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Preface

The unprecedented availability of data now affords the opportunity to improve
decision making and inform the scientific discovery of best practices for healthcare
delivery. This book will serve as a valuable reference for researchers interested
in a survey of the state of the art in healthcare operations research and methods
that can exploit the opportunities afforded by the available data. It is also intended
to be a resource for practitioners interested in identifying opportunities for the
implementation of operations research methods to improve healthcare operations. It
is suitable for use as a supplementary text for educators offering graduate or senior
undergraduate level classes in industrial engineering departments, schools of public
health, and business schools.

This book builds on a long history of research and practice involving the appli-
cation of operations research methods to healthcare delivery. Early work includes
inventory planning for blood banks, appointment scheduling at outpatient clinics,
and the deployment of emergency vehicles over a geographic region. In recent years
there has been a resurgence of interest in healthcare operations management. This
has been driven in part by rising costs of healthcare in many countries and concerns
about timely access and the quality of care. This book is a unique compilation of
chapters on emerging topics including optimization in resource-constrained settings,
modeling behavioral aspects of patient care, advances in supply chain management,
and the coordination of decision making among multiple parts of an integrated
health system. These new applications are, in turn, driving the development of new
simulation, optimization, and stochastic models and enriching the methodological
foundations of operations research.

Collectively, the chapters in this book address application domains including
inpatient and outpatient services, public health networks, supply chain management,
and resource-constrained settings in developing countries. Many of the chapters
provide specific examples or case studies illustrating the applications of operations
research methods across the globe, including Africa, Australia, Belgium, Canada,
the UK, and the USA. Chapters 1–4 review operations research methods that are
most commonly applied to healthcare operations management including queuing,
simulation, and mathematical programming. Chapters 5–7 address challenges
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vi Preface

related to inpatient services in hospitals such as surgery, intensive care units, and
hospital wards. Chapters 8–10 cover outpatient services, the fastest growing part
of many health systems, and describe operations research models for primary and
specialty care services and how to plan for patient no-shows. Chapters 12–16
cover topics related to the broader integration of health services in the context of
public health, including optimizing the location of emergency vehicles, planning
for mass vaccination events, and the coordination among different parts of a health
system. Chapters 17–18 address supply chain management within the hospitals, with
a focus on pharmaceutical supply management, and the challenges of managing
inventory for nursing units. Finally, Chaps. 19–20 provide examples of important
and emerging research in the realm of humanitarian logistics.

Ann Arbor, MI, USA Brian T. Denton
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Chapter 1
Improving Access to Healthcare: Models
of Adaptive Behavior

Carri W. Chan and Linda V. Green

1 Introduction

Demand for healthcare is increasing due to a growing and aging population,
making access to care more difficult. Beyond anecdotal evidence, there is increasing
empirical evidence of access problems, most notably through overcrowding in
emergency departments (EDs) (Burt and Schappert 2004; Committee on the Future
of Emergency Care in the United States 2007). While demand is increasing, the
supply of hospital beds, physicians, nurses, and other health resources remains
relatively stagnant or, worse, is potentially decreasing. It is already the case that
the supply of nurses is insufficient to meet demands (Chagaturu and Vallabhaneni
2005), and there are predictions of severe physician shortages in the coming years
(Cooper et al. 2002; Merritt et al. 2004; Salsberg and Forte 2002).

As a consequence of high demand and insufficient supply, many patients
experience delays in receiving treatment. The overall median wait to see an ED
physician increased from 22 min in 1997 to 30 min by 2004. Perhaps even more
alarmingly, the median wait for patients diagnosed with acute myocardial infarction
(AMI) (heart attacks) increased from 8 min in 1997 to 14 min in 2004 (Wilper et al.
2008). In one study of patients and their primary care physicians, 33% of patients
cited inability to get an appointment soon as a significant obstacle to care (Strunk
and Cunningham 2002). The average wait for a primary care appointment in the US
in 2001 was over 3 weeks (Murray and Berwick 2003). Sixty percent of physicians
reported being dissatisfied with delays (Poon et al. 2004).

C.W. Chan (�)
Columbia Business School, 410 Uris Hall, 3022 Broadway, New York, NY 10027, USA
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Delays can result in adverse patient outcomes such as increased mortality rates
and an overall reduction in quality of outcome (Rincon et al. 2010). For emergent
patients, such as those suffering AMI, timely access to care is imperative as even
delays on the order of minutes can increase mortality (Luca et al. 2004; Chan
et al. 2008; Buist et al. 2002; Yankovic et al. 2010). Delays can also result in
increased length of stay (LOS), resulting in patients consuming more resources and
further intensifying the problem. For example, delays in transfers from the ED to
the intensive care unit (ICU) have been shown to increase ICU and hospital LOS
(Chalfin et al. 2007; Renaud et al. 2009; Rivers et al. 2001).

As in other service environments, access problems may be due to uncontrollable
variability which can stem from arrival times of patients, differing treatment types
and times, staffing shortages, demand surges due to an epidemic, etc. The ability to
effectively react to and navigate through periods of high congestion is imperative to
ensuring timely patient access to care. Operations research models and methods can
be useful in doing just that.

There are a number of behavioral factors in the healthcare setting which
exacerbate access problems. One such factor is planned variability in capacity
due to physician preferences. For example, surgeons often have significant ability
to influence their own operating schedules. Most surgeons prefer operating in
the morning so they can see new patients in the afternoon. This often results in
surgeries being scheduled within a tight time window without adequate attention
to the variability of their durations. Not surprisingly, many surgeries get delayed
and recovery rooms get congested causing cancelations of subsequent surgeries.
Since inpatient beds are often reserved for surgical patients, these surgical delays
can translate into ED congestion due to the inability to move ED patients into
inpatient beds. In one noted hospital study, the level of ambulance diversions
(ambulances turned away from the ED) was better correlated with the variability
in the scheduled surgical load than with emergency admissions (McManus et al.
2003). While some variability in the surgical schedule is certainly unavoidable,
there is potential to utilize better scheduling of elective admissions to smooth load
variability (Litvak et al. 2005). For instance, using stochastic linear programming,
Denton et al. (2010) consider how to assign surgeries to various specialties and
how to determine the number of operating rooms (ORs) to open given unavoidable
uncertainty in the duration of various surgeries. Price et al. (2011) use integer
programming methods to improve scheduling the OR and reduce boarding of
patients in the postanesthesia recovery room due to ICU congestion. In fact, there
has been considerable operations literature dealing with surgical scheduling (see
Cardoen et al. (2009) and related references).

In this chapter, we will focus on a distinctive and prevalent characteristic of
healthcare delivery systems-adaptive behavior. There has been growing evidence
that patients and providers dynamically alter their behavior based on congestion
and backlogs. These adaptive behaviors have been observed in both outpatient
and inpatient settings. For instance, if patients have to wait a long time for an
appointment with a physician, they may cancel at the last minute or just not show
up (Galucci et al. 2005). When delays in the ED are long, patients are more likely to
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leave without being seen, even though they require care (Fernandes et al. 1997).
Hospital EDs sometimes adapt to increasing backlogs by diverting ambulances
away from the ED, effectively reducing patient arrivals and ED load (Kolker 2008).
Though some of these behaviors may reduce the system workload, some adaptive
behavior may actually worsen the situation. In one study of a hospital ED, nurses
were found to be more likely to not show up for work when the anticipated patient
load was higher, creating an even larger imbalance between supply (nurses) and
demand (patients) (Green et al. 2011).

In the inpatient environment, providers are often faced with the difficult task
of caring for more patients than their resources allow and, hence, adopt practices to
attempt to mitigate these high-stress periods. For instance, physicians may discharge
patients early from an ICU when it is full and space is needed for new patients (Kc
and Terwiesch 2009). If there is no room in a hospital stroke unit at the time of
a stroke patient’s arrival, the patient may be placed in a less specialized unit which
could result in a longer LOS and a poorer clinical outcome (Yankovic 2009). Indeed,
patients are often assigned to less appropriate clinical units due to congestion in the
desired unit.

Adaptive behavior can sometimes amplify system workload and/or variability
creating additional problems; alternatively, adaptive behavior may alleviate conges-
tion when it is most critical to do so. In any case, it is clear that adaptive behavior
can significantly affect patient access, operational efficiency, and clinical outcomes.
Yet the potential impact of adaptive behavior has not generally been explicitly
considered in the operations research literature.

There is a need to develop models to account for adaptive behavior by patients
and physicians. These enhanced models can provide vital insight which can lead to
better policies and operational guidelines. The first step is to identify the adaptive
phenomenon and quantify its impact on patient care. Such an understanding will
provide a foundation to develop models and analyze operational policies which are
better able to deal with adaptive behavior.

The remainder of this chapter is organized as follows. In Sect. 2, we discuss how
to quantify the impact of adaptive behavior. Section 3 examines how to account
for this adaptive behavior when making decisions. Section 4 discusses dynamic
decision-making in the presence of this dynamic human behavior. Finally, Sect. 5
provides some closing remarks.

2 Quantifying the Impact of Adaptive Behavior

To develop models that allow us to ultimately identify policies and practices to
better manage healthcare systems that are subject to adaptive behavior, we must
first understand the nature and degree of adaptation. This requires empirical data
to quantify the manner in which patient and physician behavior adapts to slight
changes in a patient’s health status or in the presented workload of the healthcare
delivery system in question.
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Fig. 1.1 Observed no-show fraction values and the best-fit exponential functions for Columbia
MRI data as reported in Green and Savin (2008) and as reported in Galucci et al. (2005) (Reprinted
by permission, L.V. Green and S. Savin, Reducing delays for medical appointments: a queueing
approach, Operations Research, volume 56, issue 6 (November/December 2008). Copyright 2008,
the Institute for Operations Research and the Management Sciences, 7240 Parkway Drive, Suite
300, Hanover, MD 21076, USA)

2.1 Empirical Evidence: Adaptive Behavior of Patients

There has been growing empirical evidence of adaptive behavior in a number of
settings where patients react to delays. Using patient data, one can measure these
effects via statistical analysis such as linear regression.

There are a growing number of healthcare practices and outpatient facilities that
operate on an appointment basis. One of the difficulties faced by these facilities
is patients who make last-minute cancelations or fail to arrive to their scheduled
appointments. These patients are classified as “no-shows.” No-shows often waste
already limited physician availability since it is usually impossible to fill a last-
minute cancelation with another patient. This can result in significant monetary
losses (up to 14% of annual revenues) for the clinic (Moore et al. 2001) (See
Chap. 10 for more discussion on no-shows).

Empirical evidence has shown that the rate of no-shows increases with the
increase in appointment backlog, i.e., the longer a patient has to wait until their
appointment, the more likely he is to fail to show up. This phenomenon was
observed at a mental health clinic, an MRI facility, and a family practice clinic
(Galucci et al. 2005; Green and Savin 2008; Liu et al. 2010). In Green and Savin
(2008), data on the connection between the appointment backlog and the likelihood
of a patient no-show from both a mental health clinic and an imaging facility
were fit to an exponential function as depicted in Fig. 1.1. The percentage of no-
shows is monotonically increasing in backlog in these two independent data sets,
though the rates are quite different, as would be expected with such different patient
characteristics across the two facilities.

In another setting, there has been growing evidence that increased crowding in
the ED has resulted in an increase in patients who leave the ED without being seen
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Fig. 1.2 Length of stay (LOS) as a function of census. Note: census is defined as the number of
patients in the cardiac unit at the time a patient is admitted. Length of stay is the total number of
days a patient spends at the hospital. Dashed lines represent 95% confidence intervals (Reprinted
by permission, D. Kc and C. Terweisch, Impact of workload on service time and patient safety:
An econometric analysis of hospital operations, Management Science, volume 55, issue 9 (July
2009). Copyright (2009), the Institute for Operations Research and the Management Sciences
(INFORMS), 7240 Parkway Drive, Suite 300, Hanover, MD 21076, USA)

(Derlet and Richards 2000; Green et al. 2002; Fernandes et al. 1997). This often
means that patients who require care do not have the access they need (Baker et al.
1991).

2.2 Empirical Evidence: Adaptive Behavior of Physicians

Not only do patients react to the supply and demand mismatch, but physicians do
as well. Ideally, physicians should make decisions for the provision of care based
entirely upon medical and physiologic factors. Unfortunately, this is not always
possible due to resource constraints. With the increase in sophistication of electronic
medical record (EMR) systems and, subsequently, the increase in available patient
data, econometric tools can be used to estimate how capacity constraints influence
physician behavior. The general methodology begins with fitting a regression model
to the available data and examining the relationships between key variables.

Kc and Terwiesch (2012, 2009) examine the relationship between occupancy
levels and patient care. Using data from an ICU unit for cardiothoracic surgery
patients, they demonstrate that, after controlling for patient severity, a patient’s LOS
decreases as the unit occupancy level increases. This is illustrated in Fig. 1.2. This
supports anecdotal reports that patients are sometimes discharged prematurely in
order to accommodate new, more critical patients. We refer to such a discharge as a
demand-driven discharge.
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More generally, there is evidence that patients’ LOS in ICUs is influenced by bed
availability. There are a number of important research questions surrounding such
adaptive behavior:

1. Under what circumstances do physicians adapt LOS based on occupancy levels?
2. Does reduction in LOS adversely affect patient outcomes?
3. What policies might be employed to guide such adaptability so that operational

and clinical performance is improved?

In this section, we will focus on the first two questions; the third will be addressed
in Sect. 4. In addition to the effect of high occupancy levels on patient LOS, it may
also affect patient readmission likelihood due to the early discharge of patients.
However, there is an inherent endogeneity bias, since more severe patients are
likely to have longer LOS in the ICU and have higher readmission risks, which
could lead to a positive bias in estimating the effect of LOS on readmissions. The
exogenous factors affecting LOS variables that affect the time spent in the ICU, but
otherwise do not directly affect patient outcomes, constitute potential instrumental
variables (IVs) to mitigate the endogeneity bias. In particular, an indicator variable
which specifies whether or not the ICU is busy (i.e., at high occupancy levels)
upon discharge becomes a valid IV (see Wooldridge (2002) for details on this
methodology). Because operational factors are unlikely to be correlated with patient
medical factors, such as severity, which may affect patient outcomes, they can often
be used as instrumental variables to generate unbiased estimates of these outcomes.

In a study of cardiac surgical patients in a single hospital, a 10% increase in
occupancy level corresponded to a 20% decrease in ICU LOS a reduction of nearly
2.5 days (Kc and Terwiesch 2009). This shortened LOS corresponded to increases in
the likelihood of readmission. Specifically, being discharged 1 day earlier than one’s
expected LOS translated to an increase of 60% in the odds of being readmitted to the
ICU (Kc and Terwiesch 2012). This modification of patient LOS due to congestion
may initially free capacity in the ICU, but it can also negatively impact patient
outcomes in the long run.

2.3 Quantifying Effects via Modeling

Empirical models are able to quantify adaptive behavior under the conditions of the
particular patient setting in question. Randomized trials are generally not possible
in hospital settings where it could result in patients being denied needed treatment.
Hence, it can be difficult to empirically measure a variety of scenarios. By building
and analyzing models which incorporate this behavior, the impact of adaptive
behavior can be estimated for a wider range of scenarios.

Using the ICU described as an example, the first step is to build a stochastic
model of an ICU which incorporates the fact that patients may be demand-driven
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Fig. 1.3 Average probability of being demand-driven discharged for (A) 70% (B) 50% and (C)
30% scheduled patients and an ICU of size 13, 14, and 15 beds as reported in Dobson et al. (2009)
(Reprinted by permission, G. Dobson, H.-H. Lee, E. Pinker. A model of ICU bumping. Operations
Research, volume 58, issue 6 (November/December 2010). Copyright (2010), the Institute for
Operations Research and the Management Sciences (INFORMS), 7240 Parkway Drive, Suite 300,
Hanover, MD 21076, USA)

discharged. Such a model can be used to consider how changes in arrival patterns,
ICU capacity, and surgical schedules can affect the likelihood of being discharged
early.

In Dobson et al. (2009), it is assumed that patients are either scheduled or
unscheduled. The state of the system is given by the remaining LOS of the
patients who occupy the ICU. If a new patient arrives and there is no space
available, a current patient is demand-driven discharged to accommodate the new
patient. Using an aggregation–disaggregation technique to reduce computational
complexity, Dobson et al. calculate the desired performance metrics such as the
probability of being bumped and the expected number of days remaining when a
patient is bumped.

Figure 1.3 plots the probability of being discharged early for a number of
different scenarios with increasing ratio of unscheduled to scheduled cases and
increasing size of ICU. As expected, the probability of being bumped is lower
when there are more beds. Additionally, the likelihood of being demand-driven
discharged increases with the percentage of unscheduled patients who introduce
higher variability. One can also vary the number of days in a week that scheduled
patients can arrive (3, 5, or 7). Interestingly, when patients are scheduled on 3-
day plans, the probability of a demand-driven discharge is the lowest. One possible
explanation for this is that patient arrivals are more spread apart, allowing for
more time to recover from busy periods. Such analysis is useful for understanding
how various parameters and schedules affect the undesirable, yet unavoidable,
phenomenon of demand-driven discharges.



8 C.W. Chan and L.V. Green

3 Incorporating Adaptive Behavior into Decision-Making

Ignoring the impact of adaptive behavior may result in suboptimal operational
decisions, which can further amplify the supply and demand mismatch rather than
help alleviate it. We illustrate how to incorporate the impact of adaptive behavior in
both the outpatient and inpatient setting.

3.1 Accounting for No-Shows When Determining Patient
Panel Size

As mentioned previously, no-shows are prevalent in many outpatient settings,
particularly when the system is congested. Ignoring this phenomenon can hurt both
providers and patients. One example of this is in determining how large a patient
panel size a group of physicians can handle. Primary care practices and many
specialty care practices, such as cardiology, have a “patient panel” a set of patients
who receive their care from the practice on some regular basis. So in these practices,
patient panel size is the primary lever to align demand and supply in order to offer
timely access.

To identify a panel size that will result in short waits for appointments with
high probability, it is necessary to explicitly consider the nature and impact of
cancelations. Although some patients cancel their appointments far enough in
advance of their scheduled time to allow for a new appointment request to be
substituted, many practices experience a high level of patients who cancel too late
for this to happen or who simply do not show up at the scheduled time. This results
in the paradoxical situation where the physician may be idle for some significant
amount of time during the day while patient backlogs for appointments are long.
In addition, although some patients fail to appear at the appointed time because the
original reason for the visit no longer exists, other no-shows are due to personal
or work-related problems or to the patient’s decision to seek treatment elsewhere
rather than wait. In the latter situations, many no-shows schedule a new appointment
with their original physician. This is true even when they have sought treatment
elsewhere because it is common practice for clinics and emergency rooms to advise
the patient to see their own physician as well.

Green and Savin (2008) model a single-physician practice via a modified
M/D/1/K queue where patients arrive according to a Poisson process, service times
are deterministic, and there is a finite appointment backlog limit K such that any
patients who arrive when the queue length is K are “lost” in the sense that they are
not given an appointment and so potentially seek treatment elsewhere. For more
information on the standard M/D/1/K queue, we refer the reader to examine a book
on queueing, such as the one by Kleinrock (1975). The modified M/D/1/K model
approximates the no-show process by assuming that a customer who is scheduled
to begin service has a state-dependent probability of being a no-show, resulting in
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Fig. 1.4 Expected appointment backlog as a function of the patient panel size for the M/D/1/K
model with and without no-shows (using a no-show model based on an MRI facility data, assuming
20 slots per day, K = 400 appointment slots and a probability of rescheduling equal to 1) as
reported in Green and Savin (2008) (Reprinted by permission, L. V. and S. Savin, Reducing
delays for medical appointments: a queueing approach, Operations Research, volume 56, issue
6 (November/December 2008). Copyright 2008, the Institute for Operations Research and the
Management Sciences, 7240 Parkway Drive, Suite 300, Hanover, MD 21076, USA)

an idle period for the server and, with a fixed probability, the customer rejoining
the queue. The likelihood of no-show is nondecreasing in the number of patients
who are still in the backlog upon the appointment (i.e., service) time of the patient
in question. Such an approximation is able to capture wasted capacity by patient
no-shows as well as the increased likelihood of such events when the system is
more congested. Additionally, it allows for analytical tractability of the steady-state
behavior of the system.

Figure 1.4 compares the expected appointment backlog of the M/D/1/K queue
with and without no-shows. Using a no-show model calibrated from data of a MRI
facility, one can see that the impact of patient no-shows is very significant (Green
and Savin 2008). Since no-shows result in wasted appointment slots and rescheduled
appointments, they result in longer appointment backlogs and hence more no-shows.
Thus, there is an adverse feedback cycle and the backlog grows much more rapidly
than in a model without no-shows. Ignoring no-shows in a model of a clinic may
result in a physician electing to maintain a panel size that is too large to provide
timely access to care for his/her patients.

An increasingly important performance metric for access in this setting is
the probability of being able to get a same-day appointment. In fact, 33% of
patients reported that the “inability to get an appointment soon” inhibited access
to care (Strunk and Cunningham 2002). Figure 1.5 compares the probability of
getting a same-day appointment with and without no-shows. If no-shows are not
considered, the figure suggests that a panel size of 2,400 would provide timely
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Fig. 1.5 Probability of getting a same-day appointment as a function of the patient panel size for
the M/D/1/K model with and without no-shows (using a no-show model based on an MRI facility
data, assuming 20 slots per day, K = 400 appointment slots and a probability of rescheduling
equal to 1) as reported in Green and Savin (2008) (Reprinted by permission, L. V. and S. Savin,
Reducing delays for medical appointments: a queueing approach, Operations Research, volume
56, issue 6 (November/December 2008). Copyright 2008, the Institute for Operations Research
and the Management Sciences, 7240 Parkway Drive, Suite 300, Hanover, MD 21076, USA)

access since patients will be able to get a same-day appointment 80% of the
time. (This performance level would be consistent with data that suggests about
20% of appointments are for follow-up care and are scheduled weeks in advance.)
However, in actuality, this probability is likely to be close to 0, due to the no-
show phenomenon. Such an analysis highlights the importance of accounting for
the adaptive behavior of patients when making operational decisions.

4 Dynamic Policies Which Account for Adaptive Behavior

Along with macro-level decisions such as patient panel sizing, staffing levels, and
the number of beds, OR models can provide insights on how to dynamically account
for adaptive behavior and unavoidable periods where demand exceeds supply.

4.1 Accounting for No-Shows When Scheduling
Patient Appointments

An important aspect of outpatient clinic management is scheduling patients as
they call for appointments. As with panel size planning, patient no-shows are an
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important factor in crafting schedules so that the number of idle appointment slots
is minimized. Liu et al. (2010) analyze a dynamic scheduling model which captures
this no-show phenomenon. Each day, the appointment scheduler must determine
which day to assign to each patient who calls for an appointment. The longer a
patient waits for an appointment, the more likely she is to cancel or be a no-show. On
any given day, a scheduled patient can show up or not show up for her appointment
that day or cancel an appointment which may be on a future date.

This scheduling problem can be formalized as a dynamic optimization problem
in which the objective is to maximize the number of patients cared for each day
or, equivalently, minimize the number of idle slots without incurring high overtime
costs. There is an inherent trade-off between providing timely access for patients and
potentially incurring high overtime costs in order to ensure this versus allocating
a large amount of initial capacity which may end up being wasted if there is not
enough demand in a particular day. In principal, the optimal scheduling policy
can be determined using dynamic programming and numerical methods. However,
dynamic programming often suffers from the curse of dimensionality, and solving
such a recursion for problem sizes of interest is practically infeasible. An alternative
course of action is to develop heuristic algorithms.

Two simple heuristics are to optimize the scheduling policy assuming appoint-
ments depending on how quickly a patient must be seen (Liu et al. 2010). The first
heuristic, referred to as open access, requires appointments to be provided on the
current day. Hence, patients are guaranteed same-day appointments, even if this
requires the physician to spend significant overtime to treat all patients beyond the
initial allocated daily capacity. Another heuristic, the two-day policy, requires an
appointment to be provided on the current or following day. In doing so, it tries to
reduce overtime costs at the expense of immediate access.

These heuristics can serve as the basis for additional heuristics using policy
improvement. The policy improvement heuristic selects the best scheduling decision
in the current state under the assumption the suboptimal base policy is used for
all subsequent decisions. Hence, it is a one-step policy improvement over the base
heuristic (see Bertsekas (2005) for more details on this methodology). Finally, these
heuristics are compared to the following benchmarks: a threshold heuristic where
patients are scheduled on the earliest day with fewer than M patients scheduled,
a load balancing heuristic where patients are scheduled on the day with the
fewest appointments, and a random heuristic where patients are scheduled on a
random day.

Using data calibrated from empirical data of a family medicine clinic, Liu
et al. (2010) compares the performance of the proposed algorithms via simulation.
Table 1.1 summarizes the relative costs of the various heuristic policies in compar-
ison to the open access scheduling policy for various daily capacities (M) and cost
of scheduling one patient (h). Note that the number of patients scheduled in a day,
z, can be greater or less than M. If there are more patients than appointment slots
(z > M), all of these patients will be treated and overtime cost is incurred. This
is in contrast to the K in the M/D/1/K model of Sect. 3 as in that case, overtime
was not allowed. Smaller M suggests the clinic is more overloaded. The simulations
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Table 1.1 Simulation study results: percentage improvement of total reward (number of patients
served less daily fixed cost and scheduling cost) compared to open access scheduling for daily
capacity M and cost h for scheduling a patient as reported in Liu et al. (2010)

PI 2-day 2-day
PI open
access Threshold

Load
balancing Random

M = 55 h = 0 2.11 0.78 2.18 2.11 −6.30 −3.28
h = 0.2 4.10 3.23 3.08 3.25 −5.48 −1.53
h = 0.5 12.74 12.14 3.72 4.39 −5.48 2.68

M = 50 h = 0 6.77 2.75 5.42 6.45 −2.22 −1.20
h = 0.2 8.28 5.48 6.96 8.21 −1.09 0.50
h = 0.5 18.56 15.29 9.25 12.11 0.72 5.31

M = 45 h = 0 10.63 6.23 9.25 5.24 4.11 1.81
h = 0.2 13.35 9.13 11.53 6.28 4.91 3.28
h = 0.5 25.01 20.32 21.78 10.40 8.10 9.16

M = 40 h = 0 9.84 9.12 10.21 2.79 2.99 4.23
h = 0.2 13.03 12.48 13.69 3.57 3.83 6.05
h = 0.5 27.41 26.82 28.13 6.79 7.32 13.58

Adapted with permission from N. Liu, S. Ziya, V. G. Kulkarni. Dynamic scheduling of outpatient
appointments under patient no-shows and cancellations, Manufacturing & Service Operations
Research volume 12, issue 2 (October 2010). Copyright (2010), the Institute for Operations
Research and the Management Sciences, 7240 Parkway Drive, Suite 300, Hanover, MD 21076,
USA

suggest that the threshold heuristic, 2-day policy, and policy improvement heuristics
based on open access and the 2-day policy generate more revenue compared
to open access. Interestingly, even the Random heuristic sometimes outperforms
open access. In an underloaded system, open access would be optimal. Under
open access, all patients are scheduled on the current day, which minimizes their
likelihood of being a no-show. However, as the practice becomes more heavily
loaded, this will result in frequent overload, requiring physicians to work overtime,
thus incurring high costs. Hence, open access is not the best scheduling policy to
use in general.

4.2 Improving Demand-Driven Discharge Decisions

Inpatient care is another setting in which dynamic policies can be useful to provide
effective treatment. As an example, physicians are often faced with the difficult task
of determining whether and when to discharge an ICU patient early due to limited
bed availability. As seen in Sect. 2.2, there is empirical evidence that physicians
adaptively alter patient discharge times based on congestion levels.

Various factors can affect how often demand-driven discharges must occur
(Dobson et al. 2009). A natural question is how one should determine which patient
to discharge. Section 2.3 assumed that patients were discharged in order of shortest
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remaining LOS. However, given the natural variability in patient stays, this quantity
is not always known. Additionally, it ignores the potential impact of readmissions on
ICU congestion. In Chan et al. (2011), a dynamic optimization model is developed
to help guide such decisions.

The model in Chan et al. (2011) assumes that whenever a new patient arrives
and there are no available beds, a physician must decide which patient to discharge
in order to accommodate the new, higher acuity patient. Each patient is identified
by type, which specifies the expected initial ICU length of stay, the likelihood of
readmission upon a demand-driven discharge, and the expected ICU LOS upon
readmission. Any cost function which accounts for a patient’s disservice due to a
demand-driven discharge can be incorporated. A cost function which is estimable
from currently available data is given by the readmission load, i.e., expected ICU
treatment time required by the demand-driven discharged patient following the
initial discharge.

In principle the optimal policy can be computed numerically via dynamic pro-
gramming. Unfortunately, the size of the state space makes it practically infeasible
to solve. Utilizing properties of the optimal value function, the authors show that
the performance of a greedy heuristic, which discharges the patient with the lowest
readmission load, is a (ρ̂ + 1)-approximation for the optimal policy, where ρ̂ is a
measure of utility (Chan et al. 2011). Such a bound is useful to quantify the worse-
case performance of such a greedy policy.

Using patient data from seven different hospitals in a single hospital network,
Chan et al. simulate the performance of the greedy discharge policy relative to
several relevant benchmarks. In the medical community, the decision of which
patient to discharge is made by assessing which patient is the “least critical” (see,
for instance, Swenson (1992)) which can be somewhat subjective and is generally
not based upon quantitative measures. Each of the discharge policies studied below
can be interpreted as a measure of criticality:

• Probability of readmission index: Discharge the patient with the smallest proba-
bility of readmission. Readmitted patients tend to be more critical (see Durbin
and Kopel (1993)), so that the rationale here is that a lower likelihood of
readmission translates to lower patient criticality.

• Length-of-stay (LOS) index: Discharge the patient with the smallest remaining
service time. This policy thus equates criticality with the nominal LOS of a
patient. This policy is analyzed in Dobson et al. (2009) albeit for a model that
is agnostic to readmission loads.

• The greedy index: This is the proposed heuristic from Chan et al. (2011) which
prioritizes patients in increasing order of readmission load.

In addition to the preceding index rules, one can also consider a random policy.
Figure 1.6 compares the readmission load of the greedy heuristic compared to the

other benchmark policies. The savings relative to the next best policy corresponds
to 23.7 h over 1 week at a net patient arrival rate of λ = 0.021 (or 1 ICU bed out
of 10 for 1 day per week). Figure 1.7 shows the number of deaths per week for
the same discharge policies. One can see that the number of deaths is practically
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Fig. 1.6 Performance of greedy policy compared to benchmarks for various arrival rates and
distribution across patient types according to the proportions seen in the empirical data as reported
in Chan et al. (2011)
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Fig. 1.7 Number of deaths for greedy policy compared to benchmarks for various arrival rates and
distribution across patient types according to the proportions seen in the empirical data as reported
in Chan et al. (2011)
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identical for all policies, while the readmission load is very different. Hence,
without sacrificing patient quality, in terms of mortality, the greedy heuristic which
incorporates readmission risks can significantly reduce the patient load on the ICU
and subsequently increase the number of patients who receive critical care.

5 Conclusions and Future Research

As demonstrated in this chapter, behavior can have a significant impact on the
efficiency and effectiveness of healthcare delivery and so must be considered in
making both design and operational decisions. Operations research studies and
methodologies are needed to both understand the nature of adaptive behaviors and
identify policies that incorporate such behavior in order to improve access to care.
In addition to the examples presented here, there are several other important areas
of healthcare delivery where adaptive behavior is prevalent, providing potential
opportunities for future research.

One consequence of adaptive behavior is that the true service requirements and
arrival rates of patients may be censored. These potentially misleading measure-
ments of the system load make it difficult to assess the actual required capacity
requirements. Due to the chronic mismatch of supply and demand, much of
the observed behavior of healthcare systems do not accurately reflect the true
dynamics. Hence, there is a need to analyze the impact of adaptive behaviors on
patient demands and treatment times when estimating required capacity for many
healthcare resources (e.g., ICU beds, obstetric beds, surgical suites, primary care
physicians, nurses). For instance, ignoring endogenous nurse absenteeism can result
in understaffing (Green et al. 2011).

Adaptive behavior can also induce downstream effects which can create very
complex decision-making environments. For instance, when making demand-driven
discharges, one must account for the immediate impact on the discharged patient
as well as the propagation effects due to his potential readmission. This could be
expanded to consider how transferring patients to a less appropriate unit (i.e., an
intermediary care unit rather than an intensive care unit) impacts patient LOS and
outcomes.

There is significant heterogeneity in patient types. In Sect. 3, all patients were
assumed to have identical characteristics. However, patients are likely to have
different service requirements and/or no-show rates. Similarly, one could consider
appointment scheduling for two patient types: routine versus urgent patients as in
Dobson et al. (2011). This work does not account for the no-show phenomenon. An
interesting research direction would be to consider how to combine heterogenous
patients with the no-show phenomenon.

There has been a growing interest in the operations research community to
understand how human behavior impacts operations. Accounting for “behavioral
operations” when designing system can improve performance (Boudreau et al.
2003). A recent survey of this area emphasizes the need for experimental data to
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identify the impact of human behavior (Bendoly et al. 2006). While randomized
controlled experiments are often not possible in healthcare settings, adaptive
behavior can be measured from retrospective data as described in this chapter.

With an increase in the sophistication of electronic medical record systems, more
patient data is becoming available. Combining operations research methodologies
with real patient data will help facilitate the identification and modeling of adaptive
behaviors in various healthcare settings. Models that use real data to demonstrate
the impact of adaptive behavior and identify policies and practices that mitigate
the potentially negative consequences of these behaviors can be extremely useful
in improving access to healthcare. Moreover, it will provide further evidence and
credibility to physicians who may be considering making policy and practice
changes. There is a great deal of potential to significantly improve the operational
performance of healthcare systems and enable better access to patient care by ac-
counting for adaptive behavior when modeling, analyzing, and developing policies
for such systems.
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Chapter 2
Queueing Models for Healthcare Operations

Diwakar Gupta

1 Introduction

Queues form when entities that request service, typically referred to as customers,
arrive at a service facility and cannot be served immediately upon arrival. In health-
care delivery systems, patients are typically the customers and either outpatient
clinics or diagnostic imaging centers or hospitals are the service facilities. There are
also many atypical examples of customers and service facilities, as shown below.

Customers Service facility

Diagnostic images Radiology department
Doctors’ notes Coding department (for billing purposes)
Prescriptions Mail-order pharmacy
Transplant candidates Organ procurement organization

A service facility may consist of one or more service stations where customers
are served. Further, each service station may consist of one or more servers. For
example, the processing of diagnostic images may require two types of servers—
radiologists who read the images and transcribers who input radiologists’ dictated
notes into patient charts. Servers are often grouped by their expertise to form service
stations, although other configurations (e.g., multiple specialty teams of doctors
and nurses) are also prevalent. A common feature of the vast majority of queueing
models is that customers are discrete, and the number of customers waiting in the
service facility is integer valued.
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Queues are ubiquitous, particularly in healthcare delivery systems. At the same
time, queues are undesirable because delay in receiving needed services can
cause prolonged discomfort and economic loss when patients are unable to work
and possible worsening of their medical conditions that can increase subsequent
treatment costs and poor health outcomes. In extreme cases, long queues can delay
diagnosis and/or treatment to the extent that death occurs while a patient waits. For
example, there is a severe shortage of organs in the USA and many patients die
while waiting for suitable organs for transplant.

Given the negative consequences of queues in healthcare delivery systems, the
following questions naturally arise. Why do queues form? Why must customers wait
to be served? Which features of system design affect queueing and by how much?
What trade-offs must be considered by a service system architect when choosing
system parameters? This chapter attempts to provide answers to questions such
as these.

Although queues have existed as far back as historical records are available,
mathematical study of queues, called queueing theory, has been around since the
early 1900s. Works on the theory and applications of queueing systems have grown
exponentially since the early 1950s. It is neither possible nor the intent to provide
a summary of this vast body of literature in this chapter. For that, there are many
excellent books, both at the introductory and advanced levels—see, for example,
Bhat (2008), Cohen (1969), Cox and Smith (1961), Gross and Harris (1985), Morse
(1958), Newell (1982), Takacs (1962) and Wolff (1989). A review of papers that
attempts to tackle real queueing problems can be found in Worthington (2009).
This chapter provides a review of a few basic queueing models and discusses their
implications for healthcare operations management.

Borrowing terminology from the queueing literature, we shall henceforth use the
terms queueing system and service facility interchangeably. A queueing system has
the following elements:

1. Servicestations or workstations, their configuration, and routing protocols that
determine flow of customers from one station to another.

2. Number of servers at each station.
3. Service protocol at each station—a commonly used protocol is first in first out

(FIFO) because it is deemed to be fair (Larson 1987). However, it is not at all
uncommon to give higher priority to certain types of customers (often referred to
as classes in the queueing literature). For example, patients whose condition is
deemed critical by medical professionals generally bypass queues.

