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Abstract

This book focuses on several key issues of risk management in supply chains.
Initially, the authors studied the supplier selection problem with supply risk.
Specifically, the optimal sourcing strategy was identified in a one-retailer two-
suppliers supply chain with random yields. The optimal sourcing strategy of
a retailer and the optimal pricing strategies of two suppliers were investigated
under an environment of supply disruption. Then, the authors studied the dynamic
inventory control problems with cash flow constraints, financing decisions, as well
as delayed cash payment. Finally, the authors created a model for the bargaining
process, of an annual international iron ore price negotiation, to deal with the risk
of wholesale price in the game analysis context.
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Preface

Risk management has become an essential issue in supply chain management, from
the modeling of the decision maker’s risk preference, and the studies on uncertain
elements such as demand, supply, price, lead time, etc., to the consideration of
more practical background including cash flow constraints, inventory financing and
delayed cash payment. Theoretically, the book provides a framework to study the
interaction of various factors related to risk and their influence on supply chain
management.

The core of this book is to analyze risk management of supply and cash flows
in supply chains. The book consists of eight chapters. The contents of the book are
outlined in the following.

Chapter 1 surveys the applications of risk management to supply chains and
reviews the existing literature. The numerous literature in this field is classified into
three categories, i.e., risk analysis of supply chain models, disruption management,
and financial risk measurement. Throughout this chapter, some representative
models are selected and their relationships and distinctions are analyzed.

The sourcing strategy of a retailer who procures from two unreliable suppliers
is investigated in Chap. 2. “Unreliable” means that the suppliers may default on
their obligations to deliver order quantities at the end of a given production period.
The retailer facing stochastic demand needs to determine whether to choose single
sourcing from one supplier or dual sourcing from two suppliers, and further how
much to order. A two-period model is developed, and for each period, the authors
identify the conditions under which the retailer will choose different sourcing
strategies. It should be mentioned that more structural results can be found under
the setting of deterministic demand.

Chapter 3 investigates not only the sourcing strategy of a retailer but also the
pricing strategies of two suppliers under a supply disruption environment. The
sourcing strategies of the retailer are characterized in a centralized system and a
decentralized system respectively. Based on the assumption of a uniform demand
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distribution, the explicit form of the solutions is obtained when the suppliers are
competitive. Finally, a coordination mechanism is devised to maximize the profits
of both the suppliers.

In Chap. 4, a dynamic inventory control problem of a self-financing retailer is
investigated. The retailer can periodically replenish his stock from a supplier and sell
it to the market. The replenishment decisions of the retailer are constrained by cash
flows, which is updated periodically following the purchasing and the sales in each
period. Excess demand in each period is lost when insufficient inventory is available.
The retailer’s objective is to maximize its expected terminal wealth at the end of the
planning horizon. The optimal inventory control policy is characterized. A simple
algorithm is designed for computing the optimal policies in each period. Conditions
are identified under which the optimal control policies are identical across periods.
Finally, comparative static results on the optimal control policy are also presented.

Based on the model introduced in Chaps. 4 and 5 studies the dynamic inventory
control problem with the assumption that asset-based financing is allowed for the
retailer, when being short of cash flow. Excess demand in each period is lost
when insufficient inventory is available. The retailer’s objective is to maximize its
expected terminal wealth at the end of the planning horizon. The optimal inventory
control policy and its dependence on the wealth level are explored. Conditions are
identified under which the retailer will choose either to borrow or to deposit in each
period. The bankruptcy probability is also studied.

Furthermore in Chap. 6, a framework is proposed for incorporating financial con-
siderations including delayed cash payment and receivable into dynamic inventory
models. The financial constraint is updated periodically according to production
activities. The dynamic financial constraint and the optimal operational policy are
explored. The optimal operational policy’s dependence on the financial state is also
studied. It demonstrates the importance of firms considering delayed cash payment.

Chapter 7 seeks to provide insights for an annual international iron ore price
negotiation by establishing mathematical and economical models and especially
extending the Nash bargaining framework. Specifically, a one-supplier two-
manufacturer supply chain is studied. The Nash game is first analyzed between the
two manufacturers and then the bargaining process between the supplier and each
manufacturer is modeled by a sequential Nash bargaining. The results demonstrate
the importance of steel manufacturers in increasing the investment on iron ore.

Chapter 8 concludes the book and suggests some topics for future research.
Within the perspectives of risk management in supply chains, analysis on the

risk management of supply and cash flows are still in its infancy, and more efforts
are needed from academia. Hence the ambition and innovation of this book is to
contribute on risk management in supply chains in following ways:

(1) Characterizing the explicit sourcing strategy (i.e., single sourcing or dual
sourcing) to deal with supply risk

(2) Introducing the concepts of financial risk measurement by incorporating cash
flow constraints, inventory financing and delayed cash payment into inventory
management models
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(3) Providing insights for the iron ore price negotiation to help the steel manufac-
turers to handle the risk of price increase

This book is intended for researchers interested in conducting in-depth studies on
supply chain risk management. The book is also intended for business practitioners
seeking to understand the nature and law governing the working of supply chain risk
management and looking for guidance and decision support for the implementation
of supply chain risk management. Therefore, the book can be useful not only
for researchers but also for practitioners and graduate students in operations
management, management science, and business administration.
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Chapter 1
Introduction

In recent years, the adopting of some supply chain practice such as outsourcing
and lean production helps in smoothing the operations, but it also results in little
buffer inventory in a supply chain which may lead to increased vulnerability of
the chains.1 At the same time, the business environment has evolved to be an
increasingly complex scenario characterized by high uncertainty and rapid and
frequent changes. For example, supply chains are subject to many potential external
sources of disruption, e.g., natural disasters, terrorist attacks, and industrial actions,
etc. The disruption in one firm can rapidly result in a significant adversary impact
on the entire chain. Due to such changes, firm managers not only concern profit
maximization but also pay much attention to risk containment or loss minimization
for their firms. Motivated by the requirements of real world practice, supply chain
risk management attracts more and more attention from academia (Chen et al. 2007;
Shi 2004; Tang 2006a; Wu and Wang 2004a,b; Wu et al. 2006a; Zhou et al. 2006).

So far there is no generally agreed definition of supply chain risk management.
It is even not clear to distinguish risk and uncertainty in supply chain operations
(Tang and Nurmaya Musa 2010; Hua et al. 2010b, 2010c). Based on the review
of existing literature, we think a comprehensive definition of supply chain risk
management should refer to agents in the supply chain, collaboratively with
their partners or on their own, to apply risk management process tools to deal
with risks and uncertainties in the supply chain so as to ensure profitability and
continuity.

The flows in a supply chain mainly include the forms of material, finance and
information. Thus, supply chain risks can also be classified into three types: material
flow risks, financial flow risks and information flow risks. For example, organi-
zations increasingly rely on information technology such as enterprise resource
planning solutions and internet to improve the supply chain process. Vast assistance

1The following discussion in this chapter is largely based on the ideas and results presented in Wu
et al. (2011).

J. Li et al., Risk Management of Supply and Cash Flows in Supply Chains,
International Series in Operations Research & Management Science 165,
DOI 10.1007/978-1-4614-0511-5 1, © Springer Science+Business Media, LLC 2011
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2 1 Introduction

from these IT systems has, however, exposed to another consequence, namely
information disruption (Tang and Nurmaya Musa 2010). Tang and Nurmaya Musa
(2010) also points out that quantitative methods are missing in information flow risk
analysis. This book mainly focus on material flow risks and financial flow risks.

Demand fluctuation and supply disruption are two kinds of primary uncertainties
in supply chain material flow and various specific examples of supply chain risks,
e.g., uncertainties of purchasing costs, selling prices, and contract parameters, etc.,
can be ultimately attributed to the variations of supply and demand. Hence, most of
the supply chain material flow risks can be classified into two categories known as
demand risk and supply risk. Besides, the risks of the cash flow and possibility of
bankruptcy need to be incorporated into supply chain management process.

In terms of influence and frequency, risks can also be classified into two types,
one is normal risk and the other is abnormal risk. Generally speaking, normal risk
mainly includes risks that occur frequently and are easy to track and control. These
risks, e.g., demand uncertainty, price fluctuation, and supply variation etc., attract
more and more attention to measure and to model from the academia. On the other
hand, there is broad category of risk, known as abnormal risk, which arises from
great disruptions to normal activities. Such risks are usually caused by unexpected
events such as natural disasters, strikes, economic disruptions, and acts of purposeful
agents (including terrorists) etc. The famous example is the event so-called “911”
in USA. It happened without any premonition and the tangible loss is estimated at
more than one hundred billion! Hence, there is special requirement to incorporate
abnormal risk into supply chain management. Still abnormal risk management, also
known as disruption management, is relatively new and often ignored since it is
difficult to quantify, predict and manage.

To the best of our knowledge, most of the existing literature in relation to
risk management in supply chains mainly focuses on modeling of the decision
maker’s aversion to risks, consisting of various risk measurement approaches, such
as utility function theory, mean–variance trade-off, and value-at-risk (VaR), etc. In
the following chapter, we focus on the literature dealing with the decision maker
who wants to take risk into consideration. Thus, it is the ambition of this chapter to
bring together the research results from these fields of study in order to contribute
to the study of risk management in supply chains. This chapter is not meant to be
comprehensive or inclusive, but reviews through representative papers of the various
issues studied in the risk management literature on supply chains. This chapter
seeks answers to two key questions: What are the underlying supply chain risk
management problems? and how have they been addressed in the current literature?
We hope that it will be helpful for those who are interested in supply chain risk
management.

In the following, Sect. 1.1 attempts to establish a framework of supply chain risk
management problems from modeling of decision maker’s aversion to risks and
supply chain management models. Then some literature on disruption management
is reviewed according to the classical risk management paradigm in Sect. 1.2.
Finally, Sect. 1.3 proposes some financial and economical instruments which are
incorporated into supply chain management models.
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1.1 Risk Analysis of Supply Chain Models

Traditional supply chain management mainly focuses on maximizing the expected
profit or minimizing the expected cost (Li et al. 2006, 2007, 2008; Gong et al. 2009;
He et al. 2010). Seldom of them consider the decision maker’s risk preference
towards the risk. It is well-known that decision makers are classified into three
types based on their preference towards the risk, they are risk-averse, risk-neutral
and risk-taking. In supply chain management, risk-averse usually reflects the real
risk preference of an agent, either a retailer or a supplier. Hence, the modeling
of the decision maker’s preference towards the risk mainly focuses on the risk
measurement of decision maker’s aversion to risks. Almost all methods of risk mea-
surement in supply chain risk management models are originated from economics
and finance. From theory of utility function (von Neumann and Morgenstern 1944)
and mean–variance methodology (Markowitz 1959) in midterm of the last century,
to value-at-risk model and conditional value-at-risk (CVaR) model in recent years,
we incorporate all of them into the framework of supply chain management.

In the following, the literature is categorized by risk management tools, and then
several representative papers are surveyed with basic models and main results.

1.1.1 Risk Management Tools

1.1.1.1 Utility Maximization

Utility function was first presented by von Neumann and Morgenstern in 1944
with the objective aiming to maximizing the decision maker’s expected utility. The
literature adopting utility function to study supply chain models includes Bouakiz
and Sobel (1992), Eeckhoudt et al. (1995), Agrawal and Seshadri (2000a), Chen
et al. (2003), Keren and Pliskin (2006), Wang and Webster (2007, 2009). In the
following, several representative papers are reviewed.

Bouakiz and Sobel (1992) studied the inventory replenishment strategy by
minimizing the expected utility of the present value of costs over a finite planning
horizon and an infinite horizon. Based on an exponential utility function, they had
shown that the optimal ordering policy is given by a sequence of critical numbers
if the ordering costs are linear and the penalty and holding costs are convex.
The infinite-horizon policy is ultimately stationary and approaches the risk-neutral
policy as the period gets larger.

Eeckhoudt et al. (1995) studied the effects of risk aversion in the newsvendor
model by using expected utility functions. The optimal ordering quantity is given
by maximizing the expected utility of a profit function. The decision is based on a
subjective utility function of the decision maker. For certain utility functions the
solution within this framework is larger or smaller than the solution in the risk
neutral case; also the fraction of losses may be reduced. In particular, they presented
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a comparatively static effects of changes in the various price and cost parameters in
the risk aversion setting. Although many of the comparative effects generally are
ambiguous, some fairly simple restrictions on preferences and/or risks increases are
shown to lead to qualitatively deterministic results.

Agrawal and Seshadri (2000a) considered how a risk-averse retailer, whose
utility function is assumed to be increasing and concave in wealth, chooses the
ordering quantity and the selling price in a single-period inventory model. They
showed that in comparison to a risk-neutral retailer, a risk-averse retailer would
charge a higher price and order less if a change in price affects the scale of demand;
whereas, a risk-averse retailer would charge a lower price if a change in price only
affects the location of the demand distribution.

Chen et al. (2003) studied a joint optimization problem on both ordering quantity
and price. In the paper, a framework is proposed for incorporating risk aversion
in multi-period inventory models as well as multi-period models that coordinate
inventory and pricing strategies. In each case, the authors characterized the optimal
policy for various risk measurements. In particular, they showed that the structure
of the optimal policy for a decision maker with exponential utility functions is
almost identical to the structure of the optimal risk-neutral inventory (and pricing)
policies. These structural results are extended to models in which the decision maker
has access to a (partially) complete financial market and can hedge its operational
risk through trading financial securities. Computational results demonstrate the
importance of this approach not only to risk-averse decision makers but also to risk-
neutral decision makers with limited information on the demand distribution.

Wang and Webster (2007) analyzed a supply chain composed of a risk-neutral
manufacturer selling a perishable product to a loss-averse retailer. They found
that the independence between parameters and market demand breaks down in
a buyback contract when the retailer is loss averse. Their results indicate that
coordinating contracts based on the assumption of risk neutrality may result in
markedly lower supply chain profit when retailers are loss averse. Manufacturers
should consider the impact of loss aversion in contract design along with mitigating
provisions such as a gain/loss (G/L)-sharing clause, especially when dealing with
small retailers for which the assumption of risk neutrality is less likely to hold.

Wang and Webster (2009) used a kind of loss aversion utility function to model
a manager’s decision-making behavior in the single-period newsvendor problem.
They found that if shortage cost is not negligible, then a loss-averse newsvendor
may order more than a risk-neutral newsvendor. They also found that the loss-
averse newsvendor’s optimal ordering quantity may increase in wholesale price
and decrease in retail price, which can never occur in the risk-neutral newsvendor
model.

Although the utility theory is widely applied in the area of risk management
in supply chain risk management, the approach itself can be criticized, since it
relies on an independence axiom which may be violated (Kischka and Puppe 1992).
Moreover, from a more pragmatic point of view the application of the expected
utility is more difficult than expectation since the decision maker has to specify



1.1 Risk Analysis of Supply Chain Models 5

a utility function, which needs further uncertain procedure including choosing
different utility function and specifying different parameters, which makes the
decision-making is doubtful and inconvenient.

1.1.1.2 Mean–Variance Trade-Off

Besides the utility theory, another widely used risk measurement approach is mean–
variance methodology (Xie et al. 2008). This methodlogy was firstly introduced
by Markowitz (1959). Actually, the mean–variance methodology is a special form
of utility function theory, noting that mean–variance objective maximization is
equivalent to expected utility maximization when the utility function is quadratic
as shown in Mossin (1973) and Wang and Xia (2002).

Chung (1994) and Sobel (1994) used the mean–variance methodology to study
undiscounted Markov decision process (MDP). They introduced the mean–variance
methodology into MDP model, and laid the foundation for further research of using
the mean–variance methodology to study supply chain risk management.

Another classical and fundamental work is done by Chen and Federgruen (2000).
They revisited a number of basic inventory models by using the mean–variance
methodology. They showed how a systematic mean–variance trade-off analysis
can be carried out efficiently, and how the resulting strategies differ from those
obtained in the standard analysis. Specifically, in the infinite horizon models, they
focused on the mean–variance trade-off of customer waiting time as well as the
mean–variance trade-off of inventory levels. Based on these classical works, some
researchers studied more complicated supply chain models by using the mean–
variance methodology.

Martinez-de-Albéniz and Simchi-Levi (2006) studied the mean–variance trade-
offs faced by a manufacturer in signing a portfolio of option contracts with its
suppliers and having access to a spot market.

Lau and Lau (1999) studied a supply chain consisting of a monopolistic supplier
and a retailer. The supplier and the retailer employ a return policy, and each of them
has a mean–variance objective function. They found the optimal wholesale price
and return credit for the supplier to maximize the utility.

Buzacott et al. (2003) studied a class of commitment–option supply contracts
within a mean–variance framework. They showed that a mean–variance trade-off
analysis with advanced reservation can be carried out efficiently. They got results
demonstrating that the mean–variance objective is convex with respect to both the
contract commitment portion and the option potion. Moreover, a monotonicity result
with respect to the quality of information revision is also obtained. Their numerical
experiments demonstrate that, in particular, the mean–variance analysis is efficient
when the quality of information revision is low to medium. Also, a number of their
results remain to be true for a general utility function formulation as well. They also
pointed out to model this type of volume contract with down side risk would be a
good direction.
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Agrawal and Seshadri (2000b) considered the issue of coordination of the
channel. Their aim is to increase the channel’s ordering quantity to the optimal level
in the risk-neutral case. They designed a two-part tariff contract, in which a mean–
variance risk-averse retailer receives a side payment from a risk-neutral distributor
with the remainder of the channel profit going to the distributor. The channel risk in
their contract is assumed only by the distributor, whereas it is shared by all in their
risk-sharing contract.

Chen and Seshadri (2006) revisited the problem proposed in Agrawal and
Seshadri (2000b) and reconstructed their results when the number of retailers is
infinite and their coefficient of risk aversion is drawn from a continuous distribution.
They showed that this distribution uniquely determines the channel structure.

Choi and Chow (2008), Choi et al. (2008a, 2008b, 2008c), Wei and Choi (2010),
and Zhao et al. (2010a) studied some related problems in inventory and supply
chain within the mean–variance framework systematically. The topics involve the
newsvendor problem, return policy, and channel coordination, etc. Several signifi-
cant insights are presented from the comparisons with the traditional performance
evaluation by the expectation maximization.

Wu et al. (2009) studied the risk-averse newsvendor model with a mean–variance
objective function. They showed that the stockout cost has a significant impact on
the newsvendor’s optimal ordering decisions. In particular, with the stockout cost,
the risk-averse newsvendor does not necessarily order less than the risk-neutral
newsvendor. They illustrated this finding analytically for the case where the demand
follows the power distribution.

Xing et al. (2010) investigated the strategies of a manufacturer and a retailer in a
decentralized supply chain with a fully liquid B2B online exchange by using mean–
variance theory. They showed that for the retailer, the B2B electronic market can
serves as a speculation market or a second procurement source. Correspondingly,
by using the pricing strategy, the manufacturer can achieve bully or risk-sharing
intentions.

The approach of mean–variance trade-off is widely used into the area of
supply chain risk management. However, as a utility function, the mean–variance
methodology also suffers two drawbacks. Firstly, it equally penalizes desirable
upside and undesirable downside outcomes. While in reality, a decision maker
usually cares only the downside loss while maximizing profit. Hence, opposite to
mean–variance, semi-variance or downside risk measurement may be applied in
that case. Secondly, it is well known that if the investors hold diversified portfolios
of financial assets, the relevant risk of an investment by a value-maximizing firm
cannot be appropriately measured by the total variance of the return from that
investment. Under such circumstances, the proper measure of the project’s risk
aversion of the decision maker may be different from the return-risk trade-off
imposed by shareholders, and thus this criterion may imply the existence of the
agency problems.
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1.1.1.3 Value-at-Risk and Conditional Value-at-Risk

In the last several years, value-at-risk (VaR) has increasingly been used by financial
managers as a powerful tool to measure and manage risk exposure and at the same
time hedge trading and other financial policies. VaR is defined as the expected loss
arising from an adverse market movement with specified probability over a period of
time. Please see Duffie and Pan (1997) for an exposition of this subject. Although
VaR is currently broadly used, it has some critiques. For example, Artzner et al.
(1999), showed that VaR should not be used as the sole measure of risk exposure
since it does not satisfy all the properties needed from a risk measure. Therefore,
research of supply chain management incorporating VaR approach is rare.

A rare exception is the work by Tapiero (2005). The author solved a specific
problem based on VaR risk exposure in inventory manager’s concern for their
“money and risk” preferences. He also showed that single-period, multi-period,
and multi-products inventory problems as well as inventory with price and demand
uncertainty can be considered by using the standard VaR approach. Although
the mathematical problems arising from such applications of the VaR approach
are difficult to solve analytically, solutions can be found by applying standard
computational and simulation techniques.

Based on VaR, another criterion used in inventory management is the CVaR
(Chen et al. 2003 and the literature cited there). The CVaR is the conditional
expected profit under the condition that the profit is below the � -quantile. Thus,
CVaR encompasses the amount of loss. Moreover, CVaR has an advantage over VaR
of being a coherent risk measure (Artzner et al. 1999). The recent works include
Jammernegg and Kischka (2004), Wu et al. (2006a, 2006b), Xu et al. (2006), Gotoh
and Takano (2007), Zhou et al. (2008), Chen et al. (2009), Yang et al. (2009), Goh
and Meng (2009), Wu et al. (2010), Xu (2010), and Carneiro et al. (2010).

Jammernegg and Kischka (2004) work was a certain extent related to the CVaR
approach. They used the well-known newsvendor model to determine the optimal
performance measures for an objective function with two risk parameters, one
is for the convex combination of two conditional expected values of the profit,
and the other discriminates the low profits and high profits by being used as the
˛-quantile of the profit distribution. In contrast to CVaR models, not only the
CVaR is taken into account for low profits but also the high profits are taken
into consideration. The authors then provided a complete characterization for this
approach with respect to the performance measures which expected profit and
service level, and showed that a risk-averse inventory manager can not dominate
a risk neutral or a risk seeking inventory manager. Furthermore, they provided a
managerial guidelines for selecting the appropriate risk parameters of the objective
function. The CVaR criterion is two-faced, as it describes risk aversion but neglects
a large part of the profit distribution, or encompasses a large part of the profit
distribution but approaches risk neutrality. The method proposed in their work
avoids this disadvantage.

Wu et al. (2006a, 2006b) applied CVaR approach to study a pay-to-delay
contract first proposed in Brown and Lee (1997), and then analyzed by
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Buzacott et al. (2003). The results show advantages of using the CVaR approach
over the mean–variance approach in some aspects. It avoids the disadvantage of
the mean–variance methodology which equally penalizes the desirable upside and
the undesirable downside outcomes. The CVaR approach also provides an explicit
solution, which has better computational characteristics.

Zhou et al. (2008) proposed an optimal-order model for multi-product with CVaR
constraints which is formulated as a linear programming problem. The model is
simulated for the case of a newsvendor to analyze to what degree it succeeds. The
comparison of return-CVaR model and the classical model shows that return-CVaR
model is more flexible.

Chen et al. (2009) considered a risk-averse newsvendor with a stochastic price-
dependent demand using CVaR. They investigated the optimal pricing and inventory
decisions for both additive and multiplicative demand models and provided suffi-
cient conditions for the uniqueness and the existence.

Yang et al. (2009) studied the coordination of supply chains with a risk-neutral
supplier and a risk-averse retailer in a CVaR framework. They showed that the
supply chain can be coordinated with the revenue-sharing, buy-back, two-part tariff
and quantity flexibility contracts. Furthermore the revenue-sharing contracts are still
equivalent to the buy-back contracts when the retail price is fixed. The risk-averse
retailer of the coordinated supply chain can increase its profit by raising its risk-
averse degree under mild conditions.

Goh and Meng (2009) established a stochastic programming formulation for
supply chain risk management by using CVaR and introduced the sample average
approximation method for solving the underlying stochastic model.

Wu et al. (2010) introduced the concept of CVaR as the evaluation criterion in
a supply contract model. They derived the manufacturer’s optimal decisions and
analyzed the impact of risk aversion on the manufacturer’s decisions. They obtained
results that characterize the explicit relationship between the manufacturer’s risk
attitude and the optimal decisions. They also showed the dependence of the
decision variables on the price and cost parameters, which is seldom given in the
literature.

Xu (2010) considered a newsvendor model in which a risk-averse manager faces
a stochastic price-dependent demand in either an additive or a multiplicative form.
By adopting CVaR as the decision criterion, he investigated the optimal pricing and
ordering decisions and the effects of parameter changes in such a setting.

1.1.1.4 Downside Risk

Mean–variance equally treats upside and downside outcomes and hence is inappro-
priate for use. Another risk measurement approach, downside risk measure, solves
the problem well (Zhu et al. 2009; Yu et al. 2010). The development of downside risk
measures started with Roy (1952), whose aim is to develop a practical method for
determining risk-return trade-offs. He stated that an investor would prefer safety of
the principal first and set some minimum acceptable returns. A general definition of
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downside risk is introduced by Fishburn (1977) in the form of lower partial moments
(LPM) operationalized as the probability-weighted functions of deviations below
some target return.

As for the issue of supply chain management, the recent works include Gan
et al. (2004, 2005) and Yang et al. (2007). Gan et al. (2004, 2005) considered
downside risk measure which is defined as the probability that the return is below
a target level. Gan et al. (2004) took up the issue of Pareto-optimality and began
with defining a coordinating contract as one that results in a Pareto-optimal solution
acceptable to each agent. Their definition generalizes the standard one in the risk-
neutral case and then developed coordinating contracts in three specific cases.
In each case, they showed how to find the set of Pareto-optimal solutions, and
then designed a contract to achieve the solutions. The authors also exhibited a
case in which they obtained Pareto-optimal sharing rules explicitly, and outlined
a procedure to obtain Pareto-optimal solutions. Gan et al. (2005) investigated how
a supply chain involving a risk-neutral supplier and a downside-risk-averse retailer
can be coordinated with a supply chain contract. They showed that the standard buy-
back or revenue-sharing contracts may not coordinate such a channel. Using their
earlier definition of supply chain coordination with risk-averse agent, they designed
a risk-sharing contract that achieves coordination. Li et al. (2009) analyzed loan
limit indicator of seasonal inventory financing in supply chain financial innovation.
They analyzed loan limit consistency to risk tolerance level of downside-risk-averse
banks in seasonal inventory financing. The results show that downside-risk limits
can control the risk of seasonal inventory financing and make the loan consistent to
risk tolerance level of banks.

1.1.1.5 Prospect Theory

Prospect theory arose from behavior finance and psychology, and was proposed in
Kahneman and Tversky (1979). In the prospect theory, opposite to that in traditional
utility function theory, a decision maker may have reference dependent preferences
and is risk-averse over the domain of gains and risk seeking over the domain of
losses. The definition of reference point is decided subjectively and circumstantially.
An obvious example is that, in the context of the newsvendor problem, it is natural
to assume the reference point equals current wealth. With the reference point
chosen, the convex/concave utility function then predicts risk-seeking behavior in
the domain of losses and risk-averse behavior in the domain of gains. Although the
prospect theory has been broadly used in economics and finance, to the best of our
knowledge, there is little literature introducing the prospect theory into supply chain
risk management.

Schweitzer and Cachon (2000) referred to the theory, but they mainly focussed
on the experimental evidence for the explanations to that subjects that always order
too few of high-profit products and too many of low-profit products. In fact, the
prospect theory could explain the asymmetry if subjects are relatively more risk-
seeking in losses than risk averse in gains, and more specifically, could handle
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the case of demand disruptions by putting a large weight on the small-probability
events. Therefore, the prospect theory may have a good prospect of being applied in
disruption risk management for supply chains.

A rare exception is Hua et al. (2010a). They examined the loss-averse newsven-
dor problem with the prospect theory. The newsvendor can order goods at a regular
purchase price before the selling season, and can also order at an emergency
purchase price, if any, before the selling season ends. The optimal order policy and
profit in this scenario are obtained and are compared with those in the classical
model and the loss aversion version.

1.1.1.6 Other Risk Measurements

As shown above, CVaR is a coherent risk measurement while value-at-risk is not.
The general notion of a coherent risk measure arises from an axiomatic approach
for quantifying the risk of a financial position. As Artzner et al. (1999) showed,
a function is said to be coherent risk measure if it satisfies some axioms. The
reader is recommended to read the paper for more details. Ahmed et al. (2005)
analyzed the classical newsvendor and multi-period inventory models where the
objective function is a coherent risk measure. By using a dual representation, a one-
to-one correspondence is established between the risk aversion formulation and the
min–max type formulations. The results showed that the structure of the optimal
solution of the risk aversion model is similar to that of the classical expected value
problem, for both single period newsvendor problem and finite horizon dynamic
inventory model. Furthermore, the authors analyzed the monotonicity properties of
the optimal ordering quantity with respect to the degree of risk aversion for certain
risk measures. Another risk measurement approach is suggested by Lau (1980),
where the risk measurement is defined as the probability of not achieving a certain
level of profit. The author analyzed the classical newsvendor model under two
different objective functions. In the first objective, the focus is on maximizing the
decision maker’s expected utility of total profit which has been discussed above. The
other objective function is the maximization of the probability of achieving a certain
level of profit. For this purpose, Lau (1980) presented formulas for the moments of
the profit for a general demand distribution. In particular, the author considered
a special demand distribution called Schmeiser–Deutsh and demonstrates some of
its advantages. Although this criterion avoids the definition of risk altogether, it
is not at all clear how a value-maximizing firm should specify the cut-off rate of
profit.

1.1.2 Newsvendor Model

As a fundamental problem in stochastic inventory control and supply chain man-
agement, the newsvendor problem has been extensively studied for a long time
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and applied in a broad array of business settings with the objective of expectation
performance. This section focuses on the risk analysis of newsvendor model from a
risk management perspective.

1.1.2.1 Model Formulation

In the newsvendor problem, a manager is assumed to sell a single product during a
short selling season facing stochastic demand. He has only one ordering opportunity
before the selling season, and no further replenishments are allowed. If too much is
ordered, he will incur an overage cost, whereas if too little is ordered, sales are lost
with underage cost. Therefore, he must balance the shortage costs of ordering too
little against the overage costs of ordering too much to obtain his maximal profit.

Let Q be the newsvendor’s ordering quantity. Let D be the future stochastic
demand during the selling season. Let F be the cumulative distribution function
and f the probability density function of demand, respectively. It is assumed that
F is a continuous and strictly increasing function and f is a nonnegative function.
The purchasing cost of the product is c per unit, the selling price is r per unit, the
salvage value of any unsold product is s per unit, and the stockout cost of unsatisfied
demand is p per unit. To avoid unrealistic and trivial cases, it is assumed that 0 <
s < c < r and 0 < p. Throughout the book, we use the following notation: for
any number a and b, a� D minfa; 0g, aC D maxfa; 0g, a _ b D maxfa; bg and
a^ b D minfa; bg.

1.1.2.2 Risk-Neutral Case with Expectation Maximization

This section considers a risk-neutral newsvendor with expectation maximization
as its objective function, which is always treated as a benchmark. The objective
function is max

Q�0fEŒ….Q/�g.

The optimal ordering quantity Q� is given by F.Q�/ D rCp�c
rCp�s , which is the

well known newsvendor solution.

1.1.2.3 Risk-Averse Case with Mean–Variance Trade-Off

A newsvendor model within a mean–variance framework was proposed by Chen
and Federgruen (2000). A newsvendor needs to balance between the mean and the
variance of his random profit. The objective function with mean–variance trade-off
is max

Q�0fEŒ….Q/� � ˛VarŒ….Q/�g with ˛ .˛ � 0/ as the risk parameter to balance

between the return and the risk.

Theorem 1.1.1. The mean function is a concave function of Q and the variance
function is a non-decreasing function of Q. Moreover, the optimal order quantity
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Q�
MV that balance the mean and variance (it is equal to maximize the expected

utility under certain condition) is less than or equal to the newsvendor solutionQ�.

For details of the above result, please see Chen and Federgruen (2000).

1.1.2.4 Mean–Variance Trade-Off with Stockout Cost

Wu et al. (2009) incorporated the stockout cost in the above newsvendor model and
finds out that the properties of the variance function and the mean–variance trade-
off may be very different from those of the model without stockout cost. Moreover,
some results obtained in the previous literature may no longer be valid.

When the demand faced by the newsvendor follows a power distribution (for
example, FD.x/ D xk; 0 � x � 1; k > 0), there is the following result.

Theorem 1.1.2. For power distributed demand, there exists one unique minimizer
Q0

P for VarŒ�.Q/� on .0; 1/, where VarŒ�.Q/� is decreasing in Œ0;Q0
P� and increas-

ing in ŒQ0
P; 1�. Moreover, there exists a critical value k� with 0 < k� < 1 and the

newsvendor’s optimal order quantity is distinguished by three cases as follows:

(1) If 0 < k < k�, then Q� < Q0
P and the optimal order quantity is in the interval

ŒQ�;Q0
P�.

(2) If k D k�, thenQ� D Q0
P and the optimal order quantity is exactly Q�.

(3) If k > k�, then Q� > Q0
P and the optimal order quantity is in the interval

ŒQ0
P;Q

��.

Theorem 1.1.2 leads to the insightful result that the risk-averse newsvendor may
order less than the risk-neutral newsvendor, if the stockout cost is positive, which
will never happen if the stockout cost is zero. This result disproves a claim by Lau
and Lau (1999).

For details of the above result, please see Wu et al. (2009).

1.1.2.5 Risk-Averse Case with Utility Maximization

A risk-averse newsvendor, who would like to select maximizing his expected utility
function, is considered in Keren and Pliskin (2006). The objective function with
utility maximization is given by max

Q�0fEŒU.….Q//�g, which can be simplified as

max
Q�0fEŒU.r.Q ^D/C s.Q �D/C � p.D �Q/C � cQ/�g.

With the concavity property, the first order condition can be given by

r C p � c
c � s

D
R Q
0

u0Œ.r � s/x C .s � c/Q�f .x/dx
R1
Q

u0Œ.r C p � c/Q � px�f .x/dx
: (1.1)

Under certain assumptions of utility function and/or demand distribution, some
results may be obtained.
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Theorem 1.1.3. If the demand for newsvendor is uniformly distributed over [A, B],
a risk-averse newsvendor with a uniformly more concave utility function sets his
optimal ordering quantityQ�

CU to a lower value than a less risk-averse newsvendor.
We note here that a more concave utility function is more risk-averse according to
Pratt’s (1964) measure of risk r.x/ D � u00.x/

u0.x/
.

Theorem 1.1.4. A risk-averse newsvendor with a concave utility function setsQ�
CU

less than a newsvendor who is risk-neutral.

For details of the above results, please see Keren and Pliskin (2006).
A multi-period (then an infinite horizon) stochastic inventory model with respect

to risk-averse criterion by using utility function is studied in Bouakiz and Sobel
(1992). The utility function is assumed to be an exponential one given by u.x/ D
e��x where � > 0. The objective function of M period planning horizon is
maxEŒe�.B.M//�, where B.M/ is the present value of costs incurred during an
M -period planning horizon.

In period m, let xm and ym be the respective inventory levels before and after
additional goods are ordered (and delivered). It is assumed that: (1) the demand in
periodm,Dm is unknown when ym is selected, (2)D1;D2; : : : ;Dm are independent
and identically distributed nonnegative random variables.

The present value of costs duringM period planning horizon is given by

B.M/ D
MX

iD1
ˇi�1Œc.yi � xi /C g.yi ;Di /�� cˇM v.ym;Dm/; .0 � ˇ < 1/: (1.2)

It is proved in Bouakiz and Sobel (1992) that the M period problem for each M
has an optimal base stock policy. Specifically, there is a sequence of functions yi .�/,
such that the optimal base stock level in period i , is yi .ˇi�1�/, i D 1; 2; : : : ;M:

It is also proved that the infinite period problem has an optimal base stock
policy. Specifically, there is a sequence of functions y.�/, y.ˇ�/, y.ˇ2�/, : : :, to
characterize the optimal policy. Moreover, for sufficient large m, y.ˇn�1�/ is an
optimal risk-neutral base stock level.

For details of the above result, please see Bouakiz and Sobel (1992).

1.1.2.6 Risk-Averse Case with Conditional Value-at-Risk

A risk-averse newsvendor with CVaR approach was studied by Chen et al. (2003).
A close-form solution by using a definition presented in Chen et al. (2003) is
obtained. The objective function is max

Q�0 C��.x;Q/, where C��.x;Q/ D max
v2R fv C

1
�
EŒ.�.x;Q/ � v/��g, v is a real number,E is the expectation taken on the random

demand D, Q is the ordering quantity, and � .0 < � < 1/ is the risk aversion
parameter.
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Theorem 1.1.5. A risk-averse newsvendor with CVaR approach orders F�1
�
�.rCp�c/
rCp�s

�
, which is less than a risk-neutral newsvendor. Moreover, the more

averse the newsvendor is, the less quantity he will order.

For details of the above result, please see Chen et al. (2003).

1.1.3 Supply Chain Contract: A Pay-to-Delay Capacity
Reservation Contract

There is numerous literature devoted to supply chain contracts that coordinate a
supply chain with risk-neutral agents. For these literature, the reader is referred to
Tayur et al. (1999), and the survey by Cachon (2003), and the references therein.
In the following text, we focus on the literature dealing with supply chain contract
with risk-averse agents. Specifically, a pay-to-delay capacity reservation contract is
analyzed in both risk-neutral case and risk-averse case as an example to derive the
impact of risk aversion on the optimal supply chain decisions.

1.1.3.1 Model Formulation

A pay-to-delay capacity reservation contract in which capacity may be reserved in
the form of options was given by Brown and Lee (1997). It is an agreement between
a downstream manufacturer and an upstream supplier. With such a contract, the
manufacturer can make two procurement decisions in the whole time horizon. At
t1, long before the selling season begins, the manufacturer should decide to buy the
commitment capacity y with a cost cf per unit, and reserve the option capacity z �y
with a cost co per unit. At t2, with the demand forecasting, the manufacturer makes
his final decision whether to use the option or not and how many options he should
use. Let w be the manufacturer’s final ordering quantity, where w � y. For any
option exercised, the manufacturer pays ce per unit. Besides purchasing by contract
in the second stage, the manufacturer can also purchase from a spot market with
a price cp for each unit. At the end of the selling season, the manufacturer gains
revenue p per unit and sells the remaining inventory for a salvage value s for each
unit. To ensure realistic decisions, it is assumed that s < cf < ce C co < cp < p and
s < ce.

1.1.3.2 Risk-Neutral Case with Expectation Maximization

With the expected profit maximization as the criterion, the objective function is
max
0�y�z

fED1Œ�1.y; z/�g. The main results are given as follows:
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Theorem 1.1.6. For any given commitments portion y and option portion z, the
optimal ordering quantity w�.y; z;D1/ in the second stage is given by

w�.y; z;D1/ D

8
ˆ̂
<

ˆ̂
:

z _ w2; if z < w1;

w1; if y � w1 � z;

y; otherwise;

where w1 and w2 are two order-up-to levels given by w2.D1/ D H�1
�
p�cp

p�s jD1

�
,

and w1.D1/ D H�1
�
p�ce
p�s jD1

�
:

Theorem 1.1.7. The optimal commitments portion y� and the optimal option
reservation z� are given by

.y�; z�/ D
8
<

:

.y1; z1/; if y1 < z1;

.y2; y2/; else;

where y1, z1, and y2 are the optimal solutions satisfying the first order conditions,
respectively.

For details of the above results, please see Brown and Lee (1997).

1.1.3.3 Risk-Averse Case with Mean–Variance Trade-Off

Buzacott et al. (2003) studied the above pay-to-delay capacity reservation contract
within the mean–variance framework. It is assumed that the decision maker in stage
1 is risk-neutral and the decision maker in stage 2 is risk-averse with mean–variance
criterion.

The objective function at stage 2 is to choose optimal w to maximize

…2.y; z;w;D1/ D EŒ�2.y; z;wjD1/� � ˛VarŒ�2.y; z;wjD1/�: (1.3)

The objective function at stage 1 is to choose optimal y and z to maximize

max
0�y�z

…1.y; z/ (1.4)

where

…1.y; z/ D EŒEŒ�2.y; z;w
�;D2jD1/�� � co.z � y/ � cfy: (1.5)
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The main results are given as follows:

Theorem 1.1.8. For any given commitments portion y and option portion z, the
optimal ordering quantity w�.y; z;D1/ in the second stage is given by

w�.y; z;D1/ D

8
ˆ̂
<

ˆ̂
:

z _ wp.D1/; if y < z < we.D1/;

we.D1/; if y � we.D1/ � z;

y; otherwise;

(1.6)

where we.D1/ and wp.D1/ are two order-up-to levels given as follows:

Œ1 �H.wp.D1/jD1/�

"

1 � 2˛.p � s/

Z wp.D1/

0

H.xjD1/dx

#

D cp � s
p � s

;

Œ1 �H.we.D1/jD1/�

"

1 � 2˛.p � s/
Z we.D1/

0

H.xjD1/dx

#

D ce � s
p � s : (1.7)

Theorem 1.1.9. Assume that the updating demand D2jD1 is stochastic increasing
in the observed informationD1. For any 0 � y � z,

L.y/ � U1.z/ � U2.z/ (1.8)

and L.�/, U1.�/ and U2.�/ are non-decreasing functions. Moreover, the optimal
purchase quantity w� at stage 2 can be written as

w�.y; z;D1/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

wp.D1/; if U2.z/ < D1 < 1;

z; if U1.z/ < D1 � U2.z/;

we.D1/; if L.y/ < D1 � U1.z/;

y; if D1 � L.y/:

(1.9)

Theorem 1.1.10. The optimal commitments portion y� and the optimal option
reservation z� are given by

.y�; z�/ D
(
. Oy; Oz/; if Oy < Oz;
. Ny; Ny/; if Oy � Oz: (1.10)

For details of the above results, please see Buzacott et al. (2003).

1.1.3.4 Risk-Averse Case with Conditional Value-at-Risk

Motivated by the work and suggestions presented in Buzacott et al. (2003), Wu et al.
(2006a, 2006b, 2010) used the CVaR approach to analyze the pay-to-delay capacity
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Table 1.1 Property comparisons of the three different criteria

w� y� z�

Expectation Explicit solution Implicit solution Implicit solution
Mean–variance Implicit solution Implicit solution Implicit solution
CVaR Explicit solution Implicit solution Implicit solution

reservation contract model as a measure of downside risk. The ordering quantity in
the second stage is mainly used to cover the demand uncertainty, while, the ordering
quantity in the first stage is the main source to meet most of the expected demand.
The main results are given as follows:

Theorem 1.1.11. For any given commitments portion y and option portion z, the
optimal ordering quantity w�.y; z;D1/ in the second stage is given by

w�.y; z;D1/ D

8
ˆ̂
<

ˆ̂
:

z _ wp.D1/; if y < z < we.D1/;

we.D1/; if y � we.D1/ � z;

y; otherwise;

where we.D1/ and wp.D1/ are two order-up-to levels given by

8
ˆ̂
<̂

ˆ̂
:̂

wp.D1/ D H�1
�

�
p � cp

p � s jD1

�

; if y < z < w;

we.D1/ D H�1
�

�
p � ce

p � s jD1

�

; if y � w � z:

The solution structures in the two stages are summarized in Table 1.1.
When the manufacturer is allowed to use options after the demand is realized,

there is the following result.

Theorem 1.1.12. The manufacturer’s optimal ordering strategy is dependent on
his risk attitude. If ceCco�cr

ce
� p�.ceCco/

p�ce
, then the optimal strategy is y� D

F�1
�
� ceCco�cr

ce

�
and z� D F �1

�
� p�.ceCco/

p�ce

�
. If ceCco�cr

ce
>

p�.ceCco/

p�ce
, then the

optimal strategy is y� D z� D F�1.� p�cr
p
/.

For details of the above results, please see Wu et al. (2006a, 2006b, 2010).

1.1.4 Supply Chain Coordination

There are numerous works on supply chain coordination with assumption that the
agents in the supply chain are risk neutral (Shu et al. 2010; Zhao et al. 2010b).
However, seldom literature deals with supply chain coordination with risk-averse
agents. In this section, the main results of Gan et al. (2004) and Wang and Webster
(2007) are recalled.



18 1 Introduction

1.1.4.1 Pareto-Optimality Criterion

Gan et al. (2004) used the Pareto-optimality criterion, derived from the group
decision theory, to evaluate the supply chain’s performance.

Definition 1.1.13. Supply Chain Coordination. A contract agreed upon by the
agents of a supply chain is said to coordinate the supply chain if the optimizing
actions of the agents under the contract:

1. Satisfy each agent’s reservation payoff constraint.
2. Lead to an action pair .s�; ��.s�//, that is, Pareto-optimal.

Moreover, three specific cases in supply chain management are considered.

Case 1: One risk-neutral supplier and one retailer averse to downside risk.

Theorem 1.1.14. If the supplier is risk neutral and the retailer maximizes his
expected profit subject to a downside risk constraint, then a feasible action pair
.s; �.s// is Pareto-optimal if and only if the supply chain’s expected profit is
maximized over the feasible set.

Case 2: Risk-averse supplier and retailer both with mean–variance trade-off.

Theorem 1.1.15. An action pair .s�; ��/ is Pareto-optimal if and only if

s� D arg max
s2S

�

E….s/ �
�

1P
j

1
�j

�

V.….s//

�

and almost surely …i.s; �
�.s// D

1
�i�

P
j

1
�j

�….s/C…i , i D 1; 2; : : : ; N:

Case 3: Risk-averse supplier and retailer both with concavity utility.

Theorem 1.1.16. An action pair .s�; ��.s�// is Pareto-optimal if and only if s� D
arg max

s2S E exp
�
��r�s….s/

�rC�s
�

, and, almost surely,

…r.s
�; �.s�// D �s

�r C �s
….s�/� � ln

˛s�s

˛r�r
;

and

…s.s
�; �.s�// D �r

�r C �s
….s�/C � ln

˛s�s

˛r�r
;

where ˛r ; ˛s > 0, ˛r C ˛s D 1.

For details of the above results, please see Gan et al. (2004).

1.1.4.2 Loss Aversion Function

Wang and Webster (2007) considered a channel coordination of a supply chain with
a risk-neutral manufacturer and a loss-averse retailer.
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Table 1.2 Representative literature categorized by risk tools

Mean–variance Utility function Var and CVar
Other
measurements

Chen and Federgruen,
Chung (1994), Sobel
(1994), Lau and Lau
(1999), Agrawal and
Seshadri (2000b),
Martinez-de-Albéniz
and Simchi-Levi (2006),
Buzacott et al. (2003),
Wu et al. (2009), Chen
and Seshadri (2006),
Choi and Chow (2008),
Choi et al. (2008a,
2008b, 2008c), Wei and
Choi (2010)

Bouakiz and Sobel
(1992),
Eeckhoudt et al.
(1995), Agrawal
and Seshadri
(2000a), Chen
et al. (2003),
Wang and
Webster (2007,
2009), Keren
and Pliskin
(2006)

Carneiro et al. (2010),
Tapiero (2005), Chen
et al. (2003),
Jammernegg and
Kischka (2004), Xu
et al. (2006), Gotoh
and Takano (2007),
Wu et al. (2006b,
2010), Zhou et al.
(2008), Chen et al.
(2009), Yang et al.
(2009), Goh and
Meng (2009), Xu
(2010)

Lau (1980),
Schweitzer
and Cachon
(2000),
Ahmed et al.
(2005), Gan
et al. (2004,
2005), Yang
et al. (2007)

The retailer’s loss aversion utility function is

U.W / D
(
W �W0; W � W0;

�.W �W0/; w < W0;

where � � 1 is the loss-aversion level, W is the retailer’s initial wealth, and
W0 is the retailer’s final wealth. If � D 1, then the retailer is risk neutral. The
objective function is to maximize the retailer’s expected utility function given by
max
Q>0

EU Œ�.Q;W /�.

For details of the above result, please see Wang and Webster (2007).

1.1.5 Concluding Remarks

As we have discussed above, a large amount of the literatures has been devoted to
the study of risk analysis of supply chain models. The existing literature has been
categorized into three kinds of models including newsvendor, supply chain contract,
and supply chain coordination. In the following, the literature are summarized
according to risk management tools in Table 1.2 for a general view.

1.2 Disruption Management in Supply Chains

1.2.1 Introduction

Uncertainties mentioned in Sect. 1.1 can be represented by probability distributions.
However, these distributions lack attributes to represent rare and extreme events,
known as disruption risk. Supply chain disruptions are unplanned and unanticipated
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events that disrupt the normal flow of goods and materials within a supply chain
(Hendricks and Singhal 2003; Kleindorfer and Saad 2005) and, as a consequence,
expose firms within the supply chain to operational and financial risks (Stauffer
2003). For example, Ford Motor Company was forced to intermittently idle
production at five of its assembly plants due to delays at US land borders after the
September 11 terrorist attacks (Rice and Caniato 2003). The 2002 longshoreman
union strike at a US West Coast port interrupted transshipments and deliveries to
many US-based firms, with port operations and schedules not returning to normal
until 6 months after the strike had ended. The one-month-long brutal winter weather
caused by heavy snowfalls that occurred in large tracts of China in January 2008 is a
few recent reminders of the potential for significant disruptions (Wang et al. 2010).
It caused transport chaos and disrupted supplies of energy and food. The delivery
dates of the goods on most delivery trucks were way overdue. It can be catastrophic
for a short-life product if the disruption coincides with the selling season.

In most of the cases, the business impact associated disruption risks is much
greater than that of the operational risks (Tang 2006a). Chopra et al. (2007)
showed that bundling the two sources of uncertainty results in higher inventory and
supply chain costs than optimal. These errors get exaggerated as the probability of
disruption grows. Hence, it is important to decouple operational risks and disruption
risk when planning appropriate mitigation strategies.

In the last few years, supply chain disruptions have received increasing attention
from academics and practitioners. The reason for this is twofold basically. Firstly,
the real world is increasingly more uncertain and vulnerable. According to many
studies, the historical data indicates that the total number of natural and man-made
disasters has risen dramatically over the last 10 years. Secondly, the vulnerability
of supply chains disruption has increased. Many supply chain managers strive to
seek efficiency improvements through “lean” solutions. These “lean” solutions have
created longer and more complex global supply chains in which the domino effects
of disruptions have been exacerbated (Christopher and Lee 2004).

It is not surprising that there has been a large number of literature on supply chain
disruption risks since supply chain disruption risk is unavoidable and can potentially
be so harmful and costly. In the following, some literature are reviewed to trace
approaches for exploring supply chain disruption risks according to the classical
risk management paradigm, i.e., risk identifying, risk assessing, and risk mitigating.

