonbucher, Section 10.4 in Credit Derivatives Pricing Models, Wiley, 2003, for a detailed discussion.



. The scale of the loss if a default occurs, LGDk ¼ 1�Recovery ratek, expressed as a
percentage.

Hence, the Expected Loss over the time horizon, in monetary terms, is Ek � Pk;T � LGDk.
We also introduce the concept of asset growth over this time. If the entity has assets of

value Vk;0 at time T , and these assets have grown or shrunk to Vk;T , then the growth gk is
given by:

Vk;T ¼ Vk;0 � expfgk � Tg or gk ¼ ln½Vk;T=Vk;0�=T
The reason for using a continuously compounded definition for growth, rather than a
simple definition, is that Vk;T > 0 for all (positive or negative) values of gk.

We assume that a distribution for the growth rate over the period T can be estimated.
This would be based in part upon historical performance, and in part upon subjective views
about the future. An example of such a distribution is shown below (for this particular
entity, it is very dependent upon receiving a large contract; if it does, it will do well, and if
not, it will shrink):

Note that, obviously, there is no attempt to assume normality, or indeed any theoretical
distribution. Given we know Pk;T for this entity, we can locate a line on the distribution, so
that the area to the left is Pk;T .

Define the cumulative distribution function from this distribution as CkðXÞ ¼
Probfgk 	 Xg. Therefore, if we generate a uniformly distributed random variable Uk

between 0 and 1, then the implied growth rate is gk ¼ C�1
k ðUkÞ. Hence, the location of the
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line on the distribution is at ĝgk ¼ C�1
k ðPk;TÞ. The performance of this entity can now be

modelled:

1. Randomly generate Uk.
2. If gk 	 ĝgk (or, alternatively, if Uk 	 Pk;T ) then there is no default.
3. If gk < ĝgk, then the entity defaults with Lossk ¼ Ek � LGDk.

This basic idea could be easily extended to all entities in the portfolio. After repeating a
large number of times (S&P typically run 500,000 scenarios), a loss distribution may be
constructed.
But we still have not yet tackled the problem of correlation. Ideally, we want to use

default correlation; namely, if one entity defaulted, what is the likelihood of a second one
defaulting? But the historic data for such events is very limited, so we fall back on asset
growth correlation. Why does correlation arise? Assume that the fortunes of an entity are
driven by a number of underlying factors F1;F2; . . . For example, if the entity were a car
manufacturer, then some of the relevant factors are likely to be the broad state of the
economy, the price of fuel, disposable income, price of steel and so on. If another entity is,
say, an airline, then some of the same factors such as fuel price and disposable income
would be relevant, but it would then have other factors. The more factors in common, e.g.
two companies in the same industrial sector or same geographical region, the higher the
likely correlation. Using historic data (the last 60 monthly observations is common), it
might be possible to construct:

gk ¼ �k þ �F1
: gF1

þ �F2
: gF2

þ � � � þ "k

where "k is an independent idiosyncratic or entity-specific component. If we assume
knowledge of the standard deviations of the factor growth rates, and the correlations
between them, then it is straightforward to estimate the correlation19 between (say) gk
and gh. A factor approach is the most common and stable way of estimating correlations,
but it does need to be modified for the forecasted level of the business cycle.20

We now assume we have a full correlation matrix C between entity growth rates.
Decompose the matrix (see the discussion in Section 11.4 for details) into B :BTranspose.
The method proceeds as follows:

1. Generate a vector of uniformly distributed random variables, x.
2. Convert into pseudo-growth rates using (typically) a Normal distribution,21 y ¼ F�1ðxÞ

where FðyÞ is the unit cumulative Normal function.
3. Modify these growth rates, z ¼ B : y.
4. Convert back into uniform numbers, U ¼ FðzÞ.
5. Continue as above, gk ¼ C�1

k ðUkÞ for each entity.

The algorithm as described only models defaults. It can be easily extended into a full
migration algorithm by introducing a vector of probabilities. For example, define the
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19 If the relationships for two entities are summarised as gk ¼ �k þ
P

j �Fj
: gFj

and gh ¼ ah þ
P

i bFi
: gFi

, where the idiosyncratic
components are just treated as additional factors, then �k;h ¼

P
i; j bi : �j : covðFi ;FjÞ=SðgkÞ :SðghÞ where

S2ðgkÞ ¼ VðgkÞ ¼
P

i; j �i : �j : covðFi ;FjÞ and covðFi ;FjÞ ¼ SðFiÞ :SðFjÞ : �Fi ;Fj
.

20 Obviously, the higher the correlation, the less diversified the portfolio, and therefore the greater potential credit risk. Rating
agencies often use minimum base correlations, derived from periods of stress, in addition to factor-derived correlations—see p. 7
of Global Rating Criteria for Corporate CDOs published by Fitch, April 2008.
21 We are tacitly applying a Gaussian copula; it is perfectly feasible and often argued desirable to apply other distributions such as
a t-distribution. Probably the original reference is On Default Correlation: A Copula Function Approach by David Li, RiskMetrics
Group Working Paper 99-07, April 2000.



probability of the kth entity moving from its current credit state to state YY by the end of
the time horizon Pk;T ;YY where

P
YY Pk;T ;YY ¼ 1. The generated growth rate gk can then be

compared against the set of cut-off rates ĝgk and the implications recorded.22

The current algorithm does however have one serious practical deficiency. Defaults are
implicitly assumed to occur only at the end of the time horizon. If the time horizon is fairly
short, then the practical implication may be negligible. But for long time horizons, such as
5 years, defaulting near the beginning or near the end could have markedly different effects
on the timing of cashflows. To overcome this, we can use the following approach. Assume
that, for differing time horizons t1 � t2 � t3 � � � � � tn ¼ T , we know the accumulative
default probabilities Pk;t1 � Pk;t2 � Pk;t3 � � � � � Pk;tn ¼ Pk;T (again, potentially implied
from the CDS market, or from historic rating-agency data, or from internal sources.
We can then sample Uk as described above:

. if Uk 	 Pk;T , then there is no default.

. if Uk < Pk;T , then find the pair of probabilities such that Pk;tj�1
� Uk � Pk;tj .

. find the time of default by interpolating between tj�1 and tj.

The basic assumption is that the worse the growth rate, the earlier the default. The entity
may default later than time T , but that is irrelevant for this discussion.

There is a spreadsheet ‘‘Modelling a Portfolio CDS’’ that demonstrates much of this
discussion. The portfolio consists of 100 assets with credit ratings of A, BBB or BB; its total
size is $3.2bn. The time horizon is set to be 5 years. The PD, either to maturity or to 5 years
whichever is the shorter, and LGD for each asset are known, giving an Expected Loss of
1.83%. This suggests that the CDS premium should be approximately 1.83%/Q5 ¼ 40 bp
pa. The assets are spread across five industrial sectors, with known betas to the sectors, so a
full 100� 100 correlation matrix can be constructed. Accumulative default probabilities at
3-monthly intervals are known for each asset (from S&P).

The heart of the model is in Worksheet 6.35. This first generates a set of uniformly
distributed (0; 1) random variables, which are converted into growth rates using either a
Normal or a t-distribution (if the latter, then degrees of freedom also need to be set). These
growth rates are then modified by the decomposed correlation matrix, and then converted
back into uniform variables U; see columns [1]–[4] for details. If Uk < PDk, then the asset
will suffer a default; the accumulative probabilities can be used to determine when the
default will occur (the model assumes that defaults occur at the beginning of each period,
but it would be simple to modify it so that the default time would be interpolated across the
period). Finally, the size of each payment to be made under the CDS is determined, and
present-valued to give the total payments as a percentage of the size of the portfolio; see
columns [5]–[7]. There is also an antithetic worksheet, which uses (1�Random variable) as
the basic input (see Worksheet 6.36).

Finally, Worksheet 6.37 runs 500 scenarios, putting the PV of payments into a table. The
average PV is consistently close to 1.7% (
1.83% �DF212

), thus giving a more accurate
estimate for the premium of 37 bp pa. A full loss distribution is also constructed, and a
Weibull distribution fitted to it, as shown below. The theoretical distribution may be used
to calculate tail properties; for example, there is a 20% chance that the total payments will
exceed 3% of the size of the portfolio.
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his worksheet also contains a correlation parameter. If ξ0 is the base correlation between 

o industrial sectors, or alternatively is the beta coefficient between an asset and its sector, 

en define: 

 ξλ = ξ0 + (1 – ξ0) * (1 – exp{ –  λ}) 

a shifted value dependent upon a value of λ > 0. This enables the reader to experiment 

th changing values of correlations and betas, and to see the impact on the loss distribution 

d most importantly on the tail properties. 
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Worksheet 6.37 also contains a correlation parameter. If �0 is the base correlation
between two industrial sectors, or alternatively is the beta coefficient between an asset
and its sector, then define:

�	 ¼ �0 þ ð1� �0Þ � ð1� expf�	gÞ
as a shifted value dependent upon a value of 	 > 0. This enables the reader to experiment
with changing values of correlations and betas, and to see the impact on the loss
distribution and most importantly on the tail properties.
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OBJECTIVE

The swaps discussed in the book so far have been fairly basic. This chapter introduces a
range of more complex swaps called mismatch swaps. These are swaps where the usual
conventions on the floating side are violated. A range of examples are presented in some
detail: in-arrears, average rate, compound and finally yield curve swaps. The concept of
convexity is re-introduced (see Chapter 2), and various approaches are described in Section
7.6 (Appendix).

7.1 SIMPLE MISMATCH SWAPS

Consider the process of determining the cashflow corresponding to a generic floating rate
fixing:

1. The rate L has a tenor 
 .
2. It is fixed at the start of a period, at time t.
3. The cashflow is paid at the end of the period T , where T ¼ tþ 
 .
4. The cashflow is calculated by P � L � 
 .

We could write a more general statement:

1. The rate L fixes at time t.
2. The cashflow is calculated by P � L � q where q is some length of time in years.
3. The cashflow is paid at time T 	 t.

In the generic case, q ¼ 
 ¼ T � t.
But there is no necessity for this relationship to be true. A mismatch swap is defined as

one where the relationship does not hold. A simple example is an ‘‘in-arrears’’ swap, where
the floating rate is both fixed and paid effectively at the end of the period, hence T ¼ t.
These swaps arise when a user wishes to take a view on the movement of interest rates.
Receiving conventional floating rates means that the first cashflow is fixed from the outset;
hardly desirable if you wish to take an open position on the rates moving. Receiving in-
arrears means that the first fixing is not until the end of the first period, therefore giving
some opportunity for the rate to move.

Pricing such a swap is straightforward using implied forwards. For example, consider the
following swap:

7
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Maturity: 5 years
Principal: 100 million USD
To receive: 3mo. Libor in arrears
To pay: 3mo. Liborþ 7.52 bp in advance

First the implied forward rates are estimated; see column [1] of Worksheet 7.2. For a single
period, say from t1 to t2, the in-arrears cashflow is constructed by:

P � F23 � ðt2 � t1Þ
i.e. the forward rate for the next period applied backwards as shown in column [2]. Finally
the conventional cashflow, including the margin, is calculated; see [3]. The swap is shown to
have a zero fair value; see [4].
The margin can be roughly anticipated. The spot 3mo. rate is 3.145%, and the final rate

out of 6 February 2013 is 4.711%, giving a spread of 165 bp. All the other rates effectively
cancel. As we are receiving the high rate, and paying the low rate, the swap counterparty
needs to receive some compensation. This is crudely approximated by 165 bp divided by 20
periods, giving 7.83 bp; obviously this ignores the timing of the cashflows.

7.2 AVERAGE RATE SWAPS

In-arrears swaps are a very simple, but seldom used, example of mismatch swaps. A more
common application, because it has a firmer practical foundation, is the class of average
rate swaps. We will consider two different types, arithmetic average rate used by end-users,
and overnight average rates used mainly by banks (see Section 8.1 for details).
Consider a company that has the following debt structure:

1. 3mo. Liborþ 25 bp on $100m, out of 20 February.
2. 3mo. Liborþ 35 bp on $50m, out of 7 March.
3. 3mo. Liborþ 30 bp on $75m, out of 21 March.
4. 3mo. Liborþ 25 bp on $100m, out of 3 April.
5. 3mo. Liborþ 50 bp on $25m, out of 15 April.

All the debt has a long time to maturity. The company would like to swap the debt from
floating to annual fixed for the next 3 years.
Obviously one way to do this is to enter into a series of five individual swaps. However, it

had recently constructed a 3-year budget with funding assumptions based upon an average
value of 3mo. Libor. Therefore an alternative structure would be:

. to pay an annual fixed rate;

. to receive Libor, based upon a weighted average, for 3 years

on a principal of $350m. This is constructed in Worksheet 7.3. First the appropriate
dates for each of the debt is constructed; see columns [1], [4], [7], [10] and [13]. This includes
the date of the last fixing as shown. From the discount curve, the last fixing plus the
implied forward rates have been constructed in columns [3], [6], [9], [12] and [15]. The
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weights to be applied to each debt are calculated, i.e. for debt 1, we get
100=ð100þ 50þ 75þ 100þ 25Þ ¼ 28.57%, etc.

The 3-year swap is priced out of 4 January 2000 from a bank’s point of view.
The cashflows at the end of each quarter are:

. to receive
P

wi � Li based upon the implied Libor fixings: columns [18] and [19];
. to pay Fixed rate¼ 3.0185% ANN Act/360: column [20].

7.3 COMPOUND SWAPS

Compound swaps are another family of swaps related to average rate swaps. Consider the
following swap:

. to receive F annually;

. to pay Libor quarterly.

Even if we assume rates do not change from those implied at the beginning, obviously the
fixed rate receiver has an accumulating credit exposure which is effectively reset annually.
Compound swaps were developed to reduce this exposure, and have proven to be
remarkably popular in some countries such as Canada. The simplest form is as follows:

Time Fixing Implied cashflow Compounded cashflow

(months)

0 L0=3

3 L3=6 CF3 ¼ P � ð1þ d1 � L0=3Þ CF3�acc ¼ CF3

6 L6=9 CF6 ¼ P � ð1þ d2 � L3=6Þ CF6�acc ¼ CF6 þ CF3�acc � ð1þ d2 � L3=6Þ
9 L9=12 CF9 ¼ P � ð1þ d3 � L6=9Þ CF9�acc ¼ CF9 þ CF6�acc � ð1þ d3 � L6=9

12 CF12 ¼ P � ð1þ d4 � L9=12Þ CF12�acc ¼ CF12 þ CF9�acc � ð1þ d4 � L9=12Þ

Each floating cashflow is re-invested at the new Libor rate flat for the next period.
Eventually a single cash payment is made at the end of the year, matching the frequency
of the fixed side, and thereby reducing the credit exposure substantially. The main com-
plication with compound swaps is the existence of spreads. For example, there may be a
spread on:

. the original Libor fixing that determines the implied cashflows;

. the Libor rates used for reinvestment;

. the final (overall) implied compounded Libor rate;

or any combination thereof. The specification of the contract needs to be carefully defined
to avoid confusion and error.

Worksheet 7.4 shows a swap paying 3mo. Liborþ 25 bp against a fair annual fixed rate
of 3.741%. If the floating side is compounded up at Libor� 25 bp, the fixed rate reduces to
3.737%.
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7.4 YIELD CURVE SWAPS

At the beginning of 1994, short-term USD interest rates were at a historic low, had been for
most of 1993 and, despite the steep positive implied forward rate curve, nobody was
forecasting any increase. Money market investors were therefore actively searching for
ways to enhance their returns. Three strategies were popular:

1. Liquidation and re-investment in foreign assets: DEM were extremely popular as their
curve was inverted at the time due to the substantial borrowing to fund re-unification.

2. Liquidation and re-investment further up the USD curve.
3. Structured speculation based upon interest rate expectations.

Strategies 1 and 3 will be discussed under cross-currency and embedded option structures,
respectively. Implementing strategy 2 would require a full liquidation of the short-term
assets followed by the purchase of long-term assets such as bonds, obviously involving
substantial cashflows plus fairly wide dealing spreads.
Alternatively investors could enter into a yield curve swap such as shown below:

 

Investor 

Libor 

Libor

20 year bond yield margin

where the long-term rate merely acts as a floating reference rate, traditionally re-fixed in
advance at regular intervals and the cashflow paid at the end of each period. The margin is
determined so that the initial value of the swap is set to zero. This is of course simply
another form of basis swap.
In theory any reference rate could be used, but in practice yield curve swaps typically use

either the Treasury or the Swap curve. The former are probably more common in the US,
whereas the latter are common across Europe (probably reflecting the relative liquidities of
the bond and swap markets). Government organisations such as the US Treasury provide
daily standardised bond reference rates. Averaged fixings of standardised swap reference
rates (e.g.: 1 to 10, 12, 15, 20, 25, 30 years in both euros and USD) are provided daily by
ISDA across six major currencies (see their webpage ISDAFIX for further details).
These swaps allow fund managers and other investors to change the duration of their

investments efficiently, as the dealing costs are much lower than through the cash markets.
Typically the bid–offer spreads for standard reference rates are about double those for
generic IRSs. Combined swaps such as:

. to pay 2 yr swap rate;

. to receive 10 yr swap rate�margin;
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where both reference rates are re-fixed regularly, are popular and allow investors to take a
position on the relative steepness of the curve.

One other advantage is that, unlike a physical instrument which will shorten with the
passage of time, these reference rates do not shorten (this is often described as ‘‘not rolling
down the curve’’).

As an example, we will price, i.e. find the breakeven margin, for the following:

Trade date: 4 February 2008
Maturity: 4-year USD swap
Principal: $100 million
To pay: 6mo. Libor sa
To receive: {5 year sa Act/360 swap rate�margin} sa

This means that the long-term reference rate is the 5-year semi-annual Act/360 swap rate,
and that the cashflows for the actual swap are themselves semi-annual on both sides.
Obviously there is no relationship between the frequency of the cashflows on the fixed
side of the underlying reference swap and the frequency of the actual cashflows.

This is an example of a C(onstant) M(aturity) swap, where the structure of the under-
lying swap reference rate does not change over the lifetime of the swap. These are the most
common type, and would normally be abbreviated to CMS, indicating the CM nature and
the use of the Swap curve as a reference. CMTs would use the Treasury curve. VM
(variable maturity) structures, where the length of the reference rate changes, do exist;
for example, consider an investor who already possesses a portfolio with an average
maturity of, say, 10 years, and wishes to swap it into a constant 5-year yield. As time
passes, the reduction in the maturity of the physical portfolio needs to be reflected on the
pay side of the swap.

The actual sequence of events on the two sides of the example swap are:

. at the beginning of each 6-month period, there are fixings of the two rates;

. at the end of each period, there is a net cash payment.

Using FRA notation, we can represent the first yield curve fixing as FS(0; 5), the second as
FS(1

2
; 5 1

2
), the third as FS(1; 6) and so on. We know from Chapter 4 that forward swap

rates can be estimated by:

FSðt;TÞ ¼ ðDFt �DFTÞ=ðQT �QtÞ
where it is important that theQ represents the correct frequency of the underlying reference
swap rate. In Worksheet 7.5, the Q column [2] is calculated on a semi-annual basis,
reflecting the frequency. Applying the formula, for example, to the fixing on 6 August
2009, resulting in a cashflow on 8 February 2010:

DF Q

6 August 2009 0.959112 1.476473
6 August 2014 0.778986 5.865882
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gives FS(start; end)¼ (0.959112� 0.778986)/(5.865882� 1.476473)¼ 4.1037%. It is con-
ventional that all the swap cashflows are then discounted using the usual Libor DFs.
The margin in column [7] could be estimated in the usual fashion, namely what margin
would set the net present value of the swap to zero? However, in a simple case like this,
pricing can be done dynamically by using the following equation:

Net PV ¼ PV(Libor)þ PV(CMS) þ PVðmÞ ¼ 0

PVðmÞ ¼ P �m �Qend ¼ �½PV(Libor)þ PV(CMS)�

which enables the margin m to be estimated directly. The breakeven margin is 91.8 bp,
which is of course very close to the difference between the average of the CMS fixings
(4.245%) and the average of the Libor fixings (3.309%). This highlights the fact that these
swaps are not providing a ‘‘free’’ pick-up, but really represent an open position on the
steepness of the curve.
If the underlying reference frequency switches to quarterly, then the compounding of Q

must also switch to quarterly, as shown in column [2] of Worksheet 7.6. The CMS rates are
estimated semi-annually based upon the quarterly Qs, and then the rest of the worksheet is
as before. Because quarterly rates are lower than semi-annual rates, hence the spread of the
CMS curve is tighter to the Libor curve, the CMS margin has reduced from 91.8 bp to
88.9 bp.
If the underlying reference frequency is retained as semi-annual, but the payment

frequency on the swap itself is quarterly, then Q has to be calculated more carefully.
The first CMS estimate is calculated from a semi-annual Q starting on 6 February
2008. The second CMS estimate uses semi-annual Q starting on 6 May 2008. Effectively,
therefore, there are two series of semi-annual Qs which do not overlap but are a quarter
apart, as shown in column [2] of Worksheet 7.7. The remainder of the worksheet is similar
to before, but obviously with quarterly cashflows. The spread of quarterly CMSs over
3mo. Libor has widened slightly, giving a higher breakeven margin of 97.1 bp.
An alternative to the normal form of CMS is termed a ‘‘participation CMS’’. In this

case, a breakeven multiplier on the CMS rates is calculated, instead of a margin. For
the original CMS discussed, the multiplier is 78.1% (see Worksheet 7.8 for more
details).
The risk management characteristics of CMS swaps are interesting. We have been

discussing a 4-year swap, but it obviously has exposure out to 8.5 years on the curve. If
the underlying swap curve follows a parallel shift, then, like all basis swaps, both sides
move and the change in the net value is likely to be very small. On the other hand, if the
curve rotates around, say, the 4-year point, then the two sides change value in the same
direction resulting in a large net change. These effects are in direct contrast to a generic
fixed–floating IRS, which has high sensitivity to parallel shifts but low to rotations. This
will be discussed in more detail in Chapter 12.

7.5 CONVEXITY EFFECTS OF SWAPS

Consider the generic 30-year USD swap out of 6 February 2008; the current rate is 4.815%
ANN. Assume we are receiving fixed on a notional of USD1m. If this swap is valued off the
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current forward curve, its value is (of course) zero. If the forward curve is subject to a
parallel shift of þ100 bp, then its value drops to �$142,345. Conversely, if the curve has a
�100 bp shift, the value rises to þ$179,299 (see Worksheet 7.9 for details). The fixed rate
receiver is said to be benefitting from a convexity effect of $370 per bp shift. A similar effect
may be seen in the CMS, where equal shifts in the forward curve result in unequal changes
in value (see Worksheet 7.10 for details).

More formally, consider the implied forward method for pricing some new swap. We can
write the discount factors as functions of forward rates Fw. Therefore our pricing approach
has been to determine (say) the fixed rate F such that:

PVfix½F ;Fw� � PVfloating½Fw� ¼ 0 ð7:1Þ

Obviously in reality the forward rates are unknown (except for the initial fixing), and
therefore could be regarded as random variables subject to some generating process. Hence
the PVs are themselves random variables, and of course the above expression, equating a
random variable on the left-hand-side to a constant on the right-hand-side, is not appro-
priate. A more correct expression would be to take expectations with respect to some
distribution; that is:

EfPVfix½F ;Fw�g � EfPVfloating½Fw�g ¼ 0 ð7:2Þ

What is this expression saying? We don’t know how the forward rates will behave in the
future, but on average the swap should be fair (i.e. have a zero value) to both counter-
parties. The implied forward method effectively estimates the expected forward rates, and
then calculates FIF from:

PVfix½FIF;EfFwg� � PVfloating½EfFwg� ¼ 0 ð7:3Þ

If FIF is substituted into eq. (7.2), would we get zero? No: if we consider a function f ðxÞ,
where x is a random variable under some distribution, then Ef f ðxÞg ¼ f ðEfxgÞ only if the
function is linear. As we know that discount factors are non-linear functions of forward
rates, then eq. (7.2) cannot be expressed as a linear function, and therefore the expected
value of eq. (7.2) is non-zero. This implies, of course, that using FIF will therefore, on
average, benefit one of the two counterparties and penalise the other. This benefit is
broadly called the ‘‘convexity (or curvature)’’ effect as we need to consider higher order
terms when trying to quantify it.

Convexity effects arise from a variety of sources. Non-linearity between value and the
market factors is one, as above. Another was described in Section 2.4, resulting from the
failure to discount the variation margin of futures. It can also arise through timing
mismatches, where the normal floating convention of fixing a rate at the beginning of a
period, and paying the cashflow at the end is violated, as in in-arrears and average rate
swaps. Section 9.11 (Appendix) describes the ‘‘quanto adjustment’’, which is another
convexity effect.

Are convexity effects important? In theory, yes, because a swap is supposed to be a fair
transaction between two counterparties, and convexity biases the outcome in favour of one
of them. In practice, less so; the convexity effect for short-dated swaps is fairly negligible.
The table below measures the convexity effect for $1m notional of generic swaps for a
100 bp parallel shift in the forwards.
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Convexity effect for different maturities

Maturity USD USD per yr

2 451 225
5 2,413 483

10 7,959 796
15 14,874 992
20 22,262 1,113
25 29,691 1,188
30 36,954 1,232

For the 30-year swap, this implies a bias of roughly 0.12 bp per basis point shift per annum.
But in some currencies such as euros, GBP and to a lesser extent USD, 50-year swaps are
becoming more common. The table below shows an extract from the USD curve in
February 2008:

Extract from USD curve: 15 February 2008

Maturity Midpoints

20 5.073%
25 5.128%
30 5.148%
40 5.153%
50 5.143%

Notice how the long end of the curve turns down; this is almost certainly a convexity
adjustment reducing the benefit to the fixed rate receiver.
How can the convexity effect be modelled? There are a number of different approaches.

Probably the most appropriate would be to use the Libor-based model, described in detail
in Chapter 11. This permits the forward curve to be randomly simulated, so the scale of the
effect could be assessed.1 But the general form of the model does not give rise to closed-
form equations. It would be feasible to restrict the changes in the forward curve to parallel
shifts, and then derive some approximate formulae.2 There is a separate spreadsheet,
Ch 7 Measuring the convexity effect in an IRS using BGM, which demonstrates this
approach.
A widely used approach is to adopt a different set of market factors. A discount bond is a

zero-coupon bond that pays 1 at maturity T . Its price today is given by the discounted
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receiver. It all depends what is meant by the phrase ‘‘rates move up and down’’!!
2 See, for example, Model 3 in P. Hagan ‘‘Convexity conundrums: Pricing CMS swaps, caps and floors’’, Issue 3 of Wilmott
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value of the cashflow, i.e. pT ¼ 1 :DFT ¼ DFT . We can therefore think of DFs as being
themselves tradeable discount bond prices, with their own market behaviours, volatilities,
correlations, etc.

Consider the generic swap: its net value can be expressed as:

PVfix � PVfloating ¼ P � F �Q� f1�DFendg
i.e. the net value is a linear function of DFs. In words, if we work in a world of discount
bond prices, then generic swaps (i.e. all those described in earlier chapters) do not possess
convexity effects, and hence eqs. (7.2) and (7.3) are equivalent.3 However, for more
complex swaps such as all those described in this chapter, their net values cannot be
described in linear terms of the DFs. Section 7.6 (Appendix) contains the derivation
and details of models that permit the calculation of the convexity adjustment for these
more complex swaps.

Another approach is to view the fixed side of the swap as a bond, and resort to bond
mathematics. This is commonly used to assess the convexity effect in CMSs. These
formulae are derived in Section 7.6.3 (Appendix).

7.6 APPENDIX: MEASURING THE CONVEXITY EFFECT

This Appendix describes a range of different approaches that have been used in practice to
estimate the theoretical size of the adjustment, depending upon the specific type of swap.
The Appendix first describes two approaches applicable to a range of swaps, and shows
some results for a range of swaps. The convexity effect in yield curve swaps is then
considered separately, as this produces some particular problems. The analytic results will
then be compared with simulated values.

7.6.1 Two approaches to measuring the convexity effect

The first approach is simple and crude, but effective in many circumstances and makes few
underlying assumptions. The second approach is more generally applicable, but is based
upon a specific stochastic generating process. However, it is demonstrated that the two
approaches are in fact consistent with each other, and produce the same results for a range
of swaps.

Approach 1

Consider a normal floating swap payment on nominal principal of $1:

- - - - -þ - - - - - - - - - - - - - - - - - - - - - - - - - - - -þ - - - - - - - - - - - - - - - - -

tj�1 tj
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T CFT �DFT . If any one of the DFs moves up or down, the price shifts by the same
amount—what’s happened to the convexity?



The fixing of the floating rate rðtj�1; tjÞ takes place at tj�1, and the payment at tj . The value
of the cashflow at time tj is:

Vðtj; tjÞ ¼ rðtjÞ � dj where dj ¼ tj � tj�1

Define pðtj�1; tjÞ to be the price of a discount bond at time tj�1 matures to 1 at tj. We can
write:

pðtj�1; tjÞ ¼ 1=½1þ rðtjÞ � dj�
that is:

Vðtj ; tjÞ ¼ ½ pðtj�1; tjÞ�1 � 1� ð7:4Þ
The value of the cashflow at time 0 is given by:

Vð0; tjÞ ¼ Vðtj; tjÞ �DFðtjÞ ð7:5Þ
We can express DFðtjÞ as a sequence of compounded discount bond prices; that is:

DFðtjÞ ¼
Y

pðti; tiþ1Þ where i ¼ 0 to j � 1 ð7:6Þ
Combining (7.4), (7.5) and (7.6) together, we get:

Vð0; tjÞ ¼ DFðtj�1Þ �DFðtjÞ ð7:7Þ
which is of course a well-known result.
If we repeat the same analysis for an in-arrears fixing, using the same notation, we get:

. the fixing takes place at tj, and is given by rðtjþ1Þ;

. the payment is also at tj;

. i.e. Vðtj; tjÞ ¼ rðtjþ1Þ � dj where dj ¼ tj � tj�1;

. or Vðtj ; tjÞ ¼ ½pðtj; tjþ1Þ�1 � 1� : ðdj=djþ1Þ;

. and

Vð0; tjÞ ¼ ½ pðtj; tjþ1Þ�1 � 1� : ðdj=djþ1Þ �DFðtjÞ ð7:8Þ
which does not simplify as before.
Consider a function y ¼ f ðx1; . . . ; xnÞ where the xs are random variables. We can use the

following approximation:

Efyg ¼ f ðEfx1g; . . . ;EfxngÞ þ
1

2

X

i

X

j

ð@ 2f =@xi @xjÞ : si : sj : �i j

where si is the standard deviation of xi, and �i j the correlation between xi and xj.
If we assume all the xs are independent, then this reduces to:

Efyg ¼ f ðEfx1g; . . . ;EfxngÞ þ
1

2

X

i

ð@ 2f =@x2
i Þ : vi ð7:9Þ

where vi is the variance of xi.
If we apply eq. (7.9) to eq. (7.7) above, treating the discount bond prices as the random

variables, we get:

@DFðtjÞ=@pðti�1; tiÞ ¼ DFðtjÞ=pðti�1; tiÞ and @ 2DFðtjÞ=@pðti�1; tiÞ2 ¼ 0

i.e. no convexity effect.
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Applying (7.9) to the in-arrears expression (7.8), we get:

@Vð0; tjÞ=@pðtj ; tjþ1Þ ¼ �DFðtjÞ : pðtj; tjþ1Þ�2 : ðdj=djþ1Þ
and

@ 2Vð0; tjÞ=@pðtj; tjþ1Þ2 ¼ 2 :DFðtjÞ : pðtj; tjþ1Þ�3 : ðdj=djþ1Þ
Thus:

EfVð0; tjÞg¼ ½ pðtj ; tjþ1Þ�1�1� : ðdj=djþ1Þ �DFðtjÞ þ 1
2
: 2 :DFðtjÞ : pðtj; tjþ1Þ�3 : ðdj=djþ1Þ : vj

If we assume that each p is distributed log-normally, the relationship between variance and
volatility is given by (where it is assumed also that the expected discount bond price is given
by the implied price):

vj ¼ pðtj; tjþ1Þ2 : fexp½ð�jÞ2 : tj� � 1g
Substituting and re-arranging:

EfVð0; tjÞg ¼ ½ pðtj; tjþ1Þ�1 : exp½ð�jÞ2 : tj � � 1� : ðdj=djþ1Þ �DFðtjÞ ð7:10Þ
where the volatility �j is on the forward bond price. This of course is very similar to eq. (7.8)
but with the convexity factor exp½ð�jÞ2 : tj �. If the volatility is set to zero, then this factor is
equal to 1, and the convexity adjustment disappears.

Approach 2

This approach is based upon Heath–Jarrow–Morton (HJM) modelling, and can produce
more general results.4

As before let pðt;TÞ be the price of a discount bond at time twhich matures at time T to a
par value of 1. We assume that the price follows the process:

dpðt;TÞ=pðt;TÞ ¼ rðtÞ : dtþ �pðt;TÞ : dW
For convenience, only one stochastic Wiener source has been assumed, although the results
may be easily extended. Because the bond is a traded security in a risk-neutral world, its
expected return is given by rðtÞ. The bond price volatility is �pðt;TÞ, with of course
�pðt; tÞ ¼ 0. Using Ito’s lemma, we get:

d½ln pðt;TÞ� ¼ ½rðtÞ � 1
2
: �pðt;TÞ2� : dtþ �pðt;TÞ : dW

Define the continously compounded forward rate from t to T observed at time t0 as
f ðt0; t;TÞ. This will satisfy the relationship:

pðt0;TÞ ¼ pðt0; tÞ � expf�f ðt0; t;TÞ � ðT � tÞg
that is:

f ðt0; t;TÞ ¼ ½ln pðt0; tÞ � ln pðt0;TÞ�=ðT � tÞ
that is:

d½ f ðt0; t;TÞ� ¼ ½�pðt0;TÞ2 � �pðt0; tÞ2�
2 : ðT � tÞ dtþ f�pðt0; tÞ � �pðt0;TÞ�

ðT � tÞ dW
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As t ! T , then f ðt0; t;TÞ ! f ðt0;TÞ, i.e. a forward rate of infinitesimal tenor at time T .
This is given by:

d½ f ðt0;TÞ� ¼ �pðt0;TÞ : �ðt0;TÞ : dtþ �ðt0;TÞ : dW ð7:11Þ

where �ðt0;TÞ � @�pðt0;TÞ=@T . Integrating this last expression, we get

�pðt0;TÞ ¼
ðT

t0

�ðt0; 
Þ : d


An obvious interpretation of �ðt0;TÞ is an instantaneous volatility. There are two common
assumptions:

a. Constant instantaneous volatility � which gives �p ¼ � :T . In practice, we might
observe the volatility of a 3-month bond price to be 0.25–0.5% pa which would imply
� to be within the range 1–2%.

b. Reverting instantaneous volatility � : e�	
 which gives �p ¼ ð�=	Þ : ½1� e�	T � where 	
is some reversion factor.

Note that this definition of an instantaneous forward rate clearly shows a link between the
drift and the variance of the instantaneous rate, as given in eq. (7.11).
We can now go back and price a forward discount bond in terms of the instantaneous

forward rate:

pðt;TÞ ¼ exp �
ðT

t

f ðt0; uÞ : du
� �

and also a money account:

BðtÞ ¼ exp

ðt

t0

rðuÞ : du
� �

where rðtÞ ¼ f ðt; tÞ, the riskless rate of return.
HJM show that Zðt;TÞ ¼ pðt;TÞ=BðtÞ is a unique martingale under conditions of no

arbitrage, which implies Zð0;TÞ ¼ EQfZðt;TÞg where the Q indicates expectation with
respect to risk-neutral probabilities. This leads to:

BðtÞ ¼ 1

pð0; tÞ : exp � 1

2

ðt

0

bðv; tÞ2 : dv�
ðt

0

bðv; tÞ : dWQðvÞ
� �

where bðv; tÞ ¼ �
ðt

v
�ðv; uÞ : du

and WQ is a Wiener process, and to

pðt;TÞ ¼ pð0;TÞ
pð0; tÞ : exp �

ðT

t

ðt

0

�ðv; sÞ
ðs

v
�ðv; uÞ du : dv : ds�

ðT

t

ðt

0

�ðv; sÞ dWQðvÞ : ds
� �

Now let’s consider an in-arrears swap: as before the fixing takes place at tj , i.e. rðtjþ1Þ, and
the payment at tj, that is:

Vðtj; tjÞ ¼ rðtjþ1Þ � dj ¼ ½pðtj; tjþ1Þ�1 � 1� : ðdj=djþ1Þ where dj ¼ tj � tj�1
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Discounting back using the money account, and also the fact that this is a martingale, we
can write:

Vð0; tjÞ
Bð0Þ ¼ Vð0; tjÞ ¼ EQfVðtj; tjÞ=BðtjÞg ¼ EQ 1

pðtj; tjþ1Þ :BðtjÞ
� 1

BðtjÞ
� �

: ðdj=djþ1Þ
� �

If we make some assumption about the shape of �ðv; uÞ as discussed above, then we can
take expectations by:

1. Substituting for pðtj ; tjþ1Þ and BðtjÞ.
2. Evaluating the integrals.
3. Taking expectations over the Wiener process dWQ using the result that:

EfexpðxÞg ¼ expf�x þ 1
2
ð�xÞ2g

Efexpð�xÞg ¼ expf��x þ 1
2
ð�xÞ2g

to get:

Vð0; tjÞ ¼ pð0; tjÞ :
pð0; tjÞ
pð0; tjþ1Þ

e’ � 1

� �
: ðdj=djþ1Þ

This is the standard result but with an adjustment factor e’. If we assume �ðv; uÞ ¼ �,
i.e. constant with no reversion, then ’ ¼ �2 : tj : ðdjþ1Þ2 ¼ �pðt;TÞ2 : tj, i.e. the same result
as under the first approach. See Section 7.6.2 for a fuller statement of ’.

In the main text, we priced a 5-year swap to receive 3mo. Libor in arrears, and to
pay 3mo. Liborþ 7.52 bp in advance. The margin was positive because of the
rising forward curve. Applying the above formula, if � ¼ 1% and 	 ¼ 2%, then the
margin is increased to just over 8 bp. Worksheet 7.12 has been slightly re-arranged from
the earlier one, and uses the relationship PVin-arrears þ PVin-advance þm �Q ¼ 0 to estimate
m dynamically.

The graph below shows how the margin increases with volatility:
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Is the adjustment appropriate? Worksheet 7.13 is built as follows:
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[1]: contains the usual IBOR DFs
[2]: quarterly discount bond prices
[3]: simulated bond prices using the formula

pt ¼ p0 � expf� 1
2
: ð�pÞ2 : tþ �p :

ffiffi
t

p
: "g where " is Nð0; 1Þ and �p ¼ 1%

[4]: re-calculated DFs
[5]: implied forward rates from the new DFs
[6]: in-arrears cashflows
[7]: in-advance cashflows including 7.52 bp margin

The adjustment in the fair margin, away from 7.52 bp, is calculated by present valuing
columns [6] and [7] and then using the formula 10,000 �Net PV/100 �Q. The example
shows that the in-arrears side is still valued above the in-advance side, with an average
convexity adjustment of 0.54 bp compared with a theoretical one of 0.66 bp using a bond
price volatility of 1% and no reversion. The chart below shows the results of the simula-
tion:

7.6.2 A general mismatch swap

The two approaches above are in fact very similar; the first one uses a discrete framework
whilst the latter uses a continuous one. This means that the latter may be used to model
more general situations. For example, consider a floating interest payment5:
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Let rj be an interest rate fixed on time tj
rj has a tenor of Gj

interest is payable calculated over a period qj
interest is paid at time Tj 	 tj

This is a very general statement as to how the value of a cashflow resulting from a floating
reference rate may be estimated.

The value of the cashflow at Tj is given by, as before:

VðTj; tj;TjÞ ¼ rj : qj ¼
1

pðtj; tj þ GjÞ
� 1

� �
: ðqj=GjÞ

Thus, we can write the present value of this as:

Vð0; tj;TjÞ ¼ EQ 1

pðtj; tj þ GjÞ
� 1

� �
:

1

BðTjÞ
� �

: ðqj=GjÞ

Using the same approach as before, we find:

Vð0; tj;TjÞ ¼ pð0;TjÞ :
pð0; tjÞ

pð0; tj þ GjÞ
: e’ � 1

� �
: ðqj=GjÞ

where:

’ ¼ 1
2
: ð�2=	3Þ : ð1� exp½�	Gj�Þ : ð1� exp½�2	tj�Þ : fexp½�	ðTj � tjÞ� � exp½�	Gj �g

If 	 ¼ 0, then ’ reduces to �2 :Gj : tj : ðtj þ Gj � TjÞ.
Some special cases follow:

a. If � ¼ 0, then there is no volatility and hence no convexity.
b. For a conventional fixing and payment, Tj ¼ tj þ Gj , i.e. ’ reduces to zero as expected.
c. For an in-arrears payment, tj ¼ Tj, i.e. ’ simplifies to

1
2
: ð�2=	3Þ : ð1� exp½�2	tj �Þ : ð1� exp½�	Gj�Þ2

and for 	 ¼ 0, ’ reduces to �2 :G2
j : tj as shown in Section 7.6.1.

Consider an average rate swap, which may be described in the following terms:

. partition a period of the time ½t; 
 � into k slices t ¼ t1 < � � � < tk ¼ 
 ;

. define an average payment that has to be paid at time Tj, not necessarily the same as 
 ,
by:

AVð0;TjÞ ¼
Xk

i¼1

wi :Vð0; ti;TjÞ

where the vector w contains the known averaging weights that sum to 1.

An average rate swap was priced in the main text. Its convexity adjustment is shown in the
box in Worksheet 7.14. The adjustment is extremely small, only a fraction of a basis point;
this is hardly surprising as the timing difference ðtj þ Gj � TjÞ is relatively small for each
fixing. If we wish to value the average part-way through a period, then we could partition
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the time slices into f1; . . . ; jg and f j þ 1; . . . ; kg where the fixings on the first partition have
already been observed. Obviously the convexity effect will then disappear for 1; . . . ; j.
The convexity effects for in-arrears and average rate swaps is relatively small. Turbo or

power swaps—e.g. swaps that pay fixed rate and receive (Libor)n where n is usually set to
1.5 or 2—have a much greater effect. The same analysis as above produces the following
result:

’ ¼ 1
2
: ð�2=	3Þ : ð1� exp½�2	tj �Þ : ð1� exp½�	djÞ�Þ2

or for 	 ¼ 0;

’ ¼ ð� : djÞ2 : tj
Notice that this expression is exactly the same as for the in-arrears, but the jth cashflow is
given by:

VðTj ;TjÞ ¼ ½1þ 1
2
: fn : ðn� 1Þ=ð1� pÞ2gðe’ � 1Þ� � Ln=100 � dj where p ¼ pðtj ;TjÞ

Turning to Worksheet 7.15:

[1]: calculate the Q of the fixed side of the swap
[2]: calculates the turbo Libor rate; notice that this is calculated by raising the rate

expressed as a whole number, e.g. 3.145, to the power and then converting to a
percentage

[3]: the cashflows are calculated in the usual way, and the fixed rate is then estimated using
PVfloating þ F �Q ¼ 0

[4]: calculates ’ with reversion
[5]: calculates the convexity adjustment as given above
[6]: hence the PV of the adjusted floating side, and the fair fixed margin

This is repeated in columns [7] to [9] for zero reversion; the impact is relatively small. The
following table shows the theoretical size of the fair fixed rate for a 4-year qu/qu swap:

No convexity Convexity adjustment

adjustment Volatility !
Power 1.0% 1.2% 1.4% 1.6% 1.8% 2.0%

1.0 3.235 3.235 3.235 3.235 3.235 3.235 3.235
1.2 4.105 4.189 4.226 4.270 4.321 4.378 4.442
1.4 5.215 5.467 5.578 5.709 5.860 6.031 6.222
1.6 6.633 7.185 7.429 7.716 8.048 8.423 8.844
1.8 8.446 9.508 9.975 10.528 11.165 11.887 12.695
2.0 10.766 12.659 13.491 14.475 15.611 16.897 18.335

As we can see, the adjustments are large and highly sensitive to the volatility. Turbo
swaps have a convexity comparable with interest rate options such as caps, and may be
risk-managed together.
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Why would anybody enter into these swaps, other than for speculation? Consider a
typical company paying floating debt; as rates rise, obviously there is an adverse impact.
But also, as rates rise, this has a dampening effect on the economy and therefore is likely to
reduce demand. The likely impact on the company’s bottom line (P&L or cashflow) is not
linear with rate movement but greater, roughly L1:2.

7.6.3 Yield curve swaps

As one may expect from the above discussion, yield curve swaps also require convexity
adjustments. We could apply the same formula as above, but this would be incorrect as the
reference rate is not a zero-coupon rate as tacitly assumed. Traditionally the financial
markets have approached this in a very different manner from the analysis above, so we
will first discuss the market method, and then try to understand whether it is realistic.

Consider a typical fixed-coupon bond; there is obviously a non-linear relationship
between the bond price P and its yield to maturity y given by:

P ¼
X

t

CFt � ð1þ yÞ�t where CFt represents the bond cashflows

Assume we are buying the bond at time T in the future, so that the actual bond price will be
PT and the forward bond yield yT . For a given bond curve today, we can imply P0ðTÞ and
y0ðTÞ. We can approximately write:

PT ¼ P0ðTÞ þ ½y� y0ðTÞ� :P0ðTÞ0 þ 1
2
: ½y� y0ðTÞ�2 :P0ðTÞ00

Taking expectations:

EfPðyÞg � P0ðTÞ ¼ ½Efyg � y0ðTÞ� :P0ðTÞ0 þ 1
2
:Ef½y� y0ðTÞ�2g :P0ðTÞ00

where P0ðTÞ0 and P0ðTÞ00 are the first and second derivatives with respect to yield at y0ðTÞ.
If we assume that EfPðyÞg ¼ P0ðTÞ, i.e. a world that is forward risk-neutral with respect

to bond prices, then:

Efyg ¼ y0ðTÞ � 1
2
:Ef½ y� y0ðTÞ�2g :P0ðTÞ00=P0ðTÞ0

As we can write Ef½ y� y0ðTÞ2g 
 y0ðTÞ2 : ð�yÞ2 :T , the expected yield is

Efyg ¼ y0ðTÞ � 1
2
: y0ðTÞ2 : ð�yÞ2 :T :P0ðTÞ00=P0ðT 0Þ

Therefore, for a yield curve swap, we can regard the forward swap as equivalent to a
forward par bond, estimate the forward rate off the current curve, but then apply the
adjustment.6 ATM swaption volatility of the appropriate forward time and underlying
length is typically used in the adjustment.

As the Convexity of a bond¼ P0ðTÞ00=P0ðTÞ, and the modified Duration¼
P0ðTÞ0=P0ðTÞ, the ratio P0ðTÞ00=P0ðTÞ0 is equivalent to C=D which increases with the
maturity of the bond. Hence the size of the adjustment depends upon:

. the tenor of the underlying reference rate;

. the volatility of the reference rate;

. the time to the fixing.
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In the main text, we priced a 4-year CMS which was receiving the 5-year swap rate less
91.8 bp. If we assume the volatility curve is a flat 20% pa then the convexity adjustment can
be seen in the new worksheet, with an overall margin of 94.7 bp. The size of the convexity
adjustment is 3.6 bp. The convexity details are (see Worksheet 7.16):

[5]: unadjusted CMS yield
[6]: calculates ð1þ y0ðTÞ=2Þ�1; remember that the reference swap is semi-annual
[7]-[-9]: these columns calculate P0 and P00 having differentiated the general bond formula
[10]: finally the convexity adjustment in basis points is calculated using the above formula

Hagan7 develops a very similar model, with an adjustment factor of:

�y0ðTÞ2 : ½Qend �Qstart� : ½expf�2
y :Tg � 1�G0ðTÞ0

where, in the simplest case, G0 
 y0 : u
d=ð1� uNÞ where u ¼ ð1þ d � y0Þ�1, d is the

daycount fraction (assumed to be 0.5) and N is the number of periods in the reference
CMS rate. The convexity adjustment for the same volatility is 3.5 bp (see Worksheet 7.17
for details).
Despite being widely used, this approach however has some practical shortcomings in

that it concentrates purely on adjusting the CMS fixing. For example, the swap reference
rate fixes in advance at the beginning of each period, but the cashflow is received only at the
end of the period. This late payment is likely to reduce the benefit to the CMS receiver.
Hull8 suggests an additional adjustment term to compensate for the discounting from the
payment date back to the fixing date:

�y0ðTÞ :F : d : �y : �F : �yF :T=ð1þ F : dÞ
where F is the forward interest rate from the fixing date to the payment date;

d is the tenor of the forward rate (daycount fraction);
�F is the volatility of the forward rate;
�yF is the correlation between the CMS rate and the forward rate.

He suggests a correlation of 70%, which seems a touch high between a long and short rate.
Applying this adjustment term reduces the convexity adjustment to 3.1 bp (see Worksheet
7.18 for details).
Hagan also introduces other, more sophisticated, expressions for G representing a wider

range of potential movements.
Pugachevsky9 has criticised these approaches, suggesting that they actually over-

estimate the convexity benefit quite considerably because fluctuations in the rates would
affect not only the CMS side of the swap, but also the Libor side as well. He developed an
alternative approach which resulted in significantly lower adjustments.
Furthermore, we would like to be consistent in our approach to convexity, and earlier we

used independent discount bond price volatilities which are related to cap volatilities. There
is obviously a theoretical relationship between cap and swaption volatility which could be

124 Swaps and Other Derivatives

7 Ibid.
8 Ibid., pp. 554–5.
9 D. Pugachevsky, ‘‘Forward CMS rate adjustment’’, Risk, March 2001, pp. 125–8.



used.10 Alternatively we could simulate the swap as before. The end-result appears very
different when we assume:

. that only the CMS fixing is stochastic;

. that the Libor fixing and discounting are also stochastic.

Worksheet 7.19 shows that, for a parallel shift in the discount bond curve, the convexity
effect (if only the CMS fixing is adjusted) is more than 16 times greater than the effect if all
rates are adjusted—this is understandable as we know that CMS swaps have very little
overall sensitivity to parallel shifts. Worksheet 7.20 performs the same calculations using
random simulations of the discount bond curve; the resulting convexity effects are closer to
Pugachevsky’s results. This demonstrates that concentrating on the convexity effect inher-
ent in the CMS fixing alone, and not on the convexity in the overall value of the swap, may
be misleading.
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OBJECTIVE

A cross-market swap is one that links together two different financial markets. Yield curve
swaps, linking short-term Libor with long-term swap or bond yield rates is one example. As
there are many other financial markets, then many other structures are feasible. This
chapter discusses some of the more common ones, such as overnight indexed swaps, CP
swaps, equity and commodity swaps, and also demonstrates how implied forward curves
from these other markets can be built.

Swaps arising from other markets are also growing in popularity, for example inflation
swaps and volatility swaps. The chapter discusses some of the common structures, and how
they may be modelled and priced.

8.1 OVERNIGHT INDEXED SWAPS

These are average rate swaps that are being increasingly used by banks themselves for
hedging. During a normal business day, a bank will make a large number of cash payments
and receipts. These will ultimately flow down to the cash desk within the Treasury, who will
have the final responsibility to fund the net payments or lend out the net receipts. At the
end of each working day, the desk will ensure that its books, either in separate currencies or
all netted back to a single home currency, are square within limits. Given the estimated
future cash requirements of the bank, part of the expertise of the desk is to decide how
much money will be borrowed or lent, and for what period of time. The remaining balances
are invariably sourced into the bank overnight market on an uncollateralised basis. The
overnight rates available in this market depend upon the net positions of all the contrib-
uting banks, and can fluctuate violently from day to day.

Most financial centres publish an official overnight rate, usually calculated by averaging
the observed rates reported by the commercial banks. For example, 41 banks spread across
the Eurozone (plus 7 non-Euro international banks) supply their overnight rates to the
European Central Bank by 6 pm CET each business day; the ECB then publishes an
arithmetic average called the Euro OverNight Index Average (EONIA) by 7 pm. Other
rates include the Sterling OverNight Index Average (SONIA), the US Fed Funds Effective
rate, the SA Rand Overnight Deposit (ROD), the Japanese Mutin and so on.

In order for the banks to perform some limited risk control over the fluctuations,
Overnight Indexed Swaps (OISs) have been developed. This is the generic name for a class
of swaps that:

. pay some temporal average of the overnight rate;

. receive a fixed rate;

8
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for some notional principal amount at the end of a pre-specified period. Most OIS swaps
have a maturity of less than 1 year, although longer ones are obtainable. Structured swaps
such as forward starts and rollercoasters are also available.
The precise structure of an OIS varies from centre to centre, and generally reflects the

detailed market operations. For example, the table below shows an extract from the
average rate side of a 1-month EONIA swap traded on 2 January 2008 on a fixed rate
of 3.750% (see Worksheet 8.2 for full details):

EONIA Daycount Principal

fixing accruing

4-Jan-08 4.087% 1
7-Jan-08 4.107% 3 1.000341
8-Jan-08 4.119% 1 1.000455
9-Jan-08 4.174% 1 1.000569
10-Jan-08 4.053% 1 1.000685
11-Jan-08 3.883% 1 1.000798
14-Jan-08 3.881% 3 1.001122
15-Jan-08 4.078% 1 1.001230
16-Jan-08 4.041% 1 1.001343
17-Jan-08 4.018% 1 1.001455
18-Jan-08 3.968% 1 1.001567
21-Jan-08 3.984% 3 1.001898
22-Jan-08 3.989% 1 1.002009
23-Jan-08 3.994% 1 1.002120
24-Jan-08 4.003% 1 1.002231
25-Jan-08 4.015% 1 1.002343
28-Jan-08 4.018% 3 1.002678
29-Jan-08 4.055% 1 1.002790
30-Jan-08 4.135% 1 1.002903
31-Jan-08 4.187% 1 1.003018
1-Feb-08 4.114% 1 1.003135
4-Feb-08 4.082% 3 1.003479
5-Feb-08 1 1.003593

Note that it starts at T þ 2, and finishes 1 day later, resulting in a 32-day swap. The first
rate, 4.087% applies from 4th to 7th January, a period of 3 days given that 4 January was a
Friday. Based on a principal amount of 1, the principal and interest on 7th January is:

1 � ð1þ 4:087% � 3=360Þ ¼ 1:00034058

The P&I is then accrued from 7th to 8th January:

1:00034058 � ð1þ 4:107% � 1=360Þ ¼ 1:00045471

This process is continued through the swap until the end of the swap on 5th February.
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The total accrued interest is given by P&I�P ¼ 0:0035926897 or C¼359,268.97 on a
principal of C¼100m. This can then be converted into an average rate:

0:0035926897 � 360=32 ¼ 4:042%

One practical point to note is that invariably the daily compounding calculations are done
to a pre-specified number of decimal places, usually rounded to six. This can be significant
over the full lifetime of the swap.

There would be a net cash settlement at the end of the swap, taking the difference
between the average rate and the constant fixed rate:

C¼100m � {4.042%� 3.750%} � 32/360¼ C¼25,935.63

calculated on a simple basis, where P is the actual principal amount. If the swap were
longer than 1 year, then multiple settlements are common.

Most other markets follow a similar compounding process, although there are
exceptions. For example, the ROD swaps take an arithmetic average of the overnight
rates compiled by the South African Financial Exchange during each calendar month,
and then compound up that average for each month.1

When an OIS is first entered into, obviously the overnight fixings are unknown and need
to be implied off a forward curve. Not knowing where the overnight rates are likely to be, in
the early days of this market banks typically used the IBOR curve as a reference, recognis-
ing that this is not ideal but they possessed little else. Use of a governmental curve is likely
to be worse, and repo rates are of course collateralised. The unknown average rate for an
EONIA swap may be easily estimated from a Libor curve using:

P&I ¼
Y

i

ð1þ ri � diÞ where ri ¼ ½DFsðiÞ=DFeðiÞ �1�=di

¼
Y

i

DFsðiÞ=DFeðiÞ¼1=DFend

The average rate is

1

DFend

� 1

� �
� 360

d0;end

which is equal to r0=end. In practice, in normal times the EONIA rate would be some 6–8 bp
below the equivalent Libor rate.

Today, there is a full separate EONIA swap curve quoted—see graph below—that would
enable the overnight forward rates to be implied. For an EONIA swap that was entered
into some time previously, valuation would consist of real compounding using the rates
already determined in the past plus the estimated forward rates off the curve.
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EONIA swap curve: 6 February, 2008
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EONIA swap rates are generally, but not always, below the Euribor rates of the same
tenor, with the spread widening in times of stress, such as the sub-prime defaults of 07/08.
A typical trading strategy might therefore be to deposit for 1 year at Euribor, but pay the
daily EONIA through a swap, taking advantage of a positive curve.

8.2 CROSS-MARKET BASIS SWAPS

Interest rate basis or floating–floating swaps are intrinsically straightforward. However,
their pricing can be complex, which is why they are being discussed in this section.
There are two classes of IR basis swaps. The first class use the same reference index but of

different tenors. For example:

To pay 1mo. Libor
To receive 12mo. Libor

In theory the fair mid-price of such a swap should be zero. In practice, there is usually a
small margin on one side representing the relative supply and demand in the two cash
markets, their liquidities and the inherent credit exposure. The last point is very evident in
the above swap, as the bank will be making 12 monthly payments before the annual receipt.
These swaps are generally used only by market professionals to risk-manage the floating
sides of their portfolios.
Related to these swaps are yield curve swaps, which typically use short-term Libor on

one side and a very long-term rate on the other. These are an extremely important structure
of swap, and were discussed in some detail in Chapter 7.
The other major class of basis swap uses two reference rates, one typically Libor and the

other a floating rate from a completely different market, and is often called a cross-market
swap. There are a variety of such swaps available, especially in the US, due to the large
number of possible reference rates. Some example reference rates are:
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Commercial paper: Rate of interest paid on short-term securities issued by
corporates to fund their working capital requirements
(obviously the level depends upon their credit rating)

Municipal: Rate of interest paid on securities issued by state and local
government agencies

Prime: Rate of interest at which a commercial bank in the US
would lend to its most creditworthy domestic customers
(Note: this is effectively a regulated domestic rate, and
should not be confused with Libor which is effectively an
unregulated international rate. Base rate would be the UK
equivalent.)

Fed Funds: Federal Funds are non-interest-bearing reserves deposited
by member banks at the Federal Reserve. The Fed Funds
rate is the rate of interest charged by banks trading these
reserves, and is closely monitored by the Fed

T-Bills: Rate of interest paid on short-term government securities

Source: Prebon Yamane, owned by Tullett Prebon plc.



All the above quotes are shown in basis points, added to the non-Libor reference rate. For
example a bank would therefore provide a 10-year swap to pay 3-month Libor, and to
receive 1-month CPþ 30 bp.
Forward curves can be constructed from each of the basis swap curves, using the current

Libor forward curve and Libor discount factors on each side. For example, consider a CP
swap with maturity n:

�L þCP þmn

�L þCP þmn

�L þCP þmn

�L þCP þmn

�L þCP þmn

�L þCP þmn

�L þCP þmn

�L þCP þmn

�L þCP þmn

�L þCP þmn

�L þCP þmn

�L þCP þmn

�L þCP þmn

If we put the principals in on both sides, the left-hand-side will have a zero value and so we
could write:

�1þ
X

t

ðCPt þmnÞ � dt �DFt þDFn ¼ 0

Given we know the quoted margins, we can therefore estimate the implied forward CP
rates. This could be either by bootstrapping—i.e. estimate mj for j ¼ 1; 2; . . . by interpola-
tion from the market quotes and then calculate CPj sequentially—or using an optimisation
approach.
Worksheet 8.4 uses an optimisation approach. One-month CP rates, which are probably

the most common tenors, are used; the same approach could easily be adapted for CP rates
of other tenors. Given that one can get estimates for CP rates out for a year, it would be
quite easy to estimate the first few forward rates off this physical market, but this has not
been done in the worksheet. Instead we have adopted a slightly different tack. The CP curve
is effectively a spread curve off Libor, so if we define CPt ¼ Lt �mt we can work in terms of
the spreads fmg. First, 1-month Libor rates are estimated from the current swap curve. The
spread curve fmg is estimated in column [1], and the final values of the mid-rate CP�Libor
swaps in column [6], using the above equation:
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Other forward reference curves can be constructed in a very similar fashion, with one
major exception. Muni(cipal)–Libor swaps are quoted very differently. Unlike the quote
being a spread, it is a multiplier on Libor. The basic swap structure is:

To receive 13-week arithmetic average of a muni index, such as JJ Kenny or PSA
To pay �T � 3-month Libor, where �T is a constant depending upon maturity

Assume that the muni rates are related to a 13-week average of monthly Libor rates, as
shown in the diagram below:

��T � L þa1 � Liboraverage
��T � L þa2 � Liboraverage
��T � L þa3 � Liboraverage
��T � L þa4 � Liboraverage

..

. ..
.

��T � L þaT�2 � Liboraverage
��T � L þaT�1 � Liboraverage
��T � L þaT � Liboraverage

Therefore, we can estimate the average of the Libor rates, and then solve for the forward
multipliers fa1; a2; . . .g using the following formula for a swap of maturity T :

��T þ
X

t

at � Liboraverage�t � dt �DFt þ �T �DFn ¼ 0

Note that the daycount fraction dt is on a 30/360 basis. In Worksheet 8.5, smoothing is
applied to the forward multipliers.
The worksheet estimates the implied muni rates by first calculating 1-month implied

Libor rates at weekly intervals; see columns [1] through [8]. The next step is to calculate the
13-week average Libor rate; see column [9] and summarised in column [10]. Using the same
optimisation approach, we now estimate the forward multipliers to be applied to these
average rates to arrive at the average 3-month muni rate2 so that the values of the quoted
swaps are zero: see column [11].
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This section has described the existence of various basis swaps, and how the implied
forward rates may be estimated based upon the market quotes. Most other basis swaps
are priced as either a spread or a multiplier. Because they are effectively a link between two
markets, the conventions may however appear unusual for people only familiar with Libor
markets but of course they have to be consistent with the practice in the non-Libor market.
Prime (and base) swaps are another good example. Because these are quite regulated, the
rates do not change from day to day, but typically only after a signal by the government. A
time-series of Prime therefore consists of a series of relatively large step changes, typically
multiples of 25 bp. Most people model Prime as a function of forward Libor, but based
upon confidence bands. For example, Prime is held constant whilst Libor remains within a
band; when Libor moves outside the band, then both Prime and the band are adjusted. So
Prime typically lags Libor changes, although there can be asymmetry going up and down
depending upon government policy.

8.3 EQUITY AND COMMODITY SWAPS

Equity derivatives, traditionally written on the individual stock, have a long history.
They have been frequently used in association with the raising of capital in the guise of:

. convertible bonds, i.e. bonds that are convertible into equity, usually at the option of the
bond-holder;

. equity warrants, i.e. long-dated equity call options;

and so on. Modern equity derivatives are very often written on equity indices, for example
a bond that pays coupon according to the rise in a particular index is targeted at a
traditional investor who does not wish to risk capital in the equity market but is prepared

Cross-market and Other Market Swaps 135



to take a view on the index. For the more adventurous, there are structures where the
principal redemption itself is linked to the level of the index. One typical issue is shown in
the box below; the investor can buy either tranche, depending on their view of the likely
direction of the index.

Bull and bear issues

An issuer, very often Scandinavian countries such as Denmark, would issue two bonds
simultaneously:

Principal: ¥10 billion
Maturity: 5 years
Coupon: 8% ANN pa
‘‘Bull’’ bond redemption: ¥10bn �f1þ ½I5 � I0ð1þ XÞ�=I0g
‘‘Bear’’ bond redemption: ¥10bn �f1� ½I5 � I0ð1� XÞ�=I0g

where I0 Nikkei index on date of issue (22,720)
I5 Nikkei index at maturity
X Anticipated growth in index

(set to 14.7% in this issue)

and subject to a minimum of ¥6bn and a maximum of ¥11.054bn

The coupon is above the current market level, as compensation for the equity risk. The
factor X can be used to ensure that there is sufficient demand for both tranches. From the
issuer’s point of view, the total redemption amount to be paid for both bonds is simply
2 � ð1� XÞ. In this case, X ¼ 14.7% of the redemption amount is the compensation for
paying the higher coupon.
There seems to be a general perception that equity derivatives are widespread, possibly

because of the raised profile they receive through embedded structures. In reality, they
typically constitute less than 2% of the derivative market.3

There are a number of different ways in which an equity index may be constructed from
an underlying portfolio of stocks:

. An unweighted average of the quoted share prices, such as the Nikkei 225.

. A weighted, usually by market capitalisation, average of the share prices, such as the
main FTSE 100.

. A free-float index, where the share prices are weighted not by total share issuance, but
only by the number of the shares available to trade.

. A stock investor will make money through both the growth in the share price and also
through the receipt of dividends. When a company pays a dividend, its share price and
hence any one of the above indices are likely to drop accordingly. A total return index is
based upon both components. Many stock exchanges offer total return indices as part of
the broad offering.

Equity swaps are a relatively new invention, and currently represent only 20% of the total
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equity OTC derivative market. But it is the fastest growing part because they can be an
efficient means of moving investments between the equity and interest markets. For
example, suppose an investor is currently receiving USD Libor on some assets, but believes
that the stock market is about to rise. He could liquidate his investment and re-invest in
stocks, but that is likely to incur considerable transaction costs, or he could enter into an
equity swap:

To pay USD Libor on a notional principal
To receive The return on an equity index applied to a notional principal

An equity swap is really a cross-market swap:

Trade date: 4 February 2008
Notional principal: $100m
Maturity: 2 years
To receive: USD 3mo. Libor
To pay: S&P 500 Index quarterlyþ 10 bp pa

Some typical cashflows are shown in Worksheet 8.6.4 Hypothetical future values of the
index and Libor are shown in columns [1] and [2], respectively. Therefore the return on the
index over each period can be calculated as rt ¼ ðIt � It�1Þ=It�1: for example, the return
over the first period is

ð1,454:13� 1,380:82Þ=1,380:82 ¼ 5:31%

Note that this return may be either positive or negative, depending on the movement in the
index. The index-related cashflow to be paid at the end of the first quarter is:

$100m � {5.31%þ 10 bp � 0.253/10,000}¼ $5,309,241þ 25,000¼ $5,334,241

as shown in columns [4–6] of the example box of the worksheet. Note that the return does
not use a daycount fraction, whereas the margin is quoted on a per annum basis as usual
and therefore uses the fraction. The Libor cashflows are calculated in the usual fashion, and
finally a net cashflow is settled, as shown in column [8].

Such a swap could be priced by estimating future values of the index using a cost-of-carry
argument:

It ¼ I0 þ Expected growth� Expected dividends

and after adjustments for share issues, splits, etc. However, a rather simpler approach is to
consider how such a swap might be hedged. At the beginning of the swap, assume we
borrow $100m at 3mo. Libor flat. These interest payments will exactly match the Libor
receipts on the swap. We will then buy $100m of the components of the index; this does not
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mean buying every component of the index, but sufficient to act as a reasonable tracker. At
the end of the first quarter, the index has risen by 5.31%, i.e. the holding is now worth
$105,309,241. The increased amount of $5,309,241 is sold off, thereby generating a cash-
flow to meet the payment on the swap and simultaneously re-balancing the principal
investment in the index back to $100m. This process is then repeated each quarter.
At the end, the investment in the index is totally liquidated, and the Libor borrowing
re-paid (see hedging box of Worksheet 8.6).
An alternative would be to use eurodollar and S&P 500 index futures to hedge the swap,

in a very similar fashion to the method employed in money market swaps. Unfortunately
there is only good liquidity in (at the most) the three nearest index futures contracts, so
using these futures to price and to hedge a longer swap would involve quite a lot of basis
risk, potential roll-over costs, as well as the funding of the initial and daily variation
margins which will create convexity issues.
So, in theory as with most basis swaps, a Libor–equity swap should be priced very

close to flat. The existence of the margin reflects supply and demand, the bank’s
efficiency replicating the index, the bank’s ability to fund in the interbank market,
various costs of running the portfolios and of course the required return on capital
employed.
The above swap is called a ‘‘fixed notional’’ swap; each cashflow is estimated using the

constant notional principal of $100m. The hedging of such a swap is not very efficient
because it involves selling or buying potentially small amounts of the components of the
index each quarter. A more common structure is a ‘‘variable notional’’ which avoids this
(see Worksheet 8.8).
At the end of the first quarter the index has risen by 5.31%. Instead of liquidating part of

the index investment, we borrow the money required to pay under the swap, namely
$5,309,241: columns [8] and [9] show the periodic borrowings or repayments and the total
effect. To match the future Libor interest payments, the notional principal of the swap is
also increased by 5.31% as shown in column [3]. The swap cashflows are therefore
calculated based upon the notional principal at the beginning of each period. At the
end of the swap, the original index investment is liquidated and used fully to repay the
accumulated Libor borrowing, as shown in columns [8] and [11].
Cross-currency equity swaps have also been included in the spreadsheet (see Worksheets

8.10 to 8.13). The structure of these will be discussed in Chapter 9.
In summary, equity swaps are used to simulate the exposure to an index but without

having to actually make the physical investment. The variable notional versions in
particular mimic the cashflows that would have occurred.

8.3.1 Commodity swaps

These are very similar in structure to equity swaps and have two main types:

. fixed-for-floating commodity price swap;

. floating price against floating interest swap;

with other types of swaps being generated from these basic ones. Fixed-for-floating are
popular ‘‘natural’’ multiperiod structures used by commodity producers and users to lock
in common prices. Price–interest swaps would on the face of it also appear to have a natural
purpose. For example, commodity producers are naturally long the commodity and short
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interest rates, and should therefore be prepared to pay the price and to receive Libor as a
hedge against rising borrowing costs. But in practice this link between interest payments
and production costs is not so simple, and hence such swaps are less popular. Overall, OTC
commodity derivatives constitute about 0.5% of the total market5 and are not growing
particularly rapidly.