4. Service time distribution by customer class, server, and station.
5. Arrival process—the distributions of inter-arrival times, number of arrivals at

each arrival epoch, and arrival location.
6. Size of waiting room at each station. When waiting room is limited, either

customers are turned away or congestion at a downstream station causes blocking
at an upstream station.
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7. Protocols governing server absences and distributions of server vacations.
Vacation refers to a period of time when a server is not available, which could
happen for a whole host of reasons including activities such as attending to other
tasks and taking a break.

Suppose we observe arrivals and departures from a queueing system that starts
empty. The system may consist of an arbitrary number of stations with an arbitrary
number and configuration of servers at each station, customer classes, service
protocols, and sizes of waiting rooms. We treat the entire system as a black box.
An arrival to this system is either turned away on account of a full waiting room or
the arrival enters the system. The stream of arrivals that enter the queueing system is
characterized by arrival times a1 ≤ a2 ≤ ·· · ≤ a j ≤ ·· · , where a j denotes the arrival
epoch of the jth arrival in sequence, and corresponding service times (s1, . . . ,s j , . . .).
Each customer is served either as soon as it arrives or according to some service
protocol. Given this basic setup, queueing models are frequently used to characterize
the following stochastic processes:

Nq(t) = number of customers in queue at epoch t, (2.1)

N(t) = number of customers in the queueing system at epoch t. (2.2)

Clearly, N(t) = Nq(t)+ the number of customers receiving service at time t. Simi-
larly, for the jth customer, the quantities of interest are:

Wj = time in queue of the jth customer, (2.3)

D j = Wj + S j = total delay of the jth customer. (2.4)

Note that S j in the above expression denotes the random service time of the jth
customer. For queueing systems with finite waiting rooms, we are also interested in
the probability that an arrival is turned away.

The purpose of mathematical models of queues is to obtain closed-form or
recursive formulae that allow system designers to calculate performance metrics
such as average queue length, average waiting time, and the proportion of customers
turned away. We say that mathematical models are tractable when closed-form or
recursive formulae can be obtained, and in such cases the resulting expressions for
the performance metrics are referred to as “analytical results.” Note that it is always
possible to write equations that describe how the number of customers in each queue
in the queueing system of interest changes over time. Such equations can be used
to simulate a queueing system’s performance. In this chapter, the simulation-based
results are also referred to as numerical solutions.

In the vast majority of cases, analytical results are possible only for limiting
behavior (called steady state) of the above-mentioned performance metrics and in
particular for time-average or customer-average metrics, when such averages exist.
Specifically, steady-state analogs of Nq(t), N(t), Wj, and D j are obtained when
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either t → ∞ or j → ∞ and the limiting random variables exist. Loosely speaking,
steady-state performance refers to the performance of a system with time-stationary
parameters that has been in operation for a sufficiently long time such that time t
no longer affects the distributions of number in system, number in different queues,
waiting times, and total delay. In contrast, transient queues arise when either system
parameters are not time-stationary (therefore a steady state does not exist) or the
queueing system does not remain in operation long enough to reach a steady state.
If the purpose of the analysis is to obtain performance measures related to transient
queues, then that often requires numerical analysis. Many healthcare facilities, such
as outpatient clinics, are open for a fixed amount of time during the day and
experience time-varying customer arrival patterns. Emergency departments, on the
other hand, have demand that varies by the time of day, day of week, and month to
month. In such instances, a steady-state may not exist. Still, analysis of steady state
behavior can provide useful guidelines for making operational decisions.

Queueing systems in healthcare operations are complex. An example of patient
flows through various units of a particular hospital is shown in Fig. 2.1. In this
diagram, “out1” denotes the point of entry into the hospital and “out2” denotes the
departure point. Ovals represent service stations, each of which is either an inpatient
unit or a service department. The numbers shown in the ovals are ward numbers for
inpatient units. The rest of the labels can be explained as follows. CL denotes the
cath lab, DA refers to direct admits, ED is the emergency department, IR is the
interventional radiology department, and PACU is the postanesthesia care unit. The
numbers on the connecting arcs are the annual percent of patients that flow in and
out of each service station, and arrows show the direction of flow. Each service
station provides service to multiple customer classes with different service time
distributions (referred to as lengths of stay among inpatient units), different service
protocols, and different number of resources (e.g., beds, nurses, and physicians).

Queueing models for systems such as those shown in Fig. 2.1 are intractable
unless one makes a number of simplifying assumptions. For these reasons, queueing
systems as complex as those shown in Fig. 2.1 are not typically analyzed with the
help of mathematical models. Instead, discrete-event simulation, where a computer
samples values from different probability distributions to schedule events such as
patient arrivals or service completions and keeps track of relevant statistics, is used
to analyze such systems and obtain performance metrics. Discrete-event simulation
techniques are discussed in Chapter 3 of this book. We focus on relatively simpler
models that are tractable and provide useful insights for healthcare operations
managers.

The organization of the rest of this chapter is as follows. Basic notation and
terminology is introduced in Sect. 2. Single-station models are presented in two
sections: Sect. 3 considers models in which there is a single server at each station,
whereas Sect. 4 allows multiple servers. Basic results for queueing networks are
presented in Sect. 5, and priority queues are discussed in Sect. 6. We conclude the
chapter in Sect. 7.
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Fig. 2.1 Patient flows through a general hospital

2 Basics

Let Nq := limt→∞ Nq(t), N := limt→∞ N(t), W := lim j→∞ Wj, and D := lim j→∞ D j

denote steady-state distributions of quantities introduced earlier. It is assumed that
such limits hold with probability 1. Additionally, we define

L = E[N], (2.5)

Lq = E[Nq], (2.6)
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w = E[W ], and (2.7)

d = E[D] (2.8)

as time or customer averages. We also define A(t) = the number of customer arrivals
during (0, t] and λ = limt→∞ A(t)/t as the mean arrival rate. Then, a key result in
queueing theory, known as Little’s law, is the following relationship:

L = λ w. (2.9)

Little’s law is extremely useful for carrying out rough-cut capacity calculations.
Consider the following example. Suppose that an emergency department (ED) of a
hospital receives on average 50 new patients in each 24 h period. Of the 50 patients,
22 are discharged after examination and treatment in the ED. The remaining 28
are admitted to the hospital as inpatients for further observation and treatment. The
average length of inpatient stay is 3 days. Given this information, Little’s law allows
us to estimate that on average 84 inpatient beds would be needed to serve the needs
of patients that are admitted via the ED. This comes from observing that w = 3 days,
λ = 28 inpatients per day, and therefore, L = λ w = 84. Very few assumptions are
made when arriving at this result. For example, Little’s law remains valid regardless
of the priority of service of arriving patients and differences in their service times in
the ED.

Single-station queueing systems are often referred to by their four-part shorthand
notation A/B/m/K, where A and B describe the inter-arrival and service time
distributions, m ∈ {1, . . . ,} is the number of servers, and K ≥ m is the size of the
waiting room including customers in service. The fourth descriptor K is omitted
if there is no limit on the size of the queue. Typical values of A and B are as
follows: M for exponential, D for deterministic, Ek for Erlang with k phases, PH
for phase type, GI for general independent, and G for general. In this notation,
M/G/2/20 refers to a queueing system consisting of two servers at a single
station, exponential inter-arrival times, general service times, and a waiting room
capacity of 20.

Literature on queueing systems can be broadly divided into two categories: (1)
models that focus on steady-state behavior, that is, stationary distributions Nq, N,
D, and W , and (2) models that attempt to characterize transient behavior, that is
time-dependent distributions of the number of customers and their waiting times.
As mentioned earlier, the vast majority of analytical results pertain to steady-state
behavior. Queueing models may be further classified into single- or multiple-
station (network) models and those with single or multiple customer classes. In the
remainder of this chapter, we provide a summary of key results pertaining to steady-
state performance evaluation of single station (with single and multiple servers) and
network models. In both types of models, we assume that there is a single customer
class. Models with multiple customer classes and service priority are discussed
briefly in Sect. 6.
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3 Single-Station, Single-Server Models

Single-server queueing models with infinite queues are the workhorses of queueing
theory, and among this class of models, the most commonly studied models are the
M/M/1, M/G/1, and GI/G/1 models. The popularity of the first two models in
this list is in part due to the fact that they are mathematically tractable, which in turn
comes from the presence of Markovian property (the M in the model descriptor),
and in part from the fact that exponential distribution is a good fit for customer inter-
arrival times in many real systems. We describe key results for each of these systems
below. Details of analyses that lead to these results can be found in one of several
queueing theory books cited earlier. All of these models assume independent and
identically distributed inter-arrival and service times. We use the following notation
for reporting the key results:

p(n) = P(N = n), n = 0,1, . . . , the probability distribution of number in system
FS(x) = P(S ≤ x), x ≥ 0, the CDF of service time distribution
μ = 1/E[S], the mean service rate
ρ = λ/μ , the server utilization rate
FW (x) = P(W ≤ x), x ≥ 0, the probability distribution of customer wait time
FD(x) = P(D ≤ x), x ≥ 0, the probability distribution of customer delay
F∗(s) =

∫ ∞
0 e−sxdF(x), s ≥ 0, the Laplace–Stieltjes transform (LST) of CDF F(·)

P(z) = ∑∞
n=0 zn p(n), the z-transform or probability generating function of p(n)

When waiting room is infinite and ρ ≥ 1, queues can continue to grow over time.
If ρ > 1, this happens because for each unit of time that the server is available, the
average amount of work brought by new arrivals exceeds 1 unit. If ρ = 1, queues
can still continue to grow because randomness in inter-arrival and service times can
cause periods of server idling and the server can never make up for the lost work
time. Note that in this instance, for each unit of time that the server is available,
the average amount of work brought by new arrivals is exactly 1 unit. The effect
of periods of idleness is cumulative and queues continue to grow. In such cases,
stationary distributions of N and W do not exist. Therefore, we henceforth assume
ρ < 1 in all models with infinite waiting room. Finally, we need to specify the
service protocol in order to calculate the waiting time distribution. Throughout this
section and in Sects. 4 and 5, we assume the first-in-first-out (FIFO) protocol.

3.1 Models with Infinite Waiting Room

In this section, we discuss M/M/1, M/G/1, and GI/G/1 queueing models.
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The M/M/1 Model

In healthcare settings, the M/M/1 model may prove to be useful either because
it fits reality well or because it serves as a reasonable approximation for first-pass
analysis. For example, it may be a reasonable choice for modeling walk-in clinics,
pharmacy operations, and patient check-in and registration services at hospitals.
Similarly, even in situations where customer arrival and service rates vary over time,
M/M/1 models may be used to estimate capacity requirements to keep peak-period
congestion within tolerable limits.

The following distributions and mean performance metrics can be calculated for
M/M/1 queues from either Chapman–Kolmogorov equations, or an analysis of the
embedded Markov chain at customer arrival and/or departure epochs:

p(n) = (1−ρ)ρn, n = 0,1, . . . , (2.10)

E[N] =
ρ

1−ρ
, (2.11)

FD(x) = 1− e−μ(1−ρ)x, x ≥ 0, (2.12)

E[D] =
1

μ(1−ρ)
, and (2.13)

E[W ] =
ρ

μ(1−ρ)
. (2.14)

The analysis also utilizes an important property called PASTA—Poisson arrivals
see time averages. Loosely speaking, this property ensures that if system state were
observed at moments that coincide with Poisson arrivals, then system properties
calculated from these observations are also time average system properties. The
PASTA property greatly simplifies the analysis of Markovian queues.

Another important property of M/M/1 queues is that the distribution of the
number of departures from such queues is also Poisson with parameter λ . It should
be clear from the law of conservation of entities that the mean departure rate must
equal the mean arrival rate. It is interesting to find that the distribution of departures
is also identical to the distribution of arrivals. This property leads to a class of
tractable queueing network models called Jackson networks (see Sect. 5).

From expressions (2.11), (2.13), and (2.14), we observe that the expected number
in the system, the expected delay, and the expected waiting time are highly sensitive
to the server utilization rate. In particular, all three quantities are increasing in ρ
at an increasing rate, and as ρ → 1, all three quantities → ∞. This helps explain
the fundamental trade-off in queueing systems design. When service times and/or
inter-arrival times are random, higher server utilization (efficiency) comes at the
cost of increased congestion and customer waiting. High utilization rate may not
be economical in situations where waiting cost is very high, and conversely, excess
capacity may not be economical when resource cost is significantly higher than
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waiting cost. Upon knowing the cost of customer waiting and the cost of providing
service resources, designers can find the economic balance between congestion and
efficiency.

The M/G/1 Model

In many healthcare settings, it is not appropriate to assume exponentially distributed
service times. For example, service times for flu shots, lab services (blood draws),
and magnetic resonance imaging (MRI) may not vary much from one patient
to another. In the case of surgery practices, it is often found that the lognormal
distribution provides a good fit for surgery durations. In such cases, service times
may be better modeled by a distribution other than exponential, and the M/G/1
model may be more appropriate for calculating queue length and waiting time
statistics. For the M/G/1 model, the following results have been established:

P(z) =
(1−ρ)(z− 1)F∗

S (λ −λ z)

z−F∗
S (λ −λ z)

, (2.15)

E[N] =
λ 2E[S2]

2(1−ρ)
+ρ , (2.16)

F∗
D(s) =

(1−ρ)sF∗
S (s)

s−λ (1−F∗
S (s))

, (2.17)

E[D] =
λ E[S2]

2(1−ρ)
+E[S], (2.18)

E[W ] =
λ E[S2]

2(1−ρ)
. (2.19)

Higher moments of the distribution of the number in system and customer delay
can be obtained by differentiating P(z) and F∗

D(s). Also, distributions of N and D can
be computed numerically by utilizing recent developments in the area of numerical
inversions of transforms (see, e.g., Abate and Whitt 1992). However, closed-form
expressions for the distribution of N and D are difficult to obtain except for some
specific service time distributions.

Expressions (2.16), (2.18), and (2.19) can be recast by expressing E[S2] in terms
of C2

s , the squared coefficient of variation of service times. Note that the squared
coefficient of variation of a random variable is the ratio of its variance to square of
its mean. In particular, the expected waiting time expression for M/G/1 queues is

E[W ] =
ρ(1+C2

s )

2μ(1−ρ)
.

Upon comparing expressions (2.14) and (2.19), one can better understand the
effect of service time variability. When C2

s = 1, we recover the expected waiting
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time in M/M/1 queues given in (2.14). All other parameters of the queueing
system remaining unchanged, the mean waiting time increases linearly in C2

s at rate
ρ/(2μ(1−ρ)). This means that the negative effect of C2

s on customer waiting time
is magnified nonlinearly as ρ increases.

The GI/G/1 Model

The GI/G/1 model requires the fewest assumptions about the shape of inter-arrival
and service time distributions among the three models we discuss in this section. As
such, it is useful in many settings. For example, in addition to examples mentioned
before, appointment systems for non-urgent office visits can be modeled as queues
in which clinics choose the inter-arrival time of patients. Queueing theory-based
approaches for modeling appointment systems utilize either D/M/1 or D/G/1
queueing models; see surveys of literature in Cayirli and Veral (2003) and Gupta
and Denton (2008). We present an application of such models for retail health clinics
later in this section.

Analysis of GI/G/1 queues requires solving Lindley’s integral equation (Lindley
1952). Closed-form solutions, which would be of interest to those interested in
the design of healthcare delivery systems, are difficult to obtain except for some
specific distributions of inter-arrival and service times. Therefore, many papers have
studied approximate methods. Common approaches fall into two categories—(1)
approximate either GI or G by a specific distribution leading to a tractable model
and (2) assume a structural form of the distribution of N and estimate its parameters.
In the first group of methods, commonly studied approximations include Erlang,
phase type, and generalized hyperexponential distributions (see, e.g., Neuts (1981,
1989), Li (1997) for details). In the sequel, we present an example of the second
approach because it requires knowledge of only the first two moments of inter-
arrival and service time distributions and provides greater insights into the key
drivers of congestion.

Suppose we can estimate the first two moments of the inter-arrival and service
time distributions, but the precise form of these distributions is unknown. In
particular, we assume knowledge of C2

s and C2
a , the squared coefficients of variation

of service and inter-arrival times. A variety of approximations have been proposed
for calculating the mean number in system in GI/G/1 queues given C2

a and C2
s .

The following is an example of a commonly used expression (see Buzacott and
Shanthikumar 1993, p. 75):

E[N]≈
(

ρ2(1+C2
s )

1+ρ2C2
s

)(
C2

a +ρ2C2
s

2(1−ρ)

)

+ρ . (2.20)

It is easy to verify that when C2
a = 1, the above expression reduces to the expression

we obtained in (2.16) for an M/G/1 system. From (2.20), one can also derive
expressions for mean waiting time and mean delay with the help of Little’s law.
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Fig. 2.2 Effect of C2
a on expected delay. This figure shows that greater inter-arrival time variability

causes expected customer delay to increase much more rapidly when the server has a higher
workload (i.e., greater value of ρ)

The expression for E[N] in (2.20) shows that both inter-arrival and service time
variability contribute to the congestion in the system and that the effect of variability
is magnified by server utilization—the higher the utilization, the greater the effect
of variability on congestion. We illustrate the importance of this observation in
healthcare operations with the help of an example next.

Retail healthcare clinics, such as MinuteClinic, RediClinics, and Target Clinics,
promise to serve patients with routine diagnoses such as ear infections, flu, and
minor injuries in a short amount of time without requiring appointments. The
success of such clinics depends on providing timely service to a stream of customers
that arrive randomly. The study of GI/G/1 queueing model can help shine light
on the potential benefit to such service providers from reducing inter-arrival time
variability by broadcasting time-of-day-dependent estimated waiting times on the
web and other promotional media and encouraging customers to time their arrivals
when the clinics are not too busy. For example, Target Clinics advise potential
visitors about waiting times as follows: “. . . we are likely to be busiest before and
after the average work/school day (8–10 a.m. and 5–7:30 p.m.)” (see response to the
frequently asked question “How long will I have to wait to be seen?” at http://sites.
target.com/site/en/spot/clinic faqs.jsp#4). Such practices have the effect of making
arrivals more uniform throughout the day, thereby reducing C2

a . The author obtained
data from a retail healthcare clinic chain and studied the effect of variability of
arrival pattern on customer waiting times. The results are shown in Fig. 2.2 for three
levels of server utilization commonly observed in the data at different clinics. This
analysis also shows that if inter-arrival time variability cannot be reduced, clinics
need to operate in a range where server utilization would be low in order to keep
waiting times from becoming very long.

http://sites.target.com/site/en/spot/clinic_faqs.jsp#4
http://sites.target.com/site/en/spot/clinic_faqs.jsp#4
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Without specifying the distributions of inter-arrival and service times, it is not
possible to obtain expressions for the distributions of N and D. Therefore, a variety
of approximations have been proposed in the literature. In one such approximation,
it is assumed that p(n) = kσn−1 for n ≥ 1, where k is a constant, and p(0) = (1−ρ).
Note that this was the form of the distribution of number in the system in M/M/1
queues. From the requirement that total probability must equal 1, we obtain that
k = ρ(1−σ). Furthermore, σ can be estimated by equating the calculated mean of
the approximate distribution, which equals ρ/(1−σ), with the approximate value
of E[N] calculated in (2.20). Details of the accuracy of this approximation can be
found in Buzacott and Shanthikumar (1993, Sect. 3.3.4).

3.2 Models with Finite Waiting Room

Overcrowding in urgent care clinics and emergency departments is quite common.
When waiting rooms become full, patients may leave without receiving service or
the service facility may temporarily stop accepting new arrivals. To model such
situations, we next consider models in which the maximum number of customers in
the system is restricted to K, including the customer in service. When the waiting
room limit is reached, one of two possibilities is typically modeled. Either additional
arrivals are discouraged until the waiting room is no longer full, or additional arrivals
continue to occur but depart immediately upon observing a full waiting room. The
latter is identified in the literature as the lost sales model. It turns out that whether
arrivals are discouraged or lost makes no difference when arrivals are Poisson.
However, the pattern of arrivals when waiting room limit is reached does matter for
queues with non-Poisson arrivals. We discuss each of the three basic models next
and provide two examples of the usefulness of the M/M/1/K model in healthcare
setting. Note that ρ < 1 is no longer required for stability of queues. Stability is
guaranteed because queue size cannot exceed the size of the waiting room K.

The M/M/1/K Model

The following results are well known for M/M/1/K queueing systems:

p(n) =

⎧
⎨

⎩

(1−ρ)ρn

1−ρK+1 n = 0,1, . . . ,K,

0 otherwise,
(2.21)

E[N] =
ρ

1−ρ
− (K + 1)ρK+1

1−ρK+1 , (2.22)

E[D] = E[N]/λ . (2.23)



2 Queueing Models for Healthcare Operations 31

The expected waiting time can be calculated from (2.23) and the fact that an
average customer spends E[S] in service. Upon comparing (2.22) and (2.23) to their
counterparts in (2.11) and (2.13), where the latter allow infinite waiting room, it
is easy to see that when all parameters of the two types of queueing systems are
identical, both the mean number in the system and the mean delay are smaller in
situations where waiting room is limited. This should not come as a surprise because
λ p(K) fraction of arrivals is not served when waiting room is limited.

The M/M/1/K model can be utilized to make capacity choices for emergency
departments. One capacity parameter concerns the number of medical staff, which
determines the service rate μ . A second parameter concerns the number of ED beds,
which determines the mean waiting time and the number of potential ED arrivals
turned away. The latter is sometimes called ambulance diversion. Both types of
capacities give rise to different fixed and operating expenses for the hospital. In
addition, there are different implications for patient wait times.

For a fixed level of medical staff, that is, fixed service rate, if a hospital increases
the number of ED beds, then this would result in greater mean waiting times
for patients, but fewer ambulance diversions. Longer wait times can increase a
hospital’s risk from possible adverse events (e.g., poorer health outcomes and even
deaths), and turning away more patients can lower a hospital’s revenue because of
reduced patient volume, giving rise to the trade-offs we discuss in detail below. Note
that the model presented in this chapter is a highly stylized model. EDs are served by
teams of multiple doctors and nurses working in parallel, diversions can be caused
by a whole host of reasons including lack of availability of inpatient beds, and a
variety of regulations may affect a hospital’s decision (ability) to go on ambulance
diversion. We smooth out such complexities in the discussion that follows.

For each fixed level of ρ , ED managers can develop trade-off curves between
ambulance diversions and mean patient waiting times to identify the right combi-
nation of capacity parameters, as shown in Fig. 2.3. In this example, it is assumed
that if patients are diverted on account of all ED beds being full, then they are able
to find appropriate care at other hospitals located in geographical proximity to the
hospital in question. If this were not the case, then a network model with strategic
capacity choices by administrators of different hospitals will be required (Deo and
Gurvich 2011). We do not discuss such models as they are beyond the scope of this
chapter.

We consider an ED processing rate of ten patients per hour and two different
peak-load scenarios, one with average patient arrival rate of 9 per hour and the
other with average patient arrival rate of 9.9 per hour. These scenarios give rise to
ρ = 0.9 and 0.99, respectively. Figure 2.3 shows that adding more beds (increasing
K) increases delay, but reduces the average number of patients turned away, which
is denoted as “loss” in Fig. 2.3b. Whereas E[D] increases almost linearly in K,
the benefit of having more beds in terms of reduction in expected loss exhibits
diminishing returns. That is, each additional bed serves to reduce the expected
number of patients turned away by a smaller amount. Service effectiveness can be
improved by using triage (prioritizing patients) to identify and serve more critical
patients first. We briefly discuss priority queues in Sect. 6.
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Fig. 2.3 Trade-offs in ED capacity choices

In yet another example, the M/M/1/K model can be used to perform first-cut
capacity calculations for physician panel sizes. A panel refers to the list of patients
who choose a particular primary care provider as their preferred provider. Suppose
a physician implements the Advanced Access approach to servingpatients (Chap. 8).
In this approach, patients are offered appointments on the day they call, eliminating
queues. The physician can serve on average K patients per day and arrival rate is λ M
where M is the panel size and λ is the incidence rate per patient. Assuming a national
average visit rate of 3.356 office visits per patient per year (Hsiao et al. 2010), and
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Table 2.1 Panel size (P) and service capacity (K)

K 16 17 18 19 20 21 22 23 24

P 1,208 1,296 1,386 1,463 1,540 1,617 1,701 1,779 1,857

260 working days per year (52 weeks, 5 days per week), we obtain λ = 0.01291.
Suppose the physician is willing to accept the possibility that 5% of the patients who
call on any given day would not be accommodated that day, that is, the overflow
rate should not exceed 0.05. From the analysis of M/M/1/K model, above, we

know that the overflow rate is simply p(K) = (1−ρ)ρK

1−ρK+1 . Setting this quantity equal
to 0.05, we can calculate ρ and subsequently M because μ = K patients per day.
Upon performing these calculations, we obtain estimates of maximum panel sizes
for different values of K as shown in Table 2.1.

The modeling approach described above can be refined to include patient no-
shows and advance-book appointments (see, e.g., Green and Savin 2008; Robinson
and Chen 2010).

The M/G/1/K Model

The classical analysis of M/G/1/K queues relies on the embedded Markov chain
observed at service completion epochs. This results in a series of equations relating
state probabilities, which can be solved numerically along with the normalization
equation (probabilities must sum to 1) to obtain the steady-state distribution of the
number in the system. Closed-form expressions are often difficult to obtain. An
alternative is to use the method of transforms, which was utilized in the section
dealing with M/G/1 queues. That method is also primarily a numerical approach.
Because our goal in this chapter is to shine light on the insights that queueing models
provide for healthcare operations managers, we focus on a subclass of M/G/1/K
queueing models in which ρ < 1. Recall that ρ < 1 is not required for the existence
of steady-state distributions of queue congestion and customer waiting times when
waiting rooms are finite.

Given ρ < 1, let p∞(n) and P̄∞(K) denote, respectively, the distribution of number
in system and the CCDF of this distribution at K in an M/G/1 queue. The subscript
“∞” emphasizes the fact that these quantities refer to the case in which there is no
limit on the size of the waiting room. Then, the distribution of N can be obtained as
follows (see Buzacott and Shanthikumar 1993, p. 109 for details):

p(n) =

⎧
⎪⎪⎨

⎪⎪⎩

p∞(n)
1−ρP̄∞(K)

, n = 0,1, . . . ,K − 1,

(1−ρ)P̄∞(K)

1−ρP̄∞(K)
n = K.

(2.24)
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Expected number in system and mean delay can be calculated from the above
expression. Remarkably, when ρ < 1, the distribution of number in system in
an M/G/1/K queueing system is proportional to the number in system in an
M/G/1/∞ system. The proportionality constant is 1

1−ρP̄∞(K)
for n = 0,1, . . . ,K − 1,

and (1−ρ)
1−ρP̄∞(K)

for n = K.

The GI/G/1/K Model

The GI/G/1/K model is more difficult to analyze, except when inter-arrival and
service time distributions have some specific forms. Therefore, papers dealing with
the analysis of GI/G/1/K queueing systems propose a variety of approximations. A
useful approximation that imposes the relationship between M/M/1 and M/M/1/K
models onto the relationship between GI/G/1 and GI/G/1/K models is presented
in Buzacott and Shanthikumar (1993, pp. 110–116). We omit the details in the
interest of brevity.

4 Single-Station, Multiple-Server Models

In all of the examples mentioned in Sect. 3, for example, walk-in clinics, pharmacy
and lab services, and emergency departments, situations involving multiple servers
arise naturally. That is, service facilities in a healthcare setting often have multiple
servers taking care of customers who queue up for similar services. In this section,
we focus on queueing systems with unlimited waiting room, constant arrival rate
λ , and m identical servers. Servers process one customer at a time, and each server
can process customers at rate μ when busy. In this case, the overall service rate is
a function of the number in system. In particular, if there are n customers in the
system, then μn, the state-dependent service rate is

μn =

{
nμ if 0 ≤ n ≤ m,

mμ otherwise.
(2.25)

The overall server utilization in this instance is ρ = λ
mμ , and stationary dis-

tributions of N, Nq, D, and W exist if ρ < 1. Because it is more difficult to
obtain closed-form expressions for performance metrics of multiple-server queueing
systems, we focus in this section on M/M/m models, that is, on situations in
which the inter-arrival and service times are exponentially distributed. For M/M/m
models, it can be shown that

p(n) =

⎧
⎪⎪⎨

⎪⎪⎩

p(0)
(mρ)n

n!
if n ≤ m,

p(0)
ρnmm

m!
n ≥ m,

(2.26)
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where

p(0) =

[
m−1

∑
k=0

(mρ)k

k!
+

(
(mρ)m

m!

)(
1

1−ρ

)]−1

, (2.27)

E[D] =

(
1

mμ(1−ρ)

)(
(mρ)m

m!(1−ρ)

)

p(0)+
1
μ
. (2.28)

Expressions for mean delay in the system shown in (2.13) and (2.28) can be
utilized to obtain a key result in the design of queueing systems—that combining
queues and pooling servers reduces system delay. To demonstrate this, we show an
example next in which three systems are compared. A schematic of these systems is
shown in Fig. 2.4. Systems are labeled A, B, and C. System A consists of m parallel
queues each served by a single server. When a customer arrives, it is routed by a
Markovian router that sends the customer to any one of the m queues with equal
probability 1/m. Each server’s processing rate is μ . In system B, the queues are
combined into a single queue. Customers wait for the next available server upon
joining the queue. Each server’s processing rate is μ . In system C, queues are
combined into a single queue, and the m servers are replaced by a super server
with a faster processing rate of mμ . Note that the overall utilization rate remains
ρ = λ/mμ in all three systems.

Choices similar to those depicted in Fig. 2.4 can arise in a number of different
contexts in the healthcare setting. For example, the three configurations could
represent choices for setting up patient registration and check-in counters at a
hospital or clinic. System A represents a case in which each server specializes in
serving a particular type of patient arrivals. In system B, each server can serve any
arrival, and finally in system C, technology may be employed to assist a server,



36 D. Gupta

0

2

4

6

8

10

12

1 2 3 4 5

E
xp

ec
te

d 
D

el
ay

 (
E

[D
])

Number of Servers (m)

System A System B System C

Fig. 2.5 Effect of server/queue pooling

making that server faster. Alternatively, servers in systems A and B could represent
the choice between specialized and general-purpose beds in an inpatient unit. In
each example, the choice of configuration affects labor and capital costs as well
as patient wait times. Queueing models can help compare the impact of these
configurations on patient wait times.

In system A, an arbitrary arrival joins one of the m separate queues with equal
probability. Therefore, an arbitrary arrival’s expected delay (using (2.13)) can be
written as follows:

E[D(A)] =
ρ

μ(1−ρ)
+

1
μ
. (2.29)

The delay experienced by an arbitrary arrival in system B is as shown in (2.28).
Finally, in system C, the expected delay equals

E[D(C)] =
ρ

mμ(1−ρ)
+

1
mμ

. (2.30)

To compare the mean delay in the three systems, consider an example in which
m is systematically varied from 1 through 5 while keeping ρ = 0.9 fixed. This can
be achieved by setting μ = 1 and varying λ as m varied. In particular, with μ = 1,
set λ = mρ to maintain a fixed ρ . Next, suppose we use the expressions derived
above to calculate mean delay and plot the values in Fig. 2.5. Note that the delay
in system A remains invariant in m. This is expected because customer waiting
occurs in one of the m queues, each of which is independent of m. We observe
a significant improvement from combining queues, and a further improvement
(though much smaller) from creating a single faster server. Most of the benefits



2 Queueing Models for Healthcare Operations 37

appear to come from combining queues. This example serves to highlight a general
principal for the design of healthcare service systems; namely, combining queues
improves efficiency.

A common reason for creating separate queues is that each queue is served
by a group of servers who possess special expertise to serve a particular type of
customers. Combining queues requires that servers be trained to serve all types
of customers. This can be expensive, and such considerations have motivated the
study of partial pooling arrangements. Reasons why combining queues is not always
beneficial can be found in Rothkopf and Rech (1987), and general principles of work
design and pooling have been discussed in Buzacott (1996) and Mandelbaum and
Reiman (1998).

Before closing this section, we briefly discuss the Erlang loss formula, which can
be used to calculate overflow probability in M/M/m/m systems. These are multiple-
server queueing systems in which K = m, that is, waiting room size equals the
number of servers. In such cases, a customer is lost if no server is available to serve
this customer immediately. Erlang loss formula is of great interest in telephony,
where it is used to calculate the number of telephone lines needed to accommodate
a desired fraction of incoming calls. Erlang loss, or the probability of finding all m
servers busy, is given by

p(m) =
ρm

m!(∑m
k=0 ρk/k!)

. (2.31)

Erlang loss formula has been used to model capacity requirements of EDs where
each ED bay (bed plus care team) is treated as a server.

5 Network Models

Hospitals and specialized treatment facilities for particular medical conditions (e.g.,
cancer, cardiovascular, or neurological services) perform a range of services, each
with its own resources (servers) and queues. Such facilities are best modeled as
networks of queues. The simplest network model from the viewpoint of obtaining
analytical results is the multi-station (network) analog of the M/M/1 queueing
system with J service stations, each with a single server. Customers may arrive
either from outside or move from one station to another. Suppose server i’s service
rate is μi, customers are routed from station i to j according to probability ri j, and
exogenous arrival rate at station i is γi. Then, the effective arrival rate at station i is

λi = γi + ∑
1≤ j≤J

λ jrji, for each 1 ≤ i ≤ J. (2.32)

Similarly, the server utilization rate is ρi = λi/μi, for each i. A network is called
open if it allows exogenous arrivals and departures. Departures can be modeled by
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designating a particular station to serve as a sink, say station indexed J, such that
rJi = 0 for all i. Similarly, a network is called closed if no customers can enter or
leave the network. In this case γi = 0 and there is no sink.

The state of the number in different stations of a network is a vector n =
(n1, . . . ,nJ). Let pi(ni) denote the distribution of number in system of a M/M/1
queue with parameters λi and μi. Then, a key result in the analysis of Markovian
open networks is that the stationary distribution p(n) has a product form. In
particular,

p(n) = p1(n1)× p2(n2) · · ·× pJ(nJ), (2.33)

where pi(ni) = (1− ρi)ρni
i . Networks for which the distribution of number in the

system has a product form are also called product-form or Jackson networks (see
Jackson (1954, 1957)). The product-form structure remains intact when there are mi

servers at each station, that is, we have a network of M/M/mi, 1 ≤ i ≤ J, queues.
Because of the existence of a product form, the results from the analysis of M/M/1
and M/M/m queues can be applied directly to such networks. For example,

E[N] =
J

∑
i=1

ρi

1−ρi
, (2.34)

E[D] =
1
λ

J

∑
i=1

ρi

1−ρi
. (2.35)

Queueing network models have been studied extensively (Walrand 1988), and
there are numerous manufacturing applications of these models (Buzacott and Shan-
thikumar 1993). Many of these models are not directly applicable to health systems
design. Each model is specific to a particular type of system (e.g., transfer lines with
limited buffer) and typically requires either special techniques or approximations to
derive system performance measures. Therefore, we focus only on papers that utilize
queueing network methodology for modeling healthcare operations.

Whereas there are many attempts to represent networks of healthcare facilities
as networks of queues, these networks are typically not analyzed using queueing-
theoretic approaches. Instead, a common approach is to use computer simulation
to obtain performance metrics of interest; for examples, see Taylor and Keown
(1980), Harper and Shahani (2002), and Feck et al. (1980). Papers that use an
analytic approach include Hershey et al. (1981) and Weiss and McClain (1987).
Hershey et al. (1981) present a methodology for estimating expected utilization and
service level for a class of capacity-constrained service network facilities operating
in a stochastic environment. In this paper, queues are not allowed to form, that is,
waiting room size equals the number of servers at each facility, and the authors use
the Erlang loss formula to approximate the probability of overflow. They show that
their calculation is exact for two cases and recommend its use as an approximation
in the general case.

Weiss and McClain (1987) model the transition of care from acute to extended
care (e.g., a nursing home or community care center). Inadequate capacity at
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downstream service facilities can lead to extra wait in the acute care facility, which
is often referred to as “administrative days.” The authors use a queueing-analytic
approach to describe the process by which patients await placement. They model
the situation using a state-dependent placement rate for patients backed up in the
acute care facility. Using data from seven hospitals in New York State, the study
also derives policy implications.

6 Priority Queues

There are many variants of the basic models described in the preceding sections.
These may consider different types of service priority (Jaiswal 1968; Takagi 1986,
1990, 1994; Gupta and Gunalay 1997), server vacations (Tian and Zhang 2006), and
bulk arrivals and batch service (Chaudhry and Templeton 1986). The literature on
each of these topics is vast. In this section, we discuss an assortment of results from
priority queues and discuss their implications for healthcare operations.

Suppose in a single-server queueing system, there are k customer classes, indexed
by �= 1, . . . ,k. Type � customers arrive according to an independent Poisson process
with rate λ (�), and their service time distribution is S(�). An arrival observes N� type-
� customers in the system upon arrival. Therefore, the total expected work in the
system at an arbitrary arrival epoch is ∑k

�=1 E[N(�)]E[S(�)]−∑k
�=1

1
2 λ (�)E[(S(�))2],

where the second term is the amount of work already completed on the customer in
service, if any. After some simplification and using Little’s law, the total expected
work can be expressed as ∑k

�=1 ρ (�)E[D(�)]− ∑k
�=1

1
2 λ (�)E[(S(�))2], where ρ (�) =

λ (�)E[S(�)]. If the service protocol is work conserving, that is, it neither creates nor
destroys work, then the expected total work must be constant. This immediately
implies that

k

∑
�=1

ρ (�)E[D(�)] = constant (2.36)

because ∑k
�=1

1
2 λ (�)E[(S(�))2] is independent of service protocol. The queue is stable

so long as ∑k
�=1 ρ (�) < 1, which we assume throughout this section.