1.2.2 Disruption Risk Identifying
Disruption risk identifying is to classify supply chain disruption risks into different
categories and to identify drivers of these different categories. It is the fundamental
step in managing disruption risk in supply chains. However, most of the current
studies on disruption risk identifying focus on the different categories of disruption
risks and not on the drivers of them. The study on disruption risk identify-
ing was conducted mainly by employing case study methodology and interview
methodology.
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Table 1.3 Failure modes

Failure mode Description

Disruption in supply Delay or unavailability of materials from suppliers, leading to a shortage
of inputs that could paralyze the activity of the firm

Disruption in
Transportation

Delay or unavailability of the transportation infrastructure, leading to the
impossibility to move goods, either inbound or outbound

Disruption at
Facilities

Delay or unavailability of plants, warehouses and office buildings,
hampering the ability to continue operations

Freight breaches Violation of the integrity of cargoes and products, leading to the loss or
adulteration of goods (can be due either to theft or tampering with
criminal purpose, e.g., smuggling weapons inside containers)

Disruption in
communications

Delay or unavailability of the information and communication
infrastructure, either within or outside the firm, leading to the
inability to coordinate operations and execute transactions

Disruption in
demand

Delay or disruption downstream can lead to the loss of demand,
temporarily or permanently, thus affecting all the companies upstream

Source: MIT research group on “Supply Chain Response to Global Terrorism”, Sheffi et al. (2003)

After the attack on 9/11/2001, firms are starting to realize that the disruption risk
from terrorism is affecting their ability to successfully manage their supply chain.
MIT research group on “Supply Chain Response to Global Terrorism” have shown
that firms usually focus on the type of disruption, i.e., the limited ways in which
the disruption affects the supply-chain, and not its source. The group distinguishes
6 different types of failure modes from the perspective of a single firm as listed in
Table 1.3 (Sheffi 2001; Rice et al. 2003).

Christopher and Peck (2004) presented a comprehensive framework in which
disruption risks are divided into three categories, namely disruption risks internal
to the firm, disruption risks external to the firm but internal to the supply chain
network (SCN), and disruption risks external to the network. Furthermore, the first
category is sub-divided to process disruption risk and control disruption risk. The
second category is sub-divided to demand disruption risk and supply disruption risk.
The final category indicates those events which may of course directly impact upon
some or all agents of the supply chains, or indeed on the marketplace itself. They
may be the result of sociopolitical, economic or technological events.

From the above literature review, it can be found that most of the studies focus
on classifying supply chain disruption risks into different categories and not on
identifying drivers of them. However, it is not adequate for supply chain managers
to plan for disruptions. For example, although the effect on the supply chain of
a terrorist attack can be very similar to those of a natural disaster, the expected
duration and the occurrence likelihood of it may be different. Terrorism is equally
likely to happen at any time of year. However, any particular natural disaster, e.g.,
storm, is more likely to happen in some parts of the year and less likely in others
(Ross et al. 2008). Hence, the strategies taken by mangers for mitigating them
should also be different if the disruption source is different.

To summarize, not only classifying of disruption risk categories but also identi-
fying of disruption risk sources are important research issues. Thus, processes and
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tools need to be developed that will help managers to identify drivers of disruptions
in their supply chains in order to mitigating the disruption risk by more appropriate
strategies.

1.2.3 Disruption Risk Assessing

Disruption risk assessing is to estimate the likelihood of each type of major
disruption to occur and to assess potential loss due to a major disruption. Both
the probability and the magnitude of supply disruption are important to overall
perceptions of supply disruption risk (Ellis et al. 2010). This is a critical step
in managing the supply chain disruption risk. Most companies recognize the
importance of risk assessment programs and use different methods, ranging from
formal quantitative models to informal qualitative plans, to assess supply chain
disruption risks (Rice and Caniato 2003; Zsidisin et al. 2004). However, it is difficult
to obtain good estimates of the probability of the occurrence of any particular
disruption. Some of the current studies focus on the measure of potential impact
of each disaster by empirical analysis. The following three papers which make
empirical analysis of the negative economic impact of supply chain disruptions
maybe contributed to this issue.

Hendricks and Singhal (2003) estimated the short-term effects of supply chain
disruptions such as production or shipment delays on the shareholder wealth. Their
research is based on a sample of 519 disruptions announcements made by firms
during 1989–2000. They showed that the mean decrease in firm market value is
10.28% over the two-day period after the public announcement of a supply chain
disruption.

Hendricks and Singhal (2005) investigated the long-run effects and risk effects
due to supply chain disruptions. Based on a sample of 827 disruptions announced
by publicly traded firms during 1989–2000. They found that companies suffering
from supply chain disruptions experienced 33–40% lower stock returns relative to
their industry benchmarks over a 3-year time period that starts 1 year before and
ends 2 years after the disruption announcement date.

Kleindorfer and Saad (2005) considered empirical results from a rich data set
covering the period 1995–2000 on accidents in the US Chemical Industry. Based on
these results, they developed a conceptual framework that trades off risk mitigating
investments against potential losses caused by supply disruption.

The results obtained from the above empirical analysis show that supply
disruption can have grave financial consequences for firms relying on suppliers for
crucial items. The detrimental effects of various major disruptions may motivate
firms to examine ways to identify supply chain strategies that are efficient and
yet resilient to major disruptions. However, disruptions are low-probability events
whose non-stationary probabilities may be difficult to estimate. In the absence of
accurate measures of the probability of an occurrence of a major disruption, many
firms invested little time or resources in managing supply chain disruption risks
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even though they learned the potential detrimental impact of a disruption (Rice and
Caniato 2003; Zsidisin et al. 2004). Surveys confirm this perplexing dichotomy.
For example, according to a study conducted by Computer Sciences Corporation
in 2003, 43% of 142 companies reported that their supply chains are vulnerable to
disruptions, and 55% of these companies have no documented contingency plans
(Poirier and Quinn 2003).

From the above literature review, it can be found that disruption risk is often
ignored in practices because it is difficult to predict an occurrence of a major
disruption. Thus, the issue of estimating the likelihood of disruption to occur should
be addressed by future research. Effective tools should be developed to estimate
the likelihood and duration of disruption. Obviously this issue relates to the issue
of identifying disruption source properly. Correctly identifying disruption source is
the foundation of good predicting of the occurrence.

1.2.4 Disruption Risk Mitigating

Disruption risk mitigating is to mitigate the uncertainties identified from the various
disruption risk sources by undertaking some strategic moves deliberately (Miller
1992). It relates properly to the execution period of disruption risk management in
supply chains.

There are many strategies for mitigating disruption risks. For example, Oke and
Gopalakrishnana (2009) suggested some kinds of measures to mitigate supply risks,
such as better planning and co-ordination of supply and demand, flexible capacity,
identifying supply chain vulnerability points and having contingency plans, and
multiple sourcing strategy, etc. In general, strategies for mitigating disruption
risk can be classified into four types: contingency planning, robust optimization,
stochastic models, and real-time disruption management.2

1.2.4.1 Contingency Planning

Contingency planning uses a pre-allocated set of resources and a well-documented
recipe to cope with each scenario identified during the planning stage. This
approach is completely scenario-based and usually includes the following elements:
identifying the threshold for action (the trigger event); identifying the specific event
that would cause a disruption to supply chain; identifying the key personnel in the
contingency plan; identifies contingency options.

The key step for contingency plan making is to identify each possible scenario in
supply chain. It is also the most difficult step for a complex supply chain in which the
number of the future scenarios is vast. Most of the current analysis on contingency
planning are qualitative.

2The “real-time disruption management” strategy is also referred as “disruption management”
named by Clausen et al. (2001), and sometime as “real-time operations control and recovery”.
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Table 1.4 Robust supply chain strategies

Robust Supply
Chain Strategy Main objective

Benefit(s) under
normal
circumstances

Benefit(s) after a major
disruption

Postponement Increases product
flexibility

Improves capability
to manage supply

Enables a firm to change
the configurations of
different products
quickly

Strategic Stock Increases product
availability

Improves capability
to manage supply

Enables a firm to respond
to market demand
quickly during a major
disruption

Flexible Supply
Base

Increases supply
flexibility

Improves capability
to manage supply

Enables a firm to shift
production among
suppliers promptly

Make-and-Buy Increases supply
flexibility

Improves capability
to manage supply

Enables a firm to shift
production between
in-house production
facility and suppliers
rapidly

Economic
Supply
Incentives

Increases product
availability

Improves capability
to manage supply

Enables a firm to adjust
order quantities quickly

Flexible Trans-
portation

Increases flexibility
in transportation

Improves capability
to manage supply

Enables a firm to change
the mode of
transportation rapidly

Revenue
Management

Increases control of
product demand

Improves capability
to manage
demand

Enables a firm to influence
the customer product
selection dynamically

Dynamic
Assortment
Planning

Increases control of
product demand

Improves capability
to manage
demand

Enables a firm to influence
the demands of different
products quickly

Silent Product
Rollover

Increases control of
product exposure
to customers

Improves capability
to manage supply
and demand

Enables a firm to manage
the demands of different
products swiftly

Source: “Robust Strategies for Mitigating Supply Chain Disruptions”, Tang (2006b)

1.2.4.2 Robust Optimization

Robust optimization is another approach to handle uncertainty in the planning stage.
The philosophy of robust optimization is to help firms to reduce cost and/or improve
customer satisfaction under normal circumstances and to sustain their operations
during and after a major disruption. In robust optimization, future uncertainties are
modeled by a set of scenarios. A typical robust planning process usually includes
the following elements: identifying the potential disruptive scenarios; choosing a
robustness criterion appropriate for the decision maker; incorporating information
and measure in planning to generate a robust plan; carrying out the plan (Yu and Qi
2004).

Tang (2006b) presented some “robust” strategies as listed in Table 1.4.
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Klibi et al. (2010) developed a comprehensive SCN design methodology under
uncertainty. Through an analysis of supply chains the authors reviewed key random
environmental factors, uncertainty sources and risk exposures, and discussed the
nature of major disruptive events threatening SCN. They argued for the assessment
of SCN robustness as a necessary condition to ensure sustainable value creation.
Several definitions of robustness, responsiveness and resilience are reviewed, and
the importance of these concepts for SCN design is discussed. This work contributes
framing of the foundations for a robust SCN design methodology.

The advantages of robust strategies are that they can guarantee the performance
of a supply chain regardless of the occurrence of major disruptions. However, a
robust plan will sacrifice average performance, especially when the probability of
some disruptive events may be very small (Yu and Qi 2004). So managers must
carefully analyze the trade-offs between higher costs for implementing these robust
strategies and negative economic consequences associated with disruptions. Till
now, most of the current analysis on robust optimization are qualitative.

1.2.4.3 Stochastic Models

Stochastic model is a typical method of generating an operational plan within an un-
certain environment when the precise probability distribution of future uncertainty
is known in advance. An operational plan or policy based on stochastic models
usually contains the following steps: building stochastic models to describe the
future uncertainty; finding the optimal policy so that the future output is optimized
in terms of the average output; executing the plan by taking the obtained policy for
each scenario that occurs (Yu and Qi 2004).

The most common type of stochastic disruption appearing in the literature is that
of supply disruption. In the existing supply-disruption models, the uncertain source
of supply disruption is from the state of supplier. The supplier is either up or down.
If the supplier is up, the order will be delivered on time. If the supplier is down, no
order can be supplied. The inter-failure time and/or the repair time are uncertain. In
what follows, these studies are classified into two categories, based on the number
of supplier: singular supplier models and multi supplier models.

With no alternative source available for single-supplier systems, inventory
mitigation is the only disruption management strategy under consideration in these
papers. The focus of these papers is to identify the optimal inventory policy
or the optimal parameters for particular inventory policy when there is supply
disruption risk.

The singular supplier models are further sub-divided to deterministic demand
models and stochastic demand models based on the types of demand. Recent
singular supplier models with deterministic demand include, but are not limited to,
Parlar and Berkin (1991), Parlar and Perry (1995), Moinzadeh and Aggarwal (1997),
Arreola-Risa and DeCroix (1998), and Abboud (2001). In these models, the demand
faced by system is assumed to be deterministic and the supply source is subject
to random failure. The uncertainty of supply is characterized by exponentially
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distributed up and down periods, constant failure rate, and general randomly
distributed repair times, or geometrically distributed inter-failure time and repair
time. The policies identified in the models include, EOQ, EPQ, (Q, r, T), and
(s, S) policy. Their analysis yields the optimal values of the policy parameters, and
provides insight into the optimal inventory strategy. There are also a few of literature
to consider stochastic demand in addition to stochastic supply, e.g., Gupta; Parlar;
Özekici and Parlar; Burke et al.; Lewis et al.; Li et al. (1996, 1997, 1999, 2004,
2006, 2007), and Ross et al. (2008). These models assume not only the unreliable
supplier is up or down for random durations, but also the unit demands are also
stochastic. For example, Lewis et al. (2006) considered a periodic-review inventory
model in which the lead time probability distribution is dependent on the state of
a completely observed, exogenous Markov chain. They also analyzed the effect of
a possible major supply chain disruption (e.g., a border closure) on a firm’s long
run average cost. Ross et al. (2008) considered a firm that faces random demand
and random supply. The probability of supply disruption, as well as the demand
intensity, can be time dependent. They modeled this problem as a two-dimensional
non-homogeneous continuous-time Markov chain (CTMC). The model is solved
numerically to obtain the total cost under various ordering policies. They proposed
several such policies, some of which are time dependent while others are not. They
found that non-stationary policies can provide an effective balance of optimality
(low cost) and robustness (low sensitivity to errors).

Recent work dealing with multiple suppliers include Parlar and Perry (1996),
Gürler and Parlar (1997), Tomlin (2005, 2006), Yu et al. (2009), Li et al. (2010),
Sarkar and Mohapatra (2009), and Yan and Liu (2009). In these models, it is
assumed that retailer sources from two or more suppliers. The inter-failure time
and the repair time are scholastic for all suppliers. The disruption management
strategies include sourcing mitigation, contingent rerouting, dual sourcing, emer-
gency sourcing, and demand management, etc. For example, Tomlin (2005) went
beyond the existing literature by explicitly modeling the trade-offs and limitations
inherent in mitigation and contingency strategies. Yu et al. (2009) evaluated the
impacts of supply disruption risks on the choice between the famous single and
dual sourcing methods in a two-stage supply chain with an on-stationary and price-
sensitive demand. The expected profit functions of the two sourcing modes in the
presence of supply chain disruption risks are first obtained, and then compared so
that the critical values of the key factors affecting the final choice are identified.
It is found that either single or dual sourcing can be effective depending on the
magnitude of the disruption probability. Li et al. (2010) studied a supply chain
consisting of one retailer and two suppliers with unreliable supply. They investigated
not only the sourcing strategy of a retailer but also the pricing strategies of two
suppliers in a supply chain under an environment of supply disruption. Sarkar and
Mohapatra (2009) formulated a model in a decision tree-like structure to determine
the optimal size of supply base with considering risks of supply disruption due to
occurrence of super, semi-super, and unique events. They also forwarded a tabular
method of solution that overcomes the problem of dimensionality. Yan and Liu
(2009) considered the problem of joint replenishment and pricing for a single
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product with two suppliers and supply disruption. They not only obtained that the
form of the optimal policy has a .s; S; p; �;†/-type, but also analyzed how supply
disruption affects the profit function and the optimal policy.

In the above literature, the probability distribution of an occurrence of a major
disruption is assumed to be known. Thus, the estimating the likelihood of disruption
to occur is the foundation of executing stochastic plan. However, as mentioned
above, it is difficult to measure the probability, which could undermine the analysis.

1.2.4.4 Real-Time Disruption Management

Real-time disruption management refers to the real time dynamic revision of an
operational plan when disruptions occur. This concept can be formally stated as
follows: At the beginning of a business cycle, an optimal or near-optimal operational
plan is obtained by using certain optimization models and solution schemes. When
such an operational plan is executed, disruptions may occur from time to time
and is caused by internal and external uncertain factors. As a result, the original
operational plan may not remain optimal, or even feasible. Consequently, it is
necessary to dynamically revise the original plan and to obtain a new one that
reflects the constraints and objectives of the evolved environment while minimizing
the negative impact of the disruption. This process is referred to as real-time
disruption management (Yu and Qi 2004).

There are many papers on real-time disruption management in supply chains.
Most of them focus on the algorithm of obtaining the optimal solution and the
changes of the optimal solution when some disruptions occur. Disruptions of
demand and supply are the source of risk. In the following text, only a few notable
works are listed.

Yang et al. (2001) considered possible disruptions in a finite production and
inventory model with a deterministic demand. They also gave a steepest decent
method to obtain the optimal solution of the problem. Golany et al. (2002) proposed
a general approach based on a three-level lexicographical goal programming
formulation, to address various types of disruptions. Qi et al. (2004) considered
the coordination of a supply chain with one supplier and one retailer under demand
disruptions. They modeled the cost of deviating from the original production plan
for several scenarios, and showed that under certain wholesale quantity discount
policy, the supply chain can be coordinated. Xia et al. (2004) considered real-
time disruption management for a two-stage production and inventory system.
They presented a general disruption management approach for this system and
introduce the concept of a disruption recovery time window. Xiao and Yu (2005)
studied the effect of the supply chain disruptions including the raw material
supply and demand disruptions on the retailers’ strategies by employing an indirect
evolutionary game model. Xu et al. (2006) studied a supply chain coordination
problem under production cost disruptions. They designed coordination schemes
under disruptions. Xiao et al. (2007) investigated the coordination mechanism
for a supply chain with one manufacturer and two competing retailers when the
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demands are disrupted. Xiao and Qi (2008) studied the coordination of a supply
chain with one manufacturer and two competing retailers after the production
cost of the manufacturer was disrupted. The model is also extended to the case
with both cost and demand disruptions. Chen and Xiao (2009) developed two
coordination models of a supply chain to investigate how to coordinate the supply
chain after demand disruption. They considered two coordination schedules, linear
quantity discount schedule and Grove’s wholesale price schedule. They found that
linear quantity discount schedule is better for the manufacturer when the increased
amount of demand is very large and production cost is sufficiently low. However,
Grove’s wholesale price schedule is always better when the production cost is
sufficiently large. Cauvin et al. (2009) presented a general framework for disruption
management aiming at supporting decision-making in a disrupted and distributed
environment. They proposed an approach to minimize the impact of disrupting
events on distributed industrial systems. It is based on an analysis of disrupting
events and the characterization of the recovery process, and on a cooperative repair
method for the whole systems.

The outstanding contribution of the above works is the introduction of deviation
costs and disruption management time window. Firms incur deviation costs asso-
ciated with the transition from the original plan to a new plan. The deviation cost
can be a real dollar cost caused by raw material waste, or using on-call or reserved
personnel; it can also mean the loss of the customers’ goodwill for waiting and
delay. One of the roles of introducing the deviation costs is to force the revised plan
to stay close to the original plan. Disruption management time window is a time
point by which the system should restore to its normal operation after a disruption
occurs. By setting the time window, the impact of a disruption can be contained
within a limited time period (Yu and Qi 2004).

The supply chain real time disruption management is a meaningful and interest-
ing field. There are still many questions that need to be studied and analyzed. For
example, most of the above models are extensions of the simple models in supply
chain management such as EOQ model, EPQ model, and supply chain model with
one supplier and one retailer, etc. Besides, even though the demand or the supply is
varying, they are assumed deterministic, i.e., these models are deterministic. Hence,
the model can be extended to the case in which there are multiple retailers, multiple
periods, and longer supply chains, to the case in which demand is stochastic.

1.2.5 Concluding Remarks

This section seeks to investigate disruption risk management in supply chains.
As we have discussed above, a large amount of the literature has been devoted
to the study of disruption risk management in supply chains. We first review
the literature to trace approaches for exploring supply chain disruption risks
according to the risk management paradigm, i.e., disruption risk identifying,
disruption risk assessing, and disruption risk mitigating. Some feasible solutions,
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such as contingency planning, robust optimization, stochastic models, and real-time
disruption management, have been advised to mitigate disruption risk in supply
chain. Obviously, these measures are not free. Many firms find it difficult to justify
certain costly strategies for mitigating supply chain disruptions that may not occur.
Thus, it is an interesting and important issue to justify why resources should be
devoted to proactively manage such risks.

1.3 Financial Risk Measurement in Supply Chains

1.3.1 Introduction

Most of the above risk measurement approaches are incorporated into the risk
management for a single decision maker or some decision makers respectively. As
shown above, these attempts are to incorporate the riskiness of inventory investment
decisions that fail to measure properly the project’s risk and to use a market-based
trade-off between risk and return. On the other hand, most applied inventory control
policies, e.g., the .s; S/ or .Q; r/ policy, are derived from stationary infinite horizon
models discounted at a fixed interest rate. In practice, the discounted model is often
approximated by an average-cost model where the effect of discounting is taken into
account by an opportunity holding cost term. In the mean while, how to determine
the size of the interest rate is still not clear.

It is well known that in a world where investors hold diversified portfolios of
financial assets, the relevant risk of an investment by a value-maximizing firm can
not be appropriately measured by the total variance of the return from the investment
(Fama and Miller 1972). Under such circumstances, the proper measure of the
project’s risk is its systematic, i.e., non-diversifiable risk.

It is also known from the financial economics literature that the size of a discount
rate depends on the systematic (business-cycle-related) risk of the costs that are to be
discounted. According to the Capital Asset Pricing Model (CAPM, see for example,
Sharpe 1964; Lintner 1965; Merton 1973), the expected return of the firm can be
measured by merging risk free interest rate and a risk premium, which is decided
by the correlation between the expected market return and the systematic risk. The
formulation of CAPM is given as follows:

E.R/ D Rf C ˇŒE.Rm/� Rf�; (1.11)

where E.R/ and E.Rm/ are the expected returns of the firm and the market
respectively, and Rf is the risk-free interest. Furthermore, the systematic risk
coefficient ˇ D Cov.R;Rm/=Var.Rm/. With this relationship defined, adjustments
for risk of the firm can be incorporated into discount rates on future returns. Finally
the firm or project could be evaluated based on discounted expected cash flows.
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Recently, there is a growing interest in hedging operational risk using these
financial instruments. This can be traced back to Anvari (1987), who analyzed the
one-period newsvendor problem by using the CAPM and defining the risk as the
covariance of random liquidating dividend and value of market portfolio. To obtain
useful results, he assumed that the joint distribution of random demand and value of
market portfolio is bivariate normal. The resulting optimal policy is characterized
and is compared with the classical expected benefit maximization framework. It is
shown that when the relevant risk of the inventory investment is considered, results
are dramatically different.

The work by Anvari (1987) also indicates that measuring the riskiness of the
inventory investment project by its systematic risk, however, may not be appropriate
under certain circumstances. The correctness of this treatment is based upon the
ability of investors to diversify, at zero cost, their portfolios of risky assets, and
thus eliminate the non-systematic risk of the project. The particular firm analyzing
the inventory investment decision cannot assume that its claimholders can do so,
e.g., small, closely held companies, to the extent that the CAPM will not be
the appropriate valuation framework. Furthermore, in circumstances where the
magnitude of the investment is large enough to affect the chances of bankruptcy,
the total variance or the downside risk of the project may have to be taken into
account, as introduced above.

The existing stochastic inventory models incorporate the risk of holding in-
ventory by specifying the opportunity cost of capital, and consider the effect of
inventory decisions on the risk of cash flows. Besides Anvari (1987), Singhal
(1988), and Kim and Chung (1989) independently showed that the level of inventory
determines the risk, and therefore, the opportunity cost of capital. These authors
used the CAPM to value the cash flows for the newsvendor problem. They got two
key conclusions. Firstly, the opportunity cost of capital for investments in inventory
is an increasing function of the inventory level. Secondly, the opportunity cost of
capital is higher for a firm facing more risky demand.

Singhal et al. (1994) addressed settings where the demand risk is measured by the
covariance of demand with the market return, and the objective of optimization is
minimizing the present value of total cost. The CAPM is used to value the uncertain
cash flows from inventory decisions. The paper analyzes the effect of the demand
risk on the lot size and reorder point decisions of a firm in the standard .Q; r/
inventory model. By numerical analysis the authors found that the influence of
demand risk on inventory decisions depends on the scale of replenishment lead time,
and the average inventory is decreasing in the demand risk. Recently, Caldentey and
Haugh (2006) showed that different information assumptions lead to different types
of solution techniques, and Gaur and Seshadri (2005) investigated the impact of
financial hedging on the operations decision.

Thorstenson (1988), Chung (1990), and Birge and Zhang (1999) derived an
optimal policy for the newsvendor problem by applying the option valuation model
in Black and Scholes (1973). Neither, they did not estimate the size of the systematic
demand risks to be expected, nor they did evaluate the general importance of these
financial risks on inventory control. In Berling and Rosling (2005), the authors
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analyzed the effects of financial risks on .Q; r/ inventory policies in a real options
framework, with the assumption that stochastic price and demand follow a Wiener
process. The objective to maximize is net present values (NPV), which are assumed
determined by the Consumption Capital Asset Pricing Model (C-CAPM, Breeden
1979). A single-period model of the newsvendor type and an infinite-horizon model
with a fixed set-up cost are studied. The systematic risk of stochastic demand is
proved to have a negligible effect on the optimal value of r and Q, while the
systematic risk of the purchase price has a significant effect on r and Q.

There is another important issue that manufacturing and service operations
decisions depend critically on capacity and resource limits. These limits directly
affect the risk inherent in those decisions. While risk consideration is well developed
in finance through the efficient market theory and the CAPM, operations manage-
ment models do not generally adopt these principles. One reason for this apparent
inconsistency may be that analysis of an operational model does not reveal the level
of risk until the model is solved. Birge (2000) used some results from the option
pricing theory, and showed that this inconsistency can be avoided in a wide range of
planning models. By assuming the availability of market hedges, they show that risk
can be incorporated into planning models by adjusting capacity and resource levels.
The result resolves some possible inconsistencies between finance and operations
and provides a financial basis for many planning problems. The author illustrated
the proposed approach using a capacity-planning example.

So far we have introduced the incorporation of systematic risk measurement
into the operational decisions context. From another point of view, financial and
operational decisions of the firm are usually studied separately. It may be due to the
fact that production managers in large firms cannot influence financial policy and
financial officers are typically detached from production decisions. Furthermore, for
more than 40 years it has been known that a firm’s capital structure does not affect
its market value if the capital markets in which the firm operates are perfect and
complete (Miller and Modigliani 1961). However, real capital markets are imperfect
because the information is asymmetric and there are taxes, transaction costs, etc.
Also, for a small firm, say a start-up, the responsibilities of a chief operational officer
and a chief financial officer are often delegated to a single person or a small group
of people who are obliged to be involved actively in all types of decisions. In many
cases, growing firms are capital constrained and cannot implement the operational
decisions that would be optimal if financial considerations were ignored.

In addition, firms may prefer more debt rather than equity due to the tax
advantage of debt. However, this advantage can be nullified by direct and indirect
bankruptcy costs and the risk of bankruptcy. Direct costs include legal and admin-
istrative costs of liquidation or reorganization a business, and indirect costs include
damaged relationships with customers and suppliers, and sometimes “fire sale”
liquidation of the firm’s assets below their market value. The financial economic
research literature studied optimal capital structure by trades off between tax
advantages and bankruptcy risk (Kraus and Litzenberger 1973; Scott 1977; Brennan
and Schwartz 1978; Kim 1978; Turnbull 1979; DeAngelo and Masulis 1980).
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Until a decade ago, financial considerations were conspicuously absent in the
extensive literature on models of inventory and production processes. However,
recent studies (Archibald et al. 2002; Buzacott and Zhang 2004; Xu and Birge 2006,
2004a, 2004b; Li et al. 1997; Sobel and Zhang 2003; Babich and Sobel 2004; Hu
and Sobel 2005; Chao et al. 2008) in operations have recognized the importance of
the interplay between financial and operational decisions.

Hu and Sobel (2005) studied a dynamic newsvendor model with the criterion
of maximizing the expected present value of dividends, and examine the inter-
dependence of a firm’s capital structure and its short-term operating decisions
concerning inventories, dividends, and liquidity. They obtained interesting results
on the interaction between firm’s capital structure and operational decisions.

Buzacott and Zhang (2004) analyzed a Stackelberg game between the bank and
the retailer in a newsvendor inventory model. They considered a single period
inventory management problem where the bank’s decisions include the interest rate
to charge and the loan limit, and the retailer needs to decide the amount to borrow
within the loan limit and the amount of inventory to order from suppliers. Both the
bank and retailer maximize their expected returns.

Chao et al. (2008) considered a classic dynamic inventory control problem of
a self-financing retailer who periodically replenishes its stock from a supplier and
sells it to the market. The replenishment decisions of the retailer are constrained
by cash flows, which is updated periodically following purchasing and sales in each
period. The retailer’s objective is to maximize its expected terminal wealth at the end
of the planning horizon. They characterized the optimal inventory control policy and
present a simple algorithm for computing the optimal policies for each period. They
also study the dependencies of the optimal control policy on the system parameters.

In the following, a consideration of systematic risk measurement is taken into
supply chain management in Sect. 1.3.2 by applying CAPM model or C-CAPM
model. In Sect. 1.3.3, other methods are employed to study the risk of cash flow as
well as possible bankruptcy of firms. Conclusions are given in Sect. 1.3.4.

1.3.2 A Systematic Risk Analysis

The systematic risk is usually measured by the correlation between the returns of
the firm and the market as the CAPM model shows. Anvari (1987) introduced the
methodology into the analysis of inventory control problem. In the following we first
present his model. Notice that only the main model and its results are introduced,
and for the details, please see Anvari (1987).

1.3.2.1 Optimality Criteria with CAPM Model

According to Anvari (1987), consider the one-period newsvendor problem with no
set-up costs. Suppose the all-equity firm is established at t D 0, with total capital
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C to be invested in two independent projects. At t D 0, an amount equal to cQ
is invested in the inventory project, and C � cQ is invested in other projects. The
latter investment generates returns at the random rate of �, where � incorporates
the terminal value of all physical assets involved in other projects. The investment
in inventory is used to purchase Q units of a commodity at the net price of c per
unit. They are sold at t D 1 at a price p per unit, where p is the price net of storage
charges. The demand for the commodity, D, is a random variable characterized
by a probability density function f .�/ and a cumulative distribution function F.�/.
Surplus units are disposed of at a net price of s < p.

The firm is liquidated at t D 1, which proceeds accruing to the shareholders.
Common-share trading takes place at t D 0, at which time prices are estab-
lished based on investors’ homogeneous expectations concerning pay-offs at t D 1.
Assuming the one-period CAPM applies, the value of the firm’s common shares at
t D 0 is given by:

S.Q/ D E.v.Q//�	Cov.v.Q/;M/

1C rf
; (1.12)

where v.Q/ is the random liquidating dividend, 	 is the market price per unit of
risk, M is the value of market portfolio at t D 1, and rf is the risk-free rate.

The objective of the value-maximizing firm is to select Q such that the current
shareholders’ wealth, S.Q/� C , is maximized.

Notice that v.Q/ can be written as v.Q/ D .1C �/.C � cQ/C pminD;Q C
s.Q � D/C. Let E.D/ and � denote the mean and standard deviation of D. To
characterize the optimal policy, further let Qc D E.D/C �2=	Cov.D;M/.

Finally, the optimal ordering quantity,Q� can be found as follows:

Case 1: Cov.D;M/ > 0

S.Q�/ D maxfS.Dmax/; S.Qc/; S.Qmax/g; (1.13)

where Dmax is the maximum possible value of D and Qmax is the value of Q
that maximizes the function in the concave region determined from the first order
condition.

Case 2: Cov.D;M/ < 0

S.Q�/ D maxfS.0/; S.Qc/; S.Qmax/g: (1.14)

Case 3: Cov.D;M/ D 0

S.Q�/ D S.Qmax/: (1.15)

Notice that the NPV of the overall production plan, i.e.,S.Q�/�C , may be negative,
in which case the firm should be dissolved at time t D 0.

The CAPM model is applied to analyze the single-period newsvendor problem.
The newsvendor problem is a useful starting point to illustrate the fundamental idea
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that inventory decisions affect the risk of cash flows. However, the focus is on the
newsvendor problem that has two limitations. Firstly, it limits the generalization
of the results to just the safety stock component of a firm’s inventory. Cycle stock
issues – the result of the trade-off between setup, holding, and backorder cost –
are ignored. There exists a high degree of interrelationship between the cycle stock
and safety stock decisions and these two should not be separated. Secondly, the
newsvendor problem is a single period model whereas inventory decisions are made
in a multi-period framework.

In the following we will present the CAPM-based multi-period (Q, r) inventory
model, which shows how risk considerations affect the cycle stock (order quantity)
and safety stock (recorder point) when both these decisions are made simultaneously
in a multi-period setting. The details of the model can be found in Singhal et al.
(1994).

1.3.2.2 The .Q; r/ Inventory Model Applying CAPM

Consider the traditional .Q; r/ inventory model with setup, inventory, and backorder
costs. This is a widely known model where the inventory control policy is to place
an order of size Q, the lot size, whenever the inventory level drops to r , the reorder
point. The objective is to minimize the present value of total cost, using the CAPM
to value the uncertain cash flows.

Similar to (1.12), in the single period CAPM context, the risk-adjusted present
value V0.X/ of the risky cash flow X , realized at the end of the year, is given by the
single period CAPM as

V0.X/ D E.X/ �	Cov.X;M/

.1CRf/
; (1.16)

whereE.X/ is the expected cash flow and Cov.X;M/ is the covariance of the cash
flow with the market return, the relevant measure of risk in valuing a risky cash flow
in the CAPM framework.

Furthermore, using the version of the multi-period CAPM developed by Fama
(1977), consider a firm that will have an uncertain cash flow ofX at the end of year t
and no cash flows at any other time. Assume that the distribution of X is stationary.
The risk-free rate and the market price per unit of risk in future periods are non-
stochastic. It is reasonable and necessary for tractability to assume the values of
the risk-free rate and the market price per unit of risk are the same in each period.
Given these conditions, Fama (1977) showed that when the values in each period
are determined according to the CAPM, the market value of the firm at time 0 is

V0.X/ D E.X/ �	Cov.X;M/

.1CRf/t
: (1.17)

Equation (1.17) is the appropriate formula to value the cash flows from the (Q; r)
model.
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Next, the certainty equivalent of the costs incurred during any period t is
determined. Since an order is placed every cycle, a fixed setup cost S is incurred
every cycle. The backorder costs per cycle are uncertain and depend on the demand
during the lead time. Using the results in the Appendix of Anvari (1987) with the
assumption that the demand and the market return are jointly normal, the certainty
equivalent of backorder costs per cycle, BC, can be written as

BC D b fB.r/ �	Cov.Dl ;Ml/.1 � F.r//g ; (1.18)

where b is the per unit backorder cost, Dl and Ml are respectively the uncertain
demand and the market return over the lead time l , and B.r/ D E.D � r/C is
the expected number of backorders per cycle. Notice that F.�/ here denotes the
cumulative distribution of Dl .

Using the economic interpretation of the certainty equivalent of an uncertain
cash flow, the valuation impact of the uncertain backorder costs per cycle can be
replicated by substituting the uncertain cash flow with a certain ‘fixed’ backorder
cost per cycle equal to the certainty equivalent of the backorder costs per cycle. Thus
in every cycle, the valuation impact of setup and ordering costs is like incurring a
fixed cost equal to S C BC . The inventory system goes through one cycle every
Q units of demand realized. By allocating the setup and backordering costs equally
overQ units of demand, .SCBC/=Q is the setup and backordering costs per unit of
demand realized. Given the assumption that all costs during a year results in a single
cash flow at the end of the year, an uncertain cash outflow equal to D.S CBC/=Q

will be incurred at the end of any year t . Thus, the certainty equivalent of this
uncertain cash flow, Z, in any year t is

Z D .D �	Cov.D;M//.S C BC/

Q
; (1.19)

where D and M are the demand and market return of each period, and D �
!Cov.D;M/ is the certainty equivalent of demand.

Similarly, the certainty equivalent of holding cost, H , in any period t is

H D hc

�
1

2
QC r � .Dl �	Cov.Dl ;Ml//

�

; (1.20)

where h is the per unit holding cost. The present value of the cash flow of the
investment in inventory is

I D c

�
1

2
QC r � .Dl �	Cov.Dl ;Ml//

�

: (1.21)
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Finally the present value of total costs, PVTC, over an infinite number of periods
can be written as

PVTC D I C
tD1X

tD1

H CZ

.1C rf/t
D I C H CZ

rf
: (1.22)

Maximizing the present value of total costs, we find the first order optimality
conditions as

Q� D
s
2.d �	Cov.D;M//.S C b.B.r�/�	Cov.Dl ;Ml/.1 � F.r�////

c.hC rf/
;

(1.23)

and

1 � F.r�/ D Q�c.hC rf/

b.d � �Cov.D;M//
C	Cov.Dl ;Ml/f .r

�/: (1.24)

Further note that the first order conditions for the traditional model are given by

Q� D
s
2d.S C bB.r�//

c.hC ˇ/
; (1.25)

and

1 � F.r�/ D Q�c.hC ˇ/

bd
: (1.26)

Comparing (1.23) and (1.24) with (1.25) and (1.26) indicates that using the
CAPM to adjust for the risk of the cash flows results in three differences. Firstly,
the expected demand and expected backorder cost per cycle are replaced by their
respective certainty equivalents. Secondly, an additional term is introduced in the
right hand side of (1.24), similar to the adjustment made in the optimality condition
by Anvari (1987) and others, in their analysis of the newsvendor problem. Thirdly,
in (1.25) and (1.26) the fixed opportunity cost of capital, k, accounts for both the
timing and the risk of the cash flows. In our model, the risk-free rate, rf, accounts
for the timing of cash flows whereas the various covariance terms account for the
risk of cash flows. Furthermore, in contrast to (1.25) and (1.26), the risk adjustments
depend on the inventory decisions themselves. Also note that when Cov.D;M/ is
zero, (1.23) and (1.24) reduce to (1.25) and (1.26) with k replaced by Rf, the risk-
free rate of return.

In the following, Sect. 1.3.2.3 will propose the incorporation of financial risk
by adopting the real option framework and C-CAPM. Also the impact of both the
stochastic demand and price are studied. For details of the model, please see Berling
and Rosling (2005).
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1.3.2.3 The Effect of Stochastic Demand and Price

Consider a single-period model in which there is a period of length t . Stock bought
at the beginning of the period costs c.0/ per unit and what is left over at time t
is sold back at price c.t/. Demand evolves from an initial intensity D.0/, or D,
to D.t/, which is the total period demand. Shortages at the end of the period are
satisfied externally at the price c.t/, but in addition the customer is compensated by
a discount of ˇ per unit.

All the decisions are made to maximize the firm’s market value. Let X.t/
represent a monetary value at time t .X.t/ are assumed to follow logarithmic Wiener
processes, i.e., the growth rates (or logarithms) of the variables obey regular Wiener
processes. Thus, lnŒX.t/� is normally distributed with EŒln.X.t//� D lnŒX.0/�C ıt

and VARŒln.X.t//� D �2t for all t � 0, where ı, the drift, and � � 0 are constants.
Consequently X.t/ is lognormally distributed with EŒX.t/� D X.0/et .ıC�2=2/ and
VARŒ.X.t//� D E2ŒX.t/�.et�

2 � 1/ for all t � 0.
Assume that the stochastic variables are stationary in the sense that EŒX.t/� D

X.0/ for all t , so that ı D ��2=2.
By adopting the real option valuation framework, the present value of X.t/ in

the financial market depends on the expected return that the market requires for
outcomes as risky as X . This relationship is assumed to follow the C-CAPM.
The aggregate per capital consumption (of all goods and services), G.t/ – which
is understood as a proxy for the business cycles then supposed to be jointly
lognormally distributed with X.t/. The market’s required expected return per
period,R, on the investment in X satisfies

R D rf C	Cov.G;X/:

The present market value of X.t/ is found as

PV ŒX.t/� D EŒX.t/�e�Rt :

Consider a monetary value, g.X.t//, that is a general function of g.t/. According
to the Risk Neutral Valuation Principle (or Martingale Property) the present market
value of g.X.t// can be found as

PV Œg.X.t//� D EŒg.Y.t//�e�rft ; (1.27)

where

Y.t/ D X.t/e�	Cov.G;X/t : (1.28)

Thus, X.t/ is replaced by its risk-adjusted value, X.t/e�	Cov.G;X/t . The expected
value of g.Y.t// is then discounted by the risk-free rate, rf.
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Next to study the effect of stochastic demand, in the single-period model the
inventory level is set to r , the order point. By (1.27) and (1.28) the present value of
the expected cost is

TC.r/ D cr C e�rftˇEŒmax.0;D0 � r/� � e�rft cEŒr �D0�

D c.1 � e�rft /.r �EŒD0�/C cEŒD0�C ˇe�rftEŒmax.0;D0 � r/�;

where D0 DD.t/e�	Cov.G;D/t . As D0 is lognormally distributed, the optimal solu-
tion satisfies

ˇe�rft � c.1 � e�rft /
be�rft D ˆ

 
ln.r�/� EŒln.D0/�
p
VARŒln.D0/�

!

D ˆ

�
ln.r�/� EŒln.D.t// �	Cov.G;D/t�

�
p
t

�

;

whereˆ denotes the standard normal distribution function and �2t is the variance.
Hence, systematic demand risk generally seems to have little influence on the

optimal order point. This conclusion is extended to the related infinite-horizon
problem in Berling and Rosling (2005). Then myopic policies are not optimal due
to the dependent increments of the lognormal process.

Furthermore, consider the single-period model which is realized with both the
end-of-period price, c.t/, and the demand, D.t/, stochastic. Assume the random
variables are independent and there is a risk premium, 	Cov.G; c/t , associated
with c.t/ only. In the risk neutral formulation, c.t/ is replaced by c.t/e�	Cov.G;c/t .
Thus,

TC.R/ D cr C e�rft fˇEŒmax.0;D.t/ � r/� �EŒc.t/e�	Cov.G;c/t �EŒr �D.t/�g
D c.1 � e�.rfC	Cov.G;c//t .r �EŒD.t/�/ C cEŒD.t/�

Cˇe�rftEŒmax.0;D.t/ � r/�:

The optimal solution, r�, satisfies

ˇe�rft � c.1 � e�.rfC	Cov.G;c//t /

ˇe�rft D ˆ

�
ln.r�/� EŒln.D.t//�

�
p
t

�

;

where �2t denote the variance of lnŒD.t/�.
Thus, the modification rule for systematic risk now reads that the opportunity cost

of holding inventory should include the purchase-price risk premium. Note that the
model is insensitive to the detailed assumptions about the discount shortage cost, ˇ.

Sometimes very substantial relative losses may be incurred by not adjusting the
formulas for the risk premium. It can be concluded that the effect of a systematic
purchase-price risk may be of considerable importance when determining the
order point.
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1.3.3 The Risk of Capital and Bankruptcy

In real world, the operational decisions of the firm are usually constrained by cash
flows. Many firms become bankrupt due to the breakdown of capital chain. Thus,
beyond supply chain management, the firms also need to establish appropriate
capital structure and manage the capital. Next, we first introduce the model which
focuses on the impact of capital structure on the firms’ operational decisions. The
detail can be found in Hu and Sobel (2005).

1.3.3.1 The Importance of Capital Structure

Assume that the firm has initial levels of debt and equity and, thereafter, these levels
remain constant. Let 
 be the amount of equity. Specifically, the bonds have an
infinite maturity date and the proceeds are mB which entails a periodic coupon
payment of B . Let Xn.n D 1; 2; : : :/ be the firm’s internal capital at the beginning
of period n, so X1 is the firm’s initial working capital. In order to reflect the tax
advantage attraction of debt-financing, let 1 � � be the firm’s marginal income
tax rate.

At the beginning of each period n.n D 1; 2; : : :/, the firm knows Xn and the
size of its physical goods inventory, denoted xn, and makes three decisions: bn, the
amount of a short-term loan; zn, the physical goods replenishment quantity; and
vn, the amount of dividends to issue. The repayment of bn is due at the end of
period n. The constraints on the decision variables are bn � 0 and zn � 0, but
dividends are not constrained vn � 0 for the following reason. Capital subscriptions
occur frequently in entrepreneurial firms. If vn < 0, jvnj is interpreted as a capital
subscription. Later in the section we comment on the effects of imposing the
constraint vn � 0.

Although a broad array of inventory replenishment models would be consistent
with the model, it is assumed for specificity and simplicity that ordered goods
are provided by a singlestage source without delay, excess demand is backlogged,
and successive periods’ demands are independent and identically distributed non-
negative random variables D1, D2, : : :. Let F.�/ denote the distribution function
of D. The model can be generalized in numerous ways including positive lead
times, excess demand being lost, a multi-stage source for the ordered goods, and
autocorrelated demands. Under the stated assumptions,

yn D xn C zn: (1.29)

Equation (1.29) is the total amount of the total amount of goods available to satisfy
demand in period n. The constraint zn � 0 corresponds to yn � xn.

The interest on the short-term loan bn in period n is modeled as a random
variable �n.bn; yn/ whose distribution depends on the amount borrowed and on
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the total supply of goods. This representation can reflect the dependence of the
interest rate on the firm’s current risk of bankruptcy, and it includes borrowing limits
contingent on the firm’s current condition. It is assumed that �1.b; y/, �2.b; y/, : : :
are independent and identically distributed random variables (for each pair .b; y/
with b � 0).

The firm is declared insolvent at the end of a period if it has insufficient funds
to pay the bond coupon B and repay the short-term loan (if one was made at the
beginning of the period). Insolvency at the end of period n leads to reorganization of
the firm accompanied in period nC1 by the resumption of operations after payment
of a bankruptcy penalty p.XnC1/. The costs of reorganization bankruptcy are both
direct, such as fees paid to lawyers and accountants, and indirect, such as lost sales
and damaged supplier and customer relationships.

Represent the sales revenue net of inventory costs in period n as a function
g.yn;Dn/ of total supply and demand. Let L.zn/ be the cost incurred in pe-
riod n to replenish the quantity zn Dyn � xn. Assume that the firm is subject
to a liquidity constraint that obliges it to fund its expenditures early in the
period:

Xn C bn � vn C �ŒL.zn/C �n.bn; yn/C p.Xn/�:

The left side is the sum of retained earnings and the short-term loan. The right side
is the sum of dividends and, net of tax credits, inventory replenishment cost, short-
term interest, and bankruptcy penalty.

Define sn D Xn � vn � �ŒL.zn/ C �n.bn; yn/C p.Xn/� as the residual internal
capital after making expenditure early in the period, then the liquidity constraint is

bn C sn � 0: (1.30)

It can be easily shown that an optimal policy specifies bn D �sn.
The single period discount factor in period n is modeled as a random variable

ˇn.sn; yn/ whose distribution depends on the residual internal capital and the
total supply of goods. Assume that ˇ1.s; y/, ˇ2.s; y/, : : : are independent and
identically distributed random variables (for each pair .s; y//, and that .D1;D2; : : :/,
.�1.b; y/; �2.b; y/; : : :/, and .ˇ1.s; y/; ˇ2.s; y/; : : :/ are mutually independent se-
quences (for each .b; s; y/ with b � 0).

The dynamics reflect the backlogging of excess demand and the balancing of
cash flow:

xnC1 D yn �Dn; (1.31)

XnC1 D sn C �Œg.yn;Dn/� B�: (1.32)

The value of the firm is the maximal value of E.…/ where the random variable
… denotes the present value of dividends. Specifically,
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… D
1X

nD1

h
…n�1
jD1ˇj .sj ; yj /

i
vn

D
1X

nD1

h
…n�1
jD1ˇj .sj ; yj /

i
fXn � sn � �ŒL.zn/C �n.bn; yn/C p.Xn/�g

D
1X

nD1
…n�1
jD1ˇj .sj ; yj /Kn.bn; sn; xn; ynIB/CX1 � p.X1/; (1.33)

with the definition

Kn.b; s; x; yIQ/
D �Œ1 � ˇn.s; y/�s C �ˇn.s; y/Œg.y;Dn/ � pfs C �g.y;Dn/� �Bg � B�

��ŒL.y � x/ � �n.b; y/�; (1.34)

where Kn does not depend on wn, and K1.b; s; x; yIB/, K2.b; s; x; yIB/, : : : are
independent and identically distributed random variables.

Therefore,

E.…/ D E

( 1X

nD1

h
…n�1
jD1ˇj .sj ; yj /

i
vn

)

D E

" 1X

nD1
…n�1
jD1ˇj .sj ; yj /K.bn; sn; xn; ynIB/

#

CX1 � p.X1/: (1.35)

Next the optimal policies and impacts of long-term debt are identified. Without
loss of generality, the following linearity assumptions are given:

L.z/ D cz,

�n.b; �/ D �b;

ˇn.s; y/ D ˇ 2 Œ0; 1/;
p.a/ D �.�a/C;
g.y; d/ D pminfy;Dg � h.y �D/C D py � .p C h/.y �D/C:

Where c is the unit cost of acquisition, � > 0 is a unit default penalty, and � is a
scalar interest rate.

The following result characterizes the parameter sets yielding an optimal s < 0

(so b > 0).

Proposition 1.3.1. The firm borrows short-term only when

�ˇ�F

�
h Oy C B

hC p

�

< 1 � ˇ � ��; (1.36)
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where Oy satisfies

.p C h/F. Oy/C ��hF

�
h Oy CB

hC p

�

D p � c.1 � ˇ/
ˇ

: (1.37)

Equation (1.36) implicitly restricts 1 � ˇ > ��, i.e., the gain from receiving
a dollar of dividend now rather than next period must be greater than the interest
payment for 9 one-dollar short-term loan. Otherwise, borrowing would never be
optimal. In addition,F Œ.h OyCB/=.hCp/� is next period’s probability of bankruptcy
when s D 0, so the left side of (1.36) represents next period’s expected bankruptcy
cost; the right is the benefit of distributing a dollar dividend now while borrowing
the dollar short-term to maintain solvency. Hence, (1.36) states that the firm should
borrow only if the incremental benefit of receiving a dollar of dividend now rather
than next period, net of interest payment, is greater than next period’s expected
default cost.

The following result characterizes y� and s� including comparative statics with
respect to B .

Proposition 1.3.2. (a) The optimal base-stock level y�

(i) Is invariant with respect to the long-term debt level
(ii) Is nondecreasing in � and � if s� < 0

(iii) Depends only on inventory related parameters if s� � 0

(iv) Is at least as high when s� < 0 as when s� � 0

(b) The optimal capital level s�

(i) Is nondecreasing as the long-term debt level increases
(ii) Is nondecreasing in � , �, and � , and depends on the same inventory-related

parameters as y�

The linearity assumption yields two influences of capital structure on operational
policies. Firstly, the optimal physical goods base-stock level does not depend on the
capital structure, but the optimal residual internal capital increases as the long-term
debt level increases. Secondly, if the firm borrows short-term, financial parameters
(except for the tax rate and short-term interest rate) do not affect the optimal physical
goods base-stock level, whereas the optimal residual internal capital depends on
both financial and inventory-related parameters. The managerial insight from these
results is that maximization of the firm’s value is consistent with (i) ignoring
financial parameters (other than the tax rate and short-term interest rate) when
making short-term operational decisions, and (ii) taking operational parameters into
account when making short-term financial decisions. Note that nonlinearity of the
default penalty function would invalidate the conclusions that the optimal physical
goods base-stock level does not depend on the capital structure, and financial
parameters do not affect the physical goods base-stock level.
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1.3.3.2 Asset-Based Financing

This section proposes a framework of inventory management with asset-based
financing. The details of the model can be found in Buzacott and Zhang (2004).
Consider a single-period newsvendor problem. The decision maker can get loan
from the bank or deposit residuals in the bank. The sequence of events is as follows.