Typical fixed–floating commodity swap

Trade date: 4 February 2008
Notional quantity: 100,000 bbl
Commodity: WTI Light Sweet Crude
Maturity: 6 August 2008
Frequency: Monthly
Period end date: 6th day of each month
Settlement date: 5 days after period end
To pay: $97.8 per bbl
To receive: Arithmetic daily average of reference price over each period
Settlement method: Net cash payment

Commodity swaps are usually priced off commodity futures or by estimating the forward
price of the commodity. The former can involve considerable basis risk as the range of
reference commodities under futures contract is considerably restricted compared with the
possible references for OTC contracts, although frequently the dates are matched to reduce
the basis risk.6 Forward-pricing is in theory relatively simple to calculate as a commodity
may be purchased today (spot) and held until the fixing date7:

Current priceþ Cost of funding position þ Cost of physical storage

This suggests that the Forward price> Spot price, i.e. said to be in ‘‘contango’’.
Unfortunately supply and demand, especially for seasonal commodities, can distort this
relationship quite considerably, and it is feasible to observe ‘‘backwardation’’, i.e. when the
Forward price< Spot price. Some producers, wishing to entice consumers to commit to
forward purchases and hence provide a guaranteed demand, will offer a ‘‘convenience
yield’’ or discount on the theoretical forward price which also needs to be taken into
account. Commodity prices do exhibit high volatility, and simplistic forward-pricing
carries a very real risk.

There is a range of practical commodity swaps. Swaps involving oil prices are probably
the most common, but it is feasible to get OTC swaps against most commodities. Currently
an increasing market is weather derivatives, trading such structures as fixed–floating
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temperature or rainfall. Another one that fluctuates in popularity are property swaps; for
example trading the percentage change in a property index over a period against Libor.
Other forms of structured swaps include:

. basis swaps with reference to the spread between two linked commodities such as Brent
and WTI crude oils;

. spread swaps with reference to either side of production such as WTI crude oil against a
refined product like jet fuel or kerosene;

. curve–lock swaps, which lock in the backwardation/contango spread (very similar to
spreadlock swaps described above).

8.4 LONGEVITY SWAPS

On average, people are living longer and longer; for example the life expectancy for men
aged 60 is 5 years longer in 2005 than in 1980. This is creating significant risks for pension
providers if they underestimate this lengthening. Many governments in the developed
world, such as the UK’s Government Actuary’s Department, publish regular mortality
indices. There are also an increasing number of OTC longevity indices published, such as:

. Longevity Index by Credit Suisse. This started in 2006, and produces an annual estimate
of actual life expectancy based on US data.

. LifeMetrics by JP Morgan. This started in 2007, and produces annual estimates for the
US, the Netherlands and England and Wales.

. Xpect by Deutsche Börse. This will be a monthly index based upon live feeds from
undertakers in the UK and Germany, and is anticipated to launch late in 2008.

The first mortality bond was issued by Swiss Re in December 2003. It was for 3 years,
paying Liborþ 135 bp, on a principal of $400m. The principal started to reduce if a broad-
based mortality index across five countries rose to 130% at the end of the 3 years, and
was completely exhausted if the index exceeded 150%.8 This is really an example of a
catastrophe bond, as the mortality rate during WWII did not hit these levels, which would
only be triggered by some event such as a pandemic.
In 2004, BNP Paribas suggested that EIB should issue a 25-year £540m longevity bond.

The bond paid a coupon of £50m �SðtÞ. The starting point was a cohort of people who were
65 years old on the issue date. Sð0Þ was defined as 100%, and SðtÞ their continued survival
rate as published by the Office for National Statistics. The bond was an annuity, with no
redemption principal, to provide a hedge for pension funds. A swap had to be organised,
funding the EIB at 3-month Euribor� 20 bp. Eventually the bond was never issued, as the
EIB became concerned about reputational risk. But longevity bonds started to come back
again in 2006/7.
Longevity swaps have been under discussion for some 5 years. The two sides of such a

structure would typically be:

. pay an income stream based upon current longevity expectations;

. receive an income stream, usually based upon changes in one of the OTC indices.
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For example, the UK insurer Lucida did a longevity swap with JP Morgan in February
2008; this was the first one based upon the LifeMetrics index. The transaction was thought
to be for 10 years based on a notional of GBP100 million, whereby Lucida received money
if people initially based in the 60 to 69-year age band lived longer than anticipated.
Interestingly, the swap was to hedge Lucida’s exposure to the Irish population; the basis
risk between the English and Welsh base of LifeMetrics and the Irish was thought to be
negligible.

Interest in longevity transactions is increasing, as institutions recognise their exposures
and endeavour to hedge themselves. The absence of any significant market removes the
possibility of liquid-hedging and easy price discovery. These derivatives, not only swaps but
also options, are at the stage of the IRS market in the early 1980s, which was a negotiated
market between end-users.

8.5 INFLATION SWAPS

Over the past decade or so, governments around the world have been trying to bring
inflation under control, with varying degrees of success. Fears that inflation might get
out of control again have spurred the significant growth in the inflation swap market. There
are two main types:

. fixed-for-floating inflation;

. real-for-nominal (i.e. Libor) interest rates;

where the cashflows on one or both sides are calculated with reference to future inflation.
However, before we can discuss inflation swaps, it is important to understand the

mechanics of inflation. Virtually every country publishes some form of consumer price
index. This is set to 100 on an arbitrary date.9 Price information across a large shopping
basket of retail products is usually gathered at the end of each month from a range of
locations in the country. The average, weighted by the relative amount of each item
purchased, annualised price growth g is then calculated based upon the price of the basket
1 year earlier. The new level of the index is calculated using this price growth, and published
some 4–6 weeks later.

For example, the Eurozone publishes the Harmonised Index of Consumer Prices
(HICP). Each member country calculates its CPI based upon 12 standardised divisions
of consumer consumption. The HICP is based upon a weighted arithmetic average of these
CPIs.

Inflation-linked securities (‘‘linkers’’) have been issued by a number of organisations,
including governments. There are primarily two reasons for their issue:

1. When investors are concerned about extremely high future inflation (or hyper-
inflation), and are therefore unwilling to bear this risk. Governments such as Brazil,
Mexico, Israel and Argentina have all found it necessary to issue short-dated inflation-
linked securities regularly as the only way they could attract investors.

2. With inflation apparently stable and under control across much of the developed world
(at the time of writing), an increasing number of governments have been issuing index-
linked bonds. There are three reasons for this:
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e In such circumstances, traditional fixed-coupon bonds are unattractive to
investors. Because of the low coupon, a small increase in inflation will result in
a large decrease in bond price, i.e. the bond’s price elasticity with respect to
inflation is high.

e Governments frequently set themselves inflation targets; by issuing these
bonds, they can act as a form of penalty if inflation is allowed to get out of
control.

e They broaden the range of potential investors in the government securities, which
is likely to reduce the overall cost of debt. This is also why many supranationals
such as the World Bank and EIB have issued linkers.

The first major market of the latter form was started in the UK, whose government has
issued linkers ever since 1981. The table below summarises the major government-issued
linker markets as of January 2008. Many of the European bonds are linked to the HICP,
and not to the national CPI. Some Australian states have also issued linkers, but often tied
to commodity price indices.

Country Market value Number of linkers Longest maturity

($ US billion)

Australia 8 3 2020
Canada 37 5 2041
France 209 11 2040
Germany 23 2 2016
Greece 24 2 2030
Italy 100 6 2035
Japan 75 14 2017
Sweden 37 5 2028
UK 320 14 2055
USA 492 23 2032

Source: UK DMO March 2008

The mechanics of these linkers are very similar. For example, consider the UK linker
below:

Issue date: 23 September 2005
Maturity date: 22 November 2055
Coupon: 1.25% sa
Dirty price: 136.78 on 4 February 2008

The modern convention is to use a 3-month inflation lag as the reference. The base index I0
for this bond would be the RPI on 23 June 2005. The UK RPI was:
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1 June 2005 192.2
1 July 2005 192.2 (pure coincidence that they are the same number)

The base index is estimated by linear interpolation:

RPI23-June-05 ¼ RPI1-June-05 þ ð22=30Þ � ðRPI1-July-05 �RPI1-June-05Þ ¼ 192:2

where 22 is the reference date of 23rd� 1 and 30 is the number of days in the month of
September.

For a cashflow at time T , the reference index IT , namely with a 3-month lag as described
above, and hence the index ratio fIT=I0� are calculated. If the face value of the bond at issue
was P0, then:

Coupon at time T cT ¼ 0:5 � 1:25% � P0 � fIT=I0g
Principal redemption at maturity PMaturity ¼ P0 � fIMaturity=I0g

There is one small problem with this approach. Assume today’s date is 4 February 2008;
the next coupon is to be paid on 22 May 2008, nearly four months away. This coupon is
currently unknown because the February and March RPIs have not yet been published,
and therefore accrued coupon for pricing cannot be calculated. The convention is to use the
index ratio for 4 February as an estimate for the correct index ratio, knowing that the
estimate will converge as time passes.10

The main investors in these bonds have been pension funds, using the bonds as hedges
against their inflation-linked liabilities. But the bonds are not ideal, as the cashflow from a
pension is an annuity, with no large linked redemption payment. Therefore banks have
been increasingly providing inflation swaps to investors, and then hedging themselves with
the bonds.

The most basic form of inflation swap is a zero-coupon swap. Assume today’s date is 4
February 2008, and a bank is quoting 3.17 bid for a 10-year zero on £25m. This means that
the bank would:

. pay £25m � [(1þ 3.17%)10�1] on 5 February 2018 (the 4th is a non-business day);

. receive £25m � [I10=I0 � 1] on 5 February 2018.

Sterling zero swaps use a 2-month lag convention with no interpolation, therefore I0 would
be the December 2007 index, and I10 the December 2017 index. This zero market has
become increasingly liquid in the major indices in recent years, and prices are readily
available on trading screens.
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The picture above (source: ICAP plc) shows, from left to right, zero-coupon quotes for
HICP eX-Tobacco, HICP, French CPI, UK RPI and US CPI. The base indexing dates and
indices are shown at the bottom; notice that the French and US swaps do interpolate the
base index whereas the others do not. HICP-related indices use a 3-month lag, reflecting the
long potential publication lag, whereas all the others use 2-month.11 HICPXT is the most
common Eurozone reference index, probably because many governments have been delib-
erately inflating the price of tobacco, and hence distorting HICP to a small extent.
Clearly, given the quotes, a forward inflation index curve can be implied. Forward

inflation can also be implied off the physical (cash) markets in two different ways. The
traditional approach is to imply a forward inflation curve from a set of linker bonds by:

1. Deriving bond-based DFs from normal on-the-run bonds.
2. Guessing a forward inflation curve, usually in the form of inflation growth rates.
3. Building the linker bond cashflows based on this curve.
4. Pricing the linker bonds by discounting using the DFs.
5. Adjusting the guess until the theoretical prices match the market prices.

Full details are in the spreadsheet entitled ‘‘Inflation swap models’’. In outline, the first part
of the spreadsheet is organised as follows:

. Static and current market data on non-linkers and linker bonds, as well as a Libor curve,
are entered in Worksheets 8.14 to 8.17.

. The input yield of the non-linker bonds is converted into a price in Worksheet 8.18.

. Step 1 above is performed twice. First, a smooth DF curve is constructed by fitting a
parametric Nelson–Siegel curve to the non-linker bonds; see Worksheets 8.19 and 8.20.

144 Swaps and Other Derivatives

11 As 1 May is a widespread bank holiday, the base months hadn’t been updated.
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Second, arbitrage-free DFs are estimated by bootstrapping (see Worksheets 8.21 and
8.22). The two results are compared in Worksheet 8.23.

. The ‘‘guess’’ is performed three ways. First, by fitting another Nelson–Siegel curve to the
inflation growth rates (see Worksheets 8.24 and 8.25). Second, by bootstrapping a piece-
wise constant inflation-growth curve (see Worksheets 8.26 and 8.27). Third, by using
optimisation (as described in Chapter 3); this is performed in a separate linked spread-
sheet ‘‘Building an inflation curve by optimisation’’ with the final results shown in
Worksheet 8.31.

The end result for UK gilt data is shown below.

The resulting inflation curves from the zero swap and the cash linker markets are shown
below.
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There is very good agreement between the two curves for the first 30 years; the implied zero
growth rate from the cash market is within 2 bp of the swap market. The difference
increases with maturity, probably reflecting the limited supply of linker bonds at the longer
end plus the on-balance sheet requirements of physical instruments.
Alternatively, there is a fairly liquid asset swap market for both normal and linker bonds.

The table below shows a euro curve on 4 February 2008:

Linker Par asset Comparative Par asset Relative

swap spread benchmark swap spread spread

BTPC¼i 1.65% Sep 08 �6.0 BTP 3.5% Sep 08 �13.0 �7.0
OATi 3% Jul 09 �6.5 OAT 4% Apr 09 �18.0 �11.5
BTPC¼i 0.95% Sep 10 �1.0 BTP 5.5% Nov 10 �4.0 �3.0
OATi 1.6% Jul 11 �6.0 OAT 6.5% Apr 11 �14.0 �8.0
OATC¼i 3% Jul 12 �8.0 OAT 5% Apr 12 �14.0 �6.0
OATi 2.5% Jul 13 �7.0 OAT 4% Apr 13 �12.0 �5.0
BTPC¼i 2.15% Sep 14 10.5 BTP 4.25% Aug 14 6.0 �4.5
OATC¼i 1.6% Jul 12 �7.0 OAT 3.5% Apr 15 �12.0 �5.0
OATi 1% Jul 17 �5.5 OAT 3.5% Apr 15 �12.0 �6.5
OATC¼i 2.25% Jul 20 �11.5 OAT 4.25% Apr 19 �13.0 �2.5
GGBC¼i 2.9% Jul 25 16.0 GGB 5.9% Oct 22 12.0 �4.0

The structure of a par asset swap for a linker is shown below. Note that the structure
implies an immediate mismatch of cashflows upfront with credit implications. This is
compensated by the probable contra-mismatch at the maturity of the swap. If the dirty
price of the bond is a long way from par, then the asset swap is often constructed on a
‘‘proceeds’’ basis, where the principal on the floating side PL is set to the dirty price of the
linker.

Linker Floating side

þDirty price �PL

�P � ðI1=I0Þ � c þPL � ðL1 þ sÞ � d1
�P � ðI2=I0Þ � c þPL � ðL2 þ sÞ � d1
�P � ðI3=I0Þ � c þPL � ðL3 þ sÞ � d1

..

. ..
.

�P � ðIT�1=I0Þ � c þPL � ðLT�1 þ sÞ � dT�1

�P � ðIT=I0Þ � ð1þ cÞ þPL � ½1þ ðLT þ sÞ � dT �

If we assume a constant inflation growth rate over the lifetime of the bond, it is straight-
forward to imply the rate, using the usual asset-swapping formula, given the spread over
Libor. This observation may be generalised to estimate a forward growth curve in exactly
the same way as before. An alternative is to use the equivalent asset swap spread for the
comparative non-linked benchmark.
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Year-on-year (YoY) inflation swaps are also fairly liquid, but less than inflation asset
swaps. The basic structure is to:

. pay P � ðIT=It � 1Þ � dt;T ;

. receive P � F � dt;T .

where P is the principal amount, t and T are the beginning and end of a reference period,
dt;T is the relevant daycount fraction, and F is a fixed percentage. Usually the period is
annual, corresponding to quoted growth rates so that (IT=IT�1 � 1) is equal to the forward
growth rate gT�1;T . In this case, the daycount fraction is set to 1; fractions are usually only
calculated for periods shorter than a year.

It is tempting to estimate the forward growth rate off the forward index curve using the
usual arbitrage argument (see Worksheet 8.34).

But the situation is complicated by the fact that neither It nor IT are known at the
beginning, unlike a zero swap. The unknown indices may be hedged by entering into a pair
of zero-coupon swaps of maturities t and T , respectively. But the hedge would generate a
cashflow at time twhich would then have to be re-invested until time T when the YoY swap
would pay. As the size and sign of this cashflow would be dependent upon It, the re-
investment rate rt;T could not be easily hedged. Therefore there is a convexity effect arising
from the joint behaviour of It and rt;T .

We want to estimate ETfIT=Itg under some measure, where we already know EtfItg and
ETfITg from the zero market. Mercurio12 developed the following approach. Define:

expfDTg ¼ ETfIT=Itg=½ETfITg=EtfItg�
where DT 
 t � �t � ½�I ;r � �B þ �t � �t;T � �T �;

�T ; �t are the B&S volatilities for IT and It, respectively;
�B is the B&S volatility for a forward ZC bond price at time t, maturing at

time T [this can be estimated from cap vols: dt;T � r
t;T

� �r=ð1þ dt;T � rt;TÞ
where dt;T is the length of the forward rate r fixing at time t, paying at time
T ];

�I ;r is the correlation between the forward nominal IR and the CPI index;
�t;T is the correlation between It�1 and It.

Hence the payside is P � f½ETfITg=EtfItg� � expfDTg � 1g � dt;T (see Worksheet 8.36).
There is a small but growing market for inflation-linked options. These options can arise

in a number of guises:

. Stand-alone caps. For example, a 10-year option with a payout of
maxf0; I10=I0 � 125%g. Re-writing this as maxf0; ½I10=I0 � 1� � ½ð1þ 2:2565%Þ10 � 1�g
immediately shows that the cap is indeed an option on a payer’s zero swap.

. Hybrid securities. For example, the following was issued in 2005:
e 25-year note in euros;
e coupon in year 1, C1 ¼ 4%;
e Ct ¼ maxf0;minf1:7 � gðtÞ; 4:5%gg for t ¼ 2; . . . where gðtÞ ¼ It=It�1 � 1 and I is the

HICPXT index;
e redemption at 100, and callable on any coupon date from year 2 onwards
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. In the UK, many pension liabilities are inflation-linked but with a cap/floor collar on
YoY inflation growth. Typical bounds for the collar are 0% to 5% or, more recently, 1%
to 3%. The related swap is known as a Limited Price Index (LPI) swap, with, clearly,
embedded options. Typical payout would be:

LPIt ¼ LPIt�1 � ½1þmaxfFloor;minfgðtÞ;Capgg�
Such structures are path-dependent and hence best modelled by simulation, as discussed
below.

Given the existence of these, albeit limited, products, it is feasible to imply volatilities.
However, because many of the option structures are very driven by demand, the reliability
of the implied estimates is questionable, and the completion of an entire volatility surface is
pretty unrealistic. Estimates of correlations are even more unreliable, suggesting that both
the convexity adjustment and the option pricing is subject to considerable error; see
Belgrade for a more detailed discussion.13 One approach is to calibrate the parameters
by simulating a known inflation swap with no embedded options, and then use that swap as
a control variate (see the discussion on LPI swaps below).
End-user-driven inflation swaps have even more interesting features. For example,

consider the one below:

Typical end-user fixed–floating inflation swap

Trade date: 4 February 2008
Start date: 1 September 2015
Maturity date: 1 September 2034
Principal (P): GBP5.335 million
To receive: Fixed inflation growth rate of 4.7866% pa quarterly

cashflowT ¼ P � ð1þ 4:7866%ÞT
Uplift frequency: 5 years
To pay: Floating inflation quarterly cashflowT ¼ P � fIT=I0g
Uplift frequency: Annual
Reference lag: 3 months
Base indexing date: 1 June 2014

This is a long-dated forward starting swap designed to hedge the revenue stream of a
major infrastructure project. Because of the forward start, I0 is unknown and therefore
there is a convexity effect. Whilst the cashflows are quarterly on both sides, the frequency
of changing the inflation reference is different. On the floating side, the inflation index is
only uplifted annually, whilst on the fixed side, the power of the growth rate is only
changed once every 5 years. Nevertheless, the basic swap-pricing principles remain true,
and the rate of 4.7866% is the breakeven rate that gives a net value of zero (see Worksheet
8.37).
Path-dependent LPI swaps were briefly described on the previous page. The annual

growth rate is usually collared. Worksheet 8.40 in spreadsheet ‘‘LPI Inflation Swap’’
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contains an LPI model. The swap being priced is a fixed–floating 20 yr structure, starting in
approximately 18 months’ time with quarterly cashflows and annual uplifts on both sides.
The annualised growth rate is collared to lie within the band 1–3%.

The worksheet prices two swaps simultaneously. First, an unconstrained RPI swap is
modelled both analytically and by simulating the future growth rate. The volatility used for
the growth rate is adjusted until the average price from the simulation matches the analytic
price; in the worksheet, the difference is only 0.04 bp. Simultaneously, the LPI swap is also
modelled, using the same random growth rates as for the RPI, and obviously observing the
collar. Because the price is a non-linear function of the value of the swap, columns [BN to
BT] approximate the function as a cubic, solve for the price, and then use a delta approx-
imation to refine the answer. The average LPI price is then adjusted by the 0.04 bp
difference.

The other main, albeit less common, end-user structures are real-nominal swaps. The
cashflows on one side are related to a nominal interest rate such as Libor, whereas the other
side is an inflated fixed real rate.

Typical inflation Libor swap

Maturity: 5 years (typically shorter than 30 years)
Principal (P): £100 million
To receive: P � 3 mo. Libor � year fraction quarterly
To pay: P � 4:62% � fIT=I0g sa � year fraction quarterly
Reference lag: 2 months

Worksheet 8.41 demonstrates that the breakeven rate is indeed 4.62%.
There is one remaining major topic that needs to be discussed. Consider the graph of

historic inflation growth below.
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It clearly demonstrates seasonal fluctuations in inflation. Negative growth usually occurs
from December to January and from June to July due to sales, and may also occur in
October due to an excess of seasonal produce, or in the winter due to higher energy costs.
Flow seasonality can also occur. For example, all the long UK linkers pay coupons on
22 May and 22 November; if these are asset-swapped, then supply and demand suggests
that market-makers will reduce the z-c fixed rates for the reference months of (mainly)
March and September, and hence the implied breakeven indices. Another example is that
the French index is often distorted as the Livret A inflation-linked savings accounts use the
May and November index fixings.
Consider the 10-year mid-zero rate above of 2.95%; this implies a breakeven index

I10 ¼ I0 � ð1þ 2:95%Þ10 ¼ 259:72 where I0 is the February 2006 index of 194.20. The
implied fixed growth for the same swap, but referencing different base indexing dates,
changes significantly:

Indexing month Fixed rate I0 I10 Difference (bp)

Feb-06 2.95% 194.20 259.72
Jan-06 2.99% 193.40 259.72 4.25
Dec-05 2.96% 194.10 259.72 0.53
Nov-05 2.98% 193.60 259.72 3.19
Oct-05 3.00% 193.30 259.72 4.78

The fixed rates for the other months were all based upon a constant I10. Calendar spread
trades are common, where a trader will (for example) pay the fixed rate on a z-c swap with a
2-month lag, and receive on a z-c swap with a 3-month lag.
Whilst some sophisticated models for seasonality do exist,14 most people estimate the

seasonality adjustment required based upon the historical difference between annualised
inflation growth between consecutive months and the growth from one year to the next.
The graph below shows the seasonally adjusted inflation forecast based upon 10 years of
historic GBP RPI data.
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This was estimated using the Buys–Ballot model,15 which is of the form:

XT ¼
X

k

ak � Tk þ bj þ "T

where XT is the index [or the logarithm] at time T ;
First expression: a polynomial in time;

Second expression: bj is a ‘‘bump’’ for month j, j ¼ 1; 2; . . . ; 12 where
P

j bj ¼ 0 summing
over all 12 months

The model was fitted by minimising the least squares of the residuals ". There are two
models available in spreadsheet ‘‘Ch 8 Inflation–Seasonality Adjustments’’: Worksheet
8.44 fits to the RPI curve, and Worksheet 8.45 to the ln(RPI).

8.6 VOLATILITY SWAPS16

A swap is effectively an exchange of cashflows between two counterparties. There is a wide
range of different ways in which these cashflows may be calculated, as we have already seen.
One family of swaps are the volatility and variance swaps, whereby the cashflows are
calculated with reference to the volatility or variance of some market entity. For example:

. If � is the annualised volatility (standard deviation of returns) of some dynamic measure
such as share price, FX rate, etc. then a single period volatility swap, also known as a
‘‘realised volatility forward contract’’, has a payoff at expiry of:

N � f�T � Fvolg
where �T is the realised volatility over the lifetime of the swap;

N is the notional amount of the swap in $ per annualised volatility point; and
Fvol the annualised fixed volatility (volatility delivery price).

Consider a 1-year volatility receiver’s forward on IBM’s stock price for $250,000 per point
and a fixed rate of 30%. If the observed volatility over the year was 25%:

Payout ¼ 250,000 � ð30%� 25%Þ ¼1,250,000

Option traders are often described as ‘‘trading volatility’’, but in practice this is not entirely
true as the price of an option depends upon many other factors as well. On the other hand,
a volatility swap is very close to being a pure play on volatility! But apart from the
directional trading of volatility levels, these swaps may also be used to trade volatility
spreads.

They may also be used as a hedge against a volatility exposure, possibly arising from an
option portfolio. Dynamic delta-hedging of option portfolios17 is common but is subject to
a tracking error as the hedge is usually changed after the market (and therefore the
portfolio delta) has moved. These tracking strategies are more active in periods of high
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1999, pp. 9–32.
17 See Chapter 10.



volatility, hence incurring greater costs with less accuracy. Other exposures to volatility
are less direct. For example, market relationships such as spreads are notoriously less
stable during periods of high volatility; therefore running a spread strategy has an
indirect exposure to volatility. Equity prices are generally negatively correlated to
volatility, i.e. as equity drops volatility rises. which can act as a diversification strategy.
The volume of volatility and variance swaps is relatively small but has been growing
rapidly; by mid-2008, several million of notional principal were being traded each day—
but see the end of the section. This section is included to indicate how the swap markets are
continually evolving.
Obviously it is critically important to specify calculation of the volatility quite precisely.

Some of the relevant factors are listed below:

. Source and observation frequency, e.g. daily close of S&P 500 index.

. If OTC, how is it defined?

. Derivation of return, e.g. simple or compounded?

. Calculation of standard deviation: assumption about mean return? Usual assumption:
zero mean (less argument and also permits easier risk management).

. Conversion factor (or formula) from observed standard deviation to annualised, e.g. no.
of days in year?

Variance swaps are closely related to volatility swaps, but defined by:

Payoff: N � fð�T Þ2 � Fvarg
where N and Fvar are defined in terms ($ per annualised volatility point squared). They
obviously have less direct application but they are theoretically simpler to price and to
hedge than volatility swaps.
For example, consider a variance swap:

. which starts at t ¼ 0 and finishes at t ¼ T , and covers mT observations;

. define the simple return ri ¼ ðSi � Si�1Þ=Si�1 and hence define

v0T ¼ ð�0T Þ2 ¼
X

ðriÞ2=T
n o

summing from 1 to mT

Suppose we now stand at time 0 < 
 < T . We can write:

v0T � T ¼ v0
 � 
 þ v
T � ðT � 
Þ or v0T ¼ 	
 � v0
 þ ð1� 	
 Þ � v
T
where 	
 ¼ 
=T . We know v0
 , hence the mark-to-market value of the swap is

N � ½	
 � fv0
 � Fvarg þ ð1� 	
 Þ � fv
T � Fvarg� �DF
T

These swaps are similar to average rate swaps, so that delta ! 0 as 
 ! T . The existing
swap could be hedged by using ð1� 	
 Þ of a new off-setting swap. Unfortunately, none of
these simple results apply to volatility swaps.
In this section (which is considerably more complex than most of the book), we will first

discuss the pricing and hedging of variance swaps, and then briefly discuss how volatility
swaps might be approached. As usual, a fair price for the swap when it first starts would
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have a (risk-neutral) expectation of zero, that is:

Fvar ¼ Efv0Tg ¼ Efð�TÞ2g

We therefore need to estimate �T . This could either be historically (unconditionally or
conditionally) measured, or we could use an implied volatility from the options market.
If we used the latter, we would also want to use the option for hedging. Consider a normal
call option with maturity T . If we define variance v ¼ �2 :T , we can easily calculate the
variance sensitivity, that is:

@C=@v ¼ 1
2
:T=ð2�vÞ1=2 :S : expf� 1

2
ðd1Þ2g

It would be feasible to delta-hedge the variance sensitivity of the swap with a single option.
Unfortunately the hedge would need frequent re-balancing as the variance sensitivity of the
option is also a function of the underlying, as shown in the graph below (see Worksheet
8.46), which would not affect the swap. So a simple hedge such as this is unlikely to be very
efficient as it brings along other exposures as well.
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Suppose we create a weighted portfolio of options with strikes K1;K2; . . . as follows:

P ¼
X

i

f ðKiÞ � Ci � �K

where �K are the steps between the strikes and f ð Þ is the amount of the ith option. The
portfolio variance sensitivity is:

VP ¼
X

i

f ðKiÞ � f@Ci=@vg � �K

If f ðKiÞ / 1=ðKiÞ2 then we find that VP becomes increasingly independent of S as the
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number of options in the portfolio increases.18 We could, at least in theory, create a robust
delta hedge. If all the options were priced off the same volatility, then that would be our
best estimate for the swap volatility.
But unfortunately this result ignores any smile effects, so we need to go back to basics.

Assume a stock price evolves as:

rt ¼ dSt=St ¼ � : dtþ � : dzt

where the drift � and continuously sampled volatility � are functions of time (and other
parameters). Using Ito’s lemma:

d lnðStÞ ¼ f�� 1
2
�2Þ dtþ � : dzt

Therefore, by subtraction, we get

dSt=St � d lnðStÞ ¼ 0:5 � �2 : dt

If we integrate from 0 to T , we get:

v0T ¼ ð1=TÞ :
ð
�2 : dt ¼ ð2=TÞ :

ð
dSt=St � lnðST=S0Þ

� �

Hence the fair fixed rate on the swap is

Fvar ¼ Efv0Tg ¼ ð2=TÞ : E

ð
dSt=St

� �
� EflnðST=S0Þg

� �
ð8:1Þ

where Ef g is the risk-neutral expectation.
But dSt=St is the return over a time interval dt, hence the expected risk-neutral return

over T is simply frTg. The other term is more difficult. There is an identity that enables us
to break a log-contract up into a portfolio of a simple forward contract plus (an infinite
number of) put and call options, that is:

lnðST=S
�Þ ¼ ðST � S�Þ=S� forward contract

�
ðS�

0

1

K 2
maxfK � ST ; 0g : dK put options

�
ð1

S�

1

K 2
maxfST � K ; 0g : dK call options
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18 Substituting for f@Ci=@vg we get

VP ¼ 1
2
T=ð2�vÞ1=2 :

X

i

f ðKiÞ � S : expf� 1
2
ðdiÞ2g � �Ki

Define xi ¼ Ki=S, we can write:

VP ¼ 1
2
T=ð2�vÞ1=2 :

X

i

½ f ðKiÞ � ðKi=xiÞ2� : �xi expf� 1
2
ðdiÞ2

where di is now a function of xi only. We wish:

@VP=@S ¼ 0 ) @VP=@Ki : @Ki=@S ¼ @VP=@Ki : xi ¼ 0

Differentiating the term ½ f ðKiÞ � ðKi=xiÞ2� with respect to Ki , we get:

@f =@Ki � ðKi=xiÞ2 þ 2 : f :Ki : ð1=xiÞ2 ¼ ½@f =@Ki � Ki þ 2 : f � :Ki : ð1=xiÞ2
The expression ½ : � is zero if f ðKiÞ / 1=ðKiÞ2.
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for any given value S�. If we set S� ¼ EfSTg ¼ S0e
rT (i.e. ATM forward), then

EflnðST=S0Þg ¼ lnðS�=S0Þ þ EflnðST=S
�Þg

¼ rT � erT
ðS�

0

1

K 2
PðKÞ : dK � erT

ð1

S�

1

K 2
CðKÞ : dK

or

Fvar ¼ ð2=TÞ : erT
ðS�

0

1

K 2
PðKÞ : dK þ erT

ð1

S�

1

K 2
CðKÞ : dK

( )

Notice that each integral is effectively a portfolio of increasingly OTM puts and calls which
will rapidly decline in value as they move further OTM.

Unfortunately, this can’t work in practice either, as options are only traded at finite steps
and it is highly unlikely that there is an option traded with a strike S� exactly equal to
EfSTg, so we need to approximate. We can re-write eq. (8.1) as:

Fvar ¼ ð2=TÞ : ½rT � ðS0e
rT � S�Þ=S� � lnðS�=S0Þ� þ f ðSTÞ

where
f ðSTÞ ¼ ð2=TÞ :EfðST � S�Þ=S� � lnðST=S

�Þg
The function f ðSTÞ may be replicated at time T by a portfolio of calls and puts expiring at
time T :

PT ¼
X

i

wip � PTðKiPÞ þ
X

i

wic � CTðKiCÞ
where it is assumed that:

Put strikes: S� ¼ K0 > K1P > K2P > � � �
Call strikes: S� ¼ K0 < K1C < K2C < � � �

Therefore:

Ef f ðSTÞg ¼ erT :P0 ¼ erT :
X

i

wip � P0ðKiPÞ þ
X

i

wic � C0ðKiCÞ
� �

For example, we want to estimate the expected variance for use in a 1-year swap. We can
observe a strip of 1-year options, trading on a spot of 100, as shown in the table below. We
will initially assume that all these options are priced using a constant option volatility of
20% pa, together with a risk-free rate of 10% pa. Therefore EfSTg is calculated to be
110.52, and we select S� ¼ 111, and will use strike steps of 5. The shape of the function
f ðST Þ is given below (see Worksheet 8.47):
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The ws can be estimated sequentially due to the asymmetric nature of the option payoff
function, that is:

w0c ¼ ½ f ðK1CÞ � f ðK0Þ�=½K1C � K0�
w1c þ w0c ¼ ½ f ðK2CÞ � f ðK1CÞ�=½K2C � K1C�

w1c þ w1c þ w0c ¼ ½ f ðK3CÞ � f ðK2CÞ�=½K3C � K2C�; etc.

For example:

. for 111 � ST � 116, only the first call option is in the money, with a value of C0 ¼ 5
when ST ¼ 116
e f ð111Þ ¼ 0 by construction, and f ð116Þ ¼ 0.00197;
e therefore f ð116Þ ¼ w0C � C0;
e which gives w0C ¼ 0:00197=5 ¼ 0.00039;

. for 116 � ST � 121, the first two call options are in the money with values C0 ¼ 10 and
C1 ¼ 5, respectively, when ST ¼ 121
e f ð121Þ ¼ 0:00766 ¼ w0C � C0 þ w1C � C1 ¼ 0:00039 � 10þ w1C � 5;
e this can also be written as:

f ð121Þ � f ð116Þ ¼ w0C � C0ð121Þ þ w1C � C1 � w0C � C0ð116Þ ¼ ðw0C þ w1CÞ � C1

e which gives w1C ¼ 0.00074, as shown in the table below.

Call Call Put Put

strikes value Weights strikes value Weights

111 7.77 0.0004 111 8.20 0.0004
116 5.92 0.0007 106 5.93 0.0009
121 4.44 0.0007 101 4.07 0.0010
126 3.28 0.0006 96 2.64 0.0011
131 2.39 0.0006 91 1.59 0.0012
136 1.71 0.0005 86 0.88 0.0014
141 1.22 0.0005 81 0.44 0.0015
146 0.85 0.0005 76 0.20 0.0017
151 0.59 0.0004 71 0.08 0.0020
156 0.41 0.0004 66 0.02 0.0023
161 0.28 0.0004 61 0.01 0.0027
166 0.19 0.0004 56 0.00 0.0032
171 0.13 0.0003 51 0.00 0.0039
176 0.09 0.0003 46 0.00 0.0048
181 0.06 0.0003 41 0.00 0.0060
186 0.04 0.0003 36 0.00 0.0078
191 0.02 0.0003 31 0.00 0.0105
196 0.02 26 0.00

Total weighted cost 0.01661 0.01994
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The approximate value of Ef f ðSTÞg is estimated to be

erT � ð0:01661þ 0:01994Þ ¼ 0:0403915
This gives:

Fvar ¼ �0:0000190 þ 0:0403915 ¼ 0:0403725 ¼ 4:04%

and volatility¼ 20.09%. This is slightly higher than the input volatility due to the linear
interpolation of the log function over the finite step size. The results have been generated in
Worksheet 8.48.

Now suppose however that the strip was subject to a smile as shown below, generated in
Worksheet 8.49:
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In this case, Fvar increases as expected to 6.46%, and therefore the ‘‘average’’ volatility to
25.42%, as shown in Worksheet 8.50.

In summary, this section has shown how ‘‘correct’’ variance and volatility may be
implied out of the options market, and how a static replicating hedge for the swap may
be constructed so that:

. changes in volatility do not force the hedge to change;

. the hedge is model-independent;

. the hedge does not protect against jumps in the stock price.

We have concentrated on variance swaps. Volatility swaps are much more difficult
because there is no simple, i.e. linear, relationship between an observation and volatility.
This means that there is no simple replication strategy, and the swap would have to be
dynamically hedged.

Define f ðxÞ ¼ x1=2. We can therefore write, using a Taylor’s expansion:

f ðvÞ 
 f ðv0Þ þ ðv� v0Þ : f 0 þ 1
2
ðv� v0Þ2 : f 00

This gives:

f ðvÞ 
 fðvþ v0Þ=2v1=20 g � fðv� v0Þ2=8v3=20 g
If we expand f ð Þ around v0 ¼ Efvg, we get:

Efv1=2g 
 Efvg1=2 � Varfvg=8v3=20
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Thus the expected volatility is less than the square root of the expected variance as
calculated above, i.e. there is a convexity adjustment. To estimate the size of the adjust-
ment, we need a more complex model of the volatility process, and there can be no simple
replicating hedge.19

An interesting variation on variance swaps is a gamma swap. Assume, for ease, that the
underlying reference is a single stock price; if the price crashes due to some significant
adverse event, the variance (or volatility) spikes. To reduce the impact of the spike,
variance swaps often contain an embedded cap to protect the seller from ‘‘crash’’ risk.
A gamma swap weights the periodic squared return lnðSt=St�1Þ2 by ½St=S0�. If St drops
close to zero, the squared return becomes extremely large, but the weighted return
approaches zero, obviating the need for the cap. Of course, if the share price rises dramatic-
ally, the weighted return rises more than the unweighted one, increasing the swap payout.
This gives rise to a trading strategy: long the gamma swap, short the variance swap which
results in small losses if St drops, and large gains if St rises.
Gamma swaps can also be used in dispersion strategies, namely trading index volatility

against the simple sum of the individual component volatilities. The proportion contribu-
tion of a component to the index increases with its share price, very much as provided by
the weighted return. Gamma swaps are easier to hedge and price than variance swaps, as
the hedging weights f ðKiÞ are proportional to 1=ðKiÞ and not to 1=ðKiÞ2—see Lee20 for
more details.
Exchange and spread options, i.e. options which involve two or more assets, possess

correlation effects. Namely, the value of the option depends upon the behaviour of the net
portfolio of assets, which obviously depends on the correlations between the assets.
Similarly correlation effects can arise in FX option portfolios, where the options are being
traded on, for example, $–¥, $–C¼ and ¥–C¼. Movements in two of the currencies will be
reflected in the third, and hence its volatility must reflect both the volatilities of the other
two plus their correlation. Such correlation risks would not be controlled by straight-
forward ‘‘Greek’’ hedging. In a very similar fashion to above, it is feasible to design
covariance and correlation swaps that would enable these risks to be managed. As before,
covariance swaps are relatively straightforward, correlation swaps are less so.21

Following the collapse of Lehman Brothers in September 2008, volatility in the markets
spiked dramatically. For example, the volatility of the S&P 500 index was 21.5% at the
beginning of 2008, 79.2% by early December, and still 43.5% by April 2009. The volatility
of Citibank shares was considerably worse: 47%, 213% and 229% on those three dates,
respectively. Banks were large sellers of volatility, often in the form of variance swaps
which are a levered version of a volatility swap, suffering losses as volatility rose despite
attempts to hedge. At the time of writing (mid-2009), the single-stock market was
effectively dead, and bid–offer spreads on index-linked swaps have widened considerably.
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19 See O. Brockhaus et al., ‘‘Volatility swaps made simple’’, Risk, January 2000, pp. 92–95 for some results using some models.
20 R. Lee, Gamma Swap, working paper from University of Chicago, December 2008. See also H. Buehler’s dissertation on
volatility markets from the Technical University in Berlin, June 2006.
21 See Brockhaus et al., ibid.



OBJECTIVE

This chapter re-introduces cross-currency swaps. It starts by discussing that most
fundamental building block, namely the cross-currency basis swap, and considers its
pricing, hedging and its role in creating a proper foreign currency discount curve.
Subsequently fixed–floating cross-currency swaps are described in the context of swapping
a fixed-coupon bond into a floating in another currency. In particular, the impact of
changing the terms of the swap on the floating margin is explored. Diff and quanto diff
swaps are then introduced, as examples of cross-currency swaps without exchange of
principal. Section 9.11 (Appendix) describes the necessary quanto adjustment effect arising
from the interaction between FX spot rates and IRs. Fixed–fixed swaps are then discussed,
of which the best-known example is long-term FX forwards. Finally, cross-currency swap
valuation is considered in some detail. Because of the principal exchange at the end of the
swap, this creates a large potential credit exposure due to movements in the future FX spot
rate. It is common practice to re-balance the principals in the swap regularly, by settling the
change in the value of the principals.

The chapter concludes by a brief look at some rarer structures, such as dual and
multi-currency swaps, including power reverse duals, and cross-currency equity swaps.

9.1 FLOATING–FLOATING CROSS-CURRENCY SWAPS

Cross-currency swaps (CCSs) were briefly discussed in Chapter 1. Generic CCSs all have
the same fundamental three-part structure betraying their back-to-back loan origins:

. the initial exchange of principal amounts;

. periodic exchanges of interest payments;

. re-exchange of the principal amounts at maturity.

A floating–floating or cross-currency basis swap (CCBS) possesses this structure where
both of the reference interest rates are floating. Consider the following example, based on
an actual swap executed some years ago. From party A’s point of view:

. at start, pay USD100m and receive GBP30m;

. every 3 months, receive 3mo. USD Libor on $100m, and pay 3mo. GBP Libor on £30m;

. at maturity, receive back USD100m and pay GBP30m.

If the two sides of the swap are considered separately, then each one is effectively a rolled
money account (or par FRN depending on your perspective) which has, as argued in
Chapter 3, zero economic value. Therefore in theory a CCBS with no spreads on either

9
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side should have a zero value. If we took two discount curves, one USD and the other GBP,
created from the relevant IRS markets, calculated the implied Libor rates, created the
cashflows and discounted, we would indeed get zero values on both sides. In practice, as we
shall see in the next two sections, CCBSs are not quite as simple as this.
When this swap was freely entered into, the prevailing spot exchange rate was $1.7/£.

Therefore we can see that the initial exchange is considerably away from the spot rate. Does
this matter? From the point of view of market ‘‘fairness’’, in other words does the swap
have an initial value of zero?, the answer must be that the exchange rate is irrelevant. By
breaking the swap into the two FRNs, each of which is fair in its own right, the combina-
tion must also be fair. Of course, as soon as the swap starts, the first Libors are fixed and
then the exchange rate becomes important at least to net-value the known cashflows as the
markets move. Obviously also, if the swap included any margin on either side, then the
exchange rate is relevant from the beginning.
What about from a credit perspective? This is a very different story. Imagine a situation

in which, immediately after the initial exchange, counterparty B absconds! Counterparty A
is effectively out [$100m� £30m � 1.7]¼ $49m. To make the swap credit fair as well, the
principal amounts should be $51m and £30m. Suppose we re-write this swap as shown
below:

B 

3mo. £ Libor on £30m

B 

          £30m

B 

£30m

A 

$49m

$51m

A 

3mo. $ Libor on $49m

3mo. $ Libor on $51m

A 

       $49m

       $51m

Then we can see that it is actually made up of $51m ‘‘at-market’’ swap plus a $49m loan.
The swap is said to be ‘‘off-market’’ with the relationship:

Off-market¼At-marketþLoan or deposit

but effectively off-balance sheet. The majority of CCSs are slightly off-market, usually to
ensure that the principal amounts are both round amounts. The above example is an
obvious exception, and was in fact used to conceal the embedded loan.
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Coming back to the original swap for a moment, and thinking of it as back-to-back
rolled money accounts, there is no natural maturity to the contract. The arrangement could
last in perpetuity provided that the two counterparties are happy with the ongoing credit
exposures. In the late 1980s there were at least two banks in London that used to offer
‘‘perpetual swaps’’, i.e. CCBSs with no contractual maturity. Either counterparty could
declare, at the time of a floating rate fixing, that the swap would terminate at the next
payment date with a re-exchange of the principal amounts.

Whilst there is a reasonably active market in CCBSs, it is estimated that some 75% of the
CCS market have a fixed–floating (usually USD Libor) structure. But CCBSs are extremely
important as a fundamental building block, as we can construct a fixed–floating swap using
a CCBS plus a simple IRS:

As a theoretical CCBS swap is priced at Libor–Libor flat, this suggests that the market
rates in the fixed–floating CCS market should be very close to those in the IRS market. For
pairs of highly liquid currencies, this is generally true, although distortions do occur. The
suggested bid–offer spread should be wider than in the IRS market because CCBSs carry
quite a high potential credit exposure due to the terminal principal exchange, and hence a
much higher capital charge than IRSs.

9.2 PRICING AND HEDGING OF CCBSs

The table below shows quotes for freely available CCBSs:

JPY (Act/360) GBP (Act/365) Euro (Act/360)

1 2.00 �1.00 �1.25 �5.25 �5.125 �7.125
2 3.00 0.25 �1.25 �5.25 �3.250 �5.250
3 4.00 1.00 �0.75 �4.75 �2.750 �4.750
4 5.00 2.00 �0.75 �4.75 �2.375 �4.375
5 6.00 3.00 �0.75 �4.75 �1.875 �3.875
7 7.00 4.00 �0.75 �4.75 �1.125 �3.125

10 7.75 4.75 �0.75 �4.75 �0.375 �2.375
15 7.50 4.50 �1.00 �5.00 1.875 �2.125
20 7.00 4.00 �1.00 �5.00 2.625 �1.375
30 6.50 3.50 �1.00 �5.00 3.125 �0.875
40 �1.00 �5.00 3.250 �0.750
50 �1.00 �5.00 3.375 �0.625

All 3mo. rates against 3mo. USD Libor on 4 February 2008.
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The quotations are showing the basis point spread on the non-USD Libor side. For
example, the 3-year yen swap is f4; 1g meaning that:

Bank 

3mo. JPY Libor +1 bp

3mo. $ Libor 

Bank 

3mo. JPY Libor + 4 bp

3mo. $ Libor 

Cross-currency swaps follow the usual convention in the FX market, namely that there is a
2-day settlement period, as in the US. However, yen interest rates (as well as, for example,
GBP and ZAR) use same-day settlement. This implies that the yen leg of the CCBS is
2-days forward starting, and a small adjustment needs to be made (see Section 9.4 for a
more detailed discussion).
The mid-point is 2.5 bp; this is known as the skew. There are at least three possible

reasons for the existence of this skew:

1. Assume a prime US organisation could raise USD funds at Libor flat. It could then
swap these funds via a CCBS into yen Liborþ (mid-rate of) 2.5 bp. To avoid arbitrage,
the skew should be a measure of the relative access the organisation has to the two
money markets.

2. An imbalance in the supply and demand for CCBSs. If the market was perfectly
balanced, the bid-offer prices would be equi-distant from zero.

3. Very often, short-term FX forwards are used to hedge CCBSs, as described below.
These forwards themselves are subject to skews, namely a distortion away from the
theoretical value determined by interest rate differentials. The table below shows that
the skew in the short-term $/¥ market, measured in terms of basis point adjustments to
the yen rates, is not trivial relative to the CCBS spread (see Worksheet 9.3).

The relative importance of these reasons depends upon the actual currencies involved and
the current market conditions:

Today’s date: 04-Feb-08 Spot rate: 106.601

Theoretical Quoted Implied Skew

Mid-JPY Mid-USD forwards forwards yen rate (bp)

06-Feb-08
06-May-08 0.809% 3.083% 105.9998 105.987 0.7608% �4.85
06-Aug-08 0.858% 3.035% 105.4457 105.458 0.8816% 2.33
06-Feb-09 0.933% 2.834% 104.5986 104.554 0.8906% �4.24

In practice therefore it would be argued that the CCBS at the mid-rate of {2.5 bp} would
have zero value—not quite the theoretical argument used before. The following approach
may be used to hedge a CCBS, and hence produce an estimate of the cost-of-carry. In
practice, as hedging would be done on a portfolio basis, this estimate is likely to be far too
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high unless the portfolio was completely one-sided. Consider the 3-year swap quoted
above, but assume we don’t know the spread s:

Time USD JPY

0 þ1m �106.601m
3 �Libor þ(Liborþ s)
6 �Libor þ(Liborþ s)
9 �Libor þ(Liborþ s)

..

.

36 �Libor þ(Liborþ s)
�1m þ106.601m

Re-write it as a series of 3-monthly forward FX swaps, i.e. with a principal exchange
every 3 months. The first swap could be hedged using a reverse spot 3 monthly swap as
shown:

Cross-currency basis swap

Time USD JPY

0 þ1m �106.601m
3 �Libor þ(Liborþ s)

�1m þ106.601m

3 þ1m �106.601m
6 �Libor þ(Liborþ s)

�1m þ106.601m

6 þ1m �106.601m
9 �Libor þ(Liborþ s)

�1m þ106.601m

..

.

33 þ1m �106.601m
36 �Libor þ(Liborþ s)

�1m þ106.601m

where sk is the implied skew. Hence the net yen cashflow at the end from the first contract
plus hedge is þðs� skÞ � 106.601 � $1m � 0.25.

Consider the second contract. We could think of hedging this using a forward–forward
FX swap; this strategy might work in this case because it is only 3 months out, but
forward–forward contracts are unlikely to be available as we consider contracts further
out. Suppose we do nothing for 3 months, and then hedge with another spot 3-month
forward swap, that is:
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First hedge

Time USD JPY

0 �1m þ106.601m
3 þLibor �(Liborþ sk)

þ1m �106.601m



Second CCBS contract

Time USD JPY

0 þ1m �S0;0

3 �Libor þ(Liborþ s)
�1m þS0;0

where S0;0 and S3;3 are the observed spot rates in 0 and 3 months’ time, respectively. It is
assumed that the skew has remained constant. There is obviously a yen principal mismatch
at the beginning due to the movement in the spot rate. If:

ðS3;3 � S0;0Þ > 0

then we have excess yen to be deposited at Liborþmd (the margin is likely to be negative):

ðS3;3 � S0;0Þ < 0

then we have a yen shortfall to be funded at Liborþmb.
Therefore the cashflow at the end is (Note: the Libor cashflows cancel.):

fs � S0;0 � sk � S3;3 þ ðS3;3 � S0;0Þ �mxg � $1m � 0:25

where x depends on the sign of ðS3;3 � S0;0Þ. If the future spot rates could be estimated, then
all the cashflows at the end of each quarter could be calculated, and hence the cost of the
hedge.
It is of course a foolish person who would try to predict future spot rates. Assume that

the relative change in the spot S follows a normal process:

dSt=S ¼ � : dtþ � :
p
dt : "

where � is the drift, � the volatility and " is Nð0; 1Þ or:

St;0 ¼ S0;0 � expfð�� 1
2
�2Þ : dtþ � :

p
dt : "g ¼ EfSt;0g � expf� :

p
dt : "g

Market practice varies for the next step, because there are no good real predictors for the
future spot rate: different approaches use:

. EfSt;0g ¼ S0;0 � expfð�� 1
2
�2Þ : dtg as shown, where � ¼ ð�rrY � �rr$Þ and �rr is a

continuously compounded rate estimated from the market curves;
. EfSt;0g ¼ Ft;0, the forward rate quoted at time 0;
. EfSt;0g ¼ S0;0, as various studies have shown that the current spot rate is as good a
predictor of future spot rates as anything else.

We can estimate a probability range for St;0. For example, there is a 75% probability that a
normally distributed variable will lie within �1.15 standard deviations, that is:

EfSt;0g � expf�� :
p
dt : 1:15g � St;0 � EfSt;0g � expfþ� :

p
dt : 1:15g
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Second hedge

Time USD JPY

0 �1m þS3;3

3 þLibor �(Liborþ sk)
þ1m �S3;3



This can be used to generate a probability envelope as shown below1:
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where the central line is the anticipated forward rates. Worksheet 9.4 calculates this graph
as follows:

. columns [1] and [2] are the current discount curves;

. Ft;0 is estimated by S0;0 � (DF$
t =DFt

¥) in column [3];
. columns [4] and [5] calculate the upper and lower curves.

Suppose the future spot rate followed the upper curve.2 According to the construction
above, there would be a continual excess of yen that would have to be deposited for
3 months—see column [6]. The worksheet has assumed a skew of 2 bp and a negative
deposit margin of 5 bp pa, and calculated the total PV of the cost of hedging to be just over
¥137,000 on a principal of ¥106.6m based on an annualised volatility of 25%. This can be
converted into a spread of 4.3 bp pa by dividing the cost by the 3-year quarterly Q, which is
estimated in column [9].

The process is then repeated following the lower curve with a funding margin of 3 bp,
giving a PV of ¥37,000. In the real world, we don’t know what path the spot rate will take
in the future. However, we know that the cost of any path lying wholly within the envelope
(and indeed any reasonable path extending below the lower curve) must be less than the
worst case of the two curves. Therefore the cost of hedging is estimated to be 4.3 bp pa with
a 25% chance that this might be exceeded.
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1 This methodology is applied by the risk department of a major bank in London. It made an interesting practical observation.
If EfSt;0g is estimated by S0;0 � expfð�� 1

2
�2Þ : dtg, the upper curve will start to turn down again at t� ¼ f1

2
"�=ð�� 1

2
�2Þg2. For

example, if " ¼ 1.65, � ¼ 0 and � ¼ 50% (say for a commodity), then t� is just under 11 years. This is one argument for using a
different estimator for EfSt;0g; alternatively it is suggested that the upper curve is held constant for t > t�.
2 This is a very similar approach to that used to estimate the PFE of a swap, and hence its credit-adjusted price—see
Section 6.7.



The approach described above is for micro-hedging, and hence pricing, a single CCBS
very conservatively. In practice, a portfolio is likely to be reasonably balanced, so there
would be a substantial amount of netting, and that a lower probability such as 50%
(corresponding to a multiplier of 0.67) would be used, leading to a substantially reduced
required spread. This worst-case simulation approach can also be used for more complex
swaps such as quanto–diff swaps—see Sections 9.5 and 9.11 (Appendix).

9.3 CCBSs AND DISCOUNTING

Consider the following situation: you are a US bank, expecting to receive ¥1bn with
certainty in 5 years’ time. What is it worth today? You have two alternatives:

1. Calculate the yen PV using the yen discount curve, and then convert at spot.
2. Convert from JPY to USD using the quoted 5-year forward outright, and then

present-value using the dollar discount curve.

Will the two produce the same valuation? It is highly unlikely unless the forward rate is
calculated using purely the two discount curves and does not have any inherent skew.

CCBS Yen IRS

�P$ þP¥ �P¥ þP¥

þL$ �ðL¥þ sÞ þL¥ �F¥

þL$ �ðL¥þ sÞ þL¥ �F¥

þL$ �ðL¥þ sÞ þL¥ �F¥

þL$ �ðL¥þ sÞ þL¥ �F¥

þL$ �ðL¥þ sÞ þL¥ �F¥

þL$þP$ �ðL¥þ sÞ � P¥ þL¥þP¥ �F¥�P¥

Net value¼ 0 Net value¼ 0

Consider a generic mid-rate CCBS and a generic mid-rate yen IRS to which has been added
the notional principals. Each is freely traded in the financial markets, and will initially have
zero value. Being a US bank, we assume that you can access your domestic money market
efficiently, and are able to fund or deposit USD at Libor flat; this is the same assumption as
in earlier chapters. Therefore the USD leg of the CCBS above has a zero value, and hence
the JPY leg including the spread must have zero value as well. But if this is true, we can no
longer argue that the floating leg of the yen IRS including the notional principals has zero
value (except in the trivial case when s ¼ 0) to the US bank. Quietly ignoring potential
difficulties such as differences in frequencies and daycount conventions, the CCBS spread
could be added to both sides of the IRS without affecting its net value. Both individual sides
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would now value to zero, and it would be feasible to repeat the bootstrapping process to
derive the CCBS-adjusted discount curve.

Yen IRS

�P¥ þP¥

þðL¥þ sÞ �ðF¥þ sÞ
þðL¥þ sÞ �ðF¥þ sÞ
þðL¥þ sÞ �ðF¥þ sÞ
þðL¥þ sÞ �ðF¥þ sÞ
þðL¥þ sÞ �ðF¥þ sÞ
þðL¥þ sÞ þ P¥ �ðF¥þ sÞ � P¥

Net value¼ 0

However, bootstrapping requires a CCBS-adjusted zero-coupon rate to start the process
off. A better and more general approach is to model the CCBS directly having already
estimated the Libor rates off the unadjusted curve (see Worksheet 9.2 ‘‘Building an
adjusted yen curve’’ on the accompanying CD for details).

We want to estimate a smooth discount (or forward curve) that will value all the CCBSs
to zero. One way to do this3 is as follows:

. Column [4] shows the correct dates for the two sides of the CCBS, including the 2-day
settlement period.

. Columns [5] and [6] show the interpolated yen z-c rates and the unadjusted 3-month
forwards calculated for those dates.

. Column [2] shows a guessed spread curve over the unadjusted forward curve.

. Therefore, a new forward curve is built in column [8] by interpolating this spread curve,
followed by an adjusted DF curve in column [9]. In the worksheet, the spread curve is
linearly interpolated in column [7], but some other form could easily be used.

. Column [10] values the market-quoted CCBSs, using the expression:

Vk ¼ �1þ
X

i

Li � di �DFi þ sk �
X

i

di �DFi þDFk

where Li are the unadjusted yen Libor rates, and DFi the adjusted DFs.
. The objective is to calculate the new spread curve in column [2] so that the CCBSs are all

zero-valued, and that the new forwards are as smooth as possible. Column [11] contains
the smoothing conditions.

This procedure is easy to implement in practice, and yet provides good forward and
discount curves.
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3 There are alternative and more complex approaches; see, for example, E. Fruchard et al., ‘‘Basis for change’’, Risk Magazine,
October 1995, 8(10), pp. 70–75.
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To see the adjusted curve in use, we will asset-package a USD bond into a 5.5-year par
maturity JPY package; the bond details are shown below:

Today’s date = 04-Feb-08

USD bond details:

Maturity = 15-Sep-13
Coupon = 3.75% sa
Redemption = 100
Clean price = 96.00

Fraction of year = 0.104 to next coupon
Accrued interest = 3.3596
Dirty price = 99.3596

Current spot rate = 106.601

First, let us assume we are going to swap the bond into a par 5.5-year USD 3mo. Libor
package. Using the techniques described in Chapter 5, the bond can be swapped into a
synthetic FRN paying USD Liborþ 47.65 bp (see Box 1 of Worksheet 9.6).
We now want to swap this package into JPY. Box 2 of the worksheet swaps the bond

into yen in two stages. It first builds the floating yen side of a cross-currency swap
as {Liborþmargin} off the IRS curve using the implied forward rates. The margin is
calculated by ensuring that the value of this leg is equal to the value of the USD leg above:
this gives a margin of 47.73 bp. Second, we now recognise the existence of the CCBS. The
5.5-year CCBS margin of 4.75 bp (estimated by interpolating the CCBS curve) is added to
the 47.7 bp margin, giving a net margin of 52.5 bp.
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An alternative approach is to use the adjusted discount curve, as shown in Box 3 of the
worksheet. Notice that the discount factors in columns [1] and [3] are different; however,
the implied yen Libor rates must be the same because these are only quoted once—see
columns [2] and [4]. We now calculate the {Liborþmargin} cashflows as before. The
margin is set so that the value of this leg is again equal to the USD value, but of course
this time using the adjusted discount curve. The resulting margin is again 52.5 bp, albeit
fractionally different.

Which approach is ‘‘correct’’? Probably (although it is not clearcut to me) the first as it
uses a tradable spot instrument, but the second is much easier to implement in a system and
to apply to a portfolio, and therefore is more commonly applied.

The vast majority of CCBSs have a USD Libor leg. This is reducing in a similar way to
the spot FX market, namely crosses are becoming more common as Europe and the Far
East increasingly use EUR and JPY reference rates, respectively, instead of USD. If your
domestic currency is not USD, then the above discussion needs to be modified to ensure
that adjustments are made to the valuations of all non-domestic cashflows.

9.4 FIXED–FLOATING CROSS-CURRENCY SWAPS

Whilst CCBSs are fundamental financial instruments, some 75% of the CCS market is
fixed–floating, in many cases as above originating from swapping a bond issue into a
floating reference currency.

When swapping a bond issue, the issuer requires the entire bond structure to be reflected
in the swap, so that there is no residual exposure to the issuance currency. Some typical
examples of the types of manipulations will be discussed through an example, which is
based upon a real bond issue by a German bank in the late 1990s. The issuer had a target to:

. raise USD40m;

. at Libor� 25 bp or better.

Notice that the bond was issued with a coupon below the current swap rate. This was
possible because, being a German issuer, it was sold into the retail base in Germany,
Switzerland and Benelux who cannot access the SA swap market very efficiently.

Date: 7 June 1999

Details of bond issue:

Size: ZAR250m
Term: 5 years
Coupon: 13.75% ANN 30/360
Issue price: 101.25
Fees: 2%
Expenses: 0.25%
Payment: 4 weeks from issue

Details of swap:

Type: ZAR fixed, USD floating
All-in swap: 13.935% qu Act/365

Current spot exchange rate: 1USD¼ZAR6.108
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There are a number of issues to be dealt with, such as:

1. Bond proceeds are raised 4 weeks after issue
e therefore the initial exchange has to be delayed although the swap starts today.

2. Net bond issue at 101.25� 2.25¼ 99
e i.e. raises ZAR247.5m;
e but of course has to repay ZAR250m on maturity;
e so there is a principal mismatch.

3. Issuer only wishes to raise USD40m
e although at the current spot rate ZAR250m is worth USD40.93m;
e hence long USD0.93m which could subsidise the margin.

4. Bond proceeds are raised 4 weeks after issue
e but the German bank wants USD40m immediately the bond issue is underwritten;
e effectively requiring a 4-week loan.

The issuer wants all these taken into account in the swap structure, and to receive an
estimate of the sub-Libor margin.
As a starting point, assume that the bond is issued today (7 June 1999) at par. The bond

has a value of ZAR8,060,748 or USD1,319,703 as shown in Box 1 of Worksheet 9.7. This is
equivalent to a USD stream based on a principal of USD250m/6.108¼USD40.93m. The
fair margin is 75 bp pa below USD6m Libor.
Is this correct? The current 5-year ZAR swap rate is 13.935% quarterly. This converts

into 14.680% using the quick and dirty formula ð1þ 1
4
� rquÞ4 ¼ 1þ rann or 14.700% if the

discount curve is used; see Box 2 of the worksheet. The bond has therefore been issued at
14.70%� 13.75%¼ 95 bp below SA curve. So, 1 bp annual coupon on the sa side is worth
ðDF1 þ � � � þDF5Þ ¼ 3.39 bp upfront. The equivalent calculation of USD 1bp sa is worth
Q5 ¼ 4.30 bp. Hence ZAR 95 bp � (3.39/4.30)¼USD 75 bp sa so the margin appears
correct. The ratio (3.39/4.30)¼ 0.789 is called the ‘‘conversion factor’’ and indicates
how much 1 bp in ZAR is worth in USD. Conversion factors depend upon the two curves
and the maturity, which change frequently. Their main use is to calculate the impact of
changes in the issuance level of the bond on the funding margin.
However, the principal exchange does not happen for 4 weeks: What is the impact? This

may be estimated in two parts:

þ Late receipt of ZAR250m costs the swap counterparty ZAR250m � (1�DF1month)

¼ 250m � (1� 0.9894)¼Z2,645,015¼ $433,041

þ Late payment of $40.93m benefits the swap counterparty $40.93m � (1� 0.9962)

¼ $154,392

The net balance of $278,650 is a cost to the counterparty. The value of 1 bp on
40.93m¼ 40.93m �Q5 � 1 bp = $17,607; therefore the balance corresponds to a margin
of 278,650/17,607 or 15.8 bp (see Box 3 of the worksheet).
Box 3 confirms this result. The principal amounts are now exchanged on 5 July 1999. The

value of the ZAR cashflows has reduced quite significantly, and this is compensated by a
smaller sub-Libor margin on the USD side.
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However, the issuer only wants to raise $40m, not $40.93m, i.e. a reduction in the USD
principal of 2.3%. As the SA leg hasn’t changed, the USD margin should increase by the
same amount, i.e. from 59 bp to 59 � ð1þ 2:3%Þ ¼ 60.4 bp. (Note: this is only approximate
as principal exchange is not at start of swap.) Box 4 of the worksheet confirms this
argument, increasing the margin to 60.3 bp.

Next the issuer wants the USD40m upfront, although he will not have ZAR bond
proceeds for 4 weeks. The cost of this effective loan to the swap counterparty is
$40m � ð1�DF1monthÞ ¼ $150,884. The value of 1 bp on 40m¼ 40m �Q5 � 1 bp¼ $17,207,
therefore this cost is equivalent to a reduction in the margin of 150,884/17,207¼ 8.7 bp, as
shown in Box 5 of the worksheet.

Finally the issuer does not receive the par value of the bond, but only 99%, i.e.
ZAR247.5m. The cost to the swap counterparty of being 1% short in 4 weeks time is
ZAR250m � 1% � (1�DF1month)¼ZAR2,473,550 or $404,969. This will reduce the
margin by 404,969/17,207¼ 23.54 bp (see Box 6 of Worksheet 9.7).

The objective of this section was to demonstrate how a cross-currency swap may be
manipulated, and in particular how the impact of actions may be quickly verified.

9.5 FLOATING–FLOATING SWAPS CONTINUED

As we have already described, investors at the short end of the US curve were having a
torrid time in 1993, especially as the year drew to a close, rates fell and no increase was
anticipated. The same investors saw a very different picture in Germany. The need to fund
re-unification and to support the deutschmark had inverted the curve, with short-term
money rates at about 9%, some 600 bp above the US ones. But how could they take
advantage of this situation?

The obvious way is to liquidate the US investment, convert the money into DEM and
re-invest. However, the same outcome may also be achieved by entering into an at-money
CCBS to pay US Libor and receive DEMLibor (plus or minus a small margin which will be
ignored in the following discussion). Because the initial exchange is done at the current spot
rate, it has no economic value and can be omitted; the spot rate being used to determine the
relative principals for the interest payments and the final exchange. The cashflows are as
shown in the diagram below:
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Whilst less extreme at the time of writing, a Japanese investor might well look across at the
USD curve, and see an initial positive spread, in excess of 200 bp, widening out to 300 bp in
5 years’ time. The investor could pay away JPY Libor plus JPY principal at the end, and
receive USD Libor plus USD principal.
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The Japanese investor is now receiving a higher rate of interest, but has entered into two
sources of FX exposure:

1. Exposure on the principal exchange at the end. Because US interest rates are higher
than yen rates, theoretically the USD would be expected to weaken against the yen
during the swap, and therefore the USD principal received at maturity is likely to be
worth less than the JPY principal paid away.

2. Exposure on the periodic receipts of USD interest.

It is likely, unless the swap has a very long maturity, that the exposure on the principal is
greater than on the interest receipts.
Two swap structures were devised to remove the FX exposures and make the

transactions rather cleaner for the investor. The first were called differential or ‘‘diff’’
swaps, or CCBSs with no exchange of principals. This removed the first exposure to
the investor, but of course the counterparty would demand compensation in the form
of a margin, in this case deducted from the USD side. Worksheet 9.8 prices a 5-year
JPY–USD diff swap. Columns [1] and [2] estimate the implied yen Libor rates off the
unadjusted curve, and the adjusted yen DFs; column [3] estimates the USD forward rates.
The cashflows are then built, and the breakeven margin of 228 bp under the USD curves
estimated.
Diff swaps still expose the investor to some FX risk. To eliminate all FX risk,

‘‘quanto–diff’’ swaps were devised. From the investor’s point of view, these are extremely
simple, that is:
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To pay Yen Libor on P¥

To receive ($ Libor�margin) on a yen principal P¥

Because the currency of the cashflow is determined by the principal, this is really a
single-currency swap, albeit using a foreign USD reference curve. The next worksheet
has the same structure as the previous one, but applies the USD Libor rates to the JPY
principal. The fair margin is 237 bp. This is higher than before as expected, but the
difference of only 9 bp confirms the earlier statement that the FX exposure on the principal
is likely to be greater than on the interest cashflows (see Worksheet 9.9).

Notice the difference between the diff and the quanto–diff curves. In the former, the
investor is still paying away the stronger currency, and hence the USD curve less margin is
mainly above the yen curve. But with the quanto swap, the yen and {USD�margin} curves
are on average equal, and the investor is effectively taking a view on the relative movement
of them. If they are roughly parallel, then there is no immediate return enhancement, and
hence little demand. If the curves are substantially non-parallel, as was the case in 1993,
then the US investor would receive a return enhancement albeit at the expense of potential
losses later. More recently (in 1995), the Japanese–Australian curve spread was wider at the
short end than the long end, and there was some investor interest.