The above relationship establishes an important property of priority queues.
When service protocol is work conserving, a particular priority scheme may
affect delays experienced by different customer classes, but reduction in the
expected delay of one customer class is realized at the expense of increase in
the expected delay of another class. The work conservation principle is violated
when switching from one customer class to another requires setup or switchover
time, and/or some amount of work is lost if service of one customer type is
preempted by a higher priority customer. Because switchover or setup times are
common when a server attends to customers with different service requirements,
pseudo work conservation laws have been derived for queues with switchover
times and certain service protocols, for example, cyclic priority (see Takagi 1986,
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1990, 1994; Gupta and Gunalay 1997). Although queues with switchover times are
not work conserving, the amount of additional work created by certain switching
protocols can be fully characterized. The expected total work in the system is then
the sum of two components—work associated with customer arrivals, which is
independent of service protocol, and work associated with switching regime, which
is dictated by the priority scheme. For this reason, such queues are said to satisfy
pseudo conservation laws.

In healthcare applications, one finds examples of both preemptive and non-
preemptive priority. For example, ED physicians often serve the most critical
patients preemptively in order to save lives. In the outpatient setting, specialists
reserve certain appointment slots for high-priority patients, but once a low-priority
patient books an appointment, he or she is rarely preempted during service. In
many situations, service protocols may not be work conserving because priority
rules may increase service providers’ walking time to reach patients located in
different inpatient units. Finally, service protocol may be static or dynamic. In a
static protocol, each customer class has a fixed priority, and its members receive a
strictly higher priority over all lower-ranked classes. In contrast, in dynamic priority
protocols, customers of a particular class may be higher ranked at one time and
lower ranked at another. A common dynamic priority protocol is one in which
customers of each class form a separate queue, the server moves from one queue to
another, and when serving a particular queue, all customers of that class (previously
waiting or new arrivals) have higher priority. Such a queueing protocol is observed
in healthcare operations when a physician travels to different community-based
clinics on different days of week.

Next, we provide some basic results that allow an operations manager to quickly
calculate mean delay experienced by customers of different classes in a system with
a single server, Poisson arrivals, and work-conserving, non-preemptive, and static-
priority service protocol. Suppose customers classes are arranged in the order of
priority, that is, class-1 customers have the highest priority, followed by class 2,
and so on until class k. Then, an arbitrary class-1 customer waits only for class-
1 customers already in the queue when it arrives. Moreover, because of PASTA
property, we have

E[W (1)] = E[N(1)
q ]E[S(1)]+

λ E[S2]

2
, (2.37)

where λ E[S2]
2 = ∑k

�=1
1
2 λ (�)E[(S(�))2] is the amount of work remaining to complete

the service of the customer in service. Introducing new notation w0 =
λ E[S2]

2 , λr =

∑r
�=1 λ (�), and ρr = ∑r

�=1 ρ (�), and using the fact that E[W (1)] =
E[N

(1)
q ]

λ (1) , we can
rearrange (2.37) to obtain

E[N(1)
q ] =

λ (1)w0

(1−ρ1)
. (2.38)

Consider next an arbitrary class-2 arrival. This customer will be served only after
all earlier-arriving class-1 and class-2 customers are served, which causes an initial
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delay of E[N(1)
q ]E[S(1)]+E[N(2)

q ]E[S(2)]+w0. In addition, it must also wait until all

those type-1 customers who arrive during E[N(1)
q ]E[S(1)]+E[N(2)

q ]E[S(2)]+w0, and
additional class-1 arrivals during the service time of those, and so on, are served. It
turns out that the corresponding delay has mean duration

(1/(1−ρ1))
{

E
[
N(1)

q

]
E[S(1)]+E

[
N(2)

q

]
E[S(2)]+w0

}
.

That is, E[W (2)] = (1/(1−ρ1)){E[N(1)
q ]E[S(1)]+E[N(2)

q ]E[S(2)]+w0}. Upon using

E[N(2)
q ] = λ (2)E[W (2)] and simplifying, we obtain

E
[
N(2)

q

]
=

λ (2)w0

(1−ρ1)(1−ρ2)
. (2.39)

Continuing in the same fashion, we obtain for �= 1, . . . ,k,

E[N(�)
q ] =

λ (�)w0

(1−ρ�−1)(1−ρ�)

=
λ (�)λ E[S2]

2(1−ρ�−1)(1−ρ�)
, (2.40)

where ρ0 = 0. Note the similarity between the above expression and the mean
number in the queue for M/G/1 systems, where the latter can be calculated from
(2.16).

Suppose w� is the cost of making a type-� customer wait for service. What is
an optimal priority rule that minimizes total waiting cost? This question has been
addressed in the queueing literature, and it has been shown that class priority should
be proportional to wμ , that is priority index should be such that w1μ1 ≥ w2μ2 ≥
·· · ≥ wkμk. This means that customers with higher waiting cost per unit time
and shorter mean processing time should be given higher priority. If all customer
classes have the same per-unit time waiting cost, then customers with shorter mean
processing time would be processed first. This is also called the shortest-processing-
time-first rule.

7 Concluding Remarks

Many types of healthcare service systems are characterized by random demand
(in timing and type of services required); time-varying and uncertain availability
of service resources due to preferred work patterns, work rules, and planned or
unplanned absences; and service protocols that assign different priorities to different
customer classes (e.g., urgent versus nonurgent patients). These are precisely the
types of environments in which queueing theory can be brought to bear to obtain
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useful insights for system design and for developing operating principles for service
delivery systems. It is no surprise that queueing theory has been used extensively
in healthcare operations. The following is a list of key topic areas and some recent
papers on each of these topics:

1. Capacity calculations (matching supply and demand)

(a) Panel size determination—See the discussion in Sect. 3.2, Green and Savin
(2008), Robinson and Chen (2010), Gupta and Wang (2011).

(b) ED beds—See the discussion in Sect. 3.2, Deo and Gurvich (2011) and
references therein.

(c) Network capacity—See Hershey et al. (1981) and Weiss and McClain
(1987).

(d) Nurse staffing—See Yankovic and Green (2011) and references therein.

2. Scheduling arrivals (appointment systems)—See Gupta and Denton (2008) for a
review of queueing-analytic approaches

3. Priority queues (allocation of organs to transplant candidates)—See Su and
Zenios (2004) and references therein.

Some of the above-mentioned problems were not discussed in this chapter because
of the specialized institutional background necessary to introduce the key operations
management challenges.

Notwithstanding the success of queueing models for addressing important ques-
tions in the delivery of healthcare services, there remain significant opportunities for
new models and analytic tools. For example, hospitals can benefit from insightful
network models of patient flow (recall Fig. 2.1). Hospitals have limited capacity
within each inpatient unit, which leads to blocking at upstream units. This situation
may be resolved by keeping patients longer in some units, placing patients in less-
than-ideal units, transferring patients to other hospitals, or refusing admissions.
Such decisions can affect lengths of stay and health outcomes (Rincon et al. 2011;
Sinuff et al. 2004). Clearly, hospitals could benefit from knowing the performance
implications of such practices and having access to models that allow them to factor
nursing units’ flexibility into capacity calculations. In the manufacturing setting,
there are numerous dynamic job shop models that address similar problems; see, for
example, Chap. 7 in Buzacott and Shanthikumar (1993). However, the number of
similar models for hospital operations is quite limited and represents an opportunity
for future research.
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Chapter 3
Applications of Agent-Based Modeling
and Simulation to Healthcare Operations
Management

Sean Barnes, Bruce Golden, and Stuart Price

1 Introduction

Simulation techniques have been applied to problems in healthcare operations
management for many years in several focus areas. Historically, research in this
area has consisted of results derived from system dynamics (SD) and discrete
event simulation (DES) methods (Fone et al. 2003; Jun et al. 1999; Koelling and
Schwandt 2005). Both methods focus on system-level behavior, but they differ in
how the system is modeled and how time is simulated. SD models represent entities
as continuous variables whose states change continuously with time, whereas
DES models contain individual components whose states only change at discrete
moments in time. In either case, the goal is to aggregate the system behavior
and draw conclusions about how the system evolves over time under internal
and external forces. These techniques can provide valuable insight to problems in
healthcare operations management and are ideally suited for many such problems.

In recent years, a new modeling and simulation methodology has gained
momentum with respect to healthcare applications. The methodology is most
commonly known as agent-based, or individual-based, modeling (ABM). In contrast
to SD and DES methodologies, ABM focuses on modeling individuals, interactions
between individuals, and in some cases, interactions with a physical or influential
surrounding environment (Macal and North 2007b). This activity can then be
aggregated to simulate how a system behaves over time. The focus on detailed,
individual agents and their interactions makes ABM an ideal tool for analyzing
complex systems such as healthcare facilities and organizations because there
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are many components to these systems and outcomes can be difficult to predict
without adequate model representation. A comparison between the three modeling
frameworks is shown in Table 3.1.

Agents can interact with each other in many ways. Interactions may occur
in a spatial environment, which could be a simple one-dimensional ring, a two-
or three-dimensional Cartesian grid, or a specific geographic location or region.
Alternatively, interactions can lack spatial representation and instead be constrained
by relational considerations, where agents only interact if there is an explicit
connection between them, such as being a member of the same family, working
together, or being cared for by the same healthcare worker. For these cases, physical
space has no effect on the outcome of the interactions, and, therefore, it does
not need to be modeled explicitly. Social network analysis (SNA) is often paired
with ABM for problems in which the structure of the interaction network is not
uniform, implying that each individual may only interact with a specific subset of
the population. For these types of problems, agents are often represented by nodes
in a network, and interactions are represented by edges, which can be weighted to
represent the frequency or type of those interactions.

There are several advantages of ABM over SD and DES. First, ABM is a more
realistic modeling approach for many problems, especially problems in which there
are multiple types of actors that interact in different ways. For these cases, it is very
straightforward to model these actors as agents that have distinct sets of behaviors
and characteristics without making assumptions as to how the system would be
affected by each type. Individuals are not typically represented in SD models, and
in DES models, individuals are explicitly modeled, but their states are typically
a function of their status in some type of predefined system process. In addition,
agent-based models facilitate detailed analysis of both individual- and system-level
behavior because metrics at each level can be updated with each interaction. Agent-
based models are also easier to explain than most SD and DES models because
of their direct correlation to reality, which is an important factor in gaining the
confidence of healthcare professionals and ultimately having an impact. SD models
often consist of mathematical models that can become quite complicated, and DES
models are usually described by intricate flow diagrams. These abstractions can
cause difficulty in explaining model concepts to healthcare professionals who are
not trained in mathematical or computational disciplines.

As in all methodologies, there are disadvantages to ABM as well. ABMs can
become very complex when they incorporate a lot of detail. When this happens,
it becomes difficult to separate the actual effect of each input parameter in the
model. In addition, agent-based models can become computationally expensive,
requiring excessively long computer run times for simulations. This problem
has been alleviated to some degree by high-performance and parallel computing
techniques, but it demands additional developmental resources that are not typically
required by SD or DES models. Agent-based models also face different challenges
related to assumptions. SD and DES models often require more assumptions
about system-level parameters (e.g., patient admission rates, average hand-hygiene
compliance of healthcare workers), whereas ABM requires more assumptions about
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Table 3.2 Agent characteristics and definitions

Characteristic Definition

Autonomy Agents act independently of other agents
Heterogeneity Agent characteristics and evolution of state are sufficiently different

for all agents
Awareness Agents can have varying levels of knowledge of the system state,

ranging from ignorance to omniscience
Memory An agent can remember its state and/or the state of the system at

earlier points in time
Adaptation Agents can change their behavior over time based on the current

state of the system or prior experience
Goal oriented Agents act toward accomplishing an objective
Rationality Agents act in their best interests
Interactivity Agents can exchange information or resources with other agents
Reactivity Agent state or behavior can change in reaction to the environment

or changes in the behavior of other agents
Mobility Agents can move within the environment

individual-level parameters (e.g., probability of nurse-to-patient transmission for a
given infectious disease) and the nature of interactions. Some of these requirements
can be satisfied easily, by speaking with experts who have experience working
in these environments, but others can be more difficult to quantify. However, the
advantage of ABM is that few assumptions need to be made about the system as
a whole, because system behavior is determined by the activities at the individual
level.

Agents have several characteristics that can be used to distinguish ABMs from
SD or DES models. These characteristics and their definitions are summarized
in Table 3.2. For a more complete discussion on ABM, the reader is referred
to Macal and North (2007a). There are additional characteristics associated with
agent-based models, but this set is sufficient for identifying appropriate studies.
Agent-based models do not necessarily possess all of these characteristics, and
in some cases, the distinction between ABM and DES can be difficult. For the
purposes of this review, each included research article must present the results of a
simulation that models sufficiently heterogeneous agents that interact in a dynamic,
nondeterministic manner. In general, articles that only describe the concept and
implementation of an agent-based model without demonstrating insightful results
were also excluded.

As with any modeling methodology, choosing an appropriate software package
is critical during the early stages of developing an agent-based model. This
selection process for healthcare applications depends primarily on three factors: the
complexity of the model, the skill of the developer, and the level of interaction
the consumer wants to have with the model. Developers with limited modeling
experience and enthusiasm for modeling should identify the platform that is easiest
to learn and provides the necessary functionality. More experienced developers are
probably either skilled in a programming language that offers the required capability
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or willing to learn a new language if it is more appropriate to the nature of the model.
On the delivery end, some consumers may only require the results from a model and
do not need to interact with it in any way. In this case, visualization and animation
would be helpful capabilities, but a graphic user interface would not be required.
If the consumer will interact with the model regularly, a graphic user interface is
necessary and proper training needs to be provided.

Software can range from commercial products to a variety of programming
languages and open-source platforms. Commercial software is typically easy to
learn and is accompanied by extensive documentation and customer support, but it
may not provide the modeling flexibility necessary for modeling a complex system.
Object-oriented programming languages are especially well suited for agent-based
models because objects correspond well to agents and object methods correspond
to agent behavior, which facilitates a relatively straightforward implementation.
Mathematics-based software typically provides substantial built-in functionality,
but computational times can be prohibitively slow for an agent-based model.
Lower level programming languages typically execute significantly faster than the
aforementioned software types, which may be critical for large models, but they
lack the built-in functionality that helps to accelerate development times. There
is a growing set of dedicated software packages that offer built-in functionality
common to agent-based models. These tools vary significantly in terms of their
user-friendliness, level of documentation, speed, and modeling flexibility, but their
diversity demonstrates the variety of applications that can be modeled using agent-
based methods.

In this chapter, we review and evaluate a selected body of research that has
applied ABM and simulation techniques to healthcare operations management,
which we interpret broadly. Specifically, research that applies agent-based methods
in the following areas is included, based on surveys of simulation and system
dynamics applications to healthcare (Fone et al. 2003; Jun et al. 1999; Koelling
and Schwandt 2005):

• Healthcare delivery: studies that focus on a single facility (e.g., a hospital) or
unit within a department (e.g., an emergency department) and emphasize patient
flow characteristics, scheduling, or allocation of resources.

• Epidemiology: studies that focus on the spread of illness or disease or the
physiological understanding of an illness or disease.

• Healthcare economics and policy: studies that focus on the financial and policy
decisions made by hospitals or healthcare organizations which can include the
purchase of equipment, pharmaceutical items, or other medical equipment.

We review the ABM literature for each topic and briefly describe the core
methods, summarize the key results, and identify best practices. We will also
highlight areas within each topic where ABM and simulation filled a significant
gap that was not addressed previously by other methods. Finally, we will propose
some new questions that may be of interest moving forward.
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2 Healthcare Delivery

There are many different types of facilities that serve as healthcare providers. Each
provider has its own set of objectives and constraints. Outpatient facilities tend to
operate using appointments that are scheduled well in advance, whereas emergency
rooms deal almost entirely with unscheduled arrivals. This section focuses on
modeling hospitals and the individual departments therein. There are models of
other facilities such as long-term care facilities, outpatient clinics, or diagnostics
laboratories, but the literature is not as extensive as it is on hospitals.

Hospitals are complex service systems that operate under many constraints.
Providing healthcare services to patients is their primary objective, but there are
many obstacles to doing so effectively. First, almost every patient has a different
set of medical needs. Therefore, hospitals need to have a robust strategy to
accommodate their needs. In addition, some patients are scheduled, whereas other
patients (e.g., emergency and ambulance patients) enter the hospital unexpectedly.
Failure to meet these demands could adversely affect the health of the patients, a far
greater consequence than just lost revenue.

Hospitals have to manage many resources—including physical and human—in
order to meet the needs of the patients they serve. They employ physicians, nurses,
technicians, administrative personnel, and many other support staff that help to
provide the necessary care to patients. Employees must be scheduled in such a way
as to properly staff the hospital in the presence of a highly variable workload. On the
other hand, these personnel are limited in the number of hours they can work before
patient safety becomes a concern. Medical equipment can also be a critical resource.
Some equipment is expensive and must be employed at high utilization rates in order
to be cost effective. However, shortages in availability can cause bottlenecks in the
system, which lead to excess waiting times for patients. Ultimately, the goal is to
maximize the utilization of medical personnel and equipment while maintaining a
sufficient buffer to accommodate spikes in patient demands.

A substantial amount of work has been done using DES to model the delivery of
healthcare in hospitals. DES is a natural extension to the traditional queuing theory
models, which are popular analytic models for service-oriented problems. DES
allows for the use of distributions of system parameters that might be intractable in
a purely analytic model but better fit observed data. For a survey of DES in hospitals
and healthcare clinics, see Jun et al. (1999). DES is the current standard, and
some of the agent-based models presented have yet to take full advantage of their
potential in providing unique insight into these types of problems. In addition, these
preliminary models have the potential to address questions inaccessible to DES.
ABM can generate heterogeneous patients that each have a unique set of medical
needs. Patient arrival rates can be a function of time or other system parameters.
Moreover, dynamic responses by the physicians and nurses in the system can be
tested, allowing for them to respond to not only the needs of each patient but
also the state of the entire system. In addition, ABM can represent many resource
types, including medical equipment, to analyze the system efficiency under various
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patient demands and constraints. The following two sections deal with patient flow
through the operating room and the emergency department, respectively. The third
section examines the use of radio-frequency identification (RFID) technology in an
emergency department.

2.1 Patient Flow

With rising costs and an aging population, the demand for affordable healthcare is
likely to increase significantly. In the USA, the Bureau of Labor Statistics predicts
that the healthcare industry will generate more new jobs than any other industry
between 2008 and 2018, but increasing the workforce is not enough and does little
to help control expenses. Beyond increasing the capacity of the healthcare system,
it is important that facilities are operated efficiently to minimize the idle time of
operating rooms, imaging equipment, and healthcare workers.

Workflow problems are often modeled using queuing theory (see Chap. 1).
Queuing theory facilitates analysis of complex systems that serve individuals with
either stochastic arrival times, service times, or both. For a stationary arrival process,
it is straightforward to determine the number of servers that can adequately meet
the system demands. However, when the arrival process is less predictable, as it is
in hospitals where patient arrival times typically vary by time of day and day of
week, analytic solutions for these problems are not tractable. As a result, simulation
becomes the best approach to evaluate potential solutions for improving the system
throughput.

One example is a simulation model developed by Pearce et al. (2010), in which
the authors seek to minimize delays in the first set of morning surgeries in an
operating room (OR). They focus on delays at the start of a period because these
delays can cause successively longer delays throughout the day. Patients scheduled
for surgery are either inpatients or outpatients. All outpatients must first pass through
registration and then receive some subset of tasks (e.g., triage, phlebotomy, etc.)
before they join the inpatient track. Inpatients and processed outpatients see a
combination of healthcare workers, which may include a patient care technician,
surgeon, anesthesiologist, and certified registered nurse anesthetist before finishing
their preoperative process. The tasks in both the initial outpatient track and the
subsequent inpatient track may be subject to reordering in order to minimize wait
times and maximize resource utilization. After finishing both tracks, the patient is
then queued for the operating room.

The model developed by Pearce et al. treats patients, staff, and informational
units (e.g., charts and laboratory results) as agents. Patients progress through
four states: waiting room, preoperative room 1 (for the outpatient track), preop-
erative room 2 (for the inpatient track), and the OR itself. Hospital records are
used to determine relative inpatient/outpatient loads. Data for the time each task
requires was gathered by several days of shadowing patients through the process.
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The expected length of preparatory time is a function of acuity level, with sicker
patients taking more preparatory time on average than patients with lower acuity
levels.

A variety of tests are run to improve the percentage of initial surgeries that
began within 10 minutes of the scheduled time while keeping patient wait times
as short as possible. Several scheduling strategies are evaluated. One strategy that
was found to be effective is to schedule high-acuity patients and patients requiring
blood work as early as possible because they have longer service times on average
and more variance. The best improvement is achieved by signaling and coordinating
the agents that needed to see the patient upon arrival to preoperative room 2. This
strategy results in an increase of on-time surgeries from a baseline of about 60% to
one of 85%. Signaling also allows the benefits of other changes to be more fully
realized. For example, a policy of using the RN staff to perform triage without
signaling results in only about a 1% improvement in on-time surgeries. Without
signaling, patients under this policy spend less time in the waiting room but more
time waiting in the preoperative stage. When signaling is used in addition to this
policy, it allows for around an 89% on-time rate, about a 4% improvement over the
base case with signaling. Future work will focus on resource utilization at each of
the tasks for the inpatient and outpatient track.

2.2 Emergency Departments

Emergency rooms have become a primary source of medical treatment for an
increasing number of people. According to the CDC there were over 123 million
visits to emergency departments in 2008, a 37% increase from 1996. Emergency
rooms, more so than other parts of the hospital, have a highly variable workload
because patients by their very nature are unscheduled. Therefore, one of the key
problems is how to appropriately staff physicians and nurses in order to have a
robust response to uncertain demand. Such a response, ideally, has neither excessive
patient waiting nor idle physicians or nurses. Another key question is identifying
bottlenecks in the system. For example, what should be the relative ratio of staffing
of nurses to physicians? In addition to staffing, what procedures can be implemented
to reduce waiting times? This might include steps taken within a single department,
such as criteria for adding or subtracting triage nurses based on queue length. On a
regional scale with multiple hospitals, how can ambulances and patients be diverted
to prevent excessive congestion at any one hospital in the system?

Models of patient flow through an emergency department (ED) typically simulate
a process similar to that in Fig. 3.1. The patients enter the system as either walk-
ins or arrive by ambulance. Patients who arrive via ambulance circumvent the
registration process and proceed directly to treatment as they have, in a sense,
already been assigned a critical diagnosis. Walk-in patients first queue to register and
then, after registration, proceed to queue for triage. At triage, a nurse will assign the
patient a priority based on their emergency severity index (ESI). While the number
of levels in an ESI need only be two or greater, the trend is toward a five-tiered
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Walk-In

Registration

Triage

Nurse/Bed

MDMedical Tests

Discharge

Ambulance
Fig. 3.1 The basic workflow
of patients through an
emergency department. Note
that queues may form prior to
any rectangular station in the
system

Table 3.3 Summary of emergency department model parameters

Model parameters
Kanagarajah et al.
(2006)

Jones and Evans
(2008)

Laskowski et al.
(2009) Wang (2009)

Software platform Micro Saint Sharp NetLogo C++ NetLogo
Adaptive agents Yes No No Yes
Medical tests Yes No Yes Yes
Ambulance arrivals No Yes Yes No
Triage levels 3 5 3 1

system. ESI in a five-tiered system ranges from 1, typically labeled resuscitation
which must be treated immediately, to 5 for nonurgent patients. Patients are then
queued separately with those receiving the highest ESI typically being served first
(as opposed to a purely FIFO system). A certain percentage of walk-in patients are
treated as ambulance patients (in that they are visibly in such need that they skip
the registration and triage processes and proceed directly to a room or bed to await
physician care). After triage, patients queue for a room or a bed where they will
then queue for treatment by a physician. Some models have a physician order tests
for a percentage of patients, the results of which will be reviewed by a physician
before discharging the patient. Patients can exit the ED at any step in the process if
they leave against medical advice, leave before receiving treatment, or die. Patients
complete the system after seeing a physician when they are either discharged from
the hospital, transferred to another hospital, or admitted to the hospital. A summary
of models using this basic framework can be seen in Table 3.3.

The Kanagarajah et al. model focused on balancing economic incentives,
workload, and quality of care (Kanagarajah et al. 2006). These competing goals
ultimately are a function of physician utilization and wait time. The simulation
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tests a variety of effects which included using on-call physicians to aid when arrival
rates surged, adjusting the capacity of examination rooms where physicians serviced
triaged patients, and having physicians spend less time with patients when lines
were long. The amount of time spent with patients by a physician is an example of
an adaptive behavior, which is unique to each individual physician and evolves over
time. This adaptive behavior is a feature of ABM that cannot be easily replicated by
other modeling techniques.

The Jones and Evans model, which allowed for a high degree of control in terms
of inputs, was validated using data gathered from an urban hospital’s ED (Jones
and Evans 2008). Using a heterogeneous Poisson arrival process for patients, the
authors observed how hourly and daily variation in patient arrival rates coupled with
staffing levels affects patient waiting times. These distributions were gathered from
hospital data and paired with actual staffing levels in order to validate their system’s
predicted wait times. In the model, the time required for a patient to be treated is an
exogenous variable determined at the creation of the patient agent.

The Laskowski et al. model was used in the context of a single hospital to
explore appropriate staffing levels for expected patient arrival rates (Laskowski
and Mukhi 2009). The model, however, is also run in parallel to simulate multiple
emergency rooms in order to explore policies that seek to distribute patient arrivals
between hospitals in order to prevent excessive congestion in any one hospital in the
system. The authors tested a policy known as random early detection, which reroutes
ambulances with increasing probability as a function of the queue length of the
intended destination. Reroutes are also applied to walk-in patients in the queue and
can be thought of as either a suggestion that wait times might be shorter elsewhere
or an offer for an ambulance to transfer them. This policy has the effect of greatly
reducing congestion at any one hospital, essentially bounding the average queue
length across hospitals and increasing physician utilization rate.

The Wang model focused on the total time spent in the system by patients (Wang
2009). The focus is on finding bottlenecks in the system that, if improved, could
decrease total time spent in the system. The model explored the effect of adding
triage nurses conditioned on the line length, then reducing staff once the line had
reduced to one. The model also examined the system’s sensitivity to radiology test
times by having physicians order tests for a percentage of patients. The model which
does not include patient acuity levels showed substantial improvements (30%) in
total wait times by adding an extra triage nurse when the queue length reached
ten patients. They also showed that small improvements in the average time spent
in radiology (from 30 to 28 min) actually translated to much larger time savings,
10.38 min to all patients in the system.

The models described above define patient arrivals using a Poisson process, with
Wang also having the option for a random uniform distribution for inter-arrival
waiting times. The Jones and Evans model goes a step further in modeling patient
arrival rates using a heterogeneous Poisson process with arrival rates varying each
hour with daily and weekly cycles. All the models use empirical data to capture
arrival rates and service times, drawing from either data available to them or data
published from other ED studies. All models used between one day and one week
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of simulated time as a warm up for the system to enter an equilibrium state. One
of the more novel applications of agent-based models in this area was the 2009
Laskowski and Mukhi paper, in which a method for using the model to test the
effects of multiple staffing levels is described. The results from each simulation are
input into a genetic algorithm that generates a new set of staffing levels to be tested.

Most of the models in the papers cited above were a first attempt to replicate more
complicated real-world behavior and as such included simplifications that might be
relaxed in future versions of the models. The Jones and Evans model, for example,
showed that when using real-world staffing levels and variable arrival rates, their
model simulated with a high degree of accuracy the wait time experienced by
patients. Most of the papers stated a desire to better capture the many roles of nurses
in the ED. Most of the workflow models still do not incorporate much in the way
of spatial components. In addition, patient outcomes (as viewed by how they leave
the ED) were independent of wait time. One can imagine that instead of this being
exogenous to the system, it might be a function of wait time.

2.3 Modeling Radio-Frequency IDs and Electronic
Health Records

RFID is a technology that allows for both passive and active tracking of goods
or patients. RFID technology is being used to help implement a real-time location
system (RTLS) for patients. This system allows for patients’ progress through the
ED to be tracked, allowing for more accurate record keeping and potentially shifting
some of the burden of such record keeping away from nurses, especially when used
in conjunction with electronic health records (EHR). Such systems, however, are
not without their shortcomings. Active tags, which require batteries, have a greater
range than passive tags, but can cost upwards of $50 per tag. Passive tags, which
do not require batteries, can cost as little as five cents and are often preferred to
active tags. Passive tags typically have a limited range of approximately one to two
meters, with objects and other patients potentially impeding the signal further. If,
however, passive readers are placed too densely in an area, there is the potential for
interference between readers.

Laskowski et al. (2010) modeled the use of RFID technology in an RTLS
implemented to track patients in an ED. Given the nature of the problem, the actual
topology of the ED plays a much more important role than it did in the workflow
models. The topology of the ED is in two dimensions with walls, which completely
block RFID signals. Patients, nurses, and other agents that represent people are
represented as circles with a 60 centimeter radius. A patient is thought to be at the
last RFID reader triggered until another reader is triggered. Thus, when the patient is
not within a reader’s radius, but has not yet triggered another reader, there is an error
in where the system believes the patient is located. The paper seeks to analyze the
effect of passive RFID reader placement on system accuracy. The paper, which tests



56 S. Barnes et al.

six reader configurations, runs each configuration 500 times to generate meaningful
statistics (given the stochastic nature of arrival processes, this experimental design
increases the likelihood that some high-volume days will be observed). There are
two error terms calculated: the average Euclidean distance between a patient and
the reader zone and the time a patient is reported as being in an incorrect zone. The
paper then examines the effect of combining readers with variable ranges. The paper
concludes that having too many readers leads to interference, which overwhelms any
benefits from covering a larger area. The best performance is achieved by spacing
readers as tightly as possible without overlap.

EHRs are another technology being integrated into many hospitals and emer-
gency departments. The Poynton et al. model addresses a different question from
the earlier ED workflow models, exploring how the spatial distribution of computer
terminals for data entry affects workflow (Poynton et al. 2007). This model is unique
in that between each stage of the patient’s journey, the attending physician or nurse
must enter the data from their most recent interaction with a patient. The model
is clearly simplified because it assumes that caregivers are dedicated to a patient
until they are discharged. The authors found that a policy based on having one
computer per bed produces the best outcome. However, this strategy is often not
feasible due to economic reasons; centralized computer clusters are preferable to
computers distributed along the length of the hallway, depending on agent behavior.

2.4 Conclusions

ABM is an intuitive framework to design and interpret models of healthcare delivery.
Agents are well suited to navigate and interact with two- and three-dimensional
spatial environments, as they were considered in the RFID model. Agents have
the potential to learn and adapt their behavior as the situation changes. Adaptive
behavior can represent different responses to different inputs, but also different
behavior to the same inputs at different times, which allows for a richer modeling
of policies. The scope of applications is quite broad, ranging from the scheduling of
patients, medical diagnostics, and imaging equipment to the directing of ambulances
to hospitals depending on urgency, specialty, and crowding.

3 Epidemiology

The field of epidemiology is primarily concerned with how disease spreads in a
given population. Studies that model the transmission of infectious diseases can
focus on increasingly large scales, ranging from single hospital units or wards to
entire hospitals to communities, cities, and global pandemic scales. Vector-borne
diseases, or those that are transmitted by way of an intermediate carrier, are the most
commonly modeled types, but airborne, waterborne, food-borne, respiratory, and
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sexually transmitted diseases can also be modeled. These diseases can be modeled
with different degrees of specificity to include incubation periods and periods where
a colonized individual is infectious but asymptomatic. Understanding how diseases
are transmitted and determining the best ways to control transmission are critical
to preventing excessive spread, and epidemic modeling is an ideal method for
experimenting with various strategies.

Epidemiological models have typically been compartmental models, which pre-
dict how proportions of several population states evolve over time using differential
equations. The most well known of these models is the susceptible-infected-
recovered (SIR) model (Kermack and McKendrick 1927), which laid the foundation
for many other compartmental models (Austin and Anderson 1999; Austin et al.
1999; Beggs et al. 2008; Bootsma et al. 2006; Cooper et al. 2004; McBryde et al.
2007; Raboud et al. 2003; Robotham et al. 2007; Sebille et al. 1997). The SIR
model equations are shown in (3.1), where S, I, and R represent proportions of the
population that are in the susceptible, infected, and recovered states, respectively.
β and γ are the transmission and recovery rates. These equations can simply be
integrated over time to generate population transmission dynamics and can provide
interesting results for both deterministic and stochastic scenarios. An important
measure for this type of model is the basic reproduction number, R0, which is
the average number of secondary infections (i.e., transmissions) per primary case
in an entirely susceptible population. R0 is a key metric in predicting the extent
to which an infection is likely to spread. If R0 > 1, then an epidemic is likely to
grow because on average, each infected person transmits the disease to more than
one other person. If R0 < 1, then an epidemic is likely to become extinct. Some
models use R0 as an input to drive transmission within a population, whereas other
models use a transmission rate or probability parameter and calculate the resultant
R0 value for the population based on the number of initially and secondarily infected
individuals. These models have also provided a lot of insight into the effects
of certain parameters on transmission dynamics and the effectiveness of various
infection control measures as defined, for example, by the following differential
equations:

dS
dt

=−β SI,
dI
dt

= β SI− γI,
dR
dt

= γI (3.1)

Mathematical models such as the SIR model have several assumptions and
limitations that prevent them from producing more valuable results. The first
key assumption is that populations modeled by mathematical equations are well
mixed, meaning that all individuals within the population interact with equal
probability. For example, the SI term in the differential equations in (3.1) shows
that transmission is proportional to the interaction between all susceptible and
infected individuals, rather than a specific subset. All individuals within each
compartment are assumed to be uniform, which prevents analysis of how mixed
or extreme behavior, such as superspreaders or non-compliant healthcare workers
(HCWs), can affect transmission dynamics. It can also be difficult to implement
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time-varying or conditional behavior in a mathematical model, and thus analysis of
control measures is often performed by simply varying input parameters without
modeling the interactions involved in that particular intervention. Some variables,
such as hand-washing probabilities and screening test return times, are reasonable
to approximate with simple parameters, but others such as isolation or the effect
of staffing ratios are more difficult to simplify. Several advances in mathematical
modeling have been made in recent years to account for these limitations, but the
results are often only valid for particular applications (Bansal et al. 2007).

Agent-based, or computational, disease spread models have expanded on the
research established by the mathematical models described above and have ad-
dressed many of their limitations. They have reinforced many conclusions from
mathematical and simulation models and have provided additional detail about
the nature of transmission. The key advantage of ABMs is that they simulate the
interactions that serve as the primary mechanism for transmission and they are
capable of implementing many infection control measures explicitly. In addition,
ABMs are also more adept at simulating stochastic effects, which must be captured
when modeling heterogeneous populations. As a result, they have contributed
significantly to a better understanding of epidemics.

The articles reviewed in this section fall mainly into two categories: process-
oriented models of transmission and network models of transmission. Process-
oriented models typically simulate agents that are moving through a series of stages
before being removed from the population, much like they would in a DES model.
Network models simulate the spread of disease between individuals using relational
connections as the primary mechanism of transmission. Intermediate carriers such
as HCWs do not need to be modeled explicitly in this type of model because the
connections between individuals are explicit, unlike in a process-oriented model.
Exemplary methods and contributions for both types of models are summarized in
the following subsections.

Pandemic modeling is another research area that has been affected positively by
ABM. Diseases such as malaria, SARS, smallpox, and various strains of influenza
are typically modeled for these applications. Control measures are most often
concerned with logistics, such as distributing vaccinations, locating community
clinics, delivering emergency rations and medical supplies, and evaluating the
effects of social distancing (e.g., school closures). The initial work in applying
ABM techniques to pandemic scenarios was done primarily by Carley et al. (2006)
and Cummings et al. (2004), which both demonstrated the value of agent-based
models in generating pandemic dynamics and evaluating response strategies. Since
then, agent-based pandemic models have begun to incorporate massive data sets that
reflect detailed demographic, social, transportation, and even climate characteristics
of a particular geographic region. However, although many of the characteristics and
advantages of these models are applicable to healthcare operations management, we
do not provide additional coverage of this research area because these large-scale
applications are more appropriately discussed within the context of public health.
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Fig. 3.2 Sample patient flow diagram of disease spread model in a hospital. Optional infection
control measures are indicated by dashed lines and dotted arrows

3.1 Process-Oriented Models of Transmission

Process-oriented models of transmission are the most natural application of ABM to
epidemiology. A common example is a simulation of patient-to-patient transmission
in a hospital, in which patients are admitted, visited by HCWs, and discharged
(see Fig. 3.2 for a sample patient flow diagram). What separates these models from
traditional DES models is that there are often multiple patient and HCW types,
and their behavior is often dynamic. Transmission typically occurs through HCWs,
who spread an infection from one patient to another because they fail to wash
their hands adequately. These types of transmissions, from an already infected
(i.e., primary) patient to a newly infected (i.e., secondary) patient, are known as
hospital-acquired, or nosocomial, infections. Hospital intensive care units (ICUs)
are commonly modeled in an agent-based framework. ABM is ideally suited for
this type of model because populations are small and diverse, patients are typically
more susceptible to infection than in other hospital units, contacts between patients
and HCWs are frequent and intimate, and stochastic effects are of considerable
importance.