At time 0, the retailer has initial cash of X0 but no other assets. The retailer
places an order of size q at a cost of c per unit from her suppliers without knowing
the actual demand, only the probability distribution of demandD given by F.
/ D
P rfD � 
g. Let NF .
/ D 1�F.
/ and f .
/ D F 0.
/. It is assumed that the retailer
and the bank have the same belief about the distribution of demand. Full payment of
cq is required when the order is placed, so the retailer borrows w from the bank. This
means that there are no accounts payable and the retailer will have a cash balance
of X 0 D X0 C w � cq after payment. The amount borrowed by the retailer has to
be such that X 0 � 0 or w � maxf0; cq � X0g, otherwise full payment for the order
could not be made. Also, w �  , the asset-based loan limit of  D �Cx

0 C �cq

once the order is placed. Suppose that the bank funds the loan using money received
from depositors to whom it promises to pay interest at the rate of ˛0.

Over time .0; T /, the retailer receives orders for D units of the product.
At time T , available product is shipped to customers who pay immediately p

per unit and unsold inventory is disposed at a price of c0, c0 < c, per unit. So the
retailer receives a total payment of pminfD; qg C c0 maxfq � D; 0g and there are
no accounts receivable. The retailer then has to pay the bank w C ˛w, the required
loan repayment plus the required loan interest, although it will receive a credit of
˛0X 0 for the interest due on the retailer’s cash balance. Again, it will be assumed
that ˛ > ˛0. Because of our assumption that the retailer had no other assets butX0 at
time 0, the retailer will be bankrupt if they are unable to repay the loan and interest
due on it. Assuming that the retailer is set up as a corporation with limited liability,
the liability of the retailer’s equity owners is limited to the amount invested in the
ownership shares so the potential loss would be at mostX0. Therefore, the retailer’s
final cash position XT .D/ after repaying the loan will be given by

XT .D/ D X 0 C pminfD; qg C c0 maxfq �D; 0g � w.1C ˛/C ˛0X 0

and the retailer is bankrupt if XT .D/ < 0. Because ˛0 < ˛, it can be easily shown
that it is optimal for the retailer to ensure thatX 0 �w D 0. That is, the retailer should
use up all the cash before considering borrowing money from the bank, and so the
value of �C is irrelevant to decision making. There are some simple properties that
follow immediately.

Lemma 1.3.3. The retailer borrows with no bankruptcy risk if the order quantity is
such that x0=c < q � Oq, where Oq is given by

Oq D x0.1C ˛/

c.1C ˛/ � c0 D x0

c.1 � � 0/
; (1.38)

where � 0 D c0=c.1C ˛/.
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Lemma 1.3.4. If the order quantity q is such that q > Oq, then bankruptcy will
occur if demand 
 is less than d.q/, where

d.q/ D .c.1C ˛/ � c0/.q � Oq/
p � c0 :

The retailer’s ending cash will then be given by

XT .D/ D
(
.p � c0/.minfD; qg � d.q//; if D � d.q/;

0; if D < d.q/;
(1.39)

and the bank’s economic return from its loan to the retailer is

….D/ D .cq �X0/.˛ � ˛0/�
(
0; if D � d.q/;

.p � c0/Œd.q/�D�; if D < d.q/:
(1.40)

By using Lemmas 1.3.3 and 1.3.4, the expected returns to the retailer and bank
for any given q can be derived. There are three possible situations that can arise:

(1) The retailer has enough initial capital that it does not borrow (q � X0=c, no
borrowing)

(2) The retailer borrows, but not sufficient to create any risk of bankruptcy (X0=c <
q � Oq, borrowing without bankruptcy risk)

(3) The retailer borrows and there is the risk of bankruptcy (q > Oq, borrowing with
bankruptcy risk)

The probability of retailer bankruptcy is P rfD < d.q/g and the retailer’s expected
cash position, EŒXT .D/�, is given by

EŒXT .D/�

D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

.p � c0/
Z q

0

NF .
/d
 � Œc.1C ˛0/� c0�q CX0.1C ˛0/; if q � X0

c
;

.p � c0/
Z q

0

NF .
/d
 � Œc.1C ˛/ � c0�q CX0.1C ˛/; if
X0

c
< q � Oq;

.p � c0/
Z q

d.q/

NF .
/d
; if q > Oq:

(1.41)

The bank’s expected return by lending to the retailer is

EŒ….D/�

D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0; if q � X0

c
;

.cq � X0/.˛ � ˛0/; if
X0

c
< q � Oq;

.cq � X0/.˛ � ˛0/� .p � c0/
h
d.q/ � R d.q/

0
NF .
/d


i
; if q > Oq:

(1.42)
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For a given bank interest rate ˛, no retailer will borrow if p � c.1C ˛/. So only
the case where p > c.1 C ˛/ is considered. The following theorem identifies the
order quantity a retailer with initial capital X0 will choose.

Theorem 1.3.5. For increasing failure rate (IFR) distributions of demand, the
order quantity a retailer with initial capital of X0 will choose, qR�, for given ˛
is as follows:

qR� D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

qNB; if X0 > cqNB;

X0=c; if cqBWO � X0 � cqNB;

qBWO; if cqBWO.1 � � 0/ � X0 < cq
BWO;

q.X0/; if 0 � X0 < cq
BWO.1 � � 0/:

(1.43)

where qNB, qBWO, and q.X0/ are determined by

NF .qNB/ D c.1C ˛0/ � c0

p � c0 ; (1.44)

NF .qBWO/ D c.1C ˛/ � c0

p � c0 ; (1.45)

NF .q.X0// D c.1C ˛/ � c0

p � c0 NF .d.q.X0///: (1.46)

Furthermore, q.X0/ is decreasing in X0 for 0 � X0 < cqBWO.1 � � 0/ with
q.cqBWO.1� � 0// D qBWO.

From the above theorem, the optimal retailer order quantity decreases as X0
increases from X0 D 0 until X0 D cqBWO.1 � � 0/, then it is constant until
X0 D cqBWO and eventually it increases once X0 > cqBWO. Because the bank
faces a set of retailers who differ only by their initial cash X0, without loan limits,
the retailers will respond in the following ways for a given ˛.

(i) Retailers with cash level x0 > cqNB will have more than enough cash for their
operations and will not borrow.

(ii) Retailers with cqBWO � X0 � cqNB will use all the cash they have to finance
their inventory and will not borrow.

(iii) Retailers with cqBWO.1� � 0/ � X0 < cq
BWO will borrow, but not sufficient to

create any risk of bankruptcy.
(iv) Retailers with the least initial cash (i.e., X0 < cqBWO.1 � � 0// will be the big

borrowers. As a matter of fact, the less wealthy the retailers are, the more the
retailers will borrow and the more inventory the retailers will stock.
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Furthermore, we will first determine the retailers’ order quantities that achieve
the optimal bank returns and then compare these quantities with the quantities that
the retailers will order for a given ˛. As long as there is no risk of bankruptcy by
lending to a retailer, the bank’s return, EŒ….D/�, increases with increasing w and,
hence, for a retailer with initial capital X0, increases with increasing q. However,
once there is bankruptcy risk, the maximum bank return occurs when q D qB,
where

NF .d.qB// D c.1C ˛0/� c0

c.1C ˛/ � c0 ; (1.47)

or

qB D X0

c.1 � � 0/
C p � c0

c.1C ˛/ � c0 NF �1
�
c.1C ˛0/ � c0

c.1C ˛/ � c0

�

: (1.48)

With the option of asset-based financing, Theorem 1.3.5 and (1.47) propose the
optimal quantities for the retailer and bank respectively. Here the study is for single-
period newsvendor problem. In Chap. 4, the multi-period model with cash flow
constraints will be investigated.

1.3.4 Concluding Remarks

This section proposes many supply chain management models related to financial
risk, i.e., systematic risk or the risk of cash flow and bankruptcy. These models
adopt financial theories (e.g., CAPM and Modigliani-Miller (M&M) Theorem, etc.)
to study various financial risks.

Firstly, the CAPM model is applied to measure the systematic risk of the
inventory control process. The CAPM-based inventory model is formulated and
the optimal inventory control policy is proposed. Furthermore, the multi-period
.Q; r/ inventory model incorporated with CAPM is studied and the optimal ordering
quantity and reorder point are proposed. We also present the analysis of the effect
of the stochastic demand and price on operations.

Then the risks of cash flow and bankruptcy in supply chain management
are studied. First the impact of capital structure on inventory control strategy is
proposed, by establishing the inventory model to maximize the present value of
dividends of the firm. Then a general asset-based financing inventory model is
established, with the assumption that a newsvendor can carry out both operational
decisions and financing decisions.

There are also other studies which coordinate the theory and practice supply
chain management and finance. The innovation of financial theory and practice will
also drive the development of supply chain management.
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1.4 Organization and Main Conclusions of the Book

The first part of the book surveys the applications of risk management to supply
chains and review the existing literature categorized by modeling of decision
maker’s risk preference, supply disruption management, and financial risk measure-
ment in supply chains. Some representative works are selected for demonstrating
the application of various risk management tools in supply chains.

The second part of the book focuses on the studies on supply uncertainty.
Specifically, the sourcing strategy of a retailer who procures from two supplier
with random yield is investigated in Chap. 2. The single-period and two-period
problems with stochastic demand is analyzed. In each of the case, the condition
whether the retailer will choose single soucring or dual sourcing is identified.
Furthermore, an explicit form of sourcing threshold could be found for the special
case of deterministic demand. Chapter 3 investigates not only the sourcing strategy
of a retailer but also the pricing strategies of two suppliers under an environment of
supply disruption. A coordination mechanism is devised to maximize the profits of
both suppliers.

The third part of the book focuses on the financial risk measurement in supply
chains from the perspective of cash flow constraints, financing decisions, and
delayed cash payment.

Chapter 4 considers a classic dynamic inventory control problem of a self-
financing retailer who periodically replenishes its stock from a supplier and sells
it to the market. The replenishment decisions of the retailer are constrained by
cash flows, which is updated periodically following the purchasing and the sales
in each period. Excess demand in each period is lost when insufficient inventory is
available. The retailer’s objective is to maximize its expected terminal wealth at the
end of the planning horizon. We characterize the optimal inventory control policy
and present a simple algorithm for computing the optimal policies for each period.
Conditions are identified under which the optimal control policies are identical
across periods. We also present comparatively static results on the optimal control
policy.

Chapter 5 presents a classic dynamic inventory control problem of a retailer who
periodically replenishes its stock from a supplier and sells it to the market. Asset-
based financing is allowed for the retailer, when being short of cash flow. Excess
demand in each period is lost when insufficient inventory is available. The retailer’s
objective is to maximize its expected terminal wealth at the end of the planning
horizon. The optimal inventory control policy is characterized. The dependence of
the optimal policy on the wealth level is studied. Conditions are identified under
which the retailer will choose to borrow or deposit in each period. The bankruptcy
probability is also studied.

In Chap. 6, a framework is proposed for incorporating financial considerations
including delayed cash payment and receivable into multi-period inventory models.
Specifically, we characterize the dynamic financial constraint that is updated
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periodically according to production activities. The optimal operational policy and
its dependence on the financial state are studied. It also demonstrates the importance
of firms considering delayed cash payment.

The last part of the book studies on wholesale price negotiation. Specifically,
a one-supplier two-manufacturers supply chain is studied in Chap. 7. The Nash
game is first analyzed between the two manufacturers and then the bargaining
process between the supplier and each manufacturer is modeled by a sequential
Nash bargaining. The results demonstrate the importance of steel manufacturers
increasing the investment on iron ore.



Chapter 2
Dynamic Suppliers Selection: Single
or Dual Sourcing?

2.1 Introduction

Supply chain disruptions are unplanned and unanticipated events that disrupt the
normal flow of goods and materials within a supply chain (Hendricks and Singhal
2003; Kleindorfer and Saad 2005) and, as a consequence, expose firms within the
supply chain to operational and financial risks (Stauffer 2003).

Generally speaking, most supply chain disruptions can be broadly classified into
three categories, namely supply-related, demand-related, and miscellaneous risks
(Oke and Gopalakrishnana 2009). Supply disruption occurs when suppliers are
unable to fill the orders placed with them. These risks could potentially affect or
disrupt the supply of products or services that the supply chain offers its customers.
Demand disruption may be due to a sudden drop or a sudden rise in customer orders.
Demand-related risks could potentially affect or disrupt the operations of the retailer
and affect its ability to make products available to its customers. Miscellaneous
risks are risks that could potentially affect the costs of doing business, such as
unexpected changes to purchasing costs, interest rates, currency exchange rates,
safety regulations by government agencies, etc. This book mainly focuses on supply
disruption.

A supplier may be unable to fill an order for a variety of reasons, including
equipment failures, damaged facilities, problems in procuring the necessary raw
materials, or rationing its supply among its customers.

This chapter addresses the problems faced by a retailer who deals with two
unreliable suppliers who may default on their obligations to deliver order quantities
at the end of a given production period. Using a simple two-periods model of a
supply chain with one retailer and two unreliable suppliers, this chapter studies
questions of supplier selection and ordering policies among firms.

Our work is related to the research on random yields. An excellent review
of the random yield literature is offered by Yano and Lee (1995). Examples
of model constructions appearing in these literature include, among others, the
case of all-or-nothing delivery (Anupindi and Akella 1993; Gerchak 1996),
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the case of random capacity (Ciarallo et al. 1994), the case of binomial yield
(Chen et al. 2001; Xie et al. 2010), the case of stochastic proportional yield
(Henig and Gerchak 1990), and combinations thereof (Wang and Gerchak 1996).
Specifically, Anupindi and Akella (1993) studied one- and multi- period discrete-
time problems of a retailer who can order from one or two suppliers whose failure
processes are uncorrelated. The authors derived optimal ordering policies under
various stochastic yield assumptions including all-or-nothing, partial recovery, and
delayed delivery.

One can also interpret the problem considered in this chapter as a multi-supplier
sourcing problem. Recent survey articles by Elmaghraby (2000) and Minner
(2003) described a variety of models proposed in a multi-supplier supply chain
management literature. When there are multi suppliers, quite different disruption
management strategies including dual sourcing, emergency sourcing, etc. could be
employed. The focus of multi suppliers model is how to evaluate these different
strategies and find a trade-off between the strategies cost and the disruption
negative consequences. These studies can be found in Parlar and Perry (1996),
Swaminathan and Shanthikumar (1999), Dada et al. (2003), Tomlin and Wang
(2005), Babich et al. (2007a, 2007b), and Tomlin (2006).

Babich et al. (2007a, 2007b) studied a supply chain where one retailer deals
with competing risky suppliers who may default during their production lead-times.
The suppliers, who compete for business with the retailer by establishing wholesale
prices, are leaders in a Stackelberg game with the retailer. The retailer, facing
uncertain future demands, chooses order quantities while weighing the benefits of
procuring from the cheapest supplier against the advantages of order diversification.
For the model with two suppliers they show that low supplier default correlations
dampens competition among the suppliers, increasing the equilibrium on wholesale
prices.

Tomlin and Wang (2005) investigated a single-period, yield-uncertainty problem
in which the firm faces trade-offs between mix flexibility and dual sourcing. They
assumed that the firm is risk neural or risk averse, respectively. Loss-averse objective
and CVaR measure are used to quantify the firm’s downside risk tolerance in
this system. Their results indicate that the appropriate levels of diversification and
flexibility are very sensitive to the firm’s downside risk tolerance.

Tomlin (2006) considered a model in which the firm may order from a cheap
but unreliable supplier and/or an expensive but reliable supplier. Tomlin examined
the conditions under which the firm’s optimal strategy is to manage disruptions by
holding extra inventory, by dual sourcing, by emergency sourcing, or by taking
no action, and simply accepting the disruption risk. The author investigated the
influence of the firm’s attitude to risk on mitigation and contingency strategies
for managing supply disruption risks. Risk is measured by using a mean–variance
approach. The authors proved that a mixed mitigation strategy (partial sourcing from
the reliable supplier and carrying inventory) can be optimal if the firm is risk-averse
or if the unreliable supplier has finite capacity.

In this section, the retailer facing stochastic demand needs to determine whether
to choose single sourcing from one supplier or dual sourcing from two suppliers,
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and further how much to order. For each period, we identify the conditions under
which the retailer will choose different sourcing strategies, and find that the supplier
selection process is the trade-off between the ordering cost and the randomicity of
the yield rate. It is further pointed out that more structural results can be found under
the setting of deterministic demand.

Another contribution of our model is the corresponding insights that it yields. In
particular, it is found that the supplier selection process is the trade-off among the
cost, the average yield rate, and the variance of yield rate. Moreover, these results
are complemented with useful comparative statistics.

The rest of this chapter is organized as follows. Section 2.2 introduces the
proposed problem and some assumptions. Sections 2.3 and 2.4 present the model
and results for both single-period problem and two-period problem. Section 2.5
considers a special case that the demand is deterministic. Some numerical studies
are included in Sect. 2.6. The chapter concludes in Sect. 2.7 with some remarks and
some possible extensions.

2.2 The Problem and Assumptions

Consider a single-product supply chain with one retailer who can procure from two
suppliers. The yield rates of both suppliers are random but independent of each
other. The yield is random in the sense that, if an order for qi units is placed by
the retailer with supplier i , a quantity Yiqi will be delivered to the retailer. It is
assumed that the yield rate Yi , 0 � Yi � 1, is a normal random variable with mean
�i and variance �2

i , i D 1; 2. Gi and gi denote the distribution and density function
of the supplier i ’s yield rate, respectively. Assume the procurement leadtime from
suppliers is zero.

Denote p as the selling price of the product and wi as the unit ordering cost from
supplier i . The retailer needs to determine ordering quantities from each supplier for
two planning periods. If the retailer orders from both suppliers, then it is said that he
uses dual sourcing; otherwise, he uses single-sourcing. The ending inventory of the
first period is carried over to the second one. The customer demands occur only at
the retailer and are i.i.d random variables in different periods. Unsatisfied demand
of period one is fully backlogged, while is lost in the period two. The objective of
the retailer is to maximize her total expected profit over two planning periods.

Some other notation is summarized in the following. For t D 1; 2,
qt;i D the order quantity from supplier i in period t , i D 1; 2.
D D the generic one-period demand with mean d .

To guarantee 0 � Yi � 1, it is assumed that 0 < �i ˙ 3�i < 1, which makes
the probability of Yi falling into the interval Œ0; 1� exceed 99%. Without loss of
generality, it is assumed that p�i > wi , otherwise, the retailer will not order at all.
We also assume pGi.0/ < wi to avoid trivial case.
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Suppose the intial inventory at the retailer is 0. The decision problem for the
retailer is

max
q11�0;q12�0

…1.q11; q12/

D max
q11�0;q12�0

fpd1 � w1q11 � w2q12 C EŒV2.Y1q11 C Y2q12 � D1/�g; (2.1)

where

V2.x/ D max
q21�0;q22�0

pEŒminfD2; x C Y1q21 C Y2q22g� � w1q21 � w2q22: (2.2)

2.3 Single Period Analysis

We first consider the problem of period two. At this period, the retailer’s objective is

V2.x/ D max
q21�0;q22�0

…2.q21; q22/

D max
q21�0;q22�0

pEŒminfD2; x C Y1q21 C Y2q22g� � w1q21 � w2q22: (2.3)

Firstly the following lemma ensures that there are optimal solutions for the
optimization problem. The proof is straightforward by definition of joint concavity
and submodularity. So we skip it here.

Lemma 2.3.1. (a) …2.q21; q22/ is jointly concave, and submodular in q21 and q22.
(b) V2.x/ is concave in x.

For notational convenience, define Y D Y1q21 C Y2q22. Since Y1 and Y2 both
follow normal distribution and are independent, thus Y � N Œ�1q21C�2q22; �2

1 q2
21C

�2
2 q2

22�. Let g.y; q21; q22/ and G.y; q21; q22/ be the density function and cumulative
distribution function for Y , respectively. Notice that if p�i � wi , then the retailer
will order nothing. Next taking partial derivative of …2.q21; q22/ on q21 yields the
first order condition

.…2.q21; q22//0
q21

D pEfY11fY1q21CY2q22�D2�xgg � w1

D pE

"Z C1

�1

Z D2�x�q22y2
q21

�1
y1g1.y1/dy1g2.y2/dy2

#

� w1

D pE

"Z C1

�1

Z D2�x�q22y2
q21

�1
Œ�1g1.y1/ � �2

1 g0
1.y1/�g2.y2/dy1dy2

#

� w1
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D p�1E

�Z C1

�1
G1

�
D2 � x � q22y2

q21

�

g2.y2/dy2

�

�p�2
1 E

�Z C1

�1
g1

�
D2 � x � q22y2

q21

�

g2.y2/dy2

�

� w1

Dp�1EŒG.D2 � x; q21; q22/� � p�2
1 q21EŒg.D2 � x; q21; q22/� � w1 D0; (2.4)

where the third equality is due to the fact that g1.y1/ follows normal distribution
and hence g0

1.y1/ D �.y1 � �1/g1.y1/=�2
1 . And similarly the first order condition

on q22 is given by

.…2.q21; q22//0
q22

Dp�2EŒG.D2 � x; q21; q22/� � p�2
2 q22EŒg.D2 � x; q21; q22/� � w2 D0: (2.5)

Notice that if x � F �1
�
1 � w1

p�1

�
, then

.…2.q21; q22//0
q21

D p

"Z C1

x

Z C1

�1

Z z�x�q22y2
q21

�1
y1g1.y1/g2.y2/dy1dy2f .z/dz

#

� w1

� p�1.1 � F.x// � w1

� 0:

Where the equality follows from Pr.Y1q21 C Y2q22 � D2 � x � 0/ � 0. Thus the

retailer will not order from supplier 1 if x � F �1
�
1 � w1

p�1

�
.

Similarly if x � F �1
�
1 � w2

p�2

�
, then .…2.q21; q22//0

q22
� 0. It is found that the

retailer will not order from supplier 2 if x � F �1
�
1 � w2

p�2

�
.

Therefore, the retailer will order nothing if x � max
n
F �1

�
1 � w1

p�1

�
; F �1

�
1 � w2

p�2

�o
, and choose single sourcing from supplier i if F �1

�
1 � w3�i

p�3�i

�
� x <

F �1
�
1 � wi

p�i

�
. Next we discuss the optimal sourcing strategy of the retailer when

x < min
n
F �1

�
1 � w1

p�1

�
; F �1

�
1 � w2

p�2

�o
.

Let q21.q22/ and q22.q21/ be the optimal solutions of (2.4) and (2.5), respectively.
Because …2.q21; q22/ is concave, there exists at least one optimal solution (q�

21; q�
22).

If both q�
21 > 0 and q�

22 > 0, then the retailer adopts dual sourcing; otherwise, she
uses single sourcing. We discuss the optimal sourcing strategy of the retailer. In
what follows, let � and ˆ be the pdf and cdf of standard normal distribution.
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Theorem 2.3.2. In the second period, when x < min
n
F �1

�
1 � w1

p�1

�
; F �1

�
1 � w2

p�2

�o
, the retailer’s optimal sourcing strategy is

(i) Single sourcing from supplier 1 if

�1w2 � �2w1 � p�1�2E

�

�

�
D2 � x � �1 Oq1.x/

�1 Oq1.x/

��

; (2.6)

(ii) Single sourcing from supplier 2 if

�2w1 � �1w2 � p�2�1E

�

�

�
D2 � x � �2 Oq2.x/

�2 Oq2.x/

��

; (2.7)

(iii) Dual sourcing from both suppliers if

�1w2 � �2w1 < p�1�2E

�

�

�
D2 � x � �1 Oq1.x/

�1 Oq1.x/

��

; (2.8)

and

�2w1 � �1w2 < p�2�1E

�

�

�
D2 � x � �2 Oq2.x/

�2 Oq2.x/

��

; (2.9)

where Oq1.x/ and Oq2.x/ satisfy

p�2E

�

ˆ

�
D2 � x � �1 Oq1.x/

�1 Oq1.x/

��

� w2 D 0; (2.10)

p�1E

�

ˆ

�
D2 � x � �2 Oq2.x/

�2 Oq2.x/

��

� w1 D 0: (2.11)

Proof. We discuss the condition for the retailer to determine whether to choose
single sourcing from supplier 1. The case that single sourcing from supplier 2 is
parallel. Let q22 D 0, the optimal solution q21.0/ satisfies the first order condition
(2.4). Transform Y into standard normal,

@…2.q21.0/; 0/

@q21

Dp�1Eˆ

�
D2 � x � �1q21.0/

�1q21.0/

�

� p�1E�

�
D2 � x � �1q21.0/

�1q21.0/

�

� w1 D0:

Given Oq1.x/ from (2.10), then

@…2.q21; 0/

@q21

ˇ
ˇ
ˇ
ˇ
ˇ
q21DOq1

D 1

�2

�

�1w2 � �2w1 � p�1�2E�

�
D2 � x � �1 Oq1

�1 Oq1

��

:
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If �1w2 � �2w1 � p�1�2E�
�

D2�x��1 Oq1

�1 Oq1

�
, then we find @…2. Oq1;0/

@q21
� 0. Since

…2.q21; q22/ is concave in q21, we find that q21.0/ � Oq1. Moreover, given
q21 D q21.q22/ and q22 D 0, the partial derivative on q22 is

@…2.q21.q22/; q22/

@q22

ˇ
ˇ
ˇ
ˇ
ˇ
q22D0

D p�2Eˆ

�
D2 � x � �1q�

21.0/

�1q�
21

�

� w2 � 0;

where the inequality follows from that if D2 � x > 0,

p�2Eˆ

�
D2 � x � �1q

�
21.0/

�1q�
21

�

� w2 � p�2Eˆ

�
D2 � x � �1 Oq1.x/

�1 Oq1.x/

�

� w2 D 0I

otherwise, ˆ..D2 �x��1/=�1q
�
21/ � 0 when D2 < x as we assume �1 > 3�1. Due

to the joint concavity of …2.q21; q22/ on q21 and q22, the optimal ordering quantity
from supplier 2 is 0. In other words, the retailer will choose single sourcing from
supplier 1. Through similar procedure, we can show that, if (2.7) is true, the retailer
will only source from supplier 2.

Finally, if

�1w2 � �2w1 < p�1�2E�

�
D2 � x � �1 Oq1

�1 Oq1

�

;

similarly it can be found that .…2.q21.0/; 0//0
q22

> 0, and hence the optimal ordering
quantity q�

22 should be positive. Furthermore, through similar analysis it can be
found that .…2.0; q22.0///0

q21
> 0 under the condition

�2w1 � �1w2 < p�2�1E�

�
D2 � x � �2 Oq2.x/

�2 Oq2.x/

�

:

Thus the optimal ordering quantity q�
21 should be positive. Therefore, the retailer

will choose dual sourcing from both suppliers. ut
From the previous theorem, the optimal ordering quantity is q�

21 D q21.0/ while
q�

22 D 0, if (2.6) is true; the optimal ordering quantity q�
21 D 0 while q�

22 D q22.0/,
if (2.7) is true; otherwise, q�

21 D q21.q�
22/ while q�

22 D q22.q�
21/.

Notice that Oqi given in (2.10) and (2.11) is function of inventory level x, we find
the following property.

Proposition 2.3.3. Oqi .x/ is decreasing in x, furthermore, the retailer is more likely
to choose single sourcing than dual sourcing as the ending inventory of first period
increases.
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Proof. Recall that Oq1.x/ is the solution of (2.10). Taking derivative of (2.10) with
respect to x and applying Implicit Function Theorem yields,

p�2

Z 1

xC�1 Oq1.x/

�

�
��x��1 Oq1.x/

�1 Oq1.x/

� � Oq1.x/ � .� � x/ Oq0
1.x/

�1 Oq2
1.x/

f .�/d� D 0; (2.12)

as ˆ
�

D2�x��1 Oq1.x/

�1 Oq1.x/

�
� 0 when D2 � x < 0. Thus

Oq0
1.x/ < 0:

Since Oq0
1.x/ < 0, note that

E

�

�

�
D2 � x � �1 Oq1.x/

�1 Oq1.x/

��
0

D
Z

1

xC�1 Oq1.x/

� � � x � �1 Oq1.x/

�1 Oq1.x/
�

�
� � x � �1 Oq1.x/

�1 Oq1.x/

� �Oq1.x/ � .� � x/ Oq0

1.x/

�1 Oq2
1.x/

f .�/d�

D
Z

1

xC�1 Oq1.x/

��

�
� � x � �1 Oq1.x/

�1 Oq1.x/

� Oq1.x/ C .� � x/ Oq0

1.x/

�2
1 Oq3

1.x/
f .�/d�

D
Z x�Oq1.x/=Oq0

1.x/

xC�1 Oq1.x/

��

�
� � x � �1 Oq1.x/

�1 Oq1.x/

� Oq1.x/ C .� � x/ Oq0

1.x/

�2
1 Oq3

1.x/
f .�/d�

C
Z

C1

x�Oq1.x/=Oq0

1.x/

��

�
� � x � �1 Oq1.x/

�1 Oq1.x/

� Oq1.x/ C .� � x/ Oq0

1.x/

�2
1 Oq3

1.x/
f .�/d�

� Œx�Oq1.x/= Oq0

1.x/�

Z x�Oq1.x/=Oq0

1.x/

xC�1 Oq1.x/

�

�
��x��1 Oq1.x/

�1 Oq1.x/

� Oq1.x/C.��x/ Oq0

1.x/

�2
1 Oq3

1.x/
f .�/d�

�Œx�Oq1.x/= Oq0

1.x/�

Z
C1

x�Oq1.x/=Oq0

1.x/

�

�
� � x � �1 Oq1.x/

�1 Oq1.x/

� Oq1.x/ C .� � x/ Oq0

1.x/

�2
1 Oq3

1.x/
f .�/d�

D Œx � Oq1.x/= Oq0

1.x/�

Z
1

xC�1 Oq1.x/

�

�
� � x � �1 Oq1.x/

�1 Oq1.x/

� Oq1.x/ C .� � x/ Oq0

1.x/

�2
1 Oq3

1.x/
f .�/d� D 0:

Where the second and last equalities follow from (2.12), and the inequality follows

by noting that
Oq1.x/C.��x/ Oq0

1.x/

�2
1 Oq3

1.x/
� 0 when � � x� Oq1.x/= Oq0

1.x/ and
Oq1.x/C.��x/ Oq0

1.x/

�2
1 Oq3

1.x/
�

0 when � � x� Oq1.x/= Oq0
1.x/. Thus E

h
�
�

D2�x��1 Oq1.x/

�1 Oq1.x/

�i
is increasing in x. Finally

observing the conditions for identifying single or dual sourcing, it is concluded
that the retailer will be more likely to choose single sourcing than dual sourcing
as inventory increases. ut

Further noting that the optimal ordering quantity depends on wi , there are the
following comparative statistics results.
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Proposition 2.3.4. q�
2i .wi ; w3�i / is decreasing in wi and increasing in w3�i , where

i D 1; 2.

Proof. According to the first order conditions and Implicit Function Theorem, it can
be found that

q�
21

0.w1/ D .…2.q21; q22//
00
q22

.…2.q21; q22//00
q21

.…2.q21; q22//00
q22

� .…2.q21; q22//00
q21q22

� 0

and

q�
21

0.w2/ D .…2.q21; q22/
00
q21q22

.…2.q21; q22//00
q21q22

/2 � .…2.q21; q22//00
q21

…2.q21; q22/q22

� 0;

where the first inequality follows from the joint concavity of …2.q21; q22/, and the
second inequality follows further from the submodularity of …2.q21; q22/. ut

2.4 Analysis of the Two-Period Problem

This section will discuss the retailer’s optimal sourcing strategies and ordering
quantity in the first period.

Following from Lemma 2.3.1, there is the following lemma.

Lemma 2.4.1. …1.q11; q12/ is jointly concave in q11 and q12.

If

x � max

�

F �1

�

1 � w1

p�1

�

; F �1

�

1 � w2

p�2

�	

; (2.13)

then the retailer orders nothing, and the optimal profit of the second period is

…2.0; 0/ D pE minfD2; xg D pd2 � pEŒ.D2 � x/C�:

From Theorem 2.3.2, if

F �1

�

1 � w2

p�2

�

� x < F �1

�

1 � w1

p�1

�

or x < min

�

F �1

�

1 � w1

p�1

�

; F �1

�

1 � w2

p�2

�	

and .2.6/; (2.14)

then the retailer chooses single sourcing from supplier 1. The optimal ordering
quantity q�

21.x/ is given by

p�1Eˆ

�
D2 � x � �1q�

21.x/

�1q�
21.x/

�

� p�1E�

�
D2 � x � �1q

�
21.x/

�1q
�
21.x/

�

� w1 D 0:
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The optimal profit of the second period is

…2.q
�
21.x/; 0/ D pEfminŒD2; x C Y1q

�
21.x/�g � w1q�

21.x/

D pd2 � pE

�

.D2 � x/ˆ

�
D2 � x � �1q�

21.x/

�1q�
21.x/

��

:

Similarly if

F �1

�

1 � w1

p�1

�

� x < F �1

�

1 � w2

p�2

�

or x < min

�

F �1

�

1 � w1

p�1

�

; F �1

�

1 � w2

p�2

�	

and .2.7/; (2.15)

then the retailer chooses single sourcing from supplier 2. The optimal ordering
quantity q�

22.x/ is given by

p�2Eˆ

�
D2 � x � �2q�

22.x/

�2q�
22.x/

�

� p�2E�

�
D2 � x � �2q

�
22.x/

�2q
�
22.x/

�

� w2 D 0:

The optimal profit of the second period is

…2.0; q�
22.x// D pd2 � pE

�

.D2 � x/ˆ

�
D2 � x � �2q�

22.x/

�2q�
22.x/

��

:

Further if

x < min

�

F �1

�

1 � w1

p�1

�

; F �1

�

1 � w2

p�2

�	

and .2.8/ and .2.9/; (2.16)

then the retailer chooses dual sourcing in the second period. Then

p�1EG.D2 � x; q�

21.x/; q�

22.x//�p�2
1 q�

21.x/EŒg.D2�x; q�

21.x/; q�

22.x//��w1 D 0;

p�2EG.D2�x; q�

21.x/; q�

22.x//�p�2
2 q�

22.x/EŒg.D2�x; q�

21.x/; q�

22.x//��w2O D 0:

The optimal profit of the second period is then

…2.q
�
21.x/; q�

22.x// D pd2�pE

2

6
4.D2�x/ˆ

0

B
@

D2�x��1q�
21.x/��2q�

22.x/
q

�2
1 q�

21.x/2C�2
2 q�

22.x/2

1

C
A

3

7
5:



2.4 Analysis of the Two-Period Problem 59

Therefore, the optimal profit-to-go is

V2.x/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

pd2 � pEŒ.D2 � x/C�; .2.13/ true;

pd2 � pE
h
.D2 � x/ˆ

�
D2�x��1qs

21.x/

�1qs
21.x/

�i
; .2.14/ true;

pd2 � pE

�

.D2 � x/ˆ

�
D2�x��1qd

21.x/��2q�

22.x/p
�2

1 .qd
21.x//2C�2

2 q�

22.x/2

��

; .2.16/ true;

pd2 � pE
h
.D2 � x/ˆ

�
D2�x��2qs

22.x/

�2qs
22.x/

�i
; .2.15/ true:

(2.17)

Before we turn to the optimization problem of the first period, we find that the
following lemma is useful.

Lemma 2.4.2.

dV2.x/

dx
D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

p.1 � F.x//; .2.13/ true;

pEˆ

�
D2 � x � �1qs

21.x/

�1qs
21.x/

�

; .2.14/ true;

pEˆ

0

B
@

D2 � x � �1qd
21.x/ � �2q�

22.x/
q

�2
1 qd

21.x/2 C �2
2 q�

22.x/2

1

C
A; .2.16/ true;

pEˆ

�
D2 � x � �2qs

22.x/

�2qs
22.x/

�

; .2.15/ true:

Proof. The result is straightforward when Lemma (2.13) is true. If Lemma (2.14) is
true, then q�

21.x/ satisfies the first order condition

p�1Eˆ

�
D2 � x � �1q�

21.x/

�1q�
21.x/

�

� p�1E�

�
D2 � x � �1q

�
21.x/

�1q
�
21.x/

�

� w1 D 0:

Take derivative with respect to x yields

E

2

4 D2 � x

�1q�
21.x/

�

�
D2 � x � �1q

�
21.x/

�1q
�
21.x/

� @ D2�x

q�

21.x/

@x

3

5 D 0:
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Thus, as q�
21.x/ > 0,

dV2.x/

dx
D pE

�

ˆ

�
D2�x��1q�

21.x/

�1q
�
21.x/

��

�pE

2

4.D2�x/�

�
D2�x��1q�

21.x/

�1q
�
21.x/

�
1

�2

@ D2�x

q�

21.x/

@x

3

5

D pE

�

ˆ

�
D2�x��1q�

210.x/

�1q�
21.x/

��

:

The proof is similar when (2.15) is true.
When (2.16) is true, the first order conditions which q�

21.x/ and q�
22.x/ satisfy

can be written as

pE

2

4
Z C1

�1

Z D2�x�q�

22.x/y2

q�

21.x/

�1
y1g1.y1/g2.y2/dy1dy2

3

5 � w1 D 0;

pE

2

4
Z C1

�1

Z D2�x�q�

22.x/y2

q�

21.x/

�1
y2g1.y1/g2.y2/dy1dy2

3

5 � w2 D 0:

Taking derivative with respect to x yields

pE

�Z C1

�1

�
D2 � x � y2q�

22.x/

q�
21.x/

�0

x

D2 � x � y2q�
22.x/

q�
21.x/

g1

�
�

D2 � x � y2q�
22.x/

q�
21.x/

�

g2.y2/dy2

�

D 0; (2.18)

pE

�Z C1

�1

�
D2 � x � y2q�

22.x/

q�
21.x/

/

�0

x

y2g1

�
�

D2 � x � y2q�
22.D2 � x/

q�
21.x/

�

g2.y2/dy2

�

D 0: (2.19)
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Therefore, we find that

dV2.x/

dx
D pE

2

6
4ˆ

0

B
@

D2 � x � �1q�
21.x/ � �2q

�
22.x/

q
.�2

1 /.q�
21.x//2 C .�2

2 /.q�
22.x//2

1

C
A

3

7
5

�pE

2

4.D2 � x/

0

@
Z 1

�1

Z D2�x�q�

22.x/y2

q�

21.x/

�1
g1.y1/g2.y2/dy1dy2

1

A

0

x

3

5

D pE

2

6
4ˆ

0

B
@

D2 � x � �1q�
21.x/ � �2q�

22.x/
q

�2
1 .q�

21.x//2 C �2
2 .q�

22.x//2

1

C
A

3

7
5

�pE

�

.D2�x/

Z C1

�1

�
D2�x�y2q

�
22.x/

q�
21.x/

�0

x

g1

�
D2�x�y2q�

22.x/

q�
21.x/

�

g2.y2/dy2

�

D pE

2

6
4ˆ

0

B
@

D2 � x � �1q�
21.x/ � �2q�

22.x/
q

�2
1 .q�

21.x//2 C �2
2 .q�

22.x//2

1

C
A

3

7
5 :

where the penultimate equality follows from that

pE

�

.D2�x/

Z C1

�1

�
D2�x�y2q�

22.x/

q�
21.x/

�0

x

g1

�
D2�x�y2q�

22.x/

q�
21.x/

�

g2.y2/dy2

�

D q�
21.x/pE

�Z C1

�1

�
D2 � x � y2q�

22.x/

q�
21.x/

�0

x

D2 � x � y2q
�
22.x/

q�
21.x/

g1

�
D2 � x � y2q�

22.x/

q�
21.x/

�

g2.y2/dy2

�

C q�
22.x/pE

�Z C1

�1

�
D2 � x � y2q�

22.x/

q�
21.x/

�0

x

y2

g1

�
D2 � x � y2q�

22.D2 � x/

q�
21.x/

�

g2.y2/dy2

�

D 0:

Since V2.x/ is continuous in x across different ranges, the lemma is proved. ut
Next we proceed to the optimization problem of the first period. For notational

convenience, define, for i D 1; 2, the different conditions for no sourcing (NS),
single sourcing (SS), and dual sourcing (DS)
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.NS/ W Yiq1;iCY3�i q1;3�i �D1 � max

�

F �1

�

1� wi

p�i

�

; F �1

�

1� w3�i

p�3�i

�	

;

.SSi / W F �1

�

1 � w3�i

p�3�i

�

� Yiq1;i C Y3�i q1;3�i � D1 < F �1

�

1 � wi

p�i

�

;

or Yi q1;i C Y3�i q1;3�i � D1 < min

�

F �1

�

1 � wi

p�i

�

; F �1

�

1 � w3�i

p�3�i

�	

and �i w3�i � �3�i wi

� p�i �3�i E�

�
D1CD2�Yiq1i �Y3�i q13�i ��i Oqi .Yiq1;i C Y3�i q1;3�i �D1/

�i Oqi .Yiq1;i C Y3�i q1;3�i�D1/

�

;

.DSi / W Yiq1;i CY3�i q1;3�i�D1 < min

�

F �1

�

1� wi

p�i

�

; F �1

�

1� w3�i

p�3�i

�	

;

and �i w3�i � �3�iwi

< p�i �3�i E�

�
D1CD2�Yiq1;i �Y3�i q1;3�i��i Oqi .Yi q1;i CY3�i q1;3�i �D1/

�i Oqi .Yiq1;i C Y3�i q1;3�i � D1/

�

:

Then the total profit function for the retailer can be shown as

…1.q11; q12/

D EfpD1 � w1q11 � w2q12 C V2.Y1q11 C Y2q12 � D1/g
D p.d1 C d2/ � w1q11 � w2q12

� pE

(

.D1 C D2 � Y1q11 � Y2q12/
h
1fD2�Y1q11CY2q12�D1g1f.NS/g

C ˆ

�
D1 C D2 � Y1q11 � Y2q12 � �1q�

21.Y1q11 C Y2q12 � D1/

�1q�

21.Y1q11 C Y2q12 � D1/

�

1f.SS1/g

C ˆ

0

B
@

D1CD2�Y1q11�Y2q12��1q�

21.Y1q11CY2q12�D1/��2q�

22.Y1q11CY2q12�D1/
q

�2
1 .q�

21.Y1q11CY2q12�D1//2C�2
2 .q�

22.Y1q11CY2q12�D1//2

1

C
A

� 1f.DS1/.DS2/g

C ˆ

�
D1 C D2 � Y1q11 � Y2q12 � �2q�

22.Y1q11 C Y2q12 � D1/

�2q
�

22.Y1q11 C Y2q12 � D1/

�

1f.SS2/g

�)

: (2.20)

Let �.Y1q11CY2q12�D1/ be the function in square brackets after taking expectation
over D2. There is

…1.q11; q12/Dp.d1Cd2/�w1q11�w2q12�pEŒ.D1CD2�Y1q11�Y2q12/�.Y1q11CY2q12�D1/�:

It can be found that p�.x/ D .V2.x//0. With different sourcing strategies in the
second period, �.Y1q11CY2q12�D1/ reflects different probabilities that the demand
of the second period is not satisfied given inventory Y1q11 CY2q12 �D1. Notice that
0 � �.Y1q11 C Y2q12 � D1/ � 1.
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The first order conditions for the optimization problem of the first period are
given by

.…1.q11; q12//
0
q11

D pEŒY1V2.Y1q11 C Y2q12 � D1/�0 � w1

D pEŒY1�.Y1q11 C Y2q12 � D1/� � w1

D 0;

and

.…1.q11; q12//0
q12

D pEŒY2�.Y1q11 C Y2q12 � D1/� � w2 D 0:

Then straightforwardly, the retailer’s optimal sourcing strategy in the first period is
provided in the following theorem.

Theorem 2.4.3. In the first period, the retailer’s optimal sourcing strategy is

(i) Single sourcing from supplier 1 if

pEŒY1�.Y1 Oq1
1 � D1/� � w1 � 0;

(ii) Single sourcing from supplier 2 if

pEŒY2�.Y2 Oq1
2 � D1/� � w2 � 0;

(iii) Dual sourcing from the two suppliers if

pEŒY1�.Y1 Oq1
1 � D1/� � w1 < 0;

pEŒY2�.Y2 Oq1
2 � D1/� � w2 < 0;

where Oq1
1 and Oq1

2 are given by

p�2EŒ�.Y1 Oq1
1 � D1/� � w2 D 0;

p�1EŒ�.Y2 Oq1
2 � D1/� � w1 D 0:

Proof. The proof is similar to that for Theorem 2.3.2. Firstly we discuss the
condition for the retailer to determine whether to choose single sourcing from
supplier 1. Let q12 D 0, the optimal solution q�

11 satisfies the first order condition

@…1.q�
11; 0/

@q11

D pEŒY1�.D2; Y1q
�
11 � D1/� � w1 D 0:

Given Oq1
1 so that p�2EŒ�.D2; Y1 Oq1

1 �D1/��w2 D 0, if pEŒY1�.D2; Y1 Oq1
1 �D1/��

w1 � 0, then @…1. Oq1
1 ;0/

@q11
� 0. Since …1.q11; q12/ is concave in q11, we find that

q�
11 � Oq1

1 . Thus given q11 D q�
11 and q12 D 0, the partial derivative on q12 is

@…1.q�
11; 0/

@q12
D p�2EŒ�.D2; Y1q�

11 � D1/� � w2 � p�2EŒ�.D2; Y1 Oq1
1 � D1/� � w2 D 0:
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Where the inequality follows from Lemma 2.3.1 by noting that V2.x/ is concave
in x, and hence dV2.x/

dx
D pE�.D2; x/ is decreasing in x. Next due to the joint

concavity of …1.q11; q12/ on q11 and q12, the optimal ordering quantity from supplier
2 is 0. In other words, the retailer will choose single sourcing from supplier 1. The
other proof follows similar procedure to the proof for Theorem 2.3.2. ut

The following proposition indicates that there is no incentive for the retailer to
switch suppliers.

Proposition 2.4.4. The retailer will not choose single sourcing from different
suppliers in different periods.

Proof. Without loss of generality, assume the retailer choose single sourcing from
supplier 2 in the second period, i.e., inequality (2.7) is satisfied. It is needed to prove
the retailer will not choose single sourcing from supplier 1 in the first period. First
notice that (2.7) indicates �2w1 � �1w2 > 0. Then we find that

pEŒY1�.Y1 Oq1
1 � D1/� � w1

D pE

�Z 1

�1
y1�.y1 Oq1

1 � D1/g1.y1/dy1

�

�w1

D p�1E

�Z C1

�1
�.y1 Oq1

1 � D1/g1.y1/dy1

�

�p�2
1 E

�Z C1

�1
�.y1 Oq1

1 � D1/g0
1.y1/dy1

�

�w1

D p�1

w2

p�2

� p�2
1 E

�

�.y1 Oq1
1 � D1/g1.y1/jC1�1

�
Z C1

�1
.@�.y1 Oq1

1 � D1//.y1/g1.y1/dy1

�

�w1

D p�1

w2

p�2

Cp�2
1 E

�Z C1

�1
.@�.y1 Oq1

1�D1//.y1/g1.y1/dy1

�

�w1

� �1w2

�2

�w1

< 0;

where the third equality follows from the definition of Oq1
1 , and the penultimate

inequality is due to the fact that V2.x/ is concave and hence EŒ�.y1 Oq1
1 � D1/� D

.V2.y1 Oq1
1 � D1//0 is decreasing in y1. Therefore, the condition for the retailer to

choose single sourcing from supplier 1 in Theorem 2.4.3 can not be satisfied, i.e.,
the retailer will not choose single sourcing from supplier 1. ut

When demand is deterministic, more structural results and sights can be found.
In Sect. 2.5, we report our findings.



2.5 A Special Case: Deterministic Demand 65

2.5 A Special Case: Deterministic Demand

In this section, to gain more insight and structrual results, we consider the case that
the demand is deterministic, D D d . Note that the first order conditions (2.4) and
(2.5) change to

p�1G.d2 � x; q1; q2/ � p�2
1 q1g.d2 � x; q1; q2/ � w1 D 0;

p�2G.d2 � x; q1; q2/ � p�2
2 q2g.d2 � x; q1; q2/ � w2 D 0:

Notice that Oq1 and Oq2 given in (2.10) and (2.11) can be derived in close form. Then
the retailer’s optimal sourcing strategy could be simplified as follows.

Theorem 2.5.1. In the second period, the retailer’s optimal sourcing strategy
is independent of demand as well as ending inventory of the previous period.
Specifically, it is optimal for the retailer to choose

(i) Single sourcing from supplier 1 if

�1w2 � �2w1 � p�1�2�

�

ˆ�1

�
w2

p�2

��

; (2.21)

(ii) Single sourcing from supplier 2 if

�2w1 � �1w2 � p�2�1�

�

ˆ�1

�
w1

p�1

��

; (2.22)

(iii) Dual sourcing from the two suppliers if

�1w2 � �2w1 < p�1�2�

�

ˆ�1

�
w2

p�2

��

; (2.23)

�2w1 � �1w2 < p�2�1�

�

ˆ�1

�
w1

p�1

��

: (2.24)

We find more properties characterizing the optimal sourcing strategy. Define

T w
i .wi / D

�

�i w3�i � p�3�i �i �

�

ˆ�1

�
wi

p�i

���,

�i

the functions of wi .

Proposition 2.5.2. T w
i .wi /; i D 1; 2 are increasing and convex in wi . By drawing

the two functions onto the coordinate planes with w1 and w2 being the coordinate
axis, the two curves intersect at .w1; w2/ D .p�1; p�2/ and a point near .w1; w2/ D
.0; 0/. Finally the area between the two curves displays where the retailer chooses
dual sourcing.
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Proof. Taking derivatives of T w
1 .w1/ on w1 yields



T w

1 .w1/
�0 D

�

�2 C �2ˆ�1

�
w1

p�1

��,

�1 > 0;



T w

1 .w1/
�00 D �2

,�

p�2
1�

�

ˆ�1

�
w1

p�1

���

� 0;

where the first inequality follows from w1

p�1
� G2.0/ D ˆ

�
��2

�2

�
due to the

assumption. Therefore, T w
1 .w1/ is increasing and convex in w1, and similarly

T w
2 .w2/ is increasing and convex in w2.

Furthermore, noting that T w
i .p�i / D p�3�i and T w

i .0/ � 0, it is found that the
two curves intersect at .w1; w2/ D .p�1; p�2/ and the point near the origin. Finally
from Theorem 2.5.1 it is concluded that wholesale price pairs of .w1; w2/ under
which the retailer chooses dual sourcing are between the two curves w2 D T w

1 .w1/

and w1 D T w
2 .w2/. ut

Similar to Proposition 2.5.2, by defining

T
�
i .�i / D

�

�i w3�i C p�3�i �i �

�

ˆ�1

�
wi

p�i

���,

�i ;

the following proposition characterizes the retailer’s optimal sourcing strategy in
terms of the mean value of the yield rate.