The table below summarises the position:

Swap! CCBS Diff Quanto–diff

USD margin (bp) 0 �230 bp �239 bp
Risks
IR T T T
FX on principal T � �
FX on interest T T �

Now consider the quanto–diff swap from the point of view of the swap counterparty.
How might he hedge it? The yen Libor side and the margin are routine and will be
ignored:

Swap 

counterparty 

USD Libor on PY Sell USD futures 

Assume the quanto leg is to be hedged by selling USD deposit futures. If USD rates rise, the
USD-related payment on the swap increases, but the futures margin is received. Con-
versely, if rates fall, the swap payment is less but margin has to be paid. But of course
the swap payments are in JPY, whilst the margin is in USD. So the hedge will offset
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fluctuations in the swap payments, but in the wrong currency, i.e. the counterparty has an
FX exposure in addition to the interest rate exposure.4 This is difficult to hedge in any static
fashion because its size and direction depends on the movement in interest rates. Further-
more, FX rates and interest rates are generally correlated, so shifts in the correlation
structure will impact hedge efficiency. The normal practice is to dynamically hedge in a
similar fashion to FX options, but recognising that this carries a substantial amount of
basis risk which should be reflected in the pricing. Two revised formulae and some sample
results are outlined in Section 9.11 (Appendix); note that for the example above, the margin
is further increased indicating the possible impact of these effects.

9.6 FIXED–FIXED CROSS-CURRENCY SWAPS

Conceptually these are very straightforward, simply consisting of two known cashflows in
different currencies which have a net value of zero. Each cashflow may be derived by
reference to a fixed rate of interest, i.e. 6% Act/360 annual on $100m with or without
principal cashflows, or simply be a stream of cashflows possibly determined by some other
activity. They are widely used, but very often as part of a larger structure. An exception to
this are long-term FX forward contracts (LTFXs).
Consider a normal FX outright contract such as the one discussed above:

6mo. FX out of 4 Feb 2008:

To sell $100m on 6 Aug 2008
To buy ¥105.458m

This was priced theoretically off the two money market curves, and the skew estimated to
be 2.33 bp on yen Libor. The structure of the outright, using swap terminology, is two zero-
coupon legs with bullet payments at the end of each. But when the maturity of this outright
is increased beyond 12 months, zero-coupon cash rates seldom exist and we must resort to
swap techniques.
For example, a 5-year LTFX would have the following structure:

USD JPY

Today 0 0
0 0
0 0
0 0

..

. ..
.

0 0
Year 5 þ1 �S5
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namely, to buy USD and to sell JPY in 5 years’ time at the rate of yen S5 per USD. If S0

is the current spot rate, then 1 �DF$
5 � S0 � S5 �DF5

¥¼ 0, i.e. S5 ¼ S0 �DF$
5=DF5

¥

where the yen discount factor is off the CCBS-adjusted curve. From Worksheet 9.12,
this gives:

S5 ¼ 106:601 � 0:838308=0:942304 ¼ 94:836

Pricing LTFX and similar structures is relatively simple. Because they are often very large
one-off transactions, they may be priced and hedged as a single deal rather than merely
managed within a portfolio. A technique that is widely used is as follows.

First consider the USD side on its own: we will be receiving (say) $1m in 5 years’ time as
shown in column [2] of Worksheet 9.10. What transactions can we do today that will create
a matching liability in 5 years?

a. Suppose we borrow some money $P5 at, given we are still a US bank, $ Libor
flat.

b. Simultaneously enter into a 5-year swap to receive floating, and to pay $F5 ¼ 3.505%
annual Act/360—this effectively converts the borrowing from floating to fixed.

c. The amount to be borrowed is:

$P5 ¼ $1m=ð1þ 1:017 � 3:505%Þ ¼ $965,592

where (6 Feb 13–6 Feb 12)/360¼ 1.017. At the end of the last period, the
liability¼ $P5 � ð1þ 1:017 � 3:505%Þ ¼ $1m.

d. Of course, interest has to be paid in each of the earlier periods; this gives rise to
negative cashflows as shown in column [3].

e. The net effect is in [4], where it can be seen that the 5-year cashflow of the LTFX has
now been reduced to an upfront transaction plus only four future cashflows.

f. The steps are now repeated: as the fourth net cashflow¼ �$34,220 is negative, we
deposit $34,220/(1þ 1.011 � 3.275%)¼ $33,123 which generates principal plus interest
receipts in the last period which exactly offset the fourth cashflow: see column [5], and
so on.

At the end of the process, we have effectively entered into five money market transactions
and five IR swaps with differing maturities. The net amount of money to be borrowed
upfront is $838,308 (see column [12]) which is of course equal to $1m �DF$

5.
In practice, it would work somewhat differently, and Worksheet 9.11 demonstrates

this.
The swap principals may incidentially be estimated rather more easily than above:

. create a matrix A such that {ai j ¼ 0 if i < j, ai j ¼ Si � dj if i > j, and ai j ¼ 1þ Si � di if
i ¼ j}, where Si is the ith swap rate, dj the length of the jth period;

. P ¼ A�1 :CF where CF is the vector of original USD cashflows arising from the LTFX
(column [2]).

This result is shown in column [3]. We can replicate the transaction by:

. Borrow $838,308 at 12mo. Libor for 5 years and simultaneously enter into the swaps.
At the end of the first year
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e interest has to be paid based upon the current 12mo. rate of 2.89625%: this is
$24,684—see column [4];

e the swaps will generate a surplus or deficit—in this case a deficit of only $5,8365 in
column [5];

e therefore there is a total cash shortfall of $30,520 as in [6], which will be funded by a
new Libor borrowing.

. The new Libor rate is also fixed at the end of the first year. This is of course
currently unknown, and the worksheet calculates a forward rate from the implied curve
using:

Ft;1=2 ¼ F0;1=2 : expf� :
p
t : "g

where Ft;1=2 is the 1/2 forward rate observed at time t, � the annualised volatility and "
a random sample from a unit normal. The new forward curve is in column [1].
The worksheet on the CD will permit the Libor curve to be randomly simulated, to
demonstrate the hedge working under a range of situations.

At the end of the second year:

. as before, interest has to be paid based on F1;1=2;

. the new swap surplus or deficit is generated;

. the cash shortfall is rolled over.

Notice that the total cash shortfall at this point is constant; as F1;1=2 changes, fluctuations
in the interest payments are exactly offset by the cash generated by the swaps. At the end
of 5 years, the total shortfall is $1m, i.e. precisely matching the inflow from the
LTFX.
The above discussion has assumed mid-swap rates, and all borrowing and lending takes

place at Libor flat. Very often bid–offer spreads are included in the swap rates, especially if
the transaction is being hedged at arm’s length. It is quite simple to modify the calculations
accordingly.
We have agreed that we needed to borrow $838,308 upfront to create a liability which

exactly offsets the $1m that will be received in 5 years’ time. But what shall be done with the
borrowed money? We can enter into a spot FX transaction to sell the USD and receive JPY
S0 � 838,308¼ 89,364,451, and then deposit these proceeds using the yen money market.
Using the same technique, yen IRSs may be used to guarantee the value of the asset in
5 years’ time (see column [8] of Worksheet 9.12).
The quoted forward rate is therefore:

S5 ¼Value of JPY asset in 5 years’ time/Value of USD liability in 5 years’ time

If it is assumed that the yen deposit will earn Libor flat, then S5 ¼ 94.624 calculated either
using the method above or directly from S0 �DF$

5=DF5
¥ using of course the unadjusted yen

DFs.
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k � Lk �

P
Pj � dk �

PðPj :SjÞ where d 0
k and dk are the lengths of the kth period on the floating

and fixed side of the swaps, the swaps may differ due to daycount conventions and the summation for j 	 k.



USD spot sale USD borrowing JPY deposit JPY spot buy
of 838,308 of 838,308 of S0 � 838,308 of S0 � 838,308

$ IR Periodic Periodic ¥ IR
swaps $ Libor ¥ Libor swaps

interest interest
payments receipts

USD forward USD liability JPY asset JPY forward
receipt of of 1,000,000 of S5 � 1,000,000 payment of
1,000,000 S5 � 1,000,000

The structure of the transaction plus hedge is shown diagrammatically above. The spot and
forward transactions are shown on the outside, then the two sets of IRS hedges, and finally
the two money market transactions are shown in the middle. But we know that back-to-
back money market transactions can be replicated by a structured CCBS, which is effec-
tively rolled over each period. Hence the total hedge for an off-balance sheet forward would
also off-BS.

However, we know from the 5-year CCBS market that a bank capable of raising money
at USD Libor flat would pay (a mid-spread of) 4.5 bp above yen Libor. Incorporating this
reduces S5 to 94.765—the margin may be entered into the worksheet as indicated. In these
circumstances the first CCBS transaction is:

. to receive a USD principal of 838,308;

. to pay a yen principal of 89,364,451; and

. to pay $ Libor and to receive ¥ Liborþ 4.5 bp, respectively;

the cashflows are shown in columns [1] and [9] of Worksheet 9.12 (in Boxes 1 and 2). The
periodic cashflows plus the surpluses or shortfalls from the two IRS strips, see columns [3]
and [11], respectively, are then also paid into CCBSs, all of which mature on 6 Feb 2013.
The overall outcome is a USD liability of 1 million and a JPY asset of 94,765,153. Notice
that there is a very small difference between the yen asset used to estimate the size of the
IRS hedge and the resulting balance on the money market account of some ¥500. This is
because the argument here is circular, and only converges to within a small error.

If the adjusted yen discount factors are used in S0 �DF$
5=DF5

¥, as discussed above, we
get a very similar result, namely S5 ¼ 94.765. The latter is, as before, a very quick method
for pricing LTFXs whilst still reflecting the relative costs of funds.

9.7 CROSS-CURRENCY SWAP VALUATION

This is very similar to interest rate swap valuation, namely each side of the swap is valued
separately in its own currency in the usual fashion; these values are then netted by
converting into a single currency using the current spot FX rates. In theory, either the
notional principal or the implied forward method may be used to value the floating side if
there is one. If an adjusted foreign curve is being used for discounting, then only the implied
method is appropriate. For example, Worksheet 9.13 values a 5-year CCBS which was
originally traded at:
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To pay 3mo. USD Libor
To receive 3mo. JPY Liborþ 4.5 bp

Discounting off an adjusted curve, this swap initially has a zero value, as shown in columns
[1] and [2] of the worksheet.
Worksheet 9.13 then simulates what might happen after one year. It takes the two

existing forward curves, and randomly simulates them using the formula:

Fð
; t;TÞ ¼ Fð0; t;TÞ � expf�t :
p

 : "tg

where 
 is the length of time moving forward;
� is the forward rate volatility (actually taken off cap curves—see Chapter 10);
" is a unit normal random variable6;

as well as the spot rate. Finally, the new cashflows are calculated in columns [3] and [4];
note that the valuation is being done on 6 February 2009, but immediately after the Libor
cashflows on that date have been completed. The two sides of the swap are then discounted
and the JPY side converted into USD at the current spot rate. The USD side, being both
estimated and discounted off the same curve, is always valued at $100m, but the value of
the yen side fluctuates (see New market data box of Worksheet 9.13).
However, CCSs are often treated differently to IRSs in one important aspect. The

potential credit exposure of a CCS is much higher than an IRS due to the large re-exchange
of principals at the end, which of course an IRS does not possess. This was briefly discussed
in Section 6.4. This is recognised in the Basel Accord, which requires ten times as much
capital for a CCS with a maturity greater than one year than for an equivalent IRS.
Therefore many CCSs are traded on the condition that the principals will be adjusted
to new current spot rates at regular intervals, such as annually.7

Consider a simple generic CCBS with no margin, as shown below. It will be initially
assumed that both estimating and discounting are off the same yen curve:

Time USD JPY

0 þ100m �10,660m

3 �L$ þL¥

6 �L$ þL¥

9 �L$ þL¥

12 �L$ þL¥

15 �L$ þL¥

18 �L$ þL¥

..

.

60 �L$�100m þL¥þ 10,660m

6 The worksheet actually uses correlated sampling. First a vector of independent unit normal random variables u is generated, and
then a correlated vector e ¼ A :u where A :A 0 ¼ correlation matrix—see Chapter 11 for more details. There are two worksheets:
9.13 has had the simulation removed, but 9.14 will still run the simulation
7 The Accord has a cutoff, whereby a 1% capital charge is imposed for up to and including 1 year, 5% up to 5 years and 7.5%
beyond. Hence a long swap with annual revisions will, in theory at least, only carry a 1% charge. However, the regulators are
somewhat wary of this, and usually demand more than a paper revision.
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At the end of year 1, the current value of the yen side is simply ¥10,660m. But the spot
rate has shifted from S0 ¼¥106.601 to S1 ¼ 94.97, therefore valuing the yen side at
${10,660m/94.97}¼ $112,248,604. The swap has a positive net value of $12,248,604, which
is a credit exposure—see column [1]. More generally, the net value is given by:

$fðS0=S1Þ � 1g � P$

The swap could therefore be settled by paying this amount, and re-started at the new
exchange rate by paying ¥S1 � P$, receiving P$. Equivalently, by simply receiving the
payment of ¥fS0 � S1g � P$, the swap is now re-balanced at the new exchange rate, as
shown in column [2]. This process could be repeated each year, receiving ¥fSt�1 � Stg � P$,
and re-balancing the swap to the new exchange rate (see New market data box of
Worksheet 9.16).

When a swap has a fixed rate or a margin, then the process is not quite so simple. If the
margin of 4.5 bp was included, but the discounting and estimation were still done off the
same curve, then the present value of the margin on the change in principal, that is:

PV of ¥fS0 � S1g � P$ � ð4:50 bpÞ � dt
see column [3] of Worksheet 9.18—has to be included in the payment to be made on the re-
balancing date.

Finally, if the valuation uses different estimation and discounting curves, then a further
allowance has to be made for this. Worksheet 9.20 shows the actual valuation of the yen
cashflows, including the margin, off the adjusted curve to be ¥10,653,188,080 or at the new
spot rate $94,800,797. This may be replicated by an upfront payment of:

(1) ¥fS0 � S1g � P$ ¼ �¥577,344,835—see column [2].
(2) PVadjusted of ¥fS0 � S1g � P$ � ð4:50 bpÞ � dt ¼ �¥1,029,804 as shown in column [3].
(3) The change in value due to the use of the adjusted rather than the unadjusted curve:

this is calculated by:
a. PVadjusted �PVunadjusted of {yen cashflows using new principal S1 � P$};
b. PVadjusted �PVunadjusted of f¥fS0 � S1g � P$ � ð4:50 bpÞ � dtg;
c. PVadjusted �PVunadjusted of {yen cashflows using old principal S0 � P$}.
The total change in value¼ aþ b� c ¼ �¥1,404,150.

This gives a net receipt of �¥577,344,835� 1,029,804þ 1,404,150¼ �¥576,970,489. This
receipt plus the re-balanced cashflows are shown in column [4] of the New market data box
of Worksheet 9.20. The PV of this new stream of cashflows is, of course, exactly the same as
the PV of the original swap.

9.8 DUAL-CURRENCY SWAPS

Investing requires a judicious balance between return and risk, whilst issuance is almost
invariably about raising money as cheaply as possible. Securities are structured to meet the
risk-return requirements of a group of investors, but almost inevitably swapped into simple
debt for the issuer. Dual-currency issues are a perfect example of this.

Consider the dilemma of Japanese investors since the crash of the Nikkei in 1989. Equity
has given very poor returns, and the 10-year benchmark bond yield has been considerably
below 2%. During the next 10 years, a number of dual-currency bonds have been issued.
For example:



Issuer: Asfinag (German autobahn financing company)

Maturity: 20 years
Principal: ¥20bn
Coupon: Either A$5.70% or DM5.31% ANN

(the issuer had option to select currency before first coupon payment)
Principal Repaid in ¥

Issuer: SNCF (French Railways)

Maturity: 3 years
Principal: ¥10bn
Coupon: ¥5.65% ANN
Principal Repaid in A$

In both cases, the issuer then swapped the bond into plain USD Libor less a margin.
There are two main types of dual-currency bond:

. coupon is paid in a foreign currency, but the principal is repaid in the domestic
(i.e. currency of issue);

. reverse dual: coupon is paid in the domestic currency, but the principal is repaid in a
foreign currency.

Generally, unless the bond is extremely long, the latter are considerably riskier than the
former as the principal itself is at risk.
Consider the French issue: this was paying about 400 bp over the curve to the investor for

taking on the currency risk that the A$ will weaken against ¥. The ¥/A$ exchange rate in
1996 was about 76.4, and based on the interest rate differentials was expected to weaken to
59 over the 3 years. In other words, losing about 22% of the principal amount whilst only
gaining a total of 12% in coupon. Hardly surprising that this swaps into a substantial
margin below Libor (see Worksheet 9.22).
Looking at the worksheet, the bond cashflows are shown from the point of view of the

bond issue, i.e. receiving the principal, and then paying away the coupons and redemption
as shown in columns [1] and [2]. This has a total positive value to the issuer of just over
$10m. If this is given away on the swap, the issuer would expect a substantial margin of
376 bp below Libor on a USD principal of 100 million.
The ‘‘fair’’ breakeven coupon, i.e. the coupon that gives the bond a zero value, is 9.51%

suggesting that the issued coupon is some 400 bp too low, as we have already surmised.
What happened over the 3 years? The AUD actually strengthened for most of the time, and
the lucky investors received both the high coupon plus a valuable principal.
As we can see from the Asfinag issue, these complex bonds frequently contain embedded

options. That issue only contained a single 1-year option, whether to select to pay the
PV{AUD stream} or PV{DEM stream}. Other bonds of this type have FX-related options
on each cashflow, very often both protecting the issuer from paying large amounts, and
protecting the investor from ever receiving effectively a negative payment.8
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In recent years, power reverse dual-currency (PRDC) structures have been extremely
popular with Japanese investors, with some $60bn outstanding in 2008. For example, the
following was issued by the EIB in July 2005, and swapped into 3mo. Euribor less a
margin. Notice the fairly small size of issue: this is very common, as many of them are
sold entirely to a single investor such as a regional pension fund. The note pays a highly
attractive guaranteed coupon in the first year, but thereafter the coupon is subject to the
vagaries of the AUD/JPY spot rate. If the yen strengthens, i.e. the rate drops, then the
investor will receive a low coupon for the next 29 years plus redemption in a weakened
currency. If the yen weakens, then the coupon will rise, but the trigger will ensure early
redemption with the yen principal being repaid. Early redemption is the best outcome for
the investor, and is often (if wrongly) assumed.

Power Reverse Dual with trigger issued by EIB

Issue date: July 2005
Size: ¥1bn
Maturity: July 2035
Issue price: 100
Coupon: Paid sa in yen

10% in year 1
26% � (ST=S0)� 18.7% thereafter
where S is JPY/AUD spot rate

S0 is rate 10 days before issue
ST is rate 10 days before coupon date

Subject to a non-negativity constraint
Redemption: AUD1,666,667
Trigger: B1 (set on July 2006)¼ 84.10

BT ¼ BT�1 � 1 each year
If ST 	 BT on any coupon date, then mandatory redemption is in
yen

These complex structures often cause a moral debate, as it is very hard for typical
investors to assess their ‘‘fairness’’, and there is no doubt that some issues are overly
complex to obscure their true value. On the other hand, they could be viewed as the
high-risk–high-return component of a diversified portfolio which is relatively easily to
buy. If they did not exist, the range of investing opportunities would be significantly
reduced.

Many of these structures were linked to the JPY–USD exchange rate. As the USD
started to weaken significantly in 2008, these structures lost a large percentage of their
value, and early redemption became highly unlikely. To make matters even worse, the
spread in the 30-year JPY–USD CCBS turned sharply positive, implying that investors
would find it very expensive to attempt (I think that is the best word, as there is no
genuinely effective way9) hedging their FX risk.
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The PRDC described above was swapped into Euribor. There are therefore three
relevant FX rates, and of course three discount curves. It may be modelled in a simplistic
fashion by building a JPY/AUD FX tree, in a very similar fashion to the IR trees
constructed in Chapter 11, plus externally provided discount curves. But this ignores
correlation effects, and so it may be necessary to build multi-currency trees—as described
in Section 11.5 (Appendix)—or simulation.10

9.9 CROSS-CURRENCY EQUITY SWAPS

We saw in the previous chapter how equity swaps may be constructed. It is perfectly
feasible to extend the construction into cross-currency swaps.

Trade date: 4 January 2000
Notional principal: $100m
Maturity: 2 years
Current FX rate: 102.985
To receive: Yen 3mo. Libor
To pay: S&P 500 index quarterly

At the current spot rate, the yen principal is ¥10.2985bn, i.e. we are assuming an at-market
swap. The cashflows are calculated in the same way as before, but notice that there is a final
exchange of principals at the original spot rate (see columns [7] and [8] of Worksheet 8.10).
The hedging is also very similar: the yen principal is borrowed at yen Libor flat, converted
into USD and invested in the index. At the end of each period, the hedge is re-balanced to
$100m and the surplus or shortfall paid to the counterparty.
This hedge suffers from the same problem, namely it requires odd index-based

transactions at the end of each quarter which may be inefficient, and so a variable notional
structure may be more appropriate. However, because of the need to exchange principals
and the movement in the FX rate, the CCVN structures are more complex. Consider how it
might work. Over the first quarter, the index rises by 5.52% implying a payment of
$5,523,707. In the single-currency version, this payment is funded by increasing the Libor
principal by the same amount. In the cross-currency version, we do the same but in JPY
which has to be converted into USD at the prevailing FX rate, that is:

$5,523,707 �S1 ¼¥560,537,884 using S1 ¼ 101.48

Therefore the yen principal is increased by this amount (see Worksheet 8.12).
Turning to the worksheet, columns [4] and [7] show the USD principal and cashflow for

a hypothetical series of index movements. Column [5] shows the new JPY principals
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calculated by:
P¥;i ¼ P¥;i�1 þ P$;i�1 � ð1þ riÞ � Si

and column [8] the resulting cashflows. Note that there is an exchange of principals at the
swap maturity.

The swap can be hedged by borrowing $100m �S0 in JPY at Libor flat, converting the
proceeds to USD and investing in the index. Each period, the yen borrowing is increased or
decreased by P¥;i ¼ P¥;i�1 þ P$;i�1 � ð1þ riÞ � Si, as shown in column [9]. The interest
being paid in column [11] exactly matches the interest received in column [8]. At the
end, the index investment is liquidated, converted to yen at the prevailing spot rate and
used to repay the total borrowing.

However, the CCVN do expose the investor to movements in the FX rate as well as
movements in the index. It is feasible to get currency-protected (‘‘quanto’’) swaps where
both sides would be denominated in, say, USD. These are either dynamically delta-hedged
or hedged using simple quanto instruments such as FX forwards—see Section 9.11
(Appendix).

9.10 CONCLUSION

This chapter has discussed the construction and pricing of cross-currency swaps. Whilst the
market for them is considerably smaller than for IRSs, it is still an extremely important
market. CCSs are extensively used by organisations who borrow in a ‘‘cheap’’ currency,
and then swap the proceeds into their desired currency. Exchange rates have become more
volatile over the last 50 years due to the abolition of many fixed rate regimes, and demand
for currency exposure management has increased accordingly. The use of CCSs, and
particularly long-term FX forward contracts which are merely a special type of CCS, to
provide medium to long-term risk management is increasing each year on the back of
increasing currency deregulation.

9.11 APPENDIX: QUANTO ADJUSTMENTS

Quanto structures were introduced in Section 9.5. The difficulty of hedging a quanto
structure was described because of the joint exposure to interest rates in the foreign
currency as well as to the FX rate.

A general approach is to use the HJM methodology, as outlined in Section 7.6
(Appendix). The following results are based upon the assumptions11:

1. The domestic term structure has one source of uncertainty: call it W1.
2. The foreign term structure has two sources of uncertainty, W1 and W2: i.e. one source

in common plus an additional one.
3. The spot FX rate SðtÞ has three sources of uncertainty, W1, W2 and W3: i.e. the FX

rate is related to the two term structures plus one additional source.

This permits three correlations between the two term structures and spot rate.
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Using the same notation as in Section 7.6 (Appendix), the expected present value of a
domestic payment at time tjþ1 based on a foreign reference rate may be written as:

Vð0; tjþ1Þ ¼ EQ 1

pf ðtj; tjþ1Þ :BdðtjÞ
� 1

BdðtjÞ
� �

i.e. constructing the foreign discount bond pf ðtj; tjþ1Þ, but applying a domestic money
account BdðtjÞ. By evaluating the integrals, we get:

Vð0; tjþ1Þ ¼ pdð0; tjþ1Þ :
pf ð0; tjÞ
pf ð0; tjþ1Þ

: e’ � 1

� �

This is the usual expression with an adjustment term e’, where ’ consists of the following
expressions:

’ ¼ af1 þ af2 þ adf þ afs

afi ¼ 1
2
ð�fiÞ2 : ð	fiÞ�3 : ð1� exp½�	fi : tj �Þ : ð1� exp½�	fi : djþ1�Þ2 for i ¼ 1; 2

adf ¼ ��d1
: �f1

: ð	d1
: 	f1

: 	f1
Þ�1 : ð1� exp½�	fi

: tj�Þ : ð1� exp½�	fi
: djþ1�Þ

� 1� 	f1

	f1
þ 	d1

:
ð1� exp½�ð	f1 þ 	d1Þtj�Þ

ð1� exp½�	f1
tj�Þ

: expð�	d1
: djþ1Þ

� �

afs ¼ �
X

i

�i�fi : ð	fiÞ�2 : ð1� exp½�	fi : tj�Þ : ð1� exp½�	fi : djþ1�Þ

If the lambdas¼ 0, i.e. there is no reversion:

afi ¼ 1
2
ð�fi

Þ2 : tj : ðdjþ1Þ2 for i ¼ 1; 2

adf ¼ ��d1 : �f1 : tj : djþ1 : tjþ1

afs ¼ �
X

i

�i�fi
: tj : djþ1

If the input data are the following:

1. Volatility of domestic term structure, in terms of discount bond prices, �d1 , plus
reversion factor 	d1 .

2. Volatility of foreign term structure, �f , plus reversion factors 	f1 and 	f2 .
3. Spot FX rate vol., �FX.
4. Correlations between the three components, i.e. �df , �dFX and �fFX .
Then the parameters for the above formulae are calculated by:

�f1
¼ �df : �f

�f2
¼ �f : ½1� ð�df Þ2�1=2 i.e. from ð�f Þ2 ¼ ð�f1

Þ2 þ ð�f2
Þ2

�1 ¼ �dFX : �FX

�2 ¼ ð�fFX : �FX : �f � �1 : �f1
Þ=�f2

i.e. from covolð f ;FXÞ ¼ �1 : �f1
þ �2 : �f2

In the main text, we priced a JPY–USD QDS to have a margin of �237 bp on the USD
side. Worksheet 9.24 contains the following data:

184 Swaps and Other Derivatives



Volatility Lambda 1 Lambda 2

Domestic IR: 15% 10%
Foreign IR: 15% 10% 10%
FX rate: 20%

d � f d � FX f � FX
Correlation: 0.5 0.3 �0.3

The margin increased by 8 bp to �241 bp. Worksheet 9.24 also contains sensitivity graphs
with respect to the main parameters (see the CD). The biggest impact, not surprisingly
following the discussion about the difficulty of hedging, is to the FX/foreign IR correlation.

Based upon the above sensitivity findings, a widely used approximation12 is to consider
the last term only, which gives:

Vð0; tjþ1Þ ¼ pdð0; tjþ1Þ :Ff : djþ1 : expf�F ;FX : �FX : �F : tjg
where Ff is the foreign forward rate from tj to tjþ1 (see Worksheet 9.25). Notice that the
correlation in this model is between the spot FX rate and a forward rate, unlike the
previous model which is between the spot rate and a discount bond price. This means
that the two correlations will have opposite signs.
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12 See, for example, Hull, ibid., pp. 518–520 for a more detailed discussion.
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OBJECTIVE

Many banks trade, i.e. price and hedge, a range of options on both forward interest rates
and forward swaps alongside swaps themselves. It is therefore appropriate to discuss the
more common forms of these options, especially in the context of the swap market.

The chapter starts by very briefly discussing the Black option-pricing model, the one that
is universally used for the pricing of European interest rate options. The practical estima-
tion of volatility from both historic data and implied from an existing options market is
described, including smile surfaces. Section 10.13 (Appendix) discusses the SABR model,
which is probably the most popular for modelling and interpolating smile surfaces. The
concepts of par and forward volatilities are introduced, and various approaches for
transforming between them discussed. Different forms of caps, floors and collars are
described, including examples of digital and embedded swap structures.

The terminology and pricing of swaptions are then looked at, especially when embedded
in swaps such as extendible and retractable. As before, swaption spaces are discussed. The
relationship between cap and swaption volatility is explored with some examples. Finally,
there is a brief section on FX options, looking at their pricing and replication.

More complex non-European structures are discussed in Chapter 11.

10.1 INTRODUCTION

Interest rate options have been widely traded over-the-counter (OTC) since the mid-1980s,
following the growth in the swap market. The ‘‘first’’ generation of options, as it is often
described, constituted European options such as caps/floors and swaptions on the level of
forward interest rates and swap rates. They are invariably priced using Black’s 1976
formula, which provides a closed-form pricing model requiring a small number of market
inputs. The formula is ‘‘single’’-factor, implying that the level is the only source of
uncertainty.

Second and third-generation options, possessing path dependency and barrier
characteristics, respectively, have now been developed to take more complex views on
the movement of interest rate curves, such as rotation (steepening) or twisting. The variety
of such options is extremely wide, and being extended daily. The pricing and hedging of
such instruments requires multifactor models, which are capable of incorporating the
correlation effects along a curve. The wide practice however of hedging these options with
a portfolio of single-generation options has resulted in many unexpected losses. A number
of these structures will be discussed in Chapter 11.

Let us establish some boundaries. First, this is not a book primarily about options;
therefore it will not attempt to discuss the wide variety of options that are now at least
theoretically available. Second, most of this chapter will concentrate on the practical
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implementation of first-generation options, and especially in conjunction with swaps and
other securities. Third, it is assumed that all readers are familiar with simple Black and
Scholes option-pricing models, so it will be rapidly introduced.

10.2 THE BLACK OPTION-PRICING MODEL

A ‘‘caplet’’ is defined as a single call option on a forward interest rate Fð
;TÞ, which starts
(fixes) at time 
 and finishes at time T . If we assume that the option has a strike of K% and
is written on a principal P, then:

. at time 
 , the fixing of F is observed to be L%;

. if L > K , payout¼ ½L� K � � ðT � 
Þ � P conventionally paid at time T ;

. if L � K , payout¼ zero.

More generally the payout can be expressed as:

maxf0;L� Kg � ðT � 
Þ � P
If the payout were to be made at time 
 instead, adopting the FRA convention, then it
would have to be discounted back in the usual fashion, that is:

maxf0;L� Kg � ðT � 
Þ � P=½1þ L � ðT � 
Þ�
Consider now a put option on a discount bond. Let:

pðt; 
;TÞ be the estimate at time t of the price at time 
 of a discount bond that
matures to pay 1 at time T

The payoff of S put options with strike pK at maturity 
 is defined as
maxf0; pK � pð
; 
;TÞg � S where the expressions are defined as:

pð
; 
;TÞ ¼ ½1þ L � ðT � 
Þ��1 and pK ¼ ½1þ K � ðT � 
Þ��1

and substituting into the payout, we get

½maxf0;L� Kg � ðT � 
Þ � P� � S � pK=½1þ L � ðT � 
Þ�
Setting S ¼ 1=pK , we get an identical payoff to the caplet. We can therefore either represent
a caplet as a call option on a forward interest rate or a put option on a discount bond. This
latter result is especially useful as there are many closed-form solutions available for
forward discount bond prices and for options on discount bonds using ‘‘normal’’ (often
known as Vasicek) models.
The Black model for the caplet on Fð
;TÞ may be written as:

C ¼ P �DFT � fFð
;TÞ �Nðd1Þ � K �Nðd2Þg � ðT � 
Þ
where � is the volatility of the forward rate, d1 ¼ flnðF=KÞ þ 0:5 � �2
g=�p
 ,
d2 ¼ d1 � �

p

 and NðxÞ the cumulative unit normal distribution.

Notice that the payout is discounted back from time T , following the convention that the
payout occurs at the end of the period, although the option matures at time 
 . Therefore

188 Swaps and Other Derivatives



the volatility, which would be quoted on the basis of some standard time period such as a
year, is scaled by

p

 and not by

p
T—see Section 10.3 for a more detailed discussion.

As an example, to price a caplet on a 3mo. forward rate:

Today’s date: 4 February 2008
Principal amount: $100m
Forward rate: Start date 6 August 09

End date 6 November 09
Strike: 3.00%
Volatility: 14.78% pa

The dates for the forward rate use the normal daycount convention; if one was a
non-business day, the date would move using the modified following day convention.
The discount factors are:

6 August 09: 0.959112
6 November 09: 0.952586

which implies that F ¼ (0.959112/0.952586� 1)/0.256¼ 2.681%. Substituting into the
formula, we get:


 ¼ 1:519 (this uses a basis of ACT/360, which was used to annualise the volatility)

d1 ¼ flnð2:681%=3:000%Þ þ 0:5 � 14:78%2 � 1:519g=ð14:78% � 1:232Þ ¼ �0:526

d2 ¼ �0:526� 14:78% � 1:232 ¼ �0:708

! Nðd1Þ ¼ 0:299 and Nðd2Þ ¼ 0:239

C ¼ $100m � 0:952586 � f2:681% � 0:299� 3:000% � 0:239g � 0:256
¼ $20,577

Usually these options are quoted as a proportion of the principal amount, i.e. 2.06 bp.
A cap is simply a series of independent caplets, usually based upon a strip of contiguous
forward rates. Worksheet 10.2 has extended the caplet example to a 3-year cap, still with a
strike of 3.000% against 3mo. forward rates. There are only 11 caplets in this strip, as there
is conventionally no option written on the first already-fixed forward rate. Columns [1] and
[2] show the start and end dates of the forward rates, observing business day conventions.1

The next three columns contain the strike, principal amount and volatility to be applied to
each caplet. Finally the price of each caplet is calculated using the above formula; the
intermediary calculations are shown in the columns at the end of the worksheet. The
overall cost is 69 bp, or just under $700,000 on a constant principal of $100m.
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1 Remember Chapter 3, which discussed the reference rate approach. This has not been applied in most of the following examples,
with the exception of implying forward volatilities, although in theory should be.
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The Black formula is frequently criticised, but nevertheless is the de facto standard for
first-generation options. Its use implies that the percentage returns on the forward rate are
distributed normally with zero mean (or drift). One criticism is the apparent inconsistency
that on the one hand the model treats the forward rate as stochastic, and yet uses an
expected rate for discounting. It would seem more intuitive that high payouts, correspond-
ing to high forward rates at maturity, should be discounted at a correspondingly high rate,
whereas low payouts should be discounted at a lower rate. This is very much what happens
in the tree approaches such as Black–Derman–Toy (BDT) as we shall see in Chapter 11.
However, as Rebonato shows,2 BDT implies a drift to the evolution of forward rates which
exactly compensates for the different discounting processes, so that the results from Black
and BDT are consistent with each other.
In theory, the payout of a caplet should be discounted back from time 
 at a risk-free

rate. In practice the market seldom (never?) does this, but uses Ibor-based discount factors
that reduce the price of the option. One could argue that this is simple convenience, as such
factors are readily available. It is probably also a pragmatic recognition that the other
underlying model assumptions are not satisfied in practice and therefore option-pricing
models are providing at best price ‘‘indications’’.
In the long run, interest rates exhibit mean reversion, i.e. if high then they are more likely

to fall and conversely, if low then more likely to rise. This suggests that the scaling of
volatility by

p
t is likely to be an overestimate, especially for a long-dated option, and that

the Black model therefore overprices options. Practitioners sometime suggest, with tongue
firmly in cheek, that the impact of Ibor discounting is to adjust the price for mean
reversion, but that’s just wishful thinking.

10.3 INTEREST RATE VOLATILITY

The estimation of volatility is of course central to the pricing of options. The Black model is
based upon the following evolution: that the return on a factor x, which is defined as the
percentage change in that factor, over a period of time dt, is given by:

rx ¼ dx=x ¼ � : dtþ � :
p
dt : " where " � Nð0; 1Þ

Thus � :
p
dt is the standard deviation of rx over the time period dt. In theory the

returns should be defined using rðtÞ ¼ lnðxt=xt�1Þ, i.e. continuously compounded returns.
In practice they are often defined using simple returns, i.e. rðtÞ ¼ ðxt � xt�1Þ=xt�1.
Numerically, for short time periods of time, the results are virtually identical. For example,
a sample of 1-day returns on the USD 12mo. cash rate gave a c–c volatility of 1.288% and
a simple volatility of 1.291%.
The evolution implies that the returns are normally distributed. There is a large body of

evidence that suggests that this is not correct. When markets are behaving fairly benignly,
large movements do occur with greater frequency than expected from a normal distribu-
tion; some people have proposed fatter tailed distributions, such as a Student-t, as being
more appropriate. When markets behave abnormally, then extreme moves such as
6; 7; 8; . . . multiples of the standard deviation are observed.3 This suggests that all

2 R. Rebonato, Interest Rate Options Models, published by Wiley, 1996, p. 122.
3 As recorded during the credit hiatus of 07/08.
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exponentially tailed distributions are probably incorrect, and a proportionally tailed dis-
tribution such as a Pareto4 would be more appropriate. Does this matter greatly? It
depends; traders are (or should be) well aware of these deficiencies, and regard all
option-pricing models as mere guides anyway. On the other hand, for a long-term end-
user hoping that an option represents ‘‘good value’’, then such matters are extremely
important. We will return to this debate shortly.

It is assumed that the returns are independently distributed, thus giving rise to the
‘‘square root’’ rule. This is equivalent to assuming that trends in x do not exist.
Whilst this is generally true for liquid markets over short time horizons, it is
frequently untrue for longer time horizons. A trend has effectively constant returns, i.e.
its volatility is close to zero. Thus the square root rule will overestimate volatility in the
presence of trends, and the Black model is likely to overprice long-term options in well-
behaved markets.

Obviously the factor xt has to be observed periodically. Most practitioners would use
closing prices, so that a daily return would be based on close-to-close pricing. This is
because closing prices are often recorded for risk management and P&L calculations
independently of actual trading activities. However, closing prices are frequently subject
to distortion as there may be very little market activity at that time of day, and therefore the
prices are likely to be ‘‘indicative’’ and not represent actual transactions. Sometimes closing
prices are recorded over a period such as an hour before the normal market closing time,
and some average calculated. If there is an official fixing for the factor, such as for Libor
rates, then this may be used instead. However, fixings are usually relatively early in the day,
for example Libor fixes at 11 a.m., and therefore may not be representative of transactions
throughout in the day.

A single observation per day is a crude indication of what may have happened during the
day, and increasing use is being made of intraday price data. High-frequency data, driven
by either time or event (i.e. tick movement or transaction) sampling, are becoming widely
available. As a result, as expected, measured volatility appears to have increased. Some
people use open-to-close prices as a surrogate, but a better measure is:

�2 ¼ 0:361

n
:
Xn

i¼1

flnðHi=LiÞg2

where Hi and Li are the high and low for day i. This is supposedly five to six times more
accurate than using closing prices alone.5 The highs and lows may be adjusted numerically
to compensate for the fact that the reported high< continuous high, etc.

The definition of the ‘‘period of time’’ requires careful consideration. Naively one might
argue that a 10-day period would run, for example, from Wednesday 18 June to Saturday
28 June 2008. However, this period includes two weekends. Are the returns from, say,

4 The density function of a Pareto distribution is proportional to x��, where � is a positive parameter. This implies that
Prob{some random draw y 	 x} drops at the speed of �, and not exponentially which would of course be much faster. N. Taleb,
Table 2, p. 264 of The Black Swan, published by Penguin in 2008, suggests an � of about 3 for financial markets.
5 Derived by M. Parkinson, ‘‘The extreme value method for estimating the variance of the rate of return’’, J. of Business, 53(1),
1980, pp. 61–5. For a more detailed description, see R. Tompkins, Options Explained2, published by Macmillan, 1994, p. 133. If
using high/low is more accurate than using merely closing prices, how about combining the two? See M. Garman et al., ‘‘On the
estimation of security price volatilities from historical data’’, J. of Business, 53(1), 1980, pp. 67–78, this is based on Parkinson’s
working paper.



Saturday to Sunday statistically indistinguishable from the returns from Monday to
Tuesday or Thursday to Friday? Early academic studies6 found that the average return
over a 3-day weekend, i.e. from Friday to Monday, is only about 10% higher than the
average return between two consecutive business days. This suggests that market rates only
move when the markets are active. Most practitioners therefore use business days to define
the time period, so that 10 days from 18 June would be Wednesday 2 July. Now that some
markets are truly global, trading in all time zones, such as USD/EUR spot rate or
Eurodollar futures contract, the above discussion suggests that they should exhibit greater
volatility than a domestic market open only 8 hours per day.
‘‘Economic’’ days, i.e. days during which important economic figures are released, are

likely to exhibit higher volatility than ‘‘normal’’ business days. Some practitioners modify
their volatility formula to include the number of economic days in the sample period. The
estimation of unconditional volatility from historic data is more of an art than a science,
with individuals favouring many approaches: see for example Tompkins (ibid., Chapters 4
and 5) for a more in-depth discussion.
To price an option, the volatility of returns from today until the maturity of the option is

required. The Black model assumes constant volatility over this period, unlike stochastic
volatility and some of the numeric models. There are three ways in which this future
volatility may be estimated:

(a) to assume volatility is stationary, and to calculate historic volatility

This is probably the most common approach. After calculating the returns, almost
invariably over a 1-day time period, the standard deviation is estimated using the sampling
expression:

�2 ¼
Xn

i¼1

ðri � �Þ2=ðn� 1Þ

where � is the average return over these observations.
The volatility for the option is then estimated by � :

p
T where T is the number of

business days from today until maturity. The choice of n is arbitrary but crucial. On
the one hand, the standard error of � is proportional to

p
n; therefore the larger number

of observations selected, the smaller the error. But of course the assumption of stationarity
is likely to be less true with increasing observations. A common rule-of-thumb is to match n
with the maturity of the option, i.e. set n roughly equal to T .
One approach that is increasingly used, especially for short-dated options, say under

6 months’ maturity, is to weight the returns on the basis that the more recent returns are
likely to be more relevant than returns that occurred longer ago:

�2 ¼
Xn

i¼1

wi � ðri � �Þ2=ðn� 1Þ

where
P

wi ¼ 1.
If we assume that the returns are ordered such that ri was the 1-day return observed i

days ago, then the weights constructed w1 > w2 > w3 > � � � An exponentially weighted
scheme would set wi ¼ 	i=

P
j 	

j where 	 < 1; 	 in the range of 0.90–0.95 is common. If
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6 E.F. Fama, ‘‘The behaviour of stock prices’’, J. of Business, 38, January 1965, pp. 34–105; and K.R. French, ‘‘Stock returns and
the weekend effect’’, J of Financial Economics, 8, March 1980, pp. 55–69.



we assume an infinite series of returns, then the following recursive relationship may be
derived:

ð�tþ1Þ2 ¼ 	 : ð�tÞ2 þ ð1� 	Þ : ðrtþ1Þ2

where the subscript refers to the time of the last available data, indicating that we are now
treating volatility as conditional or time-variant. The estimate is adjusted as a new return is
observed, and hence may be used for short-term forecasting.

(b) to model volatility based upon historic information to provide a forecast

We have already seen how the traditional method of calculating volatility may be modified
to incorporate a weighting scheme, and this may be interpreted as a forecasting model. A
simple weighted scheme is modelling the ‘‘responsiveness’’ of volatility to changes in the
market returns. New returns are given greater weight, which will cause the volatility
estimates themselves to be more volatile as shown in the graph:

3.0%

3.5%

4.0%

180 day volatility of 12mo. USD cash rate

Unweighted Weighted, lamda = 0.94

0.0%

0.5%

1.0%

1.5%
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1 201 401 601 801 1001 1201

ARCH (AutoRegressive Conditional Heteroskedastic) modelling takes this approach one
stage further. A G(eneralised) ARCH(1,1) model is:

ð�tþ1Þ2 ¼ v : ð1� �� �Þ þ � : ð�tÞ2 þ � : ðrtþ1Þ2

where v is the unconditional volatility estimated above, and where � > 0, 1 > � > 0,
�þ � � 1. The parameters may be interpreted as:

. v is long-run volatility;

. � indicates the persistence of shocks, i.e. the larger the longer a shock lasts;

. � measures the reactivity of the market to shocks, i.e. the larger the faster.

Together, these two parameters model the rise and fall of volatility, unlike the single
weighted scheme which treats the two the same. A typical result is:
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� �

USD/GBP spot 0.931 0.052
JPY/USD spot 0.839 0.094

i.e. cable reacts slowly but persistently, $–¥ faster but drops off.

However, these methods are seldom applied to option pricing. Because of the need to
estimate three parameters, a lot of historic data is required—say 500 days minimum. The
resulting forecasts only appear to be better than either an unweighted or single-weighted
estimates for about 20 days ahead, which is hardly significant in the lifetime of most
options. ARCH models are of course useful in option trading, trying to position an option
portfolio to anticipate the movement in volatility and in risk management.7

(c) to imply volatility from other options already trading in the market place

This suggests a circular argument, namely deriving the volatility from existing options.
It can however act as an extremely useful check on where other participants see volatility,
but must always be interpreted carefully. Many option markets that are highly liquid, for
example at-the-money USD or GBP cap markets, will quote volatilities rather than option
prices. This is because all the other pricing parameters required for the Black model are
available elsewhere such as in the swap market. Therefore volatility is the only unknown
parameter, and there is a precise relationship between it and the option price. However, the
following sequence of events may be theoretically true:

True 

volatility 

Model

option price 

Option

pricing 

model 

Market

option price 

Option

pricing 

model 

Implied 

volatility 

such that true volatility matches implied volatility. But of course this is only true if the price
of the option in the market matches the model price, which in practice is highly unlikely.
Whilst the Black model is universally used, its underlying assumptions and limitations
are also well understood. Model prices are invariably adjusted to reflect a wide range
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7 There is an enormous volume of literature on GARCH modelling, and the above discussion does not do it justice. See for
example T. Bollerslev et al. (‘‘ARCH models’’ in Handbook of Econometrics, Vol. 4, edited by R.F. Engle et al., North Holland,
1994) for an extensive review. GARCH modelling can be related to chaotic behaviour in the financial markets, which is an
interesting development.



of factors, which in turn means that the volatility implied from the market price also
incorporates these factors.

Table 10.1 shows the so-called ‘‘smile’’ surface for USD IR caps on 4 February 2008. The
maturity of each cap is shown in the left-hand column. Continuing the example above,
remember that the 3-year cap consists of 11 caplets. Because each caplet is independent,
what constitutes ATM for an entire cap is not obvious. The usual convention is to set the
strike of each caplet to be constant and equal to the fixed swap rate of the same maturity
and frequency as the cap. Using current market data, a 3-year generic swap would have a
breakeven quarterly fixed rate of 3.000%. Note that, strictly, the underlying swap should
be a 2.75-year swap starting in 0.25 year’s time. This has a breakeven rate of 2.987% (see
Worksheet 10.2). The usual convention is to ignore this small element of forward starting.
The market-implied volatility for the 3-year cap (i.e. 11 caplets) struck at 3.000% is
14.78%.

The top row of the table shows different cap strikes. Hence, for the 3-year cap struck at
2.5%, the implied volatility is 15.83%, whereas it is 15.59% for a strike of 3.5%. Looking
along each row, it can be seen that the minimum volatility is for an ATM strike, and rises
up for strikes on either side. The curve is not symmetric; ITM caps (i.e. with lower strikes)
appear to have higher volatilities than OTM caps—sometimes referred to as a ‘‘sneer’’
effect!!

What causes the smile? There would appear to be two different arguments describing the
source of factors at work. The first argument runs as follows:

. the Black model assumes that returns follow a normal distribution;

. in reality, large returns appear more frequently than theoretically justified;

. hence the ‘‘correct’’ distribution has ‘‘fatter tails’’ than the normal distribution;

. therefore the chance of an option having to make a large payout is greater than suggested
by theory;

. hence the market option price should be increased over the model price;

. which in turn would lead to a higher implied volatility.

The fat-tailed effect will be greater for options that are farther away from the money, and
therefore the price adjustment is likely to be greater.

The second argument says that there are a number of serious practical omissions from
the model, such as:

. fixed costs of undertaking a transaction such as salaries, systems, rates and rents;

. variable costs of undertaking a transaction such as all the back-office processing;

. costs of risk management, especially the potential cost of imperfect hedging;

. capital charge on a transaction, and the required return on capital;

. the real cost of funding all these activities.

Both arguments have validity, and reality is probably a mixture of them both. This has
not stopped some people, mainly academics, from assuming that the first argument is the
sole source of price adjustment and backing out the implied distribution with its fat tails
from smile data.8
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8 See, for example, M. Rubenstein, ‘‘Implied binomial trees’’, J. of Finance, 49(3), 1994, pp. 771–818; and B Dupire, ‘‘Pricing with
a smile’’, Risk, 7, February 1994, pp. 18–20.
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Table 10.1 Par cap smile curve—against 3mo. USD Libor

Strike ATM 1.50 1.75 2.00 2.25 2.50 3.00 3.50 4.00 5.00 6.00 7.00 8.00 10.00

1 yr 2.867 10.44 30.86 27.90 23.80 18.52 14.40 10.61 11.93 13.70 17.46 20.55 22.63 24.44 27.53
18mo. 2.760 12.72 24.95 21.30 18.61 15.82 14.08 13.43 15.06 16.49 18.65 20.27 21.58 23.03 25.76
2 yr 2.766 13.53 23.34 19.32 17.56 15.68 14.49 14.16 15.49 16.69 18.70 20.30 21.63 23.17 26.06
3 yr 3.000 14.78 23.11 19.70 17.99 16.84 15.83 14.78 15.59 16.36 17.65 18.87 19.93 20.96 22.77
4 yr 3.235 15.27 21.67 20.49 18.84 17.73 16.77 15.61 15.53 16.06 17.14 18.15 19.05 19.80 21.48
5 yr 3.459 15.48 22.92 21.13 19.52 18.39 17.49 16.12 15.51 15.84 16.60 17.48 18.29 19.02 20.48
6 yr 3.663 15.52 22.15 20.81 19.89 18.71 17.82 16.37 15.69 15.65 16.17 16.88 17.58 18.28 19.64
7 yr 3.828 15.48 21.63 20.32 19.99 18.88 17.99 16.57 15.78 15.53 15.84 16.41 17.05 17.66 18.84
8 yr 3.964 15.38 21.12 21.34 20.10 19.01 18.13 16.70 15.82 15.39 15.55 16.00 16.54 17.10 18.12
9 yr 4.090 15.24 20.71 20.93 19.88 19.01 18.12 16.73 15.78 15.31 15.33 15.64 16.12 16.61 17.62

10 yr 4.197 15.11 20.43 20.64 19.66 19.06 18.15 16.73 15.71 15.26 15.05 15.27 15.74 16.25 17.16
12 yr 4.361 14.76 19.77 19.96 19.10 18.90 18.01 16.60 15.55 15.01 14.66 14.68 14.93 15.31 16.17
15 yr 4.536 14.25 18.94 19.12 19.26 18.45 17.67 16.34 15.35 14.71 14.11 14.01 14.19 14.49 15.14
20 yr 4.671 13.63 17.99 18.15 18.27 17.56 17.10 15.85 14.85 14.18 13.48 13.25 13.32 13.55 14.19
25 yr 4.719 13.13 17.31 17.48 17.60 16.90 16.52 15.33 14.41 13.76 12.99 12.75 12.81 13.03 13.67
30 yr 4.729 12.79 16.85 16.99 17.10 16.48 16.09 14.90 14.02 13.40 12.68 12.51 12.61 12.83 13.47

Source: ICAP plc.
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The market price has to reflect all these factors. In addition, market prices are adjusted
by perceived supply and demand for the options, forecast movements in market rates
especially volatility, and not least a general desire whether or not to do a particular
transaction. By the time all these adjustments have been (probably intuitively) incor-
porated in the pricing by the trader, it is hardly surprising that the market price may bear
little resemblance to the model price.

Consider the actual ATM volatility curve itself, as shown below:
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In practice, we would generally expect short-term interest rates to exhibit higher volatility
than longer term rates. But nearly always, cap curves are humped around the 5-year point.
Why? The usual explanation is supply and demand; the majority of bank customers buy
caps with typical maturities between 3 and 7 years.

Understanding how the smile changes with maturity from the above-quoted table can be
quite difficult as the ATM strike changes from row to row. Hence, ATM is not a single
column but a diagonal. Define moneyness for a given option as (Forward rate/Strike); this
means that, for example, if Strike<Forward rate, then the cap is ITM, and the money-
ness>100%. The above table can be converted into a moneyness table (Table 10.2).

ATM is now a single column at 100% of moneyness, and the smiles can now be directly
compared.9 An alternative similar representation is to use delta as the dimension: ATM
would correspond approximately to a delta of 50%, and then use other deltas on either side
ranging from (say) 10% to 90%.

These two tables can also be used to demonstrate another concept. Consider again the
3-year cap: if the strike were 2.5%, then the implied volatility is 15.83%. The current
underlying rate when this was being estimated was 3%. Suppose the underlying rate now
shifts to 3.5%; what happens to the smile surface? A sticky smile approach suggests that the
volatility remains at 15.83%. In contrast, a floating smile (also known as a sticky delta)
approach would argue that the moneyness of this option has increased from 120% to
140%, and therefore the appropriate volatility would be 17.33%.My personal experience is
to favour floating smiles, but many traders prefer sticky ones.

In summary so far, of the three alternative ways of estimating volatility for option
pricing, forecasting is seldom used as the time period is too great. Ultimately historic data
are used, but market-traded option prices frequently provide an additional check. Traders
often calibrate their volatilities to the generic prices in the market; in this case, their models
are effectively glorified interpolation devices.

9 Note that this definition of moneyness reverses the table, so that ITM is on the right, and OTM on the left; for that reason,
moneyness is sometimes defined as the strike/forward rate.
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Table 10.2 Moneyness smile

20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120% 130% 140% 150% 160% 170% 180%

1yr 34.22 26.84 22.93 19.73 16.62 14.06 12.22 11.10 10.44 13.60 16.23 19.47 22.79 25.26 27.22 28.65 29.76
18mo. 30.95 24.67 21.45 19.49 17.79 16.33 14.90 13.65 12.72 14.07 15.47 17.24 18.92 20.33 21.67 23.15 24.47
2 yr 31.59 24.93 21.52 19.55 17.92 16.57 15.38 14.36 13.53 14.48 15.42 16.60 17.73 18.66 19.66 21.30 22.75
3 yr 27.30 22.77 20.45 18.87 17.65 16.73 15.98 15.32 14.78 15.35 15.83 16.61 17.33 17.99 18.84 19.60 20.83
4 yr 26.66 22.14 19.87 18.57 17.53 16.73 16.11 15.63 15.27 15.75 16.32 16.82 17.50 18.15 18.74 19.48 20.18
5 yr 25.80 21.60 19.49 18.22 17.27 16.56 16.09 15.74 15.48 15.94 16.44 17.05 17.60 18.19 18.79 19.36 20.03
6 yr 25.29 21.14 19.07 17.81 16.95 16.34 15.95 15.69 15.52 15.92 16.30 16.90 17.48 18.03 18.57 19.16 19.72
7 yr 24.23 20.47 18.59 17.45 16.65 16.11 15.77 15.61 15.48 15.81 16.27 16.73 17.32 17.84 18.37 18.87 19.43
8 yr 23.13 19.76 18.07 17.06 16.33 15.85 15.54 15.45 15.38 15.73 16.17 16.61 17.18 17.72 18.21 18.72 19.22
9 yr 22.90 19.46 17.73 16.70 16.03 15.59 15.36 15.32 15.24 15.57 15.95 16.45 16.95 17.49 17.96 18.45 18.93

10 yr 22.16 18.98 17.38 16.43 15.74 15.27 15.10 15.12 15.11 15.43 15.72 16.26 16.74 17.30 17.80 18.26 18.76
12 yr 21.25 18.12 16.56 15.62 15.03 14.74 14.67 14.71 14.76 15.05 15.40 15.85 16.36 16.86 17.37 17.83 18.28
15 yr 19.26 16.80 15.58 14.84 14.36 14.10 14.04 14.11 14.25 14.64 14.99 15.37 15.87 16.29 16.78 17.22 17.62
20 yr 18.46 15.97 14.73 13.98 13.50 13.30 13.29 13.44 13.63 14.01 14.32 14.73 15.18 15.62 16.05 16.48 16.86
25 yr 18.02 15.50 14.25 13.49 13.00 12.79 12.77 12.93 13.13 13.54 13.85 14.24 14.65 15.06 15.45 15.86 16.23
30 yr 17.84 15.31 14.05 13.30 12.80 12.59 12.53 12.64 12.79 13.18 13.47 13.85 14.24 14.63 15.01 15.42 15.79
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The existence of the smile causes a number of practical problems. For example, suppose a
trader sells the 3-year cap struck at 2.5%, and then delta-hedges it with a 3-year cap struck
at 3% (ATM). How well will this hedge work? If the underlying shifts, the speed of change
of the two option values will differ as this speed also depends upon the volatility. This
suggests that deriving consistent risk characteristics and hedging for an option portfolio
with varying strikes is effectively impossible. As another example, consider again the above
3-year cap, but this time assume it also contains an embedded knock-out barrier at (say)
3.5%. What would be the correct volatility to use: 15.83% following the strike, 15.59%
following the barrier or some combination?

A number of people, for example Dupire,10 have introduced the concept of a local
volatility (LV) surface �ðK ;TÞ where K is the strike of an option with maturity T . This
may be calculated from:

�2ðK ;TÞ ¼ 2 � @CðK;TÞT=@ 2CðK ;TÞKK
where CðK ;TÞ is the price of a cap with strike K and maturity T ; and

@CðK;TÞT is the first differential with respect to T , etc.

Whilst evidently the LV can be calculated for any given option, fitting a parametric
function to enable smooth interpolation between the market quotes is fraught with
numerical difficulties. A common alternative is to use a piecewise constant function.
Unfortunately, LV models suffer from a very serious problem. As the underlying spot rate
shifts, then we would expect the smile to be either sticky or floating. The LV model predicts
that the smile will move in exactly the opposite direction, totally contrary to both intuition
and market reality!

A further alternative is to assume that volatility is itself subject to a stochastic process.
The simplest resulting model is the SABR model, developed by Hagan et al.,11 and widely
used in practice. This model is described in more detail in Section 10.13 (Appendix).

10.4 PAR AND FORWARD VOLATILITIES

The volatilities quoted above are ‘‘par’’ volatilities. This means, coming back to the 3-year
ATM cap, that the same constant volatility of 14.78% is being used to calculate the prices
of all 11 caplets. In practice, each caplet should be priced using the volatility for its own
individual forward rate. This is called forward volatility (sometimes, rather confusingly,
also called forward forward or spot volatility). Par volatilities represent an average of the
forward volatilities over all the caplets in an entire cap, and are a convenient way of
quoting volatility.

Given the above quotes, it is feasible to estimate implied forward volatilities, typically
using a bootstrapping approach. Define VT to be the par volatility for a generic cap of
maturity T with some constant strike, and vt to be the forward volatility of a single caplet
maturing at time t. The price of this cap CT could be estimated in one of two ways, using
the par volatility for all caplets, or the different forward volatilities:

CT ¼
X

t�T

ctðVT Þ ¼
X

t�T

ctðvtÞ

10 B. Dupire, Risk, 1994.
11 P. Hagan et al., ‘‘Managing smile risk’’, Wilmott Magazine, pp. 84–108, July 2002.
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where ct is the price of a single caplet of maturity t. Hence a recursive relationship can be
defined

CT ¼ CT�1 þ
X

T�1<t�T

ctðvtÞ ð10:1Þ

A crude but common assumption is to set vt equal to a constant for T � 1 < t � T . Then
we can solve sequentially for forward volatilities. Worksheet 10.6 performs this in three
steps:

1. Calculate the 3-monthly forward rates off the current curve using the reference rate
convention as described in Chapter 3.

2. For a given strike set in cell C8, price all the caps off the correct par volatilities.
3. The piecewise constant forward volatility curve is set in column [BA]. Based upon this

curve, the individual caplets and hence the caps are priced. A built-in macro called
Bootstrap_vol_curve changes the numbers in column [D] until the error terms in column
[BJ] are all set to zero.

Obviously, discontinuous steps are undesirable, and an optimization approach may also be
applied in an analogous way to implying forward rates out of a swap curve. Worksheet 10.7
is structured in exactly the same way as before, but this time minimizes the squared gradient
of the forward volatility curve.
One further approach is to use the following formula:

ðT2 � T1Þ � �2
12 ¼ T2 � �2

2 � T1 � �2
1

where �k is the par volatility out to time Tk, and �jk the forward volatility between times Tj

and Tk. Whilst obviously fairly simple, one difficulty with this approach is, because par
volatilities are quoted on an annual (or longer) basis and we wish to estimate quarterly
forward volatilities, we need to interpolate the par volatilities. Ideally, the interpolation
method should be such that the resulting forward volatility curve is arbitrage-free. But
precisely how to do this is unclear, and almost certainly not given by parametric inter-
polation; the curve shown below was based upon linear interpolation, and hence is not
arbitrage-free.
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These curves are often combined with statistical confidence bands. In practice it is found
that volatilities do revert to a long-run level (as suggested by the ARCH model), which
means that the confidence bands are wider at the short end than at the longer end. The
bands are often called ‘‘volatility cones’’ due to their shape, and are used by traders to
imply the likely movement of volatility through time.12

We have just derived forward volatilities from a single ATM par volatility curve. It is
however, as we have discussed in Section 10.3, common practice to use volatility surfaces,
i.e. a matrix of {strike vs. forward start date}, when pricing and valuing caps and floors.
Forward surfaces have been produced in two worksheets: 10.9 was produced by boot-
strapping each column, and 10.10 by using optimisation—this latter is shown in Table 10.3.
This allows the smile effect to be incorporated. IR options on 3-month Libor are the most
common, probably reflecting the fact that one can get exchange-traded options on 3-month
deposit futures for hedging (see Chapter 2). Therefore the most liquid volatility surface
would also be on 3-month Libor, and volatility surfaces for other tenors represented by an
off-set surface from the 3-month one. A more complete approach therefore would be to
model the entire two-dimensional surface. This surface is likely to contain gaps due to
missing maturities and also missing volatilities for particular strikes. If the underlying
forward interest rate curve is rising, a strike that is below but close to the money for a
short maturity will be a long way from the money at a long maturity. As caps are usually
only quoted relatively close to the money, there would be no long volatility quoted. This
issue may seem academic, but actually has major practical ramifications. Suppose a trader
sells a 10-year ATM cap. After 5 years, interest rates could have moved significantly so that
the remaining caplets are nowhere close to ATM—yet they still need to be valued daily!
Where do the risk controllers obtain the appropriate volatilities, as they are unlikely to be
readily available in the current quotes?13

In the discussion below (and in Section 12.10 where the risk management of IR options is
discussed), a single volatility curve has been used throughout for ease of exposition.

10.5 CAPS, FLOORS AND COLLARS

We have already discussed the pricing of caps using Black’s model. Obviously the same
model can be used to price a floor, which is a strip of put options on forward interest rates.
Using the same notation as before:

. define a forward interest rate Fð�;TÞ, which starts at time 
 and finishes at time T ;

. assume that the option has a strike of K% and is written on a principal P;

. at time 
 , the fixing of F is observed to be L%;

. payout of the floorlet¼ max½0;K � L� � ðT � 
Þ � P.

Black’s model for the floorlet on Fð
;TÞ may be written as:

Fl ¼ P �DFT � fK �Nð�d2Þ � Fð
;TÞ �Nð�d1Þg � ðT � 
Þ
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12 See R. Tompkins, ibid., Chapter 5, or G. Burghardt et al., ‘‘How to tell if options are cheap’’, J. of Portfolio Management,
Winter 1990, pp. 72–8.
13 This problem has provided the basis for a number of well-publicised losses by banks, as they have invariably been forced to rely
on traders for the information. There are various ‘‘closed clubs’’ whereby banks anonymously share information.