Within agent-based models, there is often an increased ability to track various
simulation data and provide additional insight into the transmission dynamics.
These models can evaluate the effectiveness of various infection control measures in
order to offer recommendations of which measure or bundle of measures should be
implemented. Typical control measures that are modeled include the hand-washing
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behavior of HCWs, diagnostic screening of patients, isolation of infected patients,
vaccination, and decolonization, in which colonized patients undergo a therapeutic
process that negates their ability to infect others.

There is a set of pathogens that are commonly modeled in these types of
simulations, and many of these are resistant to antibiotic treatments. The most
prevalent pathogens are methicillin-resistant Staphylococcus aureus (MRSA) and
vancomycin-resistant enterococci (VRE), in which patients typically become col-
onized with the pathogen prior to developing an infection. This scenario is
particularly difficult because colonized patients are often asymptomatic and, there-
fore, they can only become identified by using active surveillance techniques such
as diagnostic screening. Consequently, these patients can spread the pathogen to
HCWs and ultimately other patients before any intervention is initiated. In addition,
treatment for these resistant organisms is often difficult, thus protecting patients
from acquisition is the most effective approach for ensuring their safety.

The articles discussed in this section all follow a similar pattern for modeling
transmission of an infectious disease in a hospital. They incorporate resistant
pathogens and assess the potential effectiveness of specific control measures. How-
ever, these models differ slightly in their specific sets of experimental parameters
and the nature of their results. These differences are summarized in Table 3.4.

In our review, we begin with two agent-based models that extensively explore the
effects of external factors and infection control measures on disease transmission
in a hospital. Both models highlight the specific level of detail afforded by ABM
that is not possible using SD or DES methods. In the first example, Barnes et al.
(2010) developed a detailed agent-based simulation of MRSA transmission in a
hospital. The model incorporates many of the most common infection control
measures and is able to reinforce the conclusions from mathematical models that
one-to-one HCW-to-patient ratios and patient screening combined with isolation
are most effective in reducing transmission (Austin and Anderson 1999; Austin
et al. 1999; Bootsma et al. 2006; Cooper et al. 1999, 2004; McBryde et al. 2007;
Raboud et al. 2003; Robotham et al. 2007). In addition, the authors highlight cases
in which hospitals that have implemented infection control measures could still
fall susceptible to MRSA outbreaks. Barnes et al. (2010) also conduct numerous
simulations to explore the effects of individual HCW behavior on transmission,
experimenting with the hand-washing probabilities of entire HCW classes (i.e.,
nurses and physicians) as well as rogue individuals that were less compliant than
others in the same class. Many of these experiments are executed using parallel
computing techniques, which alleviate the long run times caused by the model
complexity. In the second example, Hotchkiss et al. (2005) also test the effects of
several factors and infection control measures on transmission and demonstrate that
early detection and subsequent isolation of infected patients, quick patient turnover,
cohorting patients, and limiting the frequency of physician visits can all reduce the
likelihood of a significant outbreak.

In addition to evaluating infection control measures and determining the most
influential external factors, ABM can also provide more realistic transmission
dynamics by introducing additional model complexity. This additional detail not
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only increases the relevancy and strength of simulation results, but it can be used to
address the concerns of healthcare professionals who are skeptical of the model
validity. Ong et al. (2008) implemented a spatially explicit ABM of influenza
transmission in a hospital unit, where at any given time, each agent occupies a
specific area in the unit. Several types of HCWs are modeled, including physicians,
nurses, health attendants, clerks, and cleaners. Ambulant and non-ambulant patients
are also modeled. Transmission of influenza is airborne; therefore, additional model
considerations must be taken into account because agents can transmit the disease
without coming into direct contact with each other. Results directly related to
transmission are limited, but the model generates a distribution of contacts between
all pairs of agents in the unit that could be incorporated into future modeling work.
The model by Meng et al. (2010) incorporates multiple routes of transmission
and variable transmission rates between patients, but it produces limited results
related to actual dynamics. Temime et al. (2010) describe an agent-based model of
pathogenic transmission in a hospital, but the implications of these results are more
appropriately addressed in the following section on network models of transmission.

Agent-based models can also be used to address questions related to antibiotic
resistance, which is an important issue in disease control. Several models address
the implications of antibiotic resistance at the microbiological level and are not to
be discussed. However, D’Agata et al. (2007) focused on the effects of antibiotic
resistance on transmission and the competition between resistant pathogens in a
hospital. Single patient and HCW types are modeled explicitly, with each having
eligible states of being susceptible to or colonized with resistant and/or nonresistant
pathogens. The authors demonstrate that initializing decolonization treatments
on patients quickly and for shorter durations can eliminate both resistant and
nonresistant strains from the population. The authors are also able to develop
a corresponding differential equation model that facilitates model validation and
additional analysis.

3.2 Network Models of Transmission

Network models of transmission provide a different perspective than process-
oriented models for analyzing the spread of infectious diseases. They are an
abstract representation of the physical interactions that can lead to transmission,
in contrast with the direct correlation to reality afforded by process-oriented
transmission models. The edges, or connections, between nodes in the network can
represent a relationship between patients in a hospital or between individuals in
a community. The structure, or distribution, of these connections has a significant
effect on transmission dynamics, and different network structures can be designed to
represent various scenarios. Whereas process-oriented models can identify the best
interventions, network models can provide insight as to where those interventions
should be directed, such as targeting individuals for vaccinations or closing schools
or hospital wards.
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Fig. 3.3 Sample network instances for regular (degree = 4), small-world (initial degree = 4,
rewiring probability p= 0.5), random (edge probability = 0.2105), exponential (mean degree = 4),
and scale-free (generated using the Barabási–Albert model for preferential attachment) structures.
Darker shaded nodes have a higher degree relative to the other nodes, and lighter shaded nodes
have a relatively lower degree. The bottom plot shows the mean degree distribution for each
network type with 20 nodes and approximately 40 edges, averaged over 100 samples. The regular
network degree distribution (not shown in the graph) has a constant degree distribution, with all 20
nodes having a constant degree of 4. As the network structure changes from regular to scale-free,
the degree distribution becomes more skewed, with several nodes being highly connected and the
remaining nodes having relatively few connections

There are several common structures for interaction networks, which are typi-
cally characterized by the frequency distribution of node connections in the network,
also known as the degree distribution (Albert and Barabási 2002). Examples of
each of the following network types and their corresponding degree distributions
are shown in Fig. 3.3. Regular networks have nodes that all have the same degree,
and edges can be structured (e.g., nodes are connected to their nearest k neighbors)
or randomly distributed to other nodes in the network. Random networks are
generated by assigning an equal probability to each potential edge in the network.
Each edge is then chosen at random based on the given probability, which forms
a network in which the degree distribution follows a binomial model. Small-
world networks (Watts and Strogatz 1998) interpolate between regular and random
networks by rewiring a certain proportion of edges in a structured, regular network.
Nodes in this type of network are still highly clustered, but disease could spread
more quickly because there are shortcuts to other highly susceptible sections of
the network. A random network is a special case of a small-world network that has
rewired all of its edges. A special class of networks are exponential networks, whose
degree distribution follows an exponential trend. These networks have been found
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to be the most realistic structure for social interaction networks (Bansal et al. 2007).
The last common type of network is a scale-free network. These networks have a
power law degree distribution, in that there are a few nodes with a large number of
connections and many nodes with a small number of connections. These networks
are called scale-free because the average distance between any two nodes increases
very slowly as the number of nodes increases. Disease transmission through these
types of networks is likely to find the highly connected nodes quickly. However,
transmission to the remaining population is likely to take much longer because there
are fewer paths to nodes on the periphery of the network.

Mathematical models inherently assume that populations are well mixed, which
means each individual has an equal probability of interacting with all other
individuals. Interpretations can vary, but, in general, this assumption corresponds
most closely to a regular network, whether the connections are structured or
random. For certain applications, this configuration could be appropriate if each
individual has approximately the same number of social contacts (e.g., child care
centers). In other cases, a small-world, exponential, or scale-free network is a more
accurate representation because there can be individuals that have connections to
several population subgroups. These highly connected individuals often have the
greatest effect on transmission, and neglecting to model them explicitly can have
a significant effect on the results that are ultimately communicated to healthcare
organizations.

The first set of models investigates how direct transmission can occur between
individuals in a general population. These models typically consist of a homoge-
neous population of agents with essentially no individual characteristics other than
their infection status. However, heterogeneity enters the model because the degree of
each node in the network is not constant. The goal of these models is to characterize
how the structure of the network affects the rate and extent of transmission, and to
further demonstrate the limitations of homogeneous models.

Bansal et al. (2007) presented strong evidence that homogeneous mixing models,
such as the SIR model, do not accurately predict epidemics for realistic contact
networks. The authors are able to demonstrate that several empirical contact
networks could all be approximated by synthetic networks with exponential degree
distributions. Homogeneous mixing models, although reasonably accurate for char-
acterizing transmission dynamics on regular, random networks, do not accurately
predict epidemics on the more heterogeneous exponential and scale-free networks.

Christley (2005) focused instead on identifying the most susceptible individuals,
or those most likely to become infected in the event of an outbreak, in random and
small-world networks. This type of analysis is especially useful because the results
could be used in developing strategies for targeting individuals for vaccination,
isolation, or quarantine. The authors experiment with various measures of node
centrality and determine that the degree of a node proved to be as good an indication
of an individual’s risk of infection as more complicated measures that would also
require more information to compute. Eubank (2005) also proposed several local
and global measures of network structure that could have significant implications
for transmission of infectious diseases.



3 Agent-Based Modeling in Healthcare 65

Fig. 3.4 The network of
contacts in the modeled ICU
in the Temime model. There
are 18 patients and 3 types of
HCWs: 2 profiles of HCWs,
corresponding to nurses and
physicians, are assigned to
subgroups of patients, and
one peripatetic-type HCW
visits every patient once
each day

The next set of network models contain multiple types of agents that interact,
whether they are explicitly or implicitly represented in the model. These studies
are also focused on the structure of the network, but in addition they seek to
characterize how interactions between different agent types affect transmission. The
degree of heterogeneity in these network models facilitates analysis of the relative
effect of each type of HCW. These models can also implement HCW behavior
and bring consideration to other potential aspects of transmission such as HCW-
to-HCW transmission and patient sharing. These types of interactions are not often
considered, but can lead to increased levels of transmission in certain circumstances.

Temime et al. (2009) constructed a model of a hospital ICU with three types of
HCWs that visit patients. Two types of HCWs are assigned to specific groups, or
cohorts, of patients, whereas the third type visits all of the patients (see Fig. 3.4).
The assigned HCWs represent nurses and physicians, and the third type, designated
the peripatetic HCW, represents someone who could potentially come into contact
with any patient, such as a nursing assistant or respiratory therapist. The model
demonstrates the threat posed by the latter type and presented results that a single,
noncompliant peripatetic HCW could cause the same level of transmission as if all
HCWs were moderately noncompliant (i.e., 19–23% noncompliance). These effects
become even more significant when HCW-to-HCW transmission occurs.

Barnes et al. (2012) also designed a network model of patient-to-patient trans-
mission in a hospital. In this model, patients are connected directly if they share
an HCW (see Fig. 3.5), which contrasts with the explicitly modeled intermediate
HCW nodes in the Temime model. Nurses and physicians in this model are modeled
implicitly, in that their states are only stored locally for agents in each respective
cohort. By varying the number of patients, nurses, and physicians, networks are
generated with different densities, calculated as the ratio of direct connections in the
network to the maximum possible number of connections. Simulation experiments
show that both nurses and physicians can pose threats to patients in different ways.
Nurses visit patients more often, but physicians have the potential to infect patients
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Fig. 3.5 An example of a dense (left) and sparse (right) patient network from the Barnes, Golden,
and Wasil model. Patients that share a nurse are connected by a link, while patients that share a
physician have the same color

in different locations in the network, similar to the threat posed by Temime’s
peripatetic HCW, albeit to a lesser degree. Barnes et al. also experiment with
patient sharing, demonstrating that the sharing of patients between HCWs should
be performed in a structured, and not random, manner.

3.3 Conclusion

Overall, ABMs are well suited for testing potential infection control measures
and can provide some indication of success before implementing any particular
strategy. Among ABMs, process-oriented models have a more established record of
contribution, and they have produced relatively widely accepted results concerning
the effectiveness of common infection control measures. The foundation has been
established for network models of transmission, but there are still many areas to
explore, particularly in determining which network measures are the most effective
in predicting an outbreak. However, the benefit of modeling the explicit connections
between individuals has been demonstrated in the unique results from this type of
model. Both static and dynamic network measures may be useful, but the ease of
calculation may be critical for practical use.

There are several key results that ABMs have reinforced, and several more
that are unique to this methodology. The hand-hygiene compliance of HCWs is
critical to preventing outbreaks of infectious diseases. In most cases, however, hand
washing is not sufficient to control transmission, and additional measures such as
active surveillance, patient isolation, or higher staffing ratios become necessary.
Minimizing patient lengths of stay and HCW visits to patients can also reduce the
risk of secondary infections, as susceptible patients are exposed less to potential
infections and infected patients have fewer opportunities to infect HCWs.
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ABMs have also provided insight into the relative threats posed by HCWs that
care for patients in a hospital. Nurses and other HCWs that visit patients frequently
are at a high risk of becoming at least transiently colonized or infected and can
quickly spread disease to other patients in their care. Physicians and other HCWs
that may visit many more patients than nurses can potentially create multiple
pockets of infection that could lead to an entire unit becoming infected. Maintaining
high staff-to-patient ratios and assigning patients to HCWs in a structured way can
offset these dangers. Future studies may be able to suggest methods for identifying
individuals at a high risk of infection because of their location in a network, and
appropriate measures could be taken to prevent that person from becoming infected
before isolation or quarantine measures become necessary.

We focused here on general models with implications for potentially many
applications, but there are several models that have been applied to empirical
networks (Eubank 2005; Meyers et al. 2005). These models have also achieved
results that could have a significant impact, for not only their intended scenario but
others. They are also good examples of the process involved in modeling real-world
scenarios and can provide a good framework for future applications.

4 Healthcare Economics and Policy

In addition to modeling individual point-of-care facilities, ABMs can be used to
analyze large populations at local, regional, or national levels. The interactions
between different facilities are often difficult to observe from the perspective of
any individual facility and are often difficult to predict. System behavior is often
regulated by policies that are set in place by local, state, or federal governments.
Policy changes are not usually enacted one at a time, therefore it is difficult to
predict and attribute changes to a single cause when multiple changes are made.
Important policy decisions should be informed using the best available data and
analysis, which now includes modeling.

4.1 Healthcare Economics

In their paper, entitled “Modeling Healthcare Policy Alternatives,” Ringel et al.
(2010) address the benefits and limits of using agent-based (microsimulation)
models to anticipate the effects of policy changes in health insurance markets.
In particular, they address several issues related to the data used to populate the
agents in the model and describe the relations between them and the difficulties in
defining a choice model for agent decisions. The relevant models (Congressional
Budget Office 2007; Girosi et al. 2009; Garret et al. 2008) seek to represent the
national population in terms of households and their relationship to employers as
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well as model their decisions on purchasing health insurance with respect to price,
availability, and need. The scope of these models is at the national level and consists
of at least three types of agents including households, employers, and insurers.

The naive approach to populating a model would be to assume independence
between distributions of attributes. This assumption, however, ignores important
correlations which occur in actual populations that might have a significant effect
on the validity of the model, especially when dealing with socioeconomic data.
Detailed information is available through the US Census and similar sources.
However, simple demographic data is often not sufficient. The data sets used by
each of the models contained additional information needed to provide a more
detailed picture. The Survey of Income and Program Participation (SIPP), which
is conducted by the US Census Bureau, was one choice used to construct a base
population (Survey of Income and Program Participation SIPP). SIPP includes
information on household income, taxes, and participation in government programs.
Data sets such as these can also be projected onto or merged with other data sets
to adjust for changes in the sample population. Other models used the Current
Population Survey (CPS), which is conducted monthly by the US Census to track
employment, occupation, earnings, and employee benefits (Current Population
Survey CPS). The Medical Expenditure Panel Survey (MEPS), conducted by the
agency for healthcare research and quality, provides data on household consumption
of healthcare, including information on cost, use of healthcare, and health insurance
coverage (Medical Expenditure Panel Survey MEPS). In addition to having a
representative population, one must ensure that the relationships between agents
are accurately described. In this case, that means an accurate relationship between
firms (employers) and households (employees). This data is rarely available from
the same source as the previously mentioned data. The CPS data, however, includes
information on occupation. This information could be used along with a survey of
firm size and industry, as well as geographic data, in order to help recreate a feasible
set of firms to employ the households.

Decisions can be modeled either deterministically or probabilistically. When
presented with a specific set of inputs, an agent using a deterministic decision model
will always make the same decision, whereas probabilistic choice models will assign
some probability to each possible choice. When given a history of agent decisions,
such rules can be estimated by using a number of techniques. Decision tree learning
determines a series of observations that can best recreate the choice results of the
observed data. Logistic models, such as the multinomial logit model, can be used to
assign probabilities to possible outcomes. The accuracy of such models is limited,
however, by the amount and variety of data on previous choices. In addition, such
models can break down when presented with conditions outside anything observed
in the training data.

With an accurate population and sensible agent behavior, validation begins by
first recreating a known set of conditions, before applying any policy changes. The
Ringel et al. paper goes on to discuss potential improvements to available data and
behavioral parameter estimates. These models, while primarily economic in nature,
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give detailed accounts and justifications for their choices in defining their agents.
These are choices that all researchers will face when attempting to build large-scale
models with incomplete population and choice data.

4.2 Healthcare Policy

In addition to economic considerations, healthcare policy decisions, can have a
direct or indirect impact on patient outcomes. When presented with a number of
policy options, it is important to identify who will be impacted and how they will be
affected. MIDAS, the Models of Infectious Disease Agent Study, is a collaborative
research initiative with funding through the National Institutes of Health to model
the spread of disease using agent-based models. Building on previous MIDAS
models, the paper by Lee et al. (2010) uses an agent-based model to analyze the
policy question of how to best prioritize, allocate, and ration vaccines during a
simulated flu pandemic.

Current recommendations by the Advisory Committee on Immunization Prac-
tices (ACIP) in the USA, as stated in the paper, suggest that pregnant women,
caregivers for children younger than 6 months, healthcare and emergency medical
personnel, everyone between the ages of 6 months and 24 years, and people between
the ages of 25 and 64 who have medical conditions associated with higher risk
of complications from influenza should be prioritized to receive flu shots. These
groups are listed either because they are at higher risk for complications with
influenza or because they are more likely to spread influenza if infected, particularly
to vulnerable populations. The paper seeks to address how strictly these guidelines
should be applied in prioritizing the distribution of vaccines and whether a particular
subgroup should be prioritized among the recommended groups.

The model itself is concerned with the Washington DC metropolitan area and has
a population of over seven million agents, whose demographic data is drawn from
the US Census Bureau’s Public Use Microdata files (PUM) (Public-Use Microdata
Samples PUMS). PUM files, in addition to including detailed demographic data,
track transportation usage and are well suited for modeling small geographic areas.
Agents interact with other agents within their household and with either schoolmates
or coworkers, depending on their age. In addition, each agent is assigned a generic
activity level, which varies with the day of the week. The transmission and mortality
rates were calculated from previous flu pandemics. A specified percentage of
infected agents require hospitalization and other medical treatments, which served
as part of the basis used to calculate the total cost of the pandemic.

A series of trials using the model compared scenarios including relaxing the
distribution of the vaccine to include some healthy adults between 25 and 64,
prioritizing different at-risk groups, and changing the bounds of the age recommen-
dations. The authors found that while prioritizing those what were more likely to
spread the disease did reduce the overall number of infected agents, the population
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also had higher total morbidity, because more at-risk patients were vulnerable to
getting sick. The results as a whole support the use of the ACIP guidelines in
selecting who should be vaccinated.

4.3 Conclusion

Important policy issues will continue to arise as legislatures amend existing regula-
tions and prepare for emergency situations. It is important that detailed models be
constructed to help understand the far-reaching effects that proposed changes might
cause. Enacting policies such as the vaccine prioritization involves making trade-
offs between the total number of infected people and the outcomes of those most
vulnerable to influenza. Detailed modeling can help to illustrate the implications of
the trade-offs involved with policy changes.

5 Open Opportunities for Research and Practice

ABM and simulation has been applied successfully to several applications of
healthcare operations management, including healthcare delivery, epidemiology,
economics, and policy. Building on the foundation established by system dynamics
and DES, ABM has provided new insight to these problems by modeling individuals
and the interactions between them. This perspective has facilitated analysis at both
the individual and system levels, which is not typically possible using other meth-
ods. The greatest value of ABMs is that they can be used as virtual environments
to evaluate policy alternatives, some of which would be infeasible or unethical to
experiment with in practice. This capability can help healthcare organizations make
better decisions, which can potentially lead to a higher quality of care for patients
and extensive cost savings.

As with the other modeling methodologies, the challenge in constructing ABMs
is first generating realistic dynamics for a particular scenario and then analyzing
those patterns to identify the best strategies for intervention. Determining the
appropriate level of detail for an agent-based model can be a difficult challenge.
Extremely detailed models require many parameters, and it is difficult to get
accurate values for these parameters from empirical data and the research literature.
Parameters are often set at reasonable values, and sensitivity analysis is performed
to address any shortcomings associated with poor selection, but this type of
analysis can become very time-consuming if model run times are large. Models
with few parameters mostly avoid this problem, but are sometimes challenged
due to their lack of detail and complexity. One solution to this issue is to use
hybrid models, which incorporate system dynamics and agent-based methods. In
a hybrid model, one might model a network of agents whose states are affected
by both their interaction with other agents and an internal differential equations
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model. These models can take advantage of the strengths of each methodology,
most importantly the lower computational demands of system dynamics and the
heterogeneity afforded by ABM. For all levels of fidelity, agent-based models can
incorporate and generate large quantities of data. As a consequence, statistical rigor,
efficient data analysis techniques, and visualization are all critical to producing
insightful results and communicating those findings to healthcare professionals.

Several models focused on only a particular hospital configuration or network
instance, which may limit the usefulness of a particular strategy. Certain trends
may persist over similar variations, but the strongest impact is likely to be
derived from models that suggest robust solutions that have implications for many
scenarios. Other models used parameterized configurations, which are more broadly
applicable, but may not correspond well to any particular situation. ABMs can also
operate on a variety of time scales, and it is important to choose an appropriate scale
that is relevant to the problem and compatible with model parameters.

Another challenge with ABMs is related to validation. The level of validation
required for a particular agent-based model is primarily driven by its ultimate
purpose. Models that are intended to produce accurate quantitative (i.e., predictive)
results may require extensive validation, whereas more qualitative (i.e., illustrative)
models have less stringent requirements. Validation is difficult for some applications
because they lack empirical data as a baseline for comparison. Therefore, it is
not always possible to know what simulation outcomes should look like. When
empirical data are available, there are several approaches for using them to validate
a model (Fagiolo et al. 2007). The best of these approaches primarily involves
incorporating empirical data, historical perspective, and subject matter expertise
in the selection of the best possible set of model assumptions, parameter settings,
and initial conditions. By combining these data sources, agent-based models are
more likely to use appropriate values for input parameters and generate reasonable
system responses. For any validation approach, it is always necessary to perform
sensitivity analyses to identify any parameters that cause nonproportional changes
in the system.

Empirical data is typically available for many applications within healthcare op-
erations, especially those related to patient information and resource management.
In addition, subject matter expertise is readily available, which should be leveraged
to develop models with an appropriate set of agent characteristics and behaviors.
However, validation becomes more difficult when the underlying dynamics are not
well understood or there is no historical reference, as is generally the case for
the transmission of antibiotic-resistant pathogens or the implementation of a novel
healthcare policy. For these cases, an agent-based model may have more value in
demonstrating relative trends or generating alternative outcomes for comparison,
and less value as a predictive model.

Moving forward, new and existing agent-based models should continue to build
on the most relevant achievements of other models, including those from other
fields that have taken advantage of the methodology. Making these models widely
available is a practice that can help to accelerate progress. This evolutionary process
is another advantage of ABM, as system dynamics and DES models are more
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difficult to augment with additional complexity. Each individual model may have
limitations, but as the research grows, many of those limitations can eventually
be eliminated, thereby increasing the acceptance of these methods by healthcare
organizations.
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Chapter 4
Optimization in Healthcare Delivery Modeling:
Methods and Applications

Sakine Batun and Mehmet A. Begen

1 Introduction

Healthcare expenditures in many countries account for a significant portion of their
gross domestic product (e.g., 17.4% in the USA, 11.4% in Canada, and 9.8% in
the UK, according to the publicly available data for 2009 (OPTN 2011)). Besides
suffering from high costs, healthcare delivery systems are also experiencing serious
capacity-related problems since the world population is rapidly aging (the number
of people over age 60 is expected to reach 22% by 2050 (WHO 2012)), and hence,
the number of people that will be in need of care is quickly increasing. Due to the
high costs involved in healthcare delivery and the forecasted increase in the demand,
efficient allocation of healthcare resources has become more crucial.

Decision making in healthcare is a complex and critical process, and an attractive
application area for operations research. Managing healthcare involves planning
and coordinating several scarce resources (most of which are expensive and highly
specialized) and considering multiple stakeholders often with conflicting goals.
Moreover, there exists a significant amount of demand and service time uncertainty
in the nature of healthcare delivery, which brings additional complexity. Improving
the efficiency in healthcare systems has the potential not only to decrease costs but
also to facilitate faster access to care. Therefore, decision making in this area plays
a critical role both from the economic and the societal perspective.

Optimization is one of the widely used operations research methodologies in
modeling and solving healthcare operations management problems. In this chapter,
we present the optimization-based studies that consider a decision-making problem
in healthcare delivery, such as appointment scheduling, operating room scheduling,
capacity planning, workforce scheduling, and some other practical problems. Due
to the vast amount of literature, we focus our review on recent studies and refer
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the reader to comprehensive reviews for more detailed information on earlier work.
We put special emphasis on appointment scheduling, operating room scheduling,
capacity planning in the presence of patient classes with different priorities, and
workforce scheduling. For these specific applications, we present detailed examples
that illustrate the use of optimization methods, particularly discrete convex analysis,
stochastic programming, and approximate dynamic programming.

The remainder of this chapter is organized as follows. In Sect. 2, we review a
number of recent studies on appointment scheduling and present different modeling
approaches for the single-server appointment scheduling problem. In Sect. 3, we
discuss the use of optimization methods in operating room scheduling by providing
several examples, and we illustrate the impact of using valid inequalities in
increasing the solvability of the problems in this field. In Sect. 4, we present a
summary of some recent studies that applied optimization methods to capacity
planning problems in healthcare, and we provide a detailed example to demonstrate
the use of approximate dynamic programming in modeling and solving the dynamic
multipriority patient scheduling. In Sect. 5, we discuss how optimization methods
can be used to solve workforce scheduling problems in healthcare and present
a detailed example about the use of stochastic programming in modeling an
operational-level nurse scheduling problem. In Sect. 6, we briefly discuss a number
of studies that utilize optimization methods in some other application areas in
healthcare. Finally, in Sect. 7, we conclude the chapter by highlighting some open
research problems.

2 Appointment Scheduling

Appointment scheduling, which is an important operational problem in many
industries (e.g., transportation, manufacturing, service), is encountered in several
settings in healthcare delivery systems. Examples include, but are not limited to,
scheduling surgeries in an operating room (OR), determining appointment times for
a physician at an outpatient clinic, and scheduling arrivals to diagnostic or treatment
facilities. Cayirli and Veral (2003) and Gupta and Denton (2008) present detailed
reviews of appointment scheduling in various healthcare contexts.

An appointment schedule is composed of a planned start time (i.e., appointment
time) for each service at which the required resources will become available.
Due to the uncertainty in service times, which is the main challenge in designing
optimal appointment schedules, the relevant performance measures (such as patient
waiting time, resource idle time, and overtime) are uncertain. Thus, the objective of
designing an appointment schedule is often to minimize the expected cost associated
with one or a combination of those measures.

Appointment scheduling problems have been studied by several researchers since
1950s, with the earlier work being focused on single-server queueing models. Weiss
(1990) considers the problem of determining optimal start times for two surgeries
to be processed in a single OR, where the sequence of surgeries is determined a
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priori and the objective is minimizing resource idle time (of the first surgery) and
surgery waiting time (of the second surgery). For this special case (i.e., determining
duration allocation only for the first job), he shows that the problem is equivalent to
the newsvendor problem, and hence, the solution can be obtained by using a closed-
form equation. Weiss (1990) also investigates the impact of surgery sequence, by
comparing the minimum expected costs incurred under possible sequences, and
concludes that the surgery whose duration follows a distribution with fatter tails
has more uncertainty at higher values, and therefore should be scheduled last to
achieve lower expected costs.

Wang (1993) studies the single-server appointment scheduling problem where
the service times are independent and identical exponentially distributed random
variables, and the performance measure is a linear combination of the expected
total customer delay time (i.e., the sum of the waiting time and the service
time) and the service completion time (i.e., the completion time of the last job).
The author shows that the distribution of customer delay times is phase type,
which brings computational advantages and makes it possible to find the optimal
appointment times by solving a system of nonlinear equations. The numerical results
presented by Wang (1993) reveal that optimal interarrival times are dome shaped,
i.e., allocated durations exhibit an increasing pattern earlier in the schedule and a
decreasing pattern later in the schedule.

Denton and Gupta (2003) and Begen and Queyranne (2011) consider the single-
server appointment scheduling problem where the sequence of customers is given
and propose efficient solution methods that can be used to solve larger instances.
Denton and Gupta (2003) formulate the problem as a two-stage stochastic linear
program (SLP) and solve it by using a modified L-shaped algorithm where the
space of the random job durations is successively partitioned and upper bounds
independent of the distribution of job durations are employed. Begen and Queyranne
(2011) study the discrete version of the problem; they establish discrete convexity
properties of the objective function under mild conditions on the cost parameters and
prove the existence of a polynomial time algorithm for the case where job durations
are independent integer-valued random variables given by a discrete probability
function. They also consider no-shows, emergencies, and a fixed (given) due date
on the service completion time of the last patient. We provide the details of both
studies in Sect. 2.1.

Erdogan and Denton (2011b) explore the single-server appointment scheduling
problem where both the service times and the number of customers to be served
are uncertain, and the objective is to minimize the expected cost of overtime and
customer waiting time. They consider two different settings: (1) a static problem
where an appointment schedule is designed for a fixed number of customers each
of whom has a probability of not showing up at the scheduled appointment time
and (2) a dynamic problem where the number of customers to be scheduled is
uncertain, and the appointment time of each customer is determined when the
appointment is requested. The authors formulate the first problem as a two-stage
SLP and solve it by using the L-shaped algorithm. In line with the results from
earlier studies (Wang 1993; Denton and Gupta 2003), their numerical results also
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indicate that the optimal interarrival times are dome shaped when the difference
between per unit time costs of overtime and customer waiting time is small. When
the probability of no-shows increases, the allocated durations decrease to avoid the
high idling that may result from longer interarrival times. When the per unit time
cost of overtime becomes significantly higher than that of customer waiting time,
double bookings are observed in the optimal appointment schedule. The authors
formulate the dynamic appointment scheduling problem as a multistage SLP where
the decision stages are defined by customer appointment requests. At each stage, the
requested appointment is scheduled by determining the corresponding interarrival
time. The authors exploit the structural properties of their model and employ the
nested decomposition algorithm to solve instances generated based on real data.
Their numerical results reveal that the presence of uncertainty in the number of
customers to be scheduled results in an increase and a decrease of the interarrival
times earlier and later in the schedule, respectively.

2.1 Single-Server Appointment Scheduling

In this section, we present three different modeling approaches from the literature
for the single-server appointment scheduling problem that arises in many contexts in
healthcare. Since the appointment scheduling problem is also encountered in several
other settings, we use the generic terms job and server to refer to health services and
healthcare providers/resources, respectively, in the remainder of this section.

2.1.1 Discrete Time Modeling Approach

Begen and Queyranne (2011) consider the problem of designing an optimal
appointment schedule for a given sequence of jobs on a single server, where the
job durations are uncertain and the system is subject to underage and overage costs
(i.e., costs associated with the resource underutilization and overutilization). Due to
the random processing times, jobs may finish earlier or later than they are expected
to as illustrated in Fig. 4.1. If a job finishes earlier than the next appointment time,
the system incurs underage costs because the server stays idle until the arrival of the
next job. On the other hand, if a job is completed later than the next appointment
time, the system incurs overage costs due to the waiting time of the next job and the
overtime that may be experienced at the end of the schedule. The cost of overtime
can be treated as the overage cost for the last job. The trade-off between the server
idle time, job waiting time, and overtime can be balanced by using an appointment
schedule that minimizes the expected total cost of underage and overage.

Begen and Queyranne (2011) study the single-server appointment scheduling
problem, which is referred to as ASP, under the assumption that job durations are
integer-valued discrete random variables, and they propose a solution framework for
the problem based on the discrete convexity properties of the objective function. We
now present the details of their approach.
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Job
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idle time
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Appointment schedule

Realized scenario

Fig. 4.1 An appointment schedule and a realized scenario of the random processing times

There are n jobs (indexed from 1 to n) to be processed in the order of increasing
index. The integer-valued processing times for these jobs are given by a discrete
joint distribution. It is assumed that the start time for the first job is zero, which is
its appointment time. To compute the underage and overage cost for the nth job, a
dummy job with a processing time of zero is introduced as the (n+1)st job, and its
appointment time is the total time available for the n real jobs.

The vector of random processing times is represented by p = {p1, p2, . . . , pn,0},
where pi is the random processing time of job i. pi ∈ [p

i
, pi], and pmax = maxi{pi}.

Coefficients ui and oi are the per unit time underage and overage costs associated
with the completion of job i.

The decision variables are the appointment times, represented in vector notation
as A = {A1,A2, . . . ,An,An+1} with A1 = 0. Note that the allocated duration for
job i is given by Ai+1 − Ai for i = 1, . . . ,n. S = {S1,S2, . . . ,Sn,Sn+1} and C =
{C1,C2, . . . ,Cn,Cn+1} are job start times and completion times, which are the
additional variables used to define the objective function. S1 = 0 and C1 = S1+ p1 =
p1 as the first job starts on time. The start time of the other jobs depends on
their appointment time and the completion time of the immediately preceding jobs:
Si = max{Ai,Ci−1}, and Ci = Si+ pi for i = 2, . . . ,n. The cost of appointment vector
A given processing duration vector p is

F(A|p) =
n

∑
i=1

oi(Ci −Ai+1)
+ + ui(Ai+1 −Ci)

+, (4.1)

where (x)+ = max(0,x).
The objective function to be minimized is the expected cost of the appointment

vector:

F(A) = Ep[F(A|p)]. (4.2)

Begen and Queyranne (2011) prove the following important properties of the
objective function and the optimal appointment vector:

1. Continuity: [Begen and Queyranne (2011), Lemma 4.2] Functions F(.|p) and
F(.) are continuous.
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2. Existence of an optimal vector: [Begen and Queyranne (2011), Lemma 4.3]
Let the compact set K be the cartesian product of the intervals [Ai,Ai] (i.e.,

K =
n

∏
i=1

[Ai,Ai]), where A1 = A1 = 0, Ai = ∑
j<i

p
j
, and Ai = ∑

j<i

p j. There exists

an appointment vector A∗ ∈ K such that F(A∗) ≤ F(A) for any appointment
vector A.

3. Nondecreasing appointment times: [Begen and Queyranne (2011), Lemma 4.4]
There exists an optimal appointment vector A∗ ∈ K with nondecreasing com-
ponents, i.e., A∗

i ≤ A∗
i+1 for all i = 1, . . . ,n.

4. Appointment vector integrality: [Begen and Queyranne (2011), Theorem 5.1]
If the processing times are integer-valued random variables, then there exists
an optimal appointment vector which is integer. (The proof is available in the
appendix.)

5. Computation of expected cost for a given appointment schedule: [Begen and
Queyranne (2011), Theorem 7.2] If the processing durations are stochastically
independent and A is an integer appointment vector, then F(A) may be computed
in O(n2 p2

max) time. (The sketch of the proof is available in the appendix.)
6. L-convexity: [Begen and Queyranne (2011), Theorem 6.1] If there exist real

numbers αi (1 ≤ i ≤ n) such that 0 ≤ αi ≤ oi and ui +αi is nonincreasing in i,
i.e., ui +αi ≥ ui+1 +αi+1 for all i = 1, . . . ,n− 1 (which is referred to as the α-
monotonicity property (Begen and Queyranne 2011)), then F(A) is L-convex.1

7. Polynomial time algorithm: [Begen and Queyranne (2011), Theorem 7.1] If the
cost vectors (u,o) are α-monotone and the processing durations are integer, then
F can be minimized using polynomial time and a polynomial number of expected
cost evaluations.