Proposition 2.5.3. T
�
i .�i /; i D 1; 2 are increasing and concave in �i . By drawing

the two functions onto the coordinate planes with �1 and �2 being the coordinate
axis, the two curves intersect at .�1; �2/ D .0; 0/ and .�1; �2/ D .w1=p; w2=p/.
Finally the area between the two curves and lines �1 D 1 � 3�1 and �2 D 1 � 3�2

displays where the retailer chooses dual sourcing.

Proof. Taking derivative of T
�
1 .�1/ on �1 yields



T

�
1 .�1/

�0 D

2

6
6
4w2Cp�2�

�

ˆ�1

�
w1

p�1

��

�p�2�1ˆ�1

�
w1

p�1

�

� �

�

ˆ�1

�
w1

p�1

��
�w1

p�2
1

�

�

ˆ�1

�
w1

p�1

��

3

7
7
5

,

w1

D
�

w2 C p�2�

�

ˆ�1

�
w1

p�1

��

C p�2ˆ�1

�
w1

p�1

�
w1

p�1

�,

w1

D Œw2 C p�2�.z/ C p�2zˆ.z/�=w1:
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Where the last equality is due to the transformation z D ˆ�1
�

w1

p�1

�
. Taking deriva-

tive of �.z/ C zˆ.z/ on z yields

�z�.z/ C ˆ.z/ C z�.z/ D ˆ.z/ � 0:

Thus


T

�
1 .�1/

�0
is decreasing in �1, and T

�
1 .�1/ is concave in �1. Notice that

�.z/ C zˆ.z/ approximates to zero when z approximates to �1. Therefore, it is
found that �.z/ C zˆ.z/ � 0 and hence



T

�
1 .�1/

�0
> 0, and further T

�
1 .�1/ is

increasing in �1. Similarly it is found that T
�
2 .�2/ is increasing and concave in �2.

Furthermore, since T
�
i .0/ D 0 and T

�
i .wi =p/ D w3�i =p, the two curves

intersect at the origin and .�1; �2/ D .w1=p; w2=p/. Finally by noting that wi =p �
�i � 1 � 3�i we conclude that the pairs of .�1; �2/ with which the retailer chooses
dual sourcing are between the two curves �2 D T

�
1 .�1/ and �1 D T

�
2 .�2/, and the

two lines �1 D 1 � 3�1 and �2 D 1 � 3�2. ut
Finally we study the impact of the variance of yield rate on the retailer’s optimal

sourcing strategy.

Proposition 2.5.4. (a) The retailer is more likely to choose dual sourcing if either
variance of yield rates increases.

(b) The retailer is more likely to source from supplier i if �i increases and/or wi

decreases.

The proof follows from Theorem 2.5.1 by noting that p�3�i�i �


ˆ�1

�
wi

p�i . NYi ; Nqi /

��
is increasing in �3�i .

Furthermore, by comparing the single or dual sourcing conditions under deter-
ministic demand and normal distributed demand, we find following property.

Proposition 2.5.5. If demand is random and normally distributed, then the retailer
is more likely to choose dual sourcing under deterministic demand than under
random demand.

Proof. If demand D2 follows normal distribution with mean �D2 and variance �2
D2

,
then from (2.10) we find that

p�2Eˆ

�
D2 � x � �1 Oq1.x/

�1 Oq1.x/
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� w2

D p�2

Z 1

�1
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z � x � �1 Oq1.x/

�1 Oq1.x/

�

f .z/dz � w2

D p�2ˆ

0

B
@

�x � �1 Oq1.x/ C �D2q
�2

1 Oq2
1.x/ C �2

D2

1

C
A � w2:
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Thus Oq1.xj NY1; Nq1; NY2; Nq2/ can be obtained as

�x � �1 Oq1.x/ C �D2q
�2
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�
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:

Furthermore,
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Similarly there is

p�2�1E�
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B
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D2 � x � �2 Oq2.x/
q

�2
2 Oq2.x/
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C
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�
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��

:

Therefore, by comparing Theorems 2.3.2 and 2.5.1, we conclude that the retailer
will be more likely to choose dual sourcing under the deterministic demand. ut

In what follows we propose the optimality analysis of the two-period problem.
For the following analysis, we find it convenient to define '.zj˛; ˇ2/ D

˛ˆ
�

z�˛
ˇ

�
�ˇ�

�
z�˛

ˇ

�
given ˛ and ˇ. Since d'.zj˛;ˇ2/

dz D z
ˇ

�
�

z�˛
ˇ

�
, then '.zj˛; ˇ2/

is an increasing function of z when z > 0.
Notice that if D2 � x, then the retailer will order nothing. If inequality

�i w3�i � �3�i wi � p�i �3�i�
�
ˆ�1

�
w3�i

p�3�i

��
is satisfied, the retailer chooses

single sourcing from supplier i and the optimal ordering quantity q�
is is given by
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D p'
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j�i ; �2
i

�

� wi D 0;
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with d2 > x. And the corresponding optimal profit is given by

pd2 � p.d2 � x/CGi

�
d2 � x

q�
is

�

D pd2 � p.d2 � x/Cˆ

0

@
'�1

�
wi

p
j�i ; �2

i

�
� �i

�i

1

A :

Furthermore, if inequalities (2.23) and (2.24) are satisfied, the retailer chooses
dual sourcing and the optimal ordering quantity q�

1d.d2 � x/ and q�
2d.d2 � x/ are

given by the first order conditions

p�1G.d2 � x; q1; q2/ � p�2
1 q1g.d2 � x; q1; q2/ � w1 D 0;

p�2G.d2 � x; q1; q2/ � p�2
2 q2g.d2 � x; q1; q2/ � w2 D 0:

And the optimal profit is given by

pd2 � p.d2 � x/C
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In fact, according to the following lemma it can be found that

ˆ
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2d.d2�x/p
�2

1 .q�

1d.d2�x//2C�2
2 .q�
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�

is independent of d2 � x when d2 � x > 0.

Lemma 2.5.6. When the retailer chooses dual sourcing and d2 � x > 0, then

@

2

4
Z C1

�1

Z D2�x�y2q�

2d.D2�x/

q�

1d.D2�x/

�1
g1.y1/dy1g2.y2/dy2

3

5

,

@ŒD2 � x� D 0:

Proof. The proof is similar to that for Lemma 2.4.2. If the retailer chooses dual
sourcing, the first order conditions can be rewritten as

p
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Taking the derivative of the first order conditions on D2 � x yields
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Therefore, it is found that
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where �1 and �2 denote the left side of equalities for (2.25) and (2.26) respectively.
ut

In what follows denote ˆ
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1 .q�

1d.D2�x//2C�2
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which is independent of the difference of demand and inventory but depends on the
other model parameters. ‰.�1; �2
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2 / indicates the probability that the demand

of the second period is not satisfied when the retailer chooses dual sourcing with the
optimal ordering quantity. There is 0 � ‰.�1; �2

1 C 	2
1 ; �2; �2

2 C 	2
2 / � 1.
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Therefore, the profit-to-go can be shown as

V2.x/ D max
q1�0;q2�0

pEfminŒd2; x C Y1q1 C Y2q2�g � w1q1 � w2q2
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(2.27)

Next we return to the optimization problem of the first period. The discussion
depends on which sourcing strategy the retailer chooses. First the following lemma
is useful, with the proof following from similar procedure to that for Proposition
2.5.3.

Lemma 2.5.7. z�
�
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�
w2

p�2z

��
is increasing in z.

Next we discuss the cases under different sourcing strategy.

Case 1: If inequality of (2.21) is satisfied, then the profit function can be shown as
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Similar to Theorem 2.5.1, it is found that the retailer determines whether to choose
single sourcing from supplier 1 or dual sourcing by comparing �1w2 � �2w1 and
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However, inequality of (2.21) and Lemma 2.5.7 allow us to show that
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Therefore,the retailer will choose single sourcing from supplier 1 in the first
period if (2.21) is satisfied. Similarly, it is found that the retailer will choose single
sourcing from supplier 2 in the first period if (2.22) is satisfied.

Case 2: If (2.23) and (2.24) are satisfied, since ‰.�1; �2
1 ; �2; �2

2 / � 1, it is found
that

p�1�2�
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:

Similarly, it is concluded that the retailer will choose dual sourcing in the
first period if �i w3�i � �3�i wi is less than p�i �3�i ‰.�1; �2

1 ; �2; �2
2 /�
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��
and p�i�3�i �

�
ˆ�1

�
w3�i

p�3�i

��
, the retailer will

choose single sourcing from supplier i .
Finally we summarize the retailer’s optimal sourcing strategy for the optimiza-

tion problem of the first period with deterministic demand.
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Theorem 2.5.8. When the demand is deterministic, the retailer’s optimal sourcing
strategy is to choose
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�1w2 � �2w1 � p�1�2‰.�1; �2
1 ; �2; �2

2 /�

�

ˆ�1

�
w2

p�2‰.�1; �2
1 ; �2; �2

2 /

��

;

(ii) Single sourcing from supplier 2 if

�2w1 � �1w2 � p�2�1‰.�1; �2
1 ; �2; �2

2 /�

�

ˆ�1

�
w1

p�1‰.�1; �2
1 ; �2; �2

2 /

��

;

(iii) Dual sourcing from the two suppliers if

�1w2 � �2w1 � p�1�2‰.�1; �2
1 ; �2; �2

2 /�

�

ˆ�1

�
w2

p�2‰.�1; �2
1 ; �2; �2

2 /

��

;

and

�2w1 � �1w2 � p�2�1‰.�1; �2
1 ; �2; �2

2 /�

�

ˆ�1

�
w1

p�1‰.�1; �2
1 ; �2; �2

2 /

��

:

From Theorems 2.5.1 and 2.5.8, it is optimal for the retailer to choose single
sourcing from supplier i in the first period and dual sourcing in the second period if

p�i �3�i ‰.�1; �2
1 ; �2; �2

2 /�
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�
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�
w3�i

p�3�i

��

:

or in other words, the retailer will be more likely to choose single sourcing in the first
period, and dual sourcing in the second period. The reason can be attributed to the
fact that in the first period the unsatisfied demand could be backlogged, and hence
the retailer can take more risk. But in the second period, the unsatisfied demand will
be lost. Thus the retailer needs to make the ordering more reliable, i.e., choose dual
sourcing.

2.6 Numerical Examples

In this section, numerical examples are presented to demonstrate the optimal
sourcing strategy and ordering quantity, and their dependences on wholesale price w.
The model parameters are given as follows: p D 3, �1 D 0:5, �1 D 0:14, �2 D 0:4,
�2 D 0:12, and deterministic demand d D 6.
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Figure 2.1 identifies regions of wholesale price w1 and w2 in which the retailer
will choose different sourcing strategies. As Proposition 2.5.2 presented, the retailer
chooses dual sourcing in the region between the two curves T w

1 .w1/ and T w
2 .w2/.

Figure 2.2 shows the dependence of the optimal ordering quantity q�
i on

wholesale price w1. It shows that q�
1 is decreasing in w1, while q�

2 is increasing in
w1. The figure also identifies the regions of w1 in which the retailers choose single
sourcing or dual sourcing.



2.7 Concluding Remarks 75

2.7 Concluding Remarks

This chapter addresses a two-periods inventory control problems faced by a retailer
who is served by two unreliable suppliers. The retailer facing stochastic demand
needs to determine the sourcing strategy, i.e., which supplier to select and further
how much to order. For each period, we identify the conditions under which the
retailer will choose single sourcing or dual sourcing, and find that the supplier
selection process is the trade-off between the ordering cost and the randomicity of
the yield rate. It is further pointed out that more structural results can be found under
the setting of deterministic demand. Specifically, the sourcing threshold, the trade-
off between the ordering cost and parameters of the random yield rate can be in
explicit form. We also complement these results with useful comparative statistics.

Many interesting issues remain to be investigated. For example, the issue of
yield information update can be incorporated into the supplier selection model.
Specifically, the retailer can collect yield information after the first period based on
how many units the retailer orders and actually delivered by the supplier. The more
the ordered units, then the more information about the yield rate of the supplier.
Following the basic normal sampling process structure as in Pratt et al. (1995),
the information collected in the first period can be used to generate a posterior
distribution for estimate of yield rate in the second period. The optimal sourcing
strategy and the ordering quantity need to be computed in the new setting.

In addition, it is interesting to consider the Stackelberg game in which the
suppliers determine the wholesale price and then the retailer choose the sourcing
strategy as well as the ordering quantity. The problem of a single supplier controlling
wholesale price while selling to a newsvendor has been addressed by Lariviere and
Porteus (2001). Babich et al. (2007a, 2007b) added a possibility of supplier’s default
to the problem in Lariviere and Porteus (2001) and focussed on the effect of the
supply risk on the performance of the supply chain. In the following chapter we
further generalize the problem by considering a game with more than one supplier.





Chapter 3
Sourcing Strategy of Retailer and Pricing
Strategies of Suppliers

3.1 Introduction

Supply disruption management has received increasing attention from both industry
and academia1. Firms are starting to realize that supply disruption severely affects
their ability to successfully manage their supply chains. The academia has devoted
much research effort to studying this issue. Many papers have been published
that advise firms on how to manage their supply chains in the presence of supply
disruption.

While the literature on supply disruption management is growing, the vast
majority of these studies only investigated strategies of retailers or strategies of
suppliers. Different from the existing literature on supply disruption management,
this chapter investigates not only the sourcing strategies of the retailer but also the
pricing game played between suppliers in a single-retailer and two-supplier supply
chain in the presence of supply disruption. We examine the pricing game under two
scenarios, namely, one between non-cooperative suppliers and the other between
cooperative suppliers. As such, the literature on supply disruption management,
the wholesale price setting problem, and non-cooperative and cooperative games
in supply chains is all relevant to our study.

There is a large body of literature on the broad topic of supply disruption
management. Based on the number of supplier, these studies can be classified
into two categories: singular supplier models and multi supplier models. With
no alternative source available for single-supplier systems, inventory mitigation is
the only disruption management strategy under consideration in singular supplier
models. The focus of singular supplier models is to identify the optimal inventory
policy or the optimal parameters for particular inventory policy when there is supply
disruption risk. In multi supplier models, it is assumed that retailer sources is from

1The following discussion in this chapter is largely based on the ideas and results presented in Li
et al. (2010).

J. Li et al., Risk Management of Supply and Cash Flows in Supply Chains,
International Series in Operations Research & Management Science 165,
DOI 10.1007/978-1-4614-0511-5 3, © Springer Science+Business Media, LLC 2011
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two or more suppliers. The inter-failure time and the repair time are scholastic for
all suppliers. The disruption management strategies include sourcing mitigation,
contingent rerouting, dual sourcing, emergency sourcing, and demand management.
Recent literature dealing with supply disruption management includes, and are not
limited to, Parlar and Perry (1995), Moinzadeh and Aggarwal (1997), Arreola-
Risa and DeCroix (1998), Abboud (2001), Gupta (1996), Parlar (1997), Özekici
and Parlar (1999), Burke et al. (2004), Li et al. (2004), Lewis et al. (2006),
Ross et al. (2008), Parlar and Perry (1996), Gürler and Parlar (1997), Tomlin (2005,
2006), Yu et al. (2009), and Sarkar and Mohapatra (2009). For the details, one can
refer to Sect. 1.2.4.3 of this book.

The supply disruption papers cited above only investigated the strategies of
retailers under the assumption that suppliers are exogenous. However, suppliers’
responses, e.g., their pricing strategies, are also crucial factors that impact the
supply chain. The wholesale price setting problem has been extensively studied in
the literature. Recent literature includes Lariviere and Porteus (2001), Wang and
Gerchak (2003), Tomlin (2003), Bernstein and DeCroix (2004), and Cachon and
Lariviere (2001), among others. They gave the optimal pricing strategies of the
suppliers under different scenarios. However, most of the above work assumed
perfectly-reliable supply. The price setting problem with unreliable supply has
received much less attention.

We now turn our attention to the literature on game analysis of supply chains.
Game theory can be divided broadly into two approaches, namely, the non-
cooperative and the cooperative approaches (Deng et al. 2005). In the last several
years, it has been recognized that game theory is an effective tool for the analysis
of supply chains with multiple agents. In recent years, there is a wide variety of
research papers that apply non-cooperative game theory to the field of supply chain
management. For the sake of conciseness, we do not provide a comprehensive
review of the literature in this area. For an excellent survey, readers can refer to
Cachon and Netessine (2004). Research employing cooperative game theory to
study supply chain management are much less prevalent, but are becoming more
popular. This trend is probably due to the prevalence of bargaining and negotiation
in supply chain relationships. One can refer to Nagarajan and Sošić (2008) for a
detailed survey of the existing literature on applications of cooperative games to
supply chain management.

Motivated by the above observations, this chapter is set out to study a supply
chain consisting of one retailer and two suppliers and consider the price setting
problem in the presence of supply disruption. In this chapter we investigate both
a centralized supply chain, and a decentralized supply chain. Furthermore, we
consider two scenarios for the decentralized supply chain, i.e., the two suppliers
are competitive and cooperative. We seek to find the optimal order quantities and
the optimal wholesale prices in both the scenarios. Babich (2006) and Babich et al.
(2007a, 2007b) developed similar models to investigate supplier pricing decisions
with supply disruption. Babich (2006) investigated how the supplier default risk
and default co-dependence affect the procurement and production decisions of the
manufacturer, supplier pricing decisions, and the value of the supplier’s option



3.1 Introduction 79

to postpone its pricing decisions. Babich et al. (2007a, 2007b) examined the
effects of co-dependence among supplier defaults on the performance of firms and
the consequences of the suppliers offering different payment policies. The main
difference between their papers and our study is about the treatment of unfilled
demand due to supply disruption. In this chapter, the unfilled demand is filled from a
spot market rather than it is lost. This is always true because the demand can be filled
by emergency sourcing or global sourcing, which is a common business practice
with advances in transportation and information technology. The incorporation of
the spot market in the model alters supplier competition. Moreover, we consider
a situation in which the suppliers are cooperative. The study of the pricing
decisions of cooperative suppliers in this setting is not far-fetched. Firstly, examples
of real-world supplier alliances in supply chains abound. For example, Greene
(2002) presented several instances of alliances between component manufacturers
in the semiconductor industry. Secondly, retailers encourage cooperation between
suppliers in hopes of converting difficult suppliers into supportive suppliers through
cooperation, which provides opportunities for the sharing of good practices and
experiences between suppliers. The pricing decisions of cooperative suppliers are
of interest to our study.

We intend to contribute to the knowledge in this area by addressing two
key questions: How does the supply disruption affect the suppliers’ pricing and
the retailer’s ordering behaviours? How shall we coordinate the behaviours of
cooperative suppliers in the presence of supply disruption? This chapter provides
valuable managerial guidance for retailers to allocate their orders between different
suppliers and for suppliers to price their supplies when facing supply disruption.
Specially, we make four main contributions:

1. We show the existence of an equilibrium price in the competitive scenario for
two typical customer demand distributions, namely, the uniform distribution and
the exponential distribution.

2. Based on the uniform demand distribution, we obtain an explicit form of the
unique equilibrium price.

3. We investigate the impacts of supply disruption on the retailer’s sourcing
strategy and the suppliers’ pricing strategy by both theoretical and computational
analyses.

4. We devise a coordination mechanism to maximize the profits of cooperative
suppliers.

The rest of this chapter is organized as follows. The problem under consideration
is introduced and formulated in Sect. 3.2. Section 3.3 analyzes a benchmark
scenario in which the whole channel (i.e., the supply chain) is centrally controlled.
Section 3.4 investigates a decentralized supply chain under two scenarios, one with
non-cooperative suppliers and the other with cooperative suppliers. In Sect. 3.5
numerical results are presented to illustrate the theoretical results. Conclusions and
suggestions for future research are given in Sect. 3.6. All the proofs of the theoretical
results are given in the Appendix.
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3.2 The Problem

In this chapter we study a supply chain consisting of one retailer and two suppliers
with unreliable supply. All three firms are assumed to be risk neutral and pursue
expected profit maximization. In addition, we assume that there is a spot market as
a contingent supplier that is perfectly reliable.

The retailer buys a short-life product from the two suppliers and from the
spot market, and sells the product to its customers in a single selling season. The
uncertain source of supply is a state of the suppliers, which are subject to random
failures. If a supplier is in the success state, the orders placed with it will be delivered
on time. However, if a supplier is in the failure state, no orders can be supplied.
We assume that there are two types of failure: common-cause and supplier-specific
failures. A common-cause failure affects both suppliers. For example, an earthquake
may affect all the suppliers in a region. A supplier may still fail for some supplier-
specific reason even if there is no common-cause failure. For example, equipment
failure might affect one supplier but not the other supplier. We assume that supplier
2 is affected only by the common-cause failure but supplier 1 is affected by both
types of failure. First, supplier 1 and supplier 2 decide their individual wholesale
prices. Then the retailer allocates its orders between the two suppliers before the
states of the suppliers are realized. After the states have been realized, the retailer
has a chance to make an emergency order from the spot market. We assume that the
replenishment rate is infinite and the lead time is zero.

The following notation is used in the model:

i D 1; 2; 3 stands for supplier 1, supplier 2 and the spot market, respectively.
b is the goodwill cost of a unit of unmet demand.
ci is the delivery cost of a unit of the product of supplier i , i D 1; 2.
D is the positive stochastic customer demand.
f is the positive probability density function of D.
F is the differentiable and strictly increasing cumulative distribution function

of D.
p is the fixed selling price of a unit of the product.
Qi is the order quantity placed with supplier i , i D 1; 2.
Q3 is the inventory level after making an emergency order from the spot market.
s is the salvage value of a unit of the residual product.
wi is the wholesale price of a unit of the product offered by supplier i , i D 1; 2.
w3 is the fixed wholesale price of a unit of the product offered by the spot market.
˛ is the probability of a common-cause failure not occurring, where 0 < ˛ < 1.
ˇ is the probability that supplier 1 does not fail conditional on a common-cause

failure not occurring, where 0 < ˇ < 1.
� is the total proportion of the marginal delivery cost in the event of a failure,

where 0 < � < 1.
� is the proportion of the cost incurred by the supplier who fails in the event of a

failure, where 0 � � � 1.
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Among the above variables, w1; w2; Q1; Q2; and Q3 are decision variables and the
others are exogenous variables, which are known to all the members of the supply
chain. In this chapter the revenues of supplier 1, supplier 2, and the retailer are our
focus. We do not care about the revenue of the spot market and have no regard for
its delivery cost. The spot market is not a decision-maker in the supply chain.

It should be noted that a marginal cost �ci is incurred in the event of a failure. We
expect that the failing supplier and the retailer assume this cost jointly. The marginal
cost assumed by the failing supplier is ��ci and the marginal cost assumed by the
retailer is .1 � �/�ci . This cost structure is different from that used in most of the
literature in which only the retailer assumes the cost in the event of a failure. But this
is not always true. In fact, before supply failures are realized, both the retailer and
the suppliers usually have incurred some costs, which may include fixed set-up costs
and variable costs. For simplicity of analysis, we assume that all the setup costs are
zero and all the variable costs in the event of a supply failure are proportional to the
delivery cost and to the order quantity.

Based on the reliability of the suppliers, it is reasonable to assume that
c1 < c2 < w3. In addition, we assume that 0 � s < c1 < c2 < w3 < p: These
inequalities ensure that each firm makes a positive profit and the chain will not
produce infinite quantities of the product.

In the following section we consider a centralized system in which all the
decisions are centralized to maximize the performance of the entire supply chain
(including the retailer, supplier 1, and supplier 2). We give the conditions for
both suppliers being placed with positive orders and the corresponding optimal
order quantities. The centralized system solution serves as a benchmark for the
decentralized setting. Then we consider a decentralized supply chain under two
different scenarios in which the suppliers are competitive or cooperative. For the
two decentralized problems, information on each player’s demand function, cost
structure, and decision rules is common knowledge to all the parties concerned.
The decentralized supply chain with competitive suppliers, in which the players act
independently and make decisions that maximize their individual profits, can be
viewed as two static nested games. The first is a static non-cooperative game be-
tween supplier 1 and supplier 2. They choose their wholesale prices simultaneously
and do not collude. The second is a Stackelberg game, which is nested within the
static non-cooperative game. In the Stackelberg game, the leaders (supplier 1 and
supplier 2) select the wholesale prices, and the followers (the retailer facing random
yields) respond by selecting their order quantities. For the decentralized supply
chain with competitive suppliers, we give the equilibrium wholesale price of the
two suppliers and the optimal order quantities of the retailer. Finally we investigate
the decentralized supply chain with cooperative suppliers in which supplier 1
and supplier 2 choose their individual wholesale prices to maximize their total
profits. To ensure stability and robustness of the cooperation, the Nash bargaining
game in cooperative game theory is used to divide the profit pie created through
cooperation.
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3.3 The Centralized Supply Chain

It is obvious that the supply chain will perform best if the channel is centrally
controlled. Since the wholesale price is only used to divide the profit between
the retailer and the suppliers, w1 and w2 are no longer decision variables in the
centralized supply chain. The decision variables are only Q1; Q2 and Q3: We seek
to determine the channel’s optimal order allocation decisions when there is supply
uncertainty for a seasonal product. The sequence of events in the centralized supply
chain is as follows:

1. Orders are placed with supplier 1 and supplier 2, respectively, in anticipation of
supply disruption and demand (Stage 1).

2. An emergency order is placed with the spot market after a supply disruption has
occurred but before demand occurs (Stage 2).

3. When the selling season arrives, the product is sold at a fixed price in the market.
Any unmet demand incurs a goodwill cost to the whole channel. After the selling
season, the residual product will be salvaged (Stage 3).

Denote z and Q3c as the inventory level of the supply chain before and after
the emergency order is placed, respectively. Let R c.Q3cjz/ be the channel’s random
profit in stage 2, i.e., the random profit after the emergency order Q3c � z is placed
(hereafter the subscript ‘c’ stands for the centralized supply chain and the superscript
‘R’ stands for stage 2). We have

R c.Q3cjz/ D p.Q3c ^ D/ � w3.Q3c � z/C C s.Q3c � D/C � b.D � Q3c/
C: (3.1)

Then we can deduce the channel’s expected profit in stage 2, enoted as
R…c.Q3cjz/, which is given by

R…c.Q3cjz/

D
8
<

:

.p C b � w3/Q3c � .p C b � s/
R Q3c

0
F.x/dx C w3z � bEŒX�; Q3c � z;

.p C b/z � .p C b � s/
R z

0
F.x/dx � bEŒX�; Q3c D z;

(3.2)

where EŒX� is the mean of the random demand D.
The channel’s order problem in stage 2 is to choose the emergency order quantity

Q3c � z to maximize its expected profit for any given initial inventory level z. This
is the classical newsvendor problem. By using the first- and second-order optimality
conditions, we can obtain that the order-up-to-level (OUL) policy is optimal for the

channel and the threshold value of the inventory level is OQ3c D F �1
�

pCb�w3

pCb�s

�
:
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Hence, the optimal inventory level after the retailer placing an emergency order is
as follows:

Q�
3c D OQ3c _ z: (3.3)

Then the maximum expected revenue of the channel in stage 2 for any given
initial inventory level z is deduced as follows:

R…�
c .z/

D
8
<

:

.p C b � w3/ OQ3c � .p C b � s/
R OQ3c

0
F.x/dx C w3z � bEŒX�; z � OQ3c;

.p C b/z � .p C b � s/
R z

0
F.x/dx � bEŒX�; z � OQ3c:

(3.4)

It is obvious that the overall probability of supplier 1 not failing is ˛ˇ and the
overall probability of supplier 2 not failing is ˛. Hence the channel’s expected profit
in stage 1 after the retailer placing orders with supplier 1 and supplier 2, denoted as
P…c.Q1c; Q2c/, is given by (hereafter the superscript ‘P’ stands for stage 1)

P…c.Q1c; Q2c/ D ˛ˇ
� R…�

c .Q1c C Q2c/ � c1Q1c � c2Q2c
�

C ˛.1 � ˇ/
� R…�

c .Q2c/ � �c1Q1c � c2Q2c
�

C .1 � ˛/
� R…�

c .0/ � �c1Q1c � �c2Q2c
�

: (3.5)

The channel’s order problem in stage 1 is to choose order quantities Q1c and
Q2c to maximize its expected profit. We have the following conclusions about the
optimal sourcing strategy of the centralized supply chain.

Theorem 3.3.1. After a supply disruption has occurred, the optimal ordering
strategy of the centralized supply chain from the spot market is the OUL policy and

the threshold value of the inventory level is OQ3c D F �1
�

pCb�w3

pCb�s

�
: The optimal

sourcing strategies from supplier 1 and supplier 2 are as follows:

1. If ˛ˇ.w3 � c1 C �c1/ � �c1 < 0 and ˛.w3 � c2 C �c2/ � �c2 < 0; both supplier
1 and supplier 2 are placed with zero order quantity and the centralized supply
chain only sources from the spot market. The emergency order quantity is OQ3c:

2. If ˛ˇ.w3 � c1 C �c1/ � �c1 < 0 and ˛.w3 � c2 C �c2/ � �c2 � 0, the optimal
quantity ordered from supplier 1 is zero and the optimal quantity ordered from

supplier 2 is F �1
�

˛.pCb�c2C�c2/��c2

˛.pCb�s/

�
.

3. If 0 � ˛ˇ.w3 � c1 C �c1/ � �c1 � ˇ Œ˛.w3 � c2 C �c2/ � �c2�, the optimal
quantity ordered from supplier 1 is zero and the optimal quantity ordered from

supplier 2 is F �1
�

˛.pCb�c2C�c2/��c2

˛.pCb�s/

�
.

4. If 0 � ˇ Œ˛.w3 � c2 C �c2/ � �c2� � ˛ˇ.w3 � c1 C �c1/ � �c1 � ˛.w3 � c2 C
�c2/ � �c2, both supplier 1 and supplier 2 are selected to be placed with positive
orders, which are given by
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Q�
1c D F �1

�
˛ˇ.p C b � c1 C �c1/ � �c1

˛ˇ.p C b � s/

�

�F �1

�
˛.p C b � c2 C �c2/ � �c2 � .˛ˇ.p C b � c1 C �c1/ � �c1/

˛.1 � ˇ/.p C b � s/

�

;

(3.6)

Q�
2c D F �1

�
˛.p C b � c2 C �c2/ � �c2 � .˛ˇ.p C b � c1 C �c1/ � �c1/

˛.1 � ˇ/.p C b � s/

�

:

(3.7)

5. If ˛ˇ.w3 � c1 C �c1/ � �c1 � 0 and ˛ˇ.w3 � c1 C �c1/ � �c1 � ˛.w3 � c2 C
�c2/ � �c2, the optimal quantity ordered from supplier 2 is zero and the optimal

quantity ordered from supplier 1 is F �1
�

˛ˇ.pCb�c1C�c1/��c1

˛ˇ.pCb�s/

�
:

We obtain the conditions for both suppliers being placed with positive order
quantities as the following corollary.

Corollary 3.3.2. In the centralized supply chain, both suppliers are placed with
positive order quantities if and only if the following conditions hold:

C1: ˛ˇ.w3 � c1 C �c1/ � �c1 � 0

C2: ˛.w3 � c2 C �c2/ � �c2 � ˛ˇ.w3 � c1 C �c1/ � �c1

C3: ˛ˇ.w3 � c1 C �c1/ � �c1 � ˇ .˛.w3 � c2 C �c2/ � �c2/

For the centralized supply chain, it is possible that both supplier 1 and supplier
2 are not selected, i.e., the channel only sources from the spot market if ˛ˇ.w3 �
c1 C �c1/ � �c1 < 0 and ˛.w3 � c2 C �c2/ � �c2 < 0. However, if Q�

1c C Q�
2c > 0,

then Q�
1c C Q�

2c > OQ�
3c, i.e., the total order quantity always exceeds the threshold

value OQ�
3c if any supplier is placed with a positive order quantity. This indicates that

once the channel selects one supplier or two suppliers, it prefers the supplier(s) to
the spot market.

From Theorem 3.3.1, we see that the sourcing strategy of the retailer in the
centralized supply chain is affected mainly by two key factors, i.e., ˛ˇ.w3 � c1 C
�c1/ � �c1 and ˛.w3 � c2 C �c2/ � �c2. These two factors can be regarded as
the competitiveness of the two suppliers in the centralized supply chain. The larger
the value of a factor is, the more powerful is the corresponding supplier, i.e., a
higher probability that the supplier will be placed with a positive order quantity.
Furthermore, the other factors that affect supplier competitiveness include the fixed
wholesale price of the spot market, the delivery cost of a unit of the product of
the supplier, the probability of delivering orders on time, and the total proportion
of the marginal delivery cost in the event of a failure. The supplier can improve
his competitiveness by decreasing the delivery cost or improving the probability of
delivering orders on time. However, stable delivery usually increases the marginal
delivery cost. Thus, a trade-off exists between the probability of on-time delivery
and the marginal cost of delivery.
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3.4 The Decentralized Supply Chain

Consider the decentralized supply chain in which the firms make their decisions in-
dependently. The sequence of events in the decentralized supply chain is as follows:

1. The suppliers decide their individual wholesale prices either without cooperation
or with cooperation (Stage 0).

2. The retailer places orders of Q1 units and Q2 units with supplier 1 and supplier 2,
respectively, in anticipation of supply disruption and demand (Stage 1).

3. The retailer makes an emergency order from the spot market after a supply
disruption has occurred but before demand occurs (Stage 2).

4. When the selling season arrives, the retailer sells the product at a fixed price in
the market. Any unmet demand incurs a goodwill cost to the retailer. After the
selling season, the residual product will be salvaged (Stage 3).

As mentioned in Sect. 3.2, the situation with competitive suppliers can be viewed
as two static nested games. In the following we investigate the response function
of the retailer for any given wholesale price. Then based on the optimal response
function, we derive the optimal wholesale price decisions for the suppliers without
cooperation. A sufficient condition for the existence of an equilibrium is provided.
Finally we devise a coordination mechanism to maximize the profits of both
suppliers when they are cooperative.

3.4.1 The Optimal Strategy of the Retailer

This section aims to determine the retailer’s optimal order allocation decisions to
maximize its expected profit in stage 1 for any given wholesale price when the
supply chain is decentralized.

It is straightforward to deduce that the retailer adopts the same optimal strategies
as those in the centralized channel in stage 2 after a supply disruption has occurred.
Both of them apply the OUL policy with the same threshold OQ3d D OQ3c D
F �1

�
pCb�w3

pCb�s

�
(hereafter the subscript ‘d ’ stands for the decentralized supply

chain). Hence the maximum expected profit of the retailer in stage 2, denoted by
R…�

r .z/, is also the same as the maximum expected profit of the centralized supply
chain in stage 2 with the same initial inventory level z defined by (3.4).

Denote P…r.Q1; Q2/ as the retailer’s expected profit in stage 1 for given
wholesale prices w1 and w2, which is given by

P…r.Q1; Q2/ D ˛ˇ
� R…�

r .Q1 C Q2/ � w1Q1 � w2Q2

�

C ˛.1 � ˇ/
� R…�

r .Q2/ � .1 � �/�c1Q1 � w2Q2

�

C .1 � ˛/
� R…�

r .0/ � .1 � �/�c1Q1 � .1 � �/�c2Q2

�
: (3.8)

Derivation of the retailer’s optimal strategy is similar to that of the centralized
supply chain. We only state the main conclusions in the following theorem.
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Theorem 3.4.1. After a supply disruption has occurred, the optimal order strategy
of the retailer from the spot market is the OUL policy and the threshold value of

the inventory level is OQ3d D F �1
�

pCb�w3

pCb�s

�
: The optimal sourcing strategies from

supplier 1 and supplier 2 of the retailer are given as follows:

1. If ˛ˇ.w3 � w1 C .1 � �/�c1/ � .1 � �/�c1 < 0 and ˛.w3 � w2 C .1 � �/�c2/ �
.1 � �/�c2 < 0; then both supplier 1 and supplier 2 are placed with zero order
quantity and the retailer only sources from the spot market. The emergency order
quantity is OQ3d:

2. If ˛ˇ.w3 � w1 C .1 � �/�c1/ � .1 � �/�c1 < 0 and ˛.w3 � w2 C .1 � �/�c2/ �
.1 � �/�c2 � 0; then the optimal quantity ordered from supplier 1 is zero and the

optimal quantity ordered from supplier 2 is F �1
�

˛.pCb�w2C.1��/�c2/�.1��/�c2

˛.pCb�s/

�
.

3. If 0 � ˛ˇ.w3 � w1 C .1 � �/�c1/ � .1 � �/�c1 � ˇŒ˛.w3 � w2 C .1 � �/�c2/ �
.1 � �/�c2�, then the optimal quantity ordered from supplier 1 is zero and the

optimal quantity ordered from supplier 2 is F �1
�

˛.pCb�w2C.1��/�c2/�.1��/�c2

˛.pCb�s/

�
.

4. If 0 � ˇ Œ˛.w3 � w2 C .1 � �/�c2/ � .1 � �/�c2� � ˛ˇ.w3 �w1 C.1��/�c1/�
.1��/�c1 � ˛.w3 �w2 C .1��/�c2/� .1��/�c2, both supplier 1 and supplier
2 are selected to be placed with positive order quantities, which are given by

Q�

1d D F �1

�
˛ˇ.p C b � w1 C .1 � �/�c1/ � .1 � �/�c1

˛ˇ.p C b � s/

�

�F �1

�
˛.1 � ˇ/.p C b/ � ˛w2 C ˛ˇw1 � .1 � ˛/.1 � �/�c2 C .1 � ˛ˇ/.1 � �/�c1

˛.1 � ˇ/.p C b � s/

�

;

(3.9)

and

Q�

2d D F �1

�
˛.1 � ˇ/.p C b/ � ˛w2 C ˛ˇw1 � .1 � ˛/.1 � �/�c2 C .1 � ˛ˇ/.1 � �/�c1

˛.1 � ˇ/.p C b � s/

�

:

(3.10)

5. If ˛ˇ.w3 � w1 C .1 � �/�c1/ � .1 � �/�c1 � 0 and ˛ˇ.w3 � w1 C .1 � �/�c1/ �
.1 � �/�c1 > ˛.w3 � w2 C .1 � �/�c2/ � .1 � �/�c2, then the optimal quantity
ordered from supplier 2 is zero and the optimal quantity ordered from supplier 1

is F �1
�

˛ˇ.pCb�w1C.1��/�c1/�.1��/�c1

˛ˇ.pCb�s/

�
:

Similar to the conclusions reached for the centralized supply chain, we have the
following conditions for both suppliers being placed with positive order quantities.

Corollary 3.4.2. In the decentralized supply chain, both suppliers are placed with
positive order quantities if and only if the following conditions hold:

C4: ˛ˇ.w3 � w1 C .1 � �/�c1/ � .1 � �/�c1 � 0

C5: ˛.w3 �w2 C .1��/�c2/� .1��/�c2 � ˛ˇ.w3 �w1 C .1��/�c1/� .1��/�c1

C6: ˛ˇ.w3�w1 C.1��/�c1/�.1��/�c1 � ˇŒ˛.w3 �w2 C.1��/�c2/�.1��/�c2�
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For the decentralized supply chain, we also find that the sourcing strategy of the
retailer is affected mainly by two key factors, i.e., ˛ˇ.w3 � w1 C .1 � �/�c1/ �
.1 � �/�c1 and ˛.w3 � w2 C .1 � �/�c2/ � .1 � �/�c2. These two factors can
be regarded as the competitiveness of the two suppliers in the decentralized supply
chain. The larger the value of a factor is, the more powerful is the corresponding
supplier. Furthermore, the other factors that affect supplier competitiveness include
the wholesale price offered by the supplier and the proportion of the cost incurred by
the supplier in addition to all the factors in the centralized supply chain. The supplier
in the centralized supply chain can improve the competitiveness by decreasing
his wholesale price in addition to decreasing the delivery cost or improving the
probability of delivering orders on time. However, there is a trade-off between the
order quantity and the wholesale price.

3.4.2 The Optimal Strategies of Competitive Suppliers

In this section supplier 1 and supplier 2 are assumed to be competitive, i.e., supplier
1 and supplier 2 set their individual wholesale prices simultaneously to maximize
their respective expected profits before the retailer places its orders and the suppliers
do not collude. As mentioned in Sect. 3.2, this is a static non-cooperative game
between supplier 1 and supplier 2. We first derive the feasible strategy space
of both suppliers. Then we derive a sufficient condition for the existence of an
equilibrium price strategy in this game. Based on the assumption of a uniform
demand distribution, we further obtain an explicit form of the equilibrium strategy.

We have obtained the conditions in Corollary 3.4.2 in which both supplier are
placed with positive order quantities. Based on these conditions in Corollary 3.4.2,
we obtain the feasible strategy spaces of both suppliers to make a positive expected
profit and the conditions for the existence of the spaces as follows:

Theorem 3.4.3. If ˇ.˛ �˛� C�/c2 > .˛ˇ �˛ˇ� C�/c1; then the feasible strategy
space of supplier 1 is Œ

˛ˇ�˛ˇ��C��

˛ˇ
c1;

˛�˛�C�

˛
c2 � .1�˛ˇ/.1��/�

˛ˇ
c1�: When supplier 1

sets its wholesale price in the interval, it will obtain a positive profit. Similarly, if
˛w3 � .˛ � ˛� C �/c2 > ˛ˇw3 � .˛ˇ � ˛ˇ� C �/c1; then the feasible strategy
space of supplier 2 is Œ

˛�˛��C��

˛
c2; .1 � ˇ/w3 � .1�˛/.1��/�

˛
c2 C ˛ˇ�˛ˇ�C�

˛
c1�: When

supplier 2 sets its wholesale price in the interval, it will obtain a positive profit.

Note the two conditions in Theorem 3.4.3 are C 2 and C 3 in Corollary 3.3.2.
This means that if both suppliers are placed with positive order quantities in
the centralized supply chain, then there exist feasible strategy spaces for the two
competitive suppliers to obtain a positive profit in the decentralized supply chain.
Hence, we have the following results.

Proposition 3.4.4. The two competitive suppliers can obtain a positive expected
profit in the decentralized supply chain if both of them are placed with positive
order quantities in the centralized supply chain.
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From Theorem 3.4.3, we obtain the feasible strategy spaces for both suppliers.
Consequently, we discuss the existence of an equilibrium solution for the game. For
any wholesale price, supplier 1 and supplier 2 can correctly anticipate the retailer’s
demand curves, i.e., Q1.w1; w2/ and Q2.w1; w2/, which are given by (3.9) and
(3.10). Hence, the suppliers face the inverse demand curves

w1.Q1; Q2/ D p C b � .p C b � s/F.Q1 C Q2/ � .1 � ˛ˇ/.1 � �/�

˛ˇ
c1; (3.11)

and

w2.Q2; Q1/ D p C b � ˇ.p C b � s/F.Q1 C Q2/ � .1 � ˇ/.p C b � s/F.Q2/

� .1 � ˛/.1 � �/�

˛
c2: (3.12)

Because F.x/ is continuous and strictly increasing, it is easy to verify that the
corresponding feasible spaces for Q1 and Q2 are also closed intervals if the feasible
spaces for w1 and w2 are closed intervals. Moreover, the revenue functions are
equivalent to

…s1.Q1; Q2/ D Œ˛ˇw1.Q1; Q2/ � .˛ˇ � ˛ˇ�� C ��/c1�Q1

D Œ˛ˇ.p C b/ � ˛ˇ.p C b � s/F.Q1 C Q2/

�.˛ˇ � ˛ˇ� C �/c1�Q1; (3.13)

and

…s2
.Q2; Q1/ D Œ˛w2.Q2; Q1/ � .˛ � ˛�� C ��/c2�Q2

D Œ˛.p C b/ � ˛ˇ.p C b � s/F.Q1 C Q2/

�˛.1 � ˇ/.p C b � s/F.Q2/ � .˛ � ˛� C �/c2�Q2: (3.14)

The problems of supplier 1 and supplier 2 are equivalent for setting quantities Q1

and Q2 to maximize …s1
.Q1; Q2/ and …s2

.Q2; Q1/ simultaneously. Maximizing
…s1

.Q1; Q2/ and …s2
.Q2; Q1/ are straightforward if they are unimodal. However

the objective functions …s1
.Q1; Q2/ and …s2

.Q2; Q1/ are dependent on the demand
distribution. It should be noted that not all demand distributions result in a unimodal
objective function. In the following, we derive a sufficient and less restrictive
condition to ensure the objective functions are unimodal.

Define a new function g.Q2jQ1; ˇ/ as follows:

g.Q2jQ1; ˇ/, Q2Œˇ.p C b � s/f .Q2 C Q1/ C .1 � ˇ/.p C b � s/f .Q2/�

ˇŒp C b � .p C b � s/F.Q2 C Q1/� C .1 � ˇ/Œp C b � .p C b � s/F.Q2/�
:

(3.15)

We have the following conclusions about the objective functions.
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Lemma 3.4.5. Suppose F.x/ has a support Œa; b/. If g.Q2jQ1; ˇ/ is weakly
increasing for Q2, then supplier 2’s revenue function is unimodal for Q2 2
Œ0; C1/: Moreover, supplier 1’s revenue function …s1.Q1; Q2/ is also unimodal
for Q1 2 Œ0; C1/.

As pointed out in the above analysis, the strategy space for each supplier’s
decision is a closed interval; hence, it is a nonempty compact convex set of the
Eculidean space. Along with the results in Lemma 3.4.5, we have the following
theorem about the existence of a Nash equilibrium of this game.

Theorem 3.4.6. If g.Q2jQ1; ˇ/ is weakly increasing for Q2, then a pure strategy
Nash equilibrium exists.

In the proof of Lemma 3.4.5, a new function g.Q2jQ1; ˇ/ was defined. If s D 0;

Q1 D 0 and ˇ D 1, g.Q2jQ1; ˇ/ is the so-called generalized failure rate was
defined by Lariviere and Porteus (2001). They proved that if the demand follows an
increasing generalized failure rate (IGFR), the objective is unimodal. They also
pointed out that most demand distributions follow an IGFR: In this chapter we
obtain a similar condition, i.e., g.Q2jQ1; ˇ/ is weakly increasing. It should be noted
that it is difficult to verify that all the demand distributions meet this condition.
Fortunately, it is straightforward to verify that both the uniform and exponential
distributions possess this important property.

Corollary 3.4.7. If the demand follows a uniform distribution or an exponential
distribution, then a pure strategy Nash equilibrium exists.

Our analysis so far has not imposed any restrictions on the demand distribution.
Further analysis (e.g., the uniqueness of the equilibrium and the explicit expression
of the equilibrium) for a general demand distribution is difficult. In order to gain
further insights, we assume that the demand D is uniformly distributed in some
interval, which without loss of generality can be taken as the interval Œ0; 1�: Here the
game between supplier 1 and supplier 2 is a non-cooperative static game. We have
the following theorem.

Theorem 3.4.8. Assuming that the demand D is uniformly distributed in the
interval Œ0; 1�. If ˇ.˛�˛� C�/c2 > .˛ˇ �˛ˇ� C�/c1 and ˛w3 �.˛�˛� C�/c2 >

˛ˇw3 � .˛ˇ � ˛ˇ� C �/c1; then the unique Nash equilibrium strategy of the game
between the suppliers is given by:

.w�
1n; w�

2n/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

.w11; w21/; w11 � Ow1

V
w1 and w21 � Ow2

V
w2;

.w12; w23/; w1 � w12 > Ow1 and w23 � Ow2

V
w2;

.w13; w22/; w13 � Ow1

V
w1 and w2 � w22 > Ow2;

.w13; w23/; w1 � w13 > Ow1 and w2 � w23 > Ow2:

(3.16)

(All the variables appearing in this theorem are defined in the proof. Hereafter
the subscript ‘n’ stands for the decentralized supply chain with non-cooperation
suppliers.)
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3.4.3 The Optimal Strategies of Cooperative Suppliers

In this section, supplier 1 and supplier 2 are assumed to be cooperative, i.e., the
two suppliers set their individual wholesale prices in order to maximize their total
expected profits before the retailer places its orders. Obviously, a necessary precon-
dition for their cooperation is that none of them is intended to set its wholesale price
low enough to monopolize the market. It seems that the wholesale prices of both
suppliers are set by one decision-maker to ensure both suppliers are placed with non-
negative order quantities and to maximize the total profit of the two suppliers. We
first derive the optimal wholesale price of the two cooperative suppliers. Then we
discuss how to divide the profit and how to pool the cost between the two suppliers
to execute the cooperative wholesale price successfully. Finally, we discuss the
coordination of the whole channel.

From the analysis in Sect. 3.4.1, if and only if the conditions in Corollary 3.4.2
hold, both suppliers will be placed with positive order quantities, which are given
by (3.9) and (3.10). Then the total revenue function of the two suppliers is given by

…dc.w1; w2/ D Œ˛ˇw1 � .˛ˇ � ˛ˇ�� C ��/c1�Q1 C Œ˛w2 � .˛ � ˛�� C ��/c2�Q2:

(3.17)

(Hereafter the subscript ‘dc’ stands for the decentralized supply chain with cooper-
ative suppliers).

The problem of cooperative suppliers is as follows:

max …dc.w1; w2/

s:t: 0 � w1 � w3 � .1 � ˛ˇ/.1 � �/�c1

˛ˇ
I

w2 � w1 C .1 � ˛ˇ/.1 � �/�c1

˛ˇ
� .1 � ˛/.1 � �/�c2

˛
I

w2 � w3 � .1 � ˛/.1 � �/�c2

˛
� ˛ˇ.w3 � w1/ � .1 � ˛ˇ/.1 � �/�c1

˛
:

(3.18)

It is easy to verify that the Hessian matrix of …dc.w1; w2/ is negative definite.
Hence, …dc.w1; w2/ is jointly concave with respect to w1 and w2: Moreover, the
feasible spaces for w1 and w2 are convex. Problem (3.18) is a convex quadratic
programming problem, which can be solved by some popular mathematical software
such as MatLab or Mathematica.

It is obvious that if supplier 1 and supplier 2 are cooperative, they can obtain
more total expected revenue than that under the non-cooperative scenario. How
to divide the profit pie created through cooperation is crucial for stability and
robustness of the cooperation. The Nash bargaining game in cooperative game
theory can be used to ascertain the allocation ratio of the expected profit pie to
ensure that both suppliers earn a rational expected revenue. It should be noted that
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the bargaining solution of the game is not a randomized outcome. However, all
the revenues of the suppliers are random. Thus, only to ascertain the allocation
ratio of the expected profit pie is not enough to guarantee supplier cooperation. An
effective way to allocate the randomized revenue should be developed to the effect
that the total expected profit can be allocated according to the bargaining solution.
In the following we primarily focus on two issues, i.e., allocation of the expected
revenue and allocation of the randomized revenue.