Table 10.3 A smoothed forward volatility surface

Strike )
Maturity 1.5 1.75 2 2.25 2.5 3 3.5 4 5 6 7 8 10

0.50 23.38% 22.88% 20.10% 16.54% 14.06% 11.52% 14.91% 16.22% 17.22% 18.57% 19.65% 20.74% 21.61%

0.75 23.37% 22.64% 20.11% 16.53% 14.06% 11.91% 14.94% 16.22% 17.22% 18.57% 19.64% 20.68% 21.58%

1.00 23.35% 22.22% 19.91% 16.42% 14.14% 12.57% 15.01% 16.21% 17.22% 18.56% 19.63% 20.56% 21.56%

1.25 23.33% 21.69% 18.83% 16.00% 14.33% 13.45% 15.11% 16.21% 17.23% 18.55% 19.61% 20.40% 21.48%

1.50 23.28% 21.17% 18.09% 15.84% 14.65% 14.19% 15.20% 16.21% 17.24% 18.53% 19.56% 20.22% 21.40%

1.75 23.24% 20.75% 17.77% 15.98% 15.13% 14.67% 15.28% 16.21% 17.25% 18.50% 19.48% 20.04% 21.25%

2.00 23.18% 20.48% 17.84% 16.40% 15.76% 15.09% 15.35% 16.22% 17.26% 18.47% 19.38% 19.87% 21.11%

2.25 23.08% 20.34% 18.22% 17.09% 16.53% 15.44% 15.42% 16.21% 17.28% 18.43% 19.27% 19.71% 20.96%

2.50 22.99% 20.30% 18.62% 17.72% 17.23% 15.74% 15.47% 16.20% 17.30% 18.40% 19.14% 19.58% 20.79%

2.75 22.88% 20.33% 18.98% 18.30% 17.85% 16.04% 15.49% 16.16% 17.30% 18.33% 19.03% 19.48% 20.66%

3.00 22.76% 20.42% 19.37% 18.83% 18.40% 16.32% 15.52% 16.10% 17.25% 18.23% 18.93% 19.40% 20.52%

3.25 22.65% 20.54% 19.72% 19.30% 18.87% 16.60% 15.52% 16.01% 17.16% 18.12% 18.85% 19.33% 20.42%

3.50 22.51% 20.65% 20.06% 19.71% 19.25% 16.81% 15.55% 15.92% 17.03% 17.98% 18.76% 19.26% 20.32%

3.75 22.37% 20.74% 20.36% 20.06% 19.57% 17.04% 15.57% 15.82% 16.86% 17.81% 18.64% 19.17% 20.26%

4.00 22.19% 20.78% 20.62% 20.33% 19.80% 17.22% 15.61% 15.73% 16.65% 17.60% 18.46% 19.07% 20.23%

4.25 22.02% 20.76% 20.82% 20.53% 19.95% 17.36% 15.66% 15.65% 16.39% 17.36% 18.24% 18.96% 20.19%

4.50 21.81% 20.68% 20.97% 20.64% 20.03% 17.47% 15.71% 15.57% 16.15% 17.12% 18.00% 18.81% 20.14%

4.75 21.59% 20.55% 21.05% 20.67% 20.01% 17.55% 15.76% 15.49% 15.93% 16.89% 17.76% 18.62% 20.02%

5.00 21.37% 20.39% 21.09% 20.61% 19.92% 17.58% 15.82% 15.42% 15.76% 16.68% 17.55% 18.38% 19.85%

5.25 21.13% 20.23% 21.08% 20.48% 19.75% 17.58% 15.90% 15.35% 15.62% 16.50% 17.31% 18.10% 19.53%

5.50 20.93% 20.09% 21.04% 20.34% 19.59% 17.58% 15.98% 15.28% 15.49% 16.31% 17.08% 17.83% 19.25%

5.75 20.72% 20.01% 20.98% 20.22% 19.45% 17.57% 16.04% 15.22% 15.37% 16.12% 16.86% 17.57% 18.94%

6.00 20.55% 20.02% 20.89% 20.10% 19.31% 17.55% 16.10% 15.16% 15.25% 15.94% 16.65% 17.32% 18.67%

6.25 20.39% 20.17% 20.78% 19.99% 19.18% 17.54% 16.13% 15.10% 15.13% 15.77% 16.44% 17.08% 18.37%

6.50 20.25% 20.45% 20.66% 19.89% 19.07% 17.52% 16.15% 15.06% 15.04% 15.61% 16.25% 16.84% 18.10%

6.75 20.12% 20.90% 20.53% 19.81% 18.97% 17.49% 16.13% 15.02% 14.94% 15.44% 16.06% 16.61% 17.85%

7.00 20.02% 21.49% 20.39% 19.74% 18.88% 17.45% 16.10% 14.99% 14.87% 15.28% 15.89% 16.37% 17.62%

7.25 19.93% 22.20% 20.23% 19.67% 18.79% 17.40% 16.06% 14.96% 14.80% 15.11% 15.72% 16.17% 17.41%

7.50 19.83% 22.62% 20.07% 19.60% 18.71% 17.35% 15.99% 14.94% 14.73% 14.95% 15.56% 15.97% 17.23%

7.75 19.75% 22.71% 19.85% 19.54% 18.63% 17.28% 15.91% 14.92% 14.64% 14.80% 15.41% 15.84% 17.08%

8.00 19.66% 22.41% 19.61% 19.47% 18.55% 17.22% 15.80% 14.92% 14.55% 14.64% 15.28% 15.76% 16.95%

8.25 19.57% 21.81% 19.34% 19.41% 18.47% 17.14% 15.69% 14.91% 14.45% 14.49% 15.15% 15.74% 16.85%

8.50 19.47% 21.18% 19.09% 19.35% 18.40% 17.05% 15.58% 14.89% 14.34% 14.34% 15.00% 15.67% 16.71%

8.75 19.39% 20.65% 18.87% 19.27% 18.33% 16.96% 15.48% 14.86% 14.22% 14.20% 14.81% 15.54% 16.51%

9.00 19.27% 20.17% 18.65% 19.18% 18.26% 16.87% 15.40% 14.82% 14.08% 14.06% 14.64% 15.41% 16.27%

9.25 19.16% 19.77% 18.46% 19.10% 18.18% 16.78% 15.33% 14.77% 13.94% 13.92% 14.43% 15.23% 15.96%

9.50 19.06% 19.42% 18.27% 19.02% 18.10% 16.69% 15.26% 14.71% 13.81% 13.79% 14.23% 14.98% 15.70%

9.75 18.93% 19.14% 18.10% 18.93% 18.02% 16.59% 15.19% 14.64% 13.70% 13.66% 14.03% 14.75% 15.44%



10.00 18.84% 18.90% 17.96% 18.84% 17.93% 16.49% 15.13% 14.56% 13.61% 13.54% 13.83% 14.45% 15.26%

10.25 18.76% 18.71% 17.86% 18.75% 17.85% 16.39% 15.05% 14.47% 13.55% 13.41% 13.64% 14.14% 15.08%

10.50 18.68% 18.54% 17.80% 18.65% 17.75% 16.29% 15.00% 14.39% 13.48% 13.30% 13.46% 13.89% 14.90%

10.75 18.61% 18.39% 17.79% 18.55% 17.66% 16.20% 14.95% 14.31% 13.42% 13.20% 13.29% 13.65% 14.75%

11.00 18.54% 18.26% 17.83% 18.45% 17.57% 16.11% 14.91% 14.23% 13.36% 13.10% 13.15% 13.47% 14.61%

11.25 18.45% 18.14% 17.93% 18.35% 17.48% 16.04% 14.88% 14..16% 13.29% 13.01% 13.04% 13.32% 14.42%

11.50 18.37% 18.03% 18.07% 18.25% 17.39% 15.97% 14.87% 14.09% 13.23% 12.94% 12.96% 13.20% 14.32%

11.75 18.28% 17.93% 18.28% 18.14% 17.30% 15.90% 14.87% 14.04% 13.16% 12.86% 12.90% 13.13% 14.19%

12.00 18.21% 17.84% 18.55% 18.02% 17.22% 15.85% 14.89% 13.99% 13.08% 12.79% 12.87% 13.09% 14.05%

12.25 18.15% 17.79% 18.88% 17.90% 17.14% 15.79% 14.89% 13.95% 13.00% 12.73% 12.86% 13.11% 13.95%

12.50 18.08% 17.71% 19.16% 17.80% 17.05% 15.75% 14.89% 13.89% 12.91% 12.68% 12.84% 13.11% 13.85%

12.75 18.04% 17.65% 19.38% 17.68% 16.97% 15.70% 14.87% 13.84% 12.83% 12.61% 12.81% 13.10% 13.75%

13.00 17.98% 17.59% 19.54% 17.56% 16.89% 15.66% 14.85% 13.80% 12,77% 12.54% 12.76% 13.04% 13.65%

13.25 17.91% 17.53% 19.64% 17.43% 16.82% 15.62% 14.83% 13.75% 12.68% 12.71% 12.71% 13.03% 13.56%

13.50 17.85% 17.48% 19.67% 17.29% 16.75% 15.57% 14.79% 13.69% 12.61% 12.41% 12.63% 12.98% 13.47%

13.75 17.78% 17.43% 19.63% 17.16% 16.68% 15.52% 14.75% 13.63% 12.55% 12.34% 12.56% 12.90% 13.39%

14.00 17.72% 17.39% 19.52% 17.03% 16.61% 15.46% 14.69% 13.58% 12.49% 12.27% 12.48% 12.84% 13.32%

14.25 17.66% 17.34% 19.36% 16.91% 16.54% 15.39% 14.62% 13.53% 12.43% 12.19% 12.39% 12.75% 13.24%

14.50 17.61% 17.29% 19.12% 16.80% 16.48% 15.32% 14.54% 13.48% 12.37% 12.12% 12.29% 12.63% 13.17%

14.75 17.56% 17.23% 18.85% 16.70% 16.41% 15.25% 14.46% 13.42% 12.31% 12.04% 12.19% 12.54% 13.11%

15.00 17.51% 17.18% 18.50% 16.60% 16.35% 15.17% 14.36% 13.37% 12.25% 11.97% 12.08% 12.40% 13.05%

15.25 17.46% 17.12% 18.15% 16.51% 16.29% 15.10% 14.26% 13.31% 12.19% 11.90% 11.97% 12.28% 12.99%

15.50 17.42% 17.07% 17.80% 16.43% 16.23% 15.02% 14.17% 13.26% 12.14% 11.84% 11.87% 12.16% 12.94%

15.75 17.37% 17.02% 17.52% 16.36% 16.18% 14.96% 14.08% 13.21% 12.10% 11.78% 11.78% 12.04% 12.88%

16.00 17.32% 16.97% 17.26% 16.28% 16.13% 14.90% 14.00% 13.15% 12.06% 11.72% 11.70% 11.95% 12.83%

16.25 17.26% 16.93% 17.06% 16.20% 16.09% 14.85% 13.92% 13.10% 12.03% 11.67% 11.63% 11.88% 12.79%

16.50 17.22% 16.90% 16.90% 16.13% 16.05% 14.81% 13.84% 13.04% 12.00% 11.62% 11.56% 11.82% 12.75%

16.75 17.16% 16.88% 16.78% 16.06% 16.01% 14.78% 13.77% 12.98% 11.97% 11.58% 11.51% 11.76% 12.71%

17.00 17.12% 16.87% 16.69% 15.99% 15.98% 14.76% 13.70% 12.93% 11.93% 11.54% 11.47% 11.72% 12.68%

17.25 17.08% 16.86% 16.64% 15.93% 15.95% 14.74% 13.63% 12.88% 11.90% 11.50% 11.45% 11.70% 12.65%

17.50 17.04% 16.85% 16.61% 15.88% 15.92% 14.73% 13.57% 12.81% 11.86% 11.46% 11.43% 11.68% 12.62%

17.75 17.00% 16.84% 16.59% 15.83% 15.88% 14.72% 13.52% 12.76% 11.81% 11.43% 11.42% 11.67% 12.60%

18.00 16.96% 16.83% 16.58% 15.79% 15.84% 14.70% 13.47% 12.71% 11.77% 11.40% 11.40% 11.66% 12.57%

18.25 16.92% 16.82% 16.56% 15.75% 15.80% 14.67% 13.42% 12.65% 11.73% 11.37% 11.38% 11.65% 12.55%

18.50 16.89% 16.80% 16.55% 15.71% 15.75% 14.62% 13.36% 12.61% 11.69% 11.34% 11.36% 11.63% 12.53%

18.75 16.84% 16.78% 16.52% 15.67% 15.70% 14.57% 13.31% 12.56% 11.65% 11.30% 11.33% 11.61% 12.51%

19.00 16.81% 16.74% 16.49% 15.63% 15.63% 14.49% 13.26% 12.52% 11.61% 11.27% 11.30% 11.59% 12.48%

19.25 16.77% 16.70% 16.46% 15.59% 15.58% 14.42% 13.23% 12.49% 11.57% 11.22% 11.27% 11.56% 12.45%

19.50 16.73% 16.65% 16.41% 15.55% 15.51% 14.33% 13.19% 12.45% 11.51% 11.18% 11.23% 11.52% 12.42%

19.75 16.70% 16.60% 16.36% 15.52% 15.44% 14.23% 13.16% 12.42% 11.46% 11.13% 11.19% 11.49% 12.39%

20.00 16.67% 16.54% 16.31% 15.48% 15.36% 14.12% 13.12% 12.39% 11.40% 11.08% 11.15% 11.44% 12.36%

20.25 16.64% 16.48% 16.25% 15.44% 15.28% 14.01% 13.08% 12.36% 11.34% 11.03% 11.11% 11.40% 12.32%

20.50 16.60% 16.42% 16.20% 15.41% 15.21% 13.90% 13.04% 12.34% 11.29% 10.97% 11.06% 11.36% 12.29%

20.75 16.57% 16.37% 16.15% 15.37% 15.13% 13.81% 13.00% 12.31% 11.23% 10.93% 11.02% 11.33% 12.26%



Table 10.3 (cont.)

Strike )
Maturity 1.5 1.75 2 2.25 2.5 3 3.5 4 5 6 7 8 10

21.00 16.54% 16.32% 16.11% 15.33% 15.06% 13.72% 12.96% 12.27% 11.18% 10.88% 10.98% 11.29% 12.23%

21.25 16.51% 16.28% 16.07% 15.29% 14.99% 13.65% 12.93% 12.24% 11.14% 10.84% 10.95% 11.26% 12.20%

21.50 16.47% 16.24% 16.04% 15.25% 14.94% 13.59% 12.89% 12.20% 11.10% 10.80% 10.92% 11.24% 12.18%

21.75 16.43% 16.22% 16.01% 15.21% 14.89% 13.56% 12.85% 12.17% 11.06% 10.77% 10.90% 11.22% 12.16%

22.00 16.40% 16.20% 16.00% 15.18% 14.85% 13.53% 12.81% 12.12% 11.02% 10.75% 10.88% 11.20% 12.14%

22.25 16.37% 16.19% 15.99% 15.15% 14.81% 13.51% 12.77% 12.08% 10.99% 10.73% 10.87% 11.19% 12.13%

22.50 16.33% 16.18% 15.98% 15.13% 14.78% 13.51% 12.72% 12.04% 10.96% 10.71% 10.86% 11.19% 12.12%

22.75 16.30% 16.17% 15.97% 15.11% 14.75% 13.50% 12.68% 11.99% 10.93% 10.71% 10.86% 11.19% 12.12%

23.00 16.27% 16.17% 15.97% 15.09% 14,73% 13.49% 12.63% 11.95% 10.90% 10.71% 10.87% 11.20% 12.13%

23.25 16.24% 16.16% 15.96% 15.08% 14.71% 13.48% 12.59% 11.91% 10.88% 10.71% 10.88% 11.21% 12.14%

23.50 16.21% 16.14% 15.94% 15.07% 14.69% 13.47% 12.55% 11.86% 10.87% 10.72% 10.90% 11.22% 12.15%

23.75 16.18% 16.12% 15.92% 15.06% 14.67% 13.44% 12.51% 11.82% 10.85% 10.73% 10.93% 11.25% 12.17%

24.00 16.15% 16.09% 15.89% 15.05% 14.65% 13.41% 12.47% 11.78% 10.85% 10.75% 10.96% 11.28% 12.19%

24.25 16.11% 16.05% 15.85% 15.04% 14.62% 13.37% 12.43% 11.75% 10.84% 10.77% 11.00% 11.31% 12.22%

24.50 16.09% 16.00% 15.81% 15.03% 14.59% 13.31% 12.39% 11.71% 10.83% 10.80% 11.04% 11.35% 12.25%

24.75 16.06% 15.95% 15.73% 15.02% 14.56% 13.25% 12.35% 11.68% 10.82% 10.82% 11.08% 11.40% 12.28%

25.00 16.04% 15.90% 15.72% 15.01% 14.53% 13.19% 12.31% 11.64% 10.82% 10.85% 11.13% 11.45% 12.31%

25.25 16.03% 15.87% 15.67% 15.00% 14.50% 13.12% 12.27% 11.61% 10.81% 10.88% 11.18% 11.50% 12.35%

25.50 16.01% 15.81% 15.62% 15.00% 14.47% 13.06% 12.22% 11.58% 10.80% 10.90% 11.23% 11.55% 12.38%

25.75 16.00% 15.79% 15.58% 14.99% 14.44% 13.00% 12.19% 11.55% 10.80% 10.93% 11.27% 11.60% 12.41%

26.00 15.98% 15.75% 15.54% 14.98% 14.41% 12.95% 12.16% 11.53% 10.79% 10.95% 11.31% 11.64% 12.44%

26.25 15.97% 15.72% 15.51% 14.97% 14.38% 12.90% 12.13% 11.50% 10.79% 10.97% 11.35% 11.67% 12.46%

26.50 15.95% 15.69% 15.48% 14.96% 14.36% 12.87% 12.10% 11.48% 10.78% 10.99% 11.38% 11.70% 12.49%

26.75 15.94% 15.67% 15.46% 14.95% 14.34% 12.85% 12.07% 11.45% 10.78% 11.00% 11.40% 11.73% 12.51%

27.00 15.92% 15.66% 15.44% 14.94% 14.33% 12.83% 12.04% 11.43% 10.77% 11.02% 11.43% 11.74% 12.53%

27.25 15.91% 15.65% 15.43% 14.94% 14.32% 12.82% 12.01% 11.40% 10.76% 11.03% 11.44% 11.75% 12.54%

27.50 15.90% 15.64% 15.43% 14.93% 14.30% 12.82% 11.99% 11.38% 10.76% 11.03% 11.45% 11.76% 12.55%

27.75 15.89% 15.64% 15.42% 14.93% 14.30% 12.81% 11.96% 11.36% 10.75% 11.04% 11.46% 11.77% 12.56%

28.00 15.88% 15.64% 15.42% 14.92% 14.29% 12.81% 11.94% 11.34% 10.75% 11.04% 11.46% 11.77% 12.56%

28.25 15.87% 15.64% 15.42% 14.92% 14.29% 12.81% 11.93% 11.32% 10.75% 11.05% 11.47% 11.77% 12.57%

28.50 15.86% 15.64% 15.42% 14.92% 14.29% 12.81% 11.92% 11.30% 10.75% 11.05% 11.47% 11.77% 12.57%

28.75 15.85% 15.64% 15.42% 14.92% 14.29% 12.81% 11.91% 11.29% 10.75% 11.05% 11.47% 11.77% 12.57%

29.00 15.84% 15.64% 15.42% 14.92% 14.29% 12.81% 11.90% 11.27% 10.75% 11.05% 11.47% 11.77% 12.57%

29.25 15.83% 15.64% 15.42% 14.92% 14.29% 12.81% 11.90% 11.26% 10.75% 11.05% 11.47% 11.77% 12.57%

29.50 15.82% 15.64% 15.42% 14.92% 14.29% 12.81% 11.90% 11.26% 10.75% 11.05% 11.47% 11.77% 12.57%

29.75 15.81% 15.64% 15.42% 14.92% 14.29% 12.81% 11.90% 11.25% 10.75% 11.05% 11.47% 11.77% 12.57%

30.00 15.81% 15.64% 15.42% 14.92% 14.29% 12.81% 11.90% 11.25% 10.75% 11.05% 11.47% 11.77% 12.57%



As an example: to price a floorlet on a 3mo. forward rate (i.e. the same period as above):

Today’s date: 4 February 2008
Principal amount: $100m
Forward rate: Start date 6 August 09

End date 6 November 09
Strike: 3.00%
Volatility: 14.78% pa

d1 ¼ flnð2:681%=3%Þ þ 0:5 � 14:78% � 14:78% � 1:519g=14:78% � 1:232 ¼ �0:526

d2 ¼ �0:526� 17% � 1:232 ¼ �0:7080

Nð�d1Þ ¼ 0:700

Nð�d2Þ ¼ 0:761

Fl ¼ $100m � 0:952586 � f3% � 0:761� 2:681% � 0:700g � 0:256
¼ $9; 820 or 9.82 bp

An alternative approach would be to create a portfolio consisting of:

. short a caplet;

. long a floorlet;

on the same forward rate Fð
;TÞ, with same strike K and principal amount, and using the
same volatility. The payout is proportional to max½0;K � L� �max½0;L� K � ¼ ½K � L�
where L is the Libor fixing.

Now consider a one-period forward swaplet starting at 
 and finishing at T :

. to receive fixed K ;

. to pay floating.

The net settlement at the end of the period is again proportional to ½K � L�. As this is
identical to the portfolio payout, today’s value of the swaplet and portfolio should also be
equal. This gives:

Price of floorlet¼Value of swapletþPrice of caplet

As the best estimate for the Libor fixing is the implied forward rate, the value of the swaplet
is ½K � F � � ðT � 
Þ �DFT . Using the same example:

Value of swaplet ¼ 10,000 � ½3%� 2:681%� � 0:256 � 0:952586 ¼ 7:764 bp

Value of caplet ¼ 2:06 bp ðstruck at 3%Þ
Value of floorlet ¼ 7:76þ 2:06 ¼ 9:82 bp as before:

Details of the calculations are shown in Worksheet 10.11. It is divided into two parts; the
first calculates caplet prices and subsequently floorlet prices using the above put–call parity
expression, whilst the second calculates floorlet prices followed by caplet prices. The
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columns are the same as before, with the introduction of column [15] which contains the
new pricing.
A full relationship between caps, floors and forward swaps may be derived in an exactly

analogous fashion. The value of a forward swap to receive a fixed rate K is given by:

Value ¼ K � ðQe �QsÞ � ðDFs �DFeÞ

for a notional principal of 1. Thus, for the above example:

Start date: 6 May 2008 DFs ¼ 0.992199
End date: 7 February 2011 DFe ¼ 0.912764

Qe �Qs ¼ 2.660

Value of swap = 10,000 � {3% � 2.660� (0.992199� 0.912764)}¼ 3.52 bp
Value of cap = 69.25 bp
Value of floor = 69.25þ 3.52¼ 72.77 bp

The floor market is often less liquid than the cap and swap markets, and these relationships
are widely used to act as an arbitrage check between the markets.
Many borrowers buy caps as protection against rising interest rates. The example cap

above was struck at 3% at a cost of 69 bp, and the graph shows the constant strike
compared with the forward rate curve. Is the cap providing good protection? At the short
end, interest rates could rise by 50 bp before the appropriate caplets came into the money.
So the protection is not very tight.

2.00%

2.25%

2.50%

2.75%

3.00%

3.25%

3.50%

3.75%

4.00%

0.0 0.5 1.0 1.5 2.0 2.5 3.0Years

Illustration of standard cap
using implied 3 mo. forwards

Cost of cap = 69 bp

An alternative structure is a ‘‘curve cap’’, in which the strike is set to be a constant spread to
the forward curve. Setting the strike spread to �8.75 bp, namely just below the forward
curve, the cost of the curve cap:
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is exactly the same as the original cap (see Worksheet 10.12 for precise details). Each caplet
is in the money but to the same absolute amount. Naturally, in this case, the smile effect has
to be included in the pricing—if a constant par volatility of 14.8% was used, then the
spread would only be�9.5 bp. One might argue that a traditional cap is for a borrower that
cannot afford to pay above a certain level; a curve cap is for somebody that wants an
insurance policy against rates rising but is content to pay if the actual fixings follow the
forward curve. Another interesting extension to the vanilla cap is the ‘‘mid-curve’’ cap.
Using the same notation as before, the payout of a caplet was defined as proportional to
max½0;L� K � where L is the fixing of the forward rate Fð
;TÞ. Modifying the notation for
the forward rate to Fðt; 
;TÞ where t � 
 is the observation time, obviously Fð
; 
;TÞ
equals the actual fixing L, but when t < 
 , then Fðt; 
;TÞ is an observation of a forward
rate. Consider now a call option of maturity t on Fðt; 
;TÞ, i.e. where the payout is
proportional to max½0;Fðt; 
;TÞ � K �. Thus, comparing this option with a conventional
caplet, the payout is based on a forward rate instead of a spot rate. The maturity of the
mid-curve option is less, and therefore likely to be cheaper. However, it is also riskier
because the forward rate at maturity may not be an accurate estimate of the spot rate at the
fixing. Like many things, it’s a trade-off.

Worksheet 10.13 shows the details. It prices both the conventional cap for 75 bp and a
mid-curve cap. This latter has been defined as follows:

. total maturity of 3 year;

. conventional caplets in year 1;

. caplets in year 2 are based upon Fð1; 
;TÞ where 
 ¼ 1, 1.25, 1.5 and 1.75;

. caplets in year 3 are based upon Fð2; 
;TÞ where 
 ¼ 2, 2.25, 2.5 and 2.75;

. the payout for each option matches the conventional cap, i.e. at time T as before.

The time of payout needs to be defined; the usual choices are either as above or all made at
the maturity of the options, as soon as the forward rates are fixed. From a bank’s
perspective, the latter is probably more acceptable as it would obviously reduce credit
exposure; it is the same argument as for discounting a FRA. From an end-user’s point of
view, the former would match the timings of physical interest payments. Column [16]
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shows the date of the fixings, and the option parameters are calculated in columns [17]–[19].
The mid-curve caplets are priced in column [7], discounting back from the actual payment
date. The price saving is nearly 6%.
There is a wide range of more complex caps, and three of the most popular types are

described below. Unlike an ordinary equity or FX option, caps offer more possibilities
because they are multi-options, and it is this property highlighted below. The common
factor for all of these structures is that they are cheaper than vanilla instruments, and yet
offer some form of interest rate protection.

1. Barrier caps. Both knock-ins and knock-outs are common. Examples of the latter are,
based on a cap struck at K:
e the ith caplet is knocked out when Li > K 0 > K ;
e the (i þ 1)th caplet is knocked out when Li > K 0 > K , i.e. the original protection is

kept, but subsequent protection is weakened; or
e even entirely lost if the remainder of the cap is knocked out.

2. Periodic caps (closely related to multi-forward and ratchet options). Under this struc-
ture, the caplets’ strikes are determined dynamically. Assume that when the option is
entered into, the strike of the first caplet (K1) is set to the current forward rate F1 þm. If
m is positive, which is most common, then the caplet is OTM and hence relatively cheap.
The fixing of the floating rate is latterly observed (L1) and the payout¼ max½0;L1 � K1�.
The strike of the second caplet (K2) is simultaneously set to L1 þm, again ensuring that
it is OTM, and so on. The structure protects against spikes in the floating rate, but not
against small movements.

3. Chooser caps. Consider a 3-year cap on 3mo. Libor; this will consist of 11 caplets.
Examples of a ‘‘5 chooser cap’’ would be:
e you can choose which 5 out of the 11 original caplets to exercise, but only before or on

the fixing date, i.e. no lookback;
e you can choose to exercise a contiguous strip of 5 caplets;
e the first 5 caplets that are ITM are automatically exercised.

Numerical models are really required to price these types of structures, although in practice
variants of the Black model are frequently used.
When obtaining protection through the purchase of a cap, a common strategy to reduce

the overall cost is to sell a floor at a lower strike. The impact of this is shown below:

Cap 
strike 

Floor 
strike 

Cap-floor 

Actual interest rate 

Effective 
Interest 

rate 

“Do nothing” strategy 
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The strategy is often called a ‘‘collar’’ or cylinder’’ because the effective interest rate to be
paid by a borrower is constrained to lie between the upper cap strike and the lower floor
strike. The overall cost of the strategy depends upon the relative cost of the cap and floor,
which in turn depends upon the positioning of the two strikes. Remember the basic
sensitivity results:

. cost of cap decreases as the strike increases;

. cost of floor increases as the strike increases.

The usual approach to locating the strikes is first to set the cap strike, say at 3.5%. This
gives a 3-year cap cost, as we have seen, of 34.8 bp on a par volatility of 15.59%. Second to
decide upon the maximum overall cost that you wish to pay, say 20 bp. Therefore the floor
must have a price of 14.8 bp which implies a strike of 2.425% on a par volatility of 16.13%
(see Worksheet 10.14).

The borrower has bought the cap and sold the floor back to the bank. It would be
unusual for the bank to buy the floor back on the same volatility; normally the bid (or ask)
volatility would be used. If we assume a 1% spread, then the example would use 15.59% for
the cap but only (15.98%� 1%) for the floor. As expected, the floor would be struck at a
higher strike of 2.463% implying that the borrower would be paying a higher effective
interest rate if the floating rate dropped.

Zero-cost collars are particularly popular as they involve no upfront payments at all.
In this case, still using the 1% bid–offer spread, the floor would be struck at 2.723% on a
volatility of 14.36%.

An alternative structure to collars is ‘‘participations’’, which are constructed by adjusting
the amounts of the cap and floor. For example, assume the zero-cost collar above was
based on a constant principal amount of $100m. Instead of buying the floor struck at
2.723%, suppose it was struck at (say) 3%, hence increasing its value from 34.8 bp to 70 bp.
The collar is no longer zero-cost. However, by only selling $100m � (34.8 bp/70 bp)¼ $50m,
the overall structure is again zero-cost. The net effect is that there is full protection still
against interest rates rising above 3.5%, the borrower would gain if interest rates fell
between 3.5% and 3%, and would also gain on 50% of the borrowing if rates fall below
3%. Introducing the idea of participations (see Worksheet 10.15) increases the flexibility of
these structures considerably, and there are many varieties:

Actual interest rate 

Effective 

Interest 

rate 

Participation 

Original cap floor strategy

3.50%2.72% 3%
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10.6 DIGITAL OPTIONS

Digital or binary caps are very fundamental structures, and are often embedded in more
complex products. The payout from a digicaplet is simply D � ðT � 
Þ � P if L 	 K and
zero otherwise, where D is some predetermined constant usually quoted as a percentage or
in basis points, as shown below:

K L

Payout from 

ordinary caplet 

Payout from 

digicaplet 

Using a Black model to price such an option is straightforward, that is (see Worksheet
10.16):

DC ¼ DFT �D � ðT � 
Þ � P �Nðd2Þ

This formula may be interpreted as ‘‘discounted constant payout’’� ‘‘probability of being
in the money at maturity’’. Digicaplets are usually cheaper than the equivalent ordinary
caplet because the payout is limited; the exception arises when the option is close to ATM
and has relatively low volatility.
Digital options may be regarded as fundamental building blocks, and in theory can be

used to replicate ordinary options, or of course vice versa. They can also be used to price a
European option with a complex payout strategy. For example, consider an ordinary call
option with strike¼ K . Its payout can be replicated by a series of digital call options struck
at K þ i � h for i ¼ 1; 3; 5; . . . each with the payout D ¼ 2h. This ensures that the digital
portfolio will approximate the call option with a maximum error of h. The graph below
shows the asymptotic cost accumulation of a series of digital options to a call option struck
at 100:

 K K+h K+3h
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Hedging a single digital option can be difficult, due to the discontinuous nature of its
payout, which is likely to be far less evident in a portfolio. Probably the most popular
method for hedging (say) a sold digicap struck at K with payout D would be to buy N
ordinary caps with strike K � h and to sell N caps struck at K þ h. The parameters would
be determined by D ¼ 2Nh: for example, if K ¼ 100 and D ¼ 10, then five caps would
have to be bought and sold if h ¼ 1:
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16
Approximating a standard call option

by a strip of digitals: h=0.5
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Digitals Call option

10.7 EMBEDDED STRUCTURES

Many structures are provided with embedded options. For example, many investors during
the 1980s entered into pension arrangements with Equitable Life, a large UK insurance
company. At maturity these pension schemes delivered annuities with guaranteed mini-
mum levels; in essence the company had provided the investors with a floor. When these
pensions were being sold, the floor was considerably OTM and was effectively ignored by
the company. Unfortunately interest rates declined significantly during the 1990s and the
floor became a long way ITM. The company had apparently paid no attention to the
impact of declining rates until 1999; after a subsequent investigation, it was declared
effectively insolvent!

It is obviously important to be able to price and to replicate such structures correctly.
In this section we will discuss a number of structures, in particular bringing together swaps
and options; in Chapter 11, we will consider more complex embedded structures. As the
background, we will assume a company is raising $100m for 3 years at 3mo. Libor flat. The
company then wishes to enter into various structures to manage the interest rate risk.

For example, the company could buy a cap struck at 4% for 18 bp. As Worksheet 10.19
shows, spreading this cost over 3 years results in a margin of 6.2 bp; that is:

Liborþ 6.2 bp for Libor� 4%
4.062% for Libor> 4%

This strategy is a common option on many retail mortgages, namely to buy a separate
option over and above the mortgage.

Suppose however the company wishes to place a cap on the total interest rate payable
of 4%, including the cost of the cap. In other words, Cap strikeþMargin¼ 4%. The



calculation is not so simple as the margin is obviously a function of the strike, and so an
iterative method has to be used. The final cap is struck at 3.932% which costs 19.7 bp or
6.777 bp pa, and therefore the sum is equal to 4%.
One practical issue that must be taken into consideration: a conventional cap does not

include the first fixing as discussed above, whereas almost invariably embedded constraints
will apply across all fixings. In this case, the first fixing was 3.145%, i.e. below the cap
strike, so the initial caplet is out of the money. In general there would be an additional cost
of DF1 �maxfFð
1;T1Þ � K ; 0g � ðT1 � 
1Þ to be included.
In summary, this structure would be:

Liborþ 6.777 bp for Libor� 3.932%
4% for Libor> 3.932%

This second structure is costing the company an additional 0.5 bp but limits the maximum
rate to 4%. Which structure is preferred depends upon its view of interest rates over the
next 3 years and the likely impact on the performance of the company (see Worksheet
10.20).
Swaps are frequently provided with embedded options on the floating side. In this case,

the cost of the option is invariably integrated into the effective fixed rate. For example,
consider a generic 3-year swap to receive the fixed rate annually and pay 3mo. Libor; the
current rate is 3.035% ANN. We wish to cap the Libor at 3.5%; the option price should be
reflected in the fixed rate which of course should be lowered.
Looking at Worksheet 10.21, the cost of the cap is 34.4 bp. Spreading this out over 3

years:

34:4 bp=Q3 ¼ 132=2:87 ¼ 12:00 bp

or this margin can be estimated by constructing the cashflows. Therefore the new rate is
3.035%� 12 bp¼ 2.915%.
Let’s now turn the swap around the other way, and receive Libor subject to a floor at

3.5%. The same approach can be employed, but there is one additional complication. The
first fixing of Libor was 3.145%, i.e. below the floor. The total cost of the floor is:

Cost of conventional floor @ 3.5% = 170.87 bp
Cost of first fix (3.5%� 3.145%) � (6 May–6 Feb)/360 �DF3month = 8.81 bp

The adjustment to the fixed side is 179.68 bp/2.87¼ 62.5 bp which of course in this case has
to be added to the fixed rate as the floating rate receiver/fixed rate payer is benefiting from
the option.
At the time of writing, due to the current credit crisis interest rates have come off. For a

more complex example, assume that the company issues a reverse floating rate note to raise
money; this strategy is attractive to investors who anticipate rates declining further. The
coupon is set at 12%� 3.08 � 3mo. Libor and is subject to a non-negativity constraint. The
company has a funding target of 25 bp below Libor, and to achieve this it is prepared to
consider inserting a cap on the coupon of the note:
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Issuer 

12% – 3.08 * L 

0  12% – 3.08 * L  C

L – 25bp

The objective therefore is to calculate the level of floor such that the swap has an overall
value of zero, taking into account the embedded options. Looking at Worksheet 10.22, we
can see that the swap, with zero sub-Libor margin and ignoring the options, has a current
value of �$700,866 from the point of view of the issuer. The fair breakeven margin is only
24 bp below Libor, so to achieve 25 bp below Libor is worth $26,039 to the issuer. The non-
negativity constraint is equivalent to a cap being struck at (12%/3.08)¼ 3.896%; the value
of this cap is $206,309 which benefits the issuer. Therefore the swap counterparty would
demand compensation worth $26,039þ 206,309¼ 232,348. Placing a cap on the coupon
struck at C is equivalent to the counterparty benefiting from a floor struck at (12%�C)/
3.08. As Worksheet 10.22 demonstrates, the breakeven value for C is 4.095%, giving a floor
strike of 2.566% and an overall value of $232,348.

The key to pricing these structures is always to ask ‘‘who benefits?’’. Starting with
the basic fair swap to receive {12%� 3.08 �L} and to pay {L� 24 bp} first add the cap.
This benefits the issuer, and therefore the counterparty wishes to receive a higher cashflow.
Then add the floor, this benefits the counterparty and hence the issuer will pay a lower
cashflow.

There are a wide variety of embedded option structures. These became increasingly
popular in the early 1990s, when interest rates were declining, and investors started to
chase yield more and more. For example, the notorious swap executed between Procter &
Gamble and Bankers Trust was an extreme example as discussed in the box below. More
complex structures are discussed in Chapter 11.

Procter & Gamble Swap

The date is early November 1993. P&G wished to replace a maturing swap that
achieved CP� 40 bp. Obviously, to repeat this rate would require assuming some risk,
and they were prepared to gamble on USD interest rates remaining relatively constant
over the next 6 months.

They entered into a 5-year swap with Bankers Trust:

. notional principal: $200m

. to receive: 5.30%

. to pay for first 6 months: daily average 30-day CP� 75 bp

. to pay for remaining 4.5 years: daily average 30-day CP� 75 bpþP

. where P was defined as: max{0;S} and
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. where S ¼ [17.04 � 5 yr bond yield� 30yr bond price/100]

. with an option to buy back P within the first 6 months at market value.

P&G has sold an embedded option P to BT. The latter demonstrated that if both
interest rates and volatility remained stable for 6 months, then the buy-back option
would cost about 37 bp pa for the remainder of the 5 years, thus nearly achieving
P&G’s target.

Notice of course, S is not a ‘‘spread’’; if rates go up, S would increase as the bond
yield increases and as the bond price decreases. The ‘‘leverage’’ factor of S is not 17, as
superficially suggested, but closer to 25. At the time the deal was signed, S was equal to
just over �1,700 bp, with a 6-month forward value of �1,271 bp. Unfortunately, rates
started to rise in early February 1994 to the effect that P&G became obligated to pay
some 1,400 bp over the CP rate. The cost of the buy-back option had now risen to over
90% of the notional principal.

10.8 SWAPTIONS

A swaption is a single option on a forward swap. Some terminology:

Receiver’s: Forward swap to receive fixed, pay floating
Payer’s: Forward swap to pay fixed, receive floating

The notation generally used to characterize swaptions is {Length of option/Length of
swap}. For example, 5/2 payer’s is a 5-year option on a 2-year swap to pay fixed.
How does a swaption compare in terms of risk management control with a cap? Consider

our company that is paying 3mo. Libor on its debt: it buys a payer’s. If it exercises the
single option, it will be receiving Libor quarterly and paying a fixed rate which is effectively
an average of the implied forward rates. Obviously if Libor decreases after exercise then the
company cannot benefit. As we may see below, it is typically cheaper but provides less
protection.

Comparison between: Cost

1 yr vanilla forward cap 27.3 bp
1/1 payer’s swaption 24.4 bp

f out of 6 Feb 08
f on 3mo. Libor from 6 Feb 09 to 8 Feb 10
f strike¼ 2.5%, vol off the forward vol surface
f the cap is most expensive, but has four exercise dates
f the swaption is a single option on the same exercise date
f average forward vol over the 1 year¼ 15%
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European swaptions are usually priced using a Black model, just like caps and floors,
which introduces some interesting issues. Consider a payer’s swaption with strike K : let the
value of the fixed and floating sides at maturity of the option be VK and VL, respectively.
The payoff is max½0;VL � VK �. As interest rates move during the lifetime of the option,
both VL and VK change. Therefore the payoff is not in the usual form for a Black model,
namely a stochastic underlying compared with a fixed strike, and spread option models
such as Margrabe have been advocated by some practitioners14—see box below.

Margrabe spread option model:

Payer’s¼ V0L �Nðd1Þ � V0K �Nðd2Þ
where V0L is the PV of the floating side

V0K is the PV of the strike side
d1 ¼ ½lnðV0L=V0KÞ þ 1

2
� �2 : t=ð� :ptÞ, etc.

�2 ¼ ð�LÞ2 þ ð�KÞ2 � 2 : �L : �K : �LK and
�L and �K are the vols of the value of the floating and fixed sides, respectively, and

�LK the correlation between the two sides

However, we can manipulate the Black formula if we rewrite the future values as:

VK ¼ K � ðQe �QsÞ=DFs

VL ¼ ðDFs �DFeÞ=DFs

for a principal P equal to 1, and ensuring of course that the Q-factors are calculated using
the correct frequency of cashflows. We know that the generic forward swap rate Fs;e can be
estimated using market rates:

Fs;e ¼ ðDFs �DFeÞ=ðQe �QsÞ
Substituting into the payoff, we get:

max½0;Fs;e � K � � ðQe �QsÞ=DFs

which gives a Black swaption-pricing model for a payer’s:

Payer’s¼ ½Fs;e �Nðd1Þ � K �Nðd2Þ� � ðQe �QsÞ
where d1 and d2 are defined in the usual way, and the volatility refers to the forward swap
rate. The apparent assumption, as in the cap model, is that the estimation F is stochastic
whereas the discounting process is not, but this is resolved as discussed above. Indeed, as a
one-period swaption is a caplet, it would be surprising if the assumptions were not
consistent.

Having said that, there is one inconsistency between the cap and swaption markets,
namely:

. a cap model assumes forward interest rates are log-normally distributed;

. a swaption model assumes forward swap rates are log-normally distributed;

. a forward swap is a (approximately linear) function of forward interest rates.
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The statements are together logically inconsistent; nevertheless the financial markets
invariably price both caps and swaptions using Black models! This point will be discussed
in more depth later in this section.
Worksheet 10.23 demonstrates the pricing of a range of payer’s swaptions struck at

2.5%. The sheet is constructed to calculate 5-year sa forward swap rates every 3 months.
Using the discount factors (column [1]) constructed from market data, first the appropriate
Q-factors are calculated ([2]) and then the forward swap rates ([3]). For example:

DF Q Forward

Start date: 08-Feb-10 0.945458 1.467199 4.33770%
End date: 06-Feb-15 0.759411 5.756264

For a given volatility, d1, Nðd1Þ and Nðd2Þ are calculated in columns [7]–[9]. The prices of
the payer’s are expressed in bp; the fair price for the 2/5 payer’s is 788 bp as shown in
column [4]. Notice that the price curve is rising with time; this is due both to increasing time
value and also the rising forward swap curve which would of course be received.
The required volatility is that of the forward swap rate. Table 10.4 shows the ATM

volatility surface for the euro on 6 February 2008; the length of the option is on the vertical
axis, and the length of the underlying swap on the horizontal.
Given that far forward rates are generally less volatile than near rates, and that long rates

are also less volatile than short rates, we would expect swaption volatility to decline with
both increasing option maturity and increasing swap maturity, as demonstrated in the
table. Smiles can also be observed in the swaptions market as well. Table 10.5 shows the
moneyness smile for selected swaptions, based upon the ATM table (Table 10.4). Unlike
cap volatilities, we need to interpolate swaption volatilities across a three-dimensional
space.
Caps are options on forward interest rates, swaptions are options on forward swap rates.

As a forward swap can be expressed as a function of forward interest rates, there should be
at least a theoretical relationship between the two markets. As the cap market is usually
considerably more liquid than the swaption market, it may make practical sense to imply
swaption volatilities (albeit approximately) from the caplet vols. If y ¼ f ðx1; x2; . . .Þ where
f ð Þ is a known function, and x is a stochastic vector, then

vy 

XX

i; j

ð@y=@xiÞ : ð@y=@xiÞ : si : sj : �i; j

where vy is the variance of y; s are the standard deviations; and �i; j is the correlation
between xi and xj. Using the approximation: for a variable z,
vz ¼ Efzg2 : ½expð�2

z : tÞ � 1� 
 Efzg2 : �2
z : t, where �z is its volatility, swaption volatility

can be estimated from the forward interest rate volatility.
We know that a forward swap rate Fs;e may be expressed as:

Fs;e ¼ ðDFs �DFeÞ=ðQe �QsÞ ¼
Xe

sþ1

fj � dj �DFj=ðQe �QsÞ ¼
X

wj � fj

where, of course, wj is itself a function of the forward rates fj . The sensitivity with respect to
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Table 10.4 ATM volatility surface for the Euro on 6 February 2008

Tenor

Term 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr 10 yr 15 yr 20 yr 25 yr 30 yr

1mo. 13.9% 14.4% 14.7% 14.7% 14.7% 14.4% 14.1% 13.7% 13.4% 13.1% 12.5% 12.0% 11.7% 11.4%
2mo. 13.8% 14.4% 14.8% 14.9% 15.0% 14.6% 14.3% 13.9% 13.6% 13.3% 12.5% 12.0% 11.7% 11.5%
3mo. 14.1% 14.6% 15.0% 15.2% 15.1% 14.8% 14.5% 14.3% 14.0% 13.7% 12.8% 12.3% 12.0% 11.7%
6mo. 14.8% 15.2% 15.2% 15.2% 15.1% 14.8% 14.6% 14.3% 14.0% 13.8% 12.9% 12.4% 12.0% 11.8%
9mo. 15.4% 15.4% 15.4% 15.3% 15.1% 14.8% 14.6% 14.3% 14.1% 13.8% 13.0% 12.5% 12.2% 12.0%
1yr 15.6% 15.6% 15.5% 15.3% 15.0% 14.8% 14.6% 14.3% 14.1% 13.9% 13.1% 12.6% 12.3% 12.1%

18mo. 15.7% 15.6% 15.4% 15.3% 15.0% 14.8% 14.5% 14.3% 14.1% 13.9% 13.1% 12.6% 12.3% 12.2%
2yr 16.0% 15.7% 15.5% 15.1% 15.0% 14.7% 14.5% 14.2% 14.0% 13.8% 13.0% 12.6% 12.3% 12.1%
3yr 15.9% 15.7% 15.4% 15.2% 14.7% 14.5% 14.2% 14.0% 13.8% 13.6% 12.9% 12.5% 12.2% 12.0%
4yr 15.7% 15.4% 15.0% 14.8% 14.4% 14.2% 13.9% 13.7% 13.5% 13.4% 12.7% 12.2% 12.0% 11.8%
5yr 15.4% 15.1% 14.8% 14.4% 14.1% 13.8% 13.6% 13.4% 13.2% 13.1% 12.4% 12.0% 11.7% 11.6%
7yr 14.4% 14.1% 13.9% 13.5% 13.2% 13.1% 12.9% 12.8% 12.6% 12.5% 11.9% 11.5% 11.3% 11.1%

10 yr 13.2% 12.9% 12.7% 12.5% 12.3% 12.2% 12.1% 12.0% 12.0% 11.9% 11.3% 10.9% 10.7% 10.4%
15 yr 11.9% 11.8% 11.7% 11.6% 11.4% 11.3% 11.3% 11.2% 11.2% 11.2% 10.6% 10.3% 10.0% 9.8%
20 yr 11.4% 11.2% 11.1% 11.0% 10.8% 10.7% 10.7% 10.7% 10.7% 10.7% 10.2% 9.7% 9.5% 9.4%
25 yr 11.0% 10.8% 10.7% 10.6% 10.4% 10.5% 10.5% 10.4% 10.4% 10.4% 9.8% 9.5% 9.4% 9.4%
30 yr 11.1% 10.8% 10.7% 10.5% 10.3% 10.3% 10.3% 10.2% 10.2% 10.2% 9.6% 9.4% 9.4% 9.3%
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Table 10.5 Moneyness smile for selected swaptions

Term Tenor Strike ATM �200 �100 �50 �25 0 25 50 100 200

price vol

3mo. 2 yr 3.9951 14.60% 20.55% 16.64% 15.33% 14.88% 14.60% 14.48% 14.50% 14.88% 16.18%
3mo. 5 yr 4.0201 15.10% 21.29% 17.22% 15.86% 15.39% 15.10% 14.97% 15.00% 15.38% 16.71%
3mo. 10 yr 4.2658 13.70% 19.98% 15.76% 14.40% 13.96% 13.70% 13.62% 13.69% 14.14% 15.57%
3mo. 20 yr. 4.3476 12.30% 19.22% 14.56% 13.06% 12.58% 12.30% 12.21% 12.29% 12.78% 14.29%
3mo. 30 yr 4.3247 11.70% 19.17% 14.12% 12.52% 12.00% 11.70% 11.61% 11.69% 12.22% 13.81%
1yr 2 yr 4.0507 15.60% 20.68% 17.32% 16.22% 15.85% 15.60% 15.47% 15.44% 15.65% 16.58%
1yr 5 yr 4.0618 15.00% 20.40% 16.82% 15.66% 15.26% 15.00% 14.87% 14.85% 15.08% 16.08%
1yr 10 yr 4.0604 13.90% 19.45% 15.71% 14.53% 14.14% 13.90% 13.80% 13.81% 14.12% 15.23%
1yr 20 yr 4.2136 12.60% 18.73% 14.58% 13.29% 12.86% 12.60% 12.49% 12.51% 12.84% 14.01%
1yr 30 yr 4.2795 12.10% 18.73% 14.23% 12.83% 12.38% 12.10% 11.98% 12.01% 12.37% 13.60%
5yr 2 yr 4.1665 15.10% 19.87% 16.76% 15.75% 15.38% 15.10% 14.90% 14.79% 14.75% 15.16%
5yr 5 yr 4.0162 14.10% 18.76% 15.68% 14.71% 14.36% 14.10% 13.92% 13.82% 13.81% 14.26%
5yr 10 yr 4.2077 13.10% 18.13% 14.82% 13.76% 13.38% 13.10% 12.91% 12.80% 12.79% 13.27%
5yr 20 yr 4.2779 12.00% 17.60% 13.90% 12.73% 12.31% 12.00% 11.80% 11.69% 11.71% 12.28%
5yr 30 yr 4.3470 11.60% 17.62% 13.62% 12.37% 11.92% 11.60% 11.39% 11.29% 11.34% 11.98%

10 yr 2 yr 4.4552 12.90% 17.42% 14.44% 13.51% 13.17% 12.90% 12.71% 12.58% 12.48% 12.72%
10 yr 5 yr 4.4765 12.30% 17.00% 13.89% 12.92% 12.57% 12.30% 12.11% 11.98% 11.91% 12.19%
10 yr 10 yr 4.4759 11.90% 16.84% 13.56% 12.55% 12.18% 11.90% 11.70% 11.57% 11.49% 11.79%
10 yr 20 yr 4.5098 10.90% 16.26% 12.68% 11.59% 11.20% 10.90% 10.69% 10.57% 10.51% 10.87%
10 yr 30 yr 4.5098 10.40% 15.97% 12.23% 11.10% 10.70% 10.40% 10.20% 10.08% 10.04% 10.45%



a forward rate fj for s < j � e is given by15:

@Fs;e=@fj ¼ ½dj=ð1þ dj : fjÞ� � fDFe þ Fs;e : ðQe �Qj�1Þg=ðQe �QsÞ
Details of the calculations are shown in Worksheet 10.26. The worksheet calculates the
discount curve, sa Q-factors and a set of 5 yr sa forward swap rates. The calculations for a
single swap, in this case a 5/10 swap, are highlighted in italics, and sensitivities to the 10
forward interest rates are calculated in column [2]. Assuming a volatility curve (column [1]),
the standard deviation and hence volatility of the swap are given in column [3].

The volatility has been calculated with different correlation matrices between the for-
ward rates. As expected, with perfect correlation, swaption volatility is, to all intents, the
same as the flat forward rate volatility curve. As the correlation reduces, the swaption
volatility reduces as well. Instead of continually re-calculating a full correlation matrix, a
common assumption is to assume a ‘‘ridge’’ structure such as �i; j ¼ exp½�	 : ji � jj� where i
and j are the times to the fixings of fi and fj, respectively, and 	 > 0 dictates the speed at
which the correlation drops off.16 The impact is shown in the graph below: a typical value
for 	 would be about 30%.
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In practice, this approach is adequate to provide an indication of where the swaption
volatility should be, but the swaption market has its own characteristics as distinct from the
cap market. Relying on this relationship for pricing, and more for risk management, would
introduce considerable basis risk.17 This relationship is frequently used to imply
correlation, and thus to calibrate IR simulations. This will be discussed in more detail
in Chapter 11.

A receiver’s swaption, namely to receive fixed and to pay floating, is equivalent to a floor
and may be priced in a similar fashion either using a Black model directly:

Receiver’s¼ ½K �Nð�d2Þ � Fs;e �Nð�d1Þ� � ðQe �QsÞ
or by using a call–put parity argument. Consider a portfolio:

þReceiver’s�Payer’s¼ max½0;VK � VL� �max½0;VL � VK � ¼ VK � VL
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16 This will be discussed in more detail in Chapter 11.
17 As various banks have found to their cost.
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i.e. equivalent to a forward swap to receive fixed, pay floating. Therefore

R ¼ Pþ ðK � FÞ � ðQe �QsÞ
For example, the 2/5 receiver’s swaption would be priced at:

788.68 bpþ 10,000 � (2.5%� 4.3377%) � (5.756� 1.467)¼ 0.48 bp

This result is of course replicated using the Black model, as shown in Worksheet 10.23.
The above discussion has implied that, when a swaption is exercised, a swap is delivered

on the exercise date. It is feasible to get cash-settled swaptions, under which the cash value
of the underlying swap is paid to the option purchaser. However, the valuation convention
is slightly different. Normal swap valuation is done off a discount curve, which itself is
constructed from the swap curve in some fashion. However, if the 2/5 swaption above was
cash-settled, then at maturity the current 5-year rate S5 is noted:

. the cashflows on the fixed side of the swap, including the notional principal amounts at
the start and end, are constructed;

. these cashflows are discounted using S5 only, treating it as if it were a bond yield; and

. the swap value calculated.

The reason for the convention is that there may well be disagreement about the
construction of a discount curve and hence the implied cash amount, whereas the option
counterparties are likely to agree on S5 as a visible traded rate.

10.9 STRUCTURES WITH EMBEDDED SWAPTIONS

Embedded swaptions are less common than embedded caps and floors. Nevertheless, some
structures such as:

Extendibles The ability to extend a swap at the same fixed rate
Retractables The ability to cancel the swap without penalty

without any lump-sum payments are readily available. For example, we wish to price an
extendible swap (see Worksheet 10.27):

. 3-year sa swap;

. to pay fixed;

. extendible to 5 years at the option of the payer
e current 3-year rate: 3.012%
e 2-year forward swap rate: 4.235%



The payer of the fixed rate has effectively bought a 3/2 payer’s swaption. The premium is
included in the fixed rate FE ¼ 3.012%þm, where m is a margin such that PVðmÞ over the
first 3 years is equal to the premium. Note that the premium is spread over only 3 years, as
those payments are certain to be made, and not over 5 years. The rate has to be calculated
iteratively, and a good starting point is the current 3-year rate:

Iteration 1 2 3 4 5 6 7 8 9

Strike (%) 3.012 3.784 3.434 3.578 3.515 3.542 3.530 3.536 3.533
Swaption (bp) 224 122 164 146 154 150 152 151.0 151.4
Margin (bp pa) 77.2 42.3 56.6 50.4 53.0 51.9 52.4 52.1 52.25

The fair rate for the payer’s extendible is 3.534%, 52 bp above the generic swap rate.
A retractable would be priced in a similar fashion. For example, consider a 5-year swap,

retractable to 3 years at the option of the payer:

Current 5-year rate: 3.474%

Again the quoted price FR must equal 3.474%þm1: this swap is also priced in the
worksheet. The two rates, FE and FR, are of course identical (off the same volatility)
because the two swaps have the same economic effect. There is therefore a potential
arbitrage to be monitored.

One of the earliest uses for swaptions was to assist in the swapping of callable bonds.
Consider a 5-year bond that has a single call date in 3 years’ time. Remember that the issuer
has the right to call, and is likely to exercise this right if rates decrease over the 3 years, and
therefore has to pay a higher coupon to the investors. The issuer wishes to swap the bond
into floating, as shown:

Issuer 

L

C, callable after 

3 years 

C

Where the maturity of 

the swap must match 

the effective maturity 

of the bond 

The naive approach is for the issuer to purchase a 3/2 swaption. This may be done in two
ways:

(a) enter into a 3-year receiver’s swap plus a 3/2 receiver’s swaption;
(b) enter into a 5-year receiver’s swap plus a 3/2 payer’s swaption.

One problem with either structure is that the issuer has effectively to pay two option
premia, one to the investor for the call, and one to the swaption counterparty for the

OTC Options 221



option. Another problem is that, whilst either structure will achieve the issuer’s objective,
neither makes economic sense. Consider the two scenarios:

Action on bond Action on swaption (a) Action on swaption (b)

Interest
rates go No call No exercise Exercise
up —5-year bond —3-year swap —3-year swap

Interest Call Exercise No exercise
rates go —3-year bond —5-year swap —5-year swap
down

Exercising the swaptions rationally results in a maturity mismatch under either scenario.
It is more appropriate for the issuer to sell a swaption. For example:

(c) enter into a 3-year receiver’s swap, and sell a 3/2 payer’s swaption;
(d) enter into a 5-year receiver’s swap, and sell a 3/2 receiver’s swaption:

Action on bond Action on swaption (c) Action on swaption (d)

Interest
rates go No call Exercise No exercise
up —5-year bond —5-year swap —5-year swap

Interest Call No exercise Exercise
rates go —3-year bond —3-year swap —3-year swap
down

The issuer is paying a higher coupon to the investor, but also receiving the swaption
premium. The swaption will be exercised so that the maturities also match. Because the
swaption market is a wholesale market, the swaption is likely to be priced fairer than the
call option in the bond market,18 and therefore the issuer may be able to achieve sub-Libor
funding.
Worksheet 10.28 shows a simple example of swapping a 5-year bond paying 3.5%

coupon annually and with a single call in 3 years at par, into a floating rate of 3mo.
Libor� 11.7 bp. Callable bonds usually have multiple call dates, very often coinciding with
selected coupon dates. These will be modelled in Chapter 11.
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10.10 OPTIONS ON CREDIT DEFAULT SWAPS

As before, these are options on forward-starting CDSs. Usually a Black formula is used to
price the options; for example, an option to buy a CDS on a premium of K :

½Fs;e �Nðd1Þ � K �Nðd2Þ� �
X

St � dt �DFt

where the summation is taken over the forward swap. Notice that the only difference from
the usual Black formula is the inclusion of survival probabilities. This formula is dependent
upon one market assumption, namely if there is a credit event during the option period,
then the swaption is cancelled without penalty.

In practice, the options are short-dated, with the vast majority less than 6 months. This is
because the volatilities of CDS premia may be very high—see Table 10.6 using data drawn
from 2000 to 2002—and therefore hedging the options is subject to significant risk.

Table 10.6 Estimated annual volatility for spreads on 5-year CDSs
19

Name Rating Number of trades Volatility pa

AT&T Corp. A1 to A3 171 93.4%
DCX A1 to A3 248 86.7%
Ford Motor Credit A1 to A3 264 67.6%
GMAC A2 174 69.2%
Sears Acceptance A2 to A3 112 77.2%
Tyco A3 120 130.3%
WorldCom A3 123 106.0%

10.11 FX OPTIONS

Whilst this book is primarily about swaps and interest rate options, this is a brief section
on FX options for completeness. Exotic options will not be described in any great detail
as there are a large number of books available that describe both the theory and application
of these options (see, for example, Haug20). The objective of this section is to cover
briefly generic-option pricing, so that it may be used in the risk management chapters
(i.e., Chapters 12 and 13).

Consider a simple call option on $–¥ with a strike K of 105 JPY per USD. As with a
normal call, this gives:

. the right to buy or to receive the underlying numeraire currency, i.e. USD; and

. the right to sell or to pay JPY at the strike rate.

If the spot rate at expiry ST ¼¥107, then you can sell $1and buy ¥107 in the spot market
and make a riskless profit of ¥2 per $1.
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Generic FX options are typically priced using the ‘‘Garman–Kohlhagen’’ (G–K)
variant of the usual Black and Scholes model:

C ¼ S0 � df fT �Nðd1Þ � K � df dT �Nðd2Þ
where df

f
T is the discount factor on the foreign side, usually defined as expf�rf � Tg
where rf is the continuously compounded risk-free zero-coupon rate;

df dT is the same on the domestic side;
d1 ¼ flnðS0=Kg þ ðrd � rf þ 1

2
�2Þ :Tg=�pT ;

d2 ¼ d1 � �
p
T ;

T is the time to expiry (in years);
� is the annualised volatility of the spot rate;

NðxÞ is the cumulative unit normal.

This definition uses the usual (personally speaking, unhelpful) language of ‘‘foreign’’ and
‘‘domestic’’; to translate, as the spot rate is quoted in terms of JPY per USD, JPY is the
domestic currency, USD the foreign one.21 The price of the option C will also be in the
same units as the spot rate. Whilst the formula calls for risk-free rates for discounting, in
practice, Libor discount factors are used.
This section will use USD/JPY examples, based out of the usual date of 4 February 2008.

As with virtually all currencies, FX options are quoted with a 2-day settlement period, so
the options should start on 6 February. As described above, yen uses same day discount
factors, which therefore need to be adjusted for the settlement period. We wish to price a
6-month call option with the following data (the remainder are on Worksheet 10.29):

. strike: 105

. size: $100m

. annualised volatility: 10.35%

. current spot rate: 106.601

The steps are:

. given the discount factors from the current market data (see Market Date worksheet for
details) out of the correct dates: columns [1] and [3];

. calculate the Act/365 continuously compounded zero-coupon rates: columns [2] and [4];

. estimate maturity (on a consistent act/365 basis)—see below;

. calculate d1 and d2, and hence price the call: 3.152¥ per 1$; or

. ¥315.2m for $100m (see Box 1 of Worksheet 10.30).

The volatility � is usually calculated using business days 
 only, whereas interest is
calculated using calendar days T , so the daycounts may be slightly different; that is:

ðr¥� r$Þ :T þ 1
2
�2 : 
 , etc.

which was why the c–c rates were calculated on an Act/365 basis.
In the early days of the market, FX options were traded on futures exchanges; the
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Philadelphia exchange was the first in 1982. But as the FX spot markets moved to
electronic trading around the world, the options market became predominantly OTC.22

The price in the OTC market is usually quoted as a percentage of spot (i.e. C=S0); that is:

3.152¥/106.601¼ 2.956% of principal of $100m

This method of quotation makes it independent of the size of transaction and of the
currency of the premium.

The option to put (or sell) the USD and receive JPY may be similarly calculated using:

P ¼ K � dfT¥ �Nð�d2Þ � S0 � dfT$ �Nð�d1Þ
It has a price of 2.780% of principal.

Whilst the G–K model is most popular, there is a ‘‘Black’’ equivalent using forward
rates. The forward FX rate ST may be estimated using S0 and two sets of interest rates, as
discussed above; that is:

ST ¼ S0 : expfr$ :Tg=expfr¥ :Tg ¼ S0 : dfT
¥=dfT

$

Substituting for S0 in the above formula gives:

C ¼ dfT
¥ � fST �Nðd1Þ � K �Nðd1Þg

where d1 ¼ flnðST=Kg þ 1
2
�2 :Tg=�pT (see Box 2 of Worksheet 10.30).

Because FX forward rates are traded, market quotes for ST are available and it is feasible
to substitute these directly into the formula. Unfortunately, the quoted rates may not be the
same as the implied rates—see the table below—so the option prices will be different! (They
are not quite comparable as the implied rates are taken off the offer side of the curve.)
So which should be used? The answer depends on the hedge:

. if spot FX trades are used to hedge, use the S0 model;

. if FX forward trades are used to hedge, then use the ST model.

Most people use the former because of the higher liquidity.

Maturity Implied Quoted

FX rates mid FX rates

1wk 106.538
1mo. 106.344
3mo. 105.829 105.99
6mo. 105.191 105.46

12mo. 104.039 104.55

USD–JPY forward rates

(see Worksheet 10.29 for details)
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The options model may also be described as a ‘‘carry’’ model, i.e. writing rb ¼ rd � rf as
the cost of carrying the hedge. This interest rate differential may be thought of as the
expected rate of USD depreciation. Suppose a 1-year ATM spot (i.e. with strike equal to
the current spot rate) call option is purchased; this option would decline in value as the
USD theoretically depreciates over the year.
Call–put parity theorems obviously exist in FX options. For example:

1. Buy a call, sell a put on $1 at a strike of 105
e cost of strategy¼ 3.152� 2.964¼¥0.187629.

2. Enter into a forward contract to buy $1, and sell ¥105 in 6 months’ time
e currently S6 ¼ 105.188, and therefore the contract is off-market with an

anticipated future value of ¥0.188; or
e present value¼ 0.188 � 0.997807¼¥0.187629.

The call–put parity relationship is C � P ¼ ðST � KÞ � dfT¥. When K ¼ ST , i.e. the options
are ATM forward, then C ¼ P (see Box 3 of Worksheet 10.30).
The spot rate has been quoted as {¥ per $}: these are so-called ‘‘European’’ terms. But

suppose we wished to quote it in American terms, i.e. as {$ per ¥}—do the same prices and
relationships hold true?
Define:

. spot^ ¼ 1/106.601¼ 0.009381 $/¥;

. strike^ ¼ 1/105¼ 0.009524 $/¥.

We can calculate d1 and d2 in the usual way, but must reverse df dT and df
f
T because the

numeraire domestic has been switched from USD to JPY. We can then price the call and
put:

C^¼ $0.0002648 and P^¼ $0.0002816 per ¥1

(see Box 4 of Worksheet 10.30).
Expressing these results as percentages, we get:

% of strike % of spot

Call^ 2.780% 2.823%
Put^ 2.956% 3.001%

which implies C ¼ P^ �K � S0, etc. So we can replicate the $ numeraire results, and all the
earlier relationships remain true.
The G–K model is the most widely used for European options, despite various attempts

to introduce ‘‘better’’ theoretical models. Probably the most popular extensions are:

. Assuming the interest rates are also stochastic; for example Hilliard et al.23 produced an
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identical expression to the G–K model but with a variance term

v2 ¼ ð�SÞ2 :T þ 1
3
T 3 : fð�dÞ2 þ ð�f Þ2 � 2 : �df g þ T 2 : f�Sd � �Sf g

where subscripts S, d and f refer to the spot rate, and domestic and foreign interest rates,
and where �x and �xy are volatility and covariance, respectively. Obviously this reduces
to G–K for constant interest rates.

. Assuming the volatility is stochastic; for example Chesney et al.24 produced a model with
a mean-reverting stochastic process for the volatility. After fitting the various parameters
of the stochastic process, this model did produce significantly different results from the
G–Kmodel. Unfortunately they also found that market prices were consistent with G–K
prices assuming constant volatility, so may have created an arbitraging opportunity.

. Assuming that spot foreign exchange rates do not follow a Gaussian process but over the
long-term are pulled by purchasing power parity, or one of the other broad macro
assumptions. For example Cheung et al.25 produced a modified G–K model but
obviously with a number of additional parameters that require estimation.

American options can (in theory) be exercised at any time up to maturity, although in
practice this is seldom the case simply because of finite business hours. They are usually
priced with a numeric model or by approximations such as Barone-Adesi and Whaley or
Bjerksund and Stensland.26 For example, the 6-month option above:

Call Put

European 3.135 2.947
Barone-Adesi and Whaley 3.326 2.964
Bjerksund and Stensland 3.284 2.964

As expected the price is higher, especially for the call as it is ITM-forward.

10.12 HEDGING FX OPTIONS

Consider the 6-month USD–JPY call option described above. We have just sold the option
and will as usual perform a delta-neutralising spot transaction. The delta for the option is:

� ¼ dfT
$ �Nðd1Þ ¼ 0:51625

implying that if the spot rate shifted by 1 unit, the call price would increase by JPY0.516
per USD or by JPY51,624,598 in total. As we have sold the option, this will be a loss for us.
We wish to enter into a reverse spot transaction that will off-set this change in value:

. buy $100m � � ¼ $51,624,598;

. sell ¥51,624,598 �S0 ¼¥5,503,233,785.

If the spot rate shifts by 1 unit, the profit on this trade would be ¥51,624,598.
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We now need to see what happens as the spot rate changes through time. Worksheet
10.31 is designed to perform random simulation of the spot, and the table (next page) is a
short extract. It assumes only one change per day; therefore at the end of the first day the
current P&L, defined by the net balance in ¥ plus the net balance in $ converted at the
prevailing spot rate, is zero. The next day the spot rate shifts from JPY106.601 to
JPY106.17 per USD. A number of things happen:

. The option may be bought back at the new price C1 of ¥2.92688, thus representing a
profit of ¥100m � ðC0 � C1Þ ¼¥22,465,968.

. However, we estimated the new price should be C0 þ � � ðS1 � S0Þ ¼ 2.92659, so that we
had expected a bigger profit. The difference of �¥28,708 is the negative gamma effect
from which we of course lose.

. We assume that we borrowed the balance of the JPY required to undertake the spot
trade, and deposited the USD proceeds

e JPY interest payable¼ �5,188,080,237 � expfr¥ � 1=365g ¼¥62,570;
e USD interest receivable¼ 51,624,598 � expfr$ � 1=365g ¼ $4,408;
e converting the USD to JPY at S1 gives a net balance of ¥405,368;
e this is close to—strictly, should convert at S0—the positive theta effect.

. On balance, therefore, the trade shows a profit of ¥376,660 as shown in the table on the
facing page.

The hedge has to be re-balanced as the delta has shifted to 0.49461. The required delta
hedge is to:

. buy $100m � �1 ¼ $49,461,129;

. sell ¥49,461,129 �S1 ¼¥5,251,053,833.

However, we already have balances in our two money accounts from the previous day’s
hedge plus interest: therefore we need to reduce the USD balance by selling $2,167,877 and
buying the equivalent amount of yen. Notice the resulting balances in the money accounts
do not represent a perfect delta hedge now; this is mainly because the spot rate has not
moved perfectly in line with the interest rate differential, but there are also some small theta
effects.
Worksheet 10.31 then repeats this process each day until the option matures. On the last

day, if the option expires OTM then delta should be very close to zero and the money
accounts run down to zero as well. Conversely, if the option finishes ITM then the money
accounts should be close to �¥10.5bn and þ$100m, respectively.
The simulation is performed using the expression:

St ¼ St�1 � expfðr¥� r$� 1
2
�2Þ :Dtþ � :

p
Dt : "g

where Dt ¼ 1/365 years and " ¼ Nð0; 1Þ. The worksheet also permits the inclusion of a
jump process � : ðr3 � 0:5Þ—see column [B]—to demonstrate how delta-hedging can break
down in these situations. The graph below shows the final balance of the net money
accounts over 100 simulations:
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Day Day- Day- Spot d1 Call Mid Call ¥ $ Net Net Close-out Current

count count rate price delta dealing balance balance option P&L

(¥/$) (¥/$) (¥) (¥) ($) (¥)

0 0.499 106.60 0.061 3.152 0.51625 315,153,548 (5,503,233,785) 51,624,598 (5,188,080,237) 51,624,598 (315,153,548) 0

1 0.496 0.003 106.17 0.006 2.927 0.49461 230,153,214 (2,167,877) (4,957,989,593) 49,461,129 (292,687,581) 376,660

2 0.493 0.003 106.59 0.061 3.135 0.51632 (230,970,322) 2,166,992 (5,189,019,709) 51,632,344 (313,493,528) 754,657



The average of the distribution is only ¥1.9m, very close to zero as expected. However, the
distribution is not entirely symmetric, arising from the down-sided negative gamma and the
up-sided theta. If gapping is permitted, then replication is far less effective, as the gamma
dominates the theta—see graph below.
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We have seen how a vanilla FX option may be delta-hedged with a succession of spot
transactions. However, there are a number of practical problems:

. Delta-hedging is supposedly continuously re-balanced, but in practice always lagging
one period behind. This doesn’t matter if there is negligible gamma, i.e. the delta isn’t
changing very much, but for ATM short-dated options it becomes an increasing
problem.

. Transaction costs have been ignored in this model, although it would be very simple to
add them.

. Volatility of the spot rate is assumed to be constant over the lifetime of the option.

. The two interest risks are also assumed to be constant.

. The hedge has a cost of carry which may not be same as c–c ‘‘risk-free’’ rates as these are
seldom (never?) available in practice.

Delta-hedging can also be used for American options, but there is one problem, as
highlighted by the graph below. Early exercise when heavily in the money is an optimal
strategy for the owner of an American option, hence the American delta converges to 1
much faster than the European option. This causes a discontinuity in the delta at the early
exercise boundary, which results in a ‘‘gamma spike’’.

10.13 APPENDIX: THE SABR MODEL FOR

STOCHASTIC VOLATILITY

The ‘‘stochastic ���’’ model, commonly known by the SABR acronym, was developed by
Hagan et al. It assumes that forward rates F are stochastic:

dFt ¼ �t : ðFtÞ� : dW1

where the term � is itself stochastic:

d�t ¼ t : �t : dW2 and where dW1 : dW2 ¼ � : dt
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The terms:

� is similar to volatility, but not quite the same;
 may be interpreted as a measure of the volatility of volatility;
� is the correlation between the forward rate and volatility;

0 � � � 1 determines the speed of change of the forward rate. � may be estimated as
described below, or it may be set in advance: � ¼ 0 gives a normal model,
� ¼ 1 a log-normal model favoured by most traders around the world and
� ¼ 0.5 a stochastic Cox–Ingersoll–Ross model beloved by short-term US
interest rate traders.

For an option of maturity T , with strike K and implied forward rate S, the following
formula for a volatility surface fK ;Sg is derived:

�ðK;SÞ ¼ � : ðz=x½z�Þ=fðS :KÞ0:5ð1��Þ : ð1þ ð1� �Þ2 ln2ðS=KÞ=24
þ ð1� �Þ4 ln4ðS=KÞ=1920þ � � �Þg

� f1þ ½ð1� �Þ2�2=½24:ðS :KÞð1��Þ� þ ���=½4 : ðS :KÞ0:5ð1��Þ�
þ ð2� 3 : �2Þ : 2=24� :T þ � � �g

where xðzÞ ¼ lnf½ð1� 2�zþ z2Þ0:5 þ z� ��=1� �g and z ¼  : ðS :KÞ0:5ð1��Þ : lnðS=KÞ=�.
For an ATM option, where K ¼ S, the formula simplifies to:

�ðS;SÞ ¼ f�=S ð1��Þg : ½1þ ð1� �Þ2 : f�2=S2:ð1��Þg=24þ 0:25 : ���=ðSÞð1��Þ

þ ð2� 3�2Þ : 2=24� :T � � �
The formulae may be further simplified if we assume a specific value for � as suggested
above.
It looks very complicated, but can be understood by breaking it up into components.