Note that L-convexity of the objective function and the existence of a polynomial
algorithm requires mild and intuitive conditions on the cost parameters. Since αi is
bounded by oi, it captures the overage cost for job i to some extent. Therefore, the
α-monotonicity property implies that the costs associated with the jobs planned to
processed earlier in the schedule are higher. This is a reasonable condition since the
impact of completion time of job i on the overall schedule would be higher when
there are more jobs to be processed after job i. Another way to look at this is to
consider the case where ui is nonincreasing in i, which satisfies the α-monotonicity
property regardless of the overage cost structure. The nonincreasing structure of ui in
i is an intuitive condition as the underutilization of the resource earlier in the day has
a higher impact on the schedule. Although the server will certainly be idle between
A1 = 0 and A2 if job 1 is a no-show case, it is possible (due to the accumulated
overtime) not to observe any idle time after An even if job n fails to show up.

1A function f : Zq → R∪{∞} is L-convex iff f (z)+ f (y) ≥ f (z∨ y)+ f (z∧ y) for all z,y ∈ Z
q

and ∃r ∈ R : f (z+ 1) = f (z)+ r ∀z ∈ Z
q where z∨ y = (max(zi,yi) : 0∗ ≤ i ≤ q) ∈ Z

q, z∧ y =
(min(zi,yi) : 0 ≤ i ≤ q) ∈ Z

q (Murota 2003).



4 Optimization in Healthcare Delivery Modeling 81

The modeling framework of Begen and Queyranne (2011) discussed here is
highly flexible and can be used to formulate the ASP under various settings.
For example, if the customer waiting is not important and the focus is only on
minimizing underutilization and overutilization of the server, then the values of
parameters can be set as oi = 0 for i �= n and ui = u for all i. Begen and Queyranne
(2011) present important extensions of their model to handle a given due date for
the total processing time (i.e., for the end of the schedule), customer no-shows, and
emergencies.

If there is a due date D (such that 0 < D < ∑n
i=1 pi) for the total processing time,

then An+1 is constrained to be equal to D. If D is integer and the processing times are
integer variables, appointment vector integrality and the existence of a polynomial
time algorithm remain valid [Begen and Queyranne (2011), Corollaries 8.2 and 8.5].

Customer no-shows can be included in the model by modifying the distributions
of processing times based on the probability of no-shows. Let noshowi be the
probability that customer i will not show up. Then, the probability distribution of
pi should be updated such that pi will be zero with probability noshowi, and it will
be k (p

i
≤ k ≤ pi) with probability (1− noshowi)P{pi = k}.

Emergency jobs arrive randomly during the day, and they need to be processed
as soon as possible. Begen and Queyranne (2011) incorporate the presence of
emergency jobs into their model by considering a non-preemptive approach where
the emergency jobs are processed immediately after the completion of the current
job. The authors also assume that no emergency jobs arrive during the period when
the server is idle, which fits well to the environments where the arrival rate of
emergency jobs is low and/or the server idle time is significantly small compared
to the total processing time of the jobs. Since the emergency jobs that arrive during
the processing of job i are processed immediately after job i is completed, there is no
idle time between job i and the emergency jobs. Therefore, updating the probability
distribution of job i’s duration by considering the addition of emergency jobs as an
increase in job i’s duration extends the model for the case with emergency jobs.

Let mi
max and me

max be the maximum number of emergency jobs that may arrive
during the processing of job i and the processing of an emergency job that arrive
during job i, respectively. Then, the maximum number of emergency jobs to be
processed after job i is given by M = mi

max +mi
max ×me

max. Let p̃i = pi +Pi be the
updated processing time of job i where Pi is the total processing time of emergent
jobs to be processed after job i. Since the distribution of pi is already known, the
distribution of p̃i can be obtained once that of Pi is found. Let mi (0≤mi ≤M) be the
number of emergency jobs to be processed after job i and Pi

k = ∑k
j=1 pe (1 ≤ k ≤ M)

be the total processing time of k emergency jobs where pe is a discrete random
variable representing the processing time of a single emergency job. Pi

1 = pe, and
hence, their distributions are the same. The distributions of Pi

k (1 < k ≤ M) can be
found by using Pi

k = Pi
k−1 + pe starting from k = 2. And finally, the distribution of

Pi (1 ≤ i ≤ n) can be obtained as follows:
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P{Pi = 0}= P{mi = 0}+
M

∑
k=1

P{mi = k}P{Pi
k = 0}, (4.3)

P{Pi = j} =
M

∑
k=1

P{mi = k}P{Pi
k = j} for j = 1,2, . . . ,Mpmax. (4.4)

2.1.2 A Sampling-Based Approach

Begen et al. (2012) study the ASP under the assumption that job duration probability
distributions are not known, which is commonly experienced in practice. They
assume that there is an (unknown) underlying (true) joint discrete distribution for
job durations, and only samples are available, e.g., daily historical observations
of surgery durations. Each sample is a vector of durations where each component
corresponds to a job duration, and these vectors are independent. Unlike the com-
mon assumption in the literature, in Begen et al. (2012), the authors do not require
the job duration probability distributions to be independent, i.e., job durations
(the components of each duration vector) can be correlated. The authors use the
convexity and subdifferential2 of the objective function of the ASP developed in
Begen (2010) to determine the number of independent samples required to obtain
a provably near-optimal solution with high probability. The bound on the samples
is polynomial in the number n of jobs, accuracy level ε , confidence level 1− δ ,
and (underage and overage) cost coefficients u and o, and it does not depend on
the underlying distribution. The proposed approach guarantees that if the number
of samples N = N(ε,δ ,u,o) is greater than the obtained bound, then the cost of
the sampling-based optimal schedule is with high probability (at least (1− δ )) no
more than (1 + ε) times the cost of an optimal schedule if the true distribution
were known. Their approach is nonparametric and provides a sampling solution
to the ASP, which is a multivariable non-separable integer stochastic program.
Furthermore, as in Begen and Queyranne (2011), it can handle a given due date
D on the completion time of the last job.

We now present a brief overview of the approach used in Begen et al. (2012).
They define pk = (pk

1, pk
2, . . . , pk

n) as the kth observation in the N samples, ν =
mini{ui,oi}, omax = maxi{oi}, and umax = maxi{ui}. The symbol “ ̂ ” is used
to denote quantities obtained from samples. p̂ = p̂(N) is defined as the empirical
joint probability distribution obtained from N independent observations of p, i.e.,
Prob{p̂ = pk} = 1

N for 1 ≤ k ≤ N. As in Begen and Queyranne (2011), a true
optimal appointment vector is denoted with A∗, i.e., A∗ is a minimizer of Fp(A) =

Ep (F(A|p)). Similarly, let Â= Â(N) be a minimizer of F̂p(A) =Ep̂ (F(A|p̂)). Then

the sampling ASP is defined as minimizing F̂p(A), i.e., finding an Â(N) for a given
sample size N. The first step in the analysis is to prove that sampling ASP can be

2Subdifferential of a convex function f is the set of all subgradients and denoted with ∂ f .
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solved in polynomial time for a given N. Then, with an application of Hoeffding’s
inequality (Hoeffding 1963), Begen et al. (2012) establish a link between the
probabilities of a given event with respect to p and p̂ as a function of sample size N
for a given accuracy level ε ′ (absolute difference of the probabilities with respect to
p and p̂) and a confidence level 1−δ ′. After that, the authors provide a similar result
for a family of events F . The next step is to use ∂Fp(Â) characterization (which
contains many events and probabilities) to show the existence of a subgradient
g ∈ ∂Fp(Â) such that each k component of the subgradient gk satisfies |gk| < ε ′K′
with probability at least 1− |F |δ ′ where |F | = |F |(n) and K′ = K′(n,u,o) are
some constants. Then Begen et al. (2012) shows that if there exists g ∈ ∂Fp(Â) with
|gk| < εν/3(n+ 1)n for all 1 ≤ k ≤ n+ 1, then Fp(Â) ≤ (1+ ε)Fp(A∗). The last
part of the analysis consists of a series of results establishing lower bounds on the
objective function, using an application of Jensen’s inequality and a new version of
a multidimensional bounding lemma of Levi et al. (2007). All these results are put
together in Theorem 14 of Begen et al. (2012) to give the bound on the number of
samples. Before presenting the final result, we provide the new multidimensional
bounding lemma below. We need a definition first. Let f : Rm �→ R be convex. A
point y is an α-point if there exists a subgradient g ∈ ∂ f (y) such that ||g||1 ≤ α
[Levi et al. (2007), Definition 3.3].

Lemma 1 (Begen et al. (2012), Lemma 13). Let f : Rm �→R be convex, finite with
a global minimizer y∗. Assume that there exists f̄ such that f ≥ f̄ = λ ||y− ỹ||1 for
some λ > 0 and ỹ ∈R

m. If ŷ is an α-point for α = λ ε/3, then f (ŷ)≤ (1+ ε) f (y∗),
where ε ∈ [0,1] (The proof is available in the appendix).

Theorem 1 (Begen et al. (2012), Theorem 14). Let 0< ε ≤ 1 (accuracy level) and
0 < 1− δ < 1 (confidence level) be given. If

N >

(

4.5(1/ε)2
(
n2(n+ 1)(14omax+ 6umax)/ν

)2
ln(2(5n2 + 5)/δ )

)

,

then Fp(Â)≤ (1+ ε)Fp(A∗) with probability at least 1− δ .

In Begen et al. (2012), the authors provide a sampling-based framework to solve
the ASP (provably near optimal) with correlated job durations which does not
require any distribution information on job durations.

2.1.3 Stochastic Programming Approach

Stochastic programming, which is a branch of mathematical programming that
involves optimization problems with random parameters, is another methodology
commonly used to formulate and solve appointment scheduling problems. Denton
and Gupta (2003) consider the single-server ASP where the sequence of customers
is fixed, the job durations are continuously distributed random variables, and the
objective is minimizing the total expected cost of customer waiting, server idling,
and overtime with respect to a due date for the end of processing (which is referred
to as the session length). The authors formulate the problem as a two-stage SLP
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where the appointment times are determined before the resolution of uncertainty in
job durations. They derive upper bounds that are independent of the distribution of
job durations and solve the problem by using these bounds in a modified L-shaped
algorithm that is based on successively partitioning the space of the random job
durations. We now present their model, briefly describe their solution approach, and
discuss the important insights drawn from their numerical results. The following
notation is used in the formulation:

Problem Parameters

n: Number of jobs to be scheduled
d: Session length

cw: Vector of cost coefficients for customer waiting
cs: Vector of cost coefficients for server idling
cl: Cost coefficient for tardiness

Z(ω): Vector of random job durations where ω represents the scenario index

First-Stage Decision Variables

x: Vector of allocated durations for the first n− 1 jobs

Second-Stage Decision Variables

w(ω): Vector of waiting times for the jobs where wi(ω) is the waiting time of job i
s(ω): Vector of server idle times between consecutive jobs where si(ω) is the idle

time between jobs i− 1 and i
l(ω): Tardiness with respect to d
g(ω): Earliness with respect to d

Note that x is the vector of first-stage decision variables, and the second-stage
decision variables are defined to describe the objective function. It is assumed that
the appointment time for the first job is zero. The appointment time for job i (1 <
i≤n) is given by ∑i−1

j=1 x j, which is the sum of durations allocated to its predecessors.
The first job starts on time, and hence, s1(ω) = w1(ω) = 0 under each scenario. For
each scenario, si(ω) and wi(ω) for other jobs (i.e., 1 < i ≤ n) can be written in a
recursive way as follows:

wi(ω) = (wi−1(ω)+Zi−1(ω)− xi−1)
+, (4.5)

si(ω) = (−wi−1(ω)−Zi−1(ω)+ xi−1)
+. (4.6)

The tardiness and earliness with respect to the session length are given by
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l(ω) = (wn(ω)+Zn(ω)+
n−1

∑
i=1

xi − d)+, (4.7)

g(ω) = (−wn(ω)−Zn(ω)−
n−1

∑
i=1

xi + d)+. (4.8)

Considering these equalities that determine the values of w(ω),s(ω), l(ω), and
g(ω) for a given (x,Z(ω)), the problem can be formulated as the following two-
stage SLP:

min EZ

[
n

∑
i=2

cw
i wi(ω)+

n

∑
i=2

cs
i si(ω)+ cll(ω)

]

(4.9)

s.t.

w2(ω)− s2(ω) = Z1(ω)− x1 ∀ω , (4.10)

−wi−1(ω)+wi(ω)− si(ω) = Zi−1(ω)− xi−1 ∀i > 2,ω , (4.11)

−wn(ω)+ l(ω)− g(ω) = Zn(ω)− d+
n−1

∑
i=1

xi ∀ω , (4.12)

xi ≥ 0 ∀i < n, (4.13)

wi(ω),si(ω)≥ 0 ∀i > 1,ω , (4.14)

l(ω),g(ω)≥ 0 ∀ω . (4.15)

Note that s1(ω) and w1(ω) are not included in the formulation because they are
equal to zero. The vector of first-stage decision variables (x) is determined before the
resolution of uncertainty and hence is scenario independent. On the other hand, the
second-stage decisions (w(ω),s(ω), l(ω), and g(ω)) are made after the realization
of the random scenario, and they are scenario dependent. The above formulation can
be written in a compact form as follows:

min
x≥0

{Q(x)}, (4.16)

where

Q(x) = EZ[Q(x,Z(ω))], (4.17)

Q(x,Z(ω)) = min
y(ω)≥0

{cy(ω)|Tx+Wy = h(ω)}, (4.18)
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c =

⎡

⎢
⎢
⎣

cw

cl

cs

0

⎤

⎥
⎥
⎦ ,y(ω) =

⎡

⎢
⎢
⎣

w(ω)

l(ω)

s(ω)

g(ω)

⎤

⎥
⎥
⎦ ,h(ω) =

⎡

⎢
⎣

Z1(ω)
...

Zn(ω)− d

⎤

⎥
⎦ ,

T =

⎡

⎢
⎢
⎢
⎣

1
. . .

1
−1 · · · −1

⎤

⎥
⎥
⎥
⎦
,W =

[
W′|− I

]
, (4.19)

where I is the identity matrix and

W′ =

⎡

⎢
⎢
⎢
⎣

1
−1 1

. . .
. . .

−1 1

⎤

⎥
⎥
⎥
⎦
. (4.20)

Q(x) and the coefficient matrices T and W are called the recourse function
and technology and recourse matrices, respectively, in the stochastic programming
literature.

Given a first-stage solution, the second-stage problem (4.18), which is also
known as the subproblem, can be solved independently for every scenario when
the number of scenarios (i.e., possible job duration realizations) is finite. Owing to
this property, stochastic programs can be efficiently solved using decomposition
methods (Higle and Sen 1991; Ruszczyński 1986; Van Slyke and Wets 1969).
One of the commonly used decomposition methods for two-stage SLPs is the L-
shaped algorithm (Van Slyke and Wets 1969), which is an extension of Benders
decomposition (Benders 1962) for stochastic programs. It provides a framework
where a two-stage SLP is decomposed into a master problem (composed of the
first-stage variables and constraints) and scenario-dependent subproblems, and the
master problem is solved iteratively until the optimal solution is reached. At each
iteration, after solving the master problem, second-stage subproblems are solved
given the solution of the master problem. Dual variables of the subproblems are used
to generate feasibility and optimality cuts, which are added to the master problem
to ensure the second-stage feasibility and to approximate the recourse function,
respectively, throughout the iterations. The optimality cuts include an auxiliary
variable, θ , which is used to outer linearize the recourse function via optimality
cuts that are added at each iteration.

To solve (4.9)–(4.15) when job durations are continuously distributed, Denton
and Gupta (2003) propose an approach where the space of random job durations
is partitioned and a scenario is constructed from each partition based on the
expectation of the job durations on that partition. The resulting discrete problem
is then solved by using the L-shaped algorithm. If the gap between the lower and



4 Optimization in Healthcare Delivery Modeling 87

upper bounds associated with the solution returned by the L-shaped algorithm is
larger than a desired tolerance level, the current partition is refined, and a new and
larger size discrete problem is constructed to be solved by the L-shaped algorithm.
The refinement of the partition at each iteration is made in a way that the expectation
of the approximate distribution of job durations converges to that of the true
distribution. These steps continue in an iterative manner until a solution with an
acceptable level of optimality gap (i.e., the gap between the corresponding lower and
upper bounds) is found. Denton and Gupta (2003) derive upper bounds which are
independent of the job duration distributions. These upper bounds are then used to
measure the gap from the lower bound returned (as the θ variable) by the L-shaped
algorithm.

The numerical results of Denton and Gupta (2003) reveal that the optimal vector
of allocated durations to jobs exhibits a dome-shaped structure if the job durations
are independent and identically distributed, and the waiting and idling costs are
uniform. While the dome-shaped pattern is particularly remarkable when the ratio
of idling to waiting cost is high, the allocated durations are observed to be more
uniform when this ratio is low.

3 Operating Room Scheduling

Appointment scheduling and OR scheduling, which is also known as surgery
scheduling, are closely related problems (Chap. 5). OR scheduling may involve
decisions other than the surgery start times including, but not limited to, the alloca-
tion of available OR time among surgical specialties, allocation of surgeries to ORs,
sequence of surgeries in ORs, and cancelation/rescheduling of surgeries. Moreover,
multiple types of resources such as ORs, surgeons, and surgical equipment may be
considered in OR scheduling problems.

In many surgical environments, OR scheduling decisions are sequentially made
in three stages (Santibáñez et al. 2007). At the first level, available OR time is
allocated among surgical specialties by considering several factors such as the
demand forecast for each specialty, the level of supporting resources, and the OR
time. At the second level, a block schedule is generated by assigning OR time slots,
which are also referred to as blocks of OR time, to surgeons or surgical groups
each day. Finally, at the third level, surgeries are scheduled in ORs on a daily
basis. At this level, the number of surgeries, their sequence, and planned start times
(appointment times) are determined. Both deterministic and stochastic optimization
models have been widely used to investigate OR scheduling problems. Extensive
reviews of the related studies can be found in Cardoen et al. (2010), Erdogan and
Denton (2011a), Guerriero and Guido (2011), Gupta (2007), May et al. (2011), as
well as chap. 5 of this book.

Blake and Donald (2002) study the problem of generating a weekly schedule
for a multi-OR surgical suite at Toronto’s Mount Sinai Hospital. Available OR
time is typically represented as a collection of blocks of OR time, and a block is
characterized by its length. The authors propose a mixed-integer program (MIP) to
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distribute the available OR time among the surgical wards based on ward-specific
target times. The objective is to minimize the undersupply of OR time subject to
constraints associated with the lower and upper bounds on the number of blocks
that could be assigned. Santibáñez et al. (2007) explore the related problem of
scheduling OR blocks in a system of hospitals. To design a weekly schedule, they
formulate the problem as a MIP which determines the assignment of ORs to surgical
specialties and the number of surgeries from each surgical group in each OR. The
constraints in their model ensure that the required level of resources (surgeons, OR
time, and staffed beds) does not exceed the existing capacity. Hospital specific lower
and upper bounds on the number of OR blocks assigned to each surgical specialty
and the number of surgeries from each surgical group are also represented as a
set of constraints. The authors consider two different objectives: minimizing the
maximum number of required beds during the planning horizon and maximizing the
throughput of patients. As observed from their numerical results, the first objective
is helpful in reducing the variability in the bed utilization, whereas the second
objective can be used to stabilize the wait lists. Constructing a cyclic schedule
of surgeries through the use of an optimization-based approach has also been
considered in several other studies (Adan et al. 2009; Beliën and Demeulemeester
2007; Testi et al. 2007; van Oostrum et al. 2008).

Velásquez and Melo (2006) study the problem of scheduling multiple ORs where
each surgery has a preferred start time and the objective is to meet these preferences
as much as possible. They formulate the problem as a set packing problem by
discretizing the planning horizon and considering all possible combinations of
resources for each time unit. They use column generation and constraint branching
to solve practical instances of the problem.

Jebali et al. (2006) consider a multi-OR scheduling problem in the presence of
surgical equipment-related eligibility constraints. They propose a two-step hierar-
chical solution approach for the problem. In the first step, surgeries are assigned to
ORs using a MIP that minimizes the total cost of overtime, OR idle time, and patient
waiting time. In the second step, the total overtime is reduced further by employing
another MIP that determines the surgery sequence in ORs. Fei et al. (2010) propose a
similar hierarchical approach to solve a multi-OR scheduling problem over a weekly
planning horizon where the objective is to minimize the total cost of OR idle time
and overtime. They first assign a date for each surgery by solving a set-partitioning
problem through the use of a column-generation-based heuristic, then solve the daily
scheduling problem by using a hybrid genetic algorithm.

Denton et al. (2007) investigate the joint impact of surgery sequencing and start
time decisions in the presence of uncertainty in surgery durations by extending
the single-server appointment scheduling problem (Denton and Gupta 2003). They
consider several different surgery sequencing rules including shortest expected
duration first, smallest variance of durations first, and smallest coefficient of
variation first. Their computational results indicate that the performance of OR
schedules is sensitive to both sequencing and start time decisions, and sequencing
surgeries in the order of increasing variance of durations performs better than the
other two sequencing rules in most of the test instances. The impact of these two
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types of decisions is also studied by Cayirli et al. (2006). They generate the efficient
frontier by simulating a single-server appointment system under several sequencing
and appointment rules to explore the trade-off between patient-related and doctor-
related measures. Their results also indicate that both sequencing and start time
decisions are important in designing well-performing surgery schedules.

Denton et al. (2010) explore the problem of allocating surgeries to ORs on a
given surgical day where the surgery durations are uncertain and the objective is to
minimize the total fixed cost of opening ORs and the expected overtime cost. They
formulate the problem as a two-stage stochastic mixed-integer program (SMIP)
where the number of ORs to open and the surgery-to-OR allocation decisions are
made before the day starts, i.e., before the resolution of uncertainty in surgery
durations. The authors also present a robust formulation, which is easier to solve
compared to the two-stage SMIP, where the objective is to minimize the maximum
cost associated with the uncertainty described by lower and upper bounds on surgery
durations. To solve the realistic-sized instances of the problem, the authors develop
valid inequalities that reduce symmetry and use lower and upper bounds on the
optimal number of ORs to open each day. Moreover, they test the performance of
a heuristic rule which allocates the surgeries to ORs in a successive manner where
the surgery with the largest expected duration is assigned to the first available OR
in each step. Their numerical results show that the value of the stochastic solution
is particularly high when the per unit time cost of overtime is high, the heuristic
performs notably well when the per unit cost of overtime is low, and the solution
obtained by solving the robust formulation performs approximately as well as the
heuristic solution.

Batun et al. (2011) extend the stochastic multi-OR scheduling problem in-
troduced by Denton et al. (2010) by including surgeons, besides ORs, as a set
of resources in the model. The authors propose a stochastic programming-based
approach for modeling and solving the problem, and they estimate the value of
different resource usage schemes used in practice. We present the details of their
approach and briefly discuss their results in Sect. 3.1.

3.1 Scheduling Multiple Operating Rooms Under Uncertainty

Batun et al. (2011) formulate and solve the multi-OR scheduling problem with
multiple surgeons as a two-stage SMIP where the objective is to minimize the
total fixed cost of opening ORs and the expected overtime and surgeon idling cost.
Decisions made before the resolution of uncertainty include the number of ORs
to open, the allocation of surgeries to ORs, the sequence of surgeries in each OR,
and the times at which surgeons start their first surgery of the day. Pre-incision,
incision, and post-incision phases of the surgery and the resource setup times are
explicitly considered, which makes it possible to accurately model different resource
usage schemes such as OR pooling and parallel surgery processing. OR pooling
is defined as treating ORs as a common shared resource among surgeons and
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allowing surgeries of different surgeons to be scheduled in the same OR. Although
surgeons are key members of the surgical team in academic medical centers, pre-
incision and post-incision phases may also be performed by other members of
the team such as surgical fellows. Therefore, surgeons need to be in the OR only
during the incision phase. As a result, multiple surgeries by a single surgeon may
occur simultaneously across multiple ORs, which is referred to as parallel surgery
processing. The authors solve the problem by employing the L-shaped algorithm
both in an iterative framework and in a branch-and-cut framework. To increase
the solvability of practical instances, they utilize a number of valid inequalities:
symmetry elimination constraints which are first introduced by Denton et al. (2010)
in the OR scheduling context, induced constraints to ensure second-stage feasibility,
and a set of widely applicable valid inequalities which are based on Jensen’s
inequality (Jensen 1906). They perform a series of computational experiments to
estimate the value of the stochastic solution, to quantify the potential benefit of OR
pooling, and to illustrate the impact of parallel surgery processing. Their results
indicate that capturing uncertainty and pooling ORs may achieve significant cost
reductions especially when the per unit time surgeon idling cost is high, and the
impact of parallel surgery processing becomes higher as the resource setup times
and the parallelizable portion of surgeries (which is comprised of the pre-incision
and post-incision phases) increase.

We now present the two-stage SMIP, formulated by Batun et al. (2011) and the
valid inequalities used to increase the problem solvability.

Model Formulation

Indices

i, j: Surgery indices
k: Surgeon index

q,r: OR indices
ω : Scenario index
ik: Index of the first surgery of surgeon k

Parameters

L: Session length for each OR (i.e., regular working time)
c f : Daily fixed cost of opening an OR
co: Per minute overtime cost of an OR
cS: Per minute idle time cost of a surgeon
sS: Surgeon turnover time between two consecutive surgeries
sR: OR turnover time between two consecutive surgeries
n: Total number of surgeries to be scheduled

nR: Total number of available ORs
nS: Total number of surgeons
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bi jk: Binary parameter denoting whether surgery i immediately precedes
surgery j in surgeon k’s surgery listing

prei(ω): Pre-incision duration of surgery i under scenario ω
pi(ω): Incision duration of surgery i under scenario ω

posti(ω): Post-incision duration of surgery i under scenario ω
ξ (ω): Random vector composed of pre-incision, incision, and post-incision

durations of surgeries; ξ (ω) = (pre1(ω), . . . ,pren(ω), p1(ω), . . . ,
pn(ω),post1(ω), . . . ,postn(ω)), and the finite support of ξ (ω) is Ξ
where Ξ ∈ R

3n
+

First-Stage Decision Variables

xr: Binary decision variable denoting whether OR r is opened or not
yir: Binary decision variable denoting whether surgery i is allocated to OR r or not

zi jr: Binary decision variable denoting whether surgery i precedes surgery j in OR
r or not (defined for (i, j,r) : i �= j)

tk: Start time for surgeon k

Second-Stage Decision Variables

Cir(ω): Completion time for surgery i in OR r under scenario ω
Ii j(ω): Surgeon idle time between surgeries i and j under scenario ω (defined for

(i, j) : ∑nS
k=1 bi jk = 1)

Ik(ω): Idle time of surgeon k before his/her first surgery under scenario ω
Or(ω): Overtime in OR r, with respect to session length L under scenario ω

Considering the above notation, and letting the vector form of the first-stage
decision variables be represented by x,y,z, and t, the two-stage SMIP formulated
by Batun et al. (2011) is as follows:

min
nR

∑
r=1

c f xr +Q(x,y,z, t) (4.21)

s.t.

yir ≤ xr∀i,r, (4.22)

nR

∑
r=1

yir = 1∀i, (4.23)

zi jr + z jir ≤ yir∀i, j > i,r, (4.24)

zi jr + z jir ≤ y jr∀i, j > i,r, (4.25)

zi jr + z jir ≥ yir + y jr − 1∀i, j > i,r, (4.26)

tk ≤ L ∀k, (4.27)

xr,yir,zi jr ∈ {0,1}∀i, j �= i,r, (4.28)

tk ≥ 0∀k, (4.29)
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where

Q(x,y,z, t) = Eξ [Q(x,y,z, t,ξ (ω))] (4.30)

and

Q(x,y,z, t,ξ (ω)) = min
nR

∑
r=1

coOr(ω)+ ∑
(i, j):∑

nS
k=1 bi jk=1

cSIi j(ω)+
nS

∑
k=1

cSIk(ω) (4.31)

s.t.

Cir(ω)≤ Myir∀i,r, (4.32)

Cjr(ω)≥Cir(ω)+ sR + pre j(ω)+ p j(ω)+ post j(ω)−M(1− zi jr)

∀i, j �= i,r, (4.33)

nR

∑
r=1

Cikr(ω) = tk + Ik(ω)+ preik
(ω)+ pik(ω)+ postik (ω)∀k, (4.34)

nR

∑
r=1

Cir(ω)≥ tk + prei(ω)+ pi(ω)+ posti(ω)∀(i,k) :
n

∑
j=1

b jik = 1, (4.35)

nR

∑
r=1

Cjr(ω) =
nR

∑
r=1

Cir(ω)− posti(ω)+ sS + p j(ω)+ post j(ω)+ Ii j(ω)

∀(i, j) :
nS

∑
k=1

bi jk = 1, (4.36)

Or(ω)≥Cir(ω)−L∀i,r, (4.37)

Cir(ω), Ik(ω), Ii j(ω),Or(ω)≥ 0∀i, j,r,k. (4.38)

The objective function (4.21) is the sum of the first-stage cost (the fixed cost of
opening ORs) and the expected second-stage cost (the sum of expected overtime
costs and surgeon idle time costs) over all scenarios. Constraints (4.22) and (4.23)
determine the set of ORs to be opened and the allocation of the surgeries to ORs.
The sequence of surgeries in each OR is described by constraints (4.24)–(4.26),
which ensure that a precedence relation exists between two surgeries if and only if
they are both assigned to the same OR. Constraint (4.27) represents the operational
requirement that each surgeon should start performing his/her first surgery of the
day before the daily session ends.

The second-stage problem for a given first-stage solution (x,y,z, t) and a scenario
ω is formulated by (4.31)–(4.38). Constraints (4.32)–(4.33) describe the surgery
completion times based on the assignment and sequencing decisions, where the M
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parameter represents an upper bound on the surgery completion times. Constraints
(4.34)–(4.36) provide the relation between surgery completion times and surgeon
idle times by considering the surgery sequence in surgeons’ surgery listing.
Constraint (4.37) defines the overtime in each OR.

The authors initially tried to solve (4.21)–(4.38) by using the L-shaped algorithm,
which fails to solve even moderate-sized instances in a reasonable amount of time.
Therefore, they enhance the algorithm by utilizing the valid inequalities discussed
in the remainder of this section.

Symmetry-Breaking Constraints

The above model is that of a surgical environment with identical ORs, and
hence, there is complete symmetry with respect to ORs. Solving highly symmetric
integer programs (IPs) by using a standard solution technique requires too much
computational effort due to the existence of many alternative solutions. Symmetry-
breaking constraints have been widely used to overcome this difficulty (Margot
2002; Ostrowski et al. 2011; Sherali and Smith 2001). Batun et al. (2011) add the
following first-stage constraints, which are introduced by Denton et al. (2010) in the
context of OR scheduling, to (4.21)–(4.38) to increase the problem solvability by
reducing symmetry:

• An arbitrary ordering of ORs is introduced, and open ORs are enforced to be the
smaller-indexed ones:

xr ≥ xr+1 ∀r < nR. (4.39)

• Open ORs are differentiated from each other by imposing a lexicographic order
in terms of the indices of surgeries in each OR:

i

∑
r=1

yir = 1 ∀i ≤ min{n,nR}. (4.40)

• Symmetry is reduced further by ensuring that the ith surgery is allocated to one
of the first r ORs if the first i− 1 surgeries are allocated to the first r− 1 ORs:

min{i,nR}
∑
q=r

yiq ≤
i−1

∑
j=r−1

y j,r−1 ∀(i,r) : i ≥ r > 1. (4.41)

Induced Constraints

Since the L-shaped algorithm is a decomposition-based algorithm which solves the
master problem (first-stage problem) and the subproblems (second-stage problem)
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sequentially in an iterative framework, feasibility of the second stage is not
guaranteed for every first-stage solution generated throughout the iterations. In
other words, the master problem may yield an infeasible solution. To overcome
this issue, feasibility cuts are added, which may be time-consuming if infeasibility
with respect to second stage is frequently encountered during the algorithm.
Therefore, instead of generating feasibility cuts at many iterations of the L-shaped
algorithm, Batun et al. (2011) add the following induced constraints to the master
problem a priori to ensure second-stage feasibility, i.e., to induce relatively complete
recourse.

Proposition 1 (Batun et al. (2011), Proposition 1). A first-stage solution (x,y,z, t)
is feasible for first- and second-stage problems if it satisfies (4.22)–(4.29), (4.39)–
(4.41), and

u j ≥ ui + d− nd

(

1−
nR

∑
r=1

zi jr

)

∀i, j �= i, (4.42)

u j ≥ ui + d ∀(i, j) :
nS

∑
k=1

bi jk = 1, (4.43)

where ui’s are nonnegative auxiliary first-stage decision variables and d is a positive
finite scalar.

Imposing a lower bound, d, on the difference of completion times of surgeries
which are allocated to the same OR or performed by the same surgeon, con-
straints (4.42) and (4.43) ensure that z yields an acyclic surgery sequence within
each OR and with respect to each surgeon across the ORs, respectively. As a result,
any feasible first-stage solution that also satisfies (4.42) and (4.43) is feasible for
the second-stage problem under each scenario. Therefore, adding (4.42) and (4.43)
to the problem eliminates the computational burden of generating feasibility cuts,
and the problem can be solved by an L-shaped algorithm that generates optimality
cuts only.

Jensen’s Based Valid Inequalities

As described in Sect. 2.1.3, L-shaped optimality cuts include the first-stage variables
and θ , which is an auxiliary variable that links the first and second stages by
approximating the recourse function Q(x,y,z, t) through outer linearization. In a
minimization problem, θ acts as a lower bound on Q(x,y,z, t) throughout the
iterations, progressively becomes a better approximation, and finally becomes equal
to Q(x,y,z, t), which is indeed the stopping criterion for the algorithm.

In order to increase the convergence, the authors provide a stronger formulation
of the first-stage problem by bounding θ through the use of a set of valid inequalities
based on the following proposition:
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Proposition 2 (Based on Batun et al. (2011), Propositions 2 and 3). For a
feasible first-stage solution (x,y,z, t) of our problem, let Q(x,y,z, t, ξ̄ (ω)) be the
corresponding second-stage cost under the mean value scenario. Then,

θ ≥ Q(x,y,z, t, ξ̄ (ω)) (4.44)

is a valid inequality, and hence can be added to the first-stage problem.

The valid inequality described by (4.44) is applicable to two-stage stochastic
programs whose recourse function is convex in the random components of the
problem parameters (i.e., in ξ (ω)). By using auxiliary parameters and decision
variables to describe the second-stage problem under the mean value scenario, Batun
et al. (2011) utilize (4.44) as a first-stage constraint, which results in a stronger
master problem formulation that significantly speeds up the convergence of the L-
shaped algorithm.

4 Capacity Planning

Due to the need to achieve high service levels, the existence of expensive and
specialized resources, and the uncertainty in demand, capacity planning is an
important and challenging problem in healthcare. It takes place at different decision
levels ranging from strategic to operational and involves decisions concerning the
use of resources such as hospital beds, ORs, diagnostic or treatment equipment, and
workforce. Studies considering the use of some of these resources are reviewed
in other sections of this chapter. In this section, we focus our attention on the
studies related to the bed capacity planning and capacity planning in the presence
of different groups of patients. For more extensive reviews, we refer the reader to
Green (2004) and Smith-Daniels et al. (1988).

Depending on the level of decision making, bed capacity planning problems may
be considered in a single- or a multihospital setting. Akcali et al. (2006) formulate
an aggregate level bed capacity planning problem in a hospital over a finite horizon
as a nonlinear IP which determines the optimal timing and magnitude of changes in
bed capacity. The objective of their model is to minimize the sum of the expected
patient waiting cost, the cost of changing bed capacity, and the cost of operating
at the planned levels of capacity over the considered horizon. Besides representing
the initial conditions (i.e., the number of beds at the beginning of the horizon) and
the flow balance, the constraints of the model also impose bounds on the expected
delay for a patient and the cost of capacity change in any period. In practice, bed
capacity is changed in batches rather than an arbitrary integer value. Considering
this practical restriction, the authors convert their formulation to a nonlinear binary
IP for which they develop a network representation. They solve the problem by
finding the shortest path between the superficial source node and the superficial
sink node in polynomial time using Dijkstra’s algorithm.
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Duncan and Noble (1979) study the allocation of the available bed capacity to
different specialties in a multihospital setting. They formulate the problem as a
maximum flow network model where the number of beds allocated to a specialty in a
hospital is defined as the flow on the arc connecting the corresponding pair of nodes.
The constraints of the model ensure that the available bed capacity at each hospital
is not exceeded, the required capacity for each specialty is supplied, and some other
logical and resource-related requirements are met. The authors solve the problem
by using a two-step procedure. They first determine the set of feasible allocation
schemes (i.e., the set of arcs to be used) with respect to the logical constraints, and
then calculate the maximum flow for every feasible scheme to select the best among
them.