We start by building a basic bargaining model initiated by Nash (1951). Recall
that the Nash bargaining game requires us to identify a feasible set of payoffs F

and a disagreement point d that are pre-determined and are independent of the
negotiations. To do so, let us first suppose that the two suppliers negotiate on
individual expected revenues denoted by (…dcs1 ; …dcs2). Obviously, this negotiation
is conducted over the sharing of some fixed profit pie. Denote the optimal value
of Problem (3.18), i.e., the pie to be allocated between the two suppliers, as …�

dc.
Thus, the feasible set of the bargaining is F D .…dcs1 ; …dcs2 j…dcs1 C…dcs2 D …�

dc/:

Furthermore, according to the rule of negotiation, the disagreement point is defined
as the two suppliers’ equilibrium expected revenues under the non-cooperative
scenario, i.e., d D .…�

s1; …�
s2/. Hence, the Nash bargaining solution between the

two suppliers is obtained by solving the following optimization problem:

arg max
.…dcs1 ;…dcs2 /2F;.…dcs1 ;…dcs2 /�d

.…dcs1
� …�

s1/.…dcs2
� …�

s2/: (3.19)

It is straightforward to obtain the solution of Problem (3.19) as follows:

.…�
dcs1

; …�
dcs2

/ D
�

…�
dc C …�

s1 � …�
s2

2
;

…�
dc � …�

s1 C …�
s2

2

�

: (3.20)

Since all revenue uncertainty is due to random demand falls on the retailer, the
uncertainty of the suppliers’ revenues is caused only by their reliability. Supplier 1
and 2 can allocate the randomized profit according to ratios �1; �2; and �3 as follows:

1. If both suppliers are in the success state, the total profit of them is .w1 �c1/Q1 C
.w2 � c2/Q2. The profits of supplier 1 and 2 are �1Œ.w1 � c1/Q1 C .w2 � c2/Q2�

and .1 � �1/Œ.w1 � c1/Q1 C .w2 � c2/Q2�, respectively. The probability of this
case occurring is ˛ˇ.

2. If supplier 1 is in the failure state and supplier 2 is in the success state, the total
profit of them is .w2 � c2/Q2 � ��c1Q1. The profits of supplier 1 and 2 are
�2Œ.w2 � c2/Q2 � ��c1Q1� and .1 � �2/Œ.w2 � c2/Q2 � ��c1Q1�, respectively.
The probability of this case occurring is ˛.1 � ˇ/.

3. If both suppliers are in the failure state, the total profit of them is ���.c1Q1 C
c2Q2/. The profits of supplier 1 and 2 are �3Œ���.c1Q1 C c2Q2/� and .1 � �3/

Œ���.c1Q1 C c2Q2/�, respectively. The probability of this case occurring is
1 � ˛.
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Obviously, the expected profit of supplier 1 can be written equivalently as

…s1.�1;�2;�3/ D ˛ˇ�1Œ.w1 � c1/Q1 C .w2 � c2/Q2� � .1 � ˛/�3��.c1Q1 C c2Q2/

C˛.1 � ˇ/�2Œ.w2 � c2/Q2 � ��c1Q1�:

Similarly, the expected profit of supplier 2 can be written as

…s2.�1; �2; �3/ D ˛ˇ.1 � �1/Œ.w1 � c1/Q1 C .w2 � c2/Q2�

� .1 � ˛/.1 � �3/��.c1Q1 C c2Q2/

C ˛.1 � ˇ/.1 � �2/Œ.w2 � c2/Q2 � ��c1Q1�:

To obtain the bargaining solution, supplier 1 and 2 can negotiate parameters �1; �2

and �3, which are subject to the following equations:

(
…s1

.�1; �2; �3/ D …�
dcs1

;

…s2.�1; �2; �3/ D …�
dcs2

:
(3.21)

Equation (3.21) is a system of 2 linear equations in 3 unknowns. This system
of linear equations has infinitely many solutions. Supplier 1 and 2 can select a
combination of .�1; �2; �3/ subject to (3.21) to allocate their randomized profits.

In sum, the cooperative suppliers can obtain more profits by the following
mechanism:

1. Supplier 1 and 2 decide their individual wholesale prices with cooperation to
maximize their total expected profits.

2. Adopt the Nash bargaining framework to examine the expected total profit
allocations.

3. All the parameters .�1; �2; �3/ subject to (3.21) are negotiated to allocate their
randomized profits.

We now turn our attention to coordination of the whole channel. Note that
the retailer in the decentralized supply chain adopts the same OUL policy as the
centralized channel after a supply disruption has occurred. Thus, the whole channel
is coordinated if and only if the retailer in the decentralized system chooses the same
inventory vector as in the centralized system. Letting Q�

1n D Q�
1c and Q�

2n D Q�
2c,

we have

w�
1c D .˛ˇ � ˛ˇ� C �/ � .1 � ˛ˇ/.1 � �/�

˛ˇ
c1; (3.22)

w�
2c D .˛ � ˛� C �/ � .1 � ˛/.1 � �/�

˛
c2: (3.23)
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Hence, the maximum expected revenue of the whole supply chain can be achieved
if the corresponding wholesale prices are identical to (3.22) and (3.23). However,
even if the corresponding wholesale prices are identical to (3.22) and (3.23), it is
difficult to achieve full coordination only by the wholesale prices. The reason is
that, it is difficult to allocate the total revenue only by the wholesale prices between
the retailer and the suppliers since the revenue of the retailer is stochastic due to the
random demand.

3.5 Numerical Examples

In this section we present numerical examples to illustrate the theoretical results and
explore the differences between the centralized supply chain and the decentralized
supply chain. We studied all 36 problems created by all possible combinations
of the following parameters: w3 D f16gI c1 D f10:5gI c2 D f12gI p D f18gI
b D f5gI s D f3gI � D f0:2; 0:3; 0:4gI � D f0:2; 0:5; 0:8gI ˛ D f0:7; 0:9gI and
ˇ D f0:7; 0:9g: � D f0:2; 0:3; 0:4g denotes that the marginal delivering cost in
the event of a failure is low, moderate, and high, respectively. The meanings of
� D f0:2; 0:5; 0:8g are similar. ˛ D f0:7; 0:9g denotes a low and high probability of
a common-cause failure not occurring, respectively. The meanings of ˇ D f0:7; 0:9g
are similar. In these problems, demand was uniformly distributed over [300,700] and
thus the corresponding mean demand was 500.

All the different problems and the computational results of the centralized supply
chain are listed in Table 3.1. The computational results of the decentralized supply
chain with non-cooperative are listed in Table 3.2. The computational results of the
decentralized supply chain with cooperative are listed in Table 3.3.

From the computational results in Table 3.1, the following observations can be
made:

• The total profit of the supply chain decreases as � increases.
• The order quantity from supplier 2 increases as � increases. However, the

order quantity from supplier 1 decreases. This indicates that the larger the total
proportion of the marginal delivery cost in the event of a failure, the more
important is supply stability.

• If the supply stability of supplier 1 is high, the advantage of the low cost is
obvious. But if supply stability is too low, the advantage does not exist any more.

From the computational results in Tables 3.2 and 3.3, the following observations
can be made:

• If the two suppliers are cooperative, supplier 1 will set its wholesale price high
enough to compel the retailer to source only from supplier 2, who sets its
wholesale price substantially higher than the equilibrium wholesale price. Hence,
the sum of the suppliers’ profits increases and the profit of the retailer decreases
at the same time.
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Table 3.1 The centralized supply chain

� � ˛ ˇ w�

1
1 w�

2 Q�

1 Q�

2 …�

t

1 0.2 0.2 0.7 0.7 11.1557 12.3086 22.8571 483.4286 1068.9
2 0.2 0.2 0.7 0.9 Í 2 Í Í Í Í
3 0.2 0.2 0.9 0.7 10.8700 12.0800 35.5556 489.7778 1699.8
4 0.2 0.2 0.9 0.9 Í Í Í Í Í
5 0.2 0.5 0.7 0.7 11.5929 12.5143 22.8571 483.4286 1068.9
6 0.2 0.5 0.7 0.9 Í Í Í Í Í
7 0.2 0.5 0.9 0.7 11.1167 12.1333 35.5556 489.7778 1699.8
8 0.2 0.5 0.9 0.9 Í Í Í Í Í
9 0.2 0.8 0.7 0.7 12.2486 12.8229 22.8571 483.4286 1068.9
10 0.2 0.8 0.7 0.9 Í Í Í Í Í
11 0.2 0.8 0.9 0.7 11.4867 12.2133 35.5556 489.7778 1699.8
12 0.2 0.8 0.9 0.9 Í Í Í Í Í
13 0.3 0.2 0.7 0.7 Î3 Î Î Î Î
14 0.3 0.2 0.7 0.9 Í Í Í Í Í
15 0.3 0.2 0.9 0.7 10.8700 12.0800 3.3333 509.6667 1632.3
16 0.3 0.2 0.9 0.9 Í Í Í Í Í
17 0.3 0.5 0.7 0.7 Î Î Î Î Î
18 0.3 0.5 0.7 0.9 Í Í Í Í Í
19 0.3 0.5 0.9 0.7 11.4250 12.2000 3.3333 509.6667 1632.3
20 0.3 0.5 0.9 0.9 Í Í Í Í Í
21 0.3 0.8 0.7 0.7 Î Î Î Î Î
22 0.3 0.8 0.7 0.9 Í Í Í Í Í
23 0.3 0.8 0.9 0.7 11.9800 12.3200 3.3333 509.6667 1632.3
24 0.3 0.8 0.9 0.9 Í Í Í Í Í
25 0.4 0.2 0.7 0.7 Î Î Î Î Î
26 0.4 0.2 0.7 0.9 Í Í Í Í Í
27 0.4 0.2 0.9 0.7 Î Î Î Î Î
28 0.4 0.2 0.9 0.9 Í Í Í Í Í
29 0.4 0.5 0.7 0.7 Î Î Î Î Î
30 0.4 0.5 0.7 0.9 Í Í Í Í Í
31 0.4 0.5 0.9 0.7 Î Î Î Î Î
32 0.4 0.5 0.9 0.9 Í Í Í Í Í
33 0.4 0.8 0.7 0.7 Î Î Î Î Î
34 0.4 0.8 0.7 0.9 Í Í Í Í Í
35 0.4 0.8 0.9 0.7 Î Î Î Î Î
36 0.4 0.8 0.9 0.9 Í Í Í Í Í
1For the centralized supply chain, w�

1 and w�

2 denote the wholesale prices at which the best
performance of the whole supply chain can be achieved.
2Hereafter ‘Í’ indicates that the retailer only orders from supplier 1.
3Hereafter ‘Î’ indicates that the retailer only orders from supplier 2.

• When the two suppliers are cooperative, the total profit of the whole supply chain
is lower than the profit when they are competitive. This indicates that cooperation
of the suppliers does not necessarily lead to supply chain efficiency.
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Table 3.2 The decentralized supply chain with competitive suppliers

w�

1 w�

2 Q�

1 Q�

2 …�

r …�

s1 …�

s2 …�

t

1 11.4986 12.9600 43.4286 456.0000 849.1680 7.2960 207.9360 1064.4
2 Í Í Í Í Í Í Í Í
3 11.4033 12.8267 49.7778 464.8889 1364.7 16.7253 312.4053 1693.8
4 Í Í Í Í Í Í Í Í
5 11.9357 13.1657 43.4286 456 849.1680 7.2960 207.9360 1064.4
6 Í Í Í Í Í Í Í Í
7 11.6500 12.8800 49.7778 464.8889 1364.7 16.7253 312.4053 1693.8
8 Í Í Í Í Í Í Í Í
9 12.5914 13.4743 43.4286 456.0000 849.1680 7.2960 207.9360 1064.4
10 Í Í Í Í Í Í Í Í
11 12.0200 12.9600 49.7778 464.8889 1364.7 16.7253 312.4053 1693.8
12 Í Í Í Í Í Í Í Í
13 Î Î Î Î Î Î Î Î
14 Í Í Í Í Í Í Í Í
15 10.9200 13.1250 69.6667 442.3333 1183.5 2.1945 416.0145 1601.7
16 Í Í Í Í Í Í Í Í
17 Î Î Î Î Î Î Î Î
18 Í Í Í Í Í Í Í Í
19 11.4750 13.2450 69.6667 442.3333 1183.5 2.1945 416.0145 1601.7
20 Í Í Í Í Í Í Í Í
21 Î Î Î Î Î Î Î Î
22 Í Í Í Í Í Í Í Í
23 12.0300 13.3650 69.6667 442.3333 1183.5 2.1945 416.0145 1601.7
24 Í Í Í Í Í Í Í Í
25 Î Î Î Î Î Î Î Î
26 Í Í Í Í Í Í Í Í
27 Î Î Î Î Î Î Î Î
28 Í Í Í Í Í Í Í Í
29 Î Î Î Î Î Î Î Î
30 Í Í Í Í Í Í Í Í
31 Î Î Î Î Î Î Î Î
32 Í Í Í Í Í Í Í Í
33 Î Î Î Î Î Î Î Î
34 Í Í Í Í Í Í Í Í
35 Î Î Î Î Î Î Î Î
36 Í Í Í Í Í Í Í Í

Comparing the computational results in Tables 3.1, 3.2 and 3.3, the following
observations can be made:

• If both suppliers are selected in the centralized supply chain, they will also
be placed with positive order quantities when they are competitive in the
decentralized supply chain.
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Table 3.3 The decentralized supply chain with cooperative suppliers

w�

1 w�

2 Q�

1 Q�

2 …�

r …�

s1 …�

s2 …�

t

1 14.4700 15.2800 0 440.0000 90.0000 0 915.2000 1005.2
2 Í Í Í Í Í Í Í Í
3 15.1367 15.8133 0 440.0000 90.0000 0 1478.4 1568.4
4 Í Í Í Í Í Í Í Í
5 14.9071 15.4857 0 440.0000 90.0000 0 915.2000 1005.2
6 Í Í Í Í Í Í Í Í
7 15.3833 15.8667 0 440.0000 90.0000 0 1478.4 1568.4
8 Í Í Í Í Í Í Í Í
9 15.5629 15.7943 0 440.0000 90.0000 0 915.2000 1005.2
10 Í Í Í Í Í Í Í Í
11 15.7533 15.9467 0 440.0000 90.0000 0 1478.4 1568.4
12 Í Í Í Í Í Í Í Í
13 Î Î Î Î Î Î Î Î
14 Í Í Í Í Í Í Í Í
15 14.5200 15.6800 0 440.0000 90.0000 0 1425.6 1515.6
16 Í Í Í Í Í Í Í Í
17 Î Î Î Î Î Î Î Î
18 Í Í Í Í Í Í Í Í
19 15.0750 15.8000 0 440.0000 90.0000 0 1425.6 1515.6
20 Í Í Í Í Í Í Í Í
21 Î Î Î Î Î Î Î Î
22 Í Í Í Í Í Í Í Í
23 15.6300 15.9200 0 440.0000 90.0000 0 1425.6 1515.6
24 Í Í Í Í Í Í Í Í
25 Î Î Î Î Î Î Î Î
26 Í Í Í Í Í Í Í Í
27 Î Î Î Î Î Î Î Î
28 Í Í Í Í Í Í Í Í
29 Î Î Î Î Î Î Î Î
30 Í Í Í Í Í Í Í Í
31 Î Î Î Î Î Î Î Î
32 Í Í Í Í Í Í Í Í
33 Î Î Î Î Î Î Î Î
34 Í Í Í Í Í Í Í Í
35 Î Î Î Î Î Î Î Î
36 Í Í Í Í Í Í Í Í

• In the decentralized supply chain with non-cooperative or cooperative suppliers,
the total profit of the supply chain is less than that of the centralized supply chain.
Moreover, the wholesale prices are higher than the corresponding wholesale
prices at which the best performance of the whole supply chain can be achieved.

• Under the three scenarios, the impact of � on the supply chain is not as significant
as the impact of � . Only the impact on the wholesale prices is obvious.
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3.6 Concluding Remarks

In this chapter we considered both upstream and downstream uncertainty in
determining appropriate sourcing strategies for retailers and pricing strategies for
suppliers. By assuming that demand is uniformly distributed, we derived the optimal
order quantities from different suppliers. This allows the retailer to examine the
critical trade-off between the low-cost supplier’s reliability versus its cost advantage
relative to the other suppliers. We derived a sufficient condition for the existence of
an equilibrium price in a decentralized system when the suppliers are competitive.
Based on the assumption of a uniform demand distribution, we obtained an explicit
form of the solutions when the suppliers are competitive. We also constructed a
coordination mechanism to maximize the profits of the suppliers. These findings
can guide suppliers to find a trade-off between order quantity and wholesale price
and a trade-off between the probability of on-time delivery and the marginal cost of
delivery. Comparing with the benchmark scenario, i.e., a centralized supply chain,
we found that it is difficult to achieve full coordination by wholesale-price-only
contracts. How to devise a mechanism to coordinate the whole channel is a potential
topic for future research.

Appendix

Proof of Theorem 3.3.1

Proof. We discuss the optimal strategies Q1c and Q2c of the channel based on the
following different cases.

Case 1. Q2c � Q1c C Q2c � OQ3c:

Since the first-order derivative of the function in (3.4) with respect to z is given by

d R…�
c .z/

dz
D
(

w3; z � OQ3c;

.p C b/ � .p C b � s/F.z/; z � OQ3c;
(3.24)

we obtain the first-order partial derivatives of P…c.Q1c; Q2c/ with respect to Q1c and
Q2c in this case as follows:

@ P…c.Q1c; Q2c/

@Q1c
D ˛ˇw3 � .˛ˇ � ˛ˇ� C �/c1; (3.25)

@ P…c.Q1c; Q2c/

@Q2c
D ˛w3 � .˛ � ˛� C �/c2: (3.26)
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From (3.25) and (3.26), we reach the following conclusions:

1. If ˛ˇw3 � .˛ˇ � ˛ˇ� C �/c1 � 0 and ˛w3 � .˛ � ˛� C �/c2 � 0, then
the expected revenue will increase as the order quantities Q1 and Q2 increase.
Hence, Q�

1c C Q�
2c � OQ3c.

2. If ˛ˇw3 � .˛ˇ � ˛ˇ� C �/c1 < 0 and ˛w3 � .˛ � ˛� C �/c2 < 0, then
the expected revenue will increase as the order quantities Q1 and Q2 decrease.
Hence, Q�

1c D Q�
2c D 0:

3. If ˛ˇw3�.˛ˇ�˛ˇ� C�/c1 < 0 and ˛w3�.˛�˛� C�/c2 � 0, then the expected
revenue will increase as Q1 decreases or as Q2 increases. Hence, Q�

1c D 0 and
Q�

2c � OQ3c.
4. If ˛ˇw3�.˛ˇ�˛ˇ� C�/c1 � 0 and ˛w3�.˛�˛� C�/c2 < 0, then the expected

revenue will increase as Q1 increases or as Q2 decreases. Hence, Q�
1c � OQ3c

and Q�
2c D 0.

From conclusions 2, 3 and 4, it can be observed that there is at least one supplier
that is not selected to receive orders when ˛ˇw3 � .˛ˇ � ˛ˇ� C �/c1 < 0 and/or
˛w3 � .˛ � ˛� C �/c2 < 0. The reason is that the supplier’s supply reliability is too
low or its delivery cost is too high.

Case 2. Q2c � OQ3c � Q1c C Q2c:

The first-order partial derivatives of P…c.Q1c; Q2c/ with respect to Q1c and Q2c in
this case are given by

@ P…c.Q1c; Q2c/

@Q1c
D ˛ˇ Œ.p C b/ � .p C b � s/F.Q1c C Q2c/��.˛ˇ �˛ˇ� C�/c1;

(3.27)
and

@ P…c.Q1c; Q2c/

@Q2c
D ˛ˇ Œ.p C b/ � .p C b � s/F.Q1c C Q2c/�

C˛.1 � ˇ/w3 � .˛ � ˛� C �/c2: (3.28)

It is straightforward to verify that the Hessian matrix of P…c.Q1c; Q2c/ is negative
definite. Hence, P…c.Q1c; Q2c/ is jointly concave with respect to Q1c and Q2c: The
optimal order quantity can be easily deduced via the first-order optimality condition.

From the assumption Q2c � OQ3c � Q1c C Q2c and the analysis in Case 1, it is
straightforward to deduce that ˛ˇw3 � .˛ˇ � ˛ˇ� C �/c1 � 0: So we have

@ P…c.Q1c; Q2c/

@Q1c

ˇ
ˇ
ˇ
ˇ
ˇ
Q1cCQ2cD OQ3c

D ˛ˇw3 � .˛ˇ � ˛ˇ� C �/c1 � 0:

Moreover, we have

@ P…c.Q1c; Q2c/

@Q1c

ˇ
ˇ
ˇ
ˇ
ˇ
Q1cCQ2cDC1

D ˛ˇs � .˛ˇ � ˛ˇ� C �/c1 < 0;
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and F.x/ is strictly increasing. Hence, @ P…c.Q1c;Q2c/

@Q1c
has an unique zero point as

follows:

.Q1c C Q2c/
� D F �1

�
˛ˇ.p C b/ � .˛ˇ � ˛ˇ� C �/c1

˛ˇ.p C b � s/

�

: (3.29)

Substituting (3.29) into (3.28), we deduce that

@ P…c.Q1c; Q2c/

@Q2c
D ˛w3 � .˛ � ˛� C �/c2 � ˛ˇw3 C .˛ˇ � ˛ˇ� C �/c1: (3.30)

So we have the following conclusions.

1. If ˛ˇw3 �.˛ˇ �˛ˇ� C�/c1 > ˛w3 �.˛�˛� C�/c2, i.e., @ P…c.Q1c;Q2c/

@Q2c
< 0, then

the expected revenue will increase as Q2 decreases. Hence, Q�
1c D .Q1cCQ2c/

�
and Q�

2c D 0:

2. If ˛ˇw3 � .˛ˇ � ˛ˇ� C �/c1 � ˛w3 � .˛ � ˛� C �/c2, i.e., @ P…c.Q1c;Q2c/

@Q2c
� 0,

then the expected revenue will increase as Q2 increases. Hence, Q�
1c C Q�

2c D
.Q1c C Q2c/

� and Q�
2c � OQ3c:

Case 3. OQ3c � Q2c � Q1c C Q2c:

The first-order partial derivatives of P…c.Q1c; Q2c/ with respect to Q1c and Q2c in
this case are given by

@ P…c.Q1c; Q2c/

@Q1c
D ˛ˇŒ.p C b/ � .p C b � s/F.Q1c C Q2c/� � .˛ˇ � ˛ˇ� C �/c1;

(3.31)

@ P…c.Q1c; Q2c/

@Q2c
D ˛.p C b/ � .p C b � s/Œ˛ˇF.Q1c C Q2c/ C ˛.1 � ˇ/F.Q2c/�

�.˛ � ˛� C �/c2: (3.32)

It can be deduced that the Hessian matrix of P…c.Q1c; Q2c/ is negative definite. The
optimal order quantity can be easily deduced via the first-order derivatives.

The unique optimal total order quantity is deduced as follows:

.Q1c C Q2c/
� D F �1

�
˛ˇ.p C b/ � .˛ˇ � ˛ˇ� C �/c1

˛ˇ.p C b � s/

�

: (3.33)

Substituting (3.33) into (3.32), it is straightforward to deduce the unique optimal
order quantity from supplier 2 as follows:

Q�
2c D F �1

�
˛.1 � ˇ/.p C b/ C .˛ˇ � ˛ˇ� C �/c1 � .˛ � ˛� C �/c2

˛.1 � ˇ/.p C b � s/

�

: (3.34)
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Furthermore, we have

Q�
1c � 0 , Q�

2c � .Q1c C Q2c/
� , .˛ˇ � ˛ˇ� C �/c1 � ˇ.˛ � ˛� C �/c2:

(3.35)

From the above analysis of the three different cases, we reach the conclusions
about the optimal sourcing strategy of the centralized supply chain. ut
Proof of Theorem 3.4.3

Proof. Obviously, only if both suppliers are placed with positive order quantities is
it possible for them to obtain a positive expected profit? If both suppliers are placed
with positive order quantities, the expected revenue function of supplier 1 in stage 0,
denoted by …s1.w1; w2/, is given by

…s1.w1; w2/ D Œ˛ˇw1 � .˛ˇ � ˛ˇ�� C ��/c1�Q�
1d: (3.36)

Similarly, the expected revenue function of supplier 2 in stage 0, denoted by
…s2.w2; w1/, is given by

…s2.w2; w1/ D Œ˛w2 � .˛ � ˛�� C ��/c2�Q�
2d: (3.37)

From (3.36) and (3.37), we observe that w1 and w2 should be subject to w1 >
˛ˇ�˛ˇ��C��

˛ˇ
c1 and w2 >

˛�˛��C��

˛
c2 if both suppliers seek to obtain a positive

expected profit.
Along with the results in Theorem 3.4.1, we obtain the following conclu-

sions when supplier 1 adopts a different wholesale price for any given w2 2
Œ

˛�˛��C��

˛
c2; w3 � .1�˛/.1��/�c2

˛
�:

1. If ˛ˇ�˛ˇ��C��

˛ˇ
c1 < w1 < w3 � .1�˛ˇ/.1��/�c1

˛ˇ
� ˛.w3�w2/�.1�˛/.1��/�c2

˛ˇ
, then

Q�
1d > 0 and Q�

2d D 0:

2. If w3 � .1�˛ˇ/.1��/�c1

˛ˇ
� ˛.w3�w2/�.1�˛/.1��/�c2

˛ˇ
< w1 < w2 C .1�˛/.1��/�c2

˛
�

.1�˛ˇ/.1��/�c1

˛ˇ
, then Q�

1d > 0 and Q�
2d > 0:

3. If w2 C .1�˛/.1��/�c2

˛
� .1�˛ˇ/.1��/�c1

˛ˇ
< w1 � w3 � .1�˛ˇ/.1��/�

˛ˇ
c1; then Q�

1d D 0

and Q�
2d > 0:

Similarly, these are the following conclusions when supplier 2 adopts a different
wholesale price for any given w1 2 Œ

˛ˇ�˛ˇ��C��

˛ˇ
c1; w3 � .1�˛ˇ/.1��/�

˛ˇ
c1�:

4. If ˛�˛��C��

˛
c2 < w2 < w1 C .1�˛ˇ/.1��/�c1

˛ˇ
� .1�˛/.1��/�c2

˛
, then Q�

1d D 0 and
Q�

2d > 0:

5. If w1 C .1�˛ˇ/.1��/�c1

˛ˇ
� .1�˛/.1��/�c2

˛
< w2 < w3 � ˛ˇ.w3�w1/�.1�˛ˇ/.1��/�c1

˛
�

.1�˛/.1��/�c2

˛
, then Q�

1d > 0 and Q�
2d > 0:
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6. If w3 � .1�˛/.1��/�c2

˛
� ˛ˇ.w3�w1/�.1�˛ˇ/.1��/�c1

˛
< w2 < w3 � .1�˛/.1��/�c2

˛
; then

Q�
1d > 0 and Q�

2d D 0:

We observe that if ˛ˇ�˛ˇ��C��
˛ˇ

c1 < w3 � .1�˛ˇ/.1��/�c1

˛ˇ
� ˛.w3�w2/�.1�˛/.1��/�c2

˛ˇ
;

then it is possible that supplier 1 sets its wholesale price w1 in Œ ˛ˇ�˛ˇ��C��
˛ˇ

c1;

w3 � .1�˛ˇ/.1��/�c1

˛ˇ
� ˛.w3�w2/�.1�˛/.1��/�c2

˛ˇ
� in order to monopolize the market. To

avoid this scenario, the countermeasure of supplier 2 is to set its wholesale price

w2 such that ˛ˇ�˛ˇ��C��

˛ˇ
c1 > w3 � .1�˛ˇ/.1��/�c1

˛ˇ
� ˛.w3�w2/�.1�˛/.1��/�c2

˛ˇ
; i.e.,

w2 < .1 � ˇ/w3 � .1�˛/.1��/�

˛
c2 C ˛ˇ�˛ˇ�C�

˛
c1: Moreover, it is straightforward

to verify that .1 � ˇ/w3 � .1�˛/.1��/�

˛
c2 C ˛ˇ�˛ˇ�C�

˛
c1 < w3 � .1�˛/.1��/�c2

˛
�

˛ˇ.w3�w1/�.1�˛ˇ/.1��/�c1

˛
when w1 >

˛ˇ�˛ˇ��C��

˛ˇ
c1: Hence, the strategy space for

supplier 2 is Œ
˛�˛��C��

˛
c2; .1�ˇ/w3� .1�˛/.1��/�

˛
c2C ˛ˇ�˛ˇ�C�

˛
c1�: Obviously, to en-

sure the existence of this strategy space, ˛�˛��C��
˛

c2 < .1 � ˇ/w3 � .1�˛/.1��/�
˛

c2 C
˛ˇ�˛ˇ�C�

˛
c1; i.e., ˛w3 � .˛ � ˛� C �/c2 > ˛ˇw3 � .˛ˇ � ˛ˇ� C �/c1:

Similarly, the feasible strategy space for supplier 1 is Œ
˛ˇ�˛ˇ��C��

˛ˇ
c1;

˛�˛�C�

˛
c2�

.1�˛ˇ/.1��/�

˛ˇ
c1� if ˇ.˛ � ˛� C �/c2 > .˛ˇ � ˛ˇ� C �/c1: ut

Proof of Lemma 3.4.5

Proof. Denote .p C b/ � ˇ.p C b � s/F.Q1 C Q2/ � .1 � ˇ/.p C b � s/F.Q2/

as U2.Q2; Q1/ and U2.Q2; Q1/Q2 as R2.Q2; Q1/.
The first-order derivative of R2.Q2; Q1/ is given by

dR2.Q2; Q1/

dQ2

D U2.Q2; Q1/CQ2

dU2.Q2; Q1/

dQ2

D U2.Q2; Q1/.1�g.Q2jQ1; ˇ//:

(3.38)

The second-order derivative of R2.Q2; Q1/ is given by

d2R2.Q2; Q1/

dQ2
2

D dU2.Q2; Q1/

dQ2

.1 � g.Q2jQ1; ˇ// � U2.Q2; Q1/
dg.Q2jQ1; ˇ/

dQ2

:

(3.39)

Assume that the support of F.x/ is the interval Œa; b/, i.e., 0 < F.x/ < 1 for
x 2 Œa; b/ and F.x/ D 0 for x … Œa; b/. Then g.Q2jQ1; ˇ/ D 0 and R2.Q2; Q1/ D
˛.p Cb/Q2 for Q2 2 Œ0; a/: Define Q2 as the least upper bound on the set of points
such that g.Q2jQ1; ˇ/ � 1: Since g.Q2jQ1; ˇ/ D 0 for Q2 2 Œ0; a/, Q2 � a:

If dg.Q2jQ1;ˇ/

dQ2
� 0, i.e., g.Q2jQ1; ˇ/ is weakly increasing, then g.Q2jQ1; ˇ/ � 1

for Q2 2 ŒQ2; 1/ and dR2.Q2;Q1/

dQ2
� 0 for Q2 2 ŒQ2; 1/. It can be deduced

that R2.Q2; Q1/ is decreasing for Q2 2 ŒQ2; C1/: Hence, …s2.Q2; Q1/ D
˛R2.Q2; Q1/ � .˛ � ˛� C �/c2Q2 is decreasing for Q2 2 ŒQ2; C1/, too.
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Note that g.Q2jQ1; ˇ/ � 1 for Q2 2 Œa; Q2/ and w2.Q2; Q1/ is decreasing

in Q2. Hence d2R2.Q2;Q1/

dQ2
2

� 0 for Q2 2 Œa; Q2/: Then R2.Q2; Q1/ is concave

for a � Q2 � Q2: Hence, it is straightforward to deduce that …s2.Q2; Q1/ D
˛R2.Q2; Q1/ � .˛ � ˛� C �/c2Q2 is concave for Q2 2 Œa; Q2/, too.

In addition, it is obvious that …s2.Q2; Q1/ is linear and strictly increasing
on Œ0; a/.

From the above analysis, it is straightforward to deduce that …s2.Q2; Q1/ is
unimodal for Q2 2 Œ0; C1/.

The unimodality of …s1
.Q1; Q2/ can be proved by letting Q2 D Q1; Q1 D 0

and ˇ D 1 in (3.15). ut
Proof of Theorem 3.4.8

Proof. We first assume that ˛.w3 � w2/ � .1 � ˛/.1 � �/�c2 > ˛ˇ.w3 � w1/ � .1 �
˛ˇ/.1��/�c1 > 0 and ˇ Œ˛w2 C .1 � ˛/.1 � �/�c2� > ˛ˇw1 C.1�˛ˇ/.1��/�c1:

Under these conditions, the optimal order quantities from supplier 1 and supplier 2
are given by

Q1 D ˇŒ˛w2 C .1 � ˛/.1 � �/�c2� � Œ˛ˇw1 C .1 � ˛ˇ/.1 � �/�c1�

˛ˇ.1 � ˇ/.p C b � s/
; (3.40)

and

Q2 D ˛.p C b � w2/ � .1 � ˛/.1 � �/�c2 � Œ˛ˇ.p C b � w1/ � .1 � ˛ˇ/.1 � �/�c1�

˛.1 � ˇ/.p C b � s/
:

(3.41)

Substituting (3.40) and (3.41) into the revenue functions (3.36) and (3.37), we have

…s1 .w1; w2/ D ˇŒ˛w2 C .1 � ˛/.1 � �/�c2� � Œ˛ˇw1 C .1 � ˛ˇ/.1 � �/�c1�

˛ˇ.1 � ˇ/.p C b � s/

�Œ˛ˇw1 � .˛ˇ � ˛ˇ�� C ��/c1�; (3.42)

and

…s2 .w2; w1/

D ˛.p C b � w2/ � .1 � ˛/.1 � �/�c2 � Œ˛ˇ.p C b � w1/ � .1 � ˛ˇ/.1 � �/�c1�

˛.1 � ˇ/.p C b � s/

�Œ˛w2 � .˛ � ˛�� C ��/c2�: (3.43)

It is straightforward to verify that (3.42) and (3.43) are concave with respect to
their own decision variables. By setting the first partial derivative of each player’s
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revenue function with respect to its own decision variable equal to zero, we obtain
the unconstrained best response function as follows:

w1.w2/ D ˛ˇw2 C .˛ˇ � 2˛ˇ�� C ˛ˇ� C 2�� � �/c1 C .1 � ˛/.1 � �/�ˇc2

2˛ˇ
;

(3.44)

and

w2.w1/ D ˛.1 � ˇ/.p C b/ C ˛ˇw1 C .1 � ˛ˇ/.1 � �/�c1 C .˛ � 2˛�� C ˛� C 2�� � �/c2

2˛
:

(3.45)

Denote the feasible strategy interval of supplier 1 as Œw1; w1�, i.e., w1 D
˛ˇ�˛ˇ��C��

˛ˇ
c1 and w1 D ˛�˛�C�

˛
c2 � .1�˛ˇ/.1��/�

˛ˇ
c1: Similarly, denote the feasible

strategy interval of supplier 2 as Œw2; w2�: It is straightforward to verify that
w1.w2/ � w1 for w2 2 Œw2; w2�. Hence, …s1.w1; w2/ is an increasing function of
w1 in the interval Œw1; w1.w2/� for any given w2 2 Œw2; w2�. Similarly, w2.w1/ � w2

and …s2.w2; w1/ is an increasing function of w2 in the interval Œw2; w2.w1/� for any
given w1 2 Œw1; w1�: Moreover,

w1.w2/ � w1 , w2 � Ow2; (3.46)

and

w2.w1/ � w2 , w1 � Ow1; (3.47)

where

Ow2 , � � ˛� C ˛ C �� � ˛�� C ˛

˛
c2 � ˛ˇ � ˛ˇ� C �

˛ˇ
c1;

and

Ow1 , .1 � ˇ/.2w3 � p � b/

ˇ
C .2˛ˇ � ˛ˇ� C � � ˛ˇ�� C ��/c1

˛ˇ

� .� � ˛� C ˛/c2

˛ˇ
:

Hence, we obtain the best response function for any given feasible w2 of supplier 1
as follows:

w�

1 .w2/ D

8
ˆ̂
<

ˆ̂
:

˛ˇw2 C .˛ˇ � 2˛ˇ�� C ˛ˇ� C 2�� � �/c1 C .1 � ˛/.1 � �/�ˇc2

2˛ˇ
; w2 � Ow2;

˛ � ˛� C �

˛
c2 � .1�˛ˇ/.1��/�

˛ˇ
c1; w2 > Ow2:

(3.48)
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Similarly, we obtain the best response function for any given feasible w1 of supplier
2 as follows:

w�

2 .w1/ D

8
ˆ̂
<

ˆ̂
:

˛.1 � ˇ/.p C b/ C ˛ˇw1 C .1 � ˛ˇ/.1 � �/�c1 C .˛ � 2˛�� C ˛� C 2�� � �/c2

2˛
; w1 � Ow1;

.1 � ˇ/w3 � .1�˛/.1��/�

˛
c2 C ˛ˇ � ˛ˇ� C �

˛
c1; w1 > Ow1:

(3.49)

Since the absolute value of the first derivative of each best response with respect
to its own decision variable is less than 1, the best response mapping is a contraction.
Hence, the Nash equilibrium is unique.

By letting w1 D w1.w2.w1// and w2 D w2.w1.w2//, all the possible wholesale
prices of supplier 1 and supplier 2 are derived as follows:

w11 ,
.�ˇ � �ˇ� C ˛ˇ2�� � ˛ˇ2� C 2˛ˇ � 4˛��ˇ C 2˛�ˇ C 4�� � 2�/c1 C ˇ.˛ � ˛� C �/c2 C ˛ˇ.1 � ˇ/.p C b/

˛ˇ.4 � ˇ/
;

w12 ,
˛ˇ.1 � ˇ/w3 C .˛ˇ � 2˛ˇ�� C ˛ˇ� C 2�� � � C ˛ˇ2

� ˛ˇ2� C ˇ�/c1

2˛ˇ
;

w13 ,
˛ � ˛� C �

˛
c2 �

.1 � ˛ˇ/.1 � �/�

˛ˇ
c1;

and

w21 , .�ˇ � �ˇ� C ˛ˇ�� � ˛ˇ� C 2˛ � 4˛�� C 2˛� C 4�� � 2�/c2 C .˛ˇ � ˛ˇ� C �/c1 C 2˛.1 � ˇ/.p C b/

˛.4 � ˇ/
;

w22 , ˛.1 � ˇ/.p C b/ C .˛ � 2˛�� C ˛� C 2�� � � C ˛ˇ � ˛ˇ� C ˇ�/c2

2˛
;

w23 , .1 � ˇ/w3 � .1 � ˛/.1 � �/�

˛
c2 C ˛ˇ � ˛ˇ� C �

˛
c1:

It is straightforward to verify that all the possible values of supplier 1 are larger than
w1 and all the possible values of supplier 2 are larger than w2: Jointly considering
the constraints, we obtain the unique Nash equilibrium strategy of the game between
the suppliers as follows:

.w�
1n; w�

2n/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

.w11; w21/; w11 � Ow1

V
w1 and w21 � Ow2

V
w2;

.w12; w23/; w1 � w12 > Ow1 and w23 � Ow2

V
w2;

.w13; w22/; w13 � Ow1

V
w1 and w2 � w22 > Ow2;

.w13; w23/; w1 � w13 > Ow1 and w2 � w23 > Ow2:

�



Chapter 4
Dynamic Inventory Management with Cash
Flow Constraints

4.1 Introduction

Current research efforts on inventory management mainly focus on operational
decisions and inventory control, i.e., characterizing replenishment policies based
on inventory level over a planning horizon.1 There is an extensive literature
on inventory control in both deterministic and stochastic environments, see e.g.,
Axsäter (2000), Zipkin (2000), Nahmias (2001), Porteus (2002), and Cheng et al.
(2010). Most of them ignore financial status of a firm and assume that the firm is
able to obtain infinite capital to implement any operational decisions.

However, capital shortage problem is one of the most common problems faced
by start-up and growing companies in real systems. Cash flow is usually one of
the key reasons for the bankruptcy of these firms. For example, Bradley (2000)
surveyed 531 businesses in the Southwest United States that went bankrupt during
the calendar year 1998. After analyzing the primary reasons for these businesses
failing, it is indicated that inadequate financial planning is one of the most evident
reasons, especially operating capital for the early months of the operation. Similar
research has been done in China. A project group in Department Research Center of
State Council of P.R. China sent questionnaires to small businesses in the country,
with response that 66.9% of them have capital problems, which may lead to the
closure of these firms. See Chen and Zhang (2001). Therefore, start-up and growing
firms, being short of capital, cannot always adopt optimal production policies as
other mature companies.

In this chapter, we consider a classic dynamic inventory control problem of a self-
financing retailer who periodically replenishes its stock from a supplier and sells it
to the market. Excess demand in each period is lost when insufficient inventory
is available. The demands for different periods are independent and identically

1The following discussion in this chapter is largely based on the ideas and results presented in
Chao et al. (2008).

J. Li et al., Risk Management of Supply and Cash Flows in Supply Chains,
International Series in Operations Research & Management Science 165,
DOI 10.1007/978-1-4614-0511-5 4, © Springer Science+Business Media, LLC 2011
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distributed random variables. The retailer’s operational decisions are constrained
by its cash flows, which is updated periodically following the purchasing and the
sales in each period. We seek to gain understanding on how operational decisions
interact with and are affected by cash flows in a dynamic setting. The objective of the
firm is to maximize its expected wealth level at the end of the planning horizon. We
obtain the explicit structure on how the optimal inventory control strategy depends
on the cash flows. We also study the relationship between the optimal control policy
and the system parameters, e.g., purchasing price, interest rate, salvage value, and
selling price. Conditions are identified under which the optimal control policies are
identical across periods. A simple algorithm is developed to compute the optimal
inventory control policy for each period.

There are several papers that deal with budgetary constraints. By assuming
the availability of market hedges, Birge (2000) adopted option pricing theory
for incorporating risk into planning models by adjusting capacity and resource
levels. Rosenblatt and Rothblum (1990) treated capacity as a decision variable
in their study of multi-item inventory systems under a single resource capacity
constraint. Li et al. (1997) considered a single-product firm that makes production
decisions, borrowing decisions, and dividend policies for each period while facing
uncertain demand. The firm maximizes the expected present value of the infinite-
horizon flow of the dividends subjecting to loan size, production size, and liquidity
constraints. The firm can obtain an unbounded single-period loan with a constant
interest rate. The authors derive the optimal myopic policies and study their
structural properties. Archibald et al. (2002) considered a start-up firm facing
discretely distributed demand and the objective is to maximize the long-term
survival probability instead of average profit per period. The authors concluded that
the start-up firms should be more cautious in their component purchasing strategy
than the well-established firms. They also showed that the strategy is not monotone
in the amount of capital available. Babich and Sobel (2004) studied the coordination
of financial decisions (loan size) and operational decisions (production and sales) to
maximize the expected discounted proceeds from an initial public offering (IPO).
They modeled the IPO event as a stopping time in an infinite-horizon discounted
Markov decision process. Furthermore, they characterized an optimal capacity-
expansion policy and obtained sufficient conditions for a monotone threshold rule to
yield an optimal IPO decision. Hu and Sobel (2005) studied a dynamic newsvendor
model with the criterion of maximizing the expected present value of dividends,
and examined the interdependence of a firm’s capital structure and its short-term
operating decisions concerning inventories, dividends, and liquidity. They obtained
interesting results on the interaction between firm’s capital structure and operational
decisions.

The work that also addresses the interface of inventory management and finance
is Buzacott and Zhang (2004) who analyzed a Stackelberg game between the
bank and the retailer in a newsvendor inventory model. Buzacott and Zhang
(2004) considered a single period inventory management problem where the bank’s
decisions include the interest rate to charge and the loan limit, and the retailer needs
to decide the amount to borrow within the loan limit and the amount of inventory
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to order from suppliers. Both the bank and retailer maximize their expected returns.
Other related work in this includes Xu and Birge (2004a, 2004b). They considered a
multi-period dynamic model but do not consider the interactions between the bank
and the retailer.

In a sense, financial constraint in inventory management can be considered as
a supply capacity constraint on ordering quantity. Production–inventory problems
with supply capacity constraints have received a great amount of attention since
Federgruen and Zipkin (1986a, 1986b), see e.g., Ciarallo et al. (1994) and Wang
and Gerchak (1996). The main result for such systems is that its optimal control
strategy is a modified base-stock policy. The main difference between the two
classes of models lies in the fact that in inventory control problems with supply
capacity constraints, the constraints are given externally, while in inventory models
with financial constraints, the financial constraints are the result of the firm’s past
decisions. Therefore, the financial constraints are themselves decisions. Thus, in
making inventory decisions, its impact on future financial constraints has to be taken
into consideration.

The rest of this chapter is organized as follows. Section 4.2 presents the model.
Then Sect. 4.3 studies the optimal inventory strategy with cash flow constraints.
Some numerical studies are included in Sect. 4.4. The chapter concludes in Sect. 4.5
with some remarks and some possible extensions. Throughout the chapter we
use “increasing” and “decreasing” in non-strict sense, i.e., they represent “nonde-
creasing” and “nonincreasing”, respectively. Also, for any real number x, xC D
maxfx; 0g and x� D maxf�x; 0g.

4.2 Assumptions and Model Formulation

We consider the periodic-review inventory control problem where a self-financing
retailer sells a single product to the market. The risk neutral retailer faces random
demand and makes replenishment decisions over a finite planning horizon of N

periods. The successive periods’ demands Dn.1 � n � N / are independent and
identically distributed nonnegative random variables, with f .�/ and F.�/ being their
probability density and cumulative distribution functions respectively. A lost-sales
model is considered, that is, unmet demand in each period is lost when insufficient
inventory is available. The ordering lead time is zero.

Let p be the unit selling price, and c the unit ordering cost. Assume that any
inventory left at the end of the planning horizon has a salvage value � per unit. To
avoid triviality we assume

�1 < � � c < p; (4.1)

with a negative value of � representing disposal cost. We further assume
.1 C d/c < p. If this condition is not satisfied, then the firm would always prefer
to have all its capital in the banking account.
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The sequence of events in each period is as follows. At the beginning of each
period, the retailer places an order with its capital on hand, and deposits the surplus
capital in a saving account with fixed interest rate d . During the period demand is
realized. At the end of the period the retailer receives its revenue from sales and
savings interest.

Let Sn be the capital level at the beginning of period n, let xn and yn be the
inventory levels, before and after the replenishment decisions respectively, at the
beginning of period n, and let SN C1 be the terminal wealth at the end of the planning
horizon.

Because the firm is self-financed, the ordering decision satisfies the cash flow
constraint c.yn � xn/ � Sn, and the remaining capital in period n, Sn � c.yn � xn/,
is deposited in the savings account to generate an interest of d.Sn �c.yn �xn//. The
revenue from sales in period n is p minfyn; Dng. Hence, the total capital level at the
end of period n, which is also the capital level at the beginning of period n C 1, is

SnC1 D pminfyn; Dng C .1 C d/.Sn � c.yn � xn//; n D 1; 2; : : : ; N: (4.2)

Since we consider lost-sales model, the inventory level at the beginning of period
n C 1 is

xnC1 D .yn � Dn/C; n D 1; 2; : : : ; N: (4.3)

Therefore, the decision problem of the retailer is to decide an ordering policy to
maximize the expected terminal wealth at the end of the planning horizon, given
initial inventory level x1 and initial capital level S1, and subject to the cash flow
constraint in each period. That is, the decision problem is

max
y1;:::;yN

EŒSN C1�;

subject to Eqs. (4.2), (4.3), and

0 � yn � xn � Sn=c; n D 1; 2; : : : ; N:

The maximum expected terminal wealth is denoted by, Vn.x; S/, given that the
inventory level and capital level at the beginning of period n are x and S . The
optimality equation is

Vn.x; S/ D max
x�y�xCS=c

E
�
VnC1..y � Dn/C; pminfy; Dng

C.1 C d/.S � c.y � x///
�

; (4.4)

with boundary condition

VN C1.x; S/ D S C �x:
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The trade-off in the dynamic programming equation above is between ordering
inventory (and therefore earning profit from sales) and putting cash in savings
account (and earning interests). When inventory is ordered, the retailer runs the risk
of not selling the inventory and therefore loses the opportunity of earning an interest.
Note that the problem in the last period is effectively a newsvendor problem with
capital constraint.

4.3 The Optimal Inventory Control Strategy
with Cash Flow Constraints

In this section, we investigate the optimal inventory control strategy with cash flow
constraints.

To derive the optimal control strategy, several lemmas are needed. The first
lemma follows immediately from induction.

Lemma 4.3.1. For any period n and fixed x, Vn.x; S/ is increasing in S .

Lemma 4.3.1 is intuitively clear: The more initial capital level the better to the
final objective. To establish the second order property of the value function Vn, we
need the following result.

Lemma 4.3.2. For any n, Vn.A � z; B C pz/ is increasing in z for fixed A and B .

Proof. Note the relationship

Vn.A � z; B C pz/ D max
A�z�y�ACB=cC.p�c/z=c

EŒVnC1..y � Dn/C; p minfy; Dng

C.1 C d/.cA C B C .p � c/z � cy/�:

It follows from Lemma 4.3.1 that the function being maximized above is increasing
in z. Because the feasible region A � z � y � A C B=c C .p � c/z=c is also
increasing in z, Vn.A � z; B C pz/ is increasing in z. �

Lemma 4.3.2 is essential in proving the second order property of the value
function. The lemma says that it is better to keep cash than having inventory in
stock at the beginning of the period. This can be intuitively explained as follows:
Capital at the beginning of a period is more flexible than inventory in stock since
the firm can always convert it to inventory by placing an order. However, the
reverse is not true. In particular, if the on-hand inventory is higher than necessary,
it would have been better to have part of that inventory in the form of cash to earn
interest.

Lemma 4.3.3. For any n, Vn.x; S/ is jointly concave in x and S .
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Proof. We prove the lemma by backward induction. Clearly, VN C1.x; S/ D S C�x

is jointly concave in x and S . Assume that VnC1.x; S/ is jointly concave in x and S .
We now prove the property for n.