Hagan shows that the formula may be approximated by:

�ðK ;SÞ ¼ f�=S ð1��Þg : f1� ð1� � � � : 	Þ : lnðK=SÞ=2
þ ½ð1� �Þ2 þ ð2� 3�2Þ : 	2� : ln2ðK=SÞ=12

where 	 ¼  :S ð1��Þ=�.
The first term f�=S ð1��Þg in the approximation is effectively the ATM volatility. This is

determined almost entirely by �. The second term is the slope of the implied volatility with
respect to K, known as the skew. This can be subdivided into two components: the ð1� �Þ
term is the downward-sloping beta skew, modified by the � : 	 term representing the vanna
skew arising from the correlation between the forward rate and the volatility. The third
term is again the beta skew, but this time modified by the curvature of the volatility surface,
known as volatility-gamma or ‘‘vol(-)ga’’.
Assume we possess a forward volatility surface, giving volatility for known strikes

against option tenor (see Worksheet 10.33 for details). First we fix the value of �; in
Worksheet 10.34 this is set to 1. From the ATM equation above, � may be determined
analytically (by solving for the smallest positive root of a cubic) for given values of � and ,
and for given and observable ATM volatility �ðS;SÞ. Finally, given market volatility
across a range of strikes for a given option tenor, the � and  parameters can be estimated

232 Swaps and Other Derivatives



by some robust least-squares fitting algorithm such as Nelder–Mead.27 By changing the
input tenor, Worksheet 10.35 will display the SABR curve; for example, see the graph
below:
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11

Swapping Structured Products

OBJECTIVE

The chapter concentrates on the modelling of more complex swaps. It starts with a
description of some of the basic types, such as range accruals, sticky floaters, TARNs
and callable structures. A binomial BDT interest rate model is constructed, and used to
price various swaps such as Bermudan swaptions, callable CMSs and range accruals.
Section 11.5 (Appendix) describes the construction of smile-based and trinomial, mean-
reverting models and also two-factor models. The theory underpinning the Libor (or
BGM) model is then developed, including calibration and estimation of implied correla-
tion. It is then applied to products such as a sticky floater, a TARN and a callable snowball.

11.1 INTRODUCTION

Whenever it is perceived that market levels are at some extreme level, investors are often
prepared to buy securities that pay high yields. For example, when interest rates were
perceived to be both low and stable in the US in the early 1990s, or globally in the early part
of this century, range accrual structures (as described later) were extremely popular. This
was despite the fact that many investors lost large amounts of money as rates subsequently
rose. Investors taking on increased risk to chase yield is a phenomenon that has been
observed many times throughout history. What about issuers? No; they invariably swap
the structures into some (usually floating) benchmark.

 

Issuer 

Hedging        

transactions 

Floating benchmark margin

 

Swap c/p 

 

Investor 

Security 

cashflows 

Security cashflows



Therefore, what typically happens is the following:

1. The swap counterparty (usually a bank) will identify a group of potential investors,
and create a structure that matches their desired risk-return profile.

2. At the same time, the counterparty will also structure the swap to achieve some target
margin below the floating benchmark.

3. The counterparty will then approach a potential issuer (usually one with a good credit
rating such as the World Bank, EBRD, EIB, KfW and so on), and suggest that if it
issues the following structure, then it can achieve an overall funding rate.

What’s in it for the various players?

. the investor achieves a risk-return profile;

. the issuer raises cheap funds;

. the swap counterparty earns fees through the issuance and spreads through the hedging
transactions, providing liquidity to the derivative markets.

In this chapter, some typical structures that have been issued will be discussed within an
analysis framework. Each class of security will then be modelled, along with other complex
swaps.

11.2 EXAMPLES OF SOME STRUCTURED SECURITIES

Probably the most popular structured products in the last few years have been range
accruals. A very simple example was the following, issued by the World Bank in October
2004:

Maturity: 2 years
Size: $100m
Issue price: 99.80, net of fees and expenses
Coupon: (3mo. Liborþ 75 bp) � (D=N)
N: No. of calendar days in each coupon period
D: No. of days 3mo. Libor fixed in the relevant range

Ranges defined as:
First 6 months: 2% to 2.75%
Second 6 months: 2% to 3.00%
Third 6 months: 2% to 3.25%
Last 6 months: 2% to 3.50%

If the investor believes that Libor will remain relatively stable or only rise slightly over the
next 2 years, then he will earn a high return as the ratioD=N approaches 1. If the investor is
incorrect, then the coupon drops effectively to zero.
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A more complex example was a spread steepener issued by the EIB in February 2005:

Nominal size: C¼200m
Maturity: February 2020
Coupon: (10 yr CMSþ 56 bp) � (D=N) ANN 30/360
N: No. of calendar days in period
D: No. of days Slope¼ 10 yr CMS� 2 yr CMS fixes at or above

accrual barrier
If non-business day, then use last fixing

Accrual barrier: 0%

The investor has to take a view; this time whether the swap curve will remain positively
sloped over the next 15 years. If she is correct, then she will earn a very handsome return
bearing in mind the AAA rating of the issuer.

Any reference can be used within a range accrual as long as it has the potential to move,
such as interest rates, share or commodity prices, and FX rates, and can be precisely
observed regularly. A range has then to be defined; it may vary from period to period.
Finally, the coupon (and occasionally redemption as well) is paid depending upon the D=N
ratio. Another example was issued by BPI, the Portuguese bank, in February 2004:

Principal: C¼50m
Maturity: 5 years
Redemption: 100
Coupon: 5% � (D=N) ANN
N: No. of calendar days in period
D: No. of fixings within range during period

If non-business day, then use last fixing
Range: 0%–5%
Reference: In first year: 5 yr C¼uro swap rate

In second year: 4 yr C¼uro swap rate
In third year: 3 yr C¼uro swap rate
In fourth year: 2 yr C¼uro swap rate
In fifth year: 1 yr C¼uro swap rate

Calls: On first, second, third and fourth coupon dates

Notice in this case the underlying reference changes in each year, although the range
remains constant. The security can also be called by BPI on selected coupon dates.

The simpler range accruals are fairly straightforward to analyse as they only depend
upon the level of the reference on a given date. Consider the World Bank structure
described above. For a given day, say 1 December 2005, if the Libor fixing lies within
the range of 2–3.25%, then the coupon is increased by 1/66th as N ¼ 66 for this coupon
period. If the fixing lies outside the range, then there is no increase in coupon. The
probability of the fixing lying within the range is given by (remember the formula for
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digital options in Section 10.6):

Nðd2 jK ¼ 2%Þ �Nðd2 jK ¼ 3:25%Þ
Using the market data on the issue date, the implied forward rate on this date was
3.0588%. Based on a volatility of 15%, Nðd2 jK ¼ 2%Þ �Nðd2 jK ¼ 3:25%Þ ¼
99:61%� 35:20% ¼ 64.41%. Repeating this for all business dates in this quarter gives
an average probability of 63.54%. Therefore, the expected cashflow at the end of the
period, based on an implied Libor fixing at the beginning of the period of 2.9477%, is:

$100m � {2.9477%þ 75 bp) � 0.256 � 63.54%¼ $600,420

Therefore, the expected cashflows arising from the security can be valued, and hence the
breakeven margin estimated of �45.2 bp using the usual formula (see, for example,
Chapter 5 as well as the extract from Worksheet 11.1).
As we are only interested in the average probability over a coupon period, is it necessary

to calculate the probability on a daily basis? Clearly the answer must be no; the probability
could be sampled on a weekly, or even monthly, basis. Obviously this approximation loses
accuracy if the implied forward curve was steep, but that is not the usual condition for
issuing an accrual note anyway. The same approach is also used to construct a hedge.
When modelling accrual notes, it is important to take the smile effect into account, or to

use a stochastic volatility model such as SABR. For the above example, as the bottom part
of the range is increasing away from the money, the volatility is rising up the smile, whereas
the upper remains close to ATM. For a par volatility of 18% for lower range, and only
14% for the upper, the breakeven margin increases to �48.6 bp.
In the World Bank note, the precise level of the fixing was irrelevant provided it lay in the

range. GE issued a range note recently with the following payoff:
X

{3mo. Libor fixingsþ 75 bp }/Nt � at the end of quarter t

where the summation is taken over all Libor fixings that lie within a specified range. In this
case, the level of the fixing is itself important. Modelling this structure requires not only
digital options, but also normal caps and floors as well.
For the EIB spread accrual note described above, then the volatility of the reference

slope is also dependent upon correlation between the 10 and 2-year CMS rates. This
therefore introduces yet another parameter to be estimated. Modelling this note could
be done analytically, but probably better by simulation, as discussed in Section 11.4.
This analytic approach cannot be used to model the BPI accrual note, as that also has an

embedded call strip. On each call date, the issuer would have to make a decision: Is it better
to call the note now, or better to wait until either the next call date or even redemption?
This of course requires an estimate of the anticipated value of forward cashflows. Hence,
we would describe any note with an embedded call as a forward-looking structure.
In contrast, consider the following two structures, both issued by the EIB in 2004:

Nominal size: C¼100m
Maturity: June 2010
Issue price (after fees and expenses): 99.625
Coupon: 6mo. C¼uriborþ 50 bp
Subject to constraint: CouponðtÞ �Couponðt� 1Þþ 20 bp
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and

Nominal size: C¼165m
Maturity: January 2014
Coupon: First year: 4.75% ANN

Thereafter: 3.75 � (10 yr CMS� 2 yr CMS)
Subject to the constraint 	 0

Mandatory early redemption on any coupon date if Total accrued coupon (including the current

coupon)	Knockout level. In this case, the Final coupon¼Total accrued coupon (excluding

current)�Knockout level, where the Knockout level¼ 20%. If there is no early redemption, the

Final coupon¼Knockout level�Total accrued coupon (excluding current).

The first structure is an example of a sticky floater, whereby the coupon can decline in line
with a decrease in interest rates, but its rate of increase is capped. Notice that the cap is not
linked to the last C¼uribor fixing, but to the previous coupon, which in turn may be linked to
even earlier coupons. Hence the backward path of coupons is important in this case.

The second structure is an example of a Target Accrual Redemption Note (TARN). This
note is guaranteed to pay a total coupon of 20%, but its lifetime is uncertain. If the 10–2
spread increases, then the note redeems early, and the investor has earned a high return on
the initial investment. Conversely, if the note does not redeem early, then the investor
receives a low 2% over the next 10 years. Modelling these again requires knowledge of
earlier coupons, and is therefore also a backward structure.

Finally, consider the following structure issued by BPI in March 2004:

Maturity: 7 years
Redemption: 100
Coupon: 5.5% sa in first year

Thereafter CouponðtÞ¼Couponðt�1Þ þ KðtÞ� 6mo. C¼uribor	 0
where K starts at 2.5% and increments by 25 bp each period

Calls: Every coupon date starting 5 March 2005

This structure is often called a snowball, as the coupons may increment up each period. It is
a reverse-floating backward-looking structure, as the coupon in any period depends upon
the path of earlier coupons. It is also a forward-looking structure due to the embedded call
strip.

There are two main approaches that can be used to model these structures. Numerical
models are usually applied to forward structures, whereas simulation is used to handle both
backward and, with some difficulty, backward–forward structures. The next two sections
will describe how these models work with various numerical examples.

11.3 NUMERICAL INTEREST RATE MODELS

These usually model short-term interest rates rðtÞ according to the following stochastic
process:

xðtþ dtÞ � xðtÞ ¼ dx ¼ ½�ðtÞ � aðtÞ : xðtÞ� : dtþ �ðtÞ : dz
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where x is a function of the rate; �ðtÞ, aðtÞ and �ðtÞ are all time-varying parameters; and dz
is assumed to be a unit-normal random variable. The two main approaches are:

xðtÞ ¼ rðtÞ: This gives rise to easy analytic expressions, but is generally
difficult to calibrate with the existing markets, and can result
in negative interest rates; typical examples are the Vasicek
model and the Hull and White model.

xðtÞ ¼ ln½rðtÞ�: The analysis is more difficult, but calibration is easier, and
ensures that rates are always positive; typical examples are
the various Black models such as the Black and Scholes model
and the Black–Derman–Toy model as well as Libor-based
simulation models.

This chapter will concentrate on the latter class of models as being more realistic, but the
former class will be discussed in Section 11.5 (Appendix).
Re-write the above expression as:

ln½rðtþ dtÞ� ¼ ln½rðtÞ� þ �ðr; tÞ : dtþ �ðtÞ :pdt : dz

where �ðr; tÞ ¼ ½�ðtÞ � aðtÞ : ln½rðtÞ��, and �ðtÞ is now expressed on a pa basis. Assume a very
simple binomial model, namely that given rðtÞ, there are only two possible outcomes:

ln½rðtþ dtÞ�u ¼ ln½rðtÞ� þ � : dtþ � :
p
dt : k

ln½rðtþ dtÞ�d ¼ ln½rðtÞ� þ � : dt� � :
p
dt : k

where the time dimension has been omitted for ease of notation, and k is some constant
multiplier. Define p as the probability of the up-rate occurring: hence the expected outcome
is:

Efln½rðtþ dtÞ�g ¼ p � fmþ � :
p
dt : kg þ ð1� pÞ � fm� � :

p
dt : kg

wherem ¼ ln½rðtÞ� þ � : dt. But this expectation should equalm; solving gives p ¼ 0.5 for all
values of k.
The variance of ln½rðtþ dtÞ� is given by:

p2 � fmþ � :
p
dt : kg2 þ ð1� pÞ2 � fm� � :

p
dt : kg2 �m2

But this should equal �2 : dt; solving gives k ¼ 1. These two results form the foundation of
the Black–Derman–Toy (BDT) approach. Using these results gives:

ln½rðtþ dtÞ�u � ln½rðtþ dtÞ�d ¼ 2 � � :pdt ð11:1Þ
Assume we know an implied forward interest rate curve (of the correct tenor) rt, probably
taken off a swap curve (and hence a discount curve DFt), and also an implied forward
volatility curve �t, probably taken off the cap curve.
On the basis of a simple binomial model, adopt the notation that the rate rt;k fixes at the

beginning of the time period t ¼ 0; 1; 2; . . . where k identifies the sub-node within the tth
period, k ¼ 0; 1; 2; . . . ; t. It is assumed at this point that dt is subject to some daycount
convention (such as Act/360), and therefore may vary slightly from period to period. Thus,

240 Swaps and Other Derivatives



we can write:

ln½rt;k� ¼ ln½rt;k�1� þ 2 � �t�1 :
p
dt

or rt;k ¼ rt;k�1 � expf2 � �t�1 :
p
dtg

or rt;k ¼ rt;k�1 � D2
t

9
>>=

>>;
ð11:2Þ

where the step length Dt ¼ expf�t�1 :
p
dtg. Define the PV of a single cashflow of 1 at node

ðt; kÞ1 as Xt;k where:

Xt;k ¼ 0:5 � fXt�1;k�1 �DFt�1;k�1 þ Xt�1;k �DFt�1;kg for k ¼ 0; . . . ; t ð11:3Þ
with the edge conditions Xt�1;�1 ¼ Xt�1;t ¼ 0, and X0;0 ¼ 1 and

DFt;k is a one-period discount factor ¼ 1=ð1þ rt;k � dtÞ ð11:4Þ
On the basis of this definition, we know that

X

k

Xt;k ¼ DFt ð11:5Þ

Therefore, we can develop the following process for time period t:

1. Guess a value for rt;0.
2. Calculate rt;k for k ¼ 1; 2; 3; . . . ; t from (11.2).
3. Calculate DFt;k and Xt;k from (11.4) and (11.3), respectively.
4. If eq. (11.5) is not satisfied, then adjust the initial guess.

A good starting point for rj;0 recognises that the binomial tree should be approximately
centred upon the current market forward rate curve. This suggests:

rt 
 rt;0 � ðDtÞt ð11:6Þ
Using this ensures convergence within a very few iterations.

As an example, we will build a tree and then use it to value an old swap which is linked to
a structured security. This swap matures on 12 February 2013 with a fixed rate of 2.695%
ANN 30/360. The floating side is quarterly minus 25 bp; the last Libor fixing at 2.15% was
on 12 November 2007. The following DFs and forward volatilities have been estimated
(from the normal swap and cap volatility curves, as usual), as shown in the table below. The
forward rates are simply implied from the DFs.

Modelling Accrual Libor Volatility Floating

dates time DFs term daycount Forward

Act/360 structure Act/360 Qu rates

06-Feb-08 0.000 1 0% 3.21736%
12-Feb-08 0.017 0.999464 9.715% 0.256 3.13522%
12-May-08 0.267 0.991691 10.086% 0.250 3.01154%
12-Aug-08 0.522 0.984117 10.975% 0.256 2.71914%
12-Nov-08 0.778 0.977326 12.493% 0.256 2.55725%

See Spreadsheet ‘‘Ch 11.3 BDT Modelling a Swap’’.
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Step 1. The first rate in the tree is simply the first implied forward rate of 3.21736%. Note
that this is not a 3-month rate, but corresponds to a short stub period of only 6 days, to get
the rest of the tree aligned with the swap dates. Using this, DF0;0 ¼ 0.999464, and X1;0 and
X1;1 are both 0.499732.

Step 2. Using eq. (11.6) with a volatility of 9.715%, r1;0 is initially estimated to be
3.09590%. Hence, we get r1;1 ¼ 3.17454%, DF1;0 and DF1;1 equal 0.9923197 and
0.9921261, respectively, and X2;0, X2;1 and X2;2 equal 0.247947, 0.495846 and 0.247899,
respectively. The sum of the Xs is 0.991691, which is the same as DF2. Obviously, if this
sum is not equal to the spot DF, the initial guess generated by eq. (11.6) would have to be
modified.

Step 3. r2;0 is estimated to be 2.715709% with a volatility of 10.086%, giving r2;1 and r2;2 of
3.00389% and 3.32266%, respectively. Continuing, DF2;0, DF2;1 and DF2;2 equal
0.9931077, 0.9923819 and 0.9915803, respectively, and X3;0, X3;1, X3;2 and X3;3 equal
0.123119, 0.369153, 0.368940 and 0.122906. The sum of the Xs is again, to many decimal
places, equal to DF3.

This process is then continued. The initial starting point does increasingly result in an error,
and then each stage has to be iteratively solved. Worksheet 11.3 contains a simple macro to
do this iteratively. Worksheets 11.4 and 11.5 contain the tree of one-period DFs and the
tree of X ’s, respectively:

A small extract of the tree is shown above, and the full tree out for 5 years is shown on the
facing page. The whole process has been automated in VBA (see Spreadsheet ‘‘BDT
Builder’’)
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3.22% 3.17% 3.32% 3.20% 3.27% 3.52% 3.90% 4.49% 5.24% 6.26% 7.30% 8.64% 10.09% 11.46% 12.55% 13.95% 14.80% 15.82% 16.78% 18.47% 20.30%

3.10% 3.00% 2.86% 2.88% 3.07% 3.37% 3.86% 4.50% 5.36% 6.24% 7.33% 8.50% 9.62% 10.57% 11.75% 12.56% 13.49% 14.39% 15.85% 17.43%

2.72% 2.56% 2.54% 2.67% 2.92% 3.31% 3.86% 4.59% 5.34% 6.22% 7.16% 8.08% 8.90% 9.90% 10.66% 11.51% 12.34% 13.60% 14.96%

2.29% 2.24% 2.32% 2.52% 2.85% 3.31% 3.93% 4.57% 5.28% 6.03% 6.78% 7.49% 8.34% 9.04% 9.82% 10.58% 11.67% 12.84%

1.97% 2.02% 2.18% 2.45% 2.84% 3.37% 3.90% 4.48% 5.08% 5.69% 6.31% 7.03% 7.67% 8.37% 9.08% 10.01% 11.02%

1.76% 1.89% 2.10% 2.44% 2.88% 3.34% 3.80% 4.28% 4.78% 5.31% 5.92% 6.51% 7.14% 7.78% 8.59% 9.46%

1.64% 1.80% 2.09% 2.47% 2.85% 3.22% 3.61% 4.01% 4.47% 4.99% 5.52% 6.09% 6.68% 7.37% 8.12%

1.55% 1.80% 2.11% 2.44% 2.73% 3.04% 3.37% 3.77% 4.20% 4.68% 5.20% 5.73% 6.32% 6.97%

1.54% 1.81% 2.09% 2.32% 2.56% 2.83% 3.17% 3.54% 3.97% 4.43% 4.91% 5.43% 5.99%

1.55% 1.79% 1.97% 2.16% 2.38% 2.67% 2.98% 3.37% 3.78% 4.21% 4.66% 5.14%

1.53% 1.67% 1.82% 2.00% 2.25% 2.51% 2.86% 3.22% 3.61% 4.00% 4.41%

1.42% 1.53% 1.68% 1.89% 2.12% 2.43% 2.75% 3.10% 3.43% 3.79%

1.29% 1.41% 1.59% 1.78% 2.06% 2.35% 2.66% 2.94% 3.25%

1.18% 1.34% 1.50% 1.75% 2.00% 2.28% 2.52% 2.79%

1.13% 1.27% 1.48% 1.71% 1.95% 2.17% 2.39%

1.07% 1.26% 1.46% 1.68% 1.86% 2.06%

1.07% 1.24% 1.44% 1.59% 1.76%

1.06% 1.23% 1.37% 1.51%

1.06% 1.17% 1.30%



244 Swaps and Other Derivatives

The next task is to value the swap. First, we shall value it in the usual fashion off the swap
curve using three approaches: the implied forward representation, the notional principal
representation and taking the net cashflows from the IF approach and discounting them
back one period at a time. Obviously, all three approaches produce the same value of
0.5625m as shown in Worksheet 11.3.
Turning to the tree, first we will use the NP representation. The final cashflow on the

swap is �100m � 2.695% � dFix;N � 100mþ 100m ��25 bp � dFl;N ¼ �102.7589m where
dFix;N and dFl;N are the length of the last period on the fixed and floating sides, respectively.
The cashflows may now be discounted back one period using the discounting tree. If Vk;t is
the value of the swap at node ðk; tÞ, then:

Vk;t ¼ 0:5 � ðVk;tþ1 þ Vk�1;tþ1Þ �DFk�1;t þ 100m � �25 bp � dFl;t
� 100m � 2:695% � dFix;t (when due)

where the fixed rate is only paid once a year. The penultimate cashflows, which correspond
to the end of the period when the fixed Libor has to be paid, have to be modified. Instead of
just receiving the margin, we now receive 100m � ½1þ ð2:15%� 25 bpÞ � dFl;1�. After this
adjustment, the net value of the swap is 0.5625m, as before (see Worksheet 11.6 for the
actual NP and IF cashflow trees).
Using the IF representation requires a little more care because Libor fixes at the

beginning of a period, and pays at the end. Why does this cause problems? Consider
the extract of the tree above. If we wish to enter a Libor cashflow at point A, which fixing
should be used: 3.323% or 3.004%? The Libor cashflows have to be represented on a
discounted basis (rather like a FRA cashflow)2:

CFk;t ¼ P � rk;t � dt=ð1þ rk;t � dtÞ

Reverting to the tree, the cashflow at maturity is simply the final fixed payment. Then, the
values are:

Vk;t ¼ f0:5 � ðVk;tþ1 þ Vk�1;tþ1Þ þ 100m � ðrk;t � 25 bpÞ � dFl;tg �DFk�1;t

� 100m � 2:695% � dFix;t (when due)

The final discounted value V0;0 must of course use the Libor fixing, and not an implied rate.
Now make the problem more complex, and assume that the swap is callable by the bank

on any fixed-coupon date. This means that, on a call date, the fixed and floating cashflows
are made, and then the swap may be cancelled. This implies that the bank no longer has to
make the coupon payments, but also no longer receives the Libor less the spread.
Using the IF representation, the expected value of the future cashflows at node ðk; tÞ is as

shown above. However, the Libor cashflow is fixed at time t but only paid at time tþ 1.
Thus, if the swap were called at time t, this Libor cashflow would not be paid. The bank
would only want to call the swap if the future expected value was negative to it, so we can
modify the folding-back rule as:

max½0; f0:5 � ðVk;tþ1 þ Vk�1;tþ1Þ þ 100m � ðrk;t � 25 bpÞ � dFl;tg �DFk�1;t�

Modifying the tree gives the swap a new value of 0.7123m. The value of the embedded call
strip is 0.1498m, in favour of the bank.

2 I’ve often wondered whether this is why many structured securities use Libor in arrears. They would certainly be slightly easier to
model.
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Using the NP representation is slightly easier; the new folding-back rule is:

max½�100; 0:5 � ðVk;tþ1 þ Vk�1;tþ1Þ �DFk�1;t�
This gives the same value of 0.7123m (see Worksheet 11.7 for details).

We need to introduce some more terminology. The embedded call strip is effectively a
Bermudan swaption, exercisable on a set of discrete dates. There are two fundamental
types:

. fixed end, i.e. the underlying swap starts on the selected exercise date but has a constant
maturity date;

. fixed length, i.e. the underlying swap starts on the selected exercise date and has a
constant length of maturity.

For example, consider a 5/2 swaption with three exercise dates at the end of 3, 4 and 5
years:

Exercise date Fixed end Fixed length

3 years 4-year swap 2-year swap
4 years 3-year swap 2-year swap
5 years 2-year swap 2-year swap

Fixed end swaptions are needed to swap multiple call bonds, and to risk-manage a par-
ticular segment of the curve as it moves closer. Fixed length swaptions are used mainly
when the time for an exposure to arise is unsure: for example, a company may want to enter
into floating debt and swap it into fixed, but is unsure precisely when the debt will be called
down.

American swaptions are less common than Bermudans, as they provide little additional
practical benefit. One disadvantage is that early exercise on any date may lead to the
underlying swap having undesirable broken dates, which would not be popular amongst
the counterparties.

As the number of call dates increases, the call strip moves from European to
American, and the price of the swap becomes asymptotic to the American price. For fixed
end swaptions, the American price is reached with about 10 call dates—as may be seen in
the graph below—and for fixed length swaptions, with only about four or five dates:

Pricing Bermudan fixed end swaptions
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There is an old trader’s trick to pricing Bermudan structures, namely price it to the first call,
price it to the final maturity and take the higher of the two! It works remarkably well for
monotonic curves.
The analytic pricing of CMS swaps, with convexity adjustment, was discussed in Chapter

7. These can also be priced off a tree. We will explore pricing a 5-year CMS, paying 3mo.
Libor and receiving the 10-year rate plus a margin on ANN Act/360 daycount. The models
are somewhat complicated, and are summarised in Worksheet 11.8. First, we can calculate
the margin analytically using no convexity adjustment in the usual fashion; this gives
�128.27 bp (see Worksheets 11.10).
The rate tree is built in the usual fashion; however, because the frequency of the CMS is

ANN, both a quarterly and an annual discounting tree are required (see Worksheet 11.12).
Using the tree, the first step is to estimate the CMS fixings. For a forward-starting swap

with a known fixed rate, then its forward value can be easily computed. This value is not
unique, as it depends upon the subset of the tree selected. The diagram shows three subsets,
all starting and finishing at the same times, which would derive three different values. To
see this off an actual tree, consult Worksheet 11.14. The first tree is valuing a 1/11 swap
based upon an estimated rate, taken off the swap curve, of 4.5387%. The tree (in cells G7–
11) shows five different values for this swap, ranging from large negative through to large
positive. As an aside, cells E7–11 show the expected value of the five swaps, based upon the
probability of getting to each of the five points from today, and cell E13 shows the average
expected value. For a fair swap, we would anticipate this to be zero. In fact, it is very
slightly away from zero, suggesting a very small amount of convexity. The breakeven rate is
4.5394%, a difference of 0.07 bp (hardly worth worrying about, but will increase with both
length of the forward swap and with the length of the forward start—as may be seen in cells
I67, M125 and Q187). We could now work backwards, and estimate the forward swap
rate(s) that would set cells G7;G8; . . . to zero. The results are shown in cells D17–21 in
Worksheet 11.15. This approach is neither efficient nor elegant, but works.
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An alternative, especially if working in VBA or some other programming language,
would be to:

. estimate the Q from end to start for each of these five points;

. estimate the PV at each of the five points of a cashflow of 1 at the end of the swap;

. then the forward swap rate¼ ð1� PVÞ=Q.

This is illustrated in Worksheets 11.16 and 11.17, respectively, and the results (for the 1/11
swap) are shown in cells C17–21 of Worksheet 11.15. The remaining CMS rates required
have all been calculated using this approach.

The next step is to build the CMS pricing tree itself. Just like Libor, the CMS rate fixes at
the beginning of the period, and pays at the end. This gives rise to the same difficulty as
before, namely if we wish to model the cashflows directly, we do not uniquely know which
CMS rate to use to model the cashflow. So we have to resort to the same idea as before,
estimating the cashflows on a discount basis. But the CMS rates are ANN, so we first need
to recast the discounting tree into annual steps—see cells M126:DZ246 inWorksheet 11.12.
The pricing tree is created using the NP representation of Libor. The folding-back rule on a
CMS fixing date is:

Vk;t ¼ 0:5 � ðVk;tþ1 þ Vk�1;tþ1Þ �DFk�1;t þ 100m � ðCMSk;t þmÞ � dCMS;t �DFANN
k;t

where dCMS;t is an annual daycount fraction, and DFANN
k;t the annualised DFs. The

breakeven margin of �132.6 bp gives the swap a net value of zero (see Worksheet 11.18).
The difference with the analytic price is just over 4 bp. But this ignored the convexity

effect. Consistent estimates of swaption volatilities are required to make the analytic
adjustment. Swaptions can be priced in two ways, off the tree or analytically. The payoff
at maturity for a payer’s swaption is:

maxf0;VActual � VFixedg
For an ATM swaption, we can take the 1/11 forward swap (priced off the curve at
4.5387%), value it off the tree back to the 1-year points (cells G7–11 as described above)
and then apply the payoff function. This gives the value of the swaption at each point,
which may then be folded back on the tree to calculate the expected present value of the
swaption (see Worksheet 11.19).

But these European swaptions can also be priced using a Black model. Hence we can
solve for the implied Black swaption volatilities. Entering this swaption volatility curve into
the analytic convexity adjustment formula (see Worksheet 11.10) gives a breakeven margin
of �133.5 bp; a difference of just under 1 bp from the tree price. As argued earlier, the
analytic adjustment factor is thought to be too high, and this provides further (albeit small)
justification to that statement.

We could now easily extend this model to introduce a call strip, say, for example, at par
on each CMS coupon date. In this case, given that it is the issuer who has the right to call,
the margin increases to �164 bp (see Worksheet 11.20).

In Section 11.2, range accruals were discussed. How can these be modelled on a tree, as
callable accrual structures are popular? The answer is, with some limitations. For example:
consider a simple 5-year accrual paying 3mo. Liborþ 50 bp, but with the fixings of 3mo.
Libor subject to the following range:
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Year Lower Upper

1 2.00% 3.50%
2 2.10% 4.00%
3 2.20% 4.50%
4 2.30% 5.00%
5 2.40% 5.50%

Using the same type of analytic model as described in Section 11.2, and using daily
estimates, the note swaps into 3mo. Libor� 27.6 bp (see Worksheet 11.22 for details).
How can we approach this on a tree? Consider the small extract from the tree discussed
above:

If interest rates rise, then we could assume that the fixings would smoothly change
from 3.175% at the beginning of the period to 3.323% at the end. Thus, if we know
the range, we could calculate the proportion of these fixings, call it Pup that lie in the
range. Similarly, we could estimate Pdown if rates dropped from 3.175% to 3.004%. But we
know the probability of rates going up or down is 50%, hence the expected proportion
P ¼ 0:5 � fPup þ Pdowng which would of course be an estimate of the probability of fixings
lying within the range. The above structure could then be modelled on the tree in the same
way as before, by discounting the expected Libor cashflows. The graph below shows the
tree probabilities compared with the analytic ones calculated using the Black digital model.
The probabilities are very closely related, as is evident from the graph (see facing page).
They are not identical because the tree was modelling on a binomial basis, whereas the
analytic model was continuous; if the tree were more finely constructed, the two would
converge. Folding back this 3-monthly tree and solving for the breakeven Libor margin
gives �36 bp (see Worksheet 11.26).
There is another reason, other than the ‘‘large’’ tree step length, why the two margins are

not the same. The analytic Libor rates were estimated off the swap curve, but are they the
best estimates for the future value of Libor? If we estimate the expected value of 45/48
Libor from the tree, we get 4.66%, compared with an analytic value of 4.6088%. This is
generally the case; the tree rates are higher than the analytic rates because we have assumed
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rates follow an asymmetric log-normal distribution with more up-side than down-side. In
turn, the tree fixings are likely to be higher and, in this case, result in higher probabilities of
being in the range; hence, both the graph and the resulting sub-Libor margin being higher.
In my opinion, the tree approach is better as it does represent a more realistic (albeit
stereotyped) evolution of the forward rates, but the analytic approach is both faster and
more widely used.
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Finally, as before, we could now introduce a call strip. For example, suppose the issuer
had the right to call back the security on any coupon date at par. The breakeven margin
now increases significantly from �36 bp to �95 bp (see Worksheet 11.27 for details).

The above describes a simple range accrual, where the reference and the coupon are
based on the same rate. Obviously many accruals are not like that, but the basic principles
outlined above remain valid. Also, many other swaps containing forward-looking
structures can be modelled in a similar fashion.

This section has discussed the construction and use of a particular numerical tree. There
are a number of topics that have not been discussed, such as alternative formulations,
including mean reversion, extending trees to trinomial and beyond, incorporating smile
effects and so on. These are briefly discussed in Section 11.5 (Appendix).

11.4 SIMULATION MODELS

Tree structures are fairly fast to build, quick to run once built, allow the calculation of risk
sensitivities, but are restrictive. There are many structures that cannot (at least not easily)
be handled by trees, such as sticky floaters and TARNs that are path-dependent. We need
therefore a more general approach which can be used to cope with these. Ideally, this
approach may also provide a consistent pricing/risk framework for all structures, including
more generic products. The Libor-based model—alternatively known as the BGM model
after its founders Brace–Gatarek–Musiela or the Libor market model) has become the
industry standard.
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The model has been widely described in both books and articles,3 and there is little point
in trying to replicate them. A brief description, drawn mainly from Rebonato,4 follows.
Imagine a forward interest rate curve, consisting of a strip of forwards Fj, j ¼ 0; 1; . . . ; n.
These forwards would be fixed at time t0; t1; t2; . . . Thus, the kth rate would be fixed at time
tk, and paid at tkþ1 with tenor �k ¼ tkþ1 � tk. Consider this kth rate; assume it follows a log-
normal process over a small time interval dt:

dFk=Fk ¼ �kðF ; tÞ : dtþ
X

q

�k;q : dzq ð11:7Þ

where �k;q, q ¼ 1; 2; . . . ; p, are some scaling factors of the stochastic elements dzq.
Assume that we know the forward Black volatilities for each forward rate �k. These are

spot volatilities averaged over the time period 0� tk. But there is no reason to assume that
the actual volatility for this kth rate would be constant from period to period: define
forward–forward volatilities skj as the volatility of the kth rate over the �j period. (Note:
This implies the volatility is piecewise constant over the time periods.) This means that:

�2
k : tk ¼

X
s2kj : �j summing from j ¼ 0 to k� 1

Let us assume that we are interested in pricing structures that have price-sensitive events
only on fixing dates. Hence, we are not interested in the path adopted by Fk between those
dates, only its level on those dates. Therefore, eq. (11.7) can be rewritten for the jth period
as:

dFkj=Fkj ¼ �kjðF ; tÞ : �j þ
X

q

�k;q; j : dzq; j

As the forward–forward volatilities are the standard deviation of ½dFkj=Fkj� over this
period, it is simple to show that the total volatility of the independent components:

X

q

�2k;q; j ¼ s2kj : �j

Defining bk;q; j ¼ �k;q; j=skj enables us to re-write the expression as:

dFkj=Fkj ¼ �kjðF ; tÞ : �j þ skj
X

q

bk;q; j : dzq; j :
p
�j where

X

q

b2k;q; j ¼ 1

If we denote the n� pmatrix Bj with elements {bk;q; j, k ¼ 0; 1; 2; . . . ; n and q ¼ 1; 2; . . . ; p},
then it is fairly simple to show that Bj :B

Transpose
j has all the properties of a n� n correlation

matrix, namely real, positive definite and symmetric. This implies that the volatility of a
forward rate over a given time period depends upon both its volatility over that time period
and also on the co-movement of the other forward rates over the period.
Determining the drift term �kjðF ; tÞ is more difficult. As a theoretical aside, imagine that

a security is being traded in a market. The price of the security is f ðtÞ at time t. If this
market does not permit arbitrage, then, for any given numeraire security gðtÞ, there must
exist a measure (or probability distribution) so that f ð0Þ=gð0Þ ¼ Ef f ðtÞ=gðtÞg for all
securities. For example, set gðtÞ to DFðt; tkþ1Þ, namely the discount factor from time t
to time tkþ1, and set f ðtÞ ¼ ½DFðt; tkÞ �DFðt; tkþ1Þ�=�k. Substituting, we get:

½DFð0; tkÞ �DFð0; tkþ1Þ�=�k �DFð0; tkþ1Þ ¼ Ef½DFðt; tkÞ �DFðt; tkþ1Þ�=�k �DFðt; tkþ1Þg
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This is, of course, Fkð0Þ ¼ EfFkðtÞg. In words, the expected value of a future forward
interest rate is the current estimate of that forward rate only if the numeraire is DFðt; tkþ1Þ,
or alternatively if there is effectively zero drift. But if we applied the same numeraire to a
different forward rate, say Fj, the result would not stand, and therefore there would be a
drift term.

Rebonato, and many others, have shown that, to remove arbitrage from the market, one
expression for the drift term of the kth rate over the jth period is:

�kj ¼
X

i

Ri j

X

q

�k;q; j : �i;q; j
� �

¼ skj :
X

i

si j :Rij

X

q

bk;q; j : bi;q; j

where R ¼ �j :Fi j=½1þ �j :Fi j�, and where the summation over i is taken from the fixing at
time tj to the fixing at time tk.

There are other expressions, but this one is particularly useful in practice as it implies
that the movement of the kth rate in the jth period depends upon the behaviour of all the
rates that fix earlier, including their correlation with this rate, but not upon rates that fix
later. This allows the drift terms to be sequentially evolved.

This drift term has an implied assumption. Strictly, the forward rates will evolve
continuously through time, and therefore so will the drift term. However, if the time period
is relatively short, say 3 months, we can use the estimates of the forward rates at the
beginning of the jth period in the drift term to apply as an approximation over the entire
period.

The model as described develops the evolution of forward interest rates, and uses Black
caplet volatilities. Putting it all together:

Fkjþ1 ¼ Fkj � exp ½�kj � 1
2
s2kj� : �j þ skj

X

q

bk;q; j : dzq; j :
p
�j

� �
ð11:8Þ

It is also feasible to develop a forward swap rate model that uses swaption volatilities, and
with a numeraire equal to a forward Q. This would be more appropriate for simulating
forward swaps or CMS structures, but the drift term is more complex and the inputs
less observable. In practice, the forward interest rate model is more commonly applied,
especially when modelling mixtures of forward interest and swap rates.

Correlations between the forward rates are required inputs in this model. Whilst it might
be feasible to use historic relationships, a parametric5 form as discussed in Chapter 10 is far
more common in practice. This would then enable the parameters to be estimated by
calibrating the simulation to selected European swaptions, typically by minimising squared
errors. This will be explored in more detail later in this section.

The next step is to estimate the B matrix from the correlation matrix. The number of
parameters p may lie anywhere between 1 and n. If p ¼ 1, then �k; j ¼ bk : bj. But we know
that �k;k ¼ 1 ¼ b2k ! bk ¼ 1 ! all rates are perfectly correlated, and the forward curve will
only exhibit parallel shifts. Alternatively, if p ¼ n, then this is a full spanning model and B
can be uniquely determined from the correlation matrix by a Cholesky decomposition. But
we know that real forward curves tend to exhibit a limited range of movements, often
characterised by parallel, rotation and curvature changes. An n-factor model may therefore
introduce forward curve movements that are unlikely in the real world. For this reason,
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setting p ¼ 3 might be more appropriate. However, this means that B is determined
numerically by minimising the errors between B :BTranspose and the full correlation matrix.
This approach is at the heart of principal components. For example, the correlation matrix
below was created with a lambda of 50%.

1 2 3 4 5 6 7 8

1 100% 88% 78% 69% 61% 54% 47% 42%
2 88% 100% 88% 78% 69% 61% 54% 47%
3 78% 88% 100% 88% 78% 69% 61% 54%
4 69% 78% 88% 100% 88% 78% 69% 61%
5 61% 69% 78% 88% 100% 88% 78% 69%
6 54% 61% 69% 78% 88% 100% 88% 78%
7 47% 54% 61% 69% 78% 88% 100% 88%
8 42% 47% 54% 61% 69% 78% 88% 100%

This was then decomposed into a number of B matrices using the angular algorithm
described in Rebonato.6 The full decomposed matrix is shown below:

1 0 0 0 0 0 0 0

0.882 0.470 0 0 0 0 0 0
0.779 0.415 0.470 0 0 0 0 0
0.687 0.366 0.415 0.470 0 0 0 0
0.607 0.323 0.366 0.415 0.470 0 0 0
0.535 0.285 0.323 0.366 0.415 0.470 0 0
0.472 0.252 0.285 0.323 0.366 0.415 0.470 0
0.417 0.222 0.252 0.285 0.323 0.366 0.415 0.470

Smaller matrices are shown for p ¼ 3, 4 and 5, respectively, with least-squares errors of
18%, 7% and 3%.

0.127 0.421 0.898
0.268 0.312 0.912
0.509 0.079 0.857
0.741 �0.030 0.671
0.880 0.037 0.474
0.919 0.283 0.276
0.800 0.579 0.155
0.701 0.708 0.084
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0.231 0.189 0.764 0.572
0.293 0.240 0.865 0.330
0.461 0.218 0.859 �0.040
0.695 0.108 0.701 �0.113
0.894 0.043 0.435 0.097
0.919 0.220 0.222 0.240
0.785 0.584 0.128 0.162
0.631 0.766 0.121 0.027

6 Op. cit., Section 9.2.2. The models to do this are contained in the speadsheet ‘‘Decomposing a Correlation Matrix’’.



0.419 0.093 0.538 0.188 0.701
0.426 0.093 0.674 0.428 0.415
0.458 0.141 0.812 0.322 0.080
0.614 0.156 0.772 �0.046 0.003
0.856 0.096 0.494 �0.118 0.020
0.947 0.179 0.217 0.152 �0.039
0.814 0.514 0.123 0.233 �0.059
0.615 0.771 0.165 0.019 0.010

There is still one more aspect to clarify before we can run a BGM simulation. Given a
current market curve of forward rates, forward volatilities and some assumed B matrix,
then we can apply eq. (11.8) to estimate Fkð�1Þ from Fkð0Þ using a set of randomly sampled
dzs. But what about the step from Fkð�1Þ to Fkð�2Þ. What assumptions should we make
about the future forward volatilities and correlations at time �1?

Introduce the concept of an instantaneous volatility vðt; tkÞ; this is the volatility of the kth
forward rate over a very short period of time starting at time t. We will assume that this
takes the time-homogeneous form7 of:

vðt; tkÞ ¼ ½aþ bðtk � tÞ� � expf�c : ðtk � tÞg þ d

where the parameters should satisfy certain constraints for realistic volatilities, such as
aþ d, c and d > 0. These volatilities are fundamental building blocks, from which we can
construct periodic volatilities:

�2
k : tk ¼

ð
vðt; tkÞ2 : dt integrating from 0 to tk ¼ VkðtkÞ � Vkð0Þ

and

s2kj : �j ¼
ð
vðt; tkÞ2 : dt integrating from tj to tjþ1 ¼ Vkðtjþ1Þ � VkðtjÞ

It is simple albeit tedious to perform the integration analytically.8 Hence, given a forward
volatility curve, we can estimate the parameters fa; b; c; dg by doing a least-squares
minimisation. To ensure arbitrage exactness, define Kk ¼ �2

k : tk=½VkðtkÞ � Vkð0Þ�; this
means that ½VkðtkÞ � Vkð0Þ� :Kk exactly fits the market volatilities at time t ¼ 0.

The table on the next page has been implied from the market-based Black forward
volatilities (which in turn were implied from the quoted ATM cap prices), which are shown
in the first column. The forward–forward volatilities evolve over quarterly periods, and of
course drop off as the rates fix. See Worksheet 11.28 for further details; notice from the
embedded graph that the volatilities faithfully replicate the humped nature of the original
Black volatilities.
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7 See Rebonato, op. cit., Chapter 6 for an in-depth discussion of why this form is broadly acceptable.
8 The indefinite integral of vðt; tkÞ2 is

ð1
4
c3Þ : ð8ac2de�cD þ 4c3d 2tþ 8bcde�cD½1þ cD� þ e�2cD : f2a2c2 þ 2abc½1þ 2cD� þ b2½1þ 2c2D2þ2cD�gÞ

where D ¼ tk � t.
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volatilities Forward–forward volatility curves from tj to tjþ1 ¼ tjþStep)
tj ¼ 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

tk ¼
0.25 9.7147% 9.7147%
0.5 10.0856% 10.023% 10.147%
0.75 10.9748% 10.841% 10.973% 11.109%
1 12.4933% 12.267% 12.415% 12.566% 12.721%
1.25 13.6952% 13.369% 13.527% 13.689% 13.856% 14.027%
1.5 14.5518% 14.123% 14.287% 14.456% 14.629% 14.807% 14.990%
1.75 15.0376% 14.511% 14.678% 14.848% 15.024% 15.204% 15.389% 15.579%
2 15.1263% 14.516% 14.679% 14.847% 15.020% 15.197% 15.380% 15.567% 15.760%
2.25 15.3588% 14.659% 14.821% 14.988% 15.159% 15.336% 15.517% 15.703% 15.894% 16.091%
2.5 15.7342% 14.937% 15.099% 15.266% 15.438% 15.615% 15.796% 15.983% 16.175% 16.372%
2.75 16.2600% 15.355% 15.519% 15.688% 15.862% 16.040% 16.224% 16.412% 16.606% 16.806%
3 16.9424% 15.918% 16.085% 16.256% 16.433% 16.615% 16.802% 16.994% 17.192% 17.395%
3.25 17.2880% 16.161% 16.328% 16.400% 16.675% 16.856% 17.043% 17.235% 17.432% 17.635%
3.5 17.2937% 16.088% 16.250% 16.417% 16.589% 16.767% 16.949% 17.136% 17.329% 17.528%
3.75 16.9550% 15.698% 15.853% 16.013% 16.178% 16.347% 16.522% 16.701% 16.886% 17.076%
4 16.2611% 14.986% 15.131% 15.280% 15.435% 15.593% 15.757% 15.925% 16.098% 16.265%
4.25 15.7285% 14.429% 14.566% 14.707% 14.853% 15.003% 15.157% 15.316% 15.480% 15.648%
4.5 15.3558% 14.026% 14.156% 14.290% 14.429% 14.571% 14.718% 14.870% 15.026% 15.186%
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4.75 15.1452% 13.775% 13.900% 14.029% 14.162% 14.299% 14.440% 14.586% 14.736% 14.891%
5 15.1006% 13.678% 13.799% 13.924% 14.053% 14.187% 14.324% 14.466% 14.612% 14.762%
5.25 15.0536% 13.581% 13.698% 13.820% 13.945% 14.075% 14.208% 14.346% 14.488% 14.634%
5.5 15.0012% 13.481% 13.595% 13.713% 13.835% 13.960% 14.090% 14.223% 14.361% 14.503%
5.75 14.9465% 13.382% 13.492% 13.607% 13.724% 13.846% 13.972% 14.102% 14.235% 14.373%
6 14.8876% 13.281% 13.388% 13.499% 13.613% 13.731% 13.853% 13.978% 14.108% 14.242%
6.25 14.8269% 13.182% 13.285% 13.392% 13.502% 13.617% 13.735% 13.856% 13.982% 14.112%
6.5 14.7640% 13.082% 13.182% 13.285% 13.392% 13.503% 13.617% 13.735% 13.857% 13.982%
6.75 14.6978% 12.982% 13.079% 13.178% 13.282% 13.388% 13.499% 13.613% 13.731% 13.853%
7 14.6272% 12.881% 12.973% 13.070% 13.169% 13.273% 13.379% 13.490% 13.604% 13.722%
7.25 14.5639% 12.788% 12.877% 12.970% 13.066% 13.166% 13.269% 13.376% 13.486% 13.600%
7.5 14.5070% 12.702% 12.789% 12.878% 12.971% 13.068% 13.167% 13.270% 13.377% 13.487%
7.75 14.4565% 12.625% 12.708% 12.795% 12.884% 12.977% 13.073% 13.173% 13.276% 13.383%
8 14.4133% 12.556% 12.636% 12.719% 12.806% 12.896% 12.989% 13.085% 13.185% 13.288%
8.25 14.3762% 12.494% 12.571% 12.652% 12.735% 12.822% 12.911% 13.005% 13.101% 13.201%
8.5 14.3469% 12.441% 12.515% 12.593% 12.673% 12.757% 12.843% 12.933% 13.027% 13.123%
8.75 14.3224% 12.394% 12.466% 12.540% 12.618% 12.698% 12.782% 12.869% 12.959% 13.052%
9 14.3057% 12.356% 12.424% 12.496% 12.571% 12.649% 12.729% 12.813% 12.900% 12.991%
9.25 14.2933% 12.323% 12.389% 12.458% 12.530% 12.605% 12.683% 12.764% 12.848% 12.935%
9.5 14.2866% 12.296% 12.360% 12.426% 12.496% 12.568% 12.643% 12.721% 12.802% 12.887%
9.75 14.2866% 12.278% 12.339% 12.402% 12.469% 12.538% 12.611% 12.686% 12.765% 12.846%
10 14.2866% 12.260% 12.319% 12.380% 12.444% 12.511% 12.581% 12.653% 12.729% 12.808%



An alternative approach is to assume that skj is, as before, time-homogeneous, so that
skj ¼ sk�j. Hence we can write:

�2
k : tk ¼

X
s2k�j : �j

Intuitively, �2
k : tk (as a statement of uncertainty) should be strictly increasing with time;

in this case, the above expression can be exactly solved by simple bootstrapping. Unfortu-
nately, in reality, the market volatilities �2

k : tk do not necessarily increase (see, for example,
the data used to produce the table on the previous page), possibly due to supply and
demand, and therefore this approach cannot be relied upon (see Worksheet 11.29 for an
example).
In Chapter 10, the following parametric form for correlation was introduced:

�kj ¼ expf�	 � jtk � tjjg
where 	 > 0 is a constant parameter. This assumes that forward rates that are equi-distant
apart would have the same correlation, and rates that are far apart would have an effective
zero-correlation. An extended formula would be:

�kj ¼ �Long þ ð1� �LongÞ � expf�	 � jtk � tj jg
where �Long is an asymptotic long correlation parameter. This implies that correlations can
never drop down to zero. Notice that these expressions are independent of the current time
t, which eases the computations considerably, but may also lead to correlations that do not
follow market observations. However, given the paucity of possible calibration instru-
ments, introducing more degrees of freedom by including a time dimension may lead to
parameter instability.
In practice, forward rates at the long end of the curve are generally more highly

correlated than rates at the short end; this is known as correlation convexity. There are
formulae with more parameters that incorporate this, but they require considerably more
computational effort, and run into the danger of overfitting.
We are now in a position to evolve a forward curve. Given:

. A current forward curve: Fk0 for k ¼ 1; 2; . . . ; n.

. A current forward Black volatility curve: �k for k ¼ 1; 2; . . . ; n;
e the forward–forward volatility curves can be constructed from this.

. Correlation parameters: �Long and 	;
e the elements of matrix B can be computed

We will build a BGM simulation on a quarterly basis out for 20 years, and then calibrate
it to some European swaption prices available from the marketplace. Spreadsheet ‘‘Ex-
ample of BGM Sampling’’ shows all the details. The spreadsheet is divided as follows:

. ‘‘Market data’’ (Worksheet 11.30): this contains the two forward curves as input.

. ‘‘Forward-Forward Vols’’ (Worksheet 11.31): this generates forward–forward
volatilities as described above.

. ‘‘Correlation Matrix’’ (Worksheet 11.32): this contains the generated correlation matrix
for given values of �Long and 	. A full-spanning B matrix is then calculated using a
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Cholesky decomposition. Under this assumption (but not for other B matrices):
X

q

bk;q; j : bi;q; j ¼ �ki

which simplifies the drift term to

skj :
X

i

si j :Rij : �ki

summed from i ¼ j; . . . ; k
. ‘‘R(i,j)’’ (Worksheet 11.33): this calculates Rij from each generated forward rate.
. ‘‘Sum s(i,j).R(i,j).((i,j)’’ (Worksheet 11.34): this calculates the intermediate summation as

the name implies.
. ‘‘rv’s’’ (Worksheet 11.35): this generates normally distributed random variates.
. ‘‘BGM Sampling’’ (Worksheet 11.36): this contains the heart of the algorithm, randomly

generating the new forward curves every 3 months.

For any given forward rate, the model generates a path of quarterly observations from
today (spot) until the fixing date. Whilst this may be very useful information for some
structures, for most it is too much, as the only relevant piece of information is the estimated
fixing. The path taken to get to this fixing is not relevant. But we were forced to model the
forward rate path because of the need to re-estimate the drift term (which depends upon the
generated forward rates) after relatively small time intervals.

Ideally however, we would like to make a single time step for the kth rate from t ¼ 0 to
t ¼ tk, but we do not know what drift term to use. However, Rebonato9 suggests the
following very long-step approach:

1. Generate a forward rate using:

Fkk ¼ Fk0 � exp ½�k0 � 1
2
�2
k� : tk þ �q

X

q

bk;q : dzq :
p
tk

� �

2. Calculate a new drift term �kk using Fkk, and hence an average drift

�kav ¼ 0:5f�k0 þ �kkg
3. Use this average term, and the same random variables as before, to compute a revised

Fkk.

This is demonstrated in Spreadsheet 11.41, which consists of worksheets:

. ‘‘Market data’’ (Worksheet 11.37), ‘‘Forward-Forward Vols’’ (Worksheet 11.38) and
‘‘Correlation Matrix’’ (Worksheet 11.39) as before.

. ‘‘�(i).�(k,i)’’: this calculates the intermediate summation as the name implies.

. ‘‘BGM long-step Sampling’’ (Worksheet 11.41): this represents the heart of the
algorithm, and proceeds in the following steps:
e columns [1] and [2] are the current forward rates and forward volatilities;
e columns [3] and [4] calculate Rk0 and the drift term at t ¼ 0;
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e columns [5] and [6] generate correlated random variates;
e column [7] calculates Fkk as above;
e based upon this, columns [8], [9] and [10] calculate Rkk, the average R and hence the

adjusted drift term, respectively;
e finally, column [11] calculates the new forward rate curve using the long-step drift.

The correlation parameters �Long and 	 need to be calibrated. Worksheet 11.42 contains an
example of calibration, i.e. fitting to some quoted European swaptions. The swaptions are
the ATM ones created in Section 11.3; their prices are summarised in the following table:

Swaption Strike Black prices Simulated prices

1/11 4.5387% 0.0201 0.0290
2/12 4.8599% 0.0299 0.0320
3/13 5.0945% 0.0366 0.0346
4/14 5.2778% 0.0409 0.0366

Using different values of �Long and 	, the simulated prices were derived by minimising
least-squares errors.
Consider the following ‘‘sticky’’ floater (this is a slight modification of the one issued by

the EIB in 2004 described in Section 11.2):

Principal: $100m
Maturity: 6 years
Issue price: 99.625
Coupon: 6mo. Liborþ 50 bp
Subject to: Ct � Ct�1 þ 20 bp

The stickiness constrains the increase in the coupon should rates rise, whilst any decline in
rates is fully unchecked. The constraint cannot be represented by a simple spread option on
ðCt � Ct�1Þ as Ct�1 itself may well depend upon earlier coupons. Thus, simulation is the
only practical approach. Spreadsheet 11.49 builds the BGM simulation as described above,
but also introduces some other devices. First, Worksheet 11.48 in the spreadsheet swaps the
unconstrained floater into 3mo. Libor plus 56.6 bp using the usual asset-packaging
approach as described in Chapter 5. Worksheet 11.49 then simulates both the constrained
and unconstrained floaters simultaneously. Indeed it does the simulation twice, once using
normal random variates and once using antithetic (i.e. the negative of the normal) variates.
The resulting margin is then averaged in cells W29 and X29, respectively. This is likely to
reduce overall fluctuations in the results considerably. The average breakeven margin is
then calculated for both floaters. Finally, the corrected margin for the constrained floater is
estimated by:

Simulated margin for constrained floater

þðSimulated margin for unconstrained floater� 56:6 bpÞ
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This approach uses the error in pricing the unconstrained floater as a control. Whilst the
unconstrained floater swapped into þ56.6 bp, the presence of the constraint reduces the
margin to �14 bp to the significant benefit of the issuer.

There is no particularly appropriate calibration for this structure; possibly caplets on
6mo. Libor. This implies that the correlation structure is unlikely to have a significant
effect.

The TARN described above could also be handled by simulation fairly easily. A simple
control would be a note that paid 3.75 � (10 yr CMS� 2 yr CMS). Of course, the maturity
of the TARN is uncertain, but the control note could easily be modelled analytically for a
range of possible maturities, and the correct maturity selected for each scenario of the
TARN. An adjustment could then be made, not on average across all scenarios, but for
each scenario. Spreadsheet 11.56 is divided into further worksheets:

. The first five worksheets, from ‘‘Market Data’’ (Worksheet 11.50) until ‘‘BGM very
long-step sampling’’ (Worksheet 11.54) are the same as before.

. ‘‘Analytic Spread Floater’’ (Worksheet 11.55) calculates the breakeven margin for notes
with a coupon of 3.75 � (10 yr CMS� 2 yr CMS) for differing maturities.

. ‘‘Modelling a TARN’’ (Worksheet 11.56) contains the main model. This estimates the
breakeven margin for the TARN for a range of scenarios under both normal and
antithetic variates. It also calculates the breakeven margin for simulated spread floaters
of differing maturities, and hence the correction factor for each scenario, based upon the
appropriate lifetime of the TARN. The overall funding margin is estimated to be in the
region of Libor� 10 to 15 bp (obviously this range could be refined by taking more than
500 scenarios).

Which structures would be most suitable to calibrate the simulation to this particular
structure? The most appropriate would be fixed length European swaptions such as
N=2 and N=10 where N would range from 1 year out to 10 years, such as N ¼ 2; 4; 6; 8; 10.

Another fairly common structure is an index amortising swap. Amortising swaps were
discussed in Chapter 4; in those, the amortising schedule was fixed. In index amortisers, the
amortisation is driven by some function of a reference index. The function is usually a
ratchet, namely that the principal of the swap may decrease, but can never increase again.
For example, long-term fixed rate mortgages are common in the US; the rate charged
contains the cost of an option permitting the mortgagor to repay the mortgage early
without penalty. As interest rates drop, the speed of repayment accelerates, as mortgagors
re-finance. Assume that the originating mortgage house had funded the lendings by issuing
a floating rate note. It therefore has fixed rate receipts but a floating liability; this could be
hedged by entering into an IRS to pay fixed, receive floating. But the prepayment option
means that the receipts have an unknown amortising schedule. If, based on historic
evidence and the current state of the economy, a likely prepayment schedule based on
the movement of interest rates can be estimated, then this may be represented by an index
amortising swap. Whilst these may be priced using an IRS plus a series of Bermudan down-
and-in swaptions, the usual way is to simulate the movement of the rates, model the
cashflows and calculate the average break-even fixed rate.

Of course, the actual prepayment schedule is unlikely to match the likely schedule
estimated above. A balance guarantee (or guaranty) swap is similar to an index amortiser,
but where the amortisation schedule exactly matches the actual schedule. These can be
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modelled by simulating index amortisers under a range of different (but likely) prepayment
schedules, and taking some conservative outcome as the price.
The final structure to be considered in this section is a USD snowball similar to the one

issued by BPI; this is summarised below:

Issue date: 6 February 2008
Maturity: 7 years
Redemption: 100
Coupon: 7% sa in first year

Thereafter CouponðtÞ ¼Couponðt� 1Þ þ KðtÞ � 6mo. Libor	 0
where K starts at 2% and increments by 25 bp each period

Calls: Every coupon date starting 6 August 2009

A likely control structure would be a note paying CðtÞ ¼ Rðt� 1Þ þ KðtÞ � RðtÞ where
RðxÞ is the Libor fixing for period x. The expected value of the coupon could be estimated
from the expected value of fRðt� 1Þ � RðtÞg from a Margrabe formula; this requires both
volatilities and a spread correlation. More importantly, however, the call strip makes this
an example of a backward–forward structure.
Handling call strips (or other forward-looking conditions) is difficult within simulations.

A basic algorithm is as follows:

. let Hk be the value of some product at time tk if the call has not yet been exercised;

. let Gk be the value of the product if the call is exercised at time tk;

. hence, define the value of the product Vk ¼ maxfHk;Gkg;

. clearly, Hk�1 ¼ EfVk �DFkg=DFk�1;

. this is a recursive structure; solve for H0.

The main difficulty is to estimate Hk as this represents the expected value of the product if
not called; to estimate this would require a large number of scenarios generated from time
tk. Under these conditions, the time for the simulation is effectively squared.
The problem may be simplified by recognising that an exercise region could be defined:

Rk ¼ f! 2 O jHkð!Þ � Gkð!Þg for a given parameter !

!might represent the level of interest rates evolved through time, as we know that a callable
bond will only be exercised when rates are low. Thus, for ! 2 Rk, the product can be
assumed to be called, and not called outside this boundary. Various practical algorithms
have been developed10 using this idea; generally these algorithms produce upper and/or
lower bounds on the valuation.
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To illustrate one simple approximate approach, consider the swapping of a security into
floating C¼uribor. From the point of view of the swap counterparty, the swap can be written
as follows:

þP �100

�C1 þðC¼1 þmÞ
�C2 þðC¼2 þmÞ
�C3 þðC¼3 þmÞ

..

.

�CT�1 þðC¼T�1 þmÞ
�CT � R þðC¼T þmÞ þ 100

It has been tacitly assumed that the frequencies of cashflows on the two sides are the same,
but that is not relevant for the following discussion. Define XðtÞ as the value of the swap at
time t. This may be calculated in reverse:

XðTÞ=�CT � Rþ ðC¼T þmÞ þ 100

XðT � 1Þ=XðTÞ �DFT�1;T � CT�1 þ ðC¼T�1 þmÞ
..
.

Xð0Þ =Xð1Þ �DF0;1 þ P� 100

where DFt�1;t is the one-period discount factor¼DFt/DFt�1. To fair-value the swap, solve
for m so that Xð0Þ ¼ 0.

Assume that the swap counterparty has the right to call the swap at zero, i.e. is able to
cancel the swap, at time t. He would still however have to pay and would receive the
cashflows on that date. Hence, he would call if the future value to him Xðtþ 1Þ < 0.

Therefore, the valuation equation could be modified to:

XðtÞ ¼ maxf0;Xðtþ 1Þg �DFt;tþ1 � Ct þ ðC¼t þmÞ
The recursion could however still be solved for m so that Xð0Þ ¼ 0. Worksheet 11.34
‘‘Modelling a callable snowball by simulation’’ on the accompanying CD demonstrates
this approach. Worksheet 11.34 is broken down into two further worksheets:

. ‘‘Snowball’’ (Worksheet 11.35) models the structure without calls in the usual fashion.

. ‘‘Snowball with calls’’ (Worksheet 11.36) models the structure with calls; the sheet is set
up to do eight iterations of a simple Newton–Raphson algorithm to solve for the
breakeven margin.

As expected, the existence of the call strip inevitably improves the funding cost of the issuer.
Reducing correlation, which allows individual rates to have more volatility, increases the
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value of the call strip significantly, as may be seen from the table below (purely for
indication; the simulations were not done using the same random variates, and hence
are not strictly comparable).

Changing correlation

Beta Value of call strip How often called

50% 19.91 64.0%
75% 18.67 65.6%

100% 13.08 66.4%
150% 6.83 58.4%
250% 4.93 53.0%

11.5 APPENDIX: EXTENSIONS TO NUMERICAL TREES

The text of Chapter 11 concentrated on two main approaches, numerical methods
exemplified by BDT and simulation methods based on the Libor model. Whilst the Libor
model is becoming an industry standard, there are a number of other numerical models and
approaches that are also widely used. The objective of this section is to discuss these briefly.

11.5.1 Incorporating a volatility smile
11

Chapter 10 discussed volatility smiles arising in the interest rate options markets in some
detail. Should these be incorporated into the numerical tree? Whilst the reasons for the
smile may be debated, its existence and implication, namely that forward interest rates at
some distance away from the current level appear to exhibit higher volatility, cannot be
denied. Therefore, fitting the tree solely to the ATM forward volatility curve is not
consistent with Black option pricing quoted in the market.
Assume, for a given time step t, we know a forward volatility curve �t�1ðKÞ where K is

the strike axis, including �t�1;ATM. This last volatility is likely to be close to �t�1;t=2 if t is
even, and 0:5 � ½�t�1;ðt�1Þ=2 þ �t�1;ðtþ1Þ=2� if t is odd. Define the ATM step length to be:

Dt ¼ expf�t�1;ATM :
p
dtg

For any column t, its midpoint rt;t=2 
 the forward rate rt. For t odd, the actual rates are
given by rt;t=2�1

2þn where n ¼ �0;�1; . . . ;�ðt� 1Þ=2. Hence, the appropriately respective
volatilities to use are at the points Kn ¼ ft=2þ 2n :Dtg, interpolated off the volatility
curve.12 This involves an approximation: the use of Dt which is based only on ATM
volatility, is used to estimate the interpolation along the K-axis. Hence we proceed as
follows:

. guess rt;t=2 from the known forward rate rt;

. calculate the volatilities �t�1ðKnÞ for n ¼ �0;�1; . . . ;�ðt� 1Þ=2;
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. calculate rt;t=2� 1
2�k ¼ rt;t=2� 1

2�ðk�1Þ : expf2 : �t�1ðKnÞ :pdtg where the step length now
depends upon the volatility within the smile.

If t is even, then the rates are rt;t=2þn where n ¼ �0;�1; . . . ;�t=2. In this case,
Kn ¼ ft=2� ð2nþ 1Þ :Dtg, etc.

We can now proceed in the same way, fitting rt;t=2 to known market data. Spreadsheet
11.67 contains the relevant worksheets. Two rate trees are built, one with a smile based on
the forward volatility surface below (see Worksheet 11.67), and one based purely on
the ATM volatilities (see Worksheet 11.66). Notice that the smile is not symmetric, and
that ATM is not necessarily the lowest volatility for a given maturity (see table on next
page).

The diagram below shows the same column—the 2-year point—from the two rate
trees:

Extract from tree: 2-year point

With smile Without smile

0 8.1181% 7.5151%
1 6.6144% 6.3987%
2 5.4996% 5.4482%
3 4.6383% 4.6388%
4 3.9400% 3.9497%
5 3.3547% 3.3630%
6 2.8349% 2.8634%
7 2.3501% 2.4380%
8 1.2800% 2.0758%

As expected, the smile column has a wider spread of rates. But if we had selected another
column, say the 5-year point, then the smile column would have lower rates because of the
higher OTM volatility, but the high rates would be lower because of the lower ITM
volatility. The two worksheets 11.66 and 11.67 price a $100m 5-year Bermudan floorlet,
set with a fixed strike, and exercisable on any coupon date after the first year. If the strike is
considerably OTM, so it is up in the wings of the smile, then the smile price at $13,035 is
14% higher than the non-smile price of $11,437. However, if the strike is close to ATM at
4%, then the two prices are only 2% apart at $190,365 and $186,095, respectively. This is
because the averaging back on the tree is more around ATM, where the smile effects are
considerably less.

11.5.2 Hull–White numerical trees

These are probably the other form of tree most commonly used for modelling interest rates.
The commonest implementation uses the following generating process:

dr ¼ ½�ðtÞ � �ðtÞ : rðtÞ� : dtþ ’ðtÞ : dz
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Years �3.5% �3.0% �2.5% �2.0% �1.5% �1.0% �0.5% 0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0%

0.25 33.4% 33.4% 33.4% 33.0% 29.4% 23.5% 15.4% 10.44% 10.9% 12.3% 13.6% 15.1% 16.6% 18.0%
0.50 33.4% 33.4% 33.4% 32.9% 29.2% 23.1% 15.1% 10.44% 11.0% 12.3% 13.7% 15.2% 16.7% 18.1%
0.75 33.4% 33.4% 33.4% 32.6% 28.7% 22.2% 14.5% 10.44% 11.1% 12.5% 13.9% 15.4% 16.8% 18.2%
1.00 33.4% 33.4% 33.4% 32.2% 27.9% 20.8% 13.7% 10.44% 11.3% 12.7% 14.1% 15.6% 17.0% 18.4%
1.25 25.6% 25.6% 25.6% 20.0% 15.9% 15.0% 15.2% 15.31% 17.0% 18.2% 18.8% 19.1% 19.0% 18.8%
1.50 22.3% 22.3% 22.3% 13.8% 9.8% 13.3% 16.5% 17.33% 19.3% 20.5% 20.6% 20.4% 19.6% 18.7%
1.75 29.9% 29.9% 29.9% 22.6% 16.6% 17.0% 15.5% 15.33% 15.9% 16.3% 16.9% 17.4% 18.1% 18.8%
2.00 29.7% 29.7% 29.7% 18.5% 16.1% 16.5% 16.1% 16.08% 16.4% 16.6% 17.1% 17.5% 18.2% 18.9%
2.25 24.2% 24.2% 23.8% 19.0% 14.5% 17.1% 16.4% 16.13% 16.2% 16.5% 16.6% 16.7% 16.9% 17.1%
2.50 22.8% 22.8% 21.6% 16.0% 13.9% 17.4% 16.9% 16.71% 16.5% 16.5% 16.5% 16.5% 16.6% 16.8%
2.75 21.3% 21.3% 19.9% 13.6% 13.2% 17.8% 17.4% 17.28% 16.7% 16.6% 16.4% 16.3% 16.3% 16.3%
3.00 19.8% 19.8% 18.6% 12.4% 11.7% 18.2% 18.0% 17.86% 16.9% 16.6% 16.3% 16.0% 15.9% 15.9%
3.25 23.7% 23.7% 23.0% 19.2% 18.7% 17.3% 16.5% 16.30% 16.2% 16.3% 16.6% 16.9% 17.1% 17.2%
3.50 23.0% 23.0% 22.7% 18.5% 18.9% 17.5% 16.8% 16.54% 16.3% 16.2% 16.5% 16.8% 16.9% 17.1%
3.75 22.4% 22.4% 22.2% 17.9% 19.1% 17.7% 17.0% 16.77% 16.4% 16.2% 16.5% 16.8% 16.8% 16.9%
4.00 21.7% 21.7% 21.6% 17.3% 19.2% 17.9% 17.3% 17.00% 16.5% 16.2% 16.5% 16.7% 16.7% 16.7%
4.25 22.1% 22.1% 21.8% 20.0% 18.8% 17.6% 16.7% 16.14% 15.9% 15.8% 15.8% 15.8% 16.2% 16.6%
4.50 21.5% 21.5% 21.1% 19.9% 18.8% 17.6% 16.8% 16.24% 15.9% 15.7% 15.7% 15.7% 16.1% 16.4%
4.75 20.9% 20.9% 20.3% 19.8% 18.8% 17.7% 16.9% 16.34% 15.9% 15.7% 15.5% 15.5% 15.9% 16.3%
5.00 20.4% 20.4% 19.5% 19.8% 18.8% 17.7% 17.0% 16.45% 15.9% 15.6% 15.4% 15.4% 15.8% 16.1%
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Unlike BDT, this is a normal model, permitting changes in the rates dr so that the rates
may potentially go negative. Furthermore, the term ’ðtÞ, whilst measuring uncertainty, is
not a Black volatility, but is expressed as an absolute change in rðtÞ measured in bp. The
model permits mean reversion; namely, for positive values of �ðtÞ and �ðtÞ, the drift term
may be negative for high values of rðtÞ, and positive for low values. This additional
parameter requires a trinomial model, introducing an additional degree of freedom to
that in a BDT model.