Ben Abdelaziz and Masmoudi (2012) consider an aggregate level multi-objective
bed capacity planning problem in a multihospital setting where the hospitals are
located in different regional areas in a country. The specialties in the hospitals
deliver primary, secondary, and tertiary care, and the random demand for these
different levels of care must be met by the hospital receiving the demand, one of
the hospitals in the same regional area, and one of the hospitals in the country,
respectively. The decision to be made is how much to expand the existing staffed
bed capacity in each specialty at each hospital in a way that the sum of the capacity
expansion cost, the expected cost of transferring unmet demand (for secondary and
tertiary care) to private hospitals, and the salary of the new physicians and nurses
is minimized. In other words, the authors treat different objectives by combining
them into a single objective function. They formulate the problem as a two-
stage stochastic IP and solve the corresponding extensive form in their particular
implementation. Multi-objective optimization-based approaches are also considered
in other studies that explore bed capacity planning problems at different levels (Li
et al. 2009; Stummer et al. 2004).

Sandikci et al. (2011) explore the trade-offs inherent in managing the inpatient
bed capacity in an urban teaching hospital whose mission makes it necessary to
consider some special case-mix-related requirements. Due to these requirements,
not only the demand but also the utility (which is defined as a combined measure
of complexity of care and cost of care) associated with each patient type should be
considered when managing the bed capacity. There are two possible strategies that
can be adopted: (1) pooling the bed capacity and (2) subdividing the bed capacity
into specialty wings. While the former strategy is better in terms of achieving high
bed occupancy levels, the latter one provides an improved control of case-mix
and increased efficiency of care. The authors formulate the problem of designing
wings of specialties as a mathematical program that maximizes the total expected
utility generated by the occupied beds where the expected number of occupied
beds and the utility from an occupied bed are wing dependent. The decisions in
their model include how many wings to form, how many beds to allocate to each
wing, and which specialties to assign to each wing. Moreover, the average length-
of-stay (LOS) for each wing is endogenously determined by using a function that
decreases as the demand increases and/or the number of specialties assigned to the
wing decreases. For a fixed sequence of patient types, the wings can be formed by
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placing cuts in the sequence, and the optimal placement of the cuts can be efficiently
found through the use of a dynamic program (DP). The preliminary results provided
by the authors indicate that the utility increase relative to one-wing solution (i.e.,
pooled capacity of beds) becomes very significant as the daily demand and/or the
impact of narrowed focus of wings on the LOS increases. The results also reveal
that the optimal capacity allocated to lower-utility patients tends to decrease with
the increasing demand.

Another stream of research in this vein focuses on the scheduling problems
concerning the use of scarce resources that receive demand from multiple sources.
Most of the related studies consider stochastic DPs to formulate and solve these
problems. We refer the reader to Begen (2011) and Patrick and Begen (2011) for
an overview of stochastic DPs and their applications in healthcare. Gerchak et al.
(1996) explore the problem of allocating daily surgical capacity to elective and
emergent cases under uncertainty in elective surgery durations and emergent surgery
demand. At the beginning of each day, the scheduler needs to decide how many of
the elective surgery requests should be accepted (i.e., how many of them should be
postponed and added to the demand of the next day). The authors formulate the
problem as a stochastic DP that maximizes the expected profit, which is comprised
of the revenue generated by performing the elective surgeries, penalty incurred
due to postponing the booking of the elective surgeries, and the cost of overtime
experienced due to exceeding the daily capacity. They prove that the optimal policy
is monotone (i.e., the optimal number of elective surgery requests to accept increases
with the number of requests), but not necessarily of a control limit type (i.e., a
threshold level that bounds the number of elective surgery requests to be accepted
does not exist).

Green et al. (2006) study the scheduling of inpatients and outpatients on a
diagnostic facility over a finite number of identical service slots during a day, where
the demand from inpatients arises randomly and the outpatients are booked patients
with an associated probability of no-show. Besides inpatients and outpatients, there
are also emergent patients that may arrive during the day, and they need to be
served as soon as possible, i.e., in the next service slot. If there is no emergent
patient, and there are both inpatients and outpatients waiting to be served at the
beginning of a service slot, then the scheduler needs to decide which type of patient
should be served next. The authors formulate the problem as a finite-horizon DP
that maximizes the profit, which is composed of the revenue generated by serving
the patients, patient waiting cost, and end-of-day penalty cost of not being able to
serve some of the patients. While the first two of these metrics are greater for an
outpatient, the end-of-day penalty cost of not seeing an inpatient dominates that
of an outpatient, which results in a trade-off between serving an inpatient and an
outpatient. Green et al. (2006) analyze structural properties of their model and prove
that the optimal policy is of a control limit type.

Gupta and Wang (2008) consider the problem of scheduling patients in a primary
care clinic where the patients are grouped based on the type of their appointment
request: regular patients (i.e., the patients with a scheduled appointment) and same-
day patients (i.e., the patients who request a same-day appointment). See Patrick
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(2012), Robinson and Chen (2009) and the references therein for research related to
same-day patients (open access). All same-day patients need to be accommodated
either by serving at the clinic (using regular or overtime capacity) or by diverting to
other clinics. Patients’ preferences, in terms of the physician and the appointment
time, are considered when booking the future appointments. Scheduling too many
appointments in advance may create capacity problems in meeting the same-day
demand, whereas scheduling too few future appointments may result in unused
capacity. Considering this trade-off, the problem is to decide whether or not to
accept a future appointment request given the patient’s preferences and the state
of the system. The authors formulate the problem as a discrete-time finite-horizon
Markov decision process (MDP) that maximizes the revenue. They explore the
properties of their model and prove that the optimal policy exhibits a control limit
structure when the clinic is served by a single physician. For the case where the
clinic is served by multiple physicians, they propose heuristic methods that perform
quite well across a number of instances.

The problem of booking appointments in a primary care clinic in the presence
of different patient groups and patient preferences is also studied by Wang and
Gupta (2011). They propose a more realistic framework where patients do not have
complete knowledge about the system state and patient preferences are adaptively
updated each time an appointment request is made. The authors consider the
problem for each working day separately. An appointment request from a patient
is described as an unordered set of preferred physician and time slot combinations
on the considered working day. Once a request is made, either an appointment is
booked considering the patient’s preferences or the request is denied and the patient
is asked to try another set of combinations or another day. The patients are modeled
as different revenue classes based on the type of their appointments (which may
be a scheduled or a same-day appointment) and the physician they would like to
see (i.e., their preferred care provider (PCP)). The objective is maximizing the
expected revenue. Therefore, a request may be denied (even if there are available
combinations among the set of requested ones) if reserving some appointment slots
for future arrivals results in a higher expected revenue. The problem is formulated as
a stochastic dynamic program where at most one appointment request can take place
during a decision epoch, and the same-day demand is realized after the last decision
epoch and before the working day starts. The state of the system is described by
a matrix whose entries correspond to the remaining capacity for each physician-
time slot combination. Due to the curse of dimensionality, it is not possible to
solve the problem for a reasonable number of decision epochs, physicians, and time
slots. Therefore, the authors analyze the properties of optimal booking decisions
and propose two heuristic methods which are based on a metric that captures
the popularity of each physician-time slot combination. For each combination, the
metric is computed by dividing the expected number of times that the combination
will be in the preferred set of combinations by the remaining capacity for that
combination. It is observed from the results of their extensive numerical study that
the solutions returned by heuristic methods are significantly better than the ones
given by the policy that books the first available PCP-time slot combination for
each arriving patient.
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Wang and Gupta (2011) also illustrate the impact of using correct estimates for
patient preferences by comparing the results of two experiments executed based
on correct estimates and naive estimates (which assumes that every physician-time
slot combination is acceptable to each patient), respectively. Their results reveal
that using correct estimates is likely to bring more benefit for the clinics where the
physicians’ workload is imbalanced. They also present the results of experiments
carried out under different levels of patient no-show probabilities and service time
variability, and they conclude from their results that using the proposed heuristic
methods is reasonable when no-show probabilities are not too high and the service
time variability is not more than the variability observed in the empirical studies.

When investigating the problem of booking appointments where the patients
are modeled as different revenue classes and the patient preferences are taken into
consideration, both Gupta and Wang (2008) and Wang and Gupta (2011) assume
that the available time slots and the corresponding capacities are given (i.e., the
available physician time on each working day has already been divided into time
slots of desired/required lengths). The problem of determining the clinic capacity
and constructing the time slots has been studied by a number of researchers, and the
review of relevant studies can be found in Gupta and Wang (2012).

Scheduling in the presence of multiple patient groups with different priorities
is also the focus of several other optimization-based studies (e.g., Erdelyi and
Topaloglu (2010), Gocgun et al. (2011), Kolisch and Sickinger (2008), Min and Yih
(2010)). We provide the details of the problem studied by Patrick et al. (2008) and
their modeling and approximate dynamic-programming-based solution approach in
Sect. 4.1.

4.1 Dynamic Multipriority Patient Scheduling

In this section, we introduce the problem of scheduling patients in multiple priority
classes on a diagnostic resource studied by Patrick et al. (2008). A diagnostic
resource (such as a computer tomography (CT) scanner or a magnetic resonance
imaging (MRI) scan) serves patients in different priority classes that are formed
based on the urgency of the service, which is reflected in the priority-specific wait
time targets. Emergency patients and inpatients may be either higher- or lower-
priority patients depending on how soon they need to be served, which typically
ranges from “immediate” to “24 h.” Outpatients, on the other hand, are typically
lower-priority patients who need to be served within a larger time window ranging
from days to weeks. Every day, the available capacity over the considered booking
horizon should be allocated between the priority classes in such a way that the wait
time targets are met to the greatest possible extent. Booking lower-priority patients
too soon may result in insufficient capacity for later-arriving higher-priority patients.
On the other hand, booking them too far into the future may create idle capacity.
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Patrick et al. (2008) formulate this problem as a discounted infinite-horizon MDP
and solve it using LP-based approximate dynamic programming (ADP) methods.
We now present the details of their approach.

Model Formulation

Daily decision epochs are considered over an N-day rolling horizon. Due to the
dynamic structure of the booking horizon, day n at the current decision epoch
becomes day n− 1 in the next decision epoch. Therefore, at the beginning of each
day, there are no scheduled appointments on the Nth day as implied by the length of
the booking horizon. Although it is finite, the booking horizon is rolling and hence
evolving day by day, which leads to an infinite-horizon problem where the capacity
allocation decisions are made every day.

The state of the system is represented by s=(x,y)= (x1,x2, . . . ,xN ;y1,y2, . . . ,yI),
where xn and yi denote the number of patients already booked on day n and the
number of priority i patients waiting to be booked, respectively. There are I patient
priorities, and 1 is the top priority. Based on the state definition, the state space can
be written as S= {(x,y)|xn ≤C1,1≤ n≤N;0 ≤ y ≤Qi,1≤ i≤ I;(x,y)∈ZN ×ZI},
where C1 is the daily capacity of the diagnostic resource and Qi is the maximum
number of priority i patients that can arrive in a day. At each decision epoch,
the assignment of the available appointment slots to the waiting patients is to be
determined. It is assumed that postponing the scheduling to the next day, or diverting
the patients to a surge capacity (overtime or outsourcing), is also viable where the
number of patients diverted per day is limited by C2. Considering these available
actions, and letting ain and zi be the number of priority i patients to be booked on day
n and to be diverted to the surge capacity, the vector of possible actions is denoted
by (a,z) = {ain,zi}. An action is feasible if it meets the requirements (4.45)–(4.48)
given below:

• The daily capacity of the diagnostic resource is not exceeded:

xn +
I

∑
i=1

ain ≤C1 ∀n ∈ 1, . . . ,N. (4.45)

• The upper limit on the number of diversions is not exceeded:

I

∑
i=1

zi ≤C2. (4.46)

• The total number of bookings and the diversions for priority class i does not
exceed the number of waiting priority i patients:

N

∑
n=1

ain + zi ≤ yi ∀i ∈ 1, . . . , I. (4.47)



4 Optimization in Healthcare Delivery Modeling 101

• The number of bookings and diversions is positive integers:

(a,z) ∈ ZIN ×ZI. (4.48)

Upon the implementation of action (a,z), the system transitions from state
(x1,x2, . . . ,xN ;y1,y2, . . . ,yI) to state (x2 + ∑I

i=1 ai2, . . . ,xN + ∑I
i=1 aiN ,0;y′1 + y1 −

∑N
n=1 a1n− z1, . . . ,y′I +yI −∑N

n=1 aIn− zI) with probability p(y′) = ∏I
i=1 p(y′i) where

y′ denotes the number of patient arrivals in a day. As implied by the definition of
p(y′), the arrivals of patients in different priority classes are independent.

The cost associated with action (a,z) is c(a,z) = ∑i,n b(i,n)ain +∑I
i=1 d(i)zi +

∑I
i=1 f (i)(yi − ∑N

n=1 ain − zi), where b(i,n), d(i), and f (i) are the unit costs of
booking a priority i patient on day n, diverting a priority i patient, and delaying
the booking of a priority i patient for one day, respectively. Cost coefficients b(i,n)
and f (i) are intuitively decreasing in i, and the structure of d(i) depends on the type
of the available surge capacity. If the surge capacity is in the form of overtime, then
it is reasonable to assume that d(i) is constant in i. If diversion means rejecting the
patient and sending him/her to another healthcare delivery provider, then d(i) should
be decreasing in i.

The priority-specific wait time target, which is denoted by T (i), is increasing in
i. b(i,n) should be increasing in n, and it should be positive only if booking the
appointment of a priority i patient on day n does not meet the wait time target, i.e.,
n > T (i). Moreover, it is reasonable to set b(i,n) in a way that the cost of delaying a
patient k days and then booking his/her appointment on a day within T (i) is equal to
the cost of booking him/her k days late initially. Based on these assumptions, b(i,n)

can be chosen as ∑n−T(i)
k=1 γk−1 f (i) ∀n > T (i) and as 0 otherwise, where γ is the daily

discount factor.
Considering the components described above, the multipriority patient schedul-

ing problem can be formulated as an infinite-horizon MDP with the following
optimality equations for all (x,y) ∈ S:

v(x,y) = min
(a,z)∈Ax,y

{

c(a,z)+ γ ∑
y′∈D

p(y′)v

(

x2 +
I

∑
i=1

ai2, . . . ,xN +
I

∑
i=1

aiN ,0;

y′1 + y1 −
N

∑
n=1

a1n − z1, . . . ,y
′
I + yI −

N

∑
n=1

aIn − zI

)}

, (4.49)

where v(x,y) is the value function, Ax,y is the set of feasible actions defined
by (4.45)–(4.48), and D is the set of all possible patient arrival streams.

Solution Approach

The size of the state space, given by (C1)
N ∏I

i=1 Qi, is very large for realistic values
of C1,N, I, and Qi. For a problem instance where N = 60, C1 = 30, I = 3, and
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Q1 = Q2 = Q3 = 10, the size of the state space is 3060 × 103. Therefore, standard
solution methods such as the value iteration or the policy iteration fail to solve
(4.49) for practical instances.

ADP-based approaches, which have been developed to overcome the curse
of dimensionality in solving MDPs, typically consider a specific class of value
functions and find an approximate optimal solution within that class. To find an
approximate solution to (4.49), Patrick et al. (2008) employ an LP-based analytical
method (Adelman 2004; de Farias and Van Roy 2003; Schweitzer and Seidmann
1985) with the following steps:

1. The model described by the optimality equations (4.49) is reformulated as

max
v ∑

(x,y)∈S

α(x,y)v(x,y) (4.50)

s.t.

c(a,z)+ γ ∑
y′∈D

[

p(y′)v

(

x2 +
I

∑
i=1

ai2, . . . ,xN +
I

∑
i=1

aiN ,0;

y′1 + y1 −
N

∑
n=1

a1n − z1, . . . ,y
′
I + yI −

N

∑
n=1

aIn − zI

)]

≥ v(x,y)

∀(a,z) ∈ Ax,y and (x,y) ∈ S, (4.51)

where α is strictly positive. Although not necessary for the validity of the
conversion, it is assumed that α is the probability distribution over the initial
state of the system. Note that (4.50)–(4.51) is a large-scale LP with a variable for
each state, and a constraint for each state-action pair.

2. The value function is approximated by using the following linear combination of
basis functions:

v(x,y) =W0 +
N

∑
n=1

Vnxn +
I

∑
i=1

Wiyi, (4.52)

where Vn and Wi are nonnegative and W0 is unrestricted in sign. Vn and Wi can
be interpreted as the marginal infinite-horizon discounted costs of an occupied
appointment slot on day n and a priority i patient waiting to be booked,
respectively.

3. An approximate linear program (ALP) is created by substituting (4.52)
into (4.50) and (4.51). This reformulation reduces the number of variables
from (C1)

N ∏I
i=1 Qi to N + I+ 1.

4. Column generation is employed to solve the dual of the ALP, which has a
reasonable number of constraints and a large number of variables. Then, the
best linear value function approximation (denoted by vALP) is obtained by
determining the coefficients (V and W) based on the shadow prices in the optimal
solution.
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5. The approximate optimal policy (AOP) is extracted from the ALP solution by
substituting v = vALP into the optimality Equations (4.49) and then solving the
resulting equations for (a,z) ∈ Ax,y where (x,y) ∈ S to obtain the best decision
for every possible state. This corresponds to solving the following IP:

min
(a,z)∈Ax,y

{
I

∑
i=1

N

∑
n=1

b(i,a)ain +
I

∑
i=1

(

d(i)zi + f (i)

(

yi −
N

∑
n=1

ain − zi

))

+γ ∑
y∈D

p(y)

[

W0 +
N−1

∑
n=1

Vn

(

xn+1 +
I

∑
i=1

ai,n+1

)

+
I

∑
i=1

Wi

(

y′i + yi−
N

∑
n=1

ain − zi

)]}

= min
(a,z)∈Ax,y

{
I

∑
i=1

N

∑
n=1

(b(i,n)+ γVn−1− fi − γWi)ain

+
I

∑
i=1

(d(i)− f (i)− γWi)zi

}

+ a constant term. (4.53)

Renaming b(i,n) + γVn−1 − fi − γWi as Ain, and d(i)− f (i)− γWi as Zi, the
simplified form of (4.53) can be written as

min
(a,z)∈Ax,y

{
I

∑
i=1

N

∑
n=1

Ainain +
I

∑
i=1

Zizi

}

+ a constant term. (4.54)

The coefficients Ain and Zi together determine the approximate optimal action for
priority class i. In the AOP, priority i patients are booked to days for which Ain < 0
and overtime is only used for priority classes for which Zi < 0.

Under reasonable conditions on the problem parameters, it is proved by Patrick
et al. (2008) that vALP and the corresponding AOP can be obtained directly without
using the techniques described in Steps 4 and 5 of the above solution method. The
structure of the AOP where the considered surge capacity is overtime (i.e., diversion
cost d(i) is constant in i) is characterized by the following theorem. (We refer the
reader to Patrick et al. (2008) for the details about the structure of the AOP under
decreasing diversion costs, and for the structure of the vALP under both types of
diversion costs.)

Theorem 2 (Patrick et al. (2008), Theorem 3). Suppose that the diversion costs
d(i) = d for all i, the booking cost is nondecreasing in n and nonincreasing in i with
b(i,n) = 0 for all i and n ≤ T (i). Suppose further that

b(i,n)+ γn−T(1)d > b(i,T (i))+ γT(i)−T (1)d ∀i and ∀n > T (i), (4.55)
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I

∑
i=1

γT (i)−n

1− γ
IT (i)>nλi +

N

∑
m=n

∑
x,y

γ [m−n]+α(x,y)xn <
C1

1− γ
∀n ≥ T (1), (4.56)

0 <
I

∑
i=1

γT (i)−T (1)

1− γ
λi +

N

∑
n=1

∑
x,y

γ [n−T (1)]+α(x,y)xn −T (1)C1− γC1

1−γ
<

C2

1− γ
, (4.57)

where IT (i)>n is an indicator variable which is equal to one if T (i) > n and zero
otherwise, λi is the arrival rate for demand from priority class i, C1 is equal to the
base capacity, C2 is the surge capacity (i.e., overtime), and γ is the discount rate.

Moreover, for each priority class i, let (LB(i) and UB(i)) be the interval
described by

LB(i) = min{n|Ain < 0}= min{n| f (i)> (γ [n−T (1)−1]++1 − γT(i)−T(1)+1)d},
(4.58)

UB(i) = T (i). (4.59)

Then, the AOP may be implemented as follows:

(i) Book patients in order of priority class.
(ii) Book as much priority 1 demand as possible into the interval (1,T (1)) starting

with day 1 and working up to day T (1).
(iii) For each successive priority class, book incoming demand into any available

slots in the interval {1∪ (LB(i),UB(i))} starting with day 1, then day UB(i),
and working down to day LB(i).

(iv) If there is any remaining demand, use overtime for a given priority class
only if

f (i)> (1− γT(i)−T (1)+1)d (4.60)

is satisfied (i.e., only if Zi < 0) and giving precedence to higher-priority
demand should the overtime capacity constraint be an issue.

(v) For all remaining demand, delay booking.

If the conditions given in Theorem 2 hold, then the AOP is described by only
2I+ 1 numbers (which are the LB(i) and UB(i) values for each priority class i, and
the lowest-priority class for which the overtime is used) that can be obtained by
using (4.58)–(4.60) (i.e., without solving the IP given by (4.53)).

As implied by its name, the optimality of the AOP is not guaranteed. Therefore,
investigating the performance of the approximation is of great practical value.
By using a simulation model, Patrick et al. (2008) compare the AOP to a strict
booking policy where a priority i patient is booked on day n only if the number of
available appointment slots on that day is more than a priority-specific threshold
level. Their extensive numerical results reveal that the AOP performs notably well
under many different problem settings characterized by the size of the healthcare
delivery institution and the composition of the demand stream.
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5 Workforce Scheduling

Workforce scheduling in healthcare involves determining the staffing needs of
healthcare facilities both at the aggregate and the operational levels, and designing
the staff schedules accordingly. The majority of the related literature focuses on
nurse scheduling problems (e.g., Kao and Queyranne (1985), Azaiez and Al Sharif
(2005), Beliën and Demeulemeester (2008), Maenhout and Vanhoucke (2010))
which typically include decisions such as determining the number of nurses to
be employed, assigning nurses to a set of shifts in such a way that feasibility
requirements are met and an appropriate staffing level is achieved, and assigning
patients to nurses at the beginning of shifts. We introduce some common nurse
scheduling problems by providing examples from the literature. We refer the reader
to Burke et al. (2004), Cheang et al. (2003), and Sitompul and Randhawa (1990) for
extensive reviews of the related studies.

Lavieri and Puterman (2009) propose a linear program (LP) to model a work-
force planning problem at the provincial level (in the province of British Columbia,
Canada). The decisions in their model include the number of students to admit to
different types of nursing programs, the number of nurses and managers to recruit
from outside of the province, and the number of nurses to promote to managerial
positions in each year over a 20-year planning horizon. The constraints of the
model represent several requirements, some of which are as follows: the number of
students should be within the bounds imposed by the size of the nursing programs,
the number of nurses should be enough to meet the population’s need, the ratio
of nurses to managers should be greater than a prespecified minimum level, the
number of students admitted to different types of programs should be balanced,
the number of nurses to recruit should not exceed the number of available nurses
allowed to work in the province, and the number of years of experience should be
taken into account when promoting the nurses. The objective of the model is to
determine the workforce size in each year that minimizes the total cost of training
(educating students and promoting nurses), recruitment, and annual salaries over
the considered planning horizon. The model carefully captures the dynamics of
the system by explicitly considering the aging of students and nurses; the students
progress in their degree program or graduate unless they quit, and the nurses become
more experienced unless they use a parental leave or retire. Implementation of the
proposed model reveals that a feasible solution for the workforce scheduling of
British Columbia could be obtained only by having a large initial recruitment or
by changing nurse to population ratios (i.e., by degrading the quality of service).

Purnomo and Bard (2007) construct cyclic biweekly schedules for nurses by
using a MIP which minimizes a weighted sum of the number of uncovered shifts
(i.e., the shifts covered by outside nurses) and the violation of soft constraints that
represent the preferences of nurses. The hard constraints of the model describe a
set of legal and institutional requirements associated with the maximum amount
of time a nurse is allowed to work during a day/week, and minimum amount of
break between the consecutive shifts of a nurse. The authors develop a branch-and-
price algorithm to solve large instances of the problem and enhance their algorithm



106 S. Batun and M.A. Begen

by using two different branching rules (subproblem variable branching and master
problem variable branching) and an effective rounding heuristic. We observe from
their numerical results that the proposed algorithm can solve large problem instances
(i.e., instances with up to 200 nurses) within a reasonable amount of time. The
reported results also indicate that subproblem variable branching is more suitable
for small and medium size problems, whereas master problem variable branching
performs better for large size problems.

Punnakitikashem et al. (2008) study an operational-level nurse scheduling
problem which considers the patient-to-nurse assignment decisions at the beginning
of a shift. They explicitly consider the uncertainty in the amount of care required by
each patient and formulate the problem as a two-stage SMIP where the objective is
to minimize the expected excess workload on nurses (i.e., the difference between the
workload and the available time for care). We present the details of their approach
and briefly discuss their results in Sect. 5.1.

Scheduling physicians in an emergency department shares significant similarities
with the problem of designing a shift schedule for nurses, and is the focus of a
number of studies including Beaulieu et al. (2000), Brunner et al. (2009), Carter
and Lapierre (2001), Rousseau et al. (2002), Vassilacopoulos (1985).

Resident scheduling is another commonly studied problem in the context of
healthcare workforce planning. A recent study by Cohn et al. (2009) explores the
problem of scheduling on-call shifts of residents in a multihospital setting over
a 365-day planning horizon. A desirable schedule must ensure that each hospital
has an appropriate level of residents each night in order to meet patient needs,
each resident completes a specified number of calls at each hospital during the
year in order to meet his/her educational requirements, and each resident has an
acceptable amount of rest in order to avoid fatigue that may result in poor quality
service. Moreover, residents’ preferences on their schedule should be taken into
consideration as much as possible. The authors formulate the problem as an IP
that seeks a feasible solution with respect to these requirements, and then expand
their model to consider different objectives that are important to the residents. The
number of vacation requests denied, number of night calls that do not match a
resident’s daytime location, and number of Friday/Saturday calls are some of the
considered metrics. The authors successfully applied their model to schedule the
chief residents in the psychiatry program at Boston University School of Medicine
(BUSM), and the proposed schedule became effective shortly after the completion
of the project.

5.1 Nurse Assignment Problem

In this section, we describe the nurse assignment problem studied by Punnaki-
tikashem et al. (2008), present the SMIP formulation introduced by the authors,
and briefly summarize the insights revealed by their numerical results.
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Prior to the beginning of a shift, each patient needs to be assigned to a nurse,
and the assignment decisions are typically made by a charge nurse. Due to the
regulations, there may be some restrictions on the assignment decisions (e.g.,
assigning a particular patient to a specific type of nurse may not be feasible). It
is assumed that the charge nurse determines which nurses can be assigned to which
patients before the assignment problem is solved.

It is very rare in practice that a patient is reassigned to another nurse during
the shift. Therefore, it is assumed that there is no reassignment during the shift.
However, the assignment decisions are dynamically updated due to the admission
of new patients and the discharge of some of the existing patients. Admission and
discharge events are captured explicitly by taking the probability of their occurrence
into account when modeling the amount of care required by the patients. As a result
of this approach, the set of considered patients include the potential patients as well
as the existing ones, and hence the authors are able to consider a fixed number of
patients in their model.

There are two types of care provided by nurses: direct care, which is the amount
of time spent with patients, and indirect care, which is the amount of time spent on
other tasks. The amount of required care during the shift is modeled by considering
the shift as a collection of several smaller time periods. The required indirect care in
a time period can be provided any time during the shift, whereas the required direct
care should be provided within that time period.

As the workload of a nurse increases, her/his patients receive less care. Therefore,
excess workload on nurses has a negative impact on the quality of care. To reflect
this, the assignment cost is modeled as a nondecreasing piecewise linear convex
function of the amount of assigned workload.

We now present the notation used in Punnakitikashem et al. (2008).

Sets and Indices

ω : Scenario index where Ω represents the set of random scenarios
τ, t: Time period indices where T represents the set of time periods in the shift
n: Nurse index where N represents the set of all nurses
p: Patient index where P represents the set of all patients
N(p): Set of nurses that can be assigned to patient p
P(n): Set of patients that can be assigned to nurse n
i: Piece/interval index such that i ≤ k where k is the number of

pieces/intervals in the considered piecewise cost function

Parameters

mτni,mτn(i+1): Lowest and highest levels of workload that describe the ith interval
i.e., the interval for which the associated cost is given by the ith
piece of the cost function)

ατni: Marginal cost associated with the ith piece of the cost func-
tion, (because the considered cost function is nondecreasing and
convex, 0 = mτn1 < · · · < mτnk and 0 ≤ ατn1 < · · · < ατnk. For
notational convenience, mτn(k+1) is ∞.)
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φ(ω): Probability that scenario ω occurs
dt p(ω): Amount of direct care required by patient p in time period t
gt p(ω): Amount of indirect care required by patient p at the beginning of

time period t until the end of the shift
ξ (ω): Random vector composed of dt p(ω) and gt p(ω) parameters for all

patients and time periods

First-Stage Decision Variables

Xpn: Binary decision variable denoting patient p∈P is assigned to nurse n∈N(p)

Second-Stage Decision Variables

Aτni(ω): Amount of workload assigned to nurse n between time durations mτni

and mτn(i+1) in scenario ω
Gtτn(ω): Total indirect care to be performed during or after time period t and is

performed in time period τ by nurse n in scenario ω

Considering the above notation, and letting X be the vector form of the first-stage
decision variables, two-stage SMIP formulated by Punnakitikashem et al. (2008) is
as follows:

min Q(X) (4.61)

s.t.

∑
n∈N(p)

Xpn = 1∀p ∈ P, (4.62)

Xpn ∈ {0,1}∀p ∈ P(n),n ∈ N, (4.63)

where the recourse function Q(X) is defined as

Q(X) = Eξ [Q(X ,ξ (ω))] (4.64)

and

Q(X ,ξ (ω)) = min ∑
n∈N

∑
τ∈T

k

∑
i=1

ατniAτni(ω) (4.65)

s.t.

∑
p∈P(n)

gt p(ω)Xpn =
|T |
∑
τ=t

Gtτn(ω) ∀t ∈ T,n ∈ N, (4.66)

∑
p∈P(n)

dt p(ω)Xpn +
τ

∑
t=1

Gtτn(ω) =
k

∑
i=1

Aτni(ω) ∀τ ∈ T,n ∈ N, (4.67)

Aτni(ω)≤ mτn(i+1)−mτni ∀τ ∈ T,1 ≤ i ≤ k,n ∈ N, (4.68)
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Gtτn(ω)≥ 0 ∀t,τ ∈ T, t ≤ τ,n ∈ N, (4.69)

Aτni(ω)≥ 0 ∀τ ∈ T,1 ≤ i ≤ k,n ∈ N. (4.70)

The objective function (4.61) is the total expected cost of assignment. Due to the
structure of the objective function, minimizing the total expected cost is equivalent
to minimizing the expected excess workload on nurses. Constraint (4.62) ensures
that each patient is assigned to a nurse.

For a given first-stage solution X and a random scenario ω , the second-stage
problem is described by (4.65)–(4.70). Constraint (4.66) determines the total indi-
rect care performed by each nurse in each time period. Constraint (4.67) describes
the total workload of each nurse in each period as the sum of workload resulting
from direct and indirect care to be performed, and constraint (4.68) computes the
marginal workload variables associated with each interval.

Punnakitikashem et al. (2008) use the L-shaped algorithm to solve (4.61)–(4.70)
and increased the problem solvability by using a polynomial time procedure to
solve the second-stage problem, deriving lower and upper bounds on the number
of patients that can be assigned to a nurse and adding valid inequalities that
reduce symmetry with respect to nurses. The authors execute experiments by using
instances generated based on real data provided from Baylor Regional Medical
Center in Grapevine, Texas. Because the considered instances are not solvable
within a reasonable amount of time, the authors use the algorithm to obtain
a good solution within a time limit of 30 min rather than finding the optimal
solution. They compare the expected excess workload achieved by the solution
returned by the L-shaped algorithm to that of the solutions obtained by different
alternative approaches, which are solving the mean value problem, using a heuristic
that balances workloads based on the expected required total care, and random
assignment. Their numerical results show that the L-shaped algorithm substantially
reduces the expected excess workload over the other methods. We also observe from
their results that the expected value of perfect information is high when the set of
nurses scheduled for the shift do not have sufficient time and skills to care for the
patients, and the value of the stochastic solution is particularly high when there is
significant variance in the required care by the patients.

6 Other Applications

Besides the application areas discussed in earlier sections, optimization-based
approaches have been used to address several other problems in healthcare including
healthcare facility location, organ allocation and transplantation, vaccine design and
disease screening (e.g., Ayvaci et al. (2012), Demirci et al. (2011), Özaltın et al.
(2011), Ingolfsson et al. (2008), Jacobs et al. (1996), Kurt et al. (2011), Kong et al.
(2010), Maxwell et al. (2010), Segev et al. (2005), Zhang et al. (2010)). In this
section, we briefly describe some of the problems considered in recent studies, and
discuss the methods employed by the authors.



110 S. Batun and M.A. Begen

Zhang et al. (2010) study location and capacity allocation decisions associated
with preventive healthcare facilities over a network of geographic population zones,
where the objective is to maximize the accessibility for potential patients. Ease of
access to the facilities has a positive influence on the participation in preventive
healthcare programs, which play a crucial role in prevention and early detection
of diseases. The authors formulate the problem as a bilevel nonlinear optimization
model, where the facility location and capacity allocation (allocation of a number
of total available servers to facilities) decisions are made at the upper level. Given
the upper level decisions, the nonlinear lower level problem describes the nature
that clients choose the facility with the minimum expected total time of providing
the care, which is comprised of the travel time to the facility, and the waiting and
service time at the facility. The model captures the assumption that the participation
rate at each population zone decreases with the increasing expected total time, and
the requirement that a facility can be opened only if the number of its potential
clients is more than a prespecified minimum workload (which is necessary to
ensure the quality of the service). The problem is difficult to solve due to the
existence of binary variables at the upper level and the nonlinearity at the lower
level. Therefore, the authors develop a heuristic method to solve practical instances
of the problem. Within the proposed solution framework, the upper level problem
is solved with a tabu search procedure, and the lower level problem is solved with
the gradient projection method (which is an exact solution algorithm for convex
optimization problems) or an approximation algorithm depending on the number of
servers allocated to each facility. For their numerical study, the authors consider the
problem of designing a network of mammography centers in Montreal, Quebec. It
is observed from their results that while centralizing the capacity at high-density
zones to raise the participation is a favorable strategy when the available number of
servers is medium/large, increasing the spatial coverage becomes more important,
and hence, decentralizing the capacity to different zones becomes a better strategy,
when the available number of servers is limited.

Segev et al. (2005) propose an optimization-based approach to improve the
number and quality of living-donor kidney transplants. Living-donor kidney trans-
plantation for a donor–recipient pair is a viable option only when the donor
is willing, healthy, and compatible with the recipient. An incompatible donor–
recipient pair may still benefit from transplantation if there exists another pair in
the same situation such that the pairs become compatible when the donors are
exchanged, which is known as the kidney paired donation (KPD). Segev et al.
(2005) compare the outcomes associated with two different KPD matching schemes,
which are the first-accept matching and optimized matching, by applying these
schemes to the simulated pools of incompatible donor–recipient pairs. In the first-
accept matching scheme, the first pair on the list is picked, and the pool is searched
to find a matching pair. Once such a pair is found, both pairs are removed from
the list since they form an acceptable match. Matching continues in the same
manner, until no acceptable match is detected. In the optimized matching scheme, all
acceptable matches in the pool are identified, all feasible solutions (i.e., combination
of acceptable matches), are compared and the one with the best outcome is picked.
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The numerical results presented by the authors indicate that the optimized matching
scheme performs significantly better than the first-accept matching scheme, and
the performance gap becomes more prominent with the increasing pool size. It
is observed from their results that utilizing the optimized matching scheme at the
national level could achieve matching 47.7% of the incompatible pairs in the USA,
and this would require only 2.9% of the pairs to travel. Based on these results, the
authors conclude that establishing a national level KPD program and optimizing the
matching decisions are extremely important. (It is worth mentioning that a national
KPD pilot program in the USA began in 2010 (OPTN 2010).)

Kurt et al. (2011) explore transplant timing decisions in a prearranged kidney
exchange that involves an arbitrary number of incompatible patient–donor pairs
for whom the only feasible cross-exchange of kidneys is a cyclic exchange. The
patients’ health statuses probabilistically change according to a discrete-time finite-
state Markov chain, and at each decision epoch, each patient decides between
offering to exchange and waiting. The process continues until an exchange occurs
(which only happens if all patients offer to exchange) or a patient dies (which leaves
no feasible solution for the problem). Each patient receives a terminal reward, if an
exchange occurs, receives an intermediate reward and moves to the next decision
epoch otherwise. The timing of the exchange depends on the choices of all patients,
and hence, a patient cannot simply optimize his/her own objective independent of
the choices of the other patients. The authors formulate the problem as a nonzero
sum stochastic game and use a MIP to find the equilibrium that maximizes the sum
of the patients’ total expected payoffs. Their numerical results reveal that designing
the cross-exchange of kidneys without considering the timing decisions may result
in suboptimal solutions in terms of social welfare, and matching patients at similar
stages of disease results in better solutions.