We firstly prove VnC1..y � Dn/C; p minfy; Dng C .1 C d/.S � c.y � x/// is
jointly concave in .y; x; S/. For any .y1; x1; S1/ and .y2; x2; S2/ and 0 � � � 1, we
need to prove

VnC1

�
.�y1 C .1 � �/y2 � Dn/C; p minf�y1 C .1 � �/y2; Dng

C .1 C d/
�
�S1 C .1 � �/S2 � c.�y1 C .1 � �/y2 � �x1 � .1 � �/x2/

��

� �VnC1

�
.y1 � Dn/C; p minfy1; Dng C .1 C d/

�
S1 � c.y1 � x1/

��

C .1 � �/VnC1

�
.y2 � Dn/C; p minfy2; Dng C .1 C d/

�
S2 � c.y2 � x2/

��
:

Note the relationship .y � Dn/C D y � minfy; Dng. For convenience let

Ny D �y1 C .1 � �/y2;

Qy D minf�y1 C .1 � �/y2; Dng;
Oy D � minfy1; Dng C .1 � �/ minfy2; Dng:

Then by Qy � Oy, we have

VnC1

�
.�y1 C .1 � �/y2 � Dn/C; p minf�y1 C .1 � �/y2; Dng

C.1 C d/
�
�S1 C .1 � �/S2 � c.�y1 C .1 � �/y2 � �x1 � .1 � �/x2/

��

D VnC1

�
Ny � Qy; p Qy C .1 C d/

�
�S1 C .1 � �/S2 � c.�y1 C .1 � �/y2

� �x1 � .1 � �/x2/
��

� VnC1

�
Ny � Oy; p Oy C .1 C d/

�
�S1 C .1 � �/S2 � c.�y1 C .1 � �/y2

� �x1 � .1 � �/x2/
��

D VnC1

�
�.y1 � Dn/C C .1 � �/.y2 � Dn/C; �p minfy1; Dng

C .1 � �/p minfy2; Dng C .1 C d/
�
�S1 C .1 � �/S2

� c.�y1 C .1 � �/y2 � �x1 � .1 � �/x2/
��

� �VnC1

�
.y1 � Dn/C; p minfy1; Dng C .1 C d/

�
S1 � c.y1 � x1/

��

C.1 � �/VnC1

�
.y2 � Dn/C; p minfy2; Dng C .1 C d/

�
S2 � c.y2 � x2/

��
;
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where the first inequality follows from Lemma 4.3.2 and the second inequality
follows from the concavity of VnC1.x; S/. Hence, VnC1..y�Dn/C; p minfy; DngC
.1 C d/.S � c.y � x/// is jointly concave in .y; x; S/, and so is its expected value.
Finally since

C D f.x; y/ W x � 0; y 2 Œx; x C S=c�g
is a convex set, applying Proposition B-4 of Heyman and Sobel (1984) we conclude
that Vn.x; S/ is jointly concave in x and S . �

We find it convenient to study the value function in terms of x and R D S C cx.
Define

�n.y; R/ D EŒVnC1..y � Dn/C; p minfy; Dng C .1 C d/.R � cy//�:

Then, the optimality equation (4.4) can be rewritten, after introducing a new
function QVn, as

QVn.x; R/ D Vn.x; R � cx/ D max
x�y�R=c

�n.y; R/:

Note that �n.y; R/ is jointly concave in .y; R/. For given R, let y�
n .R/ be the

maximizer of the unconstrained optimization problem maxy �n.y; R/. Then the
optimal inventory policy is given in the following result. Its proof follows directly
from Lemma 4.3.3. Hence, it is omitted here.

Theorem 4.3.4. When the state is .x; S/ at the beginning of period n, a capital-
dependent base stock inventory policy y�

n .R/, where R D S C cx, is optimal. More
specifically,

(i) If x � y�
n .R/ � S=c, it is optimal to order up to R=c.

(ii) If y�
n .R/ � S=c < x < y�

n .R/ then it is optimal to order up to y�
n .R/.

(iii) If x � y�
n .R/, then it is optimal not to order.

We refer to y�
n .R/ as the optimal base-stock level for period n. Hence, for each

state .x; S/ with R D S C cx there is an order-up-to level y�
n .R/. Because of the

constraint y � R=c, the base-stock level may not be achieved. The optimal achieved
inventory level is minfy�

n .R/; R=cg if x � y�
n .R/, and it is x otherwise. This is

similar to the inventory control problems with finite supply capacity, for which the
optimal strategy is to make the inventory level, within the supply capacity, as close
to the order-up-to level as possible. In the following, we let

Oy�
n .R/ D minfy�

n .R/; R=cg

and refer to Oy�
n .R/ as the optimal replenishment level of period n. Therefore, if

x � Oy�
n .R/ then the inventory level at period n is replenished to Oy�

n .R/, and no
order is placed otherwise. Thus, if the state of the system at the beginning of period
n is .x; S/, then the optimal inventory level for period n after replenishment decision
is minf Oy�

n .S C cx/; xg.
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The optimal strategy can still be messy if y�
n .R/ is a complicated function of R.

Fortunately, in the following we are able to present an extremely simple form, as
well as a computational algorithm, for Oy�

n .R/. More specifically, we show that
Oy�
n .R/ can be completely determined by a single parameter, a�

n . To that end, we
introduce a sequence of concave functions Gn.y/ as follows: GN C1.y/ D .� � c/y

and for n D 1; : : : ; N ,

Gn.y/ D .1 C d/N �n..p � c/EŒminfy; Dng� � dcy/

CEŒGnC1.maxfa�
nC1; .y � Dn/Cg/�; (4.5)

where a�
N C1 D 0 and for n D 1; : : : ; N , a�

n is the maximizer of Gn.y/, which will
be the only number in determining the control function Oy�

n .R/, 0 � R < 1.

Lemma 4.3.5. The following relationship is satisfied:

F �1

�
p � .1 C d/c

p � c

	

� a�
1 � a�

2 � � � � � a�
N D F �1

�
p � .1 C d/c

p � �

	

; (4.6)

where F �1 is the inverse function of F .

Proof. We prove the result by induction. Clearly

GN .y/ D .p � c/E minfy; DN g � dcy C GN C1..y � DN /C/

D .p � c/E minfy; DN g � dcy C .� � c/.y � DN /C;

is concave in y, its maximizer

a�
N D F �1

�
p � .1 C d/c

p � �

	

� F �1

�
p � .1 C d/c

p � c

	

is the newsvendor solution. Assume that we have proved the result for n C 1, i.e.,
GnC1; : : : ; GN are concave and

F �1

�
p � .1 C d/c

p � c

	

� a�
nC1 � a�

nC2 � � � � � a�
N D F �1

�
p � .1 C d/c

p � �

	

;

we proceed to prove n. Taking derivatives of Gn.y/ with respect to y yields

G0
n.y/ D .1 C d/N �nŒ.p � c/.1 � F.y// � dc�

CE
�
G0

nC1.y � Dn/1ŒDn � y � a�
nC1�

�
; (4.7)

G00
n .y/ D �.1 C d/N �n.p � c/f .y/

CE
�
G00

nC1.y � Dn/1ŒDn � y � a�
nC1�

�
: (4.8)
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Hence, it follows from the induction assumption that (4.8) is non-positive and Gn.y/

is concave in y.
Substituting y D a�

nC1 in (4.7), the second term on the right hand side of (4.7)
is 0, and the first term is nonnegative. Thus G0

n.a�
nC1/ � 0 and a�

n � a�
nC1.

Furthermore, note that the first term on the right hand side of (4.7) vanishes at

y D F �1
�

p�.1Cd/c

p�c

�
, while the second term

G0
nC1.y � Dn/1ŒDn � y � a�

nC1� D G0
nC1.y � Dn/1Œy � Dn � a�

nC1�

is always non-positive because a�
nC1 is the maximizer of GnC1. This shows that

a�
n � F �1

�
p�.1Cd/c

p�c

�
. �

The value a�
n will serve as the ideal order-up-to level for period n. We note that,

the problem in the last period is effectively a newsvendor problem with capital
constraint, its optimal order-up-to level is well-known and is given by the last
number in (4.6). This gives us the lower bound in Lemma 4.3.5. The most desirable
situation for the firm would be to have the option of returning whatever is left to the
supplier at the price paid, c, and in this case there would be no risk and the optimal
inventory level can be set aggressively, i.e., set the inventory level to the first number
in (4.6). This explains the upper bound in Lemma 4.3.5. In general, when there is
more period remaining to go, then it is more likely that the on-hand inventory can be
successfully used to satisfy future demand, and this explains why the optimal level
a�

n is decreasing in n.
The following decomposition result allows us to completely characterize the

optimal replenishment level Oy�
n .R/. Its proof is lengthy and is provided in the

Appendix.

Theorem 4.3.6. (i) For any period n, when R � ca�
nC1 and y � R=c, the

objective function can be decomposed as

�n.y; R/ D .1 C d/N C1�nR C Gn.y/:

(ii) If R � ca�
n , then the optimal order-up-to level is y�

n .R/ D a�
n , and if R < ca�

n ,
then y�

n .R/ � R=c.

Theorem 4.3.6 states that, for large R and small inventory level y, the value
function �n.y; R/ can be decomposed to concave functions of R and y alone.
This is not true, however, for small R or large y. Indeed, in general we would
expect the value function �n.y; R/ to be a complicated function of .y; R/, and
the separability comes as a surprise. It is this separability result that enables us to
significantly simplify the optimal inventory control strategy. Note that y�

n .R/ is the
optimal solution for maxy �n.y; R/, which is the desired inventory level for stage
n without the capital constraint, while a�

n is a constant that is the maximizer of
concave function Gn.�/. Part (ii) of Theorem 4.3.6 states that y�

n .R/ becomes flat
and equal to a�

n on R � ca�
n .
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The following is the main result of this chapter. Its proof follows directly from
(ii) of Theorem 4.3.6 and Oy�

n .R/ D minfy�
n .R/; R=cg.

Theorem 4.3.7. Suppose the state at the beginning of period n is .x; S/ and let
R D S C cx. The optimal replenishment level for period n is

Oy�
n .R/ D

(
a�

n ; if R � ca�
n;

R=c; if R � ca�
n :

That is, for any period n with state .x; R/, the optimal inventory control policy
is to,

(1) Replenish the inventory level to R=c if R=c � a�
n

(2) Replenish the inventory level to a�
n if x < a�

n < R=c

(3) Do not order anything if x � a�
n

Therefore, for each period n, the optimal replenishment level first linearly
increases with the wealth level R at rate 1=c till ca�

n and then it becomes flat
from R D ca�

n . This gives us an exceedingly simple inventory control policy: The
inventory control policy is determined solely by a capital-independent level a�

n , at
the beginning of period n, the firm replenishes its inventory level to a�

n as long as
there is sufficient capital available; if there is no sufficient capital, then it replenishes
as much as possible, that is, it uses up all of its capital.

The optimal replenishment level Oy�
n .R/ is determined by a single parameter a�

n ,
and the computation of a�

n is straightforward. A nested algorithm is summarized as
follows.

Algorithm:

Step 1. Set a�
N C1 D 0, and compute GN by (4.5). Set n D N.

Step 2. Computed a�
n via concave function Gn.y/ of (4.5).

Step 3. If n D 1 then stop. Otherwise set n WD n � 1 and repeat Step 2.

Remark 4.3.8. We point out that even though the optimal replenishment level
Oy�
n .R/ is very simple, the base-stock level y�

n .R/ can be quite complicated on
R � ca�

n . As a matter of fact, y�
n .R/ may not be even monotone on R 2 Œ0; can�.

See the numerical example in Sect. 4.4.

The following theorem presents the comparatively static results for the optimal
policy on the selling price p, purchasing price c, salvage value � , and interest rate d.

Theorem 4.3.9. (i) The optimal control policy parameters a�
n , n D 1; : : : ; N, are

increasing in � and p, and decreasing in c and d .

(ii) As � increases from �1 to c, a�
n increases from 0 to F �1

�
p�.1�d/c

p�c

�
.

In particular, as � D c, the optimal inventory policy is the same for each period
and is given by
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a�
1 D a�

2 D � � � D a�
N D F �1

�
p � .1 C d/c

p � c

	

:

Proof. (i) We first prove the result on �; p and c. Since a�
n is the maximizer of

Gn.y/, it suffices to prove G0
n.y/ is increasing in � and p, and decreasing in c.

By induction. First notice that

G0

N .y/ D Œ.p � c/.1 � F.y// � dc� C
Z y

0

.� � c/dF.z/;

which is clearly increasing in � and p, and decreasing in c. Suppose G0

nC1
is

increasing in � and p and decreasing in c, then we have

@G0

n.y/

@�
D
Z .y�a�

nC1/C

0

@G0

nC1
.y � z/

@�
dF.z/;

@G0

n.y/

@p
D .1 C d/N �np.1 � F.y// C

Z .y�a�

nC1/C

0

@G0

nC1
.y � z/

@p
dF.z/;

@G0

n.y/

@c
D �.1 C d/N �n.c.1 � F.y// C d/C

Z .y�a�

nC1/C

0

@G0

nC1
.y � z/

@�
dF.z/:

Hence, @G0
n.y/=@� � 0; @G0

n.y/=@p � 0 and @G0
n.y/=@c � 0 follow

immediately from the induction hypothesis.
To prove a�

n is decreasing in d , by Lemma 4.3.5, it suffices to show that
@G0

n.y/=@d � 0 for n D 1; : : : ; N on the range

y � F �1

�
p � .1 C d/c

p � �

	

: (4.9)

This is again proved by induction and it is trivially true for N . Suppose it has
been established for n C 1. Then, on range (4.9) we have

@G0
n.y/

@d
D .1 C d/N �n�1Œ.p � c/.1 � F.y// � dc � .1 C d/c�

C
Z .y�a�

nC1
/C

0

@G0
nC1.y � z/

@d
dF.z/

� .1 C d/N �n�1Œ.p � c/.1 � F.y// � dc � .1 C d/c�

� .1 C d/N �n�1




.p � c/
.1 C d/c � �

p � �
� dc � .1 C d/c

�

D .1 C d/N �n�1

p � �
Œ�.c � �/.1 C d/c � .p � c/� � .p � �/dc�

� 0;
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where the first inequality follows from induction hypothesis, the second
inequality follows from (4.9), and the last inequality follows from (4.1).

(ii) If � D c, then it follows from Lemma 4 that all a�
n are equal, completing the

proof of Theorem 4.3.9. �

As mentioned earlier, the number a�
n is basically the ideal order-up-to level

for period n. When the salvage value or the selling price is higher, it is more
profitable to keep a higher inventory thus a�

n is increasing in � and p. The same
argument shows that when the purchasing price c is higher, it is better to reduce
the inventory level thus a�

n is decreasing in c. When d increases, savings account
becomes a more attractive option, hence the firm will be willing to invest more in
the banking account than in the inventory, explaining why a�

n is decreasing in d .
Finally, when the salvage value is the same as the ordering cost, then there is no risk
associated with salvaging the inventory at the end. Therefore, the problem in each
period is a newsvendor problem with capital constraint. This explains part (ii) of
Theorem 4.3.9.

4.4 Numerical Examples

We present numerical examples to demonstrate the optimal inventory policy and
its dependency on wealth level R, salvage value � , and interest rate d . The model
parameters in all these numerical examples are p D 1:3 and c D 1. In Fig. 4.1 the
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Fig. 4.1 Optimal base stock policy for period 3
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Fig. 4.3 The optimal control strategy a�

n on d

interest rate is set at d D 0:1 and the salvage value is � D 0:5; in Fig. 4.2 the interest
rate is set at d D 0:1; and in Fig. 4.3, the salvage value is � D 0:5. The demand
has truncated normal distribution with mean 10 and variance 10. Assume there are
totally N D 4 periods.
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First compute the optimal policy parameters a�
n for n D 1; 2; 3 and 4 via

optimizing concave functions Gn.y/. Notice that the upper and lower bounds for a�
n

are given by F �1.p�.1Cd/c

p�c
/ D 15:8151 and F �1. p�.1Cd/c

p��
/ D 6:6547. Figure 4.1

demonstrates how the optimal inventory policy depends on the wealth level R. The
numerical results are for period 3. It shows that when R � ca�

3 , y�
3 .R/ D a�

3 ; and
when R < ca�

3 , y�
3 .R/ > R=c. Note that the minimum of the dotted line and the

solid curve is Oy�
3 .R/.

It is interesting to observe that the optimal order-up-to level y�
3 .R/ is complicated

and is not even monotone in R on the range R � ca�
3 . The optimal replenishment

level Oy�
n .R/ is, however, always extremely simple, as we noted earlier.

Figure 4.2 presents the optimal policy in terms of salvage value � on the range
[�1, 1]. It demonstrates that a�

n is decreasing in n and increasing in � .
Figure 4.3 presents the optimal policy in terms of interest rate d on the range [0,

0.3]. It demonstrates that a�
n is decreasing in n and d .

4.5 Concluding Remarks

In this chapter we study a dynamic inventory control problem with financial
constraints. We derive the optimal inventory policy for each period, and characterize
the dependence of the firm’s optimal operational policy on its financial status. We
also analyze the relationship between the optimal control parameters and system
parameters.

Many interesting issues remain to be investigated. For example, if there is a
holding cost rate h and shortage cost rate b for each period, then the optimality
equation becomes

max
y1;:::;yN

EŒSN C1�;

subject to

0 � yn � xn � Sn=c; n D 1; 2; : : : ; N;

where

SnC1 D pminfyn; Dng � h maxfyn � Dn; 0g � b maxfDn � yn; 0g
C.1 C d/.Sn � c.yn � xn//;

and, as before, xnC1 D .yn � Dn/C. Note that Lemmas 4.3.1, 4.3.2 and 4.3.3
continue to hold, thus Theorem 4.3.4 also holds and the optimal inventory control
policy is a capital dependent base-stock policy. As a matter of fact, Theorem
4.3.4, as well as Lemmas 4.3.1, 4.3.2 and 4.3.3 hold true under much more
general settings, e.g., under general revenue function, and under utility function
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optimization, etc. However, for Theorems 4.3.6 and 4.3.7, the objective function
can no longer be decomposed, and the control parameters of the optimal base-
stock policy are complicated and state-dependent. The problem will be even more
complicated if we allow the selling price p to be a decision variable when the
demand Dn depends on the selling price in period n.

The setting used in this chapter assumes that the demands over periods are
independent and identically distributed. We point out that the results Lemmas 4.3.1,
4.3.2 and 4.3.3 and Theorem 4.3.4 hold true as long as the demands over periods are
independent and they do not need to be identically distributed.

Appendix

Proof of Theorem 4.3.6. The proof is by induction. By the definition of Gn.y/ and
Lemma 4.3.5 we have

�N .y; R/ D pE minfy; DN gC.1Cd/.R�cy/C�E.y �DN /C D .1Cd/RCGN .y/:

Hence y�
N .R/ D a�

N for all R.
Assume that the results have been proved for n C 1, i.e., when R � ca�

nC2 and
y � R=c, �nC1.y; R/ can be decomposed as

�nC1.y; R/ D .1 C d/N �nR C GnC1.y/; (4.10)

and that if R � ca�
nC1, then y�

nC1.R/ � R=c; if R � ca�
nC1, then y�

nC1.R/ D a�
nC1.

To simplify the proof it is convenient to define a new function

QVn.x; R/ D Vn.x; S/

D Vn.x; R � cx/

D max
x�y�R=c

�n.y; R/

D max
x�y�R=c

E
� QVnC1..y � Dn/C; .p � c/ minfy; Dng C .1 C d/R � dcy/

�
:

From Lemma 4.3.3 it is straightforward to prove that QVn.x; R/ is jointly concave in
x and R. From Theorem 4.3.4 we have

QVnC1.x; R/ D

8
ˆ̂
<

ˆ̂
:

�nC1.R=c; R/; R=c � y�
nC1.R/;

�nC1.y
�
nC1.R/; R/; x < y�

nC1.R/ < R=c;

�nC1.x; R/; x � y�
nC1.R/:

(4.11)
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On the other hand, by the induction assumption and Lemma 4.3.5, the following
observations are made:

(a) If R � ca�
nC2 � ca�

nC1, then y�
nC1.R/ � R=c, thus

QVnC1.x; R/ D �nC1.R=c; R/:

(b) If ca�
nC2 < R � ca�

nC1, then y�
nC1.R/ � R=c and �nC1.y; R/ can be

decomposed as (4.10), thus

QVnC1.x; R/ D .1 C d/N �nR C GnC1.R=c/:

(c) If cx < ca�
nC1 < R, then y�

nC1.R/ D a�
nC1 and hence x < y�

nC1.R/ < R=c. In
this case �nC1.y; R/ can be decomposed as (4.10), thus

QVnC1.x; R/ D .1 C d/N �nR C GnC1.a
�
nC1/:

(d) If a�
nC1 � x � R=c, then y�

nC1.R/ D a�
nC1 and hence x � y�

nC1.R/. Further
�nC1.y; R/ can be decomposed as (4.10), thus

QVnC1.x; R/ D .1 C d/N �nR C GnC1.x/:

Therefore, we can rewrite (4.11) as

QVnC1.x; R/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�nC1.R=c; R/; R � ca�
nC2;

.1 C d/N �nR C GnC1.R=c/; ca�
nC2 < R � ca�

nC1;

.1 C d/N �nR C GnC1.a
�
nC1/; cx < ca�

nC1 < R;

.1 C d/N �nR C GnC1.x/; x � a�
nC1:

(4.12)

The last two cases show that if R � ca�
nC1, QVnC1.x; R/ can be rewritten as

QVnC1.x; R/ D .1 C d/N �nR C GnC1.maxfa�
nC1; xg/:

As a result, if R � ca�
nC1 and y � R=c, then .p�c/ minfy; DngC.1Cd/R�dcy �

ca�
nC1, and hence �n.y; R/ can be expressed as

�n.y; R/ D EŒ QVnC1..y � Dn/C; .p � c/ minfy; Dng C .1 C d/R � dcy/�

D .1 C d/N C1�nR C .1 C d/N �n..p � c/E minfy; Dng � dcy/

CEGnC1.maxfa�
nC1; .y � Dn/Cg/

D .1 C d/N C1�nR C Gn.y/:
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Therefore, when R � ca�
nC1 and y � R=c, the maximizer of �n.y; R/, y�

n .R/,
is equal to a�

n , the maximizer of Gn.y/. Furthermore, when R � ca�
n � ca�

nC1,
y�

n .R/ D a�
n , and when ca�

nC1 < R < ca�
n , y�

n .R/ D a�
n > R=c.

We next prove that y�
n .R/ � R=c on R � ca�

nC1. For notational convenience
in what follows we use QVn;1.x; R/ and QVn;2.x; R/ to represent the partial derivatives
with respect to x and R respectively, and QVn;12.x; R/ the cross derivative. From
(4.12), taking partial derivatives of QVnC1.x; R/ yields

QVnC1;1.x; R/ D
(

0; x < a�
nC1;

G0
nC1.x/; x � a�

nC1;
(4.13)

and

QVnC1;2.x; R/ D

8
ˆ̂
<

ˆ̂
:

d�nC1.R=c; R/=dR; R � ca�
nC2;

.1 C d/N �n C G0
nC1.R=c/=c; ca�

nC2 < R � ca�
nC1;

.1 C d/N �n; R > ca�
nC1:

(4.14)

Note that QVnC1;2.x; R/ is independent of x, hence QVnC1;12.x; R/ D 0. By

�n.y; R/ D EŒ QVnC1..y � Dn/C; .p � c/ minfy; Dng C .1 C d/R � dcy/�;

(4.15)

taking derivative of �n.y; R/ with respect to y yields

�n;1.y; R/ D
Z y

0

� QVnC1;1.y � z; .p � c/z C .1 C d/R � dcy/

�dc QVnC1;2.y � z; .p � c/z C .1 C d/R � dcy/
�
dF.z/

C.p � .1 C d/c/.1 � F.y// QVnC1;2.0; .p � .1 C d/c/y C .1 C d/R/:

Since y�
n .R/ is the maximizer of �n.y; R/, to prove y�

n .R/ � R=c when on R �
ca�

nC1, it suffices to prove �n;1.R=c; R/ � 0 on R � ca�
nC1. Noting QVn;1.x; R/ D 0

when x � R=c � a�
nC1, we have

�n;1.R=c; R/ D .p � .1 C d/c/.1 � F.R=c// QVnC1;2.0; pR=c/

�dc

Z R=c

0

QVnC1;2.R=c � z; .p � c/z C R/dF.z/

� .p � .1 C d/c/.1 � F.R=c// QVnC1;2.0; pR=c/

�dcF.R=c/ QVnC1;2.R=c; R/; (4.16)
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where the inequality follows from the concavity of QVnC1.x; R/ in R:

QVnC1;2.R=c � z; .p � c/z C R/ � QVnC1;2.R=c � z; R/

and that QVnC1;12.x; R/ D 0 is independent of x:

QVnC1;2.R=c � z; R/ D QVnC1;2.R=c; R/:

Since R � ca�
nC1 � cF �1.

p�.1Cd/c

p�c
/, we have

.p � .1 C d/c/.1 � F.R=c// � dcF.R=c/: (4.17)

To prove that the right hand side of (4.16) is nonnegative, we consider two ranges
of R separately.

Case 1: ca�
nC2 < R � ca�

nC1. By (4.7) we have

G0
nC1.y/ � .1 C d/N �n�1Œ.p � c/.1 � F.y// � dc�;

and since QV 0
nC1;2.x; R/ is decreasing in R, it follows from (4.14) that

QVnC1;2.0; pR=c/ � lim
y!1

QVnC1;2.0; y/ � .1 C d/N �n:

Hence applying these inequalities and (4.14) on the interval ca�
nC2 < R � ca�

nC1

yields

.p � .1 C d/c/.1 � F.R=c// QVnC1;2.0; pR=c/ � dcF.R=c/ QVnC1;2.R=c; R/

� .p � .1 C d/c/.1 � F.R=c//.1 C d/N �n � dcF.R=c/
�
.1 C d/N �n C G0

nC1.R=c/=c
�

� �
.p � .1 C d/c/.1 � F.R=c// � dcF.R=c/

�
.1 C d/N �n

�dcF.R=c/.1 C d/N �n�1
�
.p � c/.1 � F.R=c// � dc

�
=c

D .1 C d/N �1�n
�
1 C d.1 � F.R=c//

��
.p � .1 C d/c/.1 � F.R=c//

�dcF.R=c/
�

� 0;

where the last inequality follows from (4.17). Therefore, �n;1.R=c; R/ � 0 in this
case.

Case 2: R � ca�
nC2. From (4.15), we have

�nC1.R=c; R/ D EŒ QVnC2..R=c � DnC1/C; .p � c/ minfR=c; DnC1g C R/�;

(4.18)
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hence

d�nC1.R=c; R/=dR D
Z R=c

0

Œ QVnC2;1.R=c � z; .p � c/z C R/�dF.z/

C p

c
.1 � F.R=c// QVnC2;2.0; pR=c/

C
Z R=c

0

Œ QVnC2;2.R=c � z; .p � c/z C R/�dF.z/

D p

c
.1 � F.R=c// QVnC2;2.0; pR=c/ C

Z R=c

0

Œ QVnC2;2.R=c � z; .p � c/z CR/�dF.z/

� p

c
.1 � F.R=c// QVnC2;2.0; pR=c/ C p � .1 C d/c

dc
.1 � F.R=c// QVnC2;2.0; pR=c/

D .p � c/.1 C d/

dc
.1 � F.R=c// QVnC2;2.0; pR=c/; (4.19)

where the second equality follows from QVnC2;1.R=c �z; .p�c/zCR/� D 0 because
of (4.13) and the induction assumptions for nC2, and the inequality is based on the
following argument. When R � ca�

nC2 < ca�
nC1, from the induction assumption we

have y�
nC1.R/ � R=c, and hence �nC1;1.R=c; R/ � 0, which implies, by (4.16) for

n C 1, that

.p � .1 C d/c/.1 � F.R=c// QVnC2;2.0; pR=c/

� dc

Z R=c

0

QVnC2;2.R=c � z; .p � c/z C R/dF.z/:

For R � ca�
nC2, applying (4.16) and (4.19) we obtain

�n;1.R=c; R/

� .p � .1 C d/c/.1 � F.R=c// QVnC1;2.0; pR=c/ � dcF.R=c/ QVnC1;2.R=c; R/

D .p � .1 C d/c/.1 � F.R=c// QVnC1;2.0; pR=c/ � dcF.R=c/d�nC1.R=c; R/=dR

� .1 � F.R=c//
�
.p � .1 C d/c/ QVnC1;2.0; pR=c/

�.p � c/.1 C d/F.R=c/ QVnC2;2.0; pR=c/
�

� .p � .1 C d/c/.1 � F.R=c//
� QVnC1;2.0; pR=c/ � .1 C d/ QVnC2;2.0; pR=c/

�
;

where the last inequality follows from .p � c/F.R=c/ � p � .1 C d/c because of
R � ca�

nC1 < cF �1.
p�.1Cd/c

p�c
/.

Therefore, the desired result �n;1.R=c; R/ � 0 will follow if we can prove

QVnC1;2.0; R/ � .1 C d/ QVnC2;2.0; R/ � 0 (4.20)
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for all R. This is again done by backward induction. First we have

QVN;2.0; R/ � .1 C d/ QVN C1;2.0; R/ � .1 C d/ � .1 C d/ D 0:

Assume QVnC2;2.0; R/ � .1 C d/ QVnC3;2.0; R/ � 0, we proceed to prove (4.20). If
R > ca�

nC2, then by (4.14) for n C 2,

QVnC1;2.0; R/ � .1 C d/ QVnC2;2.0; R/ � .1 C d/N �n � .1 C d/.1 C d/N �n�1 D 0:

If ca�
nC3 � R � ca�

nC2, then by (4.7) for n C 2, we have

G0
nC2.R=c/ � .1 C d/N �n�2

�
.p � c/.1 � F.R=c// � dc

�
; (4.21)

and by the concavity of QVnC2.x; R/ in R we have

QVnC2;2.R=c � z; .p � c/z C R/ � QVnC2;2.R=c � z; pR=c/; (4.22)

and since QVnC2;2.x; .p � c/z C R/ is independent of x when x � ca�
nC2, we have

QVnC2;2.R=c � z; pR=c/ D QVnC2;2.0; pR=c/: (4.23)

Applying (4.14) we obtain

QVnC1;2.0; R/ � .1 C d/ QVnC2;2.0; R/

D d�nC1.R=c; R/

dR
� .1 C d/N �n � .1 C d/GnC2

0.R=c/=c

� p

c
.1 � F.R=c// QVnC2;2.0; pR=c/ C

Z R=c

0

QVnC2;2.R=c � z; .p � c/z C R/dF.z/

�.1 C d/N �n � .1 C d/N �n�1
�
.p � c/.1 � F.R=c// � dc

�
=c

�
hp

c
.1 � F.R=c// C F.R=c/

i QVnC2;2.0; pR=c/

�.1 C d/N �n�1
hp

c
.1 � F.R=c// C F.R=c/

i

D
hp

c
.1 � F.R=c// C F.R=c/

i � QVnC2;2.0; pR=c/ � .1 C d/N �n�1
�

� 0;

where the first inequality follows from (4.19) and (4.21), the second inequality is
due to (4.22) and (4.23), and the last inequality follows from the observation that,
by (4.14) for n C 2, when pR=c � R � ca�

nC3, we have QVnC2;2.0; pR=c/ �
.1 C d/N �n�1.
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Finally, if R < ca�
nC3, then

QVnC1;2.0; R/ � .1 C d/ QVnC2;2.0; R/

D d�nC1.R=c; R/

dR
� .1 C d/

d�nC2.R=c; R/

dR

D p

c
.1 � F.R=c//Œ QVnC2;2.0; pR=c/ � .1 C d/ QVnC3;2.0; pR=c/�

C
Z R=c

0

Œ QVnC2;2.R=c � z; .p � c/z C R/

�.1 C d/ QVnC3;2.R=c � z; .p � c/z C R/�dF.z/

� 0;

where the first equality follows from (4.14), the second equality follows from (4.19)
for n C 2 and n C 3, and the inequality follows from the induction assumption.

Hence, we have proved �n;1.R=c; R/ � 0, implying y�
n .R/ � R=c if R �

ca�
nC1. The proof of Theorem 4.3.6 is completed. �





Chapter 5
Dynamic Inventory Management
with Short-Term Financing

5.1 Introduction

A large literature on corporate finance has paid sufficient attention on start-up and
growing firms and tried to establish solution concepts for capital shortage problem.1

While financial and operational decisions are usually studied separately. As one
of the most fundamental results in corporate finance, Modigliani–Miller (MM)
proposes that in perfect capital markets, the firm’s capital structure and its financial
decisions (e.g., the allocation between equity and debt) are independent of the
firm’s investment and its operational decisions (e.g., inputs and outputs, the levels of
inventory and capital). However, real capital markets are imperfect: there are taxes,
information asymmetry, accounting costs, bankruptcy costs, and so on. In many
cases, start-up and growing firms with limited capital should seek help from banks
or other lenders for more capital available to fund operations.

The firm considered in Chap. 4 is self-financed, a natural extension of the model
is to allow the firm to borrow from the bank or other lenders. One can even impose
an upper borrowing limit, which is typical in many applications.

In this chapter, we consider a classic dynamic inventory control problem of a
retailer who periodically replenishes its stock from a supplier, sells it to the market,
and is allowed to borrow from the bank or other lenders. Excess demand in each
period is lost when insufficient inventory is available. The demands for different
periods are i.i.d. random variables. Asset-based financing is allowed for the retailer
being short of cash flow, which is updated periodically following the purchasing
and the sales in each period. We seek to gain in understanding on how operational
decisions interact with and are affected by cash flows and financial decisions in
a dynamic setting. The objective of the firm is to maximize its expected wealth
level at the end of the planning horizon. We obtain the explicit structure on how

1The following discussion in this chapter is largely based on the ideas and results presented in
Chen (2008).

J. Li et al., Risk Management of Supply and Cash Flows in Supply Chains,
International Series in Operations Research & Management Science 165,
DOI 10.1007/978-1-4614-0511-5 5, © Springer Science+Business Media, LLC 2011
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the optimal inventory control strategy depends on the cash flows. Conditions are
identified under which the retailer will choose either to borrow or to deposit in each
period. The bankruptcy probability is also studied.

The rest of this chapter is organized as follows. Section 5.2 presents the model.
Section 5.3 investigates the optimal inventory control strategy with short-term
financing. Some numerical studies are included in Sect. 5.4. The chapter concludes
in Sect. 5.5 with some remarks and some possible extensions. Throughout the
chapter we use “increasing” and “decreasing” in non-strict sense, i.e., they represent
“nondecreasing” and “nonincreasing”, respectively. Also, for any real number x,
xC D maxfx; 0g and x� D maxf�x; 0g.

5.2 Assumptions and Model Formulation

We consider the periodic-review inventory control problem with a single retailer
who sells single product. The risk neutral retailer faces random demand and
makes replenishment decisions over a finite time horizon of N periods. The
successive periods’ demands Dn.1 � n � N / are independent and identically
distributed nonnegative random variables, with f .�/ and F.�/ be their probability
and cumulative distribution functions respectively.

Let p be the unit selling price, and c the unit ordering cost. Suppose that any
inventory left at the end of the planning horizon has a salvage value � per unit. To
avoid triviality we assume

�1 < � � c < p; (5.1)

with a negative value of � representing disposal cost. Furthermore, the lead time is
assumed to be zero and hence an order placed at the beginning of period n arrives
immediately before demand is realized. The unsatisfied demand is assumed lost.
Without loss of generality, we assume no holding cost and shortage cost.

The sequence of events in each period is as follows. At the beginning of each
period, the retailer borrows from the lender with fixed interest rate b and then places
an order with his capital borrowed and on hand. Then the retailer deposits the surplus
capital in a saving account with fixed interest rate d , where d < b. During the period
demand is realized. At the end of the period the retailer receives the selling income
and repay the interest to the lender (or receive the saving interest).

We further assume that p > .1 C b/c. If this condition is not satisfied, then the
firm will never borrow.

Let Sn be the capital level at the beginning of period n, let xn and yn be the
inventory levels, before and after the replenishment decisions respectively, at the
beginning of period n, and let SN C1 be the terminal wealth at the end of the planning
horizon.

Because the borrowing interest is higher than the saving interest, if the retailer
borrows, then no deposit will be issued, and the vice versa. Specifically, if the retailer
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needs to borrow, then c.yn � xn/ � Sn is borrowed and b.c.yn � xn/ � Sn/ should
be repayed as the borrowing interest. And if the retailer has enough capital such
that c.yn � xn/ � Sn, then the remaining capital in period n, Sn � c.yn � xn/, is
deposited in the saving account to generate an interest of d.Sn � c.yn � xn//. The
revenue from sales in period n is p minfyn; Dng. Hence, the total capital level at the
end of period n, which is also the capital level at the beginning of period n C 1, is

SnC1 D p minfyn; Dng C .1 C d/.Sn � c.yn � xn//C

�.1 C b/.Sn � c.yn � xn//�; for n D 1; 2; : : : ; N (5.2)

Since we consider lost-sales model, the inventory level at the beginning of period
n C 1 is

xnC1 D .yn � Dn/C; for n D 1; 2; : : : ; N (5.3)

Therefore, the decision problem of the retailer is to decide an ordering policy to
maximize the final capital level, given initial inventory level x1 and capital level S1,
and subject to a capital constraint for each period. That is, the decision problem is

max
y1;:::;yN

EŒSN C1�; (5.4)

subject to (5.2) and (5.3), and yn � xn; n D 1; 2; : : : ; N .
Next we assume that the lender will not set a loan limit, i.e., the retailer can

borrow as much as he wants.
Denote by Vn.x; S/ the maximum expected terminal wealth given that the

inventory level and capital level at the beginning of period n are x and s. Then
the following dynamic program can be employed to solve decision problem (5.4).
The optimality equation is

Vn.x; S/ D max
y�x

EŒVnC1..y � Dn/C; p minfy; Dng C .1 C d/.S � c.y � x//C

�.1 C b/.S � c.y � x//�/�: (5.5)

with boundary condition

VN C1.x; S/ D S C �x;

The trade-off in the dynamic programming equation above is between ordering
inventory (and therefore earning profit from sales) and borrowing (and paying
interests) or putting cash in savings account (and earning interests). When inventory
is ordered, the retailer runs the risk of not selling the inventory and therefore
pays more in the form of borrowing interests or loses the opportunity of earning
an interest. Note that the problem in the last period is effectively a newsvendor
problem.
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5.3 The Optimal Inventory Control Strategy with Short-Term
Financing

In this section, we investigate the optimal inventory control strategy with short-term
financing.

To derive the optimal control strategy, several lemmas are needed. The first
lemma follows immediately from induction.

Lemma 5.3.1. For any period n and fixed x, Vn.x; S/ is increasing in S .

Lemma 5.3.1 is intuitively clear: More the initial capital level, is better for the
final objective. To establish the second order property of the value function Vn, we
need the following result.

Lemma 5.3.2. For any n, Vn.A � z; B C pz/ is increasing in z for fixed A and B .

Proof. Note that

Vn.A � z; B C pz/

D max
y�A�z

E
�
VnC1..y � Dn/C; p minfy; Dng

C .1 C d/.cA C B C .p � c/z � cy/C

� .1 C d/.cA C B C .p � c/z � cy/�� :

It follows from Lemma 5.3.1 that the function being maximized above is increasing
in z. Since the feasible region y � A � z is also increasing in z, Vn.A � z; B C pz/
is increasing in z. ut

Lemma 5.3.2 is essential in proving the second order property of the value
function. The lemma says that it is better to keep cash than having inventory in
stock at the beginning of the period. This can be intuitively explained as follows:
Capital at the beginning of a period is more flexible than inventory in stock since
the firm can always convert it to inventory by placing an order. However, the reverse
is not true. In particular, if the on-hand inventory is higher than necessary, it would
have been better to have part of that inventory in the form of cash to earn interest.

Lemma 5.3.3. For any n, Vn.x; S/ is jointly concave in x and S .

With unlimited borrowing allowed, in any period if the loan level is high enough
while the selling income is not as expected, then the retailer may find itself still in
arrears after repaying the borrowing interest, i.e., S < 0. Assume that the inventory
value can also be accounted by salvage, define a retailer as bankrupt for period n

if SnC1 C �xnC1 < 0, the following theorem presents the probability of retailer
bankruptcy.
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Theorem 5.3.4. For period n, if the retailer borrows more than �.SnCcxn/
.1Cb/c��

,
then the probability of retailer bankruptcy in the end of the period is

F
�

..1Cb/c��/yn�.1Cb/.SnCcxn/

p��

�
.

Proof. First notice that only if the retailer borrows, the bankruptcy will occur. If
yn � Dn, then SnC1 D .p � .1 C b/c/y C .1 C b/.S C cx/ > 0. Hence yn > Dn.
Thus

SnC1 C �xnC1 D .p � �/Dn � ..1 C b/c � �/yn C .1 C b/.Sn C cxn/ � 0

yields

Dn � ..1 C b/c � �/yn � .1 C b/.Sn C cxn/

p � �
:

Finally we obtain the probability of retailer bankruptcy in the end of period n. ut
Without loss of generality, we assume that once the retailer is bankrupt for any

period, it is allowed that productions can be proceeded in the following periods. But
clearly borrowing has to be issued in the next period. Specifically, if S � 0, then no
deposit will occur.

We find it convenient to study the value function in terms of x and R D S C cx.
Define

�n.y; R/ D EŒVnC1..y � Dn/C; p minfy; Dng
C .1 C d/.R � cy/C � .1 C b/.R � cy/�/�:

Then the optimality equation (5.5) can be rewritten, after introducing a new function
QVn, as

QVn.x; R/ D Vn.x; R � cx/ D max
y�x

�n.y; R/:

Note that �n.y; R/ is jointly concave in .y; R/. For given R, let y�
n .R/ be the

maximizer of the unconstrained optimization problem maxy �n.y; R/. Then the
optimal inventory policy is given in the following result. Its proof follows directly
from Lemma 5.3.3. Hence, it is omitted here.

Theorem 5.3.5. When the state is .x; S/ at the beginning of period n, a capital-
dependent base stock inventory policy y�

n .R/, where R D S C cx, is optimal. More
specifically,

(i) If x � y�
n .R/, it is optimal to order up to y�

n .R/.
(ii) If x � y�

n .R/, then it is optimal not to order.

We refer to y�
n .R/ as the optimal base-stock level for period n. Hence, for each

state .x; S/ with R D S C cx there is an order-up-to level y�
n .R/.
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The optimal strategy can be messy if y�
n .R/ is a complicated function of R. In

the following we study y�
n .R/ in terms of different R. Define

�d
n .y; R/ D �n.y; R/jR � cy

D EŒVnC1..y � Dn/C; p minfy; Dng C .1 C d/.R � cy//�

and

�b
n .y; R/ D �n.y; R/jR � cy

D EŒVnC1..y � Dn/C; p minfy; Dng C .1 C b/.R � cy//�

and yd
n .R/ and yb

n.R/ as the maximizers of concave functions �d
n .y; R/ and

�b
n .y; R/ respectively. The following lemma shows the relationship between y�

n .R/

and yd
n .R/ and yb

n.R/, with the proof by noting that �n.y; R/ is concave.

Lemma 5.3.6. The following relationship is satisfied:

y�
n .R/ D

8
ˆ̂
<

ˆ̂
:

yb
n.R/; R � cyb

n.R/;

R=c; cyb
n.R/ < R < cyd

n .R/;

yd
n .R/; R � yd

n .R/:

(5.6)

Lemma 5.3.6 shows that y�
n .R/ depends on R in following ways.

(i) If R � cyb
n .R/ is at a low level, then the retailer borrows and replenishes the

inventory to yb
n.R/.

(ii) If cyb
n.R/ < R < cyd

n .R/, the retailer will use up the capital on hand while
not borrow nor deposit.

(iii) If R � cyd
n .R/ is at a high level, then the retailer deposits and replenishes the

inventory to yd
n .R/.

The optimal strategy can still be messy if yb
n.R/ or yd

n .R/ is complicated
function of R. We further need to characterize the properties of yb

n.R/ and yd
n .R/.

Firstly, let
Oyd
n .R/ D minfyd

n .R/; R=cg:
Then y�

n .R/ D maxfyb
n.R/; Oyd

n .R/g. Fortunately, in the following we are able to
present a extremely simple form for Oyd

n .R/. More specifically, we show that Oyd
n .R/

can be completely determined by a single parameter ad
n . To that end, we introduce

a sequence of concave functions Gd
n .y/ as follows: Gd

N C1.y/ D .� � c/y and for
n D 1; 2; : : : ; N;

Gd
n .y/ D .1 C d/N �n..p � c/EŒminfy; Dng� � dcy/

CEŒGd
nC1.maxfad

nC1; .y � Dn/Cg/�; (5.7)

where ad
N C1 D 0 and for n D 1; 2; : : : ; N; ad

n is the maximizer of Gd
n .y/.
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Lemma 5.3.7. The following relationship is satisfied:

F �1

�
p � .1 C d/c

p � c

�

� ad
1 � ad

2 � � � � � ad
N D F �1

�
p � .1 C d/c

p � �

�

;

where F �1 is the inverse function of F .

Proof. We prove the result by induction. Clearly

Gd
N .y/ D .p � c/E minfy; DN g � dcy C .� � c/.y � DN /C

is concave in y, its maximizer

ad
N D F �1

�
p � .1 C d/c

p � �

�

� F �1

�
p � .1 C d/c

p � c

�

is the newsvendor solution. Assume that we have proved the result for n C 1, i.e.,
GnC1; : : : ; GN are concave and

F �1

�
p � .1 C d/c

p � c

�

� ad
nC1 � ad

nC2 � � � � � ad
N D F �1

�
p � .1 C d/c

p � �

�

;

we need to prove n. Take derivative of Gd
n .y/ with respect to y yields

Gd
n

0.y/ D .1 C d/N �nŒ.p � c/.1 � F.y// � dc�

CE
�
Gd

nC1
0.y � Dn/1ŒDn � y � ad

nC1�
�
; (5.8)

Gd
n

00.y/ D �.1 C d/N �n.p � c/f .y/ C E
�
Gd

nC1
00.y � Dn/1ŒDn � y � ad

nC1�
�

:

(5.9)

Hence, it follows from the induction assumption that (5.9) is non-positive and
Gd

n .y/ is concave in y.
Substituting y D ad

nC1 in (5.8), the second term on the right hand side of (5.8)
is 0, and the first term is non-negative. Thus Gd

n
0.ad

nC1/ � 0 and ad
n � ad

nC1.
Furthermore, note that the first term on the right hand side of (5.8) vanishes at
y D F �1

�
p�.1Cd/c

p�c

	
, while the second term

Gd
nC1

0.y � Dn/1ŒDn � y � ad
nC1� D Gd

nC1
0.y � Dn/1Œy � Dn � ad

nC1�

is always non-positive because ad
nC1 is the maximizer of Gd

nC1. This shows that

ad
n � F �1

�
p�.1Cd/c

p�c

	
. ut
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The following decomposition result allows us to characterize yd
n .R/. Its proof is

lengthy and is provided in the Appendix.

Theorem 5.3.8. (i) For any period n, when R � cad
nC1 and y � R=c, the

objective function �d
n .y; R/ can be decomposed as

�d
n .y; R/ D .1 C d/N C1�nR C Gd

n .y/:

(ii) If R � cad
n , then yd

n .R/ D ad
n , and if R < cad

n , then yd
n .R/ > R=c.

Theorem 5.3.8 states that, for large R and small inventory level y, the value
function �d

n .y; R/ can be decomposed to concave functions of R and y alone.
This is not true, however, for small R or large y. Indeed, in general we would
expect the value function �d

n .y; R/ to be a complicated function of .y; R/, and
the separability comes as a surprise. It is this separability result that enables us to
significantly simplify the optimal inventory control strategy. Note that yd

n .R/ is the
optimal solution for maxy �d

n .y; R/, which is the desired inventory level for stage
n without the capital constraint, while ad

n is a constant, that is, the maximizer of
concave function Gd

n .�/. Part (ii) of Theorem 5.3.8 states that yd
n .R/ becomes flat

and equal to ad
n on R � cad

n :

Following directly from part .i i/ of Theorem 5.3.8 and Oyd
n .R/ D

minfyd
n .R/; R=cg, we find that

Oyd
n .R/ D

(
ad

n ; R � cad
n ;

R=c; R � cad
n :

and moreover

y�
n .R/ D maxfyb

n.R/; Oyd
n .R/g D

(
ad

n ; R � cad
n ;

maxfyb
n.R/; R=cg; R � cad

n :

So far we have shown when the retailer will deposit, next we will try to figure out
the properties for the retailer borrowing. To that end, we introduce a decreasing
sequence of constants F �1

�
p�.1Cb/c

p�c

	
> ab

1 > � � � > ab
N D F �1

�
p�.1Cb/c/

p��

	
, where

ab
n satisfies

Z ab
n�ad

nC1

0

Gd
nC1

0.ab
n � z/dF.z/ C Œp � .1 C b/c � .p � c/F.ab

n/�.1 C d/N �n D 0

(5.10)

and ad
nC1 < ab

n < ad
n . Then the following is the main result of this chapter.
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Theorem 5.3.9. Suppose the state at the beginning of period n is .x; S/ and let
R D S C cx. The optimal base stock level for period n is

y�
n .R/ D

8
ˆ̂
<

ˆ̂
:

yb
n.R/; R < cab

n;

R=c; cab
n � R � cad

n ;

ad
n ; R > cad

n :

That is, for any period n with state .x; R/, the optimal inventory control policy
is to,

(i) Replenish the inventory level to yb
n.R/ if R < cab

n and x < yb
n.R/

(ii) Replenish the inventory level to R=c if cab
n � R � cad

n and R=c � x

(iii) Replenish the inventory level to ad
n if R > cad

n > cx

(iv) Do not order anything if R < cab
n � cx or R > cx � cad

n

Theorem 5.3.9 further shows that the retailer will have to borrow when R � cab
n

in period n. However, we point out that the optimal ordering quantity, qb
n.R/, can be

quite complicated when R � cab
n. As a matter, qb

n.R/ may not be even monotone
on R 2 Œ�1; cab

n�. See the numerical example in Sect. 5.4.

5.4 Numerical Examples

We present numerical examples to demonstrate the optimal inventory policy and
its dependency on wealth level R. The model parameters in all these numerical
examples are p D 1:3 and c D 1. The interest rates are set at b D 0:1 and d D 0:05,
and the salvage level is � D 0:5. The demand has truncated normal distribution with
mean 10 and variance 10. Assume that there are totally N D 4 periods.

First compute the optimal policy parameters ad
n and ab

n for n D 1; 2; 3 and 4 via
optimizing concave functions Gd

n .y/ and solving (5.10). Note that the upper and
lower bounds for ad

n are given by F �1
�

p�.1Cd/c

p�c

	 D 20:7931 and F �1
�

p�.1Cd/c

p��

	 D
8:0214, and for ab

n are given by F �1
�

p�.1Cb/c
p�c

	 D 15:8151 and F �1
�

p�.1Cb/c
p��

	 D
6:6547.

Figure 5.1 demonstrates how the optimal solutions yb
n.R/ and yd

n .R/ depend
on the wealth level R. The numerical results are for period 3. It shows that
yb

3 .R/ < yd
3 .R/ and they are both quite complicated. However, we have the

following findings:

(1) When R � cad
3 , yd

3 .R/ D ad
3 � R=c, and when R < cad

3 , yd
3 .R/ > R=c

(2) When R > cab
3 , yb

3 .R/ < R=c, and when R � cad
3 , yd

3 .R/ � R=c

Next Fig. 5.2 demonstrates how the optimal inventory policy depends on the
wealth level R. It shows that when R � cad

3 , y�
3 .R/ D ad

3 ; and when cab
3 < R <

cad
3 , y�

3 .R/ D R=c; and when R � cab
3 , y�

3 .R/ D yb
3 .R/.
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5.5 Concluding Remarks

In this chapter we study a dynamic inventory control problem with asset-based
financing. We derive the optimal inventory policy for each period, and character-
ize the dependence of the firm’s optimal operational policy on its financial status.
We also identify when the Retailer will borrow or deposit. The model further refer to
the probability of firm bankruptcy as well. We find that for most of these models, the
results in Lemmas 4.3.1, 4.3.2, and 4.3.3 and Theorem 4.3.4 in Chap. 4 can still be
obtained. However, more precise structure of the optimal control policies beyond
the “capital-dependent base-stock”, such as Theorem 4.3.7 in Chap. 4, is difficult to
obtain without imposing further structure in the model. These are just a few possible
extensions and it appears that each of these variations will lead to different optimal
solution structure that is worthy of study.