Model building starts from a simplified process:

dr ¼ ��ðtÞ : rðtÞ : dtþ ’ðtÞ : dz

Using a simple trinomial process as shown below:

p
u

p
m

 

p
d

dr

dr

0

Dropping the ðtÞ for clarity, we can write:

Efdrg ¼ pu : drþ pm : 0þ pd : � dr

¼ �� : r : dt

Variancefdrg ¼ pu : ½dr2 � ð� : r : dtÞ2� þ pm : ½�ð� : r : dtÞ2� þ pd : ½dr2 � ð� : r : dtÞ2�

¼ ’2 : dt

and pu þ pm þ pd ¼ 1

Solving for the probabilities, we get

pu ¼ ½’2 : dtþ ð� : r : dtÞ2 � � : r : dt : dr�=2dr2, etc.

Unlike BDT, this is a lattice model which implies that the step lengths in the fr; tg
dimensions are predefined.13 HW recommend the following relationship dr2 ¼ 3’2 : dt.
Furthermore, assume that the starting node is at the jth step in the r-dimension, where

13 It is feasible to have uneven time steps to ensure that key dates t1; t2; t3, etc. fall on nodes; for example, a cashflow date or a
Bermudan exercise date. In this case, the central node is the one closest to Efriþ1g ¼ ri � �i : ri : ðtiþ1 � tiÞ.



j ¼ 0;�1;�2; . . ., hence rðtÞ ¼ j : dr. Substituting and re-arranging gives:

pu ¼ 1
6
þ ½ð� : j : dtÞ2 � ð� : j : dtÞ�=2

pd ¼ 1
6
þ ½ð� : j : dtÞ2 þ ð� : j : dtÞ�=2

pm ¼ 2
3
� ð� : j : dtÞ2

Unfortunately, as j increases, it is possible for pm to become negative; for positive �, the
absolute value of j should not exceed (0.816/� : dt). To overcome this, HW change the
branching to (a) below for positive j, and to (b) for negative j:

(a) (b)

p
u
 

p
m

 

p
uu

 

dr 

2.dr 

0 

p
dd

p
m

 

p
d

2.dr 

 dr 

0 

This implies the overall lattice structure resembles a pruned tree, as shown below:

The new branching equations for (a) are:

pm ¼ 7
6 þ ½ð� : j : dtÞ2 � 3 : ð� : j : dtÞ�=2

pd ¼ � 1
3
� ð� : j : dtÞ2 þ 2 : ð� : j : dtÞ

pdd ¼ 1
6
þ ½ð� : j : dtÞ2 � ð� : j : dtÞ�=2
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and for (b):

puu ¼ 1
6
þ ½ð� : j : dtÞ2 þ ð� : j : dtÞ�=2

pu ¼ � 1
3
� ð� : j : dtÞ2 � 2 : ð� : j : dtÞ

pm ¼ 7
6 þ ½ð� : j : dtÞ2 þ 3 : ð� : j : dtÞ�=2

These also need to be positive, which implies that the branching should not be switched
until the absolute value of j exceeds (0.184/� : dt). In practice, it is probably most
computationally efficient to switch as early as possible.

As an example, suppose we set � ¼ 10% and ’ ¼ 88 bp. If dt ¼ 0.25 years, then
dr ¼ 0.7623%. The normal trinomial branching probabilities are shown in the table below:

j j*del r pd pm pu

�8 �6.099% 0.0867 0.6267 0.2867
�7 �5.336% 0.0945 0.6360 0.2695
�6 �4.574% 0.1029 0.6442 0.2529
�5 �3.812% 0.1120 0.6510 0.2370
�4 �3.049% 0.1217 0.6567 0.2217
�3 �2.287% 0.1320 0.6610 0.2070
�2 �1.525% 0.1429 0.6642 0.1929
�1 �0.762% 0.1545 0.6660 0.1795
0 0.000% 0.1667 0.6667 0.1667
1 0.762% 0.1795 0.6660 0.1545
2 1.525% 0.1929 0.6642 0.1429
3 2.287% 0.2070 0.6610 0.1320
4 3.049% 0.2217 0.6567 0.1217
5 3.812% 0.2370 0.6510 0.1120
6 4.574% 0.2529 0.6442 0.1029
7 5.336% 0.2695 0.6360 0.0945
8 6.099% 0.2867 0.6267 0.0867

The skewed branching could commence at j ¼ �8 (the smallest integer above 0.184/� : dt),
and in that case, the first probabilities would be:

pdd pd pm pu puu

0.8867 0.0267 0.0867
0.0867 0.0267 0.8867

The second step is to fit the lattice to market data. This can be done first by introducing the
drift term �ðtÞ so that the rate evolution fits to the current forward curve. For various
reasons which will be obvious later, the tree evolves forward continuously compounded
zero-coupon rates, and not forward simple rates as in BDT. Second, ’ may be made
time-dependent, thus ultimately fitting it to a volatility curve.
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We can proceed in a very similar fashion to the BDT algorithm. Assume we are at node
fm; jg; this means there have been m time steps of length dt, and j rate steps of size dr. We
know the discount factor DFm off the current curve; this is the same for all j nodes at time
m. We can write, as before—see eq. (11.5):

DFm ¼
X

j

Xm; j ð11:9Þ

The recursive relationship for Xm; j is a generalisation of eq. (11.3), because now there are
more than two possible predecessor nodes:

Xm; j ¼
X

k

xm�1;k : pm�1;k; j :DFm�1;k ð11:10Þ

where k is the set of predecessor nodes, pm�1;k; j is the probability of moving from node
fm� 1; kg to node fm; j g, and DFm�1;k is the one-period discount factor from node
fm� 1; kg to period m. This discount factor is currently set (in the first step) to
expf�k : dr : dtg.
Based on the current set of rates developed in the first step (see table on previous page), it

is highly unlikely that eq. (11.9) is true. Introduce �m�1 so that:

DFð�Þm�1;k ¼ expf�½�m�1 þ k : dr� : dtg ¼ expf��m�1 : dtg :DFð0Þm�1;k

and

Xð�Þm; j ¼ Xð0Þm; j : expf��m�1 : dtg

We can now solve eq. (11.9) for �m�1:

�m�1 ¼ ln
X

j

Xð0Þm; j=DFm

( )	
dt

This enables the lattice to be built without any step-by-step iteration, which makes it
considerably faster than BDT. If simple forward rates were used instead of c–c zero rates,
then the same approach could be applied, but � could only be estimated iteratively.
Spreadsheet 11.69 contains the relevant worksheets. Worksheet 11.69 builds a HW tree

using the market data out of 4 February 2008. This is done in two steps as described above,
first building the tree centred upon r ¼ 0%, and then fitted to the current zero curve. A
volatility curve is also introduced; this was a forward Black curve �ðtÞ which was then
converted approximately into bp volatility by the formula ’ðtÞ 
 �ðtÞ � rðtÞ. In turn, this
changes the interest rate step length due to the relationship drðtÞ2 ¼ 3’ðtÞ2 : dt. The final
tree is only built out to j ¼ �8 for an � of 10% as described above.
The resultant tree is then used to price a 5-year Bermudan caplet, struck at 3% (see

Worksheet 11.70). Obviously the zero rate on the tree at maturity has to be converted into a
simple forward rate by rt ¼ ½expf�zt : dtg � 1�=dt. The final payoff is calculated as
maxf0; rt � Strikeg � dt �DFt. The expected results are calculated using the probabilities,
and then folded back to the earlier period using the appropriate rate for discounting. As
this is a Bermudan option, then, at each period, the folded back value is compared with the
value of exercising earlier, and the maximum taken. The price of the Bermudan caplet is
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37.285 bp. The price of a European version would be very similar, at 37.057 bp. The very
small differences in the prices is due to the relative low number of times it is optimal to
exercise early (see the early exercise tree in cells {K57:AA76} in Worksheet 11.70). This can
be compared with the prices off a BDT tree of 35.689 bp and 35.606 bp, respectively (see
Worksheet 11.80 contained in Spreadsheet 11.80 for details), and the Black price of
35.649 bp for the European version.

But the HW tree was built assuming a known mean reversion parameter aðtÞ and bp
volatilities ’ðtÞ. These input parameters are unobservable, so aðtÞ was set to a constant
10% and the volatilities estimated from the Black forward volatility curve using an
approximation. In practice the HW tree needs to be calibrated, namely the input param-
eters estimated, to market observations. For example, we could take the Black volatility
curve, calculate the Black European caplet prices for a range of maturities and then use
those prices to imply the HW parameters. But the two parameters are not independent, but
interact in opposite directions, so separating the effects of the two vectors from market data
would be very difficult. In practice, therefore, it is common to set aðtÞ to a time-independent
constant a, and then solve for ’ðtÞ and a.

For example, assume we have three ATM European swaptions as shown below:

2/4 receivers struck at 4.164%: Price¼ 92.57 bp

2/6 receivers struck at 4.431%: Price¼ 151.14 bp

4/4 receivers struck at 4.825%: Price¼ 143.01 bp

The fixed side of each forward swap is assumed (to make the example simple) to be
quarterly Act/360. The prices were estimated off a BDT tree (see Worksheet 11.81 for
details). We assume five HW parameters: a, ’ð0–2Þ, ’ð2–4Þ, ’ð4–6Þ and ’ð6–8Þ. (Note: This
creates a piecewise constant volatility curve.) Optimal values for these parameters are
estimated by minimising max{individual squared errors} (an alternative would be mini-
mising the sum of squared errors):

’(0–2) 0.534%

’(2–4) 0.393%

’(4–6) 0.239%

’(6–8) 0.781%

a 14.67%

These give a maximum pricing error across the three swaptions of �0.3 bp. Full details are
shown in the following worksheets:

. ‘‘Time-dependent H&W (2)’’ (Worksheet 11.71).

. ‘‘Pricing Euro swaption 2x4’’ (Worksheet 11.72).

. ‘‘Pricing Euro swaption 2x6’’ (Worksheet 11.73).

. ‘‘Pricing Euro swaption 4x4’’ (Worksheet 11.74).
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11.5.3 Extensions to BDT and HW models

A wide range of alternative tree and lattice models have been proposed in the literature.14

However, the two models above are by far the most common ones in practical use. The HW
model described above was a normal model, namely changes in rates follow a normal
distribution. It is possible for rates therefore to go negative; the author has used a HW
model to price a zero-strike interest rate floor, and got a positive value! It is feasible to
modify the algorithm to become log-normal by using rt ¼ expfxtg where xt follows the
normal process. By modifying the initial expectation and variance equations, Black
market data may be used to build the model. We now have a trinomial, mean-reverting
log-normal process. This version is often referred to as a Black–Karasinski model,15 as it
may also be regarded as an extension to the binomial BDT model. Another way of
implementing this model is to use BDT, but with varying time steps as the additional
parameter. Of course, the resulting models cannot be solved analytically, but only
iteratively as BDT.
Another problem with the HW model is that the mean reversion parameter can end up

negative, resulting in mean diversion. This usually arises when calibrating to a humped
Black volatility curve—as often found in practice and described in Chapter 10—as the
short end has rising volatility. Constraining this parameter to be positive results in a
downward-sloping volatility curve with no hump, thus being unable to fit to the market
data. HW tried to overcome this problem by introducing a two-factor model. All the
numerical models discussed so far in this chapter are one-factor models, evolving a short
interest rate through time, and hoping it will fit to the market data. Implicitly, we are
assuming that the observed rates forming the interest rate curve will evolve through time by
parallel shifts, i.e. the rates will exhibit perfect correlations. For many structures, this is a
perfectly adequate assumption, but for others such as steepener products this is unrealistic.
Two-factor models are usually expressed in two different ways:

. rt ¼ � : xt þ � : yt where xt and yt are subject to their own random processes:

dxt ¼ �xðx; tÞ : dtþ �xðx; tÞ : dzxðtÞ
dyt ¼ �yðy; tÞ : dtþ �yðy; tÞ : dzyðtÞ

where dzxðtÞ : dzyðtÞ ¼ � dt;
. the short rate has the usual generating process:

drt ¼ �rðr; tÞ : dtþ �rðr; tÞ : dzrðtÞ
but the drift or stochastic term is also subject to its own generating process, again with a
correlation between them. For example, HW introduced their two-factor model16 as:

dr ¼ ½�ðtÞ þ x� �ðtÞ : rðtÞ� : dtþ ’ðtÞ : dz1
dx ¼ �b : x : dtþ � : dz2 with dz1 : dz2 ¼ � : dt

The two ways are however economically equivalent.
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Section 3.5 in Brigo, ibid., for a detailed discussion on the construction of the BK tree.
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pp. 37–48, Winter, 1994.



HW construct a two-dimensional ðr; xÞ tree which is trinomial in both dimensions. If the
correlation is assumed to be zero for the moment, then it is feasible to write down
expectations and variances for r and x at time tþ dt given knowledge of rðtÞ and xðtÞ.
For example, if the current node at time t is ði; jÞ, which means location at the point
ði : dr; j : dxÞ, then:

Er
i; j ¼ Efrðtþ dtÞ j rðtÞ ¼ i : dr; xðtÞ ¼ j : dxg

Vr
i; j ¼ Variancefrðtþ dtÞ j rðtÞ ¼ i : dr;xðtÞ ¼ j : dxg, etc.

Assume the possible nodes at time tþ dt reachable from ði; jÞ are:

fkþ 1; hþ 1g; fkþ 1; hg; fkþ 1; h� 1g; fk; hþ 1g; fk; hg;
fk; h� 1g; fk� 1; hþ 1g; fk� 1; hg; fk� 1; h� 1g

where k and h are selected so that

k : dr 
 Er
i; j and h : dx 
 Ex

i; j

As it is assumed there are nine reachable nodes, this implies there are nine probabilities
�uu; �um, etc. at each step. Because of the assumption of independence, these probabilities
are simply the product of the marginal probabilities, e.g. �uu ¼ pur : p

u
x, etc. DefineP0 as the

3� 3 matrix of these ‘‘zero-correlation’’ probabilities.
The final step is to perturb the entries in P0 so that the correlation (strictly, conditional

covariance) � between rðtþ dtÞ and xðtþ dtÞ may be approximated. We can write the
following expression:

driþ1 : dxjþ1f��ud � þ �uu� þ �dd � � �du�g=Vr
i :V

x
j

where �ud � ¼ �ud þ "ud , etc. As drðtÞ2 ¼ 3’ðtÞ2 : dt where ’ðtÞ ¼ Vr
i , this simplifies as

dt ! 0 to:

�"ud þ "uu þ "dd � "du ¼ �=3

The marginal probabilities must still be maintained, which means that the sum of the shifts
in each row and column must be zero. Under these conditions, the shifts can be explicitly
computed:

P� ¼ P0 þ ð�=36Þ �
�1 �4 5

�4 8 �4

5 �4 �1

0
BB@

1
CCA for � > 0

and

P� ¼ P0 � ð�=36Þ �
5 �4 �1

�4 8 �4

�1 �4 5

0
BB@

1
CCA for � < 0
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Unfortunately, this approach can result in negative entries inP�, so that the correlation on
that node may have to be modified.
It is also feasible to develop two-factor binomial models; for example, see Brigo17 for a

normal model, and Peterson18 for a two-factor Black–Karasinski log-normal model.
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OBJECTIVE

Traditional risk management, often called ‘‘desktop’’ risk management, for derivatives has
developed significantly over the past 20 years. This chapter discusses two main types of
interest rate risk management. First, gridpoint risk management, which assumes that all the
rates in a term structure behave independently. It describes different interest representa-
tions, i.e. market, forward and zero-coupon rates, and shows how different risk reports,
sensitivities and equivalences, may be constructed for each of these.

Second, it looks at yield curve risk management, which assumes that rates move
according to some pattern. This is discussed only in the context of market rates following
after an analysis of curve movements in Section 12.12 (Appendix). Simple delta and delta–
gamma hedging against parallel shifts are introduced, followed by the concepts of other
shifts such as rotations. Swap futures are introduced as a potential hedging instrument
instead of bonds. Theta risk, i.e. the risk of losses simply through the passage of time, is
then briefly discussed.

The risk management of CCS portfolios is not discussed as the sensitivities can be broken
up into two IR risks and a spot FX risk. Typically these risks are then transferred into the
relevant IR and FX portfolios for the reporting and management of risk.

Finally the risk management of IR option portfolios and of inflation swaps are briefly
considered. For IR options, their Greeks are explored, concentrating particularly on long-
term options where the Greeks are less intuitive, and also how they change through time.
The section also shows how to construct robust hedges using different mathematical
programming formulations. For inflation swaps, a delta inflation hedge equivalent is
constructed based upon the market data and swaps discussed in Chapter 7, and its
effectiveness examined by simulation.

12.1 INTRODUCTION

The focus of risk management within banks has shifted over the past 30 years. When
transactions were on-balance sheet and actually involved principal flows, the main concern
was credit risk, i.e. will I get my money back? Market risk was deemed to be far less
important and was often confined to interest rate risk arising from the funding of the bank,
namely in the ALM area. Here techniques such as gap analysis, namely identifying future
periods of time during which the bank would be net lender or net borrower, were popular.
With the explosive growth in off-balance sheet activities during the 1980s which only
involved notional principals, market risk increased in significance. Gap techniques became
discredited at the same time because of their inability to handle complex structures and
particularly options. So a whole new edifice of risk techniques have been developed during
the 1980s and 1990s to manage the market risk of structured portfolios. This chapter will

12

Traditional Market Risk Management



concentrate on the methods developed in the 1980s and which are still very widely used.
They have however been superseded by newer techniques which are the topics of
Chapter 13.
At the inception of any transaction, both sides are deemed to be valued equally. For a

swap, the fundamental concept in pricing is that the value of the cashflows to be received
equals the value of the cashflows to be paid. For an option, its (theoretical) price is the
expected discounted value of future payoffs. But as time passes, market rates move and one
party gains in value to the detriment of the other party. The objectives of this chapter are
to:

. analyse how changing interest and exchange rates effect the valuation of swap portfolios;

. construct hedging or equivalent portfolios.

Before we start, it is probably worth reviewing just what we mean by risk in this context.
For a company, risk is often synonymous with uncertainty. Hence a floating cashflow is a
risky cashflow, which is why companies frequently want to swap from floating to fixed. It is
not taking a view on the future direction of rates, but removing the uncertainty. Banks on
the other hand very often fund themselves at floating rates, so from their perspective a
floating cashflow that is received and passed on constitutes no market risk. Recall that this
was the intuitive argument underpinning the zero valuation of the floating side, including
the notional principal amounts, of a generic swap. Banks, on the other hand, invariably
mark their trading books to market, so for them risk is any event that will cause a change in
the present value. If we crudely characterise the valuation process as:

PV ¼
X

t

CFt �DFt

then there are two sources of risk, namely changes in future cashflows and changes in
discounting. These are frequently referred to as delta-0 and delta-1 risk, respectively.
In this chapter, we will investigate how derivatives respond to various types of changes in

rates, and how we might manage those exposures. We will initially concentrate on interest
rate swaps, and then briefly cross-currency swaps. Finally we will consider various
strategies to hedge option portfolios.
First, consider the single IR swap shown in the box below:

Today’s date: 4 February 2008

Swap details:
Principal: USD10m
Start date: 15-Nov-05
Fixed rate: 3.725% ANN to receive
Floating: 3mo. Libor to pay
Last fixing date: 15-Nov-07
Last fixing: 3.2500%

This swap may be represented as a stream of cashflows, as shown below. The first cashflow
on the floating side is of course known, but the remaining Libor values are currently
unfixed. Replacing these Libors with the notional principals allows us to represent the
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swap as a single cashflow ladder (see Worksheet 12.2):

Pay side Receive side Net

cashflow cashflow cash

(USDm) (USDm) ladder

6-Feb-08
15-Feb-08 �0.0831 �10.0831
15-May-08 �L
15-Aug-08 �L
17-Nov-08 �L 0.3808 0.3808
16-Feb-09 �L
15-May-09 �L
17-Aug-09 �L
16-Nov-09 �L 0.3766 0.3766
15-Feb-10 �L
17-May-10 �L
16-Aug-10 �L
15-Nov-10 �L 0.3766 10.3766

We could of course have represented the swap using implied forwards instead, and the
overall risk management results would be identical. But there is a good practical reason for
using the notional principal representation. As interest rates move around on the 4th
February, the above cashflows do not change. Indeed the only time they change is when
one rolls off and there is a new fixing, i.e. every 3 months. In contrast, the implied method
would have the cashflows changing whenever the rates change, which simply means a lot
more work for no particular reward. However, this principal representation will only
provide total risk, and will not break the risk up into delta-0 and delta-1.

We can obviously represent a range of other linear instruments such as FRAs, fixed or
floating loans and deposits, bonds and FRNs, in a similar fashion. Futures present a small
problem as they margin daily. We know that the tick value of a single eurodollar contract is
$25 per bp, paid each day. If this were to be paid at the end of the forward rate T , then it
would be worth $25/DFT . Therefore a $1m futures contract may be regarded as equivalent
to $(1/DFT ) million of a FRA. For short-dated futures, the adjustment is relatively small
and frequently ignored, but it may be very significant for longer dated transaction as we
saw in Chapter 2 hedging a money market swap with a futures strip. Similar adjustments
should be made to incorporate bond futures.

It would be extremely convenient if options, especially interest rate options such as caps,
floors and swaptions, could be represented in a similar fashion. The Black price for a cap is:

C ¼ P �DFT � ½T � t� � fF ‘t;TÞ �Nðd1Þ � K �Nðd2Þg
using the same notation as in Chapter 10. If we substitute for the forward rate Fðt;TÞ using
the usual formula and rearrange:

C ¼ fP �Nðd1Þg �DFt � fP � ½Nðd1Þ þNðd2Þ � ðT � tÞ � K �g �DFT

It is now in the desired form of two (variable) cashflows at time t and T , and may be entered
into a cash ladder. If we also assume that Nðd1Þ ¼ Nðd2Þ ¼ NðdÞ, which is patently not
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correct but approximately true, then the expression re-arranges to:

C ¼ NðdÞ � fþP �DF1 � P � ½1þ ðT � tÞ � K � �DFTg
The cashflows themselves in f g are exactly the same as from a simple FRA, as shown in
the diagram below.

t T 

P * [  + K * (T t)] +P 

Therefore C ¼ NðdÞ � {PV of the FRA} where NðdÞ is (approximately) the probability of
exercise. If for example the option is heavily OTM, then NðdÞ is close to zero, the option
carries little interest rate risk and would not appear in the cash ladder.
Thus, for first-order interest rate risk management purposes, we can represent virtually

all instruments in the same framework, namely as a stream of fixed or varying cashflows
discounted back.
For illustrative purposes, we will use a small USD swap portfolio represented in this

fashion throughout the chapter (see Worksheet 12.3). A small set of market data have been
selected, comprising cash rates at the short end, and then swap rates. Interest rate futures
could have been easily included as well. Note that it was assumed that the 6, 8 and 9-year
swap rates were assumed missing (i.e. less liquid), and hence had to estimated by inter-
polation. A discount curve was implied from these data, and the portfolio valued as shown
in Worksheet 12.4: it is currently worth �$8,600,134. Note again, of course, that this
requires some further interpolation to get DFs on the correct cashflow dates.

12.2 INTEREST RATE RISK MANAGEMENT

Before we can proceed with looking at some interest rate risk management techniques with
this portfolio, we have two decisions to make. First, what form of interest rates shall we
use? There are three common choices: market rates, forward rates and zero-coupon rates.
Each has advantages and disadvantages:

Market rates: Observable but not comparable because of differing tenors.
Forwards rates: Not observable except at the short end from the futures

market, but may be constructed to be of the same tenor.
Zero-coupon rates: Neither observable nor comparable, but most finance theor-

ists use them as they (especially continuously compounded
zeros) are easy to manipulate mathematically.

Zeros were most popular when the theory of these newer risk techniques was being
developed, and a few of the older risk systems still use them. However, it is much more
common to use the market rate, probably because of the rise of the independent risk
manager who wishes to ensure that all inputs are capable of being checked at arm’s length.
We shall in fact analyse the portfolio using all three forms.
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Second, interest rates possess a term structure. What do we assume about this structure,
and how it behaves? We can imagine a continuum:

Gridpoint Curve Value at Risk

Imperfect

correlation 

Completely 

independent, 

zero 

correlation 

Completely 

dependent, 

perfect 

correlation

ranging from zero-correlation with all rates moving independently along the curve through
to perfect correlation when the curve moves in some form of pattern. This latter does not
necessarily imply perfect positive correlation, i.e. all rates must move in a parallel shift, but
would include movements such as rotations, where rates on one side of the pivot would
be perfectly negatively correlated with the rates on the other side. We will first of all look
at gridpoint hedging, then at curve hedging, and the next chapter considers imperfect
hedging under the general Value-at-Risk topic.

12.3 GRIDPOINT RISK MANAGEMENT—MARKET RATES

If a market rate shifts, then the DFs will change, and the value is likely to change as well.
We can easily produce a market rate sensitivity report by taking each market rate in turn,
shifting it by a predefined amount and recording the resulting change in value:

Market rate sensitivity report

Market rates Change in value ($)

3mo. cash �1,461.51
6mo. cash 158.35

12mo. cash �20.82
2 yr swap �2,038.12
3 yr swap �13,964.86
4 yr swap �23,341.32
5 yr swap �23,920.42
7 yr swap 57,281.30

10 yr swap 10,544.93

(based upon a 1 bp increase in each rate)

Such a report is often referred to as a PVBP (present value of a basis point) or a PV01
report (see Worksheet 12.5 for details). These sensitivities may either be calculated by
perturbation or analytically.

Most modern systems use perturbation, namely start with the first rate, change it by a
predefined amount (usually 1 bp), re-calculate the DFs, re-value the portfolio, and record
the change in the value. Move the rate back to its original level, and move onto the next
rate. This is often referred to as ‘‘blipping’’ or ‘‘bumping’’ a curve. Analytic methods
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represent the value of a swap (portfolio) as a function of the original market rates, and
then differentiate this function with respect to each rate in turn. Obviously analytic
methods are very fast once they have been implemented. But they are also considerably
more difficult to set up, especially because of the inevitable presence of interpolation, and to
maintain if there are any changes in the curve construction methodology.1 To speed up a
perturbation method, modern systems make extensive use of caching, namely the storing of
intermediary results, and ultimately would simply throw more computing power into the
fray.
We can see that if the long end of the curve moved up, the portfolio gains in value; a

move up in the medium term however would result in a loss. Summing the sensitivities gives
$3,237.53. Strictly speaking, this is not quite correct as it ignores second-order effects but it
is frequently done, and provides a good estimate of the change in value if the entire curve
underwent a parallel movement of 1 bp—we will check the accuracy of this value in
Secction 12.7.

12.4 EQUIVALENT PORTFOLIOS

The sensitivity report is expressed in terms of money for a predefined movement. However,
an alternative way of expressing these exposures is by creating an equivalence report. This
takes a set of generic instruments, one per gridpoint, and constructs a portfolio that has
exactly the same sensitivity as the original portfolio. This has two advantages, first it
enables the trader to identify what transactions need to be done to reduce the exposures,
and second equivalence reports are additive across systems. We will come back to this
second point at the end of Sections 12.5 and 12.6.
Consider a 5-year generic swap: the current rate is 3.505% and it obviously has a

zero-value as shown below.

Example of a 5-year generic swap

Generic rate 3.505%

DFs Cashflows

6-Feb-08 1 �100
6-Feb-09 1.017 0.971397 3.5634
8-Feb-10 1.019 0.945458 3.5732
7-Feb-11 1.011 0.912764 3.5439
6-Feb-12 1.011 0.876830 3.5439
6-Feb-13 1.017 0.838308 103.5634

PV¼ 0.0000
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Suppose the 3-year swap rate increases by 1 bp; the curve is re-bootstrapped, and the swap
re-valued. The DFs from the 3-year point onwards change, but the value of the 5-year
swap remains zero! This often seems counterintuitive at first glance but makes perfect
sense: as the 5-year rate has not changed, a 5-year generic swap must retain its zero-value
irrespective of what else the swap curve is doing. Notice also something else; when the 3-
year rate rises, the 3-year DF reduces as expected, but the subsequent DFs rise! Again,
often unexpected until you examine the bootstrapping formula; then it becomes very
obvious; their results are all demonstrated in Worksheet 12.6.

Example of a 5-year generic swap—changing the 3-year swap rate

Generic rate 3.505%

Rates DFs Cash- Shift in New New DFs Change

flows rates rates in DFs

(%) (%)

6-Feb-08 1 100 1
6-Feb-09 1.017 2.89625 0.971397 3.5634 2.89625 0.971397
8-Feb-10 1.019 2.795 0.945458 3.5732 2.795 0.945458
7-Feb-11 1.011 3.035 0.912764 3.5439 1 3.045 0.912485 �0.0002788
6-Feb-11 1.011 3.275 0.876830 3.5439 3.275 0.876839 0.0000089
6-Feb-13 1.017 3.505 0.838308 103.5634 3.505 0.838317 0.0000092

PV¼ 0.0000 0.0000

The generic swap is in fact only sensitive to changes in its own rate—they are said to be
‘‘orthogonal’’. For a 1 bp increase in the 5-year rate, a $100m receiver’s swap loses $46,127
in value. From above, the portfolio lost $23,920 when the 5-year rate increased by 1 bp.
Therefore this portfolio sensitivity must be equivalent to 23,920/(46,127/100)¼ 51.86m of
the 5-year swap to receive fixed.

Example of a 5-year generic swap—changing the 5-year swap rate

Generic rate 7.135%

Rates DFs Cash- Shift New New

flows in rates rates DFs

(%) (%)

6-Feb-08 1 �100 1
6-Feb-09 1.017 2.89625 0.971397 3.5634 2.89625 0.971397
8-Feb-10 1.019 2.795 0.945458 3.5732 2.795 0.945458
7-Feb-11 1.011 3.035 0.912764 3.5439 3.035 0.912764
6-Feb-12 1.011 3.275 0.876830 3.5439 3.275 0.876830
6-Feb-13 1.017 3.505 0.838308 103.5634 1 3.515 0.837862

PV¼ 0.0000 (46,127.34)
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It is therefore straightforward to construct an equivalence portfolio of the nine market
instruments that would have the same first-order sensitivity as the original swap
portfolio.2

Constructing an equivalent portfolio

Portfolio Generic Equivalence

instruments m USD

3mo. cash �1,461.51 �2,480.44 58.92 to receive
6mo. cash 158.35 �4,977.36 3.18 to pay

12mo. cash �20.82 �9,874.89 0.21 to receive
2 yr swap �2,038.12 �19,512.35 10.45 to receive
3 yr swap �13,964.86 �28,740.52 48.59 to receive
4 yr swap �23,341.32 �37,605.39 62.07 to receive
5 yr swap �23,920.42 �46,127.34 51.86 to receive
7 yr swap 57,281.30 �61,929.38 92.49 to pay

10 yr swap 10,544.93 �82,764.17 12.74 to pay

To repeat, the advantage of equivalence reports is that they imply not just the size of the
sensitivity, but also how a trader may react to manage the sensitivity.

12.5 GRIDPOINT RISK MANAGEMENT—FORWARD RATES

We will now repeat the analysis, but this time using 3-monthly forward rates as the
underlying factors. The first step is to build the forward curve: see column [1] of Box 1
in Worksheet 12.7. If a shift on a forward rate is imposed in column [2], then the new
forward curve and new DFs are calculated in columns [3] and [4].
We can now calculate the sensitivity of the portfolio and each of the generic instruments

to shifts in each of the forward rates, as shown below. Unlike the market rates, the generic
instruments are sensitive to all forward rates within their maturity range. This is because a
blip in a forward rate Fðt;TÞ is (approximately) equivalent to a parallel shift in all market
rates with maturity equal to or greater than t. The results are shown in Box 4 of the
worksheet.
This gives sensitivities with respect to each forward rate. However, there are of course a

large number of forward rates—40 over a 10-year period. So it is very common to combine
the sensitivities into time buckets. The buckets are (fairly arbitrarily) chosen to be the
differences in the tenors of each neighbouring pair of market rates. Estimation of the total
sensitivity in each bucket was done quite crudely by simply summing the sensitivities with
respect to the forward rates in each bucket. This is not theoretically correct as one should
generate the actual forward rates of the differing tenors, but the error will be very small.
The effect of defining the buckets in this fashion means that the matrix of generic
sensitivities is square and upper-triangular, as shown below.

280 Swaps and Other Derivatives

2 See columns AK to AO of Worksheet 12.6, which demonstrates the calculation of the sensitivity of each market instrument.



Table 12.3 Bucketed forward rate sensitivities

Bucket Port- 3mo. 6mo. 12mo. 2 yr 3 yr 4 yr 5 yr 7 yr 10 yr

folio cash cash cash swap swap swap swap swap swap

3mo. �3,101 �2,480 �2,480 �2,480 �2,480 �2,480 �2,480 �2,480 �2,480 �2,480
3mo. �1,677 �2,536 �2,536 �2,536 �2,536 �2,536 �2,536 �2,536 �2,536
6mo. �3,518 �5,077 �5,077 �5,077 �5,077 �5,077 �5,077 �5,077
1 yr �6,842 �9,846 �9,822 �9,798 �9,775 �9,737 �9,699
1 yr �5,664 �9,429 �9,382 �9,337 �9,262 �9,188
1 yr �1,105 �9,068 �9,001 �8,892 �8,783
1 yr 4,371 �8,728 �8,584 �8,440
2 yr 16,826 �16,123 �15,741
3 yr 3,575 �21,182

The sensitivity report for the portfolio, given on the left-hand-side of the table, is quite
different from the market rate sensitivity report. But this is only to be expected as the
imposed shifts in the rates are completely different. Shifting a single forward rate moves all
the DFs after its fixing date, which is approximately equivalent to a parallel shift in the
market curve after this date. Compare that with shifting a single market rate, which would
appear as a spike on the market curve. Sensitivity reports using different representations of
interest rates cannot really be compared, even intuitively. However, the total change in
value, calculated by adding the sensitivities as before, is $2,864.75 which is very similar
to the number for market rates. This suggests that a parallel shift in market rates is
approximately equivalent to a parallel shift in forward rates.
We can calculate another equivalent portfolio. However, its calculation is not as
straightforward as before because the generic instruments are not orthogonal, and we
have to use a technique known as ‘‘reverse bootstrapping’’ or ‘‘pyramiding’’. Starting with
the generic instrument of longest maturity, we would require:

3,575/(�21,182/100)¼ �16.88m of a 10-year swap to pay fixed

as the equivalence over the final bucket. (Note: The negative sign on the principal has
been retained.) Working back, both the 7 and 10-year swaps have sensitivities over the 5 to
7-year bucket, hence we have to adjust the sensitivity of the portfolio to account for the
amount of the 7-year swap already done:

Net sensitivity¼ 16,826� [(�16.88) � (�15,741/100)]¼ 14,169.62

and then calculate the residual equivalence:

14,169.62/(�16,123/100)¼ �87.88m of a 7-year swap to pay fixed

The process is then repeated, working backwards.
Alternatively, if A is the (square) matrix of generic sensitivities, and SP the vector of

portfolio sensitivities, then the equivalence portfolio is given simply by 100 :A�1 :SP. This
approach can also be used if the selected buckets do not give rise to an upper-triangular
structure.
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Using forward rate sensitivity to construct an equivalent portfolio

Equivalence (USDm)

3mo. cash 58.92 to receive
6mo. cash 3.19 to pay

12mo. cash 0.23 to receive
2 yr swap 10.15 to receive
3 yr swap 48.58 to receive
4 yr swap 62.43 to receive
5 yr swap 52.67 to receive
7 yr swap 87.88 to pay

10 yr swap 16.88 to pay

Whilst the sensitivity reports were very different, the equivalence reports, as one would
expect, are much more similar. They are not identical because they are calculated under
structures of different shifts. In extremis, equivalence reports can be combined from
different portfolios to produce an overall risk report.

12.6 GRIDPOINT RISK MANAGEMENT—

ZERO-COUPON RATES

Finally, and briefly, we will analyse the portfolio using zero-coupon rates. We will use
continuously compounded rates as this form is extremely popular; i.e. DFt ¼ expf�zt; tg.
As alluded to above, this form of zeros is probably used because the function is easy to
differentiate, and therefore makes analytic calculations simpler.
In exactly the same way as before, we calculate the zero-coupon rates, shift them, re-

calculate the discount curve and re-value both the portfolio and the generic instruments
(see Boxes 1 and 2 of Worksheet 12.8). One point to be careful about: we are using 6, 8 and
9-year zero rates because, if we did not, we could not exactly replicate the original discount
curve and hence we would find that the portfolio would have a slightly different value
before any rate shift (see Box 1 of Worksheet 12.8).
As one would expect, zero-coupon sensitivities are much closer to market rate

sensitivities than those of forward rates. This is because the first two are both comparable
spot rates, and very different from forward rates.
As before, the rates are not orthogonal, so we have to use reverse bootstrapping.

However, we have to decide what to do about the sensitivities from the 6, 8 and 9-year
zero rates, because the matrix of sensitivities in Box 2 of Worksheet 12.8 is not square. For
example, we could simply add together the 6-year and 7-year sensitivities as we did before.
In the case of forward rates this made practical sense as the result would have been
(approximately) the sensitivity due to a single 2-year forward rate from 5 to 7 years.
But, in this case, it is probably better to use a mapping technique. There are a wide variety
of such methods, but the one described below is probably the most popular.
Generalising the problem, we have a sensitivity ST due to a rate of maturity T which we

wish to allocate onto the gridpoints t and t 0 where t � T < t0 in such a way that we wish to
preserve some desirable properties. From the definition of DFT above, we can write
PVT ¼ CFT � expf�zT :Tg for some cashflow CFT . The sensitivity ST of this value with
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respect to zT is simply PVT :T . Let us assume we wish to estimate St and St0 so that both
the total value and total sensitivity is preserved; that is:

St þ St0 ¼ ST and PVt þ PVt0 ¼ PVT

Substituting PVT ¼ ST=T , etc. we can solve for St and St0 ; that is:

St ¼ ST � ½ðt 0 � TÞ=T �=½ðt 0 � tÞ=t� and St0 ¼ ST � ½ðT � tÞ=T �=½ðt0 � tÞ=t0�
Thus, we can allocate the 6-year sensitivity of the portfolio to the 5 and 7- year gridpoints,
as shown in the box below. We now have sensitivities for our nine market instruments as
shown in Box 2. These sensitivities are similar to market rate, which is hardly surprising as
they are both spot rates. The equivalent portfolio can now be calculated using reverse
bootstrapping again.

Mapping the 6-year sensitivity

Portfolio Mapped

Time Weights sensitivity sensitivity

5 yr point 5.075 0.417 2,833.81
6 yr point 6.089 6,799.90
7 yr point 7.103 0.583 3,966.09

Sum 1

See Box 2 of Worksheet 12.8:

Table 12.6 Using zero-coupon rate sensitivity to construct an equivalent portfolio

Equivalence (USDm)

3mo. cash 58.92 to receive
6mo. cash 3.18 to pay

12mo. cash 0.22 to receive
2 yr swap 10.45 to receive
3 yr swap 48.59 to receive
4 yr swap 62.07 to receive
5 yr swap 52.85 to receive
7 yr swap 88.67 to pay

10yr swap 16.22 to pay

In summary, the equivalence portfolios are all very similar, despite the fact that the
sensitivity reports are very different. They will not be identical because the movements
imposed on each of the three curves are not the same when translated into a common
framework. But the similarity is reassuring; a portfolio should be effectively hedged in a
similar fashion irrespective of how the sensitivity is calculated (see Worksheet 12.9).
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12.7 YIELD CURVE RISK MANAGEMENT

Gridpoint risk management assumed that all interest rates were uncorrelated. The other
extreme is to assume that the curve moves according to some structure. However, before we
make this assumption, it is probably worthwhile to look at some historical evidence. The
graph below shows the correlation between changes in the 5-year rate with the other points
along a USD swap curve, represented in the three different ways:

. the correlation between the changes in the 5-year market rate and changes in other
market rates is consistently high, except for the cash market;

. the correlation between the 5-year zero-coupon rate and the other zero rates is still very
high, albeit not quite as high as for market rates;

. the correlation between 12-month forward rates is extremely low, except between the 5/6
and 6/7 rates.

Correlation with 5 year point along a USD curve

Daily data: 988 to 993 
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The results might be intuitively expected as both market and zero-rate are spot rates,
and hence possess considerably overlap, unlike forward rates. Indeed forward rate corre-
lation matrices typically possess a sharp ‘‘ridge’’ structure, i.e. high correlation along the
principal diagonal but dropping off rapidly—almost negatively exponentially—on either
side.3

Similar results have been observed over other periods of time and with a range of
different currencies. Section 12.12 (Appendix) describes some further analysis, including
the use of principal components. The implication of this analysis is that yield curve risk
management is most sensibly restricted to market rates and possibly zero rates, but should
not be applied to forward rates. We will only consider market rates in this context.
Let us first assume that the market curve undergoes a parallel shift; i.e. if the curve is

represented by the rate r, then it changes by Dr. If the current value of the portfolio is V ,
then its new value after the rate shift is given approximately by Taylor’s theorem
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(expansion, series, . . .):

Vðrþ DrÞ 
 VðrÞ þ Dr � ð@V=@rÞ þ 1
2
� Dr2 � ð@ 2V=@r2Þ þ � � �

where ð@V=@rÞ is the delta sensitivity of the portfolio; and
ð@ 2V=@r2Þ is the gamma (in the swap context, often called convexity of curvature) of

the portfolio.

If Dr is measured in basis points, then ð@V=@rÞ is the PVBP of the portfolio estimated by
shifting the entire curve up by a basis point: from Worksheet 12.10, PVBP¼ $3,228.89.4

Strictly, this measures the delta at (rþ 1
2
bp), so to calculate it more precisely, we should

estimate the average by:

Delta-up: 3,228.89 (as before)
Delta-down: 3,251.90 (calculated by 1 bp shift downwards)
Average delta: 3,240.39

We can use the same results to estimate the gamma. This is defined as the change in the
delta for a shift in the rate: i.e. (Delta-up�Delta-down)¼ �23.01 per bp as the distance
between the mid-points of delta-up and delta-down is only 1 bp.

As an example, suppose the entire curve shifts by �100 bp; the actual change in value is
�$444,376. Using the first-order approximation:

(�100) � 3,240.39¼ �$324,039, an error of some 27%

Using the second-order terms as well

�324,039þ 1
2
� (�100)2 ��23.01¼ �$439,114, an error of only 1.18%

Taylor’s theorem lies at the heart of all risk management as it permits estimation of the
change in the value of an instrument/portfolio for given changes in its underlying param-
eters. Suppose, for example, we wish to hedge this portfolio with two bonds B1 and B2. We
create a super portfolio SP¼ fV þ n1 � B1 þ n2 � B2g where n1 and n2 are the amounts of
the bond we wish to buy or sell. We can write:

DSP 
 Dr � fð@V=@rÞ þ n1 � ð@B1=@rÞ þ n2 � ð@B2=@rÞg
þ 1

2
ðDrÞ2 � fð@ 2V=@r2Þ þ n1 � ð@ 2B1=@r

2Þ þ n2 � ð@ 2B2=@r
2Þg

Define an effective hedge so that DSP ¼ 0 for any movement in r. Ignoring for the
moment the gamma terms, the only way we can set DSP ¼ 0 for any Dr is by setting:

fð@V=@rÞ þ n1 � ð@B1=@rÞ þ n2 � ð@B2=@rÞg ¼ 0

If we arbitrarily set n2 ¼ 0, then

n1 ¼ �ð@V=@rÞ=ð@B1=@rÞ
gives the amount of B1 required to delta-hedge the portfolio. We have of course used
precisely this expression earlier to estimate the equivalences.

Traditional Market Risk Management 285

4 Compare this number with $3,237.53 calculated earlier by shifting each of the market rates in turn, and then summing the
sensitivities. The error involved in the latter is negligible.



286 Swaps and Other Derivatives

Turning to the actual portfolio, we are going to hedge this with a T-bond as follows:

Maturity: 15-January-2013
Coupon: 2.875% sa
Dirty price: 100.4609 Act/Act

In practice, such a bond would be valued off the bond curve. We want it to hedge a swap
portfolio, and hence we have introduced some basis risk, namely that the swap spread may
change. This is quite common; hedging seldom eliminates risk, but as in this case it merely
substitutes basis risk for absolute level risk. We then need to make a judgement about
which form of risk is smaller. So, for risk management purposes, we are going to assume
that the spread remains constant. In that case it matters very little whether the bond is
valued off the bond curve or the swap (equals bond plus spread) curve as we are only
interested in the change in value: for convenience, therefore, we will value everything off the
swap curve. We calculate the average deltas for the portfolio and the bond, and hence the
hedge ratio as above (see Worksheet 12.11).

Delta ($)

Portfolio: 3,240.39
Bond: �44,454.52 per 100m nominal

Hedge ratio: 7.29m to buy

The effectiveness of this delta hedge may be measured by creating

SP ¼ fV þ 7:29m � B1g
and measuring its change in value as r changes. For example, Worksheet 12.11 shows that if
the curve shifts up by 100 bp, SP loses $101,005 in value. For large changes up or down, the
negative gamma from the portfolio appears to dominate, and losses would be made.
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To remove this effect as well, returning back to the SP, we need to set both delta and
gamma terms to zero; that is:

ð@V=@rÞ þ n1 � ð@B1=@rÞ þ n2 � ð@B2=@rÞ ¼ 0

ð@ 2V=@r2Þ þ n1 � ð@ 2B1=@r
2Þ þ n2 � ð@ 2B2=@r

2Þ ¼ 0

To do this, we need a second T-bond:

Bond 2

Maturity: 15-November-2017
Coupon: 4.25% sa
Dirty price: 104.9531

and to calculate the various sensitivity parameters:

Portfolio Bond 1 Bond 2

Average delta 3,240 �44,455 �80,389
Gamma �23.01 25.58 80.40

See Worksheet 12.12. Notice that the SP gamma from the delta hedge alone is:

�23.01þ 7.29m � (25.58/100)¼ �$21.15 per bp

i.e. the delta hedge hardly reduces the negative gamma of the portfolio. Solving the
delta–gamma equations gives n1 ¼ �104.75m and n2 ¼ 61.96m. We are long the longest
bond, as this will provide most gamma to offset the portfolio, and short the short bond as
this creates the delta hedge. The actual DSP against the 100 bp shift is now only �$1,135
compared with �$101,005 for the delta hedge alone.

The overall improvement in effectiveness is shown below for �500 bp shifts. The residual
is no longer always negative, but changes sign, implying that the third-order term5 in the
Taylor’s expansion is negative.

5 Sometimes called the ‘‘omega’’ or last word in risk management!!



There is no reason why this type of analysis has to be restricted to parallel shifts. As
discussed in Section 12.12 (Appendix), about 10% of the market curve movement can be
attributed to rotational shifts. Define a rotational delta as the change in the value of the
portfolio as the market curve rotates around the 5-year point according to the formula:

Drt ¼ s � ðt� 5Þ bp where we arbitrarily set s ¼ 1

The parallel deltas and gammas, plus the rotational deltas have been calculated for the
portfolio plus three bonds, and then hedge ratios estimated (see Worksheet 12.13).

Bond 1 Bond 2 Bond 3 Portfolio

Average delta �44,455 �80,389 �160,388 3,240
Gamma 25.58 80.40 373.03 �23.01
Average rotation 1,194 �384,554 �3,865,444 231,010
Hedge (USDm) �118.64 72.10 �1.23

All simultaneous {parallelþ rotational} shifts can be described in terms of a parallel shift
plus a rotation around the standardised pivot. Suppose the curve shifts up by 100 bp and
simultaneously rotates by �3 bp around the pivot. The portfolio on its own loses
�$444,656 in value, but the SP only changes by �$7,699.
To test the overall hedge effectiveness, movement in the curve was simulated by (see

Worksheet 12.14):
Drt ¼ s � ðt� PÞ bp

where P is drawn from a uniform distribution between [0; 10] and s from
Nð0; 1:4%=

p
250Þ.6 The resulting hedge effectiveness is shown by the distribution below;

the error is relatively small although demonstrates a negative rotational gamma.
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12.8 BOND AND SWAP FUTURES

Hedging a swap portfolio with bonds appears to work extremely well. However, the
bonds are usually government bonds because of the need for liquidity, and therefore this
style of hedging necessitates the assumption that the bond–swap spread remains constant.
Unfortunately in practice, this spread can be quite volatile and, as we shall see in Chapter
13, the optimal hedge effectiveness can be quite low. Furthermore, using cash bonds for
hedging would involve significant cashflows upfront, to buy or sell the bonds, which would
have funding and balance sheet implications.

There are some alternatives. One alternative would be to hedge with bonds that were
much more in line with the swap curve, but unfortunately such bonds are seldom available
with adequate liquidity. Perhaps the only category that has been a serious contender is
the Pfandbriefe7 bonds issued in Germany, which have traditionally had a very close
correlation to the swap curve.

A second alternative would be to use bond futures, namely contracts on the future
delivery of governmental bonds. Whilst these would still be subject to basis risk, they
would not involve the large upfront cashflows. Both the US and the Eurozone has a range
of bond futures as shown in the table below:

Maturity of bond US Eurozone

2 years 2-year note Schatz
5 years 5-year note Bobl

10 years 10-year note Bund
30 years 30-year long bond Buxl

All the contracts have good liquidity, with the exception of the Buxl, for the next two to
three futures maturity dates.

As an example, consider the US 10-year note. The underlying is a US government
note with a face value of $100,000, and a maturity between 6.5 and 10 years on the first
day of a delivery month. The invoice price is the futures Settlement price �Conversion
factorþAccrued interest. The conversion factor is estimated so that the delivered note
gives a 6% yield-to-maturity. Delivery months are March, June, September and December,
and the last trading date is the 7th business day before the last business date of each
delivery month. The contracts are margined in the usual fashion.

Despite their apparent attractiveness, bond futures are seldom used as hedging instru-
ments. There are a number of reasons for this:

. the restrictive range of maturities;

. the underlying is not a real bond;

. the uncertainty caused by the delivery option.

A third alternative is swap futures, where the underlying is a forward swap, valued off the
relevant swap curve. The swap is standardised, namely with a notional size of 100,000, and
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with a semi-annual fixed rate of 6% against 3mo. floating. A range of maturities are
offered:

. 5, 10 and 30 year on USD are traded at CBOT;

. 2, 5 and 10 year on both USD and euro are traded at Euronext (LIFFE) in London.

The delivery months are, as before, March, June, September and December, with the third
Wednesday being the delivery date. The products are cash-settled, not actually delivered,
and there are the usual margining processes.
Unfortunately, despite the fact that these contracts have been around for some 10 years,

and possess much less basis risk than bonds or bond futures, the volumes are extremely low
on both exchanges. This is in direct contrast to the initial hopes, especially in Europe as the
swap market is considerably more homogeneous than the Eurozone governmental bond
market.

12.9 THETA RISK

So far we have considered the possible losses that might be made if the market moves
against the portfolio, and how these losses may be reduced by hedging. But just suppose
that, as time passes, the market moves solely in accordance to the implied forward rates.
What would be the impact on the value of the portfolio, and of course the hedge?
There are a number of ways that are used to assess this impact. Probably the theoretically

correct approach is as follows. Assume that we have a current forward rate curve
F0 ¼ fF0=
 ;F
=2;F2=3; . . .g. As time passes from t ¼ 0 to t ¼ 
 the first forward rate F0=


falls away, and the new curve is F
 ¼ fF
=2;F2=3; . . .g. Notice that it is still the same forward
rates as before, as they are still our best estimate of the curve, but all starting one period
earlier.

0 T

CFT

If we have a fixed cashflow at time T > 
 , then its initial value is V0 ¼ CFT �DF0;T , and
after the passage of time V
 ¼ CFT �DF
;T . The new discount factor DF
;T is simply
given by DF0;T=DF0;
 , hence V
 ¼ V0=DF0;
 . Therefore the theta of the cashflow is
V
 � V0 ¼ V0 � ð1=DF0;
 � 1Þ over that period of time. Extending this to an entire port-
folio is trivial. A 7-day period is frequently used for estimating theta, but it should vary
depending upon the liquidity of the market.
If the cashflow time T lies between 0 and 
 , then the cashflow would have to be either

deposited (if positive) or borrowed (if negative) from time T until t ¼ 
 . The discounting
process implies that all interest accrues at Libor flat, therefore if the depositing or
borrowing rate is away from Libor, this would incur an additional reward or penalty.
The above approach effectively holds the forward curve constant, and moves the

observer one period up the curve. An alternative popular, but in my view incorrect,
approach is to hold the observer constant and move the curve as shown below:
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0 TT-

CFT CFT

In this case, the new value V
 ¼ CFT �DF0;T�
 ¼ CFT �DF0;T=DFT�
;T ¼ V0=DFT�
;T .
Extending this to an entire portfolio is less straightforward, as the adjustment term is
specific to the timing of each cashflow, but still easy. This approach is analogous to the
theta for options. The box on the next page shows the calculation of a 7-day theta for the
two approaches (see Worksheet 12.15).

Because of the negative monotonicity of the discount function, DF0;
 > DFT�
;T and
therefore the theta from the second approach will always be absolutely greater than the
theta from the first approach. The size of the difference increases with the steepness of the
forward curve

A third approach is to use an accrual concept as in the bond market. Suppose that this
cashflow CFT has been calculated by P � d � r where d is the appropriate length of the
interest period. If d01 is the length of time from t ¼ 0 to t ¼ 1, then V1 ¼ V0 þ CFT � d01=d.
But this method:

. ignores discounting;

. tacitly assumes that the period d started some time before t ¼ 0;

. is difficult to apply to a portfolio of cashflows as it really concentrates only on the most
immediate cashflow;

and is therefore not really appropriate for derivative portfolios.
Related to theta is of course the ‘‘cost-of-carry’’, which is the ongoing cost of funding a

portfolio. It arises because swap portfolios have to make payments, which presumably
would have to be borrowed at some cost, and to receive payments, which are subsequently
invested. Any differences between the implied cost of funds on the swap, and the actual cost
of borrowing/investing, would be reflected in the cost-of-carry. This was briefly discussed in
Section 2.5, in the context of forward valuing. This cost of carry is also affected by hedging.
If a portfolio is hedging by buying or selling a bond, what is the cost of raising the money to
buy the bond or what is the return on the sale proceeds? Theta concentrates on the changes
in value of future cashflows; cost-of-carry concentrates on the costs inherent in actual
realised cashflows. Together, they represent an overall picture of the daily running costs of
a swap portfolio under the assumption that interest rates remain unchanged. From a
management perspective, it is vital that the two are always reported together.

12.10 RISK MANAGEMENT OF IR OPTION PORTFOLIOS

The risk management of swap portfolios has been discussed in some detail in the previous
sections of this chapter. Many of the techniques such as delta and delta–gamma
hedging are equally applicable to options as well, but there are also some additional
complications such as volatility risk. In this section, we will describe some of the practical
problems involved in the hedging of IR option portfolios, and introduce some additional
techniques.
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Swap portfolio Box 1 Box 2

Calculation of Calculation of

Theta-1 Theta-2

USD USD

cashflow DFs cashflow DFs

(USDm) (USDm)

6-Feb-08 1 13-Feb-08 0.999393 6-Feb-08

15-Feb-08 �50.4153 0.999220 8-Feb-08 �50.4153 0.999827

25-Feb-08 �126.0427 0.998353 18-Feb-08 �126.0427 0.998960

13-Mar-08 �75.7109 0.996880 6-Mar-08 �75.7109 0.997486

17-Mar-08 75.7015 0.996533 10-Mar-08 75.7015 0.997140

23-Apr-08 100.8152 0.993326 16-Apr-08 100.8152 0.993932

26-May-08 2.5875 0.990543 19-May-08 2.5875 0.991123

23-Jul-08 �3.9650 0.985741 16-Jul-08 �3.9650 0.986321

17-Sep-08 �2.6116 0.981572 10-Sep-08 �2.6116 0.982074

17-Nov-08 1.9039 0.977201 10-Nov-08 1.9039 0.977703

15-Dec-08 2.5875 0.975195 8-Dec-08 2.5875 0.975696

25-May-09 2.5594 0.963764 18-May-09 2.5594 0.964258

23-Jul-09 �3.9542 0.959594 16-Jul-09 �3.9542 0.960088

17-Sep-09 �2.6044 0.955635 10-Sep-09 �2.6044 0.956130

16-Nov-09 1.8832 0.951395 9-Nov-09 1.8832 0.951889

14-Dec-09 2.5594 0.949416 7-Dec-09 2.5594 0.949910

24-May-10 2.5594 0.936027 17-May-10 2.5594 0.936655

23-Jul-10 �3.9542 0.930638 16-Jul-10 �3.9542 0.931266

17-Sep-10 �2.6044 0.925608 10-Sep-10 �2.6044 0.926237

15-Nov-10 51.8832 0.920309 8-Nov-10 51.8832 0.920937

13-Dec-10 2.5594 0.917794 6-Dec-10 2.5594 0.918422

24-May-11 2.5664 0.902300 17-May-11 2.5664 0.902991

25-Jul-11 �3.9758 0.896179 18-Jul-11 �3.9758 0.896870

19-Sep-11 �2.6187 0.890651 12-Sep-11 �2.6187 0.891342

13-Dec-11 77.5664 0.882260 6-Dec-11 77.5664 0.882951

24-May-12 2.5734 0.865463 17-May-12 2.5734 0.866200

23-Jul-12 �3.9433 0.859148 16-Jul-12 �3.9433 0.859885

17-Sep-12 �2.5973 0.853254 10-Sep-12 �2.5973 0.853990

24-May-13 127.5664 0.826957 17-May-13 127.5664 0.827700

23-Jul-13 �3.9542 0.820592 16-Jul-13 �3.9542 0.821335

17-Sep-13 �77.6044 0.814651 10-Sep-13 �77.6044 0.815394

23-Jul-14 -3.9542 0.781187 16-Jul-14 �3.9542 0.781958

23-Jul-15 �103.9542 0.742347 16-Jul-15 �103.9542 0.743061

PV¼ �8,577,255 PV¼ �8,586,248

Theta¼ �5,207.47 Theta¼ �8,992.91



Consider a single caplet—its price is given by:

C ¼ P �DFT � fFð
;TÞ �Nðd1Þ � K �Nðd2Þg � ðT � 
Þ

The classic formulae for the ‘‘Greeks’’ may be easily calculated. For example, we can
estimate the option delta by differentiating with respect to Fð
;TÞ which gives:

�0 ¼ P �DFT �Nðd1Þ � ðT � 
Þ

Below the delta has been estimated for two options, one short and one long, over a range of
strikes from �50% to þ50% of the prevailing forward rate using the current market data
out of 4 February 2008, as shown in the graph below (see Worksheet 12.18):
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Note that the delta does not range from 0 (for OTM options) through to 1 (for ITM
options) as in the classical B&S formula because of discounting and the tenor terms,
although they appear to be fairly symmetric around ATM. The delta graph for the
short-dated option is that typically found in most books on options. However many IR
options are long-dated, and the behaviour of their deltas is perhaps less intuitive. For
example, the impact of the discount term is much greater in the long option, so that delta
reaches a lower maximum.

Actually, one should be more careful because, under the usual caplet convention of fixing
at the start of the forward period and paying at the end, the discount factor DFT is also a
function of Fð
;TÞ. Writing DFT ¼ DF
=½1þ Fð
;TÞ � ðT � 
Þ� and differentiating we
get:

@DFT=@Fð
;TÞ ¼ QF �DFT where QF ¼ �ðT � 
Þ=½1þ Fð
;TÞ � ðT � 
Þ�

Therefore �1 ¼ QF � C, and total delta is given by:

� ¼ P �DFT �Nðd1Þ � ðT � 
Þ þQF � C
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This additional term, earlier called delta-1, has a very small effect, reducing the delta
typically by less than 1% except for heavily ITM very long-dated options, as shown in
the table below, and is generally ignorable (and will be in the ensuing discussion).

Table 12.7 Delta-0 and total delta for a range of options

ATM Delta-0 Delta-0þ 1 Percentage difference

S-T L-T S-T L-T S-T L-T

option option option option option option

�50% 0.000 0.008 0.000 0.008 0.00% �0.07%

�45% 0.000 0.014 0.000 0.014 0.00% �0.09%

�40% 0.000 0.021 0.000 0.021 0.00% �0.10%

�35% 0.000 0.031 0.000 0.031 0.00% �0.12%

�30% 0.000 0.042 0.000 0.042 0.00% �0.14%

�25% 0.000 0.055 0.000 0.055 0.00% �0.16%

�20% 0.000 0.068 0.000 0.068 0.00% �0.18%

�15% 0.000 0.081 0.000 0.081 �0.01% �0.21%

�10% 0.001 0.094 0.001 0.094 �0.01% �0.23%

�5% 0.024 0.107 0.024 0.107 �0.01% �0.26%

0% 0.126 0.119 0.126 0.119 �0.02% �0.29%

5% 0.222 0.130 0.222 0.130 �0.05% �0.32%

10% 0.246 0.140 0.246 0.140 �0.08% �0.35%

15% 0.248 0.150 0.247 0.149 �0.12% �0.39%

20% 0.248 0.158 0.247 0.157 �0.15% �0.43%

25% 0.248 0.165 0.247 0.164 �0.19% �0.47%

30% 0.248 0.171 0.247 0.170 �0.23% �0.51%

35% 0.248 0.177 0.247 0.176 �0.27% �0.55%

40% 0.248 0.182 0.247 0.181 �0.31% �0.59%

45% 0.248 0.186 0.247 0.185 �0.35% �0.63%

50% 0.248 0.189 0.247 0.188 �0.39% �0.68%

In practice, it is often useful with long-dated options to understand how delta and other
parameters will change through time. This enables the trader to anticipate how the hedge
will have to be re-balanced if rates do not shift, but simply time passes. The following
diagram shows the impact of time on three options; each started out with a maturity of just
over 6.5 years, and the strike was set to be ATM, 75% of ATM and 125% of ATM,
respectively. As time passes, we assume that the implied forward rate does not shift but its
volatility changes according to the forward volatility curve and the discount factor rolls off.
As we can see, at short maturities the deltas are as expected heading to 50%, 100% and 0%,
respectively. However, when the options have long maturities, the deltas are much more
similar. The long-dated heavily OTM option does not have a zero delta, because there is
ample time for the option to move into the money, and therefore requires almost as much
delta hedging as the other options (see Worksheet 12.19).
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The caplet gamma is given by:

�0 ¼ DFT �N 0ðd1Þ � ðT � 
Þ=Fð
;TÞ=ð� :p
Þ where N 0ðxÞ ¼ expf� 1
2
x2g=p2�

This ignores the impact on discounting as being negligible. The result as the options move
from OTM to ITM is shown in the graph below; the left-hand axis refers to the short
option, the right-hand one to the long option. Gamma increases quite significantly over a
short range as the maturity shortens, reflecting of course the increasing steepness in the
delta curve. It is also virtually symmetric around ATM, whereas for long-dated options
gamma is higher for OTM options. This suggests that dynamic delta hedging of long
options is likely to be relatively successful.

4.00

5.00

6.00

50

60

70

80

90

Caplet gamma (scaled by 10,000)

0.00

1.00

2.00

3.00

0

10

20

30

40

50

50% 40% 30% 20% 10% 0% 10% 20% 30% 40% 50%

Percentage away from ATM

4 mo. option

51/2 year option

Traditional Market Risk Management 295



Vega, or sensitivity with respect to forward volatility, is given by:

 ¼ DFT �N 0ðd1Þ � ðT � 
Þ � Fð
;TÞ � p


This is graphed below, again with the left-hand axis referring to the short option, and the
right-hand one to the long one. Changes in volatility, as one might expect, are far more
significant for long-dated options, and slightly higher for OTM options.
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The above discussion has concentrated on the behaviour of a single caplet. This of
course is not terribly useful in practice, and we really should concentrate on the
behaviour of multi-option portfolios. We will therefore use the following small-option
portfolio:

Settlement date 4-Feb-08

Portfolio Option Size Maturity Strike Value

Short Cap 100 7 3.50% �3,821,505
Short Cap 75 10 5.25% �2,089,360
Long Cap 50 5 4.75% 265,506
Long Floor 100 8 4.00% 4,412,025
Long Floor 100 12 3.50% 2,939,061
Short Floor 75 6 3.25% �1,132,546

Total 573,181

The mark-to-market value of the portfolio is $573,181 based upon the current forward
interest rate and volatilities curves (see Worksheet 12.17 for details).
The next step is to estimate the sensitivity of the portfolio to changes in the two

curves. Unlike the above, we are no longer going to consider the individual forward rates
underlying each option, but will work with the two market curves themselves. Each
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forward interest rate and volatility was treated as independent; hence sensitivity vectors are
created as shown in the table below. The gamma vector is simply defined as
(PVBPþ�PVBP�), and the Vega estimated by perturbing each forward volatility by
1 bp upwards.8

Table 12.8 Sensitivities of option portfolio to

gridpoint changes in 3mo. forward rates and

3mo. forward volatilities

PVBP Gamma Vega

1 �12,484 �683.78 �2.00
2 �34,893 �1,249.46 �6.89
3 �32,942 �502.53 �6.05
4 �32,152 �364.68 �5.05
5 �31,909 �493.14 �9.30
6 �32,956 �416.96 �10.74
7 �32,514 �357.30 �10.40
8 �33,169 �362.78 �10.34
9 �31,675 1.21 3.69

10 �32,595 169.74 6.60
11 �32,288 233.66 15.74
12 �30,343 275.83 20.83
13 �28,489 271.31 23.47
14 �29,640 274.75 19.60
15 �28,004 267.52 28.18
16 �27,373 254.98 24.36
17 �26,900 232.53 23.98
18 �26,410 219.70 22.74
19 �26,236 200.90 22.21
20 �31,472 �91.93 �20.42
21 �30,214 �87.34 �22.24
22 �31,073 �75.53 �26.80
23 �31,549 �51.16 �12.61
24 �32,357 1.88 4.05
25 �31,081 �1.03 �2.05
26 �31,858 �0.96 �3.19
27 �18,066 97.12 34.40
28 �14,163 99.92 46.06
29 �11,784 50.75 18.21
30 �10,046 �11.17 �17.85
31 �10,053 �16.20 �18.98
32 �10,278 �24.56 �21.23
33 �9,643 �19.64 �23.61
34 �10,284 �23.00 �23.75
35 �9,945 �23.03 �24.74
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Table 12.8 (cont.)

36 �9,928 �21.71 �26.13
37 �9,911 �22.31 �28.87
38 �4,411 59.72 25.96
39 �1,716 74.18 51.13
40 �1,749 72.03 51.69
41 �1,987 82.61 57.07
42 �2,043 86.73 55.28
43 �1,980 83.40 56.93
44 �1,891 78.92 56.43
45 �1,730 71.21 55.46
46 �1,303 64.55 40.06
47 0 0.00 0.00
48 0 0.00 0.00
49 0 0.00 0.00
50 0 0.00 0.00

It would be feasible to dynamically delta-hedge against shifts in the forward and volatility
curves by creating equivalences and re-balancing, very much as described earlier. However,
we will use the opportunity to hedge the portfolio more robustly, and introduce some
further techniques as follows.
We are going to use a mixture of generic swaps and caps9 as shown below (the equivalent

sensitivity vectors are calculated in Worksheet 12.21):

Generic hedging instruments (nominal principal $1m)

Swap 1 Swap 2 Swap 3

Maturity (years) 3 7 12
Current rate 3.035% 3.885% 4.265% ANN Act/360

Cap 1 Cap 2 Cap 3

Maturity 3 5 10
ATM strike 2.988% 3.477% 4.229% against 3mo. Libor

The strikes were calculated to be ATM forward quarterly swaps.