Ayvaci et al. (2012) investigate the impact of budgetary restrictions on the
breast cancer diagnostic decisions. After a patient is screened with mammography,
radiologists assess her risk of cancer and then choose one of the following three
options considering the risk level: (1) routine follow-up mammography, (2) short-
term follow-up mammography, and (3) biopsy (i.e., immediate diagnostic action).
Sending the patient to biopsy when her risk level is too low may result in a false
positive, whereas being too late in taking the immediate diagnostic action may
hinder early detection of cancer, which is the main trade-off to be balanced. The
health state of the patient probabilistically evolves, and is described by a risk score,
or one of the two absorbing states: death and post-cancer. The authors formulate the
problem as a finite-horizon discrete-time constrained MDP that maximizes the total
quality adjusted life years (QALYs) of the patient under budget-related constraints.
They derive the equivalent LP formulation of the constrained MDP model and
then convert it to a MIP by adding binary variables that restrict the set of feasible
solutions to deterministic policies. The authors solve the problem under different
budget levels in order to estimate the incremental cost-effectiveness ratios. Their
comparison to the actual clinical practice indicates that optimal policies may achieve
the same level of QALYs under significantly lower budget levels. Their numerical
results also reveal that eliminating short-term follow-ups becomes favorable as the
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budget level decreases. It is also observed from their results that an increase in the
budget has higher impact (in terms of gained QALYs) on younger patients.

Özaltın et al. (2011) propose a multistage SMIP that integrates the two important
decisions regarding flu shot design: the composition of the vaccine (i.e., which
strains to include in the vaccine) and the timing of composition decisions. These
decisions are made before the flu season starts, under uncertainty associated with
the flu season and the vaccine production process. The vaccine is comprised of a
number of strains, which are chosen among a set of candidate strains recommended
by the World Health Organization based on the available surveillance data and
epidemiological analysis. The composition of a vaccine determines its effectiveness;
when there is a good match between the selected strains and the ones that emerged
in the flu season, the vaccine is highly effective. Timing of composition decisions is
crucial as it has a direct impact on the production start times for strains, and hence
on the flu shot availability. Making the composition decisions too early (which may
result in a low vaccine effectiveness due to insufficient surveillance data) or too
late (which may result in delays or shortages in flu shot supply) is not desirable;
the trade-off between the effectiveness and the availability should be balanced.
The authors formulate the problem as a multistage SMIP where the composition
decisions are made in all stages except for the last stage, and the resolution of
uncertainty occurs in the last stage. The objective of their model is to maximize
the prevented cost of flu cases minus the vaccine shortage cost. The authors solve
the problem by using a branch-and-price algorithm where the pricing problems are
formulated and solved as a DP. Their results show that the value of integrating
timing and composition decisions is significant, and provide some important policy
insights.

7 Conclusion

In this chapter, we surveyed many recent successful optimization-based studies of
healthcare operations management. Optimization has been widely used by several
researchers to model healthcare problems such as appointment scheduling, operat-
ing room scheduling, capacity planning, and workforce scheduling. We pointed out
many of the related studies and presented detailed modeling examples in Sects. 2–
5. In Sect. 6, we reviewed some recent research in other areas including healthcare
facility location, organ allocation and transplantation, disease screening, and vaccine
design.

Due to the complexity of the problems in healthcare, a common modeling
approach has been to consider different levels of decisions, resources, stakeholders,
and other components/aspects separately. Building and solving integrated models,
which would provide more realistic representations of the problems and enable
better optimization, is an open research challenge. Some examples from surgery
scheduling would be simultaneous determination of the surgery sequence in an
operating room and the start times for surgeries, simultaneous consideration of
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advance and real-time decisions (i.e., day-of-surgery rescheduling activities), and
concurrent planning of different resources such as operating rooms and recovery
rooms. An example from organ allocation and transplantation would be building
integrated models that consider both the societal and the patient perspective.
Incorporating the transplant timing decisions of patients into the models used to
obtain organ allocation policies would be of great practical value. There are several
other important practical research questions waiting to be explored, and hence, the
use of optimization methods to solve healthcare operations management problems
continues to be a major topic of investigation.

Appendix

Property 4 Appointment vector integrality: [Begen and Queyranne (2011),
Theorem 5.1] If the processing times are integer-valued random variables, then there
exists an optimal appointment vector which is integer.

Sketch of Proof. Let A denote the set of optimal appointment vectors in K . A
is nonempty, bounded, and closed by Lemma 4.3 of Begen and Queyranne (2011),
and F is continuous by Lemma 4.2 of Begen and Queyranne (2011).

For A ∈ A , let I(A) be a function of A described as

I(A) =

{
min{A j : j ∈ {2, . . . ,n+ 1} and A j �∈ Z} if A �∈ Z

n+1,

npmax + 1 if A ∈ Z
n+1.

I(.) is upper semicontinuous on A (see the proof of Theorem 5.1 of Begen and
Queyranne (2011) for details). Therefore, there exists an appointment schedule A∗ ∈
A that maximizes I(.).

Assume that A∗ �∈ Z
n+1. Let A∗

f be the first noninteger component of A∗ and J
be the set of all jobs j ≥ f such that A∗

j and A∗
f have the same fractional part (i.e.,

A∗
j −A∗

f is integer). Let ϕ(x) denote the distance of x to the nearest integer (i.e.,
ϕ(x) = min{x−�x�,�x�− x}). Let Δ1, Δ2, and Δ be positive scalars described by

Δ1 =
1
4

min{ϕ(A∗
j −A∗

k) : j ∈ J,k �∈ J}> 0,

Δ2 =
1
4

min{ϕ(A∗
j −A∗

k) : j �∈ J,k �∈ J,A∗
j −A∗

k �∈ Z}> 0,

0 < Δ <
1
4

min{Δ1,Δ2}.

Let A′ and A′′ be two new appointment schedules constructed from A by
subtracting and adding Δ to the noninteger components (i.e., A′

j = A∗
j − Δ and

A′′
j = A∗

j + Δ if j ∈ J, A′
j = A∗

j and A′′
j = A∗

j otherwise). As proven by Lemmas



114 S. Batun and M.A. Begen

5.1–5.8 in Begen and Queyranne (2011), Δ is small enough that using A′ or A′′
instead of A does not create any event change, i.e., if a job is early, late, or on time
in A, then it is also early, late, or on time, respectively, in A′ and A′′.

Because there is no event change when moving from A′ to A′′, F(.|p = r)
changes linearly between A′ and A′′ for every realization r of p. Hence, F(.) also
changes linearly between A′ and A′′.

By optimality, F(A∗) ≤ F(A′) and F(A∗) ≤ F(A′′). Because F(.) changes
linearly between A′ and A′′, we must have F(A∗) = F(A′) = F(A′′).

Note that A′′ ≥A∗ ≥A and A′′ ≤A (because A′′
j =A∗

j +Δ< �A∗
j� for every i). So,

A′′ ∈K and therefore A′′ ∈A . But I(A∗)< I(A′′) (because I(A∗) =A∗
f <A∗

f +Δ=

A′′
f = I(A′′)), which contradicts with the definition of A∗ (i.e., the maximizer of I(.)).

Therefore, there exists an integer appointment vector A∗ ∈ A .

Property 5. Computation of expected cost for a given appointment schedule:
[Begen and Queyranne (2011), Theorem 7.2] If the processing durations are
stochastically independent and A is an integer appointment vector, then F(A) may
be computed in O(n2 p2

max) time.

Proof. As the first job starts on time, S1 = 0 (since A1 = 0) and C1 = p1. Therefore,
the distribution of C1 is that of p1. For job i, such that 1 < i ≤ n, we have Si =
max{Ai,Ci−1}. So, the probability distribution of Si is

P{Si = k}=
⎧
⎨

⎩

0 if k < Ai,

P{Ci ≤ k} if k = Ai,

P{Ci = k} if k > Ai,

(4.71)

where k = 1, . . . ,npmax. Si is completely described by A1,A2, . . . ,Ai−1 and
p1, p2, . . . , pi−1, and hence does not depend on pi. Owing to the independence
of Si and pi, we have

P{Ci = k}= P{Si = k− pi}=
pi

∑
j=1

P{Si = k− j}P{pi = j}. (4.72)

P{Ci−1 ≤ k} = P{Ci−1 = k}+P{Ci−1 ≤ k − 1}, and for each i− 1, it can be
computed in O((i− 1)pmax) time. Thus, P{Ci = k} can be computed once we have
the distribution of Si. For each job i and value k, computing P{Si = k} (by (4.71))
and P{Ci = k} (by (4.72)) requires a constant number of operations and O(pi + 1)
operations, respectively. Therefore, obtaining the start time and completion time
distributions for job i requires O(npmax pmax) operations. The distribution of Ti and
Ei, and their expected values, can then be computed in O(npmax) time. Therefore,
the expected cost F(A) can be computed in O(n2 p2

max) time.

Lemma 1 (Begen et al. (2012), Lemma 13). Let f : Rm �→R be convex, finite with
a global minimizer y∗. Assume that there exists f̄ such that f ≥ f̄ = λ ||y− ỹ||1 for
some λ > 0 and ỹ ∈R

m. If ŷ is an α-point for α = λ ε/3, then f (ŷ)≤ (1+ ε) f (y∗),
where ε ∈ [0,1].
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Proof. Let L = f (y∗)/λ . Consider the norm l1 ball B = B(ỹ,L), then y∗ ∈ B(ỹ,L) =
{y : λ ||y∗ − ỹ|| ≤ f (y∗)}. The subgradient inequality at ŷ combined with Cauchy–
Schwartz inequality yields f (ŷ)− f (y∗) ≤ α||ŷ − y∗||1 (since Cauchy–Schwarz
inequality also holds for l1 norm). We also have

||ŷ− y∗||1 ≤ ||ŷ− ỹ||1 + ||ỹ− y∗||1 ≤ f (ŷ)/λ +L = f (ŷ)/λ + f (y∗)/λ .

So we obtain f (ŷ)− f (y∗) ≤ α( f (ŷ)/λ + f (y∗)/λ ) and hence f (ŷ) ≤ f (y∗)(λ +
α)/(λ −α). If we choose α ≤ λ ε/3, the result follows.

References

Adan I, Bekkers J, Dellaert N, Vissers J, Yu X (2009) Patient mix optimisation and stochastic
resource requirements: A case study in cardiothoracic surgery planning. Health Care Manag
Sci 12(2):129–141

Adelman D (2004) A price-directed approach to stochastic inventory/routing. Oper Res 52(4):
499–514
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Chapter 5
Operating Room Planning and Scheduling

Erik Demeulemeester, Jeroen Beliën, Brecht Cardoen, and Michael Samudra

1 Introduction

Healthcare has a heavy financial burden for governments within the European Union
as well as oversees. While growing economies and newly emerging technologies
could lead us to believe that supporting our respective national healthcare systems
might get less expensive over time, data show the contrary is true. For example,
within the USA, the NHE (National Health Expenditure) as a share of the Gross
Domestic Product (GDP) increased from 15.6% in 2004 up to 16.2% in 2009 [112].
The data suggest that increasing health expenditures are an ongoing trend with an
estimated annual growth rate of 6.3%. The NHE share of the GDP in the USA is
thereby being projected to hit 19.6% by the year 2019 [31].
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Similarly on the European continent, even though differences exist across
member states, healthcare spending as a share of the GDP is increasing, where
countries that are hit hard by the global recession are most affected. For example, in
Ireland, the percentage of GDP devoted to healthcare increased from 7.6% in 2004
to 9.5% in 2009. In the UK during the same time interval, a rise from 8% to 9.8%
was experienced [112].

A large amount, estimated at 31% of the spending on healthcare, pertains to
hospitals [32], which are consequently being pressured to reduce costs. Hospitals
are expensive from the patient perspective as well. For instance, Milliman Medical
Index (MMI) estimates that, for a typical family of four, 48% of the family
healthcare spending involves hospital costs [104].

Within the hospital, special attention is given to ORs as they represent the
largest costs and provide the largest revenues [1]. It comes as no surprise that the
body of literature dealing with topics related to OR efficiency and profitability is
steadily increasing. Out of the many aspects, we focus our attention on planning
and scheduling problems and do not include topics related to business process
reengineering, the impact of introducing new technologies, or facility design.

Our work is the natural continuation of the literature review carried out by
Cardoen et al. [29]. In this chapter we complement the work by adding the recent
body of literature (2007–2010) and including a more in-depth analysis of the trends
being followed by the research community. Trends are investigated on the interval
starting from 2000 and ending at 2010, while detailed descriptions are only provided
for the most recent contributions being published after 2006 and which were not
included in [29].

In the past 60 years, a large body of literature on the management of ORs
has evolved. Magerlein and Martin [95] distinguish between advance scheduling
and allocation scheduling as they provide us with a review on surgical demand
scheduling. Advance scheduling is the process of fixing a surgery date for a
patient, whereas allocation scheduling determines the OR and the starting time of
the procedure on the specific day of surgery. Blake and Carter [17] elaborate on
this taxonomy in their literature review and add the domain of external resource
scheduling, which they define as the process of identifying and reserving all
resources external to the surgical suite necessary to ensure appropriate care for
a patient before and after surgery. Przasnyski [125] structures the literature on
OR scheduling based on general areas of concern, such as cost containment or
scheduling of specific resources.

The more recent review by Gupta and Denton [66] focuses on appointment
scheduling from a general perspective and describes three commonly encountered
healthcare scheduling environments, namely primary care, specialty care, and elec-
tive surgery (non-emergencies). In primary care usually a primary care physician,
such as a general practitioner or a family physician, acts as the principal point of
consultation. Specialty care is focused on a specific and often complex diagnosis
and treatment, whereas elective surgery is focused on a specific procedure. They
discuss various factors, which affect the performance of the appointment system,
including arrival and service time variability, patient and provider preferences, and
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performance measures such as patient waiting time, OR idle time, and overtime.
According to these factors, the existing literature is classified into three groups. The
difference between Gupta and Denton’s review and our review is that our focus
is limited to scheduling problems, which arise in close relationship to the OR.
Consequently, we include elective surgery scheduling and exclude considerations
related to primary and specialty care.

In the literature review of Guerriero and Guido [63], a selected number of articles
are categorized according to the commonly used three hierarchical decision levels:
strategic, tactical, and operational. Strategic decisions involve defining both number
and types of surgeries to be performed, and hence affect the OR function in the long
term. The tactical level usually involves the construction of a cyclic schedule, which
assigns time blocks to surgeons or surgeon groups. The final, operational level does
not influence the number and type of performed procedures, but deals mostly with
daily staffing and surgery scheduling decisions. The three hierarchical levels give
the OR planning problem structure. Nonetheless, in our literature review we chose
not to use the three hierarchical levels but rather to define descriptive fields. The
justification for our decision can be found in Sect. 2. Other reviews, in which OR
management is covered as a part of global healthcare services, can be found in [21,
124, 135, 165].

We searched the databases Pubmed and Web of Knowledge1 for relevant
manuscripts, which are written in English and appeared in 2000 or afterwards.
Search phrases included combinations of the following words: operating, surgery,
case, room, theatre(er), scheduling, planning, and sequencing. We searched in both
titles and abstracts and in addition checked the complete reference list of any found
article. As the search process happened in an unbiased way, we believe to have
arrived at a set of articles, which objectively represents most of the articles in the
field. At the end of the search procedure, a set of 181 articles was identified of
which 136 [2, 3, 5–16, 18–20, 22–25, 27, 28, 33–41, 43, 45, 46, 48–62, 64, 65,
67–84, 86–94, 96–100, 105–111, 113–115, 117–123, 126–132, 136–148, 150–157,
161–164, 166–168] were found to be technically oriented. We define an article as
“technical” if it contains an algorithmic description of a method directly related
to patient scheduling. Some articles missing this algorithmic component instead
provide managerial insights. Those types of articles are classified as “managerial”
and excluded from the classification process itself. However, these are mentioned in
the text where they seem appropriate. The quantitative descriptions provided in later
sections, which try to give insights into the dynamics of the trends followed by the
research community, are exclusively based on the technical contributions. The distri-
bution of included articles according to their year of publication is shown in Fig. 5.1.

The structure we use is meant to balance between simplicity and expressiveness.
We provide a simplified, but in our belief for the majority of the readers, sufficiently
accurate way to identify and select articles they are interested in. In the detailed
tables, all researched manuscripts are listed and categorized. Pooling these tables

1Includes: Web of Science, Current Contents Connect, and Inspec.
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Fig. 5.1 The distribution of included articles according to their year of publication. Figures
appearing in the text are based on technical contributions only

over the several fields should enable the reader to reconstruct the content of specific
papers. They furthermore act as a reference tool to obtain the subset of papers that
correspond to a certain characteristic. To search for literature in a more direct way
the database containing the detailed classification of each analyzed article is made
available at www.econ.kuleuven.be/healthcare/review2011 in the form of an Excel
[Microsoft, Redmond, WA] spreadsheet.

2 Organization of the Review

As in [63], many authors differentiate between strategic (long term), tactical
(medium term), and operational (short term) approaches, and situate their planning
or scheduling problem accordingly. With respect to the operational level, a further
distinction can be made between offline (i.e., before schedule execution) and online
(i.e., during schedule execution) approaches. The boundaries between these major
categories can vary considerably for different settings and hence are often perceived
as vague and interrelated [134]. Furthermore, this categorization seems to lack
an adequate level of detail. Other taxonomies, for instance, are structured and
categorized on a specific characteristic of the paper, such as the use of the solution
or evaluation technique. However, when a researcher is interested in finding papers
on OR utilization, a taxonomy based on solution technique does not seem very
helpful. Therefore, we propose a literature review that is structured using descriptive
fields. As in Cardoen et al. [29] each field analyzes the manuscripts from a different
perspective, which can be either problem or technically oriented. In particular, we
distinguish between six fields:

www.econ.kuleuven.be/healthcare/review2011
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• Patient characteristics (Sect. 3): reviewing the literature according to the elective
(inpatient or outpatient) or nonelective (urgency or emergency) status of the
patient.

• Performance measures (Sect. 4): discussion of the performance criteria such as
utilization, waiting time, preferences, throughput, financial value, makespan, and
patient deferral.

• Decision delineation (Sect. 5): indicating what type of decision has to be made
(date, time, room, or capacity) and whether this decision applies to a medical
discipline, a surgeon, or a patient (type).

• Uncertainty (Sect. 6): indicating to what extent researchers incorporate arrival or
duration uncertainty (stochastic versus deterministic approaches).

• Research methodology (Sect. 7): providing information on the type of analysis
that is performed and the solution or evaluation technique that is applied.

• Applicability of research (Sect. 8): information on the testing (data) of research
and its implementation in practice.

Each section clarifies the terminology if needed and includes a brief discussion
based on a selection of appropriate manuscripts. Furthermore, a detailed table is
included in which all relevant manuscripts are listed and categorized. Plots are
provided to point out some of the trends followed by the research community.
It should be noted that, if not stated otherwise, the percentages are calculated in
relation to the total amount of technical papers. Also note that some categories are
not interpretable for some methods and even though rare, some articles contain more
than one single method. As a consequence, the sum of mutually exclusive categories
does not necessarily add up to 100%.

3 Patient Characteristics

Two major patient classes are considered in the literature, namely elective patients
and nonelective patients. The former class represents patients for whom the surgery
can be planned in advance, whereas the latter class groups patients for whom a
surgery is unexpected and hence needs to be planned on short notice. A nonelective
surgery is considered an emergency if it has to be performed immediately and an
urgency if it can be postponed for a short time (i.e., days).

As shown in Fig. 5.2 and Table 5.1, the literature on elective patient scheduling
is vast compared to the nonelective counterpart. Although many researchers do
not indicate what type of elective patients they are considering, some distinguish
between inpatients and outpatients. Inpatients refer to hospitalized patients who
have to stay overnight, whereas outpatients typically enter and leave the hospital on
the same day. As pointed out by Medpac [103], in reality an ongoing shift of services
from the inpatient to the outpatient setting is present, which is reflected in a higher
growth rate of the latter. Moreover, according to the MMI, outpatient costs increase
with a yearly value of 10%, of which 90% are attributable to increasing prices
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Fig. 5.2 The majority of contributions relate to the elective patient. Surprising is that, contrary to
what might be expected, the share of outpatient-related articles is not increasing. (As some articles
deal with both elective and nonelective patients, the sum of the two will add up to a value higher
than 100%.)

of existing and more expensive emerging services [104]. Despite the increasing
importance of outpatient care in general, the share of outpatient-related academic
articles as shown in Fig. 5.2 remains constant in time.

Table 5.1 It is not always specified what type of patients is considered and, especially for the
elective patient case, not always clear whether an inpatient or outpatient setting is used

Elective
Inpatient [2, 8, 13, 14, 16, 23, 25, 36, 48, 62, 67, 72, 74, 84, 94, 108, 109, 118, 123,

136, 137, 139, 140, 143, 144, 148, 154, 156, 167]
Outpatient [8, 15, 23, 25, 27, 28, 40, 43, 46, 48, 52, 61, 67, 74–76, 84, 108, 109, 123,

126, 129, 139, 140, 148, 154, 157, 167]
Not specified [3, 5–7, 9, 11, 22, 24, 34, 35, 37–39, 45, 49, 50, 54–60, 65, 68–71, 73, 77,

80–83, 86–92, 96, 99, 100, 105–107, 111, 113–115, 117, 119–122, 127,
128, 130, 132, 138, 141, 142, 145, 146, 150–153, 155, 161–164, 166, 168]

Nonelective
Urgent [22, 54, 65, 67, 96, 109, 110, 123, 168]
Emergent [9, 25, 60, 67, 71, 72, 82, 87–90, 92, 100, 106, 108, 113, 122, 123, 139, 141,

142, 150, 154, 163, 167]
Not specified [83, 84, 114, 151, 162]

Scientific contributions on outpatients often (22 out of 37 articles) investigate
ORs in an integrated way, i.e., a preoperative or postoperative unit is taken into
account. For example, Huschka et al. [76] use both an intake and a recovery area
as part of a simulation model of an outpatient procedure center. Several daily
scheduling and sequencing heuristics are applied and tested on their impact on
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patient waiting time and the amount of OR overtime. The authors found that defining
the order of surgeries has less influence on patient waiting time and OR overtime
than the arrival time schedules. Additionally, the importance of a proper daily
surgery mix is stressed.

Other methods focus on assigning patients to days and do not define the exact
procedure starting times. Lamiri et al. [88] consider several stochastic optimization
methods to plan elective surgeries in case OR capacity is shared by both elective
and emergency patients and present a solution method combining Monte Carlo
sampling and mixed integer programming. Several heuristics were also tested, from
which the most efficient one proved to be tabu search. In their problem setting, it
is surprising that the quality of heuristic solutions degrades as the variability on the
amount of emergency arrivals decreases, i.e., the stochastic problem is easier than
the deterministic one. Planning for stochastic emergency arrivals poses a problem,
because it leaves an uncertain amount of capacity left for elective patients. Ferrand
et al. [60] investigate whether eliminating this source of uncertainty by channeling
emergency arrivals to dedicated emergency ORs is beneficial. This requires however
that a constant number of ORs be reserved for emergencies and therefore leaves
less free capacity for elective patients. Nevertheless, based on their results using a
simulation model, they find elective patients benefit from this, whereas emergency
arrivals have an increased waiting time.

A scenario where a hospital dedicates all of its ORs to emergency services
is the case of a disaster. As a consequence, all elective surgeries are canceled
while resources are redirected to provide quick care to non-electives. This type
of nonelective patient is an urgency, as quick but not necessarily immediate care
is required. Nouaouri et al. [110] sequence a large number of patients resulting
from a disaster, with the objective of maximizing patient throughput. Their approach
identifies patients which cannot be served by the given hospital and therefore have
to be transported to another one.

Zonderland et al. [168] refers to patients who have to be treated within 1–
2 weeks as semi-urgencies and uses queuing theory to analyze the trade-off between
reserving too much OR time for their arrival (which results in unused OR time)
and excessive cancelations of elective surgeries. Additional complexity results
from the fact that canceled elective patients turn into semi-urgent patients, which
consequently need to be served within the following 2 weeks. An insight gained by
the authors is that focusing only on the average behavior of the system can result in
undesired system outcomes, i.e., shortage of capacity, which ultimately leads to the
cancelation of many elective patients.

4 Performance Measures

Different performance measures emphasize different priorities and will favor the
interests of some stakeholders over others. A hospital administrator could, for
example, be interested in achieving high utilization levels and low costs. Medical
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Fig. 5.3 It is increasingly popular to use multiple instead of single performance criteria.
The criteria are not interpretable for all articles, their sum is thus lower than 100%

staff, on the other hand, might care less about cost factors and rather aim to achieve
low overtime. The patient as the client of the hospital might care little about the
above factors and only desires high quality service and short waiting times. Many
authors in the scientific community try to find a compromise between the interests
of different stakeholders and simultaneously enforce several kinds of performance
criteria. As a matter of fact, as shown in Fig. 5.3, a gradually decreasing number of
authors restrict themselves to only one single performance measure.

The major performance measures we distinguish can be found in Table 5.2:
utilization, waiting time, leveling, preference, throughput, financial measures,
makespan, and patient deferral. As shown in Fig. 5.4, patient waiting time is a
frequently used performance measure, which is understandable as one of the major
problems in general healthcare consists of long waiting lists but also extensive waits
on the day of surgery. Wachtel and Dexter [159, 160] investigated increases in
waiting time on the day of surgery, for both surgeon and patient, caused by tardiness
from scheduled start times. They concluded that the total duration of preceding cases
is an important predictor of tardiness, i.e., the tardiness per case grew larger as
the day progressed. If case durations are systematically underestimated, tardiness
results. The estimated amount of underutilized (overutilized) time, which was
to be expected at the end of the workday, caused average tardiness to increase
(decrease). A reduction of tardiness can be achieved by modifying the OR schedule
to incorporate corrections for both lateness of first cases of the day and case duration
bias.

Figure 5.4 shows that patient throughput is rarely used as a performance measure,
and patient or surgeon preferences are increasingly gaining popularity. Preference
most often covers some qualitative aspect, whereas throughput is associated with
volume. Noteworthy is the fact that both in general healthcare [149] and in the
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Table 5.2 The main performance criteria are: utilization, waiting time, leveling, preference (e.g.,
priority scoring), financial (e.g., minimization of surgery costs), makespan (completion time),
patient deferral, and other (e.g., number of required porter teams)

Utilization
Underutilization/undertime

OR [2, 19, 20, 36, 50, 55–59, 68, 73, 78–80, 90, 91, 100, 111, 113,
115, 140, 142, 148, 152, 156, 161, 164, 167, 168]

Ward [156]
ICU [2, 36, 156]
PACU [2, 36]

Overutilization/overtime
OR [2, 11, 22, 25, 33, 36–41, 50, 51, 54–60, 64, 65, 69, 73, 76–80,

87–91, 96, 98, 100, 105, 106, 111, 113, 115, 119, 121–123,
127, 128, 132, 137, 140–142, 145, 148, 150, 151, 156, 161,
163, 164]

Ward [54, 156]
ICU [2, 36, 115, 156]
PACU [2, 27, 28, 36]

General [3, 8, 9, 12, 22, 23, 25, 33, 34, 48, 50, 54, 60, 61, 69, 71, 72, 91,
111, 122, 132, 139, 142, 145, 148, 150, 151, 163]

Waiting time
Patient [3, 9, 25, 33, 36–38, 40, 54, 60, 61, 64, 65, 67, 76, 78, 79, 81, 91,

93, 106, 107, 109, 111, 118, 120–122, 132, 136, 139, 141–144,
148, 150, 154, 157, 163, 167]

Surgeon [11, 37, 38, 91, 157]
Leveling

OR [15, 98, 99, 111]
Ward [13, 14, 16, 68, 94, 130, 140, 153]
PACU [15, 27, 28, 75, 96, 97, 131, 139, 152]
Patient volume [111, 140, 142]

Preference [16, 18, 27, 28, 34, 35, 52, 62, 83, 88, 94, 105–107, 114, 115, 118,
138, 140, 143–146, 155, 162, 166]

Throughput [3, 8, 9, 12, 71, 100, 110, 126, 130, 132, 142, 145, 154]
Financial [11, 18, 24, 39, 43, 45, 46, 48, 49, 65, 84, 93, 100, 108, 138]
Makespan [5–7, 35, 57–59, 73–75, 86, 96, 123, 129, 137, 147]
Patient deferral [22, 25, 36, 54, 71, 72, 81, 82, 92, 120–122, 132, 139, 145, 168]
Other [2, 9, 10, 12, 33, 35, 36, 61, 68, 77, 83, 87, 89, 90, 93, 96, 99, 100,

117, 121, 123, 127, 128, 136, 141, 142, 153, 155]

operations research literature value or quality-based approaches seem to be getting
increasingly important. For example, the preferences of cataract surgery patients of
one surgeon are investigated by Dexter et al. [42]. The surgeon’s patients place a
high value on receiving care on the day chosen by them, at a single site, during
a single visit, and in the morning. Preferences can also be embodied in patient
priorities, i.e., preference to perform surgery first on patients who have a more acute
condition. Priorities are most often defined at the level of a patient group. Testi et al.
[144, 146] define a model where the position of a patient on a waiting list is defined
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Fig. 5.4 Some selected performance criteria. Overtime, despite used slightly less in 2010, it is still
the most frequently used performance measure. From 2008 onward, preference-related measures
seem to become increasingly popular

by a priority scoring algorithm, which considers both patient urgency (progression
of disease, pain or dysfunction and disability) and time spent on the surgical waiting
list. It is easy to see that priority scoring minimizes the total weighted waiting time
of all patients, i.e., using an algorithm where patient priorities are uniform; we will
minimize the average patient waiting time.

Including patient priorities drives OR scheduling in a more patient-oriented
direction. Min and Yih [105] go a step further and explicitly incorporate an
additional payment factor, defined as the cost of overtime. In their model, if many
high priority patients are on a waiting list, ORs will be kept open longer in order
to avoid high postponement costs, i.e., the surgery postponement costs are balanced
versus OR overtime costs. The authors establish that patient prioritization is only
useful if the difference between the cost coefficients associated to different priority
classes is high, as otherwise a similar schedule can be obtained by using average
postponement costs. Additionally, the relative cost ratio between the cost of patient
postponement and OR overtime should not be low, as a low ratio would imply high
overtime costs and therefore prioritization would only marginally affect the surgery
schedule.

Purely financial objectives are rarely used in the literature. In Stanciu and Vargas
[138], protection levels, the amount of OR time reserved in a partitioned fashion
for each individual patient class, are used to determine which patients to accept
and which to postpone during the planning period under study. A patient class is a
combination of the patient reimbursement level and the type of surgery. A patient
class enjoys higher priority if its expected revenue per unit surgery time is higher.
The goal is to maximize expected revenues incurred by the surgical unit. Patients,
given their class, are accepted or postponed to a later date when the protection level
for their class can accommodate them. The central question becomes how many
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requests to accept from low revenue patients, and how much capacity to reserve for
future high revenue patients. Financial considerations are also expressed by Wachtel
and Dexter [158], who argue that if additional OR capacity is expanded, it should be
assigned to those subspecialties that have the greatest contribution margin per OR
hour (revenue minus variable cost), that have the potential for growth, and that have
minimal need for a limited resource such as ICU beds.

Figure 5.4 also reveals the fact that minimizing overtime is a popular perfor-
mance measure. This is understandable as overtime results both in the dissatisfaction
of the surgical staff and high costs for the hospital (as higher wages typically
apply for the time beyond the normal working hours). Reducing overtime is
consequently highly beneficial and often desirable to practitioners. Dexter and
Macario [47] establish that a correction of systematically underestimated lengths
of case durations would not markedly reduce overutilization of ORs. Tancrez
et al. [141] proposed an analytical approach that takes into account both stochastic
operating times and random arrivals of emergency patients. They showed how the
probability of overtime in the OR changes as a function of the total number of
scheduled operations per day. As shown in Table 5.2, we relate underutilization
to undertime and overutilization to overtime, although they do not necessarily
represent the same concept. Utilization actually refers to the workload of a resource,
whereas undertime or overtime includes some timing aspect. Hence, it is possible
to have an underutilized set of ORs, although with overtime in some of the ORs.
In some manuscripts it is unclear which view is applied. Therefore, we group
underutilization with undertime and similarly overutilization with overtime.

Adan et al. [2] formulated an optimization problem that minimizes the deviation
from a targeted utilization level of the OR, the ICU, the medium care unit,
and nursing hours. The deviation is measured as the sum of overutilization and
underutilization. They recommend using stochastic time durations as well as a broad
perspective on supporting resources such as the ICU and the wards. Pandit and
Dexter [116] defined rules to determine whether an OR should be staffed for 8 or
10 h. They concluded that in case the average OR time is less than 8 h 25 min, 8 h
staffing should be planned, while in case the average OR time is over 8 h 50 min,
10 h of staffing is needed. For averages in between, the full analysis of McIntosh
et al. [102] should be performed.

Augusto et al. [7] minimized the sum of the makespan (completion time) of
patients undergoing surgery. Makespan in general defines the time span between
the entrance of the first patient and the finishing time of the last patient. Since
minimizing the makespan often results in a dense schedule, deviations from the plan
can result in complications requiring adjustments to the schedule. An example is
the arrival of an emergency patient to the hospital which results in a dense schedule
with no free ORs available. In a case like this, a likely scenario includes the deferral
of an elective patient, who will have to be reassigned to another surgery slot at
a later point in time. Zonderland et al. [168] used queuing theory to investigate the
trade-off between cancelations of elective surgeries due to semi-urgent surgeries and
unused OR time. They provide a decision support tool, which assists the scheduling
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process of elective and semi-urgent cases. General reasons for patient deferrals in
one specific hospital are discussed by Argo et al. [4].

In addition to emergency patient arrivals, other reasons can cause cancelation
of elective surgeries. For example, a fully occupied PACU would prohibit patients
who have already completed surgery from leaving the OR. A blocked OR will delay
the service of preceding elective surgeries, which as a final measure may have to
be canceled. This situation can be avoided if the OR schedule is constructed in a
way that resource utilization is leveled. Similar approaches may be used for other
resources. For instance, Ma and Demeulemeester [94] maximize the availability of
the number of expected spare beds and investigate bed occupancy levels at wards,
whereas Van Houdenhoven et al. [152] target the ICU.

Some of the articles in the literature used methods that have not been covered in
the previous paragraphs. Does et al. [53] used Six Sigma to decrease the tardiness
of surgeries, which are performed first on a day. Applied to two hospitals in the
Netherlands, substantial savings were achieved and the number of surgeries was
increased by 10% without requiring additional resources. Epstein and Dexter [44]
introduced a method through which analysts can screen for the economic impact
of improving first-case starts. In [2, 77] nursing hours are considered, while [128]
consider the number of open ORs, and [141] the number of disruptions.

5 Decision Delineation

A variety of planning and scheduling decisions are studied in the literature. In
Table 5.3, we provide a matrix that indicates what type of decisions are examined,
such as the assignment of a date (e.g., on Friday, February 25), a time indication
(e.g., at 2 p.m.), an OR (e.g., OR 1, OR of type B), or the allocation of capacity (e.g.,
1 h of OR time). The manuscripts are further categorized according to the decision
level they address, i.e., to whom the particular decisions apply. We distinguish
between the discipline (e.g., pediatrics), the surgeon, and the patient level. Figure 5.5
shows that a large part of the literature aims at the patient level, whereas the
discipline as well as the surgeon level receives less attention.

The discipline level unites contributions in which decisions are taken for a medi-
cal specialty or department as a whole. This frequently involves the construction of
a cyclic timetable, which aims at minimizing the underallocation of a specialties’
OR time with respect to its predetermined target time. On a lower level, the target is
a surgeon group or a single surgeon. In Denton et al. [39], surgeries consecutively
carried out by one surgeon define a surgery block, which are subsequently assigned
to ORs. The problem is formulated as a stochastic optimization model, which
balances the cost of opening an OR with the cost of overtime.

On the patient level, the decision variables are formulated on the individual
patient or patient type. Fei et al. [58] describe a two stage approach, where in the
first stage patients are assigned to days and rooms, and the exact daily sequence of
surgeries (timing aspect) is set in the second stage. This is a common way of patient
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Fig. 5.5 In the literature, most decision problems relate to the patient level. A typical problem
setting, for example, consists of finding the optimal patient to day/OR assignment
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Fig. 5.6 Solution approaches related to the assignment of dates and rooms are increasingly
popular in the literature, whereas the time assignment step (e.g., sequencing) is slightly less popular
than it used to be

scheduling, as the assignment of the day and the room of a given surgery is more
easily planned ahead than the exact time, which is often fixed close to the actual
surgery date.