Many interesting issues remain to be investigated. For example, if there is a
holding cost rate h and shortage cost rate b for each period, then the optimality
equation becomes

max
y1;:::;yN

EŒSN C1�;

subject to

yn � xn; n D 1; 2; : : : ; N;

where

SnC1 D pminfyn; Dng � h maxfyn � Dn; 0g � b maxfDn � yn; 0g
C.1 C d/.Sn � c.yn � xn//C � .1 C b/.Sn � c.yn � xn//�;

and, as before, xnC1 D .yn � Dn/C. Note that Lemmas 5.3.1, 5.3.2, and 5.3.3
continue to hold, thus Theorem 5.3.5 also holds and the optimal inventory control
policy is a capital dependent base-stock policy. As a matter of fact, Theorem
5.3.5, as well as Lemmas 5.3.1, 5.3.2, and 5.3.3 hold true under much more
general settings, e.g., under general revenue function, and under utility function
optimization, etc. However, for Theorems 5.3.8 and 5.3.9, the objective function
can no longer be decomposed, and the control parameters of the optimal base-
stock policy are complicated and state-dependent. The problem will be even more
complicated if we allow the selling price p to be a decision variable when the
demand Dn depends on the selling price in period n.

The setting used in this chapter assumes that the demands over periods are
independent and identically distributed. We pointed out that the results, Lemmas
5.3.1, 5.3.2, and 5.3.3 and Theorem 5.3.5 hold true as long as the demands over
periods are independent and they do not need to be identically distributed.
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Appendix

Proof of Lemma 5.3.3. By induction. Clearly, VN C1.x; S/ D S C �x is jointly
concave in x and S . Assume that VnC1.x; S/ is jointly concave in x and S . We now
prove the property for n.

We firstly prove VnC1..y �Dn/C; p minfy; DngC.1Cd/.S�c.y�x//C�.1Cb/

.S�c.y�x//�/ is jointly concave in .y; x; S/. Then for any .y1; x1; S1/ and

.y2; x2; S2/ and 0 � � � 1, we need to prove

VnC1

�
.�y1 C .1 � �/y2 � Dn/C; p minf�y1 C .1 � �/y2; Dng

C.1 C d/
�
�S1 C .1 � �/S2 � c.�y1 C .1 � �/y2 � �x1 � .1 � �/x2/

	C

�.1 C b/
�
�S1 C .1 � �/S2 � c.�y1 C .1 � �/y2 � �x1 � .1 � �/x2/

	��

� �VnC1

�
.y1 � Dn/C; p minfy1; Dng C .1 C d/

�
S1 � c.y1 � x1/

	C

�.1 C b/
�
S1 � c.y1 � x1/

	��

C.1 � �/VnC1

�
.y2 � Dn/C; p minfy2; Dng C .1 C d/

�
S2 � c.y2 � x2/

	C

� .1 C b/
�
S2 � c.y2 � x2/

	��

Notice the relationships .y � Dn/C D y � minfy; Dng and .1Cd/.S�c.y�x//C�
.1Cb/.S�c.y�x//�D.b�d/ minfcy; S C cxg � .1 C b/cy C .1 C d/.S C cx/.
For convenience let

Ny D �y1 C .1 � �/y2;

Qy D minf�y1 C .1 � �/y2; Dng;
Oy D � minfy1; Dng C .1 � �/ minfy2; Dng;
QS D minfc.�y1 C .1 � �/y2/; �S1 C .1 � �/S2 C c.�x1 C .1 � �/x2/g;
OS D � minfcy1; S1 C cx1g C .1 � �/ minfcy2; S2 C cx2g:

Then by Qy � Oy and QS � OS , we have

VnC1

�
.�y1 C .1 � �/y2 � Dn/C; p minf�y1 C .1 � �/y2; Dng

C.1 C d/
�
�S1 C .1 � �/S2 � c.�y1 C .1 � �/y2 � �x1 � .1 � �/x2/

	C

�.1Cb/
�
�S1 C .1��/S2 � c.�y1 C .1 � �/y2 � �x1 � .1 � �/x2/

	��
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D VnC1

�
.�y1 C .1 � �/y2 � Dn/C; p minf�y1 C .1 � �/y2; Dng

C.b � d/ minfc.�y1 C .1 � �/y2/; �S1 C .1 � �/S2

Cc.�x1 C .1 � �/x2/g � .1 C b/c.�y1 C .1 � �/y2/

C.1 C d/.�S1 C .1 � �/S2 C c.�x1 C .1 � �/x2//
�

D VnC1

�
Ny � Qy; p Qy C .b � d/ QS � .1 C b/c.�y1 C .1 � �/y2/

C.1 C d/.�S1 C .1 � �/S2 C c.�x1 C .1 � �/x2//
�

� VnC1

�
Ny � Oy; p Oy C .b � d/ OS � .1 C b/c.�y1 C .1 � �/y2/

C.1 C d/.�S1 C .1 � �/S2 C c.�x1 C .1 � �/x2//
�

D VnC1

�
�.y1�Dn/CC.1��/.y2�Dn/C; �p minfy1; DngC.1��/p minfy2; Dng
C�.b�d/ minfcy1; S1Ccx1gC.1��/.b�d/ minfcy2; S2Ccx2g
�.1Cb/c.�y1C.1��/y2/C.1Cd/.�S1C.1��/S2Cc.�x1C.1��/x2//

�

� �VnC1

�
.y1�Dn/C; p minfy1; DngC.b�d/ minfcy1; S1Ccx1g/�.1Cb/cy1

C .1 C d/.S1 C cx1/
�

C.1 � �/VnC1

�
.y2 � Dn/C; p minfy2; Dng C .b � d/ minfcy2; S2 C cx2g

� .1 C b/cy2 C .1 C d/.S2 C cx2/
�

D �VnC1

�
.y1 � Dn/C; p minfy1; Dng C .1 C d/

�
S1 � c.y1 � x1/

	C

�.1 C b/
�
S1 � c.y1 � x1/

	��

C .1 � �/VnC1

�
.y2 � Dn/C; p minfy2; Dng C .1 C d/

�
S2 � c.y2 � x2/

	C

� .1 C b/
�
S2 � c.y2 � x2/

	��
;

where the first inequality follows from Lemma 5.3.2 and the second inequality
follows from the concavity of VnC1.x; S/. Thus VnC1..y � Dn/C; p minfy; Dng C
.1 C d/.S � c.y � x//C � .1 C b/.S � c.y � x//�/ is jointly concave in .y; x; S/

and so is the expected value. Finally since

C D fy W y � xg
is a convex set, applying Proposition B-4 of Heyman and Sobel (1984) we conclude
that Vn.x; S/ is jointly concave in x and S . ut
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Proof of Theorem 5.3.8. The proof is by induction. By the definition of Gd
n .y/ and

Lemma 5.3.7 we have

�d
N .y; R/ D pE minfy; DN g C .1 C d/.R � cy/ C �E.y � DN /C

D .1 C d/R C Gd
N .y/:

Hence yd
N .R/ D ad

N for all R.
Assume that the results have been proved for n C 1, i.e., when R � cad

nC2 and
y � R=c, �d

nC1.y; R/ can be decomposed as

�d
nC1.y; R/ D .1 C d/N �nR C Gd

nC1.y/

and that if R � cad
nC1, then yd

nC1.R/ D ad
nC1, and if R < cad

nC1, then yd
nC1.R/ >

R=c. We will now prove the statement for n.
From Theorem 5.3.5 we have

QVnC1.x; R/ D

8
ˆ̂
<̂

ˆ̂
:̂

�nC1.R=c; R/; R=c � y�
nC1.R/;

�nC1.y
�
nC1.R/; R/; x < y�

nC1.R/ < R=c;

�nC1.x; R/; x � y�
nC1.R/:

(5.11)

By the inductive assumption and Lemma 5.3.7 we can rewrite (5.11) as

QVnC1.x; R/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

�b
nC1.yb

nC1.R/; R/; R � cyb
nC1.R/ & x � yb

nC1.R/;

�d
nC1.R=c; R/; cyb

nC1.R/<R<cad
nC2 & x�R=c;

.1 C d/N �nR C Gd
nC1.R=c/; cad

nC2 � R � cad
nC1 & x � R=c;

.1 C d/N �nR C Gd
nC1.ad

nC1/; x < ad
nC1 < R=c;

.1 C d/N �nR C Gd
nC1.x/; ad

nC1 � x � R=c;

�b
nC1.x; R/; yb

nC1.R/ < x & R=c < x;

(5.12)

where & denotes “and”.
The last two shows that if R � cad

nC1 and R � cx, then QVnC1.x; R/ can be
rewritten as

QVnC1.x; R/ D .1 C d/N �nR C Gd
nC1.maxfad

nC1; xg/:
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As a result, if R � cad
nC1 and y � R=c, then .p � c/ minfy; Dng C .1 Cd/R � dcy

is larger than cad
nC1 and c.y � Dn/C, and hence �d

n .y; R/ can be expressed as

�d
n .y; R/ D EŒ QVnC1..y � Dn/C; .p � c/ minfy; Dng C .1 C d/R � dcy/�

D .1 C d/N C1�nR C .1 C d/N �n..p � c/E minfy; Dng � dcy/

CEGd
nC1.maxfad

nC1; .y � Dn/Cg/
D .1 C d/N C1�nR C Gd

n .y/:

Therefore, when R � cad
nC1 and y � R=c, the maximizer of �d

n .y; R/, yd
n .R/,

is equals to ad
n , the maximizer of Gd

n .y/. Furthermore, when R � cad
n > cad

nC1,
yd

n .R/ D ad
n , and when cad

nC1 < R < cad
n , yd

n .R/ > R=c.
We next prove that yd

n .R/ � R=c on R � cad
nC1. For notational convenience

in what follows we use QVn;1.x; R/ and QVn;2.x; R/ to represent the partial derivatives
with respect to x and R respectively, and QVn;12.x; R/ the cross derivative. From
(5.12), taking derivatives of QVnC1.x; R/ yields

QVnC1;1.x; R/ D

8
ˆ̂
<̂

ˆ̂
:̂

0; R > cx & x � ad
nC1 or R � cx � cyb

nC1.R/;

Gd
nC1

0.x/; ad
nC1 � x � R=c;

�b
nC1;1.x; R/; yb

nC1.R/ < x & R=c < x:

(5.13)

and

QVnC1;2.x; R/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

d�b
nC1.yb

nC1.R/; R/=dR; R � cyb
nC1.R/ & x � yb

nC1.R/;

d�d
nC1.R=c; R/=dR; cyb

nC1.R/ < R < cad
nC2 & �R=c;

.1 C d/N �n C Gd
nC1

0.R=c/=c; cad
nC2 � R � cad

nC1 & x�R=c;

.1 C d/N �n; R=c > ad
nC1 & x � R=c;

�b
nC1;2.x; R/; yb

nC1.R/ < x & R=c < x:

(5.14)

Note that QVnC1;2.x; R/ is independent of x when x � R=c, hence QVnC1;12.x; R/ D 0

when x � R=c. By

�d
n .y; R/ D EŒ QVnC1..y � Dn/C; .p � c/ minfy; Dng C .1 C d/R � dcy/�;
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taking derivative of �d
n .y; R/ with respect to y yields

�d
n;1.y;R/ D

Z y

0

Œ QVnC1;1.y � z; .p �c/zC .1Cd/R�dcy/

�dc QVnC1;2.y � z; .p �c/zC .1Cd/R�dcy/�dF.z/

C.p � .1Cd/c/.1�F.y// QVnC1;2.0;.p � .1Cd/c/y C .1Cd/R/:

Since yd
n .R/ is the maximizer of �d

n .y; R/, to prove yd
n .R/ � R=c on R � cad

nC1,
it suffices to prove �d

n;1.R=c; R/ � 0 on R � cad
nC1. Noting that QVnC1;1.x; R/ D 0

when x � R=c � ad
nC1, We have

�d
n;1.R=c; R/

D .p � .1 C d/c/.1 � F.R=c// QVnC1;2.0; pR=c/

�dc

Z R=c

0

QVnC1;2.R=c � z; .p � c/z C R/dF.z/

> .p � .1 C d/c/.1 � F.R=c// QVnC1;2.0; pR=c/�dcF.R=c/ QVnC1;2.R=c; R/;

(5.15)

where the inequality follows from the concavity of QVnC1.x; R/ in R and
QVnC1;12.x; R/ D 0 when R > cx. Since R � cad

nC1 < F �1.p�.1Cd/c

p�c
/, we

have
.p � .1 C d/c/.1 � F.R=c// > dcF.R=c/: (5.16)

To prove the right hand side of (5.15) is non-negative, we consider two ranges of
R separately.

Case 1: cad
nC2 < R � cad

nC1. By (5.8) we have

Gd
n

0.y/ � .1 C d/N �nŒ.p � c/.1 � F.y// � dc�; (5.17)

and since QVnC1;2.x; R/ is decreasing in R, it follows from (5.14) that

QVnC1;2.0; pR=c/ � lim
y!1

QVnC1;2.0; y/ � .1 C d/N �n:

Hence, applying these inequalities and (5.14) on the interval cad
nC2 < R � cad

nC1

yields

.p � .1 C d/c/.1 � F.R=c// QVnC1;2.0; pR=c/ � dcF.R=c/ QVnC1;2.R=c; R/

� .p�.1Cd/c/.1�F.R=c//.1Cd/N �n�dcF.R=c/

Œ.1 C d/N �n C Gd
nC1

0.R=c/=c�
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� Œ.p � .1 C d/c/.1 � F.R=c// � dcF.R=c/�.1 C d/N �n

� dcF.R=c/.1 C d/N �1�nŒ.p � c/.1 � F.R=c// � dc�=c

D .1 C d/N �1�nfŒ.p � .1 C d/c/.1 � F.R=c// � dcF.R=c/�

C d.1 � F.R=c//Œ.p � .1 C d/c/ � .p � c/F.R=c/�g
� 0:

Where the last inequality follows from (5.16). Therefore, �d
n;1.R=c; R/ � 0 in this

case.

Case 2: R � cad
nC2. From

�nC1.R=c; R/ D EŒ QVnC2..R=c � DnC1/C; .p � c/ minfR=c; DnC1g C R/�

We have

d�d
nC1.R=c; R/=dR

D
Z R=c

0

Œ QVnC2;1.R=c�z; .p�c/zCR/�dF.z/

Cp

c
.1�F.R=c// QVnC2;2.0; pR=c/ C

Z R=c

0

Œ QVnC2;2.R=c�z; .p�c/zCR/�dF.z/

D p

c
.1�F.R=c// QVnC2;2.0; pR=c/ C

Z R=c

0

Œ QVnC2;2.R=c�z; .p�c/zCR/�dF.z/

� p

c
.1�F.R=c// QVnC2;2.0; pR=c/ C .p�.1Cd/c/

�.1�F.R=c// QVnC2;2.0; pR=c/=dc

D .p � c/.1 C d/

dc
.1 � F.R=c// QVnC2;2.0; pR=c/: (5.18)

Where the first equalities follow from QVnC2;1.R=c � z; .p � c/z C R/ D 0 because
of (5.13) and the inductive assumption for n C 2. The inequality can be obtained
as follows. When R � cad

nC2 < cad
nC1, according to the inductive assumption we

have yd
nC1.R/ � R=c and hence �d

nC1;1.R=c; R/ � 0, which implies, by (5.15) for
n C 1, that

p � .1 C d/c/.1 � F.R=c// QVnC2;2.0; pR=c/

> dc

Z R=c

0

QVnC2;2.R=c � z; .p � c/z C R/dF.z/:
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For R � cad
nC2, applying (5.15) and (5.18) we obtain

�d
n;1.R=c; R/

� .p � .1 C d/c/.1 � F.R=c// QVnC1;2.0; pR=c/ � dcF.R=c/ QVnC1;2.R=c; R/

D .p�.1 C d/c/.1�F.R=c// QVnC1;2.0; pR=c/�dcF.R=c/d�d
nC1.R=c; R/=dR

� .1 � F.R=c//Œ.p � .1 C d/c/ QVnC1;2.0; pR=c/

�.p � c/.1 C d/F.R=c/ QVnC2;2.0; pR=c/�

� .p � .1 C d/c/.1 � F.R=c//Œ QVnC1;2.0; pR=c/ � .1 C d/ QVnC2;2.0; pR=c/�:

Where the last inequality follows from .p � c/F.R=c/ � p � .1 C d/c because of
R � cad

nC1 < F �1.
p�.1Cd/c

p�c
/.

Next �d
n1

.R=c; R/ > 0 will be true if we can prove

QVnC1;2.0; R/ � .1 C d/ QVnC2;2.0; R/ � 0 (5.19)

for all R. This is again proved by backward induction. First we have

QVN;2.0; R/ � .1 C d/ QVN C1;2.0; R/ � .1 C d/ � .1 C d/ D 0:

Assume QVnC2;2.0; R/ � .1 C d/ QVnC3;2.0; R/ � 0, we proceed to prove (5.19). If
R > cad

nC2, then by (5.14) for n C 2,

QVnC1;2.0; R/ � .1 C d/ QVnC2;2.0; R/ � .1 C d/N �n � .1 C d/.1 C d/N �1�n D 0:

If cad
nC3 � R � cad

nC2, then by (5.8) for n C 2, we have

Gd
nC2

0.R=c/ � .1 C d/N �n�2
�
.p � c/.1 � F.R=c// � dc

�
; (5.20)

and by the concavity of QVnC2.x; R/ in R we have

QVnC2;2.R=c � z; .p � c/z C R/ � QVnC2;2.R=c � z; pR=c/; (5.21)

and since QVnC2;2.x; .p � c/z C R/ is independent of x when x � cad
nC2, we have

QVnC2;2.R=c � z; pR=c/ D QVnC2;2.0; pR=c/: (5.22)

Applying (5.14) we obtain

QVnC1;2.0; R/ � .1 C d/ QVnC2;2.0; R/

D d�d
nC1.R=c; R/

dR
� .1 C d/N �n � .1 C d/GnC2

d 0.R=c/=c
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� p

c
.1 � F.R=c// QVnC2;2.0; pR=c/ C

Z R=c

0

QVnC2;2.R=c�z; .p�c/z C R/dF.z/

�.1 C d/N �n � .1 C d/N �n�1
�
.p � c/.1 � F.R=c// � dc

�
=c

�
hp

c
.1 � F.R=c// C F.R=c/

i QVnC2;2.0; pR=c/

�.1 C d/N �n�1
hp

c
.1 � F.R=c// C F.R=c/

i

D
hp

c
.1 � F.R=c// C F.R=c/

i � QVnC2;2.0; pR=c/ � .1 C d/N �n�1
�

� 0;

where the first inequality follows from (5.18) and (5.20), the second inequality is
due to (5.21) and (5.22), and the last inequality follows from the observation that,
by (5.14) for n C 2, when pR=c � R � cad

nC3, we have QVnC2;2.0; pR=c/ �
.1 C d/N �n�1.

Finally, if R � cad
nC2, then

QVnC1;2.0; R/ � .1 C d/ QVnC2;2.0; R/

D d�d
nC1.R=c; R/

dR
� .1 C d/

d�d
nC2.R=c; R/

dR

D p

c
.1 � F.R=c//Œ QVnC2;2.0; pR=c/ � .1 C d/ QVnC3;2.0; pR=c/�

C
Z R=c

0

Œ QVnC2;2.R=c � z; .p � c/z C R/

�.1 C d/ QVnC3;2.R=c � z; .p � c/z C R/�dF.z/

� 0;

where the first equality follows from (5.14), the second equality follows from (5.18)
for n C 2 and n C 3, and the inequality follows from the inductive assumption.

Hence, we have proved �d
n;1.R=c; R/ � 0, implying yd

n .R/ � R=c if R �
cad

nC1. The proof of Theorem 5.3.8 is completed. ut
Proof of Theorem 5.3.9. The proof is by induction. First notice that

�b
N .y; R/ D pE minfy; DN g C .1 C b/.R � cy/ C �E.y � DN /C

D .1 C b/R C .p � �/ minfy; DN g � ..1 C b/c � �/y:

Hence,

yb
N .R/ D ab

N D F �1

�
p � .1 C b/c

p � �

�
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and

y�
N .R/ D

8
ˆ̂
<

ˆ̂
:

yb
N .R/; R < cab

N ;

R=c; cab
N � R � cad

N ;

ad
N ; R > cad

N :

Assume that the results have been proved for n C 1, i.e.,

y�
nC1.R/ D

8
ˆ̂
<

ˆ̂
:

yb
nC1.R/; R < cab

nC1;

R=c; cab
nC1 � R � cad

nC1;

ad
nC1; R > cad

nC1:

From Theorem 5.3.5 we have

QVnC1.x; R/ D

8
ˆ̂
<

ˆ̂
:

�nC1.R=c; R/; R=c � y�
nC1.R/;

�nC1.y
�
nC1.R/; R/; x < y�

nC1.R/ < R=c;

�nC1.x; R/; x � y�
nC1.R/:

(5.23)

Furthermore, by the inductive assumption and Lemma 5.3.8, we can rewrite
(5.23) as

QVnC1.x; R/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

�b
nC1.yb

nC1.R/; R/; R � cab
nC1 & x � yb

nC1.R/;

�d
nC1.R=c; R/; cab

nC1 � R � cad
nC1 & R � cx;

.1 C d/N �nR C Gd
nC1.a

d
nC1/; x < ad

nC1 < R=c;

.1 C d/N �nR C Gd
nC1.x/; R=c > x � ad

nC1;

�b
nC1.x; R/; x > yb

nC1.R/ & x > R=c:

(5.24)

For notational convenience, in what follows, we use QVn;1.x; R/ and QVn;2.x; R/ to
represent the partial derivatives with respect to x and R respectively, and QVn;12.x; R/

the cross derivative. From (5.24), taking partial derivatives of QVnC1.x; R/ yields

QVnC1;1.x; R/ D

8
ˆ̂
<̂

ˆ̂
:̂

0; R > cx & x � ad
nC1 or R � cx � cyb

nC1.R/;

Gd
nC1

0.x/; R=c > x > ad
nC1;

�b
nC1;1.x; R/; x > yb

nC1.R/ & x > R=c:

(5.25)
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and

QVnC1;2.x; R/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�b
nC12

.yb
nC1.R/; R/; R � cyb

nC1.R/ & x � ab
nC1;

d�d
nC1.R=c; R/=dR; cab

nC1 < R < cad
nC1; R � cx;

.1 C d/N �n; R=c � x & R � cad
nC1;

�b
nC1;2.x; R/; x > yb

nC1.R/ & x > R=c:

(5.26)

Note that QVnC1;2.x; R/ is independent of x when x � R=c, hence QVnC1;12.x; R/ D 0

when x � R=c. By

�b
n .y; R/ D EŒ QVnC1..y � Dn/C; .p � c/ minfy; Dng C .1 C b/R � bcy/�;

taking derivative of �b
n .y; R/ with respect to y yields

�b
n;1.y; R/ D

Z y

0

Œ QVnC1;1.y � z; .p � c/z C .1 C b/R � bcy/

� bc QVnC1;2.y � z; .p � c/z C .1 C b/R � bcy/�dF.z/

C .p�.1Cb/c/.1�F.y// QVnC1;2.0; .p�.1Cb/c/yC.1Cb/R/:

Since yb
n.R/ is the maximizer of �b

n .y; R/, to study the relationship between yb
n.R/

and R=c, it suffices to examine the sign of �b
n;1.R=c; R/.

If R � cad
nC1, following from (5.25) and (5.26) and noting that R=c � z �

.p � c/z C R, then

�b
n;1.R=c; R/ D

Z R=c

0

Œ QVnC1;1.R=c � z; .p � c/z C R/

�bc QVnC1;2.R=c � z; .p � c/z C R/�dF.z/

C .p � .1 C b/c/.1 � F.R=c// QVnC1;2.0; pR=c/

D
Z R=c�ad

nC1

0

Gd
nC1

0.R=c � z/dF.z/

C .p � .1 C b/c � .p � c/F.R=c//.1 C d/N �n:

Further notice that

d�b
n;1.R=c; R/

dR
D
Z R=c�ad

nC1

0

Gd
nC1

00.R=c � z/dF.z/

�.p � c/.1 C d/N �nf .R=/=c � 0:
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and �b
n;1.R=c; R/jfR D cad

nC1g > 0 and �b
n;1.R=c; R/jfR D cF �1.

p�.1Cb/c
p�c

/g<0.

There exists ab
n, ad

nC1 < ab
n < F �1

�
p�.1Cb/c

p�c

	
, such that

(i) �b
n;1.R=c; R/ D 0 hence yb

n.R/ D R=c when R D ab
n

(ii) �b
n;1.R=c; R/ > 0 hence yb

n.R/ > R=c when cad
nC1 � R < cab

n

(iii) �b
n;1.R=c; R/ < 0 hence yb

n.R/ < R=c when cab
n < R < cF �1

�
p�.1Cb/c

p�c

	

Finally we prove that yb
n.R/ > R=c when R < cad

nC1. We have

�b
n;1.R=c; R/ D .p � .1 C b/c/.1 � F.R=c// QVnC1;2.0; pR=c/

�bc

Z R=c

0

QVnC1;2.R=c � z; .p � c/z C R/�dF.z/

� .p � .1 C b/c/.1 � F.R=c// QVnC1;2.0; pR=c/

� bcF.R=c/ QVnC1;2.R=c; R/;

where the inequality follows from the concavity of QVnC1.x; R/ in R and
QVnC1;12.x; R/ D 0 when x � R=c. Next through similar proof to Lemma 5.3.8 we

find that �b
n;1.R=c; R/ � 0 when R < cad

nC1.
Therefore, together with the results from Lemma 5.3.8, the theorem is proved.

ut



Chapter 6
Delayed Cash Payment, Receivable
and Inventory Management

6.1 Introduction

Chapters 4 and 5 incorporates the financial issue into inventory management. More
specifically, the cash on hand is characterized as the financial constraint. Besides
cash, another state of the firm is receivable, which is mainly due to the delayed cash
payment. In practice of a supply chain, it is common that downstream firms pay
for upstream firms with certain delay. Actually, powerful retailers (e.g., Wal-Mart,
Carrefour) usually delay up to 50% of their payments for several months. On the
other hand, firms also offer potential customers some preferential choice to delay
their payment. Installment plan is a common case for it.

Although receivable plays an important roles in corporate finance and account-
ing, it is almost ignored by most of the supply chain management literature. A rare
exception is Arcelus and Srinivasan (1993) who considered the problem of a vendor
who attempts to dispose of unanticipated inventory levels through an offer to a
prospective buyer of a credit-period within which no payment is required. They
derived the feasible range beyond which the offer is not accepted, and analyzed the
trade-offs between the credit-period and extra-stock accepted to both parties. Finally
the optimal inventory policy are derived.

Here we study the simple finite horizon inventory system and attempt to derive
the optimal operational policy of the firm with the incorporations of capital and
receivable constraints. We will try to figure out the question that how should the
firm’s inventory replenishment decisions depend on both the cash and receivable.

The rest of this chapter is organized as follows. Section 6.2 gives assumptions
and formulates the basic model of this chapter. Then Sect. 6.3 finds the optimal op-
erational policy for inventory replenishment. In Sect. 6.4, the influences of delayed
cash payment on the optimal inventory policy and achievable profit are studied.
The model is also compared with traditional inventory model without consideration
of delayed cash payment. Section 6.5 proposes some numerical examples which
demonstrate the main results. Finally Sect. 6.6 concludes the chapter and discusses
some extensions.

J. Li et al., Risk Management of Supply and Cash Flows in Supply Chains,
International Series in Operations Research & Management Science 165,
DOI 10.1007/978-1-4614-0511-5 6, © Springer Science+Business Media, LLC 2011
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6.2 Assumptions and Model Formulation

In this chapter, we consider the fundamental single-retailer and single-product
case, where the risk neutral retailer facing random demands makes replenishment
decisions over a finite time horizon of N periods. The inventory is reviewed
periodically and demand Dn in different periods are independent of each other. The
cumulative and probability distributions of stochastic demand are assumed to be
F.�/ and f .�/ respectively. Let xn be the inventory level and yn be the inventory
position for period n.

The cost function is assumed linear with variable costs. Then denote the selling
price by p and the ordering cost by c. Furthermore, the lead time is assumed to be
zero and hence an order placed at the beginning of period n arrives immediately
before demand is realized. The unsatisfied demand is assumed lost. Without loss of
generality, we assume no holding cost and shortage cost.

The capital on hand is denoted by Sn at the beginning of period n. Then the
operational decision will be constrained by Sn in following way: c.yn � xn/ � Sn.
Assume that the cash payment is delayed by k period. Let Rn be the receivable in
the end of period n. Then Rn implies the selling income of period n which will
arrive in the end of period n C k.

Based on above discussion, the sequence of events in period n.1 � n � N / is as
follows. At the beginning of each period, the retailer places an order with his capital
on hand. Then the demand is satisfied. At the end of the period, the retailer receives
the selling income of period n � k.

Therefore, the decision problem of the retailer is to decide an ordering policy
to maximize the final capital and receivable, given an initial inventory level x1, a
capital level S1 and receivable R1, subject to a capital constraint for each period.
That is, the decision problem is:

max
y1;:::;yN

E

"

SN C1 C
kX

iD1

RN C2�i

#

; (6.1)

subject to

0 � yn � xn � Sn

c
; n D 1; 2; : : : ; N;

where xnC1 D .yn � Dn/C, SnC1 D Sn C RnC1�k � c.yn � xn/ and RnC1 D
pminfyn; Dng, n=1,2, . . . , N .

Denote by Vn.x; S; R1; : : : ; Rk/ the maximum achievable capital starting at the
beginning of period n with an initial inventory level x, accumulated capital S and
receivables from R1 to Rk , where Ri is the selling income i period ago. Then the
following dynamic program can be employed to solve decision problem (6.1).

VN C1.x; S; R1; : : : ; Rk/ D S C
kX

kD1

Ri ;
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and

Vn.x; S; R1; : : : ; Rk/ D max
x�y�xC S

c

EŒVnC1.xC; SC; R1C; � � � ; RmC/�; (6.2)

where xC D .y�Dn/C, SC D SCRk �c.y�x/, R1C D p minfy; Dng and Ri C D
Ri�1; i D 2; : : : ; k. Note that we assume VN C1.x; S; R1; : : : ; Rk/ is independent of
x here, which implies zero salvage value.

6.3 Delayed Cash Payment Offered by the Retailer

Note that here only the retailer is considered and the delay happens in the payment
process from customer to retailer. Our focus in this chapter is the influence of
delayed cash payment offered by the retailer on the optimal inventory policy and
achievable profit.

For simplicity and without loss of generality, assume that only one-period delay
is allowed, i.e., k D 1. The model with k periods delayed is similar. Therefore,
dynamic program in (6.2) can be simplified into

VN C1.x; S; R/ D S C R;

and

Vn.x; S; R/ D max
x�y�xC S

c

EŒVnC1.xC; SC; RC/�; (6.3)

where xC D .y � Dn/C, SC D S C R � c.y � x/ and RC D p minfy; Dng.
Next before deriving the optimal inventory policy under delayed cash payment,

some lemmas are needed.

Lemma 6.3.1. For any period n and fixed .x; R/, Vn.x; S; R/ is increasing in S .

The proof is straightforward by simple induction.

Lemma 6.3.2. For any period n,

(a) Vn.A � z; B; pz/ is increasing in z for fixed A and B .
(b) Vn..A � z C B=c � D/C; pz; p minfA � z C B=c; Dg/ is increasing in z for

fixed A and B .
(c) Vn.x; S; R/ is jointly concave in .x; S; R/.

Proof. The proof is by induction. The statement is trivially true for n D N C 1.
Assume that the statement is true for some n C 1. We will now prove the statement
for n.

For part .c/, we first prove VnC1.xC; SC; RC/ D VnC1..y � Dn/C; S C R �
c.y � x/; p minfy; Dng/ is jointly concave in .y; x; S; R/. Since the linear part is
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trivial, we can ignore it. Then for any y1; y2 2 RC and � 2 .0; 1/, we only need to
prove

VnC1..�y1 C .1 � �/y2 � Dn/C; : : : ; p minf�y1 C .1 � �/y2; Dng/
� �VnC1..y1 � Dn/C; : : : ; p minfy1; Dng/

C .1 � �/VnC1..y2 � Dn/C; : : : ; p minfy2; Dng/:

With the inductive assumption of part .c/, we have

VnC1.�.y1 � Dn/C C .1 � �/.y2 � Dn/C; : : : ; p� minfy1; Dng
Cp.1 � �/ minfy2; Dng/

� �VnC1V ..y1 � Dn/C; : : : ; p minfy1; Dng/
C.1 � �/VnC1..y2 � Dn/C; : : : ; p minfy2; Dng/:

Since .y � Dn/C D y � minfy; Dng and minf�y1 C .1 � �/y2; Dng �
� minfy1; Dng C .1 � �/ minfy2; Dng, the inductive assumption of part .a/ allows
us to show that

VnC1..�y1 C .1 � �/y2 � Dn/C; : : : ; p minf�y1 C .1 � �/y2; Dng/
� VnC1.�.y1 � Dn/C C .1 � �/.y2 � Dn/C; : : : ;

p� minfy1; Dng C p.1 � �/ minfy2; Dng/:

Hence, VnC1..y � Dn/C; S C R � c.y � x/; p minfy; Dng/ is jointly concave
in .y; x; S; R/. This implies that EŒVnC1.xC; SC; RC/� is jointly concave in
.y; x; S; R/.

Then, since C D f.y; x; S/jx � y � x C S=cg is a convex set, we find that
Vn.x; S; R/ is jointly concave in .x; S; R/.

Next we prove part .a/ for period n. First

Vn.A � z; B; pz/ D max
A�z�y�A�zCB=c

EŒVnC1..y � Dn/C; B C cA

C.p � c/z � cy; p minfy; Dng/�:

From Lemma 6.3.1 and the inductive assumption of .c/, EŒVnC1..y � Dn/C; B C
cA C .p � c/z � cy; p minfy; Dng/� is increasing in z and concave in y. To prove
Vn.A � z; B; pz/ is increasing in z, we only need to prove EŒVnC1..A � z C B=c �
Dn/C; B CcAC.p �c/z�c.A�zCB=c/; p minfA�zCB=c; Dng/� is increasing
in z. It follows from the inductive assumption of part .b/.
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Finally, we prove part .b/ for period n. We have

Vn

 �

A�zC B

c
�D

�
C

; pz; p min

�

A�zC B

c
; D

�!

D max

.A�zC
B

c
�D/C

�y�

 

A�zC
B

c
�D

!C

C

zp

c

E

�

VnC1

�

.y�Dn/C; .p�c/ min

�

A�zC B

c
; D

�

C .p�c/zCBCcA�cy; p minfy; Dng
��

:

Then the result follows directly from Lemma 6.3.1 and that .A � z C B=c � D/C C
zp=c is increasing in z. ut

Then we will show that when delayed cash payment exists for the retailer, the
optimal operational policy is a capital dependent base stock inventory policy.

Theorem 6.3.3. A capital dependent base stock inventory policy is optimal.

Proof. Let Oyn.S C R C cx/ be an optimal solution for the problem

max
y

EŒVnC1.xC; SC; RC/�:

It has been shown in the proof for part .c/ of Lemma 6.3.2 that EŒVnC1.xC; SC;

RC/� is concave in y for any fixed S C R C cx. Then it is optimal to order-up-to
minf Oyn.S Ccx; R/; x CS=cg when x < Oyn.S Ccx; R/ and not to order otherwise.
In other words, a state dependent base stock policy is optimal. ut

Accordingly, the optimal operational policy is shown in following theorem.

Theorem 6.3.4. The optimal operational policy y�
n .x; S; R/ is given by

y�
n .x; S; R/ D

8
ˆ̂
<

ˆ̂
:

x C S=c; x C S=c � Oyn.S C R C cx/;

Oyn.S C R C cx/; x < Oyn.S C R C cx/ < x C S=c;

x; x � Oyn.S C R C cx/:

Note that the optimal inventory policy depends on initial capital on hand and
receivable in each period. Theorem 6.3.4 allows us to show that:

(i) Retailers with low wealth level x C S=c will have insufficient capital or
inventory. Therefore, they will use all the cash they have to finance their
inventory but can not carry out their optimal inventory policy. More wealth
will lead to more ordering.

(ii) Retailers with high enough wealth level x C S=c will have more surplus cash
or inventory for their operations. Therefore they can make their best choice to
order.
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Since the theoretical discussion about how optimal operational policy depends
on cash on hand S and receivable R is quite complex, we will show the properties
by some numerical examples in Sect. 6.5.

6.4 Influence of Delayed Cash Payment

In this section the influence of delayed cash payment on retailer’s optimal profit
is studied. Firstly how the optimal profit depends on delayed cash payment will
be derived, then a comparison between the model in this chapter and traditional
inventory model without delayed cash payment will be employed.

Lemma 6.4.1. For any period n, Vn.x; S; R/ will increase as: (1) S increases; (2)
R increases; (3) the ratio of S in total wealth increases, i.e. S=.S C R/ increases
with S C R unchanged.

The proof follows from Lemma 6.3.1 and dynamic program equation (6.3).
Lemma 6.4.1 implies that the achievable capital will be more if the initial

receivable is less while the initial capital on hand is more. As a straightforward
result, we have Vn.x; S; R/ � Vn.x; S C R; 0/, which is under the condition there
is no initial delayed cash payment.

Then a natural thing to do next is to compare the optimal achievable capital with
the traditional multi-period inventory system without delayed cash payment. The
optimization problem of traditional case is as follows:

WN C1.x0; S 0/ D S

and

Wn.x0; S 0/ D max
x0�y�x0CS 0=c

EŒWnC1..y � Dn/C; S 0 C p minfy; Dng � c.y � x0//�:

Furthermore, the optimal operational policy is given by y�
n .x0; S 0/.

Theorem 6.4.2. Assume x D x0 and S C R D S 0, for any period n,

(a) Vn.x; S; R/ � Wn.x0; S 0/.
(b) y�

n .x; S; R/ � y�
n .x0; S 0/.

Proof. The proof is by induction. We first prove part (a). The statement is trivially
true for n D N C 1. Assume that the statement is true for some n C 1. We will now
prove the statement for n as follows.

Vn.x; S; R/ � Vn.x0; S 0; 0/

D max
x0�y�x0CS 0=c

EŒVnC1..y � Dn/C; S 0 � c.y � x0/; p minfy; Dng/�
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� max
x0�y�x0CS 0=c

EŒWnC1..y � Dn/C; S 0 � c.y � x0/ C p minfy; Dng/�

D Wn.x0; S 0/;

where the first inequality follows from Lemma 6.4.1, and the second inequality
follows from inductive assumption of part .a/.

For part (b), first noting that

VN .x; S; R/ D max
x�y�xCS=c

EŒS C R C p minfy; Dng � c.y � x/�

D WN .x0; S 0/;

then y�
N .x; S; R/ D y�

N .x0; S 0/. Assume that the statement is true for some n C 1.
We will now prove the statement for n.

Notice that

Vn.x; S; R/

D max
x�yn�xCS=c

EŒVnC1..yn � Dn/C; S 0 � c.yn � x/; p minfyn; Dng/�

D max
x�yn�xCS=c

E

(

max
.yn�Dn/C�ynC1�S 0=cCx�minfyn;Dng

E
�
VnC2..ynC1 � DnC1/C;

S 0 C cx C .p � c/ minfyn; Dng � cynC1; p minfynC1; DnC1g/�
)

;

and

Wn.x0; S 0/

D max
x�yn�xCS 0=c

EŒWnC1..yn � Dn/C; S 0 C p minfyn; Dng � c.yn � x//�

D max
x�yn�xCS 0=c

E

(

max
.yn�Dn/C�ynC1�S 0=cCxC.p=c�1/ minfyn;Dng

EŒWnC2..ynC1�DnC1/C;

S 0CcxC.p�c/ minfyn; DngCp minfynC1; DnC1g � cynC1/�

)

:

As yn increases, S 0=c C x � minfyn; Dng will decrease and S 0=c C x C .p=c � 1/

minfyn; Dng will increase. Furthermore, S 0=c C x � minfyn; Dng � S 0=c C x C
.p=c � 1/ minfyn; Dng. Therefore, the inductive assumption of part .b/ allows us to
show that Oyn.x; S; R/ � Oy0

n.x0; S 0/. ut
Theorem 6.4.2 allows us to show that if the retailer offers customer an option

that payment can be delayed, then the retailer will order less because the capital
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available on hand is less. It consequently results in a lower profit. Therefore, to the
retailer the essential of this offer is a trade-off between the benefits from demand
increase and the loss from limited operations.

6.5 Numerical Examples

In this section we propose some numerical examples to show the dependencies of
y�

n .x; S; R/ and Vn.x; S; R/ on S and R. More specifically, only two recursions are
considered for computational simplicity. Or in other words, only y�

N �1.x; S; R/ and
VN �1.x; S; R/ are studied. Furthermore, it will be shown that offering delayed cash
payment leads to lower replenishment level and profit.

Assumptions of parameters are given as follows: p D 1:3, c D 1, and
exponential demand with mean 10. Without loss of generality, we also assume the
initial inventory level x D 0.

First, according to formula of dynamic program (6.3), the optimal solution for
the last period is given by OyN .S C R C cx/ D F �1..p � c/=p/ D 2:6236. We then
compute the optimal operational policy for period N � 1.

Figure 6.1 shows the dependence of y�
N �1.x; S; R/ on S , where the receivable R

takes value of 0; 1; 2; 3 respectively. It demonstrates that:

• When capital on hand S is small enough, the operation will be limited and the
retailer will use up all the cash to order. Hence, y�

N �1.x; S; R/ is linear increasing
in S .
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Fig. 6.1 Influence of S and R on the optimal operational policy
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Fig. 6.2 Comparison of optimal operational policy between models with and without delayed cash
payment

• When capital on hand is sufficient, the retailer can employ an unconstrained
operation. As S increases, the order-up-to level will increase correspondingly.

• When the cash level is high enough, the retailer will order a sufficient quantity
and hence the operations will remain fixed.

• If the capital on hand S remain unchanged while the receivable R increases, the
optimal replenishment level will increase.

Furthermore, Fig. 6.1 also implies that the range of unconstrained operation
becomes shorter when the receivable R increases. In fact, if R is large enough so that
R � 4, the optimal operational policy of the retailer will almost remain unchanged.

Next, we compute the optimal operational policy for traditional multi-period
inventory model without delayed cash payment, and then compare it with our
model. Here the same assumptions for the basic inventory model are made as
mentioned above. The optimal base-stock level for period N is also given by:
y�

N .x; S 0/ D F �1..p � c/=p/ D 2:6236.
As shown in Theorem 6.4.2, the comparison between two models is based on the

condition that S CR D S 0. Hence relative to Fig. 6.1, the influence of wealth S CR

or S 0 on the optimal operational policies will be studied in Fig. 6.2.
Figure 6.2 finally demonstrates that:

• Higher ratio of receivable in wealth S C R leads to lower replenishment level.
• Operational policy under the condition that there is not delayed cash payment is

larger than that with delayed cash payment. However, when capital on hand is
small enough or large enough, the optimal operational policies in two models are
equivalent.
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Fig. 6.3 Comparison of optimal achievable profit between models with and without delayed cash
payment

Finally we compare the influence of wealth SCR or S 0 on the optimal achievable
profit VN �1.x; S; R/ or WN �1.x; S 0/ of the two models. As shown in Fig. 6.3, the
retailer obtains more profit if no delayed cash payment is offered. If the retailer
offers delayed cash payment, then the higher the ratio of receivable in wealth S CR,
the lower the level of the profit achieved.

Therefore, the numerical examples demonstrate the dependences, relationships,
and influence which have been shown in Lemma 6.4.1 and Theorem 6.4.2.

6.6 Concluding Remarks

In this chapter, a framework is proposed for incorporating financial considerations
into multi-period inventory models. More specifically, delayed cash payment, a
common existing phenomenon in industry, is studied by introducing two financial
states of firms: capital on hand and receivable. Then we considered the simple one-
retailer and one-item case, where the firm’s operational decisions will be constrained
by limited capital.

For the model, the optimal inventory policy is derived, which turns out to be
a capital dependent base stock policy. Furthermore, we studied the influences of
capital on hand and receivable on the optimal achievable profit and find that reducing
the ratio of receivable in the total wealth will increase the profit.
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In addition, traditional inventory model without consideration of delayed cash
payment is used to compare with our model. It allows us to show that without
offering delayed cash payment, the retailer will order higher level quantity and
obtain higher level profit.

Finally computational results demonstrate the dependences of delayed cash
payment on the retailer’s optimal operational policy and achievable profit. It
validates the essentiality of retailer considering the influence of offering delayed
cash payment.

We find that for most of these models, the results in Lemmas 5.3.1, 5.3.2 and
5.3.3 and Theorem 5.3.5 in Chap. 5 can still be obtained. However, more precise
structure of the optimal control policies beyond the “capital-dependent base-stock”,
such as Theorem 5.3.9 in Chap. 5, is difficult to obtain without imposing further
structure in the model. These are just a few possible extensions and it appears
that each of these variations will lead to different optimal solution structure that
is worthy of study.

Consequently a straightforward extension to our model is to consider the trade-
off between cost of offering delayed cash payment and benefits from demand
increase.





Chapter 7
Game Analysis in Negotiation of Iron Ore Price

7.1 Introduction

The international iron ore market determines prices through yearly negotiations,
using certain long-term trade agreements as its main price-setting mechanism.
According to convention, the new fiscal year’s iron ore prices are decided before
April of every year. During the process, the largest iron and steel enterprises, acting
as industry representatives, negotiate with iron ore suppliers to form the basic prices
for European and Asian importers. Australia’s BHP Billiton Ltd, Rio Tinto Group,
and Brazil’s Companhia Vale do Rio Doce are the three major suppliers of iron ore
across the world. While for a long time, Japan sets the standard for Asia.

The long-term supply contracts and yearly price determination enable the
industry to maintain relative stability, and allow both suppliers and buyers to make
rational decisions. However, Chinese mills and iron ore traders had to accept in
2005 a 71.5% rise in iron ore price, which was set by Japanese companies. Since it
means $3 billion more to pay for imports, China’s iron and steel industry has deeply
understood the importance of the “price-decision right”.

Further in 2006, at the beginning of the negotiations, enterprises from Europe,
Japan and South Korea all sought a reduction in iron ore prices. However, China did
not grasp the chance to form alliances with other countries and lost the opportunity
to set up its own “price-decision right”. On the contrary, those suppliers grasped the
chance and put China in a plight. Noticing that most European steel plants use iron
ore pellets, suppliers took the lead in making an agreement that the price of iron ore
shavings would increase 19% while the price of iron ore pellets would decrease 3%.
It finally left China in a passive situation.

Iron ore prices have a significant influence on China’s steel industry, which is
currently faced with soaring production costs and declining profits. Continuous
jump in prices of iron ore will put an even larger strain on the industry, and
eventually reduce the growth of the national economy.

To pursue the reason for China’s failure in iron ore price negotiation in the
past 2 years, it is worth noting that many foreign iron and steel companies have
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their own mines. Mittal Steel, the world’s largest iron and steel enterprise, for
example, owns a sufficient number of mines to meet its raw material needs, forming
a vertically integrated production system. Japanese enterprises have invested in all
24 major mines in Australia so that the rise in iron ore prices has no influence on
Japanese iron and steel enterprises by and large. Although China’s Baosteel Group
and Shougang Group have also participated in exploiting iron mines in Australia,
Mongolia, Vietnam, South America and some countries in Africa, this is not enough
for Chinese iron and steel enterprises to have a strong say in the negotiation.

Another factor undermining China’s negotiating basis is that importers are not
united. Because of the large number of steel-producing enterprises and the reform of
the foreign trade system, the number of iron ore importing enterprises in China has
sharply increased, reaching 523 in 2004 from 173 in 2001. However, the three major
suppliers (Brazil’s Companhia Vale do Rio Doce, Australia’s BHP Billiton and Rio
Tinto) control 70–80% of global iron ore production and ocean shipping trade. In
this situation the buyers are overly decentralized and sellers relatively centralized,
is unfavorable to China’s iron and steel enterprises.

During the negotiation of iron ore price for 2007, the consumers seem to be
beating the same drum as previous years, obviously. Prices have gone up enough
over the last 2 years, and the consumers believed that they should have a stronger
say in the price negotiations. Their stance is summed up by the commentary below,
taken from a Chinese business website (Ministry of Commerce of P.R. China).

The world top three iron ore providers declined to comment on the iron prices next year,
only saying that they are optimistic about China’s steel market and iron ore imports. They
also predicted a gap between demand and supply in China. Lu Jianhua, Director of China’s
Ministry of Commerce’s Foreign Trade Department, did not think imported iron ore prices
would continue to rise, saying that past four straight years of increase had made mines gain
huge profits but left steel businesses earning little or even suffering losses. “It is not in the
interests of the two sides of demand and supply,” he said.

As the biggest buyer of iron ore in the world, China has the capability and right
to influence iron ore prices. Figures from the customs show that in 2005, China
imported iron ore of 275 million tons, up 32.3% year-on-year and accounting for
43% of the world’s total ore shipment.

Under this background, this chapter seeks to provide some insights for the
negotiation of iron ore price. We establish mathematical and economical models to
answer following questions: Why Japanese steel producers accepted a price increase
of 71.5% in 2005; what inspiration can we expose for China’s steel manufactures to
have a stronger say in the future bargaining.

Many solution concepts and methods have been established and employed to
find solutions for negotiation. According to Nash (1950), the axiomatic approach
requires the solution to satisfy a certain set of axioms. Besides the Nash bargaining
solution proposed in Nash (1950), the most common axiomatic solutions are
then the non-symmetric Nash solution by Harsanyi and Selten (1972), the Kalai–
Smorodinsky solution by Kalai and Smorodinsky (1975), the reference function
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solution by Anbarci (1995), the egalitarian solution by Kalai (1977), and so on.
Finally, it is recommended that Thomson (1994) made comprehensive review of
cooperative models on bargaining.

According to the mechanism of iron ore price negotiation, we extend the Nash
bargaining framework to a Nash game between two bargaining groups. Specifically,
each group including two players negotiates under the Nash bargaining rule, and
the disagreement payoff is the payoff under the price which may be stricken by the
other group.

The rest of this chapter is organized as follows. Section 7.2 presents notations and
assumptions for the use throughout this study. In Sect. 7.3, we establish an economic
game model and derive the optimal prices for each manufacturer to obtain his
maximum revenue respectively. Section 7.4 proposes a Nash bargaining-based game
model to derive the equilibrium price, i.e., the negotiated price. Some numerical
examples are provided in Sect. 7.5 for illustration of the theoretical results. Finally
we conclude the chapter and suggest some future directions in Sect. 7.6.