There are not enough instruments for gridpoint hedging, even if one wanted to, and
full-yield curve hedging seems to introduce too much basis risk. Therefore we will
maturity-band the sensitivity vectors into 0–3 years, 3–7 years and 7þ years as shown
below.
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Option Swap 1 Swap 2 Swap 3 Cap 1 Cap 2 Cap 3

portfolio

IR delta
Band 1: 0–3 years �369,918 �2,934 �2,909 �2,898 1,248 574 79
Band 2: 3–7 years �444,888 0 �3,360 �3,297 0 1,345 1,931
Band 3: 7þ years �110,682 0 0 �2,118 0 0 1,575

IR gamma
Band 1: 0–3 years �3,750 1 1 1 180 92 39
Band 2: 3–7 years 1,613 0 2 2 0 41 83
Band 3: 7þ years 562 0 0 1 0 0 28

IR vega
Band 1: 0–3 years �14 0 0 0 3 3 2
Band 2: 3–7 years 162 0 0 0 0 4 12
Band 3: 7þ years 283 0 0 0 0 0 10

Suppose we create a Super Portfolio

SP ¼ OPþ
X

i

nSi
� Si þ

X

i

nCi
� Ci

� �

from the option portfolio plus amounts of the hedging instruments. The resulting
sensitivities of the SP in each band k are given by:

Delta: �SP;k ¼ �OP;k þ
X

i

nSi
� �Si ;k þ

X

i

nCi
� �Ci ;k for k ¼ 1; 2; 3

Gamma: �SP;k ¼ �OP;k þ
X

i

nSi
� �Si ;k þ

X

i

nCi
� �Ci ;k

Vega: SP;k ¼ OP;k þ
X

i

nSi
� Si ;k þ

X

i

nCi
� Ci ;k

For hedging purposes we would like to select the ns such that xSP;k ¼ 0 for all k and where
x ¼ f�; �; g. However, we have nine equations but only six hedging instruments, so it is
unlikely we can achieve this. We will adopt a robust approach using linear programming.10

Let us create the following expressions:

Sx � xSP;k þ ux;k � vx;k ¼ 0 for all k and x

where ux;k and vx;k are non-negative variables. Hence the sum fux;k þ vx;kg measures the
absolute distance of xSP;k from zero. Sx is simply a scaling constant to ensure that the
magnitudes of the sensitivities are similar—see below. The objective therefore is to
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minimise the penalty function

X

x;k

fwu;x;k � ux;k þ wv;x;k � vx;kg

where wu;x;k and wv;x;k are optional (usually) positive weights that may be used to emphasise
the importance of making sure that certain of the sensitivities are reduced to zero; for
example, we might argue that it is essential that SP is delta-neutral, hence wu;�;k and wv;�;k
could be an order of magnitude greater than the other weights. Positive gamma may well be
acceptable; in this case, wu;�;k would be positive, but wv;�;k zero or even negative (see Plain
Goal Programming box in Worksheet 12.22).
The worksheet is built in effectively the following steps:

1. Guess the hedging amounts nSi
and nCi

.
2. Calculate the net sensitivities xSP;k of the SP.
3. Calculate the u and v-variables using the goal expressions Sx � xSP;k þ ux;k � vx;k ¼ 0.

(Note: As both u and v have to be 	 0 one will be equal to zero and the other to
�Sx � xSP;k.)

4. Calculate the value of the penalty function using the u–v weights.

Then, using Solver, change the hedging amounts to minimise the penalty function.
For the ws to play their role of controlling the relative importance of the various goals,

the us and vs must be of similar magnitudes—hence the scaling Ss. Worksheet 12.22 has
used Sx ¼ ð1=�OP;xÞ where �OP;x is the absolute average sensitivity of the option portfolio
with respect to x over all the buckets.
The minimum value of the penalty function is 2.06; because it is positive, not all the net

sensitivities of the SP are zero, as may be seen in the box below:

Net sensitivities

Delta Gamma Vega

Band 1: 0–3 years 0.00 0.00 35.20
Band 2: 3–7 years 0.00 0.00 �40.31
Band 3: 7þ years 0.00 0.00 111.69

Whilst the delta and gamma net sensitivities are zero, vega is not because:

(a) the penalty weights on gamma were twice greater than on vega; if the weights were
switched, then the net vega sensitivities would become zero;

(b) the hedging swaps will ensure a feasible delta hedge because they only possess
delta.

The resulting hedge is shown in the hedging portfolio table overleaf.
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An alternative formulation is to adopt a minimax approach,11 i.e. minimise 	 defined
as maxfwu;x;k � ux;k þ wv;x;k � vx;kg.12 Unlike the first formulation, which will try to achieve
some of the goals whilst leaving others unsatisfied, this one attempts to satisfice each goal
equally (see ‘‘Robust Programming box’’ from Worksheet 12.22).

This illustrative worksheet has been formulated in a slightly more complex fashion,
combining the two approaches. The penalty function is:

X

k

fwu;�;k � u�;k þ wv;�;k � v�;kg þ 	

where 	� fwu;x;k � ux;k þ wv;x;k � vx;kg 	 0 for all x ¼ f�; g and all k.
This ensures that the net delta sensitivity is zero if possible, and that any remaining

infeasibility is spread over both the gamma and vega sensitivities, as shown in the box
below.

Delta Gamma Vega

Band 1: 0–3 years 0.00 00.00 39.54
Band 2: 3–7 years 0.00 00.00 �55.08
Band 3: 7þ years 0.00 �126.17 69.04

The resulting hedges are shown in the box below:

Hedging portfolios Hedge GP Hedge RP

Swap 1 25.75 24.88
Swap 2 �77.75 �73.57
Swap 3 �65.19 �68.41
Cap 1 24.61 21.07
Cap 2 1.77 10.51
Cap 3 �17.41 �21.74

(expressed in $m of NPA)

The structure of the two hedges is very similar, as may be expected. On balance, the
portfolio was a net seller of caps and buyer of floors; hence, intuitively, the hedge should
consist of net long caps plus swap payers (as indicated by the negative NPA).

The effectiveness of these hedges was then tested by imposing parallel shifts on both the
forward rate and forward volatility curves simultaneously in steps of 50 bp upto �250 bp.
The full results of the 121 different scenarios are shown in the worksheet. If we define
DVY ;r;� as the change in value of portfolio Y ¼ {OP, GP hedge, RP hedge} under scenario
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fr; �g, then a measure of the total change in value over all scenarios is

DVY ¼
X

r;�

ðDVY ;r;�Þ2
( )

1=2

The effectiveness of the hedge may be measured by ½1� DVY=DVOP�: this measure exceeds
98% for both GP and RP hedges. Both formulations therefore would appear to provide
good hedging over a wide range of parallel shifts.
An alternative is to use scenario analysis. Suppose a number of scenarios p ¼ 1; 2; . . . ;N

are created; each scenario consists of a defined (not necessarily parallel) shift in the forward
rate and/or forward volatility curves. Calculate the change in the value of the option
portfolio DOPp and the changes in value of the hedging instruments {DSi;p and DCi;p}
under each scenario, and hence the change in the value of SP:

DSPp ¼ DOPp þ
X

i

nSi
� DSi;p þ

X

i

nCi
� DCi;p

� �
for each p ¼ 1; . . . ;N

As before, the ideal hedge would set DSPp ¼ 0 under each p but this is unlikely to be
feasible due to the limitations of the hedging instruments. But, using the same ideas as
above, we could create the following equation:

DSPp þ up � vp ¼ 0

and then either minimise
P

pfwu;p � up þ wv;p � vpg or create another lambda-style robust
expression.13 The advantage of this type of approach is that it can be manipulated to deal
with a wide range of gapping or jump scenarios, whilst the ‘‘Greek’’ approach is less suited
to handle these as the Greeks are local measures.
More exotic options, especially those that involve a discontinuity in the payoff such as

digitals and barriers, are considerably more difficult to risk-manage. For example, the
‘‘Greek’’ characteristics of a digital caplet are quite different from those of an ordinary
caplet. As the price of a digital cannot exceed the payout, delta increases as the option
moves from OTM to ATM but then drops back towards zero for ITM. This means that
gamma is initially positive but then switches to be negative. From above, vega is always
positive for a normal caplet because increased volatility increases the changes of a larger
payout. If a digital option is OTM, then vega is also positive as expected because this has
increased the probability of the option moving into the money. However, for an ATM or
ITM option, vega is typically negative because low volatility will keep the option ITM
whereas high volatility increases the probability that the option will go OTM. As an ATM
option approaches maturity, these switches in sign become increasingly extreme which can
result in costly and yet ineffective hedging.
Thus the simple sensitivities for exotics are themselves relatively unstable, and delta

hedging alone is seldom adequate, especially near the discontinuities. If a whole portfolio is
to be risk-managed, then the discontinuities arising from a single option may have little
overall effect, and delta hedging may be appropriate. For the risk management of a small
number of options with discontinuities, more robust hedging should be used possibly using
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the methods described above, and possibly in combination with the concept of ‘‘static’’
hedging, which has been developed for this situation.14

12.11 HEDGING OF INFLATION SWAPS

This section is included to complement the section on inflation swap pricing, and to
demonstrate a further use of the equivalence concepts.

There are three sources of market risk in an inflation swap:

1. Movement in the inflation rates, which may be hedged with index-linked bonds or
generic swaps.

2. Movement in gilt discount rates, may be hedged with conventional gilts.
3. Movement in Libor rates, used for discounting and possibly estimation, and may be

hedged in the usual fashion in the swap book.

Inflation risk is unique. We can use very similar techniques to those described above to
create, for example, a portfolio of generic zero-coupon swaps that will delta-hedge the
inflation risk in a swap portfolio (full details are contained in Worksheet 8.42).

For example, suppose we have a portfolio consisting of three of the swaps described in
Chapter 10, namely the YoY swap (ignoring changes in the convexity effect), the fixed–
floating inflation swap and the inflated fixed–Libor swap. The swaps extend out to 2034.
We plan to calculate to delta-hedge the portfolio using four selected generic zero-swaps
with maturities 5, 10, 20 and 30 years, respectively. The first step is to calculate the delta
sensitivities of the portfolio and the hedging swaps due to shifts in the market zero-coupon
inflation curve—the results are shown in the table below.

Maturity New value Change in value of zero-coupon swaps

of portfolio (GBP for 1m nominal)

5 10 20 30

1 �610.25 0.00 0.00 0.00 0.00
2 �1,065.91 0.00 0.00 0.00 0.00
3 �1,574.87 0.00 0.00 0.00 0.00
4 �2,042.91 0.00 0.00 0.00 0.00
5 �1,954.74 �439.62 0.00 0.00 0.00
6 81,246.41 0.00 0.00 0.00 0.00
7 75,360.96 0.00 0.00 0.00 0.00
8 �11,968.32 0.00 0.00 0.00 0.00
9 �13,296.25 0.00 0.00 0.00 0.00

10 �22,350.29 0.00 �812.19 0.00 0.00
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Maturity New value Change in value of zero-coupon swaps

(cont.) of portfolio (GBP for 1m nominal)

5 10 20 30

12 �43,317.86 0.00 0.00 0.00 0.00
15 �85,445.46 0.00 0.00 0.00 0.00
20 �148,597.97 0.00 0.00 �1,503.84 0.00
25 �102,739.12 0.00 0.00 0.00 0.00
30 �3,204.30 0.00 0.00 0.00 �2,193.42
40 0.00 0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00 0.00

As expected, zero-coupon swaps are orthogonal in terms of their sensitivities (in a similar
fashion as generic IRS are to changes in their market rates). The next step is to bucket the
sensitivities: four buckets are intuitively obvious, as shown below.

Maturities Portfolio Swap 5 Swap 10 Swap 20 Swap 30

Band 1 0–5 �7,248.68 �439.62 0.00 0.00 0.00
Band 2 5–10 108,992.51 0.00 �812.19 0.00 0.00
Band 3 10–20 �277,361.29 0.00 0.00 �1,503.84 0.00
Band 4 20–30 �105,943.41 0.00 0.00 0.00 �2,193.42

The next step is to calculate the delta hedge (the negative sign implies paying fixed
inflation):

Hedge

Swap 5 �16.49m GBP To pay fixed
Swap 10 134.20m GBP To receive fixed
Swap 20 �184.44m GBP To pay fixed
Swap 30 �48.30m GBP To pay fixed

The effectiveness of the hedge can be demonstrated against a �1% parallel shift in the
growth curve as shown in the graph below; this shows the net difference between changes in
the portfolio and hedge. There is, of course, significant basis risk in this hedge if the growth
curve does not behave in a parallel fashion:
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12.12 APPENDIX: ANALYSIS OF SWAP CURVES

The movement of interest rate curves through time has been intensively studied by many
market practitioners; if one can develop a ‘‘good’’ model, then it is likely that safe profit-
able opportunities can be identified. There is also an extensive academic literature15 and it
is not the purpose of this appendix to replicate it. The objective is to briefly discuss an
approach that has been gaining acceptance within the risk management community over
the past decade.

Assume we have available a set of interest rate curve data X ¼ fxit, i ¼ 1; . . . ; n
maturities, t ¼ 1; . . . ;T timegwhere xit represents the arithmetic change in rate i from time
t� 1 to time t. We want to understand how the curve evolves through time. One way of
doing this is to track each one of the ith gridpoints individually, as we did in gridpoint risk
management. But this ignores any correlation structure along the curve, and is therefore
likely to be inefficient.

An alternative is to use the techniques of principal component analysis. Think of a curve
at time t as a vector of rate changes xt, i.e. as a single point in an n-dimensional space. PCA
transforms these data into Y ¼ A :X where Y is also dimension fn� Tg and hence A is a
square fn� ngmatrix. Initially, think of this as simply a rotation of the originalX axes into
a set of orthogonal (i.e. at right angles) Y-axes.

We can therefore write yj ¼ a 0j :X where yj and a 0j are the jth rows of Y and A,
respectively. The variance of yj is VðyjÞ ¼ a 0j :VðXÞ : aj where VðXÞ is X’s full covariance
matrix. The total variance in the original data is given by

P
i VðxiÞ, i.e. the sum of the

variances corresponding to each gridpoint. The above transformation cannot change the
total variance, i.e. we know that

P
i VðxiÞ ¼

P
j VðyjÞ.
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What we want to do is select the vectors a 01; a
0
2; . . . ; a

0
n so that

Vð y1Þ > Vð y2Þ > � � � > Vð ynÞ. Ideally, we want to identify a dimension m  n such that
Vð ypÞ for p > m are negligible. This can be done sequentially:

1. Find a1 such that Vð y1Þ is maximised and that a 01 : a1 ¼ 1 (this is just a scaling
constraint).

2. Find a2 such that Vð y2Þ is maximised and that a 02 : a2 ¼ 1 and a 01 : a2 ¼ 0 (this says that
the Y-axes must be orthogonal).

3. Find a3 such that Vð y3Þ is maximised and that a 03 : a3 ¼ 1, a01 : a3 ¼ 0 and a 02 : a3 ¼ 0.

This may be thought of as projecting high-dimensionality data onto a much smaller set of
dimensions. The explanation of each factor is fVð yjÞ=

P
i VðxiÞg and the total explanation

cannot of course exceed 1.
Niffikeer16 has reported the results of a PCA on a range of swap rates over 10 different

currencies (see table below). In summary, the total explanation using only three factors is
uniformly high, over 98%.

Currency ——————Explanation—————— Total

Factor 1 Factor 2 Factor 3 explanation

USD 95.0% 3.6% 0.7% 99.3%
GBP 91.0% 6.9% 1.0% 98.9%
DEM 90.8% 7.2% 1.1% 99.1%
CHF 93.1% 4.5% 1.0% 98.6%
ITL 94.0% 4.6% 0.8% 99.4%
JPY 91.7% 6.1% 1.2% 99.0%
NLG 90.9% 6.7% 1.2% 98.8%
BEF 88.6% 8.5% 1.5% 98.6%
FRF 91.6% 6.8% 0.9% 99.3%
ESP 90.1% 6.4% 1.4% 98.6%

But there is a problem with such results, namely how can they be used in practice?
The difficulty is that the a vectors will have no precise interpretation. The vectors for
the USD data are shown below:

Maturity Vector 1 Vector 2 Vector 3

2 yr 0.94210 0.30335 0.11583
3 yr 0.96519 0.24357 0.04931
4 yr 0.97917 0.14803 �0.05694
5 yr 0.98689 0.06814 �0.10037
6 yr 0.99519 �0.01824 �0.08994
7 yr 0.98536 �0.11355 �0.07781
8 yr 0.98606 �0.15837 0.01315
9 yr 0.97682 �0.20651 0.05592

10 yr 0.95590 �0.25644 0.12827
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These vectors are usually ‘‘interpreted’’ as representing a parallel shift, a rotation and a
change in curvature, respectively. However, they are not exactly these curve movements.

Niffikeer proceeds to fit synthetic orthogonal factors, i.e. ones that are precisely defined
in advance. A simple example would be to break the curve into three buckets and represent
the movements as:

Bucket 1 Bucket 2 Bucket 3

Parallel þ1 þ1 þ1
Rotational þ1 0 �1
Curvature þ1 �2 þ1

The synthetic parallel factor is fitted to the data first, then the rotational factor to the
residuals and finally the curvature factor. Obviously the level of explanation with these
synthetic factors cannot be as high as from the PCA, but the reduction is only about 1% on
average across all currencies.

This analysis provides a strong rationale for curve risk management, although the
explanation for forward rate curve is very much lower. Hedging against parallel shifts
alone is likely to remove some 90% of fluctuation in valuation. PCA is also becoming
widely used in curve modelling and VaR (see Chapters 11 and 13) to reduce substantially
the number of risk factors. However, like all statistical techniques, the analysis is of course
very dependent upon historic data being a good representation of the future. An over-
reliance on such findings to hedge against unstable market movements is extremely unwise,
as many practitioners have found to their cost.
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OBJECTIVE

This chapter discusses the more recent risk management techniques that have been
developed over the past decade, recognising that markets are not perfect and that hedges
sometimes have to be constructed from less-than-perfect instruments. Value-at-Risk
approaches have become standard in many banks, despite various criticisms over the
years, and this chapter will explore some of the practical issues that arise from their
implementation.

The chapter starts with a very simple transaction, and demonstrates how one-factor VaR
may be calculated in using both historic simulation and a delta (or parametric) approxima-
tion. The example is then extended to a two-factor model and eventually to a more general
multi-factor model. The last section here also looks at the relationship between delta
hedging, minimum VaR hedging and hedge effectiveness.

Some background work is then discussed, such as the selection of risk factors, alternative
ways of implementing VaR in practice and, in particular, practical problems of estimating
volatility and correlation.

A small sold FX option portfolio is then introduced as a further example of a position
having negative gamma. Its VaR is calculated using both the above methods, plus Monte
Carlo simulation, comparing the various results. There are however various difficulties
implementing the simulation methods, and ways of improving and speeding them up are
discussed, such as extreme value theory in Section 13.15 (Appendix), weighted historic
simulation and sampling strategies.

The chapter finishes with four final topics. First, as trading spreads is becoming more
common especially within Europe, the calculation of spread VaR from market data is
demonstrated. The calculation of equity VaR with and without the use of indices is then
discussed. Finally, possible strategies to shock testing and the implementation of stress
testing in an imperfect world are described.

13.1 INTRODUCTION

The techniques described in Chapter 12 are often called traditional or ‘‘desktop’’ risk
management. The latter name refers to the fact that individual trading desks usually only
enter into a limited range of risks, and the more traditional risk measurement methods are
perfectly adequate in this situation. However, we made some quite extreme correlation
assumptions about interest rate movements, namely that either the curve exhibited zero or
perfect correlation. Obviously, in practice the truth lies somewhere in between. But
these assumptions are frequently acceptable provided that the movement in interest
rates is relatively small. Related to this statement, although not identical, is that the risk

13
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management time horizon is relatively short, i.e. the position can be traded or hedged
rapidly.
Yield curve risk management used the bond market to hedge a swap portfolio,

substituting, as was commented at the time, basis risk for absolute risk. It was assumed
that this risk was zero, i.e. that the swap spread remained constant. Again, in practice, this
is not true.
In the mid-1980s, concern at the levels of unregulated risks banks were entering into as a

result of the exponentially expanding off-balance sheet derivatives markets led bank
regulators to introduce the fundamental concept of obliging banks to allocate a certain
amount of capital against some overall measures of risk. The regulations started by
defining the amount of capital required to support a measured amount of credit exposure.
By the early 1990s, attention had moved on to market risk exposure, especially in trading
activities.
The important point is that both banks and their regulators realised that these

capital-based approaches required measurement techniques that spanned across a range
of different activities, and not just a single trading desk. After conducting a number of
simulations, a very crude ‘‘static framework’’ methodology was suggested by the regula-
tors, first for credit risk and then for market risk. This basically meant that a bank would
enter very high-level summaries of their activities into a black box, and the output was the
amount of regulatory capital required to sustain those activities. Intuitively, banks felt that
if they could develop more precise methods of defining their risks, and persuade the
regulators of this increased precision, then the levels of required capital would be reduced
to their obvious benefit. The measurement of market risk was generally deemed to be an
order of magnitude (at least!!) easier than modelling credit risk. By 1995 the regulators
permitted ‘‘internal’’, i.e. individual bank-developed, market risk measurement models
which would then be used to derive the capital required. Permission was granted under
strict approval conditions. The new Basel Accord, published in 2004, and subsequently
revised, permits a limited range of internal models for credit risk, as well as a wider range of
market risk models (under the broad heading of Incremental Risk Charge1).
The most popular, although by no means the only, internal model is Value-at-Risk

(VaR). This family of approaches has become standard not only for modelling bank-wide
market risk, but also for credit and increasingly operational risk as well. This chapter will
describe and contrast the major methods for calculating market risk VaR, and will finish
with a brief discussion on credit-related topics. Because VaR is designed to measure market
risks arising from a wide range of activities, more complex portfolios will be used as
examples than in previous chapters.
Is VaR a completely novel approach, or is it a natural development out of the desktop

approaches previously described? This is a question that will be discussed during this
chapter.

13.2 A VERY SIMPLE EXAMPLE

It is 8 am on 4 February 2008. A bank dealer has just received a call from a customer
to borrow USD100m for 12 months. He quoted 2.90% which was accepted, and he
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confirms:

$100m to be paid by the bank on 6 February 2008

$100m plus interest ¼ $100m � ð1þ 2:90% � (6 Feb 2009�6 Feb 2008)/360)

¼ $102; 948; 333 to be received from the customer on

6 February 2008

A bank would routinely value each transaction to the current market rates. The current
12mo. rate is 2.89625%, hence the mark-to-market value of the money to be received in
1 year’s time would be calculated as:

$102; 948; 333=ð1þ 2:89625% � 1:017Þ ¼ 100,003,703

An overall profit of $3,703 for a couple of minutes work. (Bid–offer spreads have been
ignored in this discussion for ease of explanation.) See Worksheet 13.2 for initial details.

The bank now has a market risk. If interest rates rise, it would lose value. The dealer
can easily estimate the impact of moving rates by calculating the sensitivity of the transac-
tion. For example, the PVBP is estimated by increasing the rate by 1 bp and revaluing, we
get:

$102,948,333=ð1þ 2:90625% � 1:017Þ ¼ 99,993,828

i.e. a loss in value of �$9,875, as shown in column [2] of Worksheet 13.2.
So much for traditional measures, but it does not address an important management

question, namely ‘‘how much value might the trader lose over one day?’’ The trader had
some historic records of the 12month cash rate from the past 2 years (or, to be more
precise, the last 500 business days). The graph below shows the daily percentage changes2 in
the rate. These changes were calculated using Dt ¼ lnðrt=rt�1Þ; an alternative would have
been to use simple changes given by ðrt � rt�1Þ=rt�1—the worksheet can be shifted between
the two definitions. For a 1-day time horizon, the difference is negligible. Most of the
changes were fairly small and randomly up or down, but there had been some large moves
recently, implying a move into a regime of high volatility. The largest up-move was 8.8%,
which, if repeated, would have resulted in a loss in excess of $250,000 over the day (see
diagram at the top of the next page).

We wish to calculate the potential loss due to adverse movements in this 12month rate
over this trading day. Let us assume that the past is an accurate representation of the
future, and also that all the historic changes over the past 2 years are equally likely to occur
in the future. (These assumptions are discussed in more detail in Section 13.6.) Therefore,
we can estimate new rates Rt ¼ r0 � expðDtÞ) for t ¼ 1; 2; . . . ; 500, where r0 is the current
level 2.89625%. Hence we can calculate the loss or gain in value for each new rate.
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Over all the new rates, we find that the average change in value is $3,072, implying that
rates have fallen slightly over the 2 years. However, the best and worst change is $258,066
and �$262,864, respectively, with a standard deviation of $31,356, indicating a wide range
of daily changes are possible. However, such days are very infrequent, as can be seen from
the histogram on the facing page.
The histogram was created by dividing the {maximum�minimum} range up into a
number of buckets, in this case 10, and then counting the percentage of observations lying
in each bucket. The histogram shows the mid-point of each bucket on the x-axis.
We can now estimate the daily VaR, using either the raw changes in value themselves

or the histogram. For example, one approximation for 95% VaR is to find the
ð1� 95%Þ � 500 ¼ 25th worst result, namely �$33,299. An alternative, if using Excel, is
to use the ‘‘PERCENTILE(array of results, 1–95%)’’ command which gives �$32,509.
A third alternative is to calculate the accumulative frequency, and then interpolate the
appropriate tail; this gives �$35,433 when using 20 buckets. As expected, the three results
are similar, but not identical. Some further results are shown in the table below:

Confidence level Small Percentile Interpolated frequency

99% �59,690 �58,104 �59,904
95% �33,299 �32,509 �35,443
90% �19,922 �19,698 �26,608

In words, we could interpret the VaR result as:
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262,864 215,507 168,150 120,792 73,435 26,078 21,279 68,637 115,994 163,351 210,709 258,066

‘‘There is a 5% chance that the trader could lose $33,299 or worse over a 1-day time
horizon as the result of adverse market movements.’’

Alternatively, we could say that there is a 95% chance that the losses will not exceed
$33,299, and indeed there is some potential upside. The VaR statement must contain three
elements:

1. The size of potential loss.
2. The probability of this loss or worse.
3. The time horizon.

It is incomplete if it is missing any of them.
This approach is called historic simulation, and is very widely used by banks, especially

when calculating their regulatory VaR numbers. The above discussion is extremely simple,
and it will be extended in Section 13.8.

We can also approach this problem in a different way, by concentrating on the change in
the rates. A new histogram has been created, this time bucketing the changes in the rates
into 50 bp bins (see next page). Consider one bucket, for example the one centred on
1.75%. Increases in the range from 1.5% to 2.0% occurred eight times in the past 500
days or 1.6% of the time. Applying this average movement to the current level of rate, i.e.
from 2.89625% to 2.89625% � expð1:75%Þ ¼ 2.94738%, would result in a loss of
$50,472.16 (see column [3] of Worksheet 13.3 for confirmation).
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Comparing the numerical results with a normal distribution
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Of course a bigger movement in the rate may occur. For example, we find that on 14 days
(or 2.8% of the time), there was an increase of 1.50% or larger over 1 day. Note that now
we do not use the centre of the bucket, but the lower edge to indicate the size of movement,
because we are interested in a particular increase or worse. This movement would result in a
loss of $43,210.80 (as confirmed in column [4]).
Based on the same assumption as before, namely that these events are a good indication

of the future, another VaR statement would be:

‘‘There is a 2.8% chance that the trader could lose $43,211 or worse over a 1-day time
horizon as a result of adverse market movements.’’

In calculating the VaR above, we used a ‘‘full valuation’’ approach, i.e. we shifted the rate
by 1.75% and then re-valued the trade. An alternative is to use a PVBP approximation as
discussed in Chapter 12:

DValue 
 PVBP � Shift in rates ðin bpÞ
For example, the 1.50% movement in rates was equivalent to:

Dr ¼ 2:89625% � expð1:50%Þ � 2:89625% ¼ 0:0004377 or 4.38 bp

Therefore:
DValue 
 $9; 875:26 � 4:38 bp ¼43,225:21

The difference between the exact amount of $43,211 and the first-order approximation of
$43,225 is predominantly due to second-order (gamma) effects.
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This approach may be simplified further by using the approximation:

2:89625% � expð1:50%Þ � 2:89625% 
 2:89625% � 1:50% ¼ 4:34 bp

This gives a very similar result (see column [5] of Worksheet 13.2):

DValue ¼ $9; 875:26 � 4:34 bp ¼ $42,901:83

Based on historic return data, we find:

Daily mean ð�Þ ¼ �0:113%

Daily standard deviation ð�Þ ¼ 1:105%

The mean is often called the ‘‘drift’’ or ‘‘trend’’, whilst the standard deviation is of course
simply the daily volatility of the rate. The percentage movement in the rate of 1.50% may
be re-written in terms of multiples of the volatility, i.e. 1.50%¼ 1.358 � �. The number
1.358 is called the ‘‘multiplier’’ (we will use the symbol k to represent it). Using the above
approximation, and drawing all this together, the PVBP VaR (also known as ‘‘parametric’’
or delta VaR) may be estimated as:

VaR ¼10,000 � PVBP � r � k � � ¼10,000 � 9,875 � 2:89625% � 1:358 � 1:105% ¼ $42; 902

Notice that strictly speaking this is negative as the PVBP is negative for an increase in
rate. But conventionally VaRs are always quoted as a positive number even though they
refer to a potential loss. This result has been replicated more formally, as shown in the box
below:

Proof of one-factor delta VaR

To formalise what we have done so far, assume that there is a change Dr in the rate r.
The change in value is approximately given by Taylor’s theorem:

DValue 
 @Value=@r � Dr ¼ @Value=@r � r � ðDr=rÞ
where ðDr=rÞ is a return. As ½@Value=@r � r� is currently known:

st devfDValueg 
 @Value=@r � r � st devðDr=rÞ ¼ @Value=@r � r � �
Therefore, if we characterise VaR by k multiples of st dev{DValue}, we can write:

VaR ¼ @Value=@r � r � k � �
The value of the transaction may be written as:

Value ¼ $102,948,333=ð1þ r : dÞ � 100,000,000

where r is the rate and d the daycount fraction (365/360). Differentiating, we get:

@Value=@r ¼ �$102,948,333 � d=ð1þ r : dÞ2 ¼ �$98,762,353:76

Note that this analytic delta is approximately 10,000 �PVBP. The Delta VaR is
therefore:

Delta VaR ¼ �$98,762,353:76 � 2:89625% � 1:358 � 1:105% ¼ $42; 906

i.e. very similar to the previous estimate.
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Interest rates have trended slightly downwards over this period, which will improve the
profitability of the deal if continued. However, short-term trends are notoriously unstable,
and it is common practice to ignore them, as we have above, when calculating VaR over
short-time horizons. It is straightforward to modify the above formula to include a trend
term if the time horizon were longer. The trend is of course reflected in the 2.8%
probability, as it is inherent in the historic data used to derive the histogram.
Notice that this expression for VaR includes the traditional sensitivity measure. But that

measure assumes a predefined movement in the rate, whereas VaR has additionally
attempted to make a statistical statement about the likely size of movement. It is important
to recognise that VaR extends the PVBP analysis, and does not necessarily supplant it.
We estimated there was a 2.8% probability of suffering this loss or worse. Obviously,

as the multiplier is increased, the VaR also increases but the probability decreases. The
relationship between the size of the multiplier and the probability is defined by the
numerical histogram, and we have made no other distributional assumptions.
A widely used assumption is that the returns follow a Normal distribution. Is this

realistic? The graph on p. 314 superimposes a Normal distribution on the actual returns.
Not only does the numerical distribution have longer tails than the Normal distribution,
but it is also more peaked as well (i.e. it is leptokurtic).
For a Normal distribution, the relationship between the multiplier and the probability is

defined theoretically as follows:

Multiplier Probability

1 15.9%
1.28 10.0%
1.645 5.0%
2 2.3%
2.326 1.0%
3 0.1%

Most practitioners start with the probability—5% and 1% are the most popular—which
then defines the multiplier. For example, to calculate the 95% VaR:

VaR ¼ 10,000 � $9,875 � 2:89625% � 1:645 � 1:105% ¼ $51,968 per day

This number is very different from the 95% VaR estimated using historic simulation, or
indeed the VaR estimated directly from the rate histogram of $33,070. Why is that?
Whilst the numerical distribution has longer tails than the normal, the tails at the 95%
point are actually much fatter, so that the 95% multiplier for the normal is considerably
greater than the multiplier of 1.055 for the numerical distribution (see Worksheet 13.4 for
details).
In practice, it has often been observed that the probability of large movements is

considerably underestimated by a normal distribution: i.e., the numerical distributions
have fatter tails. For example, many markets suffered enormous and successive movements
during 2008, equivalent to multipliers of 6 and above. Under the assumption of normality,
the probability of such movements occurring is infinitesimal. If we felt that the normal was
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inappropriate, then we could work with the numeric distribution itself, as above, or with a
different theoretical distribution which may fit the data better. Student-t is a common
choice, but it does have an additional parameter which has to be fitted.

Personally, I think the reader should recognise that VaR depends upon what has
happened in the past, and that large market movements are very uncommon (albeit not
as uncommon as implied by the normal distribution, but still very rare). VaR estimates
therefore work well when the past is a good predictor of the future; the distributional
assumption is unlikely to have a major effect on the estimate. However, VaR grossly
underestimates what happens when markets behave abnormally; that is why stress testing
(see Section 14) is a necessary supplement to measures such as sensitivities and VaR. But
I think it is wrong to reject VaR. It is surely far better to rely upon, not just one, but a range
of measures that work under different circumstances.

The above calculations have all been based on a holding time horizon of 1 day, because
the historic observations used to estimate volatility were daily. If we wish to increase the
time horizon to, say, 10 days (which is the regulatory requirement), an estimate of 10-day
volatility is required. This could be done by estimating the returns from dayi to dayiþ10,
dayiþ11 to dayiþ20, etc. To collect a meaningful amount of data so that the confidence level
in the volatility estimate is high would require going back some considerable time (such as
5,000 days or 20 years). Markets are likely to be very different then. An alternative
approach would be to calculate the returns based on the periods from dayi to dayiþ10,
dayiþ1 to dayiþ11, etc. This introduces significant auto-correlation, reducing the volatility,
as the sampling periods obviously overlap, but is often the practice. However, the most
widely used approach (inherent in most closed-form option-pricing formulae) is simply to
scale up the 1-day volatility using the square-root rule,3 namely:

10-day volatility¼ p
10 � 1-day volatility

As discussed in the footnote, this relies upon assumptions of independence which are
unlikely to be fully justified in practice. If a market is trending, its volatility is reducing,
so the VaR produced by this rule is likely to be an overestimate of the actual VaR. But of
course, a trending market violates the earlier assumption of no trends, so that should be
taken into account when estimating the potential loss of value.

13.3 A VERY SIMPLE EXAMPLE EXTENDED

The above example calculated the VaR for a simple USD transaction. Let us assume that
we are now a South African bank, implying that all transactions have to be valued in ZAR.
This introduces the additional complication of movement in the exchange rate. The spot
rate on 4 February 2008 was 7.444 ZAR per USD with a daily volatility of 0.910%,
measured over the past two years.

Estimating the risk of the transaction in ZAR requires a decision to be made about the
initial cash outflow. Is the $100m valued at today’s spot rate, or at some spot rate in the
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future? The two valuation equations may be written respectively as:

Value ¼ $102,948,333=ð1þ r : dÞ � S � $100,000,00 � S0

Value ¼ f$102,948,333=ð1þ r : dÞ � $100,000,00g � S

where S is a potentially variable exchange rate. The net valuation of the transaction is
ZAR27,569 no matter how the deal is represented, but the FX risk is very different, as
shown in the table below:

Sensitivities (per bp) Using S0 Using S

IR risk �73,511 �73,511
FX risk 10,000 0.3703

Obviously, in the second case, the FX risks associated with the two cashflows largely
cancel. As it is common market practice to use a 2-day settlement period for FX, then
the FX rate for the initial outflow should be locked in at the time of the transaction (and
therefore carry no FX risk), leaving the FX risk on the future cashflow fully exposed.
Hence, in the example below, we will use the S0 representation.
Using the parametric approach, the 95% VaR for each of the two risk factors, r and S,

may be calculated separately as above:

1. PVBPr ¼ �ZAR73,511 (this is the USD PVBP �S) per 1 USD bp
PVBPS ¼ $10,000 per 1 bp shift in S.

(This PVBP is defined as DValue/DS which has dimensions of ZAR/ [ZAR/USD]¼USD.)

2. VaRr ¼ �10,000 � 73,511 � 2.89625% � 1.645 � 1.105%¼ �ZAR386,851
VaRS ¼ 10,000 � 10,000 � 7.444 � 1.645 � 0.910% ¼ZAR11,147,976.

VaRS is much higher than VaRr, despite the spot volatility being lower than the rate
volatility. This is because PVBP works in terms of absolute movements, whereas VaR
works in terms of percentage movements. A 1% move in 7.444 is a much greater absolute
movement than a 1% shift in the rate. Note that the negative sign on VaRr has been
retained, although obviously for reporting purposes it would be ignored (see Worksheet
13.5 for details).
VaR was introduced as a risk measurement technique that can span across a range of

different activities, in contrast to the simpler PVBP approaches. Note that the units of
PVBPs are different and therefore not combinable, whereas the units of VaRs are
consistently money (in this case, ZAR).
However, we need to develop a method of combining together individual VaRs in some

appropriate fashion into a single risk measure. The standard deviation of the overall value
of the transaction may be approximated using the following result.
Before we do the calculation, what do we expect intuitively? If the interest rate increases,

the trade loses value, whilst if the spot rate increases the trade gains in value. If USD
interest rates increase then we would expect the dollar to strengthen in the short term, i.e. S
to increase. Therefore we anticipate a positive correlation between changes in r and S, and
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that this correlation should reduce the overall risk. Let us assume �r;S ¼ 0.5:

fVaRTotalg2 ¼ f�386,851g2 þ f11,147,976g2 þ 2 � f�386,851g � f11,147,976g � 0:5
i.e. VaRTotal ¼ ZAR 10,959,672 per day

The total VaR has indeed been reduced from VaRS but notice that the sign of VaRr must be
retained in the calculations. The graph at the top of the next page shows the impact of
changing correlation:

Some special cases:

a. Zero correlation: fVaRTotalg2 ¼ fVaRrg2 þ fVaRSg2.
b. Positive perfect correlation: VaRTotal ¼ VaRr þ VaRS.

Value-at-Risk 319

Proof of the two-factor Delta VaR

Suppose there is a simultaneous shift Dr and DS in both r and S, respectively. As a
first-order approximation, the change in value is:

DValue 
 @Value=@r � Drþ @Value=@S � DS
¼ @Value=@r � r � ðDr=rÞ þ @Value=@S � S � ðDS=SÞ

where the terms in ð Þ are returns.
The standard deviation of DValue may be easily calculated as follows:

1. Var(iance)(DValue)¼ E{DValue2}�E{DValue}2.
2. But E{DValue}¼ @Value/@r � E{Dr} + @Value/@S � E{DS}¼ 0 as we have

assumed that all trends are zero, or ignorable:

3: EfDValue2g ¼ ½@Value=@r � r�2 � EfðDr=rÞ2g
þ ½@Value=@S � S�2 � EfðDS=SÞ2g
þ 2 � ½@Value=@r � r� � ½@Value=@S � S� � EfðDr=rÞðDS=SÞg

4: VarðDValueÞ ¼ ½@Value=@r � r � �r�2

þ ½@Value=@S � S � �S�2

þ 2 � ½@Value=@r � r � �r� � ½½@Value=@S � S � �S� � �r;S
where �r;S is the correlation between the returns.

As before, if Delta VaR is a multiple of the standard deviation of DValue, we can
easily write:

fVaRTotalg2 ¼ fVaRrg2 þ fVaRSg2 þ 2 � fVaRr � VaRFX � �r;Sg

More generally, if C represents the 2� 2 correlation matrix

�
1

�r;S

�r;S
1

�
then the

above expression may be written as VaR 0 :C :VaR where VaR is the vector of
individual VaRs. This expression gives rise to yet another name for Delta VaR, namely
VCV.
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Many banks believe that correlations are too unstable to include in their VaR calculations,
and often combine individual VaRs using one of the above expressions. It is important to
appreciate that, like it or not, a correlation assumption is being tacitly made.
Historic simulation may also be applied to this situation, using historical interest and

FX rates for the past 500 days. In a similar way to before, we can take the percentage
changes that occurred on a given day in the past, apply them to the current levels of the two
risk factors to estimate new values, calculate the new value of the transaction in ZAR and
hence the change in value. The histogram on the facing page shows the final result.
VaRs may also be calculated in the various ways as described above; see the table

below:

Confidence level Small Percentile Interpolated frequency

99% �15,159,896 �15,021,318 �14,830,419
95% �10,909,714 �10,781,364 �11,187,903
90% �8,168,600 �8,092,117 �8,037,204

In this case, there is no need to calculate the correlation explicitly, but it is implicit within
the historic data.
Changing the time horizon introduces a further complication. For the delta method,

scaling the volatility or scaling the individual VaRs is the same, as the formula is linear. But
that is not necessarily true in historic simulation. Should the scaling be applied to the final
VaR number, or to the historic changes themselves. The impact will be different as VaR is
not a linear function of the changes. Worksheet 13.6 calculates VaR both ways. For
example, applying the scaling to the changes gives a 10-day 95% VaR of ZAR33.56m,
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whereas to VaR itself gives 34.09m. Was the ordering of these results expected; yes, because
the deal has an overall positive convexity in terms of the two risk factors. I think the first
approach is more correct, as it applies larger changes as implied whilst retaining the implicit
correlation structure, but the second approach, applying scaling to the resulting VaR is
probably much more common.

15%

20%

25%

Daily changes in value (ZARm)

0%

5%

10%

15%

16.5 12.8 9.1 5.4 1.7 2.0 5.6 9.3 13.0 16.7 20.4 24.1

In summary, what can we conclude? Traditional risk management revolves around
sensitivity analysis, namely the potential to lose money for a pre-defined movement in
one or more risk factors. Delta VaR combines sensitivity with volatility, which is a measure
of the likely size of movement over a given time horizon, to produce a risk measure that is
defined in monetary terms. It then goes further, to associate a multiplier of the volatility
with a probability by assuming some underlying (analytic or numeric) distribution. Finally,
because the dimension of the risk measures is consistent across all risk factors, they may be
approximately combined together using correlation. So VaR started off with a traditional
approach, but rapidly extended risk measurement into new directions.

13.4 MULTI-FACTOR DELTA VaR

The above result may be easily generalised to encompass N factors. If the value of a
portfolio P depends upon the current levels of the risk factors xi, i ¼ 1; . . . ;N, then as
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the factors change:

DValue 

X

i

�i � Dxi ¼
X

i

�i � xi � fDxi=xig where �i ¼ @Value=@xi

and varðDValueÞ ¼
X

i j

½�i � xi � �i� � �i; j � ½�j � xj � �j�

Hence fVaRPg2 ¼ VaR0 :C :VaR as before

To illustrate, we will use the USD swap portfolio that was used as a running example in
Chapter 12. Amongst other analyses, we calculated its gridpoint sensitivities, i.e. the PVBP
with respect to each of the individual market rates used to construct the discount curve, and
also the amount of a bond required to delta-hedge the portfolio against a parallel shift in
the market curve. The size of the delta hedge was 7.29m nominal principal.
The first step is to calculate the gridpoint sensitivities of both the swap portfolio (which

we already have) and the hedging bond individually, as shown below:

Market rate sensitivity

Market Swap Bond

rates portfolio hedge

(USD) (1m nominal)

3mo. cash �1,461.51 �0.08
6mo. cash 158.35 �0.62

12mo. cash �20.82 1.22
2 yr swap �2,038.12 1.14
3 yr swap �13,964.86 1.66
4 yr swap �23,341.32 �20.37
5 yr swap �23,920.42 �427.45
7 yr swap 57,281.30 0.00

10 yr swap 10,544.93 0.00

The results are shown in columns [1] and [2] of Worksheets 13.8 and also in Worksheet
13.9.
The second stage, given the volatilities and correlations of the individual market rates

calculated using historic data—as shown in Worksheet 13.7—is to calculate individual
VaRs using the usual delta formula. The results are shown in column [5] of Worksheet 13.9
for the swap portfolio and column [6] for 1m nominal of the bond. The 95% Delta VaRs
are then calculated for each, using the correlation matrix, to be $104,817 and $3,115,
respectively.
The impact of a hedge may be calculated by first constructing new individual VaR values

as follows:

VaRðiÞPortfolio&Hedge ¼ VaRðiÞPortfolio þHedge ratio � VaRðiÞ1mnominal hedge

for the ith market rate—see column [7] which is using the delta hedge ratio of 7.29m of the
bond. The total VaR has been reduced from $104,817 to $99,548, i.e. only just over 5%.
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Delta hedging the portfolio has not in fact reduced overall VaR very significantly. We could
see if the VaR hedge could be improved. The total VaR is given by:

fVaRTotalg2 ¼ fVaRPortfolio þ nH :VaRBondg0 :C : fVaRPortfolio þ nH :VaRBondg
for some hedge ratio nH . If we differentiate with respect to nH , and set the result to zero, we
get the minimum VaR hedge ratio:

n�H ¼ �fVaR 0
Portfolio :C :VaRBondg=fVaR 0

Bond :C :VaRBondg
Column [8] of Worksheet 13.9 calculates the VaR for this hedge ratio, which results in a
VaR reduction of 5.8%.

The optimal hedge cannot reduce the total VaR to zero, as we can see in the graph below.
The expected reduction in VaR may be calculated by substituting back; that is:

VaRTotal ¼ VaRPortfolio �
pf1� �2

averageg
where VaRPortfolio is the VaR of the unhedged portfolio and �average is defined by
�fVaR 0

Portfolio :C :VaRBondg=fVaRPortfolio :VaRBondg: Worksheet 13.9 calculates the
average correlation to be 33.5%, which means that the total VaR can only be reduced
to ð1� 0:3352Þ1=2 ¼ 94.2% of the unhedged portfolio. Perfect hedging can only be
achieved in the exceptional circumstance that �average ¼ 1, i.e. with a perfect correlation
matrix, as shown in column [9].
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Before finishing this section, it may be worth noting as an aside that a closely related style
of hedging, usually called ‘‘minimum variance hedging’’, has been widely used in many
physical futures markets for a long time. For example, you wish to hedge the price of
Norwegian crude oil. There is no directly relevant futures contract, but there are Brent oil
futures. By collecting price histories of Norwegian crude and Brent futures, the correlation
may be measured and the anticipated effectiveness of the hedge assessed.

One of the techniques employed in these markets, which could also be used in the VaR
hedging above, is the concept of ‘‘big step’’ correlation. Consider a historic price series;
divide it into two series of small movements and large movements by defining some filter.
Then take a second series and sub-divide that into two; obviously in this case we do not
apply the filter again, but simply ensure that the movements on the corresponding dates are
included. Because movements in market prices are due to the interaction of many factors,
the correlation between the two series of small movements is very often extremely low.
However, a big movement may have been caused by a single large exogenous event likely to

Value-at-Risk 323



324 Swaps and Other Derivatives

affect both series; the result is that the correlation between the series of large movements is
usually very much higher. One approach therefore to the creation of a hedge is to base it
solely on big-step correlations, on the grounds that this would provide protection against
large movements and accept that the hedge will be ineffective against small movements.
The level of the filter is probably best determined by simulation.4

13.5 CHOICE OF RISK FACTORS AND CASHFLOW MAPPING

The value of a portfolio is likely to depend upon a variety of different underlying risk
factors. There tends to be little debate about some factors. For example, if the valuation
requires the conversion from a number of different currencies, then the various spot rates
would be used as factors. If the portfolio had an equity or commodity proportion, then
unless it was very heavily weighted towards a very small number of stocks or commodities,
indices are usually used as surrogates—see Section 13.12 for further details.
A more conscious choice has to be made for interest rates. The examples above have all

used market rates. It would however have been perfectly feasible to use forward or zero-
coupon rates as alternative frameworks. Obviously the volatilities and correlations would
have to be calculated for these rates. Because these rates are not directly observable but are
themselves constructed from market data, there may be differences in the derived data
which would in turn lead to differences in estimated VaRs.
One popular choice5 is discount bond prices. A discount bond is a zero-coupon bond

paying 1 at maturity. For a bond of maturity T , its price today pT ¼ 1 �DFT ¼ DFT , i.e.
the prices are equivalent to discount factors. Obviously they are very artificial and suffer
from the various estimation problems discussed in Chapter 13 on curve building. They are
also closely related to zero-coupon rates; for example:

DFT ¼ expf�zT :Tg or DFT ¼ ð1þ zT=nÞ�n:T

i.e. continuously or discretely compounded.
However, they do possess one major advantage. Consider the swap portfolio used in the

previous example; its value may be written as:

Value ¼
X

CFt �DFt

Obviously this expression is linear in DFs, and hence has zero second-order effects. The
delta method for calculating VaR should therefore provide identical results to any full
valuation approach. Differentiating with respect to one of the DFs, say DFs, the derivative
is equal to CFs. This method is often discussed in terms of ‘‘cashflows’’, without the explicit
recognition that the cashflow is simply the discount bond price derivative, and as such
follows the earlier VaR derivation. The formula we had above for individual VaRs may be
simplified:

VaRs ¼ @Vs=@ps � ps � k � �s ¼ CFs � ps � k � �s ¼ PVs � k � �s

4 The author used this technique to hedge a portfolio of A$ eurobonds being traded in London with the A$ bond futures contract
traded in Sydney. Obviously the markets are related, but only loosely. He took the price histories of some typical old eurobonds,
regressed them against the bond futures, estimated optimal filters and developed decision rules for creating a hedge against the
actual trading book.
5 Encouraged by RiskMetrics and the publications of JP Morgan.
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i.e. the present value of each cashflow multiplied by the volatility of the appropriate bond
price.

Because many traditional risk management systems work in terms of zero-coupon rates,
simple transformations can be applied to convert them into zero-coupon price terms. For
example, rate volatility may be converted into price volatility by using the widely used
approximation6:

�p ¼ �y � ðy=pÞ � @p=@y

Consider the artificial zero-coupon yield curve below:

Maturity Yield Yield Modified Price

volatility duration volatility

3 year 8% 2.78% 2.778 0.62%
4 year 9% 2.53% 3.670 0.84%
5 year 10% 2.42% 4.545 1.10%
7 year 12% 2.25% 6.250 1.69%

This uses the formulae pT ¼ ð1þ yTÞ�T and modified duration¼ �ð1=pÞ � @p=@y ¼
T=ð1þ yÞ. Notice that the results are probably intuitive, namely that interest rates typically
exhibit declining volatilities as maturity increases, whereas bond prices always have
increasing volatilities with maturity.

The earlier swap portfolio example had cashflows occurring on a variety of dates.
However, we only have knowledge, i.e. volatilities and correlations, about specific
rates, often called ‘‘gridpoints’’. The portfolio was valued by using the following
process:

1. A given set of market rates had to be completed, i.e. missing ones estimated, by some
type of interpolation.

2. The discount curve calculated by bootstrapping the completed market curve.
3. The discount factors on the cashflow dates estimated again by some type of

interpolation, and finally the cashflows are discounted to produce the value.

Estimation of the VaR followed the same process. Delta sensitivity was calculated by
shifting a market rate, and recording the change in the value at the end of the process.
The interpolation methods used for VaR calculations are those used for the original
valuation process; there is internal consistency. The process has mapped the portfolio
sensitivities onto the gridpoints.

6 Often written as �p ¼ �y � y �MD which stands for modified duration. This is derived from two approximations:
1. If p ¼ f ðyÞ, then sp 
 @f =@y : sy where s is the standard deviation.
2. vp ¼ ð�pÞ2 � ½expð�pÞ2 : t1� 
 ð�pÞ2 � ð�pÞ2 : t where v is variance and �p the expected value of p, and where p is distributed

log-normally.
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We could of course adopt exactly the same process when using discount bond prices.
Worksheet 13.10 shows the following example:

. Box 1 contains some gridpoint data in terms of discount bond prices at years 1 and 2
(these are taken directly off the previous swap portfolio example) plus price volatilities
and a price correlation based upon historic data.

. Box 2 contains a single fixed cashflow approximately midway between the gridpoints.

Generalising, we have a cashflow at time T , and two gridpoints ti and tiþ1 which bracket T .
First, we need to value this cashflow. Let us estimate DFT ¼ IT ðDFi;DFiþ1Þ where I is
some interpolation function. Worksheet 13.10 uses continuously compounded interpola-
tion, i.e. zero-coupon yields are calculated in column [1] of Box 3, linearly interpolated in
column [2] of Box 4, and finally converted back into a bond price in column [3] of Box 4.
The cashflow in Box 2 has a value of �2.48811 (USDm). Linear interpolation weights are
shown separately in column [1] of Box 4 for future purposes.
If VT ¼ CFT �DFT , then we can estimate the two sensitivities @VT=@DFi ¼

CFT � @IT=@DFi and @VT=@DFiþ1 ¼ CFT � @IT=@DFiþ1 either by perturbation or
analytically as shown in columns [2] and [3], respectively, in Box 5 of Worksheet 13.10.
Given the price volatility data, individual VaRs may be calculated (using analytic
sensitivities, but it hardly matters which), and hence the total VaR of $2,817 using the
correlation coefficient. This very much repeats the VaR method described above.
An alternative approach is to allocate the cashflow CFT onto the two gridpoints. We

have already seen one way of doing this (see Section 12.6) by defining the resulting cash-
flows as CFi and CFiþ1 which are subject to the following constraints:

. preserve cashflow: CFT ¼ CFi þ CFiþ1

. preserve value: VT ¼ CFi �DFi þ CFiþ1 �DFiþ1

and solve for CFi and CFiþ1 as shown in Box 6 of Worksheet 13.10. Individual VaRs may
then be calculated using the above expression, and finally the total VaR. The result is not
the same as the previous total VaR, because the allocation is not consistent with the
valuation structure, in that sensitivity is not maintained. However, it is not grossly
different, as may be seen by changing the correlation.
Another popular approach is first to estimate the VaR of the cashflow by interpolation,

and then do the allocation whilst preserving this VaR. For example, the price volatilities
in Box 1 are converted into yield volatilities (see column [2] of Box 2 of Worksheet
13.10), linearly interpolated and converted back to price volatilities (see row ‘‘linearly
interpolated’’; columns [1] and [2] of Box 7). The VaR is now easily calculated to be
VT � �T � k ¼ $3,173. We now wish to calculate the allocated cashflows so that:

. preserve value: VT ¼ Vi þ Viþ1

. preserve VaR: VaRT ¼ VaRðCFi;CFiþ1Þ

As before, we have two equations, and can therefore solve for the two CFs as shown in
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Box 8 of Worksheet 13.10.7 The resulting VaR matches, of course, the VaR estimated by
interpolating the volatilities.

But this VaR is not the same as the VaR of $2,817 calculated originally. Furthermore, if
the correlation shifts, we find that the original VaR changes but this new one does not!
This is because the correlation was not used in the latter’s calculation. The problem lies in
the following:

1. yi and yiþ1 were interpolated to get yT .
2. Yield volatilities �i and �iþ1 were interpolated to get �T .

But �T is a property of yT , and therefore we should be able to construct an expression for it
directly without interpolation. Define:

yT ¼ !T : yi þ ð1� !TÞ : yiþ1

where !T and ð1� !TÞ are the interpolation weights given in Box 4 of Worksheet 13.10.
Then:

vðyT Þ ¼ ð!TÞ2 : vðyiÞ þ ð1� !TÞ2 : vðyiþ1Þ þ 2!T : ð1� !TÞ : sðyiÞ : sðyiþ1Þ : �i;iþ1

where vð : Þ and sð : Þ are variance and standard deviation, respectively. The approximation
relating v and � (see footnote 6) may then be used to estimate �T . The end-results are shown
in row ‘‘calculated’’, column [1] of Box 7 of Worksheet 13.10:

. the new �T is estimated to be 1.508% compared with the linearly interpolated value of
1.699%;

. the total VaR is now identical to the original value.

Furthermore, as the correlation shifts, �T changes accordingly and the VaRs calculated
using the original sensitivity approach and this latest approach remain identical.

To summarise, the cashflow approach has some attractions in that it permits a portfolio
to be repesented solely by cashflows accumulated at gridpoints. It is therefore simple to add
new transactions into the portfolio, as these easily modify the cashflows. However, there
are some difficulties, and simple interpolation is not sufficient to implement this method.
The sensitivity approach uses allocation methods that must already exist within, and are
consistent with, valuation methods, easily allows a range of different interest rate risk
factors and require little additional work to implement. This latter approach will be used
throughout the remainder of this chapter.

7 That is, the VaR equation may be written as:

ðVT � �T Þ2 ¼ ð�i � ViÞ2 þ ð�iþ1 � Viþ1Þ2 þ 2 � �i � Vi � �iþ1 � Viþ1 � �i;iþ1

Substituting for Viþ1 and re-arranging, we get:

½�2
i þ �2

iþ1 � 2�i�iþ1�i;iþ1�x2
i þ ½2�i�iþ1�i;iþ1 � 2�2

iþ1�xi þ ½�2
iþ1 � �2

T � ¼ 0

where xi ¼ Vi=VT . This may be easily solved as ax2 þ bxþ c ¼ 0. The root is chosen so that, if
possible, the signs of CFi and CFiþ1 match that of CFT .



13.6 ESTIMATION OF VOLATILITY AND CORRELATIONS

This was discussed at some length in Chapter 10; everything that was ascribed to volatility
also applies to correlation. For relatively short time horizons, say under 1 month, weighted
or GARCH estimation schemes are more popular than unweighted, unconditional estima-
tion. Implied volatilities are seldom if ever used. This is for consistency. VaR is specifically
designed to measure the risk over a range of different activities, possibly taking place in
different geographical locations, and in different time zones. A large number of risk factors
may be used to capture this risk. It is highly unlikely that there will be liquid options traded
on all the risk factors. So whilst it may be feasible to obtain implied volatilities on some
factors, it would not be possible to get them on all factors, and therefore it would be
necessary to mix historic and implied volatilities—hardly a good idea!
Calculating the estimates is fraught with practical difficulties. A time series of consistent,

cleansed data is required for each risk factor. Non-business days will leave gaps in this time
series, and many data providers plug the gaps by simply repeating the previous business
day’s value. The problem is exacerbated when trying to estimate the correlation between
two risk factors from different countries as the non-business days are unlikely to match.
One alternative is simply to omit all data referring to a day which is a non-business day in
some country, but that may require the rejection of substantial amounts of data. This is
hardly adequate for the calculation of accurate estimates, and complex statistical
algorithms have been constructed to bridge the gaps more appropriately.8

A similar issue is asynchronous data, i.e. data that are available at different points in
time. For example, using closing prices in Tokyo and in New York means about a 14-hour
gap. But the markets will not have remained constant, so the estimated correlations
are likely to be biased downwards. Again algorithms have to be developed to make
adjustments.
These issues do not simply result in slight mis-estimates. A correlation matrix is by

definition positive semi-definite9: if it were not, then it would be possible to find ourselves
having to take the square root of a negative number when calculating the parametric VaR.
If all the correlations are calculated consistently, then there are no problems. But the data
issues described above, unless tackled carefully, can result in an infeasible correlation
matrix.10

Consider a typical international bank operating in, say, 20 currencies. If we assume
two yield curves per currency (bond and swap), each represented by 10 datapoints (the
regulatory minimum is 6 per curve), then this suggests:

IR: 20 � 2 � 10 ¼ 400

FX: ¼ 19

i.e. 419 volatilities and 87,571 correlations! A lot of data to be gathered, cleansed and
estimated, even if it is only once a quarter. Luckily there are practical ways around this.
Most transactions that the bank does are likely to be single currency, and the main risk for
many of them is a change in the absolute level of the curve. As we have seen in the
Appendix to Chapter 12, market rates are quite highly correlated. If these are the risk
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8 See, for example, the EM algorithm developed by JP Morgan, Risk Metrics Technical Document, Fourth Edition, 1996,
Chapter 8.
9 That is, the value x 0 :C : x 	 0 for any vector x.
10 See also the discussion in Chapter 3 of P. Best, Implementing VaR, published by Wiley, 1998.



factors, then only two or at the most three points would be required to capture the curve
movement adequately for risk management purposes. Unless the bank is doing a lot of
spread trades, correlation between the two curves in each currency is not very important,
and could be reduced to the correlation between two indicative points, one on each curve.
Furthermore, unless the bank is doing a lot of cross-currency trades, such as hedging JPY
bonds with USD instruments, then the cross-correlations can also be reduced to that
between two indicative points. This would reduce the IR gridpoints down to about 120,
but more importantly the correlations required to just over 1,500.11 So it is feasible to
reduce the data requirements quite significantly without seriously jeopardising the
effectiveness of risk management.

The estimation of volatility and correlation are crucial to the estimation of VaR, and the
above discussion only outlines some of the issues. See, for example, Best (footnote 10) for a
much more detailed discussion.

13.7 A RUNNING EXAMPLE

The swap portfolio was used above to illustrate how to estimate the VaR of a portfolio, and
to compare it with a delta hedge. However, we wish to discuss other VaR issues, and the
swap portfolio lacks the various required properties. Hence the portfolio below will be used
as a running example throughout the rest of this chapter.

$–C¼ FX option portfolio (all options sold out of 4 February 2008)

1 9-month USD call on USD10m at strike 1.469

2 15-month USD put on USD20m at strike 1.460

3 3-month USD call on USD25m at strike 1.478

4 21-month USD put on USD15m at strike 1.450

5 7-month USD call on USD20m at strike 1.472

6 18-month USD put on USD15m at strike 1.455

The current market data are shown below: they have been reduced so that each curve only
consists of three points. There are therefore only seven risk factors, six interest rates plus
the spot rate. This is hardly realistic, but adequate for illustrative purposes. In particular,
the example does not include changes in the volatility of the spot rate as a risk factor in
itself, as required by the current capital regulations. This in turn would lead to additional
data estimation requirements for the volatility of the volatility, as well as its correlation
with the other factors.
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11 a. Three points per curve¼ 40 � 3 ¼ 120 intra-curve correlations.
b. Single point inter-curve correlation¼ 0:5 � 40 � 39 ¼ 780.
c. FX correlations¼ 0:5 � 19 � 18 ¼ 171.
d. FX/IR correlations¼ ðmaxÞ0:5 � 40 � 19 ¼ 380.



Current market levels Interest rates

USD EUR

$–C¼ spot rate: 1.4832 6mo. cash 3.098% 4.364%
12mo. cash 2.896% 4.344%

Volatility of spot FX: 6.6% pa 2 yr swap 2.795% 3.991%

The first stage is to value the portfolio as shown in Worksheet 13.12. The discount curves
are built, and then zero-coupon curves interpolated.12 The appropriate zero-coupon rates
for each option are calculated in columns [7] and [8]. Finally the option prices, quoted in
terms of euros, are calculated by means of a macro and shown in column [10]. The value of
the total portfolio is �C¼3,052,543; negative as all options have been sold and the premia
taken upfront.
The second stage is to calculate the portfolio sensitivities. Changes in the risk factors (in

bp) may be entered into the shift area. The resulting PVBPs are given in the box on
Worksheet 13.13. The daily volatility and correlation data for the calculation of the
VaR are calculated from historic data (see Worksheet 13.11), and summarised below:

USD rates EUR rates

6mo. 12mo. 2 yr 6mo. 12mo. 2 yr FX

Volatility (pd) 0.8494% 1.1047% 1.3200% 0.3789% 0.5243% 0.7669% 0.4138%

6mo. 100% 91.55% 57.03% 45.85% 43.53% �0.64% �5.51%
12mo. 91.55% 100% 61.54% 48.54% 53.46% �4.23% �4.99%
2 yr 57.03% 61.54% 100% 30.56% 29.57% �1.51% �12.91%
6mo. 45.85% 48.54% 30.56% 100% 86.57% 7.78% 6.56%

12mo. 43.53% 53.46% 29.57% 86.57% 100% 6.20% 8.63%
2 yr �0.64% �4.23% �1.51% 7.78% 6.20% 100% �6.51%

FX �5.51% �4.99% �12.91% 6.56% 8.63% �6.51% 100%

We wish to estimate the 1-day 99% VaR. Individual VaRs are calculated in column [4] of
Worksheet 13.13 using the normal formula VaRx ¼ 10,000 � PVBPx � x � k � �x and finally
the total VaR. The worksheet shows that the portfolio has a Delta VaR of C¼265,301.

13.8 SIMULATION METHODS

In Section 13.2 we briefly discussed two approaches; the delta approach which we have
subsequently expanded, and historic simulation. This latter approach involved shifting risk
factors by amounts that had occurred historically, and then re-valuing the transaction. This
valuation approach is a simple example of a simulation method. There are two simulation
approaches widely used, namely historic and Monte Carlo. The former takes changes in
risk factors that have actually happened in the past, applies them to the current level of
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factors and re-values. The latter randomly generates the changes in risk factors according
to some volatility/correlation structure which itself is typically based upon historic
behaviour. In this section we will measure the VaR of the FX option portfolio using these
two approaches.

For historic simulation, 500 days (approximately 2 years of business days) of 1-day
logarithmic percentage changes have been collected. Each change is applied to the current
market rate, i.e. rnew ¼ rcurrent � exp½%rchange�, to create new factors, as shown below:

USD EUR C¼/S

6mo. 12mo. 2 yr 6mo. 12mo. 2 yr

Current 3.09750% 2.89625% 2.79500% 4.3640% 4.3440% 3.9905% 1.48320
rates

First 0.0000% 0.0000% 0.1974% �0.1102% �0.5195% �0.4022% 0.0252%
change
vector

Resulting 3.09750% 2.89625% 2.80052% 4.35919% 4.32149% 3.97448% 1.483574
new curve

Given the new curve, Worksheet 13.14 calculates the new value of the FX option
portfolio, and hence its change in value. This is repeated for all 500 days, and then the
1-day 99% VaR is estimated. As discussed above, there are various ways in which this may
be done; Worksheet 13.14 uses the ‘‘PERCENTILE’’ command to give C¼353,031. This
result is significantly higher than the Delta VaR, due to the negative gamma in the
portfolio, as all the options have been sold. This means, of course, that as the market
moves, the change in value is always worse than implied by the delta approach.

In principle, historic simulation is relatively simple to implement; all that is required is a
historic dataset to generate the change vectors which are then applied in turn to the current
levels of the risk factors. Some extensions will be discussed in Section 13.9.

Monte Carlo (MC) simulation, on the other hand, generates the change vectors
randomly using the statistical properties of the risk factors. The BGM simulation model,
as described in considerable detail in Chapter 11, modelled forward rates. The same
approach could be adopted here. Alternatively, as we are not so concerned about valuing
a transaction, but are interested in the changes in value, we might model the market rates
themselves, using historical data for calibration. This approach may not be consistent with
the current market, but would be simple to implement for risk management purposes.

If XiðtÞ represents the value of the ith risk factor at time t, then we could assume a
generation process such as:

dXiðtÞ ¼ Xiðtþ dtÞ � XiðtÞ ¼ �ift;XiðtÞg : dtþ
X

k

�itft;XiðtÞg : dzkðtÞ

i.e. the change in the ith risk factor at time t over an infinitesimally short period of time dt is
due to a trend term (which itself may depend upon both time and the current level ) plus a
number of inter-correlated stochastic movements where usually dzi � Nf0; 1g and
Efdzi; dzjg ¼ �i j. As a special case:

dXiðtÞ=XiðtÞ ¼ �i : dtþ �i : dziðtÞ
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with a constant drift and single constant volatility describes the usual log-normal process
for Black and Scholes options. It can be easily shown that13:

XiðTÞ ¼ Xið0Þ � expfð�i � 1
2
�2
i Þ :T þ �i :

p
T : dzig

This means that the continuously compounded return over the period T is
�Nfð�i � 1

2
�2
i Þ :T ; �i :

p
Tg. Notice that this formula implies that time horizon scaling

is applied to the changes in each risk factor, and not to the overall VaR.
The above approach has been used to estimate the VaR of the FX option portfolio. First,

the correlation matrix has been estimated using historic data, and then decomposed; see
below as well as the correlation and decomposed matrices from Worksheet 13.11.
Worksheet 13.15 then uses a Table function to generate 500 random scenarios, and to

construct the histogram as before. It operates in the following steps:

1. Generate a random vector of seven normal distributed variables, each drawn from a
distribution with zero mean and appropriate standard deviation (volatility).

2. Apply the decomposed correlation matrix to generate the correlated random vector.
3. Calculate the new levels of each risk factor using the above formula using the

appropriate time horizon.
4. Re-value the option portfolio (as in historic simulation).
5. Repeat this process as often as required—the worksheet does 500 samples.

Worksheet 13.15 simultaneously uses antithetic sampling, i.e. the negative of the random
vector generated ind1 above, to generate another 500 results. The VaR number is then
calculated from the overall 1,000 observations:
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13 By defining Y ¼ lnðXÞ, applying Ito’s lemma and integrating from 0 to T . See, for example, Hull, ibid., pp. 230–1.
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The resulting histogram, which is similar to that generated by historic simulation, is shown
above. The 1-day 99% VaR estimate is C¼307,832 (but will obviously change for each
simulation); this is significantly different from either the Delta VaR or the HS VaR. When
implementing the MC VaR, we are assuming that the underlying risk factors are being
sampled from a multivariate normal distribution—which is unlikely to be correct. The
results are summarised in the table below:

VaR Ignores Assumes Assumes 1-day 10-day

method convexity normality of normality of 99% 99%

risk factors result VaR VaR

distribution

Delta Yes Yes Yes 265,301 838,955
HS No No No 353,031 1,448,619
MC No Yes No 307,832 1,229,906

In comparison with the delta method, simulation approaches are deemed to be more
accurate but inherently slower because they require a full re-valuation of the portfolio
for each scenario. If the normality assumption can be justified, then MC will ultimately
produce more accurate results than HS, simply by dint of running more scenarios.

If the time horizon is increased to 10 days, then the divergence between the delta and the
simulation methods becomes increasingly obvious as convexity becomes more important.

13.9 SHORTCOMINGS AND EXTENSIONS TO

SIMULATION METHODS

Historic simulation is very simple to apply in practice, although there are often data
integrity issues to be resolved during the collection of data from disparate sources and
time zones, as discussed above. There are some other difficulties as well.