Date, room, time, and capacity questions as shown in Table 5.3 are answered on
all three decision levels. Figure 5.6 shows that the share of manuscripts dealing with
decisions on exact times is decreasing, whereas date, room, or capacity problems
are continuously addressed in the literature. A capacity problem is discussed by
Masursky et al. [101] who forecasted long-term anesthesia and OR workload.
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Fig. 5.7 Every second article deals with the OR planning and scheduling process in an
integrated way

They concluded that forecasting future workload should be based on historical and
current workload-related data and advise against using local population statistics.
The problem of forecasting workload is addressed by Gupta et al. [67] as well.
In their case study, simulation is used to answer capacity-related questions. They
concluded that a one-time infusion of capacity in the hope to clear backlogs will
fail to reduce waiting times permanently, while targeting extra capacity to highest
urgency categories reduces all-over waiting times including those of low urgency
patients. In situations where arrival rates increased, even if only within a specific
urgency class, waiting times increased dramatically and failed to return to the
baseline for a long time.

We added both a row and a column (other) to Table 5.3 to provide entries for
manuscripts that study OR planning and scheduling problems in a way that is not
well captured by the main matrix. Manuscripts that are categorized in this column
or row examine, for instance, capacity considerations with regard to beds [92, 131],
OR to ward [143], and patient to week assignments [168] or different timing aspects,
such as the amount of recovery time spent within the OR [7].

As OR planning and scheduling decisions affect facilities throughout the entire
hospital, it seems to be useful to incorporate facilities, such as the ICU or PACU,
in the decision process in an attempt to improve their combined performance. If
not, we believe that improving the OR schedule may worsen the efficiency of those
related facilities.

Figure 5.7 shows that the ratio of manuscripts between 2005 and 2010, which
deal with the OR in an integrated way, and those which deal with the OR in
an isolated way, are oscillating around the 50% mark. This is surprising as we
would expect to observe an increasing interest in integrated approaches. Whether a
manuscript uses an integrated or an isolated approach can be looked up in Table 5.4.
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Table 5.4 In an integrated OR, supporting facilities such as the ICU, PACU, and wards are
considered

Isolated OR [5, 10, 11, 19, 20, 22, 33, 34, 37–39, 41, 45, 48–52, 55–60, 64, 65, 67–69, 73, 74,
83, 84, 87–91, 98, 99, 105, 107, 110, 111, 113, 114, 117–120, 122, 127, 128,
132, 138, 141, 146–148, 150, 151, 157, 161–164, 166, 168]

Integrated OR [2, 3, 6–9, 12–16, 18, 23–25, 27, 28, 36, 40, 43, 46, 54, 58, 61, 62, 65, 68, 70–73,
75–79, 82, 86, 94, 96, 97, 100, 106, 108, 109, 115, 121, 123, 126, 130, 131,
136, 137, 139, 140, 142, 143, 145, 152–156, 167]

The problem of the congested PACU, which previously had been scarcely
addressed in the literature, received more attention between 2008 and 2010. In
this problem, patients are not allowed to enter the fully occupied PACU and are
therefore forced to start their recovery phase in the OR itself, keeping it blocked.
Iser et al. [77] used a simulation model to tackle the problem and compare overtime
occurring in the OR with PACU-specific performance measures. Augusto et al. [7]
showed the benefit of using a mathematical model to plan ahead the exact amount of
recovery time a patient will spend within the OR. As it is typical for highly utilized
systems, there is a sensitive relationship between overall case volume, capacity (of
the PACU), and the effect on waiting time (to enter the PACU). This relationship is
described in more detail by Schonmeyr et al. [131] using queuing theory.

Besides the PACU, a downstream facility which could affect the function of the
OR is the ICU. Kolker [82] reduced diversion of an ICU to an acceptable level by
defining the maximum number of elective surgeries per day that are allowed to be
scheduled along with the competing demand from emergency arrivals. Litvak et al.
[92] went a step further and tackled the ICU capacity problem in a cooperative
framework. In their model, several hospitals of a region jointly reserve a small
number of beds in order to accommodate emergency patients and achieve an
improved service level for all patients.

6 Uncertainty

One of the major problems associated with the development of accurate OR
planning and scheduling strategies is the uncertainty inherent to surgical services.
Deterministic planning and scheduling approaches ignore uncertainty, whereas
stochastic approaches explicitly try to incorporate it. In Table 5.5, we list the relevant
manuscripts classified according to the type of uncertainty they incorporate.

As shown in Fig. 5.8, stochasticity in the form of uncertain patient arrivals and
surgery durations is frequently used in the OR literature. If we narrow the literature
to recent contributions, which explicitly incorporate nonelective patients; we see
that over 80% of the methods incorporate some sort of uncertainty. Nonelective
patient arrivals are in most cases impossible to predict in advance and additionally
occupy a random amount of OR time, which often leaves OR managers with no
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Table 5.5 Methods frequently take stochasticity into account

Deterministic [6, 7, 10, 14, 15, 18–20, 24, 27, 28, 33–35, 43, 46, 52, 55–59, 64, 68, 70, 73,
75, 77–80, 83, 84, 86, 97, 99, 107, 108, 110, 111, 114, 115, 118, 120, 121,
123, 127, 128, 130, 136, 137, 140, 143–146, 150, 152, 155, 156, 164, 166,
167]

Stochastic
Arrival [3, 9, 13, 16, 22, 23, 25, 36, 48, 49, 54, 62, 65, 67, 71, 72, 74, 81, 82, 87, 89,

90, 93, 94, 100, 105, 109, 117, 121, 122, 126, 132, 138, 139, 141, 142,
145, 150, 154, 162, 163, 167, 168]

Duration [2, 3, 5, 8, 9, 11–13, 16, 22, 25, 36–41, 49, 50, 54, 62, 65, 67–69, 71, 72, 76,
81, 87–89, 91, 93, 94, 96–98, 100, 105, 106, 109, 113, 117, 119, 122, 126,
131, 132, 139, 141, 142, 145, 148, 150, 151, 153, 154, 157, 161–163, 167]

Other [3, 5, 9, 25, 45, 46, 72, 92, 94, 106, 126, 162]

Most common forms are duration and arrival uncertainty
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Fig. 5.8 Uncertainty incorporation. Implicit in the figure is the fact that if duration uncertainty is
accounted for, it is often the case that arrival uncertainty is considered as well

option but to keep a safety margin to accommodate them [141]. In contrast, the
arrival of elective patients contains a lower amount of uncertainty, and as shown in
Fig. 5.9, is frequently considered as deterministic in the literature.

Duration uncertainty is a central element in Denton et al. [39] as well as in Batun
et al. [11]. In Denton et al. [39] decisions include the number of ORs to open and
surgery block to OR assignments, whereas in Batun et al. [11] this is supplemented
by patient sequencing and setting surgeon start times. Both methods aim at
minimizing OR opening and OR overtime costs, where Batun et al. [11] additionally
consider surgeon idle times. The functional difference between their methods lies in
the way surgery to OR assignments are carried out. In Denton et al. [39], the com-
mon practice of assigning a surgery block to a single surgeon (block scheduling) is
followed, whereas Batun et al. [11] consider the scenario of pooled ORs, and there-
fore surgeons are allowed to switch between ORs. OR pooling allows carrying out
surgeries in parallel as the main surgeon only needs to be present during the critical
part of the surgery and can move to the next patient before the close-up of the patient.

A timing aspect, which is different from the actual surgery duration but is
characterized by large variations, is the patient length of stay (LOS) in the PACU,
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Fig. 5.9 Stochasticity in the elective and nonelective patient setting. If uncertainty is considered
in an elective or nonelective patient setting, stochastic aspects are in either case slightly more often
applied to surgery durations than to patient arrival times. (Percentages are calculated in ratio to the
total number of articles dealing with the respective patient type.)

ICU, or ward. The variability of patient time spent in the ward is considered by Ma
and Demeulemeester [94] in which the rate of patient misplacements caused by bed
shortages is minimized.

It should be clear that operations research techniques are able to deal with
stochasticity, especially simulation techniques (included in 66% of the stochastic
literature) and analytical procedures (included in 22% of the stochastic literature)
and that an adequate planning and scheduling approach may lower the negative
impact of uncertainty. Mostly, studies assumed a certain level of variability, based
on analyzing historical data, and use this information as input for models. However,
only limited attention is paid to the reduction of variability within the individual
processes. As an example, consider the estimation of surgery durations. Instead of
the immediate determination of the distribution of a surgery duration, one should
examine whether the population of patients for which the durations are taken into
account is truly homogenous. If not, separating the patient population may result in
a decreased variability even before the planning and scheduling phase is executed.
As the estimation of surgery durations exceeds the scope of this literature review,
we do not elaborate further on this issue.

7 Operations Research Methodology

The literature on OR planning and scheduling exhibits a wide range of methodolo-
gies that fit within the domain of operations research and that combine a certain
type of analysis with some solution or evaluation technique. Table 5.6 provides an
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Table 5.6 Different solution techniques are used in the literature: analytical procedures (e.g.,
queuing theory or new vendor model), mathematical programming, dedicated branch-and-bound,
scenario analysis (or sensitivity analysis), simulation, and heuristics

Analytical procedure [22, 37, 59, 62, 65, 88, 89, 92, 93, 105, 113, 114, 131, 141,
151, 157, 162, 168]

Mathematical programming
Linear programming [7, 37, 43, 46, 84, 108, 119]
Goal programming [2, 18, 36, 115, 140]
Integer programming [19, 20, 27, 33, 52, 110, 130, 142–145, 153]
Mixed integer programming [11, 13, 16, 39, 68, 78–80, 87–89, 106, 107, 118, 120, 121,

123, 128, 167]
Column generation [55, 57–59, 68, 73, 86, 87, 90, 152, 153]
Branch-and-price [14, 28, 56]
Dynamic programming [6, 7, 14, 28, 56, 73, 90, 105, 164]
Other [6, 7, 13, 16, 45, 70, 99, 119]

Dedicated branch-and-bound [27, 39, 111, 156]
Scenario analysis [3, 5, 7–9, 12, 15, 18, 22, 23, 25, 34–41, 43, 46, 48–51, 54, 55,

57–59, 61, 62, 67, 69, 71, 72, 74–76, 78, 81, 82, 84, 86,
91–94, 96–98, 100, 106–109, 111, 113, 115, 117, 118, 121,
122, 126, 128, 130–132, 136, 138, 139, 141, 142, 145, 146,
148, 150–152, 154, 156, 157, 162, 163, 167]

Simulation
Discrete-event [3, 5, 8, 9, 12, 22, 23, 25, 36, 48–50, 54, 58, 60, 61, 67, 71, 72,

74, 76, 77, 81, 82, 92–94, 96–98, 100, 106, 109, 121, 122,
126, 132, 139, 142, 145, 148, 150, 154, 163, 167]

Monte Carlo [22, 40, 46, 69, 87–89, 91, 111, 117]
Heuristics
Improvement heuristics

Simulated annealing [13, 16, 40, 69, 88, 150]
Tabu search [35, 73, 75, 88]
Genetic algorithm [34, 58, 72, 73, 127, 128, 136, 137, 147, 161, 166]
Other [19, 20, 38, 69, 87, 88, 90, 98, 106, 138, 150, 164]

Constructive heuristics [5, 6, 13, 16, 33, 37–39, 49–51, 55, 58, 59, 64, 69, 76, 77, 83,
86–88, 90, 126, 142, 143, 150]

overview of the ways in which OR planning and scheduling problems are analyzed.
The table shows that mathematical programming and heuristics are frequently
applied, generally to patient sequencing or assignment type of problems (e.g.,
patient to surgeon/OR assignment). These types of problems are combinatorial
optimization problems.

In some approaches the impact of specific changes to the problem setting is
examined. We refer to this type of analysis as scenario analysis since multiple
scenarios, settings, or options are compared to each other with respect to the
performance criteria.

As shown in Fig. 5.10, performing scenario analysis is popular, especially in
the discrete-event simulation (DES) modeling literature. Scenario analysis can be
done by plotting the efficiency frontier formed by respective scenarios’ (possibly
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Fig. 5.10 Only selected solution techniques are shown. Most articles include a scenario or
sensitivity analysis

multidimensional) performance scores. This helps to identify and distinguish
between advantageous and disadvantageous scenarios. The performance criteria
most frequently used in the DES modeling literature are patient waiting time and
different kinds of utilization measures such as the overtime related to the OR, ward,
ICU, or PACU.

In Sect. 4, we expressed our surprise about the lack of an increasing use of
integrated approaches. In the DES modeling literature, however, the proportion of
integrated approaches does increase, as OR supporting facilities such as the PACU
or ward are increasingly taken into account. We think that modeling the OR in an
integrated way is an important step towards the construction of more realistic and
applicable models.

An integrated DES model is introduced by Steins et al. [139], in which
preoperative care as well as a PACU are considered. The arrival of case types, the
surgery time, and the LOS in the PACU are represented as probabilistic distributions.
The patients in their model are differentiated according to their urgency status, i.e.,
whether a patient is elective or nonelective. It is true in general that DES modeling
approaches take explicit account of non-electives.

In the literature, the analytical approach is less often encountered than DES
models. Aside from their differences on the methodological side, both DES and
analytical methods are often related to a similar problem setting. In case of a
stochastic environment where capacity questions have to be answered and non-
electives possibly play a role, both of the approaches are useful. Tancrez et al.
[141] define the amount of OR capacity, which is needed to accommodate for
nonelective patients in a Markovian model setting. Simulation is used to show
that the assumptions required to build the Markov chain have a minor influence
on their final analytical results. In their work, the stochasticity in OR capacity is
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the consequence of randomly arriving nonelective patients occupying an uncertain
amount of OR time. Also without nonelective patient arrivals, it is difficult to predict
the required OR capacity on a day, as surgery durations are unknown in advance
and can vary considerably in length. In Olivares et al. [113], the decision-making
process of reserving OR capacity is investigated using the newsvendor model. In the
analytical approach, an estimate is given of the cost placed by the hospital on having
idle capacity and the cost of a schedule overrun. Their results reveal that the hospital
under study places more emphasis on the tangible costs of having idle capacity than
on the costs of a schedule overrun and long working hours for the staff.

As shown in Fig. 5.10, MPs are popular. As opposed to DES and analytical
models, MPs, such as mixed integer programs, deal with combinatorial optimization
problems. In the majority of cases (>60%), the objective function of the optimiza-
tion problem includes under/overtime or under/overutilization. Those performance
criteria are rarely used by themselves but are usually part of a multiple objective
formulation. The use of multiple objectives in MPs, as is the case in general, is
increasingly popular. In 2010, less than 20% of mathematical formulations found
in the literature still restrict themselves to a single objective. Their popularity
can be explained in two ways. First, the development of better solvers makes
it increasingly practical to use them. Second, defining multiple objectives allows
capturing stakeholder preferences more realistically.

Despite the increasing complexity of the objective functions of MPs, there are no
indications that the same would be true in respect to their constraints. In other words,
the variety of constraints used in MPs seems to be constant. The most frequently
used constraints are resource related, which in many cases relate to the OR (under,
regular, or overtime) or medical personnel. Regularly applied constraints, which do
not focus on a given resource, are priority constraints (a high priority patient always
needs to be served before a low priority patient), demand-related constraints (a given
specialty needs to be given a certain amount of OR time), and release related (a
patient belonging to a given category needs to be served before a given deadline).
As in Min and Yih [106], the decisions in most of the mathematical programs apply
to the elective patient. In their work, a stochastic mixed integer programming model
is proposed and solved by a sampling-based approach. The surgery durations, the
LOS, the availability of a downstream facility (ICU), and new demand are assumed
to be random with known distributions.

In some cases mathematical programs are too difficult to solve within a reason-
able time limit and therefore heuristics are proposed. In Fei et al. [59] a column
generation-based heuristic is used to solve the patient scheduling problem. In their
setting, a column corresponds to a feasible plan, in other words, the assignment of
surgical cases to an OR. Roland et al. [128] propose a method, which includes the
assignment of cases to ORs, planning days, and operating time periods. The NP-
hard problem is tackled by means of a genetic algorithm. Similarly to mathematical
programming, also heuristics are in most of the cases used for scheduling tasks
involving the elective patient. Noteworthy is that in 2006, all heuristic methods
found in the literature were time assignment problems whereas in 2010, as a result
of a gradual decrease, this was true for only 20% of the articles as date and room
assignment problems become more popular.
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Fig. 5.11 Even though most data used in the literature are based on real data, this does not mean
that the methods are applied in reality

8 Applicability of Research in Practice

Many researchers provide a thorough testing phase in which they illustrate the appli-
cability of their research. Whether applicability points at computational efficiency
or at showing to what extent objectives may be realized, a substantial amount of
data is desired. From Fig. 5.11 and Table 5.7, we notice that most of this data
is on real healthcare practices. This evolution is noteworthy and results from the
improved hospital information systems from which data can be easily extracted.
Unfortunately, a single testing of procedures or tools based on real data does not
imply that they finally get implemented in practice. Lagergren [85] indicates that the
lack of implementation in the health services seems to have improved considerably.
Figure 5.11 shows, however, that only a very small share of the articles report
on actual implementation. An exception to this is Wachtel and Dexter [157] who
introduce a web site, which is used by the hospital under study to decide on the exact
times patients have to arrive to their surgery appointment. The problem tackled by
the authors arises from the fact that a case is often started earlier than scheduled,
but it cannot be known in advance if it will happen or not. Patient availability
must therefore be balanced against patient waiting times and fasting times. Daily
applicability is entailed by their method. However, there are problems, which have to
be solved on a less frequent basis. An example is the application of a case mix model
that is applied every year, clearly resulting in a different degree of implementation.
A clear comparison of manuscripts on this aspect is hence not straightforward.
Even if the implementation of research can be assumed, authors often provide little
detail about the process of implementation. Therefore, we encourage the provision
of additional information on the behavioral factors that coincide with the actual
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Table 5.7 Both theoretic and real data are frequently used for testing purposes

No testing [65, 161, 162]
Data for testing

Theoretic [6, 7, 13, 14, 37, 49, 51, 54–56, 64, 73, 77–79, 83, 86–91, 94, 96, 98,
110, 111, 120, 123, 136–138, 143, 164]

Based on real data [2, 3, 5, 8–12, 15, 16, 22–25, 27, 28, 33–36, 38–41, 43, 45, 46, 48,
50–52, 57–62, 67–72, 74–76, 80–82, 84, 92, 93, 97, 99, 100,
105–109, 111, 113–115, 117–123, 126–128, 130–132, 139–141,
144–148, 150–157, 163, 166–168]

Implemented and applied [18–20, 60, 70, 128, 141, 144]

implementation. Identifying the causes of failure, or the reasons that lead to success,
may be of great value to the research community [26].

In many contributions a problem is solved and applied to the problem setting
specific to one single hospital, and it is unclear whether or to what extent a
method is applicable to another setting. In order to justify the generality of
their modeling assumptions, Schoenmeyr et al. [131] surveyed several hospitals.
Introducing generalizable methods makes it easier to spread and implement good
working operations research practices to more than one hospital.

Only limited research has been done to study which planning and scheduling
expertise is currently in use in hospitals. Using a survey, Sieber and Leibundgut
[133] reported that the state of OR management in Switzerland is far from excellent.
A similar more recent exercise for Flemish (Belgium) hospitals is described in
Cardoen et al. [30]. It seems contradictory that so little research is effectively applied
in a domain as practical as OR planning and scheduling.

9 Opportunities for Future Research

Our review suggests that methods introduced in the literature are rarely implemented
at hospitals and, if implemented, details usually remain unpublished. Both the
problems of low success rates of implementations and the lack of reports could
be mitigated by actively involving surgeons, head nurses, and IT personnel as
coauthors. In order to avoid developing scheduling software that is only specified
to the needs of one hospital, it might be wise that projects cover several hospitals.
Including more than one hospital in a study provides, besides generalizability, also
other opportunities: resource pooling on the level of emergency ORs, anesthesia
rooms, equipment, or even nursing staff can lead to an integrated approach, which
profits all participating hospitals. Integration is also an important concept within
the hospital itself. Considering its importance, it appears there is an opportunity to
study the role of supporting facilities such as the anesthesia department, PACU, ICU,
and/or wards in an integrated way with the OR. Equally important as integrality
is the incorporation of uncertainty. First and most prominently, uncertainty is
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accounted for in respect to patient surgery times, which are unknown until surgeries
are actually realized. Second, it is unknown whether the operating room will be
available at the planned surgery start as an emergency could occupy it. Third, while
booking a surgery into a certain slot, it is unknown whether the slot might be needed
to allocate a future more urgent patient. Even though we see that uncertainty is
frequently incorporated, the question arises whether it should be a prerequisite for an
algorithm to take aspects of uncertainty into account, i.e., is a strictly deterministic
scheduling approach able to provide the robustness required in reality? These and
other open questions present many opportunities for future research related to OR
planning and scheduling.

10 Conclusion

In this chapter we have studied and described recent trends in the field of OR
planning and scheduling. Based on the data, we found that most attention is given
to elective patients, and even though often not stated explicitly, it is in many cases
implied to be an inpatient setting. Less frequently occurring in the literature are
methods which consider outpatients. This is surprising as outpatient care is gaining
in importance and therefore we would expect to observe an increasing amount of
literature dealing in this area. We also observed a gradual shift from determining
the exact time of a surgery to problems related to date and/or room assignments.
With respect to the performance measures considered, we found that overtime is the
most popular measure and that preference-related criteria are gaining popularity.
Noteworthy is the fact that preferences are increasingly used in multi-criteria
settings. Mathematical programming, DES, and heuristics are the techniques most
frequently used. It is also true that the majority of articles present results based on
real data. However, it is important to note that this does not imply that the methods
are applied in practice.
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Chapter 6
The Modeling, Analysis, and Management
of Intensive Care Units

Theologos Bountourelis, M. Yasin Ulukus, Jeffrey P. Kharoufeh,
and Spencer G. Nabors

1 Introduction

An intensive care unit (ICU) is a limited-capacity, resource-intensive unit in a
healthcare facility designed to provide continuously monitored, intensive care and
temporary support to critically ill patients with a broad range of health conditions.
Some of these conditions include (but are not limited to) acute or moderate
respiratory failure, chronic respiratory failure, infections or severe infections, sepsis
and severe sepsis infections, renal failure, neurological conditions, and bleeding and
clotting. Patients are typically admitted to the ICU via the emergency department,
postoperatively from various surgical theaters, out of surgical or medical units, or
they are transferred directly from other hospitals. The length of stay in an ICU can
range from a few hours to days or even weeks. When the patient no longer requires
intensive care or intensive monitoring, he/she is typically transferred from the ICU
to a so-called “step-down” unit, which provides less critical care, before being
moved to a regular hospital bed and ultimately being discharged from the hospital.
Although most ICU patients eventually recover, some may die despite receiving the
best possible medical and nursing care.

A very significant proportion of overall hospital operating costs can be attributed
to the ICUs. The average daily cost of ICU care is higher than that of an average non-
monitored unit due to increased staffing, invasive procedures, expensive associated
therapies, and expensive equipment (Milbrandt and Kersten 2008). It has been
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estimated that in the past 15 years, the cost of caring for critically ill patients has
risen to 1% of the total gross domestic product in the USA or 20% of total hospital
costs (Halpern et al. 2004). By 2010 more than one-third (36.2%) of all Medicare
hospitalizations had ICU or critical care unit (CCU) care at some point during the
hospital stay. In a recent 2005 study, Kahn and Angus (2006) noted that more than
half of the increase in total Medicare hospitalizations over the study period was due
to additional ICU hospitalizations. While it is comforting to note that the operating
cost of ICU care has remained fairly stable ($2,616 versus $2,575 for 1994 and
2004, respectively), reimbursement for these costs has not remained stable (Dasta
et al. 2005). Cooper and Linde-Zwirble (2004) have noted that only 83% of costs
were paid for ICU patients as compared to 105% for floor patients (a generic term for
non-ICU patients), generating a $5.8 billion dollar loss to hospitals when ICU care
is required. Ultimately, with a rising proportion of costs and increasing associated
operational losses, hospital administrators must address this shift in healthcare
resource management, as well as the cost impact, of caring for critically ill patients.

While many researchers and practitioners have devised models for analyzing
some area of the hospital (e.g., the emergency department), models for analyzing
and managing ICUs are relatively sparse. This may be due to the fact that ICUs
present unique modeling challenges. First, patients are admitted to the ICU from a
number of disparate sources (via the emergency department (ED), postoperatively
from various surgical theaters, as transfers from surgical or medical units, and
as diversions from other hospitals). Second, a heterogeneous patient population
complicates the task of estimating the length of stay in the ICU. For example,
dramatic differences can be seen between medical and surgical patients or coronary
care and sepsis patients. Moreover, the evolution of physiological indicators of
health can vary dramatically between patients experiencing the same illness. Third,
daily operations within the ICU are typically driven by a number of internal factors
including clinical practices and policies, staff scheduling, bed availability, and the
persistent influx of new critical patients. Finally, because ICUs ultimately discharge
their patients to inpatient units that offer varying levels of care, the status of those
units (e.g., staffing levels, bed availability, resource availability) directly affects bed
occupancy rates and admission and discharge decisions within the ICU.

It is vital to gain an understanding of day-to-day ICU operations in order to iden-
tify opportunities for improvement and to quantify potential gains by either altering
the existing configuration of the ICU or by examining the policies and procedures
that dictate admission and discharge decisions in the face of uncertain demand and
constrained resources. Ideally, models of ICUs should incorporate the concepts of
patient acuity, heterogeneous patient populations, interactions with other units in
the hospital, unit staffing, and patient flow within constrained systems. By uniting
the expertise of operations researchers and medical practitioners, opportunities to
realize significant improvements in the management and operation of ICUs now
abound. The main objective of this chapter is to highlight significant contributions
toward that end and to describe a specific case study related to ICU modeling
currently being undertaken by the authors.
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The remainder of the chapter is organized as follows: Sect. 2 summarizes
and expounds upon three of the most challenging issues related to modeling and
analyzing ICU operations. Section 3 provides a brief overview of the most important
indicators of ICU performance. Next, Sect. 4 surveys the literature related to the
modeling and analysis of healthcare facilities with a particular emphasis on studies
most relevant to ICUs. Finally, in Sect. 5, we describe an ongoing project related to
ICU operations at a major healthcare facility in Pittsburgh, Pennsylvania.

2 ICU Issues and Challenges

In Sect. 1 it was argued that ICUs are unique among hospital units in that all of
the patients admitted to the ICU are critically ill and, therefore, require specialized
care and resources. In this section, we more fully elucidate the factors that make
modeling, analyzing, and managing ICUs challenging.

Patient Mix. Some hospitals utilize ICUs that are dedicated to specific patient
types. For example, a single hospital might possess a medical ICU as well as a
surgical ICU that only handles surgery patients. Smaller hospitals may have only
a single ICU that handles all patient types and illnesses so that prioritization of
patients is a critical issue. Irrespective of the configuration, all ICUs have only
a finite (and relatively small) number of beds. As noted in Sect. 1, several types
of illnesses can send a patient to the ICU, and depending on the type and acuity
of the illness, the regimen prescribed to the patient, and physiological differences
between patients, it may be difficult to model a “typical” ICU patient’s flow through
the system. Even patients suffering from the same illness can have vastly different
experiences in the ICU. This inherent heterogeneity makes it difficult to assess an
“average” patient’s length of stay (LOS) or the overall impact on other units of the
hospital.

Demand for an ICU bed can arrive from the emergency department, post-
operatively (from surgical theaters), out of surgical or medical units, or from
other hospitals (in the form of diversions). Demand generated by the emergency
department, inpatient, non-monitored units, or from other hospitals is unscheduled
and typically very critical; a delay of only a few hours can have a disproportionately
negative effect on the patient’s future health status. On the other hand, a surgical
patient is typically a scheduled bed request, and the patient often resides in a post-
surgery recovery room where he/she receives the appropriate level of care until an
ICU bed is available. A delay on such a patient’s admission to the ICU might have
only a limited impact on the patient’s future health status.

Patient Blocking. As the most resource-intensive unit in a healthcare facility,
the ICU cannot (and should not) be analyzed in isolation from other upstream or
downstream inpatient units and hospital departments (e.g., non-monitored units,
the emergency department). Although their cases are unique, the vast majority of
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ICU patients follow a similar flow through the system. As soon as the patient is
medically able to leave the ICU, a request is made by the attending physician
to transfer the patient to a telemetry or step-down bed which provides monitored
care that is less intensive than the care received in the ICU. From the step-down
bed, the patient is usually transferred to a regular hospital bed from which he/she
is ultimately discharged from the hospital (assuming recovery). However, patients
may have trouble getting into, and out of, the ICU due to the blocking phenomenon.
Blocking in ICUs can occur in the following ways. First, an arriving patient who
requires intensive care may be denied admission to the ICU due to bed unavailability
(i.e., all ICU beds are occupied, or the unoccupied beds may not be suitable for
the new patient). In such cases, an existing ICU patient may be (prematurely)
discharged to a step-down unit to accommodate the new patient; otherwise, the
arriving patient must be diverted to another hospital, thereby delaying the critical
care they need. The second type of blocking is experienced by existing ICU patients
who cannot be transferred out of the ICU due to unavailability of a step-down or
hospital bed. That is, patients who are medically able to leave the ICU might be
forced to stay there until a downstream bed is available. Obviously, this type of
blocking serves to exacerbate the former type as fewer ICU patients can be admitted.
It is important to note that patients who are prematurely transferred out of the ICU
may be forced to reenter it if their medical condition worsens at any downstream
stage. (Such patients are often referred to as bounce backs.) Blocking also stems
from a shortfall of external nursing care facilities or due to institutional rules and
procedures. For example, if transfers to external facilities are prohibited during the
weekend, step-down and hospital beds can all become occupied over the weekend,
thereby blocking the transfer of ICU patients.

In extreme cases, patients must receive ICU-level care in non-monitored beds.
For instance, equipment may need to be moved to the emergency department to
administer ICU-level care and stabilize the patient until an ICU bed is available.
Blocking has devastatingly negative effects on the operation and flow of the ICU
and other hospital units. For example, unavailability of an ICU bed may cause
surgery cancelations for procedures that require post-surgery intensive care. For
these reasons, performance measures related to blocking have been proposed in
order to assess its likelihood and overall cost impact. We will further discuss ICU
patient blocking in Sects. 3 and 5.

Clinical Practices and Procedures. Modeling an ICU (and its interacting units) is
complicated by clinical practices and procedures that are often employed to control
the flow of patients into and out of the ICU. These practices can be viewed as
“rules of thumb” for daily ICU operations, and they can vary dramatically across
hospitals or across doctors within the same hospital. For example, a medical ICU
(MICU) might accept post-surgery patients if no beds are available in the surgical
ICU (SICU). As noted earlier, some ICUs may discharge patients early if the ICU
occupancy reaches its peak (Diwas and Terwiesch 2012). Patient demographics,
proximity to other clinical facilities, and the level of outpatient care available may
also affect the length of stay and the patient mix. For instance, it was reported
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in Friedman and Steiner (1999) that the length of stay in the ICU is shorter for
uninsured patients than for other privately insured patients. So a common set of
rules for transferring or discharging patients does not exist, thereby complicating
the task of modeling these important dynamics. The operations research modeler
must decide which rules to include and which to exclude, for each rule added
to the model can potentially add one or more control parameters that need to
be estimated from data. For example, it is clear that not all surgery patients are
diverted to the MICU following surgery, but the exact proportion that is diverted
may be difficult to estimate, even for clinical staff members who are involved in
day-to-day decision making. Out of necessity, these parameters are usually assigned
initial values based on an educated guess and are subsequently updated when
the (simulation or analytical) model is calibrated. But if the number of unknown
parameters is significant, the process of calibrating the model can be nontrivial and
very time consuming. We elaborate upon these challenges further in Sect. 5.

Section 3 provides a succinct discussion of important ICU measures of perfor-
mance. Because our main interest lies in the operational aspects of the ICU, we
primarily focus on those issues as opposed to medical outcomes.

3 Performance Measures of ICUs

Historically, research related to measures of ICU performance has been focused on
one of two areas: (1) medical/clinical outcomes or (2) administrative/institutional
outcomes. For the former, many investigators have pursued objective measures of
clinical outcomes such as morbidity, mortality rates, or quality-of-life indicators. For
the latter, investigators have typically focused on operational aspects of the ICU with
an emphasis on capacity planning, length of stay, bed occupancy rate, and overall
daily operating costs. While there has been some overlap between these two broad
categories, when considering secondary outcomes or studies focused on volume
status or regionalization (see Angus and Black 2004; Harrison et al. 2004; Marcin
and Romano 2004; Tarnow-Mordi et al. 2000), most in-depth reviews or original
research have independently focused on either clinical or administrative outcomes,
but not both. Of course, some clinical outcomes are closely tied to administrative
outcomes. For example, Iapichino et al. (2004) have shown empirically that higher
ICU occupancy rates lead to higher mortality rates. For an extensive survey and in-
depth discussion of measures of ICU performance, the interested reader is referred
to Garland (2005).

While clinical and administrative outcomes may differ, most hospitals share a
common set of goals for the ICU. These include (but are not limited to) a reduction
in the patient’s length of stay, a reduction in the mortality rate, a reduction in the rate
of ICU readmissions, a reduction in errors or adverse events, and an overall increase
in the quality of care received by patients. However, these improvements do not
come without significant cost, so decision makers are often faced with multiple
conflicting objectives of improving patient care and doing so in a cost-effective
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manner. Many of the performance-based goals are closely related to the operational
aspects of the ICU, which is the focus of this chapter. Therefore, we now elucidate
some of the critical operational measures of performance of ICUs:

1. Bed occupancy rate. This measure is commonly referred to as bed utilization
and can be interpreted as the long-run fraction of ICU beds that are occupied. As
noted by Green (2006), many hospitals target 85% bed utilization to justify their
existing capacity levels or to make the case for capacity expansion. However,
such a high utilization rate may lead to undesirable outcomes, such as excessive
patient blocking.

2. Length of stay. The length of stay (LOS) in the ICU is usually measured by the
number of hours or days spent there by the patient. (In Sect. 5, we will argue
that the LOS should be viewed as the sum of two separate durations: the medical
length of stay plus the time spent waiting for a transfer.) It is desirable to decrease
the LOS in the ICU in order to reduce daily costs; however, a premature transfer
can lead to detrimental health outcomes and potentially greater congestion (see
Garland 2005).

3. Blocking probability. This measure represents the long-run likelihood that a
patient arriving to the ICU is unable to secure a bed or that an existing ICU
patient who is medically able to move cannot move due to unavailability of
a downstream bed. Assessing this probability is a nontrivial task requiring
significant and detailed data collection related to the timing of transfer requests
and actual patient movements. Ideally, only a very small fraction of patients will
experience blocking (of any kind); however, very few studies (cf. van Dijk and
Kortbeek 2009; Dobson et al. 2010) have explored this critical measure of ICU
performance in depth.

4. ICU readmission rate. This readmission rate is the long-run fraction of patients
who are transferred out of the ICU and subsequently readmitted due to a
deterioration of their health status either in a step-down or regular hospital bed or
after being discharged from the hospital. Regarding this measure, Garland (2005)
states the following:

Its potential value derives from observations that readmitted patients have higher
mortality rates and longer lengths of stay. However, for it to be a meaningful surrogate
requires the following: (1) a detrimental outcome occurred after the patient left that
was due to a problem present prior to the original ICU discharge; and (2) it would not
have occurred if the patient had remained longer in the ICU. There are no data that
have demonstrated this. The optimal ICU readmission rate is unknown, and a low rate
might actually indicate that, on average, patients are inappropriately remaining in the
ICU longer than necessary, increasing the costs of care and their exposure to virulent
pathogens.

While it is indeed difficult to determine if a discharged patient would have de-
rived benefit from a longer ICU stay, readmissions have a significant operational
impact on the ICU as they impose additional demand on an already constrained
system. Furthermore, the presence of readmissions requires that some thought
be given to a patient admission priority scheme that balances the severity of
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the patients’ conditions and timely delivery of critical care. For these reasons,
we contend that the readmission rate can be a significant factor that should be
considered when assessing ICU performance.

5. Total average delay. A patient is said to be delayed if they are medically able to
be moved from their current unit to another (less intensive) unit but they must
wait for the availability of a downstream bed. Typically, the delay can range
from a few minutes to several hours or even days. It is an aggregate measure of
overall system performance and can be used to estimate the effect of blocking on
operating costs.

The complex task of collecting and analyzing data related to ICU performance
measures is made easier when clinical information systems are available. Although
some clinical information systems focus on important aspects such as computerized
physician order entry and individual patient tracking information, few gather clinical
information needed to provide a panoramic view of ICU performance and detailed
medical or administrative outcomes (e.g., mortality rate, length of stay, severity of
illness, clinical scores, nosocomial infections, adverse events, and adherence to good
clinical practices). Those that do exist can be used for the daily care of patients while
providing valuable data for in-depth analysis of ICU performance. As an example,
the Epimed Monitor system is a continuous patient monitor system that tracks and
stores patient data, usually vital signs and location data, for large-scale statistical
analysis and research applications.

4 Methods for Modeling and Analyzing ICUs

In this section, we review the techniques predominantly used to model, analyze,
and manage ICUs. Because the evolution of the ICU is