7.2 Notation and Assumptions

Based on whether to invest on iron ore mines or not, without loss of generality we
assume only two types of steel producers in the market. One is the producer who has
no investment on the iron ore, such as China, denoted by manufacturer 1. The other
type of producer who has certain investment on the iron ore, such as Japan, denoted
by manufacturer 2. Each manufacturer has domestic market for its steel sales. Also
they compete in the international steel market. For simplicity we assume only one
supplier. Then the two steel manufacturers procure iron ore from the supplier to
produce steel. The final iron ore price is determined via simultaneous negotiations
between the supplier and each manufacturer.

In the international steel market, let p0 be the steel selling price, and M0 be the
market size. Then according to economic theories the demand of steel q0 can be
given by

q0 D M0 � ˇp0;

where ˇ is the influence of fluctuation of price on demand. Similarly for the
domestic markets of manufacturers 1 and 2, the demand curve can be given by

q1 D M1 � ˇp1

and
q2 D M2 � ˇp2:

The rest definitions of the notation are presented below.

c0 unit variable production cost of iron ore
w unit wholesale price of iron ore
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˛ the production ratio from iron ore to steel, ˛ � 1

� the investment ratio of manufacturer 2 on the iron ore mines

Since in this chapter only two manufacturers are assumed to compete
in the international steel market, then q0 D q10 C q20, where q10 and q20 are
the international steel supply of manufacturers 1 and 2 respectively. Therefore, the
response functions of steel price on production quantities in the different markets
can be written as

p0.q10; q20/ D .M0 � q10 � q20/=ˇ;

p1.q1/ D .M1 � q1/=ˇ;

p2.q2/ D .M2 � q2/=ˇ:

Further to make sure that the manufacturers as well as the supplier can obtain
positive profit, the following conditions need be satisfied

w � c0;

p0; p1; p2 � ˛w;

and hence
Mi � ˛ˇw; i D 0; 1; 2: (7.1)

In addition, we assume that the steel production quantities of the two
manufacturers are nonnegative. And noting that when � � 1=2, manufacturer
2 will act as a supplier. Then to avoid trivial cases, we assume � < 1=2.

7.3 Economic Model of the Supply Chain

In this section, a quantity game model is established to derive the optimal quantities
of each manufacturer under any given wholesale price w. Then under the optimal
production quantity, the optimal wholesale prices are derived for the three parties to
obtain their maximum revenue, respectively.

7.3.1 The Optimal Production Quantity

Since manufacturer 1 is assumed to have no investment on iron ore, its revenue
function is as follows for any given q20 and w:

…1.q1; q10; q20; w/ D q1.M1 � q1/=ˇ C q10.M0 � q10 � q20/=ˇ � ˛w.q1 C q10/:
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Manufacturer 2 has � ratio of investment on iron ore. Thus its revenue contains
another part from sales of materials. That is,

…2.q2; q20; q10; w/ D q2.M2 � q2/=ˇ C q20.M0 � q20 � q10/=ˇ � ˛w.q2 C q20/

C�˛.w � c0/.q1 C q2 C q10 C q20/:

For any given wholesale price w, manufactures 1 and 2 will choose their
production quantity for both international and domestic markets simultaneously
to maximum their respective revenue. Straightforwardly notice that the optimal
production quantity for domestic market can be given by

q�
1 D M1 � ˛ˇw

2

and

q�
2 D M2 � .1 � �/˛ˇw � �˛ˇc0

2
:

Notice that following from (7.1) we find that q�
1 and q�

2 are both positive. Then the
revenue functions can be rewritten as

…1.q10; q20; w/ D .M1 � ˛ˇw/2

4ˇ
C q10.M0 � q10 � q20/=ˇ � ˛wq10

and

…2.q20; q10; w/ D .M2 � .1 � �/˛ˇw � �˛ˇc0/2

4ˇ
C �˛.w � c0/.M1 � ˛ˇw/

2

C q20.M0 � q20 � q10/=ˇ � ˛wq20 C �˛.w � c0/.q10 C q20/:

Thus the competition in the international steel market can be described as the
following problem. 8

<

:

maxq10�0 …1.q10; q20; w/;

maxq20�0 …2.q20; q10; w/:
(7.2)

Here the game between manufacturer 1 and manufacturer 2 is the quantity game.
According to traditional game theory, we have the following theorem.

Theorem 7.3.1. There is a unique pure-strategy Nash equilibrium (hereafter NE)
.q�

1 ; q�
2 / in the game between the two manufacturers. Specifically, the solution for

the equilibrium, i.e., the production quantities of the two manufacturers are as
follows:

q�
10.w/ D M0 � .1 C �/˛ˇw C �˛ˇc0

3
(7.3)
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and

q�
20.w/ D M0 � .1 � 2�/˛ˇw � 2�˛ˇc0

3
: (7.4)

Furthermore, there is q�
20.w/ � q�

10.w/:

Proof. First we prove the existence of the NE of the game model (7.2). It is
straightforward by noting that the payoff function …1.q10; q20; w/ is concave in q10

and …2.q20; q10; w/ is concave in q20.
Next we prove the uniqueness of NE. Given the price of iron ore and the

production quantity of manufacturer 2, the optimal production quantity of
manufacturer 1 can be obtained as follows:

@…1.q10; q20; w/

@q10

D 0 ) q10.q20; w/ D M0 � q20 � ˛ˇw

2
:

And in the same way we can get the optimal production quantity of manufacturer 2.

@…2.q20; q10; w/

@q20

D 0 ) q20.q10; w/ D M0 � q10 � .1 � �/˛ˇw � �˛ˇc0

2
:

Since
ˇ
ˇ
ˇ
ˇ
@q10.q20; w/

@q20

ˇ
ˇ
ˇ
ˇ D 1

2

and
ˇ
ˇ
ˇ
ˇ
@q20.q10; w/

@q10

ˇ
ˇ
ˇ
ˇ D 1

2
;

the best response mapping is a contraction. Therefore, the NE is unique.
Furthermore, let q10 D q10.q20.q10; w/; w/ and q20 D q20.q10.q20; w/; w/, we

then derive the unique NE solution of the game as follows:

q�
10.w/ D M0 � .1 C �/˛ˇw C �˛ˇc0

3

and

q�
20.w/ D M0 � .1 � 2�/˛ˇw � 2�˛ˇc0

3
:

Finally note that q�
20.w/ � q�

10.w/ D �˛ˇ.w � c0/ � 0. Thus we have
q�

20.w/ � q�
10.w/. ut
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Let Ow1, Ow2, Ow10 and Ow20 be respectively the iron ore price which make the
corresponding optimal ordering quantity equal to zero. We find that

Ow1 D M1

˛ˇ
; Ow2 D M2 � �˛ˇc0

.1 � �/˛ˇ
; Ow10 D M0 C �˛ˇc0

.1 C �/˛ˇ
; Ow20 D M0 � 2�˛ˇc0

.1 � 2�/˛ˇ
:

They reflect the maximal acceptable iron ore price for each manufacturer in both
their domestic market and international market.

Furthermore, we find that the maximal acceptable iron ore price of each
manufacturer depends on the investment ratio � in following ways.

Remark 7.3.2. Ow2 and Ow20 are increasing in �, while Ow10 is decreasing in �.

The following assumption is given in terms of the survey of industrial practice.

Assumption 7.3.3. There exists O�1 and O�2 such that Ow1 D Ow10j�D O�1
and

Ow2 D Ow20j�D O�2
, and furthermore, the following inequalities are satisfied:

(
Ow1 � Ow10; 0 � � � O�1;

Ow1 > Ow10; O�1 < � < 1=2:

and

(
Ow2 � Ow20; 0 � � � O�2;

Ow2 < Ow20; O�2 < � < 1=2:

The following lemma is then proposed straightforward from Assumption 1.

Lemma 7.3.4. There are M1 � M0 � M2, 3M1 > 2M0 C ˛ˇc0, and furthermore,
O�1 D M0�M1

M1�˛ˇc0
and O�2 D M2�M0

2M2�M0�˛ˇc0
.

The proof for M1 � M0 � M2 follows by examining the case of � D 0 from
Assumption 1. And 3M1 > 2M0 C ˛ˇc0 follows from Ow1 > Ow10 with the case of
� D 1=2 in Assumption 1.

Remark 7.3.2 shows that:

(i) Manufacturer 2 can accept higher iron ore price in both international and
domestic markets when � increases

(ii) The increase of � by manufacturer 1 will not affect manufacturer 1’s maximal
acceptable price in the domestic market, but decreases the price in international
market

In the following analysis to assure that the production quantity is positive, some
boundary conditions can easily be obtained:

w � minf Ow1; Ow10g: (7.5)
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7.3.2 The Optimal Wholesale Price

Noting down that with the optimal ordering quantity q�
10.w/ and q�

20.w/, the revenue
functions of the two manufacturers are given by

…1.w/ D .M1 � ˛ˇw/2

4ˇ
C ŒM0 C �˛ˇc0 � .1 C �/˛ˇw�2

9ˇ
(7.6)

and

…2.w/ D .M2 � .1 � �/˛ˇw � �˛ˇc0/2

4ˇ
C .M0 � .1 � 2�/˛ˇw � 2�˛ˇc0/

2

9ˇ

C�˛.w � c0/.M1 � ˛ˇw/

2
C�˛.w � c0/.M0 � .1 C �/˛ˇw C �˛ˇc0/

3
:

(7.7)

Note that the revenue function of the supplier is

…s.w; q1; q2; q10; q20/ D .1 � �/˛.w � c0/.q1 C q2 C q10 C q20/: (7.8)

Then the revenue function under the equilibrium quantity is

…s.w/ D .1 � �/˛.w � c0/

6
Œ3M1 C 3M2 C 4M0 � 5�˛ˇc0 � 5.2 � �/˛ˇw�:

To understand exactly the behavior of supplier and manufacturers in the
negotiation, it is important to know what wholesale prices can satisfy them, or
in other words, what wholesale price do they expect the most. Next based on the
equilibrium production quantities presented in Theorem 7.3.1, we derive the optimal
iron ore prices for the two manufacturers as well as the supplier respectively. The
proof can be found in Appendix.

Theorem 7.3.5. The optimal iron ore prices for the two manufacturers are given as
follows:

(a) For manufacturer 1, there is w�
1 D c0.

(b) For manufacturer 2, if 3M1 � 3M2 C 2M0 � 2˛ˇc0 > 0, then

w�

2 D

8
ˆ̂
<̂

ˆ̂
:̂

c0; 0 � � � 9M2 C 4M0 � 13˛ˇc0

9M1 C 9M2 C 14M0 � 32˛ˇc0

;

9�M1 � 9.1 � �/M2 C 2.7� � 2/M0 C �.32 � 13�/˛ˇc0

.�13�2 C 64� � 13/˛ˇ
;

9M2 C 4M0 � 13˛ˇc0

9M1 C 9M2 C 14M0 � 32˛ˇc0

< � <
1

2
I

and if 3M1 � 3M2 C 2M0 � 2˛ˇc0 � 0, then w�
2 D c0.
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Theorem 7.3.5 allows us to show that in terms of the investment ratio �, there
are two cases.

(i) Without investment on materials, the lower price of iron ore is, the better for
manufacturer 1. So it is the case for manufacturer 2 when its investment ratio �

is less than the threshold 9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
.

(ii) However, once the investment ratio is beyond the threshold, the above case for
manufacturer 2 will not suit again. And there exists an optimal positive price of
iron ore for manufacturer 2. But the optimal price for manufacturer 2 is always
less than that for the supplier.

The following remark characterizes how the optimal prices depend on the
investment ratio � as well as the size of each market.

Remark 7.3.6. (a) w�
2 is increasing in �. (b) w�

2 is increasing in M1 and M0, while
decreasing in M2.

Proof. For (a), notice that

@w�
2 .�/

�
D 1

.�13�2 C 64� � 13/2˛ˇ
fŒ9M1 C 9M2 C 14M0

C.32 � 26�/˛ˇc0�.�13�2 C 64� � 13/ � Œ9�M1 � 9.1 � �/M2

C2.7� � 2/M0 C �.32 � 13�/˛ˇc0�.�26� C 64/g

D 1

.�13�2 C 64� � 13/2˛ˇ
Œ9.13�2 � 13/M1 C 9.13�2 � 26� C 51/M2

C2.91�2 � 52� C 37/M0 � 26.16�2 � 13� C 16/˛ˇc0�

� 26.16�2 � 13� C 16/.M0 � ˛ˇc0/

.�13�2 C 64� � 13/2˛2ˇ2

� 0;

where the first inequality follows from Lemma 7.3.4 by noting that
13�2 � 26� C 51 > 0 when 0 < � < 1=2, and the second inequality follows from
16�2 � 13� C 16 > 0. We find that w�

2 is increasing in �.
For (b), we first prove the dependence of w�

2 on M1. By noting that w�
2 D c0

when M1 � .3M2 � 2M0 C 2˛ˇc0/=3 and w�
2 � c0 is increasing in M1 when

M1 > .3M2 � 2M0 C 2˛ˇc0/=3, we find that w�
2 is increasing in M1. The proof for

the dependence on M2 and M0 is similar. ut
Note that when the market size M1 or M0 is low, or M2 is high such that

3M1 � 3M2 C 2M0 � 2˛ˇc0 � 0, the manufacturer with investment on iron ore
prefers the same wholesale price to the other manufacturer. In other words, the two
manufacturers will have the same preference in the iron ore price negotiation.
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Theorem 7.3.7. If 2M0 � M1 C M2, then the optimal iron ore price for the
supplier is

w�
0 D 3M1 C 3M2 C 4M0 C 10.1 � �/˛ˇc0

10.2 � �/˛ˇ
:

And if 2M0 < M1 C M2, then the optimal iron ore price for the supplier is

w�

0 D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

3M1 C 3M2 C 4M0 C 10.1 � �/˛ˇc0

10.2 � �/˛ˇ
; 0 � � � min

�
�17M1 C 3M2 C 4M0 C 10˛ˇc0

10M1 � 10˛ˇc0

;
�3M1 � 3M2 C 16M0 � 10˛ˇc0

3M1 C 3M2 C 14M0 � 20˛ˇc0

�

;

minfOw1; Ow10g; min

�
�17M1 C 3M2 C 4M0 C 10˛ˇc0

10M1 � 10˛ˇc0

;
�3M1 � 3M2 C 16M0 � 10˛ˇc0

3M1 C 3M2 C 14M0 � 20˛ˇc0

�

< � < 1
2

:

Proof. Taking derivative of …0.w/ on w yields

@…s.w/

@w
D �5.1 � �/.2 � �/˛2ˇ

3
w

C .1 � �/˛Œ3M1 C 3M2 C 4M0 C 10.1 � �/˛ˇc0�

6
:

Clearly …s.w/ is concave in w and the unconstrained maximum point is

3M1 C 3M2 C 4M0 C 10.1 � �/˛ˇc0

10.2 � �/˛ˇ
:

If 2M0 � M1 C M2, then �3M1�3M2C16M0�10˛ˇc0

3M1C3M2C14M0�20˛ˇc0
� 1

2
. Thus when 0 � � < 1

2
�

�3M1�3M2C16M0�10˛ˇc0

3M1C3M2C14M0�20˛ˇc0
, we prove

c0 � 3M1 C 3M2 C 4M0 C 10.1 � �/˛ˇc0

10.2 � �/˛ˇ
� minf Ow1; Ow10g

by

Œ3M1 C 3M2 C 4M0 C 10.1 � �/˛ˇc0�.1 C �/ � 10.2 � �/.M0 C �˛ˇc0/

D 3.1 C �/M1 C 3.1 C �/M2 C .14� � 16/M0 C 10.1 � 2�/˛ˇc0

� 0

and

3M1 C 3M2 C 4M0 C 10.1 � �/˛ˇc0 � 10.2 � �/M1

D .10� � 17/M1 C 3M2 C 4M0 C 10.1 � �/˛ˇc0

� .10� � 17/M1 C .6M0 � 3M1/ C 4M0 C 10.1 � �/˛ˇc0

� .10� � 20/M1 C .15M1 � 5˛ˇc0/ C 10.1 � �/˛ˇc0

D 5.1 � 2�/.˛ˇc0 � M1/

� 0;
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where the first inequality follows from 2M0 � M1 C M2, and the second
inequality follows from Lemma 7.3.4. Therefore, the optimal price for the supplier
is w�

0 D 3M1C3M2C4M0C10.1��/˛ˇc0

10.2��/˛ˇ
.

If 2M0 < M1 C M2, then �3M1�3M2C16M0�10˛ˇc0

3M1C3M2C14M0�20˛ˇc0
< 1

2
. Next when

0 � � � min

� �17M1 C 3M2 C 4M0 C 10˛ˇc0

10M1 � 10˛ˇc0
;

�3M1 � 3M2 C 16M0 � 10˛ˇc0

3M1 C 3M2 C 14M0 � 20˛ˇc0

�

;

similarly we find that 3M1C3M2C4M0C10.1��/˛ˇc0

10.2��/˛ˇ
� minf Ow1; Ow10g. Thus the optimal

price for the supplier is w�
0 D 3M1C3M2C4M0C10.1��/˛ˇc0

10.2��/˛ˇ
. When

min
� �17M1 C 3M2 C 4M0 C 10˛ˇc0

10M1 � 10˛ˇc0
;

�3M1 � 3M2 C 16M0 � 10˛ˇc0

3M1 C 3M2 C 14M0 � 20˛ˇc0

�

< � <
1

2
;

we find that 3M1C3M2C4M0C10.1��/˛ˇc0

10.2��/˛ˇ
> minf Ow1; Ow10g. Thus the revenue function is

increasing in w when c0 � w � minf Ow1; Ow10g, and the optimal price for the supplier
is w�

0 D minf Ow1; Ow10g. ut
Remark 7.3.8. (a) If 2M0 � M1 C M2, then w�

0 are increasing in �; if
2M0 < M1 C M2, then w�

0 is quasi-concave in �. (b) w�
0 is increasing in M1,

M2 and M0.

Proof. For (a), if 2M0 � M1 C M2, note that

@w�
0 .�/

�
D �10˛ˇc0.2 � �/ � Œ3M1 C 3M2 C 4M0 C 10.1 � �/˛ˇc0�.�1/

10.2 � �/2˛ˇ

D 3M1 C 3M2 C 4M0 � 10˛ˇc0

10.2 � �/2˛ˇ

� 0:

We find that w�
0 is increasing in �. If 2M0 < M1 C M2, when � >

�3M1�3M2C16M0�10˛ˇc0

3M1C3M2C14M0�20˛ˇc0
, w�

0 D Ow10 is decreasing in �. Thus w�
0 is quasi-concave

in �.
The proof for (b) is straightforward by noting that 3M1C3M2C4M0C10.1��/˛ˇc0

10.2��/˛ˇ
is

increasing in M1, M2 and M0, Ow1 is increasing in M1, and Ow10 is increasing in M0.
ut

Theorem 7.3.9. There is w�
1 � w�

2 < w�
0 :

Proof. First we prove

9�M1 � 9.1 � �/M2 C 2.7� � 2/M0 C �.32 � 13�/˛ˇc0

.�13�2 C 64� � 13/˛ˇ

� 3M1 C 3M2 C 4M0 C 10.1 � �/˛ˇc0

10.2 � �/˛ˇ
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by noting that

10.2 � �/Œ9�M1 � 9.1 � �/M2 C 2.7� � 2/M0 C �.32 � 13�/˛ˇc0�

�.�13�2 C 64� � 13/Œ3M1 C 3M2 C 4M0 C 10.1 � �/˛ˇc0�

D .�51�2 � 12� C 39/M1 C .�51�2 C 78� � 141/M2

C.�88�2 C 64� � 28/M0 C .190�2 � 130� C 130/˛ˇc0

� .190�2 � 130� C 130/.˛ˇc0 � M0/

� 0;

where the first inequality follows from Lemma 7.3.4 by noting that �51�2 �
12� C 39 � 0 and �51�2 C 78� � 141 � 0 when 0 � � < 1=2.

Further from (7.10), if � >
9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
, then

9�M1 � 9.1 � �/M2 C 2.7� � 2/M0 C �.32 � 13�/˛ˇc0

.�13�2 C 64� � 13/˛ˇ
� minf Ow1; Ow10g:

Finally since w�
0 � c0, we find that w�

2 � w�
0 . And furthermore, there is

w�
1 � w�

2 � w�
0 . ut

In Sect. 7.4 we will present the main result of this work, i.e., the wholesale price
negotiation. Notice that 2M0 � M1 C M2 implies 3M1 � 3M2 C 2M0 � 2˛ˇc0 > 0

in terms of Lemma 7.3.4. Without loss of generality, we only consider the case
2M0 � M1 C M 2 in Sect. 7.4.

7.4 Wholesale Price Negotiation

Since the supplier and manufacturers have different interest on the iron ore price,
they have to negotiate the final wholesale price. In this section we will characterize
the bargaining process in the negotiation of iron ore price. The rule of negotiation
follows from iterative procedure. In the first round of negotiation, the supplier first
negotiates with one manufacturer. If both of the two players agree with certain price,
then the price will be the final iron ore price. If no price is achieved, then the
supplier will negotiate with the other manufacturer. If any price is achieved, then
the bargaining is over and the price will be used as the final iron ore price. If the
negotiation fails, then the supplier has to negotiate with the first manufacturer again
and starts the second round of negotiation. The negotiation will go on following this
procedure. Specifically, we assume that there are N rounds of negotiation.

We apply Nash bargaining game to characterize the negotiation between the
supplier and any manufacturer. The Nash bargaining game requires us to identify
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a feasible set of payoffs and a disagreement point. Each player’s payoff is the
profit. And note that if the negotiation fails, then the final iron ore price can be
the negotiated price of the following bargaining. Thus we assume the disagreement
payoff allocation to be defined as the profit under the negotiated price got from
the following negotiation. For example, for the bargaining between the supplier
and manufacturer 1, the disagreement payoff for the two players are r1.w2/ and
r0.w2/ respectively, where w2 is the negotiated price during the following bargaining
between the supplier and manufacturer 2. However, during the last round of
negotiation, if still no price can be achieved, then the disagreement payoff is 0 for
any participant.

Thus for any given wholesale price w as the disagreement price, the objective
function of the Nash bargaining between manufacturer 1 and the supplier is given
as follows.

…1s.w1jw/ D Œ…1.w1/ � …1.w/�Œ…s.w1/ � …s.w/�:

Note that …1.w1/ � …1.w/ and …s.w1/ � …s.w/, otherwise there is no
need for the negotiation. In addition, recall that w�

1 , w�
2 and w�

0 are the optimal
prices for the two manufacturer and the supplier respectively. In terms of the
discussion in Theorem 7.3.5, the final negotiated price wNB

1 and wNB
2 should satisfy

w�
1 � wNB

1 � w�
0 and w�

2 � wNB
2 � w�

0 such that the results would make sense.
Let �1.w1jw/ be the feasible set for the negotiation with disagreement price w, then
�1.w1jw/ D fw1j…1.w1/ � …1.w/; …s.w1/ � …s.w/; w�

1 � wNB
1 � w�

0 g.
Similarly, given w the objective function of the Nash bargaining between

manufacturer 2 and the supplier is proposed as follows:

…2s.w2jw/ D Œ…2.w2/ � …2.w/�Œ…s.w2/ � …s.w/�:

And the feasible set is defined as �2.w2jw/ D fw2j…2.w2/ � …2.w/; …s.w2/ �
…s.w/; w�

2 � wNB
2 � w�

0 g:
Furthermore, in the last bargaining, if no agreement is achieved, then both the

bargainer can earn nothing. Thus the objective function is

…is.w/ D …i.w/…s.w/:

Next we derive the Nash bargaining solutions backwardly, i.e., we first study the
Nash bargaining of the last round of negotiation. There are two kinds of sequence
for the negotiation process, with one starting from the negotiation between the
supplier and manufacturer 1 and the other starting from the negotiation between
manufacturer 2 and the supplier.
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7.4.1 The Manufacturer Without Investment First Negotiates

If manufacturer 1 first joins the negotiation with the supplier, then in the last round
of negotiation, the last bargaining is between the supplier and manufacturer 2. The
optimization problem can be formulated as

max
w�

2 �w�w�

0

…2s.w/ D max
w�

2 �w�w�

0

…2.w/…s.w/:

Theorem 7.4.1. In the last round of negotiation and the last bargaining between the
supplier and manufacturer 2, there is unique Nash bargaining solution wNB

2 given
by the first order condition

@…2s.wNB
2 /

@w
D …0

2.w
NB
2 /…s.w

NB
2 / C …0

s.w
NB
2 /…2.wNB

2 / D 0;

where w�
2 � wNB

2 � w�
0 . Specifically,

(i) If 0 � � � 32�3
p

95
13

, then wNB
2 is the smallest real root.

(ii) If 32�3
p

95
13

< � < 1
2
, then wNB

2 is the middle real root.

Proof. Taking derivatives of f2.w/ on w yields

@…2s.w/

@w
D …0

2.w/…s.w/ C …0
s.w/…2.w/

@2…2s.w/

@w2
D …00

2 .w/…s.w/ C …00
s .w/…2.w/ C 2…0

2.w/…0
s.w/:

Quadratic function …s.w/ � 0 is increasing and concave in w when w�
2 � w � w�

0 ,
and has two zero point c0 and 3M1C3M2C4M0�5�˛ˇc0

5.2��/˛ˇc0
. Further it is straightforward

to show that …2.w/ also has two zero points. Thus there are four zero points for
quartic function …2s.w/. And the first order condition @…2s.w/

@w D 0 yields three real
roots. Next note that the properties of manufacturer 2’s profit function depends on
the investment ratio �.

If 0 � � < 32�3
p

95
13

, then it has been shown that …2.w/ is decreasing and
convex in w when c0 D w�

2 � w � w�
0 � minfw0

1; w0
10g. Since …2.w/ > 0 when

c0 � w � w�
0 , the two zero points of quadratic function …2.w/ are larger than w�

0 .
Further since the zero point of …s.w/, 3M1C3M2C4M0�5�˛ˇc0

5.2��/˛ˇc0
, is larger than w�

0 , there
is only one zero point c0 for …2s.w/ D …2.w/…s.w/ when c0 � w � w�

0 . Next,

note that @…2s.c0/

@w D …2.c0/…0
s.c0/ > 0 and @…2s.w

�

0 /

@w D …0
2.w

�
0 /…s.w�

0 / < 0. Thus
the quadratic function …2s.w/ � 0 is quasiconcave in w when c0 � w � w�

0 .
Finally we find that the optimal wholesale price wNB

2 is given by the first order
condition …0

2.w/…s.w/ C …0
s.w/…2.w/ D 0. And based on above analysis we find

that c0 � wNB
2 � w�

0 is the smallest real root.
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If � D 32�3
p

95
13

, then …2.w/ � 0 is linearly decreasing in w when c0 D w�
2 �

w � w�
0 . Since …s.w/ � 0 is increasing and concave in w, we find that …2s.w/

is concave in w. Further due to @…2s.c0/

@w D …2.c0/…0
s.c0/ > 0 and @…2s.w�

0 /

@w D
…0

2.w
�
0 /…s.w�

0 / < 0, we find that the optimal wholesale price is given by the first
order condition, which is a quadratic function with two solutions. Since the zero
point of …2.w/ is larger than w�

0 , the optimal solution c0 � wNB
2 � w�

0 is the smaller
real root.

If 32�3
p

95
13

< � � minf 9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
; 1

2
g, then …2.w/ � 0 is decreasing

and concave in w when c0 D w�
2 � w � w�

0 . Since …s.w/ � 0 is increasing and
concave in w, we find that …2s.w/ is concave in w when c0 � w � w�

0 . Further

due to @…2s.c0/

@w D …2.c0/…0
s.c0/ > 0 and @…2s.w�

0 /

@w D …0
2.w�

0 /…s.w�
0 / < 0, we find

that the optimal wholesale price can be computed by the first order condition, which
is a cubic function with three solutions. Since c0 is between the two zero points of
…2.w/, c0 is the second zero point of …2s.w/. Thus c0 � wNB

2 � w�
0 is the middle

real root of the first order condition.
If minf 9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
; 1

2
g < � < 1

2
, then …2.w/ � 0 is concave in

w, and when w�
2 � w � w�

0 , …2.w/ is decreasing and concave in w. Since
…s.w/ � 0 is increasing and concave in w, we find that …2s.w/ is concave in

w when w�
2 � w � w�

0 . Finally due to @…2s.w�

2 /

@w D …0
s.w

�
2 /…2.w�

2 / > 0 and
@…2s.w�

0 /

@w D …0
2.w

�
0 /…s.w�

0 / < 0, the optimal wholesale price is given by the first
order condition. Notice that c0 is still between the two zero points of r2.w/. Hence,
c0 is the second zero point of …2s.w/. Further since the larger zero points of …2.w/

and …s.w/ are larger than w�
0 , w�

2 � wNB
2 � w�

0 is the middle real root of the first
order condition. ut

Next we study the negotiation between manufacturer 1 and the supplier. The
disagreement payoff is the profit with iron ore price wNB

2 obtained in Theorem 7.4.1.
Thus the optimization problem is

max
w12�1.w1jwNB

2 /

…1s.w1jwNB
2 / D max

w12�1.w1jwNB
2 /

Œ…1.w1/�…1.w
NB
2 /�Œ…s.w1/�…s.w

NB
2 /�:

Lemma 7.4.2. In the last round of negotiation between the supplier and
manufacturer 1, there is unique Nash bargaining solution w�

1 .wNB
2 / D wNB

2 .

Proof. Since …1.w/ is decreasing in w and …s.w/ is increasing in w when c0 D
w�

1 � w � w�
0 , we find that �1.w1jwNB

2 / D fw1jw1 D wNB
2 g. Thus the Nash

bargaining solution for the negotiation between manufacturer 1 and the supplier is
w�

1 .wNB
2 / D wNB

2 . ut
Next we continue discussing the bargaining backwardly, i.e., the negotiation

between manufacturer 2 and the supplier in the second last round. The disagreement
payoff is the profit with iron ore price w�

1 .wNB
2 / D wNB

2 . Thus the optimization
problem is

max
w22�2.w2jwNB

2 /

…2s.w2jwNB
2 / D max

w22�2.w2jwNB
2 /

Œ…2.w2/�…2.wNB
2 /�Œ…s.w2/�…s.w

NB
2 /�:
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Lemma 7.4.3. In the second last round of negotiation between the supplier and
manufacturer 2, there is unique Nash bargaining solution w�

2 .wNB
2 / D wNB

2 .

Proof. We also discuss the Nash bargaining solution in terms of different �. First
note that w�

2 � wNB
2 � w�

0 .

If 0 � � � min
n

9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
; 1

2

o
, then …2.w/ is decreasing in w when

c0 D w�
2 � w � w�

0 . Further since …s.w/ is increasing in w when w�
2 � w � w�

0 ,
we find that �2.w2jwNB

2 / D fw2jw2 D wNB
2 g. Thus the Nash bargaining solution is

w�
2 .wNB

2 / D wNB
2 .

If min
n

9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
; 1

2

o
< � < 1

2
, then …2.w/ is concave in w, and

decreasing in w when w�
2 � w � w�

0 . Further since …s.w/ is increasing in w when
w�

2 � w � w�
0 , we find that �2.w2jwNB

2 / D fw2jw2 D wNB
2 g. Thus the Nash

bargaining solution is w�
2 .wNB

2 / D wNB
2 . ut

From Lemmas 7.4.2 and 7.4.3, the Nash bargaining solution will remain
unchanged if we proceed the analysis backwardly. Therefore, for the price nego-
tiation starting from the bargaining between manufacturer 1 and the supplier, we
find the final negotiated price as follows.

Theorem 7.4.4. If the iron ore price negotiation starts from the bargaining between
the supplier and manufacturer 1 who has no investment on the iron ore, then the final
negotiated price is wNB

2 .

7.4.2 The Manufacturer with Investment First Negotiates

If manufacturer 2 first joins the negotiation with the supplier, then in the last round
of negotiation, the last bargaining is between the supplier and manufacturer 1. The
optimization problem can be formulated as

max
w�

1 �w�w�

0

…1s.w/ D max
w�

1 �w�w�

0

…1.w/…s.w/

D max
w�

1 �w�w�

0

�
.M1 � ˛ˇw/2

4ˇ
C ŒM0 C �˛ˇc0 � .1 C �/˛ˇw�2

9ˇ

�

� .1 � �/˛.w � c0/

6
Œ3M1 C 3M2 C 4M0

�5�˛ˇc0 � 5.2 � �/˛ˇw�:

Theorem 7.4.5. In the last round of negotiation and the last bargaining between the
supplier and manufacturer 1, there is unique Nash bargaining solution wNB

1 given
by the first order condition

@…1s.wNB
1 /

@w
D …0

1.wNB
1 /…s.w

NB
1 / C …0

s.w
NB
1 /…1.w

NB
1 / D 0;

where c0 � wNB
1 � w�

0 is the only real root.
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Proof. Taking derivatives of …1s.w/ on w yields

@…1s.w/

@w
D …0

1.w/…s.w/ C …0
s.w/…1.w/:

When c0 D w�
1 � w � w�

0 , …s.w/ is increasing and concave in w, and …1.w/ is
decreasing and convex in w. Since …1.w/ > 0 for all w, there are two zero points for
…1s.w/ and only one real root for @…1s.w/

@w D 0. Since @…1s.c0/

@w D …1.c0/…0
s.c0/ > 0

and
@…1s.w�

0 /

@w D …0
1.w�

0 /…s.w�
0 / < 0, …1s.w/ is unimodal when c0 � w � w�

0 . Thus
the optimal iron ore price is the only real root of the first order condition. ut

Next we study the negotiation between manufacturer 2 and the supplier. The
disagreement payoff is the profit with iron ore price wNB

1 obtained in Theorem 7.4.5.
Thus the optimization problem is

max
w22�2.w2jwNB

1 /

…2s.w2jwNB
1 / D max

w22�2.w2jwNB
1 /

Œ…2.w2/�…2.w
NB
1 /�Œ…0.w2/�…0.wNB

1 /�:

Lemma 7.4.6. In the last round of negotiation between the supplier and manufac-
turer 2, there is unique Nash bargaining solution w�

2 .wNB
1 / D wNB

1 .

Proof. The proof is also in terms of different �.

If 0 � � � min
n

9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
; 1

2

o
, then …2.w/ is decreasing in w when

c0 D w�
2 � w � w�

0 . Further, since …s.w/ is increasing in w when c0 � w � w�
0 ,

we find that �2.w2jwNB
1 / D fw2jw2 D wNB

1 g. Thus the Nash bargaining solution is
w�

2 .wNB
1 / D wNB

1 .

If min
n

9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
; 1

2

o
< � < 1

2
, we first show

wNB
1 > w�

2 D 9�M1 � 9.1 � �/M2 C 2.7� � 2/M0 C �.32 � 13�/˛ˇc0

.�13�2 C 64� � 13/˛ˇ

by

@…1s.w�
2 /

@w
> 0:

When min
n

9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
; 1

2

o
< � < 1

2
, …2.w/ is concave in w, and hence

decreasing in w when w�
2 � w � w�

0 . Further, since …0.w/ is increasing in w
when w�

2 � w � w�
0 , we find that �2.w2jwNB

1 / D fw2jw2 D wNB
1 g. Thus the Nash

bargaining solution is w�
2 .wNB

1 / D wNB
1 . ut

Next we continue discussing the bargaining backwardly, i.e., the negotiation
between manufacturer 1 and the supplier in the second last round. The disagreement
payoff is the profit with iron ore price w�

2 .wNB
1 / D wNB

1 . Thus the optimization
problem is

max
w12�1.w1jwNB

1 /

…1s.w1jwNB
1 / D max

w12�1.w1jwNB
1 /

Œ…1.w1/�…1.wNB
1 /�Œ…s.w1/�…s.w

NB
1 /�:
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Lemma 7.4.7. In the second last round of negotiation between the supplier and
manufacturer 1, there is unique Nash bargaining solution w�

1 .wNB
1 / D wNB

1 .

Proof. Since …1.w/ is decreasing in w and …s.w/ is increasing in w when
c0 D w�

1 � w � w�
0 , we find that �1.w1jwNB

1 / D fw1jw1 D wNB
1 g. Thus the Nash

bargaining solution for the negotiation between manufacturer 1 and the supplier is
w�

1 .wNB
1 / D wNB

1 . ut
From Lemmas 7.4.6 and 7.4.7, the Nash bargaining solution will remain

unchanged if we proceed the analysis backwardly. Therefore, for the price nego-
tiation starting from the bargaining between manufacturer 2 and the supplier, we
find the final negotiated price as follows.

Theorem 7.4.8. If the iron ore price negotiation starts from the bargaining between
the supplier and manufacturer 2 who has investment on the iron ore, then the final
negotiated price is wNB

1 .

7.5 Numerical Examples

In this section some numerical examples are given to illustrate the theoretical results
of this chapter. The computational analysis are conducted from two folds. First, we
investigate the impact of investment ratio � on the optimal wholesale price of the
three players and on the final bargaining price. Second, we explore the impact of the
unit steel production cost c on optimal wholesale price of the three players and on
the final bargaining price.

Based on the theoretical analysis above, the investment ratio of player 2 is
assumed as � 2 Œ0; 0:5/. Let M1 D 900, M2 D 1;100 and M0 D 1;000 (dollar)
be the market size respectively. The other parameters in the example are given as
follows: c0 D 100, ˛ D 2 and ˇ D 1.

Firstly we examine the impact of manufacturer 2’s investment ratio on the
optimal wholesale price of each player. � gets values in the interval Œ0; 0:5�.
Figure 7.1 illustrate the results derived in Sect. 7.3.2. Specifically,

• The optimal iron ore price for player 2, w�
2 , is equal to c0 when

� � 9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
.

• The optimal iron ore price for player 2, w�
2 , is larger than c0 and increasing in �

when 9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
� � < 1

2
.

• The optimal iron ore price for the supplier, w�
0 , is increasing in �.

Then we study the impact of manufacturer 2’s investment ratio on the negotiated
iron ore price for each of the bargaining sequence. Figure 7.2 illustrates that
wNB

1 < wNB
2 .

Furthermore, the optimal profits under different bargaining sequences are exam-
ined. Specifically, we first show the impact of manufacturer 2’s investment ratio on
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the optimal profit with negotiated iron ore price wNB
1 . Figure 7.3 illustrates that if

the negotiation starts between the supplier and manufacturer 2, then

• The optimal profit of manufacturer 1 is slightly decreasing in �.
• The optimal profit of the supplier is decreasing in �.
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Fig. 7.3 The optimal profit with negotiated iron ore price wNB
1

• The optimal profit of manufacturer 2 is increasing in �, and will be larger than
that of the supplier when � becomes high enough.

Then we show the impact of manufacturer 2’s investment ratio on the optimal
profit with negotiated iron ore price wNB

2 . Figure 7.4 illustrates that if the negotiation
starts between the supplier and manufacturer 1, then:

• The optimal profit of manufacturer 1 is decreasing in �.
• The optimal profit of the supplier is first slightly increasing and then decreasing

in �.
• The optimal profit of manufacturer 2 is increasing in �, and will be larger than

that of the supplier when � becomes high enough.

Finally we examine all the bargaining sequences each manufacturer or the
supplier prefers. The results are shown in Figs. 7.5–7.7. We find that:

• Manufacturers 1 and 2 prefer the negotiation starting between the supplier and
manufacturer 2

• The supplier prefers the negotiation starting between the supplier and
manufacturer 1
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7.6 Concluding Remarks

In this chapter we seek to provide some insights for the annual international iron
ore price negotiation by studying a one-supplier two-manufacturers supply chain, in
which manufacturer 2 has investment on the supplier while manufacturer 1 does not.
Firstly we establish a quantity competition model to derive the optimal production
quantity of each manufacturer, and further the preferred iron ore price for each
player in the supply chain. Next we extend the results of Nash bargaining to two
sequences of Nash bargaining. The results show that the investment on iron
ore brings more advantages to manufacturer 2 in the quantity competition
as well as the iron ore price negotiation. More specifically, relative to
manufacturer 1, manufacturer 2 can afford higher iron ore price, and obtain
higher profit. Furthermore, when the investment is high enough, the final profit
of manufacturer 2 exceeds that of the supplier.

The future research is mainly related to the practice of iron ore price negotiation.
Firstly, in the real steel market, Chinese manufacturers provide steel of low

quality while Japanese manufacturers provide high-quality steel. In other words, the
two manufacturers compete in different levels of market, and hence obtain different
profit margins.

In addition, in the real iron ore price negotiation, there are more than
one supplier. A more reasonable model is to consider the two-suppliers and
two-manufacturers case. The two suppliers have different production cost and
provide different supply in the market. Therefore, new framework should be
established for the new relationships among the manufacturers and the suppliers.

Appendix

Proof of Theorem 7.3.5. For manufacturer 1, taking derivative of …1.w/ yields

@…1.w/

@w
D .4�2 C 8� C 13/˛2ˇ

18
w � ˛Œ9M1 C 4.1 C �/M0 C 4�.1 C �/˛ˇc0�

18
:

Clearly the revenue function is convex in w, and the minimizer of the revenue
function is 9M1C4.1C�/.M0C�˛ˇc0/

.9C4.1C�/2/˛ˇ
where 9M1C4.1C�/.M0C�˛ˇc0/

.9C4.1C�/2/˛ˇ
> minf Ow1; Ow10g.

Thus …1.w/ is decreasing in w when c0 � w � minf Ow1; Ow10g. Then the optimal iron
ore price for manufacturer 1 is w�

1 D c0 and the optimal revenue of manufacture 1

is …1.w�
1 / D .M1�˛ˇc0/2

4ˇ
C .M0�˛ˇc0/2

9ˇ
.

For manufacturer 2, first taking derivatives of …2.w/ yields

@…2.w/

@w
D .13�2 � 64� C 13/˛2ˇ

18
w

C ˛

18
Œ9�M1 � 9.1 � �/M2 C 2.7� � 2/M0 C �.32 � 13�/˛ˇc0�
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and

@…2
2.w/

@w2
D .13�2 � 64� C 13/˛2ˇ

18
:

Thus the revenue function is a quadratic function, or linear function of w when

� D 32�3
p

95
13

. The optimal price, w�
2 , depends on the coefficient of the function as

follows.
If 0 � � < 32�3

p
95

13
, then 13�2 � 64� C 13 > 0 and hence …2.w/ is convex.

Furthermore, the w that minimizes the revenue function is

�9�M1 � 9.1 � �/M2 C 2.7� � 2/M0 C �.32 � 13�/˛ˇc0

.13�2 � 64� C 13/˛ˇ
:

We seek to prove

�9�M1�9.1��/M2C2.7��2/M0C�.32�13�/˛ˇc0

.13�2�64�C13/˛ˇ
� M0C�˛ˇc0

.1C�/˛ˇ
D Ow10:

(7.9)

It follows from

�Œ9�M1 � 9.1 � �/M2 C 2.7� � 2/M0 C �.32 � 13�/˛ˇc0�.1 C �/

�.13�2 � 64� C 13/.M0 C �˛ˇc0/

D �9�.1C�/M1C9.1��/.1C�/M2C.�27�2C54��9/M0�45�.1��/˛ˇc0

� 45�.1 � �/M0 � 45�.1 � �/˛ˇc0

� 0:

Where the first inequality follows from Lemma 7.3.4. Thus …2.w/ is decreasing
when c0 � w � Ow10, and the maximizer of …2.w/ is w�

2 D c0. Furthermore, the

optimal revenue of manufacturer 2 is …2.w�
2 / D .M2�˛ˇc0/2

4ˇ
C .M0�˛ˇc0/2

9ˇ
.

If � D 32�3
p

95
13

, since

@…2.w/

@w
D ˛

18
Œ9�M1 � 9.1 � �/M2 C 2.7� � 2/M0 C �.32 � 13�/˛ˇc0�

� �.13�2 � 64� C 13/.M0 C �˛ˇc0/

1 C �

D 0:

Where the first inequality follows from (7.9). We find that …2.w/ is decreasing in w
and hence the optimal price is w�

2 D c0.
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If 32�3
p

95
13

< � < 1
2
, then 13�2 � 64� C 13 < 0 and hence …2.w/ is concave

in w. The maximizer of …2.w/ is 9�M1�9.1��/M2C2.7��2/M0C�.32�13�/˛ˇc0

.�13�2C64��13/˛ˇ
.

If 3M1 � 3M2 C 2M0 � 2˛ˇc0 � 0, then 9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
� 1

2
and we

find that � < 1
2

� 9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
. Thus it is straightforward to verify

that 9�M1�9.1��/M2C2.7��2/M0C�.32�13�/˛ˇc0

.�13�2C64��13/˛ˇ
< c0. Finally we find that the revenue

function is decreasing in w when w � c0 and consequently the optimal price is
w�

2 D c0.
If 3M1 � 3M2 C 2M0 � 2˛ˇc0 > 0, then 9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
< 1

2
. Further we

find that 9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
� 13M0�13˛ˇc0

32M0�32˛ˇc0
D 13

32
> 32�3

p
95

13
from Lemma 7.3.4.

Next when 32�3
p

95
13

< � � 9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
, we find that

9�M1 � 9.1 � �/M2 C 2.7� � 2/M0 C �.32 � 13�/˛ˇc0

.�13�2 C 64� � 13/˛ˇ
� c0:

Thus the revenue function is decreasing in w when w � c0 and consequently the
optimal price is w�

2 D c0. When 9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
< � < 1

2
, in following ways

we verify

c0 <
9�M1 � 9.1 � �/M2 C 2.7� � 2/M0 C �.32 � 13�/˛ˇc0

.�13�2 C 64� � 13/˛ˇ
� minfw0

1; w0
10g:

(7.10)

The first inequality is straightforward. The proof for the maximizer less than or
equal to Ow10 follows from inequality (7.9). The rest proof is as follows

9�M1 � 9.1 � �/M2 C 2.7� � 2/M0 C �.32 � 13�/˛ˇc0 � .�13�2 C 64� � 13/M1

D .13�2 � 55� C 13/M1 � 9.1 � �/M2 C 2.7� � 2/M0 C �.32 � 13�/˛ˇc0

� .13�2 � 55� C 13/
2M0 C ˛ˇc0

3
C .23� � 13/M0 C �.32 � 13�/˛ˇc0

D 26�2 � 41� � 13

3
.M0 � ˛ˇc0/

� 0:

Where the first inequality follows from Lemma 7.3.4 and noting that
13�2 � 55� C 13 < 0 when � >

9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
� 13

32
. Therefore, inequality

(7.10) is true when 9M2C4M0�13˛ˇc0

9M1C9M2C14M0�32˛ˇc0
< � < 1

2
, and the optimal price for

manufacturer 2 is w�
2 D 9�M1�9.1��/M2C2.7��2/M0C�.32�13�/˛ˇc0

.�13�2C64��13/˛ˇ
. �





Chapter 8
Conclusions and Further Research Topics

Today’s operating environment calls for a supply chain design that is both secure
and resilient. The field of risk management in supply chain is young, growing, and
promising.

As we have discussed in previous chapters, a large amount of the literature have
been devoted to the study on risk analysis of supply chain models. Hence, we first
review the existing literature which is categorized into three kinds of perspectives:
modeling of decision maker’s risk preference, supply disruption management, and
financial risk measurement in supply chains. We further point out that within the
three perspectives of risk management in supply chains, the modeling of decision
maker’s risk preference has been studied a lot and many results have been obtained
to guide the practice. However, the analysis on the other two kinds of topics is still
in its infancy, and more efforts are needed from academia.

Under this background, this book mainly discusses the problems of risk analysis
of supply chain uncertainty and financial risk measurement. For each problem, we
provide feasible solutions and insights for managing risk in supply chains. However,
the new problem springsup on how such solutions can be evaluated. Works that
simply help managers to find a proper trade-off between the cost of solution and
the revenue are not enough. Therefore, it will become a hot topic to quantify the
benefits of these various solutions.

In this book we address a two-periods inventory control problems faced by a
retailer who is served by two unreliable suppliers. The retailer facing stochastic
demand needs to determine the sourcing strategy, i.e., which supplier to select and
further how much to order. For each period, we identify the conditions under which
the retailer will choose single sourcing or dual sourcing, and find that the supplier
selection process is the trade-off between the ordering cost and the randomicity
of the yield rate. Along this direction, we could further consider the Stackelberg
game in which the suppliers determine the wholesale price and then the retailer can
choose the sourcing strategy as well as the ordering quantity. In addition, issue of
yield information update could be incorporated into the supplier selection model.
Specifically, the retailer can collect the yield information after the first period,

J. Li et al., Risk Management of Supply and Cash Flows in Supply Chains,
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based on how many units the retailer ordered and actually delivered by the supplier.
The more the ordered units, then the more information about the yield rate of the
supplier is acquired. The optimal sourcing strategy and the ordering quantity need
to be computed in the new setting. We investigate not only the sourcing strategy of a
retailer but also the pricing strategies of the two suppliers under an environment
of supply disruption. We characterize the sourcing strategies of the retailer in a
centralized and a decentralized system. Based on the assumption of a uniform
demand distribution, we obtain an explicit form of solutions when the suppliers
are competitive in nature. Finally we devise a coordination mechanism to maximize
the profits of both the suppliers.

The book also studies the dynamic inventory control problem with cash flow
constraints and short-term financing. We derive the optimal inventory policy for
each period, and characterize the dependence of the firm’s optimal operational
policy on its financial status. As we have shown, many interesting issues remain
to be investigated. To make the model suit practice better, a holding cost rate h

and shortage cost rate b could be incorporated, and demands over periods could
be assumed not to be identically distributed. Furthermore, the modeling of decision
maker’s risk preference could be applied to study the risk-averse retailer here. We
will find that the optimal inventory control policy is still capital-dependent policy,
but more structural results are hard to obtain. We considered the model of inventory
financing. In reality, there is always a borrowing limit such that the lender could
avoid the risk of borrower bankruptcy.

By studying a one-supplier and two-manufacturers supply chain, the book further
dealt with the annual international iron ore price negotiation. The negotiation
process is modeled as two sequences of Nash bargaining. The results show that the
investment on iron ore brings more advantages to manufacturer 2 in the quantity
competition as well as the iron ore price negotiation. It also demonstrates the im-
portance of steel manufacturer considering more investment on iron ore. The future
research could be related to the practice of iron ore price negotiation. For example,
Chinese and Japanese steel manufacturers provide steel of different quality. Hence,
they compete in different market. In addition, there are more than one supplier in
the market as well as the negotiation. Therefore, more general model should be
established for the new relationships among the manufacturers and the suppliers.

In recent years, the development of B2B online exchanges has brought high
liquidity and hence more risks. Since it provides an alternative channel for the
traditional supply chain participants, it also could be applied to handle the supply
chain risks. Firms have began doing business through these markets. Also in
academia, we have seen some research works along this direction. Please see Seifert
et al. (2004); Wu et al. (2002) and Peleg and Lee (2002) for reference.

Finally, it can be found that implementing a supply chain–wide risk assessment
is a complex and difficult task. It is important for managers to understand risk
assessment along the supply chain and developing more practicable approaches
to guide the process. Therefore, it will be the future direction to investigate risk
implications of different network structures and to develop effective tools for
identifying and mitigating network-related risks, to quantify the benefits of the tools
and to find a proper trade-off between the revenue and the cost of tools.
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