For example, the figure below shows the progressive calculation of the 99% VaR as the
number of scenarios increases up to 500:
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The early part of the chart is extremely characteristic, with large upward jumps followed by
slow declines. This is easily explained. Suppose 100 simulations have been done so far;
the 99% VaR estimate will be determined at most by the two largest losses so far recorded.
The impact of the 101st simulation now has to be included:

Either a. the new change in value shows a loss greater than the current VaR
estimate; the new VaR estimate is therefore increased, and possibly
substantially

Or b. the new change in value shows a gain or a loss less than the current VaR
estimate; the new VaR estimate is reduced but typically by a small amount,
as there are already 99 observations on the right-hand side of the
distribution.

Thus VaR estimates from a small number of scenarios are often described as unreliable or
‘‘choppy’’. To overcome this, a large number of scenarios are required until the estimate
smoothes out, as shown by the latter part of the chart.
This introduces a second issue, namely that of ‘‘relevance’’; just how relevant are changes

that occurred some 2 years ago in estimating the VaR going forward from today? It is often
argued that, especially for short-term VaR, what has happened most recently is of most
relevance. This issue is sometimes referred to as ‘‘stationarity’’, i.e. do the historic data
possess significant trends?
Unfortunately the immediate solutions to these two shortcomings are in conflict. One

can increase the reliability of the VaR estimate by increasing the number of scenarios, but
that in turn reduces the relevance. Notice that this problem does not arise with MC
simulation, as the number of randomly generated relevant scenarios can be increased
without limit.14

The reason for the unreliability of VaR estimates is, for example, we only use 5 scenarios
out of 500 to estimate 99% VaR. Any change in one of those 5 may change the VaR
dramatically, whilst changes in the other 495 are of no consequence. One way around this
would be to fit a theoretical distribution to the histogram. This distribution would use all
500 observations, and therefore would be quite robust to one more observation. Unfortu-
nately the fitting would be concentrated on the central mass of the observations, and would
be likely to model the tail relatively inaccurately—precisely what is not required because
VaR is a property of the tail. A ready compromise therefore is to select some threshold,
such as all losses greater than (say) C¼200,000, and model (in this case) the 34 observations in
the tail; this approach is called Peaks Over Threshold (POT). The model could be either
some simple regression on the frequency or cumulative distributions or by some more
complex means. For example, increasing use is being made of Extreme Value Theory
(EVT) which effectively fits a statistical distribution simply to the tail.
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14 It is possible to combine random sampling with historic simulation in what is called ‘‘bootstrapping’’. Normal historic
simulation effectively samples from historic data without replacement and where observations are drawn in their order of
occurrence. The bootstrap method is to sample from the data with replacement, i.e. it is possible to use the same change vector a
number of times. But this method is critically dependent on the assumption of stationarity, i.e. no trends.



In the discussion that follows, the histogram will be flipped over, so that we are analysing
its positive right-hand tail—this follows the usual convention in statistics. A common
assumption is that the tail follows a negative exponential distribution:

gðyÞ ¼ ð1=�Þ : expf�y=�g for y 	 0

where y ¼Change in value�Threshold.

Negative exponential
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Section 13.15 (Appendix) shows how to estimate an optimal � from a set of tail
observations, and also how to calculate the VaR using the formula:

VaRP ¼ t� � � lnfðN=ntÞ : ð1� PÞg
where nt is the number of observations above some threshold t; N is total number of
observations; and P is the VaR probability (typically 95% or 99%). The results are very
similar to the earlier historic simulation, suggesting that the simulation had stabilised by
500 observations—as we can see from the above graph.

VaR using a negative exponential model

� ¼ C¼86,677
VaR confidence level 95% 99%
VaR–Neg Exp 226,652 366,153
Expected loss 313,329 452,830

See Worksheet 13.16. Now we have a model of the tail, we can explore other properties. An
extremely useful one is the ‘‘mean excess function’’ defined as:

eyðvÞ ¼ Efy� v j y > vg
In words, it is the expected value of a loss, given that the loss will exceed a certain level.
For example, if we set v ¼VaR, we find for a negative exponential model that:

eyðVaRÞ ¼ VaR þ �

i.e. how much on average might you lose, given that the VaR level has been exceeded?
This is probably a much more interesting statistic than the VaR number itself.
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Unfortunately, whilst negative exponential distribution is very simple, it only possesses
one parameter which is really for location. In practice, this is seldom sufficient, especially as
the output from a simulation may have fat tails which decline more slowly than a negative
exponential. A distribution frequently used in practice is the Generalised Pareto, whose
density function is expressed as follows:

gðyÞ ¼ ð1=�Þ � ½1þ � � y=���ð1þ1=�Þ for y 	 0

This has an additional parameter � controlling the tail. The GP reduces to the negative
exponential if � is zero, but if � > 0 this corresponds to a tail that is fatter than that of a
negative exponential, and if � < 0 then a thinner tail15—see graph below. Section 13.15
(Appendix) describes how these parameters may be estimated using maximum likelihood
techniques.

Negative exponential compared to GPD
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Worksheet 13.17 calculates � whilst holding � equal to the negative exponential value:

VaR using a Generalised Pareto model

� ¼ C¼86,677 � ¼ 0.070
VaR confidence level 95% 99%
VaR–GP 226,941 377,817
Expected loss 322,170 484,402

Notice that � is positive, suggesting that historic simulation actually generated a fatter tail
than the negative exponential. The new VaR estimates are therefore higher.
Modelling may be approached in a different fashion, which provides some additional

insights. Take the 500 observations and divide them into (say) 20 blocks, each containing
25 contiguous observations. Record the largest percentage loss Zi suffered within each
block i; these are shown on the far right-hand side of Worksheet 13.14.

336 Swaps and Other Derivatives

15 In this case the region of y is restricted to ensure that ½1þ � � y=�� > 0.



Section 13.15 (Appendix) discusses the Generalised Extreme Value distribution that the
Zs might, at least in theory, be drawn from. This distribution is given by:

HðxÞ ¼ expf�½1þ � : x��1=�g

where x ¼ ðZ �mÞ=s; m and s are location and dispersion parameters; and � models the
tail. The GEV is given different names depending on the value of �; if � > 0 then this is
called a Fréchet distribution and has fat tails.

Worksheet 13.18 takes the extreme block losses in column [1], re-orders them in column
[2] and calculates estimators for � in column [4] as described in Section 13.15 (Appendix).
Values for m and s are then estimated by maximising a likelihood function in column [7]. A
number of the estimators for � were used, and the one that gave the highest overall
likelihood selected.

The results from the worksheet are shown in the box below:

Percentiles VaR VaR (%) VaR ($)

99% 26.123% 797,409
95% 18.026% 550,247
27.74% 95% 6.830% 208,500
77.78% 99% 11.826% 361,008

As discussed in Section 13.15 (Appendix), a percentile from a GEV distribution describes a
property of an extreme. For example, based on the results above, there is a 5% chance that
the worst loss out of a block of 25 observations will exceed 18.026% of the current value,
i.e. C¼550,247. To estimate the level such that there is a 5% probability that any observation
will exceed it, this corresponds to 95%25¼ 27.74% percentile. Thus one can see that the
VaR numbers provided by this method are again very similar to those estimated by historic
simulation.

However, this form of modelling has another very interesting use, namely in the
estimation of worst-case scenarios. For example, the interpretation of the 99% percentile
could be ‘‘there is a 1% probability that the worst loss on any day in a month (say, 25
business days) will exceed C¼797,409’’.

The reason for discussing these two EVT approaches is that they extend historic
simulation in two ways:

. because they make use of more observations than simply the few in the far end of the tail,
the VaRs are less choppy and hence more reliable;

. modelling the tail enables statistical statements about the tail that could not have been
addressed using more conventional analysis, and in particular about the likely size of loss
given that the loss has exceeded the VaR level.

Both methods however assume stationarity, i.e. analysis does not depend upon the
temporal ordering of observations. The graph below shows the extreme losses from each
block ordered back through time.
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Crudely classifying market conditions into high, medium and low volatility, subjectively it
would appear that the market is now moving into a period of higher volatility after low
volatility for most of the past 2 years. Nearly 2 years ago, there were a couple of exceptional
days, when the losses spiked up, but nothing more. If the reader examines the detailed HS
calculations, he (or she) will see that all the other big losses occurred in the very recent past.
Risk managers are often divided on the following question: should the rising volatility

have a greater impact on the VaR estimate, or should the VaR be equally weighted across
the entire 2 years? Some prefer to use recent market behaviour as the best predictor for
future behaviour, and others would rather look back across the entire range of information
available. Either methodology is permitted under the Basel Accord.
If we wanted to modify historic simulations to be more weighted to recent market

behaviour, then a simple way would be to scale each of the changes as follows:

. let VN and CN be the current volatility vector and correlation matrix, and VH and CH the
historic volatility vector and correlation matrix, respectively;

. let DrH be a historic change vector;

. estimate DrN ¼ ðVN=VHÞ � DrH for adjusting for shifts in volatilities;

. DrN ¼ C
1=2
N :C

�1=2
H :DrH where the square root matrices are given by a Cholesky

decomposition for shifts in correlations.

A more sophisticated approach16 modifies historic simulation so that a weight, related to
the length of the historic period, is attached to each observation. Observations correspond-
ing to recent changes in risk factors carry higher weights than observations from more
distant periods. For example (see Worksheet 13.19):

. Let i ¼ 0; 1; 2; 3; . . . ;K represent the time of historic information (where 0 is the most
recent) (column [1]).

338 Swaps and Other Derivatives

16 See J. Boudoukh et al., ‘‘The best of both worlds’’, Risk, 11(5), 1998, pp. 64–7.



. Let DPi be the percentage change in value of the portfolio due to the ith set of returns
(column [2]).

. Define weights wi ¼ ½ð1� 	Þ=ð1� 	KÞ� : 	 i�1 where
P

i wi ¼ 1 and where 	 is some
positive number< 1. The worksheet shows the weights in column [3] using 	 ¼ 95%
and K ¼ 500.

. Place DPi in ascending order, together with the associated weights (columns [4] and [5]).

. Accumulate the weights; see column [6].

. To obtain q%VaR, locate (1� q%) in the accumulated weights column and read off the
associated DPq. This may require interpolation to find the exact point. Finally, calculate
VaRq ¼ Current value �DPq.

The following results are calculated in Worksheet 13.20:

VaR Interpolated return Absolute VaR

99% �14.71% 448,921
95% �9.63% 294,056

As expected, the VaRs are considerably higher than those calculated using unweighted
HS.

The accuracy for most parameter estimation from a Monte Carlo simulation is
proportional to 1=

p
n where n is the number of scenarios. A typical number in practice,

especially for pricing, is n ¼ 10,000 which will give an error of 1%. Most simulations
however are run with a stopping rule, which will stop the simulation if the parameter
being estimated is not changing by more than a defined amount per set of scenarios. This
accuracy is on average, and it is feasible for the simulation to have to run for many more
scenarios before stopping.

Given that each scenario requires a number of random variables, Monte Carlo is both
computationally intense and also critically dependent upon the quality of the random
number generator. Strictly speaking, these numbers are only pseudo-random, i.e. they
have been generated by an algorithm using deterministic rules with no random com-
ponents. These rules take an initial value (called a ‘‘seed’’) and generate a series of numbers
which should pass the standard tests for randomness. Eventually the generated number will
be equal to the seed, so that the generator will now cycle, producing the same series. The
cycle length must be much greater than the number of random numbers required for the
simulation; if not, the apparent accuracy is spurious.

Worksheet 13.15 simulated changes in the risk factors using the expression:

XiðTÞ ¼ Xið0Þ � expfð�i � 1
2
�2
i Þ :T þ �i :

p
T : dzig for i ¼ 1; . . . ; 7

where dzi is a random number drawn from Nð0;CÞ. Most random number generators
generate numbers drawn from a uniform distribution U½0; 1�. This means that all the
numbers lie between 0 and 1, and each value has an equal chance of being generated.
The random number is then transformed from uniform to normal by inverting the normal
cumulative function F as shown below:
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The reason why so many samples have to be taken is to ensure that the random samples
cover the whole of the 0–1 line, and do not cluster. But this idea gives rise to quasi-random
sampling, i.e. if you want to ensure that there is good coverage along the line, why not:

. divide the line up into a number of segments (say, N);

. use the midpoint of the first segment as the uniform random number;

. and transform that to a normal sample;

. the next time a random number is required to be drawn from the same distribution, use
the midpoint of the second segment;

and so on? No random sampling at all! The error for an approach such as this is
proportional to 1=n. Unfortunately it will not work in practice because the simulation
cannot stop until all segments have been sampled, i.e. there is no stopping rule. Hence the
number of simulations that have to be run is NK where K is the number of risk factors.
However, there are techniques which pick the segments quasi-randomly, and can there-

fore reduce the number of samples required significantly, with an error of the order
lnðnÞK�1=n. Unfortunately the methods do tend to break down with high K—sometimes
called the ‘‘curse of dimensionality’’. Stein’s algorithm is one that has proved to be
remarkably robust, and appears to work well even for high K .17 There are a range of
other variance reduction techniques that we have already seen in this book, such as
antithetic sampling and control variates.

13.10 DELTA–GAMMA AND OTHER METHODS

In summary, delta approaches are fast but likely to be inaccurate in the presence of
significant second-order (and higher) effects; simulation methods however are much more
accurate but slow. Are there any compromises that might produce fast accurate results?
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17 A good broad introduction to sampling is Chapter 3 in P. Glasserman,Monte Carlo Methods in Financial Engineering, Springer,
2000. See also M. Stein, ‘‘Large scale properties of simulations using Latin hypercube sampling’’, Technometrics, 29(2), 1987,
pp. 143–51.



One approach is to introduce the second term explicitly into the VaR calculations. This
may be done either by extending the delta approach or by simulation.

For a particular portfolio, the change in value for a single risk factor x is approximately
given by Taylor’s theorem:

DValue 
 ð@PV=@xÞ :Dxþ 1
2
: ð@ 2PV=@x2Þ : ðDxÞ2

For an option, especially if it is not too close to maturity, the approximation is quite good.
The pair of graphs show the effectiveness of the approximation for an ATM option with
1 year and 0.25 years to maturity, respectively. The changes in the underlying have to be
quite large before the approximation becomes ineffective.

Write the above equation as:

DValue 
 ð@PV=@xÞ : x : ðDx=xÞ þ 1
2 : ð@ 2PV=@x2Þ : x2 : ðDx=xÞ2

If it is assumed that ðDx=xÞ is distributed normally, then ðDx=xÞ2 is chi-squared, and
unfortunately DValue has a distribution which cannot be analytically defined. The stan-
dard deviation of the distribution can be estimated relatively easily, but the relationship
between the multiplier and probability can only be numerically calculated. Most methods
use approximations to estimate the final distribution, although it is possible to derive an
exact expression.18

An alternative approach is to modify the simulation methods. For multiple risk factors,
the above equation may be written as:

DValue 
 d :Dxþ 1
2
:Dx 0 :A :Dx

where Dx is the vector of changes in the risk factors, and d and A the delta vector and
gamma matrix for the portfolio. Notice that this expression has no knowledge of individual
transactions within the portfolio. If a particular change Dx is observed, DValue can be
calculated extremely quickly (see Box 1 of Worksheet 13.21).

The delta vector in Worksheet 13.20 had already been calculated when we estimated the
VCV VaR. The gamma matrix elements were estimated by:

a. For the ith risk factor
e �ii ¼ �þi � ��j (as in Chapter 12).
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b. For a pair of different risk factors i and j
e assume that Dxi ¼ Dxj ¼ 1 bp and that all other Dxs are zero;
e therefore, DValue 
 �i þ �j þ 1

2
: ð�i j þ �jiÞ ¼ �i þ �j þ �i j as � ¼ �ji;

e i.e. �i j ¼ DValue� ð�i þ �jÞ.

The full delta–gamma data are shown in Worksheet 13.21. In practice, many risk
management systems could not calculate a complete gamma matrix with all the cross-
pairs, but only a full gamma matrix which consists of the leading diagonal with no crosses.
There may even be systems that can only calculate gamma with respect to the underlying
alone (as commonly defined in option textbooks). The results below were also calculated
for these situations.
Worksheet 13.21 uses historic simulation data, and calculates the absolute change in

basis points by 10,000 � rcurrent � ½expf%rchange �
p
Tg � 1� as shown in Box 3. Four sets of

calculations are done and shown in Box 4:

2. Using delta plus the complete gamma matrix as above.
3. Using delta plus the ‘‘full’’ gamma’s matrix.
4. Using delta plus the FX gamma only.

The results are as follows (see Worksheet 13.21 for the resulting histograms):

10-day 99% VaR

Delta approximation 959,388
Delta–gamma approximation �1,243,388
Delta–full gamma approximation �1,243,378
Delta–FX gamma approximation �1,242,914

As expected, the delta approximation closely replicates the delta method whilst the three
gamma methods produce VaRs similar to the full simulation. Indeed there is little different
between the three, which suggests that in many situations a full gamma approach is likely
to be adequate. Obviously, individual options do not have to be re-valued, and therefore
this simulation is very much quicker than a full simulation, especially when applied to a
much larger portfolio:
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In summary delta–gamma methods do appear to provide considerably increased accuracy
over delta methods, and yet are much faster than full simulations. However, they will only
work when the third-order effects are relatively small. One approach that has been applied
to overcome these effects is to use ‘‘gridpoint’’ approximations, i.e. instead of using a single
delta and gamma for all changes, to use different deltas and gammas at different grid-
points.19 However, for portfolios that contain significant third-order effects due to high
gearing or discontinuous payouts, there is little substitute for full simulation.

19 See, for example, M. Pritsker, ‘‘Evaluating VaR methodologies’’, Chapter 27 in Understanding and Applying VaR, published by
Risk, 1997.



We have concentrated on the deltas and gammas of a portfolio. It was mentioned above
that, increasingly for option portfolios, volatility is being used as a risk factor in its own
right. Delta–gamma approximations may be easily extended to include a vega term if
necessary.
Finally, there are a range of other approaches that are used to speed up the calculations.

Usually the portfolio across an entire bank’s operations is likely to consist of mainly
‘‘linear’’ transactions, especially if we worked in terms of discount bond prices, and only
a relatively small residual will have significant gamma. For example, most banks would
transact loans and deposits, buy bonds, enter into swaps and FX agreements, and only a
very small proportion of their business would possess non-linear or optionality properties.
A delta approach would be sufficiently accurate for such linear transactions, and simula-
tion would only be required for the non-linear. The trick of course is to combine VaR
estimates together in some fashion, and usually the VaR–delta20 is used as a first-order
estimate.

13.11 SPREAD VaR

Credit-sensitive trading has significantly increased over the past few years: see, for example,
the rapid growth in the eurozone corporate bond market. With issuance in the govern-
mental bond markets declining since 1998 across Western Europe and in the US, corporate
bonds are now frequently quoted as spreads over some interbank curve, rather than
spreads over governments. When calculating the hedges in Chapter 12, we explicitly
assumed that the bond–swap spread remained constant. Of course in practice this isn’t
true, and changing spreads represent a source of risk.21

We will analyse a small (artificial) example, and show how spread risk may be isolated.

Details of bond portfolio

Today’s date 24-Sep-99

Dirty Valuation

Bond Maturity ANN coupon price curve

1 29-Mar-04 5% 98.61 Libor 1
2 12-Jun-02 6.50% 100.49 Libor 2
3 10-Dec-01 8.25% 104.23 Libor 3
4 13-Sep-02 7% 93.48 Libor 3
5 17-Jun-03 4.50% 99.68 Bond
6 19-Feb-01 5.50% 102.98 Libor 1
7 5-Sep-03 6.75% 98.49 Libor 2
8 8-Jul-02 4.75% 100.60 Bond
9 25-May-04 9.50% 99.38 Libor 3

10 10-Nov-03 7% 104.90 Libor 2
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20 See M. Garman, ‘‘Improving on VaR’’, Risk, 9(5), 1996, pp. 61–3.
21 Following the financial crisis in 2007 and onwards, it became increasingly evident that the regulatory treatment of credit spread
risk was inadequate. In July 2009, the Basel Committee issued a new paper Guidelines for Computing Capital for Incremental Risk
in the Trading Book. This requires banks to estimate, amongst other risks, the 1-year 99.9% credit spread risk.



There are 10 bonds in the portfolio, valued off four different curves. The bond curve is the
base curve, and the Libor curves are increasing spreads over it. The current levels of each
curve are known, together with volatility and correlation histories:

Current curves

Bond Libor 1 Libor 2 Libor 3

1 yr 4.688% 5.438% 6.438% 8.438%
3yr 4.731% 5.581% 6.781% 9.181%
5yr 4.855% 5.805% 7.205% 10.205%

The total 1-day, 95% VaR of the portfolio may be easily calculated in the usual way as
follows:

. calculate the sensitivities of each bond with respect to its valuation curve;

. sum the sensitivities for each curve to get the total sensitivity with respect to each curve;

. apply the Delta VaR approach in the usual way, using the data in Box 1 of Worksheet
13.25, which gives a total VaR¼ $59.168m.

But where did this VaR come from? Define Vi as the vector of individual VaRs from the ith
curve, and Cii as the corresponding 3� 3 correlation sub-matrix. We can calculate the VaR
due to each one of the individual curves moving; for example, the VaR due to the Libor 3
curve moving is fV3 :C33 :V3g1=2 ¼ $32.486m. We can also calculate the contribution due
to the interaction between the curves by using f2 � Vi :Cij :Vjg: note that this number is not
necessarily non-negative as Cij is not a proper positive semi-definite correlation matrix, and
therefore a square root cannot be taken. The results are shown in Box 2. The total
contribution of the four curves may be calculated in a variety of ways; in the box, all
the interaction VaR was allocated to the curve with the lower credit.

The problem with this type of analysis is that we can say nothing about the source of the
movement: was it due to the bond curve or to one of the spreads? The difficulty is that
the Libor curve implicitly includes the bond and spread curves. In order to be able to break
the VaR down into its fundamental components, we need to transform the world from
{Bond�Libor} into {Bond� Spread} where the spreads are additive over the bond curve.
In this world the effects may be easily separated. Unlike before, the bond valued off the
Libor 3 curve will now have sensitivities to the bond curve as well as the three spread
curves.

The spread properties must first be calculated:

. a current spread S is simply the difference between two curves X and Y ;

. spread volatilities can be calculated using varðSÞ ¼ varðXÞ � 2 � covðX ;YÞ þ varðYÞ;

. the correlations can be calculated from covðX;SÞ ¼ covðX ;XÞ � covðX ;YÞ, etc.

Worksheet 13.22 shows the precise details, and the resulting {Bond� Spread} data (see
Boxes 1 and 2).

First, the total VaR can be re-calculated (see Box 3 of Worksheet 13.25). This is of course
exactly the same as before: no risk has been generated or removed. However, individual
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VaRs are quite different; for example, the bond curve VaR is now much higher because,
when that curve moves, it affects all the bonds. If we look at the components as shown in
Box 4, we see that some of the interaction effects are negative suggesting that there is a
negative correlation between some of the components, unlike in the {Bond�Libor} world.
The percentage contributions are quite different as well, suggesting much greater potential
losses if the bond curve moves adversely (see Boxes 3 and 4 of Worksheet 13.25).

But the major advantage to this approach is in a better understanding of the true risks
being run. For example, suppose we have a portfolio which is long Libor 3 bonds and short
government bonds. We could manipulate the amount of the government bonds so that the
net VaR off the bond curve is very low. However, this hedge will have no effect if any of the
spreads shifted, so our VaR report should still show relatively high VaR for the spread risk.

13.12 EQUITY VaR

Finally, a brief look at calculating VaR when there are equities (or indeed commodities) in
the portfolio. Equities may be handled quite simply by treating each one as a separate risk
factor. For example, consider the following simple USD portfolio:

Holding Current price Current value (USD)

Stock 1 100,000 10 1,000,000
Stock 2 500,000 4 2,000,000
Index 1,000,000 5 5,000,000
Equity forward �953,193

————
Total (USD) 7,046,807
Total (EUR) 4,751,083
3mo. USD Libor 3.145%
USD–EUR spot rate 1.4832

It consists of two stocks, a holding of the index and an equity forward contract to pay $12
per share on 500,000 shares of stock 1 in 3 months’ time. Assuming (quite simplistically)
zero growth in the share price, the value of the forward is 500,000 �½10� 12 �DF3�. We
wish to calculate the 1-day 95% VaR in euros. We have therefore five risk factors: the two
stock prices, the index price, 3mo. Libor and the spot rate. Given appropriate volatilities
and correlations, it is straightforward to calculate VaR¼ C¼305,849 (see Worksheet 13.27).
However, using individual stocks may increase the data requirements significantly.

Consider, for example, a single portfolio replicating the S&P 500: the number of cross-
correlations is in excess of 100,000! For a bank in which equity constitutes a significant
proportion of activity, the accuracy provided by modelling individual stocks may well
warrant the time and cost of collecting and cleansing the data. But for many organisations,
the effort is simply not worthwhile.
Beta analysis of the equity market is very common, where beta is defined in:

rs ¼ �s þ �s : rI þ "s
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where rs and rI are the return on a share s and on the index I , respectively;
�s is excess return on share (in theory, this should be zero);
�s is the coefficient linking share performance to the index; and
"s is an error term, assumed to be uncorrelated with either the market or the

other stocks.

We can therefore write22:

varðrsÞ ¼ �2
s � varðrI Þ þ varð"sÞ ! �2

s ¼ �2
s�

2
I þ �2

"s

If we assume that the idiosyncratic risk �2
"s represents a proportion xs of the total risk, so

that �2
"s ¼ xs � �2

s , it’s easy to show that �s should be approximately equal to
ð�s=�I Þ �

pð1� xsÞ. Building on this, we would expect the correlations �s;I ¼
pð1� xsÞ

and �1;2 ¼
pð1� x1Þ �

pð1� x2Þ. We can therefore replace the individual stocks in the
above example by the index; that is:

VaR(equity) ¼ f�I � I þ �1 � S1 � �1 þ �2 � S2 � �2g � �I � 1:645
where �I is sensitivity with respect to the index, etc. Continuing the example, we have now
reduced the portfolio down to effectively three factors (see Worksheet 13.28).

Factors Beta VaR VaR

individual using beta

stocks analysis

Stock 1 51.1% 84,166
Stock 2 95.6% 56,111
Stock index 122,743 244,969
3mo. Libor 489 489
FX �122,736 �122,736

———————————
Total VaR 305,849 284,780

Depending upon a single factor to represent each stock is of course a gross approximation,
but it is a trade-off between accuracy and data availability. It is feasible to extend the above
analysis into using more factors23 to represent the behaviour of the individual stocks, but
such methods are not so widely accepted.

13.13 SHOCK TESTING OF VaR

VaR, and indeed traditional risk measurement, measures risk under ‘‘normal’’ market
conditions. All the methods described ultimately use historic information, whether it is
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22 This may be easily generalised for a portfolio: if rP ¼ w 0 : r then

varðrPÞ ¼ w 0 :Cv :w ¼ ðw 0 : � : � 0 :wÞ � varðrI Þ þ w 0 :D" :w

where D" is a diagonal matrix of varð"sÞ.
23 See, for example, R. Roll et al., ‘‘The Arbitrage Pricing Theory approach to strategic portfolio planning’’, Financial Analysts J.,
May/June 1984, pp. 14–26, or M.A. Berry et al., ‘‘Sorting out risks using known APT factors’’, Financial Analysts J., March/April
1988, pp. 29-42.
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directly through simulation or indirectly through the calculation of volatilities and correla-
tions, and therefore are tacitly suggesting that the future will resemble the past. If the past
period had low market volatility, then obviously the VaR estimates of the future would
reflect that. There is a definite user and regulatory requirement for additional ‘‘stress’’
testing, i.e. re-valuation under extreme movements of market factors. The requirement for
this has become more evident rather than less over the past few years.24

In practice, a distinction needs to be made between a stress test and a shock test.
Stress testing usually involves the construction of severe but plausible scenarios that
would affect the entire organisation. Within a scenario, not only may markets behave
abnormally, but credit and liquidity risks are likely to increase significantly, prudent
valuations may be difficult to achieve, model assumptions may break down, hedging
strategies may fail and so on. These scenarios are often based upon real historic events
such as the Asian crisis of 1997, the Russian crisis of 1998, and of course the worldwide
recession of 2007–9.
A shock test is somewhat narrower in its scope, and usually confined to significant

movements in the financial markets, without any subsequent other effects. They are widely
applied by market risk managers, often on a daily basis, to explore the acceptability of
these large movements and to investigate the effectiveness of hedging strategies. For
example, in Section 12.10 the robustness of a hedge was tested by using 121 IR/volatility
shock scenarios.
Unfortunately, in many banks, the term ‘‘stress testing’’ is applied to shock tests, leading

to general confusion. A discussion of proper stress testing, and how it is applied, is to a
large extent outside the scope of this book, although Section 13.14 will briefly discuss it.
The current section will briefly describe some of the issues involved in shock testing, and
how they may be overcome.
A classic approach to shock testing is to change the current level of market factors.

For example, shifting each factor by some (positive or negative) multiple of its volatility,
i.e. f new ¼ f old � expfþm : �g 
 f old � ð1þm : �Þ where � is the time horizon-adjusted
volatility. An alternative is to make an absolute shift in the factor level, but this may
result in negative factors. The selected portfolio could then be re-valued using the shifted
factors, and the change in value reported.
The above, whilst sounding simple, presents difficulties in the context of imperfect risk

management, namely in the presence of an explicit (or even implicit) correlation matrix.
The pattern of shifts must be consistent with the structure of the correlations. Various
approaches have been tried in practice. For example, one approach is to sub-divide the
market risk factors into two sets. The first small set consists of ‘‘important’’ mainly
independent factors which may be shifted as above. The second, much larger, set consists
of factors that will change as a result of correlated relationships. For example, two factors
in Set 1 could be the 5 yr swap rates in two different currencies on the basis that their
correlation is likely to be fairly low; then all the other swap rates would be put into Set 2 as
they are likely to be highly correlated with one of these two 5 yr rates. Their shifts would
then be driven by the shifts in the 5 yr rates.
For example, let F1 and F2 be the two sets. Assume that the covariance matrix C can be

24 The Basel Committee published a number of relevant consultative papers in January 2009 emphasising this requirement; for
example, Principles for Sound Stress Testing Practices and Supervision, January 2009 (see also footnote 21).
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partitioned into sub-matrices:

fC11 corresponding to F1; n� n

C22 corresponding to F2; m�m

C12 ¼ C21 the cross-matrices; n�m and m� ng
So we could:

. generate the set of percentage changes R1 for set F1;

. calculate the changes for F2 by R2 ¼ C21 :C
�1
11 :R1.

If we are prepared to make some distributional assumptions, then these could be taken
further. Let us assume that percentage changes in the risk factors are all drawn from a
multivariate Gaussian (or a Gaussian copula). Then, random scenarios would be the
following:

. generate the set of scenarios R1 for set F1;

. calculate the new mean vector of Set 2, l2;new ¼ l2;old þ C21 :C
�1
11 : ðR1 � l1Þ;

. calculate the new conditional correlation sub-matrix C22;new ¼ C22 � C21 :C
�1
11 :C12;

. randomly sample the set of scenarios R2.

Changing the levels of the factors is the main form of shock testing, primarily because these
are events that can happen very rapidly. But it is also useful to shock the volatilities and
correlations in a consistent fashion. As they are time-based averages, they react more
slowly than levels, but can have significant effects. Shifting volatility is also equivalent
to changing the time horizon, which is itself a surrogate for liquidity.

It is probably sensible to use the same sub-division as above. Shift the volatilities in Set 1,
and then interpolate/extrapolate in some fashion to estimate the shift in the volatilities in
Set 2. Shifting the factors or the volatilities by large amounts is likely to increase risk
measures but probably gain few other insights. The impact of shocking the correlation
matrix on the other hand is far less intuitive, and may reveal a range of unexpected events.
Unfortunately this form of shock testing is also the most complicated because we have
to ensure that the resulting, shocked matrix is still a well-specified correlation matrix, i.e.
it must satisfy certain properties including remaining positive semi-definite under all
circumstances.

For example, suppose that we partition the correlation matrix O as fOaa;Oab;Oba;Obbg
where the sub-matrix Oaa is to be shocked:

. Let Os
aa be the new shocked matrix; for the moment, assume that it is itself well-specified.

. It is perfectly feasible however to find that Os ¼ fOs
aa;Oab;Oba;Obbg is not well-specified.

. Thus either Os
aa or the cross-matrices Oab ¼ Oba will have to be adjusted until Os is

well-specified.
. Kupiec25 has suggested a simple (albeit potentially computer-intensive) algorithm when

Os is not well-specified

25 P.H. Kupiec, ‘‘Stress testing in a VaR framework’’, J. of Derivatives, 6(1), 1998, pp. 7–24.



e define Osc ¼ ð1� cÞ :Os þ c :O for 0 � c � 1;
e where Os0 is not well-specified, whilst Os1 is well-specified;
e there is likely to exist a positive value of c so that Osc is well-specified.

How should Oaa be shocked? Selecting the actual correlation shifts is less straightforward.
Percentage shifts can only apply, and these must be bounded to ensure that the correlations
lie between �1 is true at all times. It may be better to consider shift strategies such as
shifting all correlations closer to zero or to �1, or even setting the correlations equal to the
extremes. If Os

aa is not a well-specified matrix, then one approach might be to find a sub-
matrix of it that was well-specified, and use the above algorithm. An alternative would be
to use, for example, the hypersphere decomposition algorithm designed by Rebonato and
Jackel.26

13.14 STRESS TESTING OF VaR

One definition of a stress test is the determination of potential loss if a severe but plausible
scenario occurred. This is not the only definition that is used, as we will discuss shortly.
The performance of stress tests during 2007–9 came in for a lot of criticism, and the
Basel Committee issued a number of documents in early 2009 proposing changes to the
regulatory framework. One change in particular was the introduction of stressed VaR.
There are two forms of stress test widely used. Event stress testing, as described above,

starts with a scenario, and then analyses the implication of the scenario. The scenario may
be based upon a real historical event, such as the stock market crashes in 1987, 1989, 1997
or 2008, or upon a hypothetical event such as terrorists gaining control over a nuclear
weapon. The other form is a portfolio approach (sometimes called reverse stress testing);
this starts with a portfolio and then risk managers try to construct plausible scenarios that
would have a major impact on the portfolio. Usually, event tests are firm-wide, whilst
portfolio tests are specific to a business or sub-business line.
In 2009, the implementation of stress testing within financial firms was widely criticised27

for the following reasons:

. testing was performed by the risk function, with little prior or subsequent involvement by
the business lines or the senior management;

. testing was often applied to different parts of the institution, with little attempt to
develop a firm-wide view, and to different risk types (such as market risk, funding
liquidity risk or credit risk) in isolation without considering any interaction;

. testing was too often mechanical and routine, with little attention being paid to the
results;

. the scenarios, whilst often historic, were frequently based upon relatively recent benign
events, and not the major events in the further past;

. the stress tests were often not very flexible, incapable of responding rapidly to changes in
the economic environment or financial markets.
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26 R. Rebonato & P. Jackel, TheMost General Methodology to Create a Valid Correlation Matrix for RiskManagement and Option
Pricing Purposes, QUARC research paper, NatWest Bank, October 1999.
27 See, for example, Observations on Risk Management Practices during the Recent Market Turbulence, published by Senior
Supervisors Group, March 2008 (available from FSA or Federal Reserve websites).



As a result of these failings, the Basel Committee demanded far-reaching changes to the
practice of stress testing:

. far greater involvement of senior management during both the construction of stress
tests and in understanding the potential impact;

. far more use of firm-wide tests, covering all major risk factors simultaneously and not in
isolation;

. use of more aggressive scenarios based upon 25 years of history.

One change that is very relevant to this book was the introduction of ‘‘stressed’’ VaR.28

This required banks to identify at least one historic 12-month period of severe stress that
would be relevant to the current portfolio; for example, the events of 2007/8 would
certainly be deemed sufficiently severe for Western banks. Banks must then calculate
the 10-day 99% VaR based upon the assumption that the events that occurred within
that period would occur again upon the current portfolio. The new capital charge is
effectively the sum of normal VaR and stressed VaR.

13.15 APPENDIX: EXTREME VALUE THEORY

Suppose there is a set of observations zi, i ¼ 1; . . . ; nt, from a simulation such that
zi 	 a defined threshold t.29 Define yi ¼ zi � t 	 0.

13.15.1 Peaks over threshold: negative exponential

The negative exponential distribution has a density function:

gðyÞ ¼ ð1=�Þ : expf�y=�g for y 	 0

This can be interpreted: gðyÞ is the likelihood of y actually being observed as a single sample
drawn from a negative exponential distribution with parameter �. The likelihood function
is similarly defined as:

LFfy1; y2; y3; . . . ; yn j�g ¼ gðy1Þ : gðy2Þ : gðy3Þ . . . gðynÞ
The process of maximum likelihood estimation is to find the value of � that maximises LF,
i.e. the most likely distribution for the observed samples. The usual method is to find � such
that:

@LF=@� ¼ 0

Very often it is easier to work with ln(LF) as:

@ lnðLFÞ=@� ¼ ½@LF=@��=LF
and therefore any value of � that sets @LF=@� to zero will also set @ lnðLFÞ=@�. As:

ln½gðyÞ� ¼ �lnð�Þ � ðy=�Þ
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Committee on Banking Supervision, July 2009.
29 Note that we are dealing with the positive, right-hand tail of observations.



the (logarithmic) likelihood function is:

lnðLFÞ ¼ �nt : ln � � ð1=�Þ :
X

i

yi

Differentiating with respect to � and setting to zero, we get the optimal value of
� ¼ ð1=ntÞ :

P
i yi We could now calculate a VaR off the negative exponential by using

the cumulative probability distribution:

GðuÞ ¼ probf0 � y � ug ¼ 1� expf�u=�g for some u 	 0

i.e. uq ¼ �� : lnðqÞ where q is the probability of exceeding uq ¼ 1� GðuqÞ. But we need to
convert this result back into the z-world. We can re-write probf0 � y � ug as
probft � z � uþ tg given that z 	 t, by simply substituting for y. If we represent the
cumulative z-distribution as F , this probability may also be written as:

fFðuþ tÞ � FðtÞg=probðz 	 tÞ ¼ fFðuþ tÞ � FðtÞg=f1� FðtÞg
Therefore:

Fðuþ tÞ ¼ FðtÞ þ GðuÞ � f1� FðtÞg
FðtÞ is simply the probability that an observation will not be in the tail. Our best estimate
for this is f1� nt=Ng where N is the total number of observations in the simulation.
Substituting, we get:

FðzqÞ ¼ 1� ðnt=NÞ � expf�ðzq � tÞ=�g
or

zq ¼ t� � � lnfðN=ntÞ : ð1� FðzqÞÞg ¼ t� � � lnfðN=ntÞ : qg

13.15.2 Peaks over threshold: Generalised Pareto
30

The Generalised Pareto distribution has a cumulative density function as follows:

GðyÞ ¼ 1� ½1þ � � y=���1=�

where � is a ‘‘tail’’ parameter. If � ¼ 0 then the GP reduces to a negative exponential.
If � > 0 the GP has a fatter tail than the negative exponential, if � < 0 then a thinner tail.
So it simply allows a second parameter to fit the observations more accurately. The density
function is:

gðyÞ ¼ ð1=�Þ � ½1þ � � y=���ð1þ1=�Þ

The (logarithmic) likelihood function is:

LF ¼ �nt : ln � � ð1þ 1=�Þ :
X

i

lnð1þ 
 : yiÞ

where 
 ¼ �=�. By setting the two differentials, @LF=@� and @LF=@�, to zero, we get:

� ¼
X

i

ui

( )	
nt � 
 :

X

i

ui

( )
¼ f1ð
Þ where ui ¼ yi=ð1þ 
 : yiÞ ð13:1Þ

� ¼ ð1=ntÞ
X

i

lnð1þ 
 : yiÞ ¼ f2ð
Þ ð13:2Þ

which may be solved iteratively. However, the solution is not well-behaved, and a
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pragmatic two-step alternative that works well in practice is to estimate � using the
negative exponential formula, and then improve the tail fit by calculating � by maximising
LF.

Once � and � have been estimated, the q% VaR estimate may be calculated from:

VaRq ¼ tþ ð�=�Þ � f½ðnt=NÞ � ð1� qÞ��� � 1g
using the same argument as above.

Other estimates may also be calculated. The mean excess function for estimating
expected losses, given a particular level L has been exceeded, is given by ESL defined as:

ESL ¼ Lþ Efy� L j y > Lg ¼ fLþ � � � : tg=f1� �g
This formula applies when � ¼ 0, i.e. for a negative exponential. Of particular interest is
the expected loss when the VaR is exceeded; that is:

ESq ¼ fVaRq þ � � � : tg=f1� �g

13.15.3 Block maxima

This is based upon the statistics of extremes, also known as order statistics. Consider a
distribution, say a normal one. Assume that you take k random samples from that
distribution zi, i ¼ 1; . . . ; k, and assume that they have been placed in order so that
Z1 ¼ z½1� 	 z½2� 	 � � �. We then repeat the whole process, generating the largest sample
Z2 for the second set, and so on. We end up with a set of observations of maxima Zj

where j is the sample set. Order statistics is the study of these maxima, and in particular
what can be said that is independent of the original underlying distribution.

It has been found that these maxima asymptotically follow a Generalised Extreme Value
distribution31:

HðxÞ ¼ expf�½1þ � : x��1=�g
where x ¼ ðZ �mÞ=s is a normalised variable, and � is a ‘‘shape’’ parameter. If:

� > 0 the distribution is called a ‘‘Fr�eechet’’ where 1þ � :minfyig > 0

� < 0 the distribution is called a ‘‘Weibull’’

� ¼ 0 the distribution is called a ‘‘Gumbel’’ simplifying to HðyÞ ¼ expf�e�yg
and its density function is:

hðxÞ ¼ expð�½1þ � : x��1=�Þ � ½1þ � : x��ð1þ1=�Þ � ð1=sÞ
Trying to estimate a likelihood function for all three parameters simultaneously is
complicated by non-linearities, and a common approach is to adopt a semi-parametric
method, i.e. estimate � somewhat crudely first, and then fit m and s by regression or
maximum likelihood methods. For example, given the set of extreme losses Zi,
i ¼ 1; . . . ; n, from the n blocks, re-order them so that Z½ j� 	 Z½ jþ1�. A Hill estimator for
� is given by faverage½lnZ½1� � � � ln Z½p�� � ln Z½p�g for some threshold p.32 There is little
guidance for the setting of p, but we can use increasing values until � stabilises.
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31 See, for example, Chapter 14 in I. Stuart et al., Kendall’s Advanced Theory of Statistics, published by Griffin, Fifth Edition, 1987.
For their application in risk management, see the articles by K. Dowd on EVT in Financial Engineering News, issues 11 to 13, 1999
plus references.
32 This is probably the most popular approach—see B. Hill, ‘‘A simple general approach to inference about the tail of a
distribution’’, Annals of Statistics, 35, 1975, pp. 1163–73.



The fitted distribution can provide information about the extremes of a set of data.
For example, suppose we estimate ProbfZ 	 Lg for some cut-off L. Now Z is the extreme
value drawn from a set of samples, i.e. fZ 	 z1;Z 	 z2; . . . ;Z 	 zkg where zi is the ith
observation in the set. If we assume that the observations are independent, then
Probfz 	 Lg ¼ ProbfZ 	 Lgk.
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30/360 daycount convention 35�7
95% envelopes, forward curves 100�2
ABCDSs see asset-backed CDSs
Accords see Basel . . .
accrual accounting, concepts 70
accrued interest 43�58, 128�30
Act/Act daycount convention 35�7,

44�50
Actual/360 daycount convention

14�15, 24�32, 34�7, 44�5,
50�8, 82�3, 109, 111, 161�9,
174�7, 241�2, 246�7, 315�16

Actual/365 daycount convention
14�15, 35�7, 161�9, 224�31,
315�16

advisory banks, swap market evolution
8�9

American FX options
see also FX options
concepts 226�7, 231

American swaptions, concepts 245�6
amortising CDSs

see also rollercoasters
concepts 79�80, 96�7

analytical methods, gridpoint risk
management 277�8

analytical probabilities, tree differences
249

applications of swaps 3�6, 8�10,
213�14

approximation tools
see also Barone-Adesi . . . ; Bjerksund
and Stensland . . . ; Whaley . . .

concepts 227, 309, 315�21, 342�4
arbitrage arguments, concepts 17�18,

37�40, 45�6, 56�8, 77, 200�1
ARCH forecast volatility model,

concepts 193�4, 201
Argentina 141
Arrow�Debreu prices 241
Asian crisis of 1997 348
asset packaging

see also interest rate asset swaps
concepts 73�8

asset swaps (ASWs), concepts 73�8,
89�92, 146�51

asset-backed CDSs (ABCDSs),
concepts 87�8

asymmetric distortions, corporate
taxation systems 2�3, 38

asynchronous data 328�30
AT&T Corp. 223

at-the-money options (ATM) 100�2,
123, 155�8, 194�202, 210�11,
216�20, 231�3, 238�9, 253�72,
293�303, 341�4

AUD 180�2
Australia 142, 173�4, 180�2
auto-correlations 317
average-rate swaps
see also compound . . . ; mismatch . . . ;

overnight . . .
concepts 107, 108�9, 120�5, 127�30
definition 108

back-office disasters, mark-to-model
approach 70�1

back-to-back loans, concepts 2�3,
159�74

backwardation 139�40
balance guarantee swaps, concepts

259�60
balance sheets 2�11, 21�4, 51�8,

79�80, 273�4, 310
Bank of England 101
Bank for International Settlement

(BIS) 6, 72, 73, 77�8, 90�1, 95,
99, 101�2, 178�9, 310, 348,
350�1

see also Basel Accords; regulatory
capital

Bankers Trust 213
bankruptcy credit events 85�106
banks 1, 7�11, 13, 20�4, 38�58,

59�64, 69�72, 73�4, 77�8,
79�80, 99�102, 127�30, 158,
159�85, 236�72, 273�307,
309�54

see also commercial . . . ;
counterparties; intermediaries;
investment . . . ; merchant . . .

Barone-Adesi approximations 227
barrier caps, concepts 208�9
barrier options, concepts 199, 208�9,

238�9
Basel Accords 6, 72, 73, 77�8, 90�1,

95, 99, 101�2, 178�9, 310, 338,
348, 350�1

see also capital . . . ; regulatory capital
basis risk
concepts 47�50, 90�2, 139, 219�20,

286�8, 289�90, 304�5, 310
definition 47

basket CDSs
see also credit default swaps
concepts 97�9

BDT see Black�Derman�Toy
approach

Bermudan swaptions, concepts 235,
245�9, 259�60, 263�72

beta concepts 90�2, 232�3, 262,
346�7

BGM approach
see also Libor-based model;

simulation models
concepts 114, 235, 249�62, 331�3
definition 249�50

bid�ask spreads, concepts 15�16,
33�4, 63�4, 110�11, 144, 158,
162�9, 209, 311

big-step correlations, concepts 323�4
binary options see digital options
binomial trees 195, 235, 240�9, 272
BIS see Bank for International

Settlement
Bjerksund and Stensland

approximations 227
Black�Derman�Toy approach (BDT)
see also numerical methods
concepts 190, 235, 240�9, 262�72
definition 240�1, 265, 270�2

Black�Karasinski log-normal model,
concepts 270�2

Black’s models
concepts 147, 187�231, 240, 247�50,

251�7, 262�72, 275�6, 293�303,
332

critique 190, 194�7
definition 188�90
G�K variant 224�7

blended discount curves, concepts
56�8

‘‘blipping’’/‘‘bumping’’ a curve,
definition 277�8

block maxima, concepts 353�4
BNP Paribas 140
bond�swap packages 33�58, 344�6
bonds 4�8, 9�10, 28�9, 33�58, 71�2,

74�8, 79�80, 85�6, 88�92,
110�25, 132�6, 141�51, 158,
167�85, 199�201, 221�2,
224�31, 267�72, 273, 275�307,
322�7, 344�6

see also convexity . . .
bonus cultures of banks 10, 43
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bootstrapping concepts 51�8, 61,
132�5, 145�51, 167�9, 199�201,
279�82, 325�7, 334

BPI 160, 237�9
Brazil 141
breadth growth factors in derivatives

markets 7�8
Brent oil futures 323�4
brokers 8�11
bucketed forward rate sensitivities,

gridpoint risk management
280�2, 304�7

Buffett, Warren 10
bull and bear issues, concepts 136
Buys�Ballot model, definition 151

calendar spread trades, concepts
150�1

calibrations, concepts 235, 240,
258�72

call options 135�40, 154�8, 188�233,
245�72, 329�54

see also options
callable CMSs, concepts 235, 237�9,

246�9, 259
callable snowballs, concepts 235,

260�2
callable structures, concepts 235,

237�9, 246�9, 259
Canada 8, 142
Canadian dollar, statistics 8
capital
see also economic . . . ; regulatory . . .
concepts 73�8, 178�9, 310
types 73�6

capital adequacy requirements
see also Basel Accords
concepts 20�4, 72, 73�4, 77�8,

99�102, 178�9, 310�21, 338,
350�1

capital asset pricing model (CAPM),
concepts 90�2

caplets
concepts 188�90, 195�211, 251�2,

268�9, 293�303
definition 188

caps
see also barrier . . . ; chooser . . . ;

interest rate options; options;
periodic . . .

Black’s models 188�90, 201�11,
215�20, 240, 247�50, 251�2,
268�9, 275�6, 293�303

complex types 208�9
concepts 122�5, 147�51, 178�9, 187,

188�90, 195�211, 214�22, 240,
241�2, 247�50, 251�62, 268�9,
275�6, 293�303

definition 216
mid-curve caps 207�9

carry-costs see cost-of-carry issues
cash curves, interpolation techniques

16�19, 22�4, 27�32

cash hedge, definition 26�7
cash ladders, concepts 72, 274�6
cash markets, concepts 7�8, 13�32,

50�8
cash-to-first-futures rate (CTFF),

concepts 27�32
cashflows 1�11, 19�32, 33�58,

59�72, 73�8, 79�82, 85�6,
88�97, 107�25, 151, 155�6,
159�85, 212�14, 224�7, 235�72,
274�307, 324�7

see also interest payments;
securitisation

CBOT 290
CCBSs see cross-currency

(floating�floating) basis swaps
CCE see current credit exposure
CCSs see cross-currency swaps
CCVN structures 182�3
CDS swaptions, concepts 80
CDSs see credit default swaps
CDX index 97�8

see also credit indices
CEAs see credit event auctions
CET 127
CHF 5�6, 8, 306
Chicago Mercantile Exchange (CME)

21�2, 30�2
Cholesky decomposition, concepts

251�7
chooser caps, concepts 208�9
Citibank 158
clean prices, concepts 76�8, 88�92,

168�85
close-to-close pricing, concepts 191
closed-form pricing models

see also Black’s models
concepts 187�90, 317

CME see Chicago Mercantile
Exchange

CMSs see constant maturity swaps
collars

see also caps; floors
concepts 187, 208�9

collateral, concepts 24, 46�50, 51,
80�1

commercial banks
see also banks
swap market evolution 9�10

commoditisation phase, swap market
evolution 9�10

commodity derivatives, concepts 7�8,
138�40, 324�7, 346�7

comparative advantage
concepts 2�5, 33, 37�40, 47�50,

73�4
definition 47

competitive advantages, banks 9
complex securities

see also mismatch swaps; structured
products

concepts 1, 107�25, 166, 183�5,
208�9, 211, 235�72

compound swaps
see also average-rate . . .
concepts 107, 109�10

confidence levels, VaR 312�54
Conseco 85�6
constant maturity swaps (CMSs)

see also yield-curve . . .
concepts 111�12, 115, 124�5, 235,
237�9, 246�9, 259

consumer price indices (CPI) 141�51
contango 139�40
contingent sales/purchases

see also interest payments
definition 3

continuously compounded zero
coupon 52�8, 267�72, 282�3,
326�7, 332�3, 352

convertible bonds, concepts 135�6
convexity effects

see also bonds; interest rates
concepts 13, 28�32, 107, 112�25,
147�51, 246�9

definition 113�14
copula simulation modelling approach,

concepts 80
corporate taxation systems,

asymmetric distortions 2�3, 38
correlation swaps, concepts 158
correlations 141�58, 182�5, 219�20,

235, 251�62, 284�8, 305�7, 309,
317, 319�21, 322�4, 328�33,
345�6, 348�50

cost-of-carry issues, concepts 33,
45�58, 162�9, 226�7, 231, 291

Cotonou Partnership Agreement of
2000 74

counterparties
see also banks
structured products 235�72
swap market evolution 8�11

coupons
see also bonds
concepts 4�6, 28�9, 34�58, 74�8,
89�92, 143�51, 168�85, 236�72

covariance 158, 227, 305�7, 348�50
Cox�Ingersoll�Ross model (CIR),

concepts 232
CP swaps, concepts 127, 131�5, 213
CPI see consumer price indices
credit crunch 13, 43, 158, 348, 350�1

see also global recession from 2008
credit default swaps (CDSs)

concepts 7�8, 79�80, 82�106, 223
conventions 82�4
definition 82�3
documentation 85�6
hedging 79�80, 88�92
multiname CDSs 80, 97�9, 102�6
portfolio CDSs 102�6
pricing 79�80, 82�4, 87�97, 102�6,
223

settlement methods 85�6
statistics 7�8, 83�6

356 Index



credit derivatives
see also credit default swaps; total
return swaps

concepts 7�8, 79�106
credit event auctions (CEAs) 86�8
credit events

concepts 79�106
types 85

credit exposures
concepts 99�102, 159�85, 207�9
definitions 99�100

credit indices
see also CDX . . . ; iTraxx Europe . . .
concepts 97�9, 102�6

credit markets, historical background
79�80

credit ratings 4�11, 39�50, 69, 73�8,
82�106, 236

credit risk, concepts 9�10, 24, 63�4,
79�106, 273, 310, 350�1

credit spreads, concepts 9�10, 76�8,
90�2, 102�6

Credit Suisse 140
credit transfer market, concepts 1
credit value adjustment (CVA),

concepts 99�102
credit-adjusted pricing, concepts 77,

80, 99�102
cross-currency equity swaps

concepts 138�9, 159, 182�3
definition 182�3

cross-currency (floating�floating) basis
swaps (CCBSs), concepts 159�74,
177�9, 181�2

cross-currency swaps
see also dual . . . ; fixed�fixed . . . ;
fixed�floating . . .

concepts 3, 6�8, 38�40, 73, 110,
138�9, 159�85, 273

definitions 159�60, 169�70, 174�5,
179�80

examples 3, 38�40, 159�61
hedging 159�85
historical background 3
pricing 159�85
risk management 273, 274�5, 309
skew 162�9, 232�3
statistics 6�8, 169
types 159�85
valuations 159, 177�9

cross-market swaps
see also commodity . . . ; CP . . . ;
equity . . . ; inflation . . . ; interest
rate basis . . . ; overnight indexed
. . . ; volatility . . .

concepts 127�58
crude oils 139�40, 323�4
CTFF see cash-to-first-futures rate
cubic Hermite spline interpolation

function 44, 54�8, 94�6
cubic polynomial interpolation

technique, concepts 16�19

current credit exposure (CCE)
see also credit exposures
concepts 99�102

curve caps, concepts 206�9, 241�2
CVA see credit value adjustment
cylinders see collars

daycount conventions, concepts
14�15, 22�32, 34�7, 44�5, 59,
82�3, 128�30, 161�9, 174�7,
224�31, 241�2, 315�16

DCX 223
debt/equity ratios, concepts 2�3
default probabilities, concepts 92�106
defaults 78, 79�106
Delphi 85�6
delta 151�2, 157�8, 183�5, 199, 209,

227�31, 273, 274�5, 285�8,
291�303, 309, 315�24, 340�4

see also dynamic . . . ; gamma; spot . . .
delta (parametric) VaR
see also Value-at-Risk
concepts 309, 314�24, 328�46
definition 315

delta risk, concepts 274�5
delta�gamma hedging
concepts 273, 285�8, 291�303, 309,

340�4
VaR 309, 340�4

DEM 4�6, 38�40, 110, 171�2,
180�2, 306

Denmark 136
depth growth factors in derivatives

markets 7�8
deregulated financial markets growth

factor in derivatives markets 7�8
derivatives
see also credit . . . ; cross-currency . . . ;

interest rate . . . ; swap . . .
concepts 1�11, 136�7, 310
statistics 1�2, 6�8, 136�7

‘‘desktop’’ risk management
see also risk management
concepts 273�307, 309�10, 321,

347�50
diff swaps, concepts 159, 172�4
digicaps, concepts 210�11
digital options, concepts 210�11,

237�8, 248�9
dirty prices (DPs), concepts 75�8,

89�92, 142�51, 168�85, 344�6
discount bonds
see also zero-coupon . . .
concepts 324�7

discount curves 13�14, 16�19, 22�4,
27�32, 44�50, 51�8, 59, 69,
70�2, 96�7, 159�85, 220,
240�62, 276�307, 325�7, 329�54

discount factors
concepts 13�24, 25�32, 33, 41�58,

61�4, 69, 70�2, 76�8, 88�97, 102,
112, 114�25, 131�5, 144�51,
165�9, 172�7, 212�14, 216�20,

224�7, 240�51, 268�72, 276�307,
324�7

definition 15
discounting
CCBSs 166�9, 172�4
concepts 13�24, 25�32, 41�58,

61�4, 69, 70�2, 76�8, 88�97, 102,
112, 114�25, 144�51, 159�85,
187�233, 273�307, 324�7

discrete compounding, concepts 52�8
disintermediation, concepts 73�4
distributions 102�6, 190�9, 215�16,

227, 230�1, 249, 270�2, 313�21,
332, 333, 335�40, 347�50, 351�4

dividends 136�40
see also equity . . .

documentation 9�11, 69�70, 77,
81�2, 85�6

doubles see bid�ask spreads
DPs see dirty prices
drift 100�2, 190, 251�62, 265�72,

315�21
dual swaps, concepts 159, 179�82
dual-currency swaps
see also cross-currency . . .
concepts 179�82

Dupire, B. 199
duration
see also convexity . . .
concepts 123�5, 325�7

dynamic delta-hedging
see also delta
concepts 151�2, 157�8, 183�5, 199,

227�31, 273, 285�8, 291�303,
309, 315�24

critique 231

Eastern Europe, deregulated financial
markets 7

EBRD 236
economic capital
see also capital . . .
concepts 73�4

economic days, definition 192
efficient markets 2�3
EIB�TVA swap application 3�5, 10,

38�40
embedded loans/deposits, concepts 69,

78
embedded option structures, concepts

110, 148�51, 211�14, 220�2,
238�9, 244�5

embedded swaptions, concepts 220�2
end-user-driven inflation swaps,

concepts 148�51
EONIA see Euro Over Night Index

Average
EPE see expected positive exposure
Equitable Life 211
equity derivatives
see also derivatives
concepts 7�8, 135�40, 182�3
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equity indices, concepts 135�40,
324�7

equity prices, volatility correlation 152
equity swaps, concepts 135�40, 159,

182�3
equity VaR calculations 309, 346�7
equity warrants, concepts 135
equivalent portfolios, gridpoint risk

management 278�83, 303�5
errors 57, 151�2, 347
ESP 306
EU Capital Adequacy Directive 72
Euribor 182, 260�2
euro 8�10, 74�5, 127�30, 161�9, 192,

216�17, 329�54
Euro Over Night Index Average

(EONIA) 127�30
see also overnight . . .

eurobonds 324
EuroClear 77
Eurodollars futures contracts 21�2,

30�2, 138�9, 275�6
Euronext (LIFFE) 290
European banks, TRSs 79�82
European Central Bank 127
European Investment Bank (EIB) 3�5,

10, 38�40, 74, 140, 181, 236,
238�9, 258

European options
see also American . . . ; options
concepts 187�233, 247�72

European swaptions, concepts 247�72
event stress testing
see also stress . . .
concepts 348, 350�1

EVT see extreme value theory
excess returns
see also beta concepts
concepts 346�7

exchange-traded securities
see also futures . . . ; options
concepts 8, 21�4, 224�5

exotic options 223, 302�3
expected losses, concepts 101�2,

103�6
expected positive exposure (EPE),

concepts 102
exponential distributions 190�1,

192�3, 335�40, 351�4
extendible swaps, concepts 220�2
extreme value theory (EVT), concepts

309, 334�40, 351�4

failure-to-pay credit events 85�106
Far East, deregulated financial

markets 7
FAS 157 99
fat-tailed distributions 190�9, 316�17,

334�40, 351�4
see also distributions

FDPs see forward default probabilities
Fed Funds Effective rate 127
see also overnight . . .

Federal Reserve 87�8
fees 8�10
first-generation options

see also options
concepts 187�233

first-to-default basket CDSs
see also basket CDSs
concepts 97�9

fixed notional swaps, concepts 138�9
fixed rates 4�11, 19�32, 33�58, 60�4,

107�25, 214�22, 235�72,
274�307

see also forward rate agreements; par
(yield) bonds

fixed-end Bermudan swaptions,
concepts 245�9

fixed�fixed cross-currency swaps
see also cross-currency . . . ; long-term

FX forward contracts
concepts 159, 174�7

fixed�floating commodity swaps,
concepts 138�40

fixed�floating cross-currency swaps
see also cross-currency . . .
concepts 159, 161, 169�71

fixed-for-floating commodity price
swaps, concepts 138�40

fixed-for-floating inflation swaps,
concepts 141, 148�51, 303�5

fixed-length Bermudan swaptions,
concepts 245�9

floaters, concepts 235, 249�50, 258�62
floating rate notes (FRNs) 36�7,

80�1, 88�92, 96�7, 159�61,
212�14, 259�60, 275�6

floating rates 4�11, 19�32, 33�58,
60�4, 73�8, 80�1, 88�92, 96�7,
107�25, 145�51, 159�85,
212�22, 235�72, 274�307

see also forward rate agreements;
mismatch swaps

floating�floating cross-currency swaps
see cross-currency
(floating�floating) basis swaps

floating�floating swaps
see also interest rate basis . . .
concepts 71�2, 130�5, 159�74

floorlets, concepts 201�9, 263�72
floors

concepts 148�51, 187, 201�9,
212�14, 215�20, 263�72, 275�6

definition 201
Ford 83�4
Ford Motor Credit 223
foreign exchange . . . see FX . . .
forward default probabilities (FDPs),

concepts 92�7
forward inflation index curves,

concepts 144�51
forward interest rate curves 22�4,

27�32, 51�8, 59, 61�4, 69,
100�2, 112�25, 127�58, 167�77,
240�62, 276�307

see also caps

forward rate agreements (FRAs)
see also interest rate . . .
concepts 7�8, 13, 19�24, 29�32,
51�8, 59, 188�9, 207�9, 244�9,
275�6

definition 19�20
statistics 7�8

forward rates, concepts 7�8, 13,
17�24, 25�32, 51�8, 59, 61�4,
69, 100�2, 111�25, 127�58,
167�77, 187�233, 235, 238�9,
240�62, 268�9, 273, 275�307,
331�3

forward starts
see also non-generic swaps
concepts 59�64, 79�80, 96�7,
246�50

definition 59�60
forward swaps

swap futures 289�90
swaptions 124�5, 187, 214�22

forward volatilities
see also vega
concepts 30�2, 187, 199�204, 231�3,
240�1, 251�7, 296�303

forward�forward FX swaps, concepts
163�4, 253�4

forward�forward volatilities, concepts
163�4, 253�62

forward-valuing approach to pricing
swaps

asset packaging 78
concepts 31�2, 68�72, 78

forwards
see also FX . . . ; long-term . . .
statistics 7�8

FR see full restructuring
France 142�4, 306
FRAs see forward rate agreements
Fréchet distributions 337�8, 353�4
FRNs see floating rate notes
FSA 87�8
FTSE 100 136�7
full restructuring (FR) 86�7
funding costs

see also spreads
concepts 4�5, 33�58

futures contracts
see also interest rate . . .
concepts 13, 21�4, 25�32, 33, 50�8,
107, 113�25, 273, 275�6, 289�90,
323�4

definition 21�2
FX controls 1�3
FX derivatives

concepts 5�6, 7�8, 38�40, 95�6,
158, 159�85, 187, 223�31, 273�4,
309�54

statistics 7�8
FX forwards

concepts 5�6, 7�8, 95�6, 159�85
statistics 7�8
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FX options

concepts 7�8, 158, 187, 223�31,
309�54

hedging 187, 227�31

pricing 187, 223�7

statistics 7�8

VaR examples 329�54

FX risks, concepts 4�5, 172�4,
181�2, 273, 318�21

FX spot rates 1�2, 95�6, 159�85,
224�31, 237�9, 274�307

FX swaps

see also cross-currency . . .
concepts 7�8, 38�40, 159�85

G�K see Garman�Kohlhagen model

gaming concepts 85�6

gamma

see also delta

concepts 158, 228�31, 273, 285�8,
291�303, 309, 314�21, 340�4

gap analysis, concepts 273�4

GARCH forecast volatility model,
concepts 193�4, 328�30

Garman�Kohlhagen model (G�K),
concepts 224�7

GBP 8, 14, 114, 141, 148, 160�9, 194,
303�6

see also UK

general collateral repo transaction
basis (GC), concepts 47

General Motors (GM) 83�4, 93�7

generalised extreme value theory
(GEV), concepts 334�40, 353�4

generalised Pareto distributions
(GPDs) 191, 336�40, 352�3

generic fixed�floating IRSs, concepts
112

generic FX options, concepts 223�31

generic interest rate swaps

concepts 3, 6�11, 33�58, 59, 62�3,
64�6, 69, 71, 73, 100�2, 112�25,
215�20, 274�5, 278�307

definition 33�4, 50�1, 59

Germany 4�6, 38�40, 45, 110, 140�2,
169�72, 180�2, 289, 306

GEV see generalised extreme value
theory

Ghanaian cedis 74

gilts 35, 303�5, 344�6

see also bonds

global recession from 2008 1, 13, 43,
158, 348, 350�1

‘‘global’’ swap markets fallacy 10�11

GMAC 223

Goal Seek spreadsheet function 25�6,
61

GPDs see generalised Pareto
distributions

Greece 7, 142

the Greeks 158, 227�33, 273, 284�8,
290�303

see also delta . . . ; gamma; theta;
vanna; vega; volga

gridpoint risk management
see also risk management
concepts 273, 277�84, 303�7, 324�9,

343�4
definition 273, 277�8
equivalent portfolios 278�83, 303�5

gross market values, concepts 7�11
Gumbel distributions, concepts 353�4

Hagan, P. 124, 199, 232
haircuts, concepts 46�50
Harmonised Index of Consumer Prices

(HICP) 141�2
hazard events, concepts 92�6
Heath�Jarrow�Morton model (HJM),

concepts 30, 117�20, 183�5
hedge funds 82
hedge ratios 26�32, 91�2, 286�8,

322�4
hedging 9�10, 13, 21�4, 28�32,

33�58, 59�68, 74�5, 79�80,
88�92, 107, 112�25, 127�30,
147�58, 161�9, 176�7, 183�5,
187, 199, 211�14, 227�31,
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interest rate swaps 33, 50�8,
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instantaneous forward rates, models 58
instantaneous volatilities, concepts
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see also BGM approach
concepts 114, 117�25, 235, 240

Libor�equity swaps 138�9
likelihood function, concepts 351�4
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concepts 148�51
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concepts 16�19, 22�4, 27�32,
52�8, 200�1, 326�7
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linkers see inflation-linked securities
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loans 1�3, 69, 78, 79�80, 86�8,
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7�8, 39�40
LPIs see limited price index swaps
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market risk
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concepts 33, 43�58, 123�5
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see also swaptions
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concepts 334�40, 351�4
penalty functions 300�4
pensions 140�1, 143, 148, 211�12
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45�6
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portfolio CDSs
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quasi-random numbers, concepts
339�40

Rand Overnight Deposit (ROD) 127
see also overnight . . .
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returns 1, 74�5, 179�82, 190�9,

311�21, 346�7
see also distributions

reverse bootstrapping, concepts 281�3
reverse repos, concepts 46�50
reverse stress testing
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325�7
see also Greeks settlement methods
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78

definition 24�5
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speculation 110, 122�3
spot rates 1�2, 17�19, 21�4, 27�32,
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329�54

strips, concepts 13, 30�2, 33, 57�8,
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super portfolios 299�303
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swap futures, concepts 273, 289�90
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swaplets, concepts 205�9
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see also credit default . . . ; cross-

currency . . . ; cross-market . . . ;
FX . . . ; interest rate . . . ;
mismatch . . . ; swaptions
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concepts 1�11, 13�32, 33�58,

68�72, 78, 79�106, 107�25,
127�58, 159�85, 187, 205�9,
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mark-to-market adjustments 1�2,
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overview of the swaps market 6�11
pricing 11, 13, 24�32, 37�58, 77, 80,

84, 91�2, 100�2, 152�8, 220�2,
274�307

risk management 124�5, 187,
214�22, 273�307

statistics 6�8, 136�40, 169
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terminology 214�15
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see also bonds
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term repos, concepts 47�50
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80�106
terrorist attacks 350
theta, concepts 228�31, 273, 290�2

time value of money, concepts 13�19
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total return swaps (TRSs), concepts

79�82, 96�7
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151�2
trading books, mark-to-market

adjustments 1�2, 69�72
‘‘trading’’ swaps fallacy, banks 10
‘‘trading volatility’’ fallacy 151
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see also risk management
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347�50
transaction costs 231
tree approaches 190, 195�6, 235,

240�9, 262�72
see also Black�Derman�Toy

approach; numerical methods
triggers, PRDCs 181�2
trinomial trees, concepts 235, 265�72
TRSs see total return swaps
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two-factor models, concepts 235,

270�2
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critique 317�21
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delta�gamma hedging 309, 340�4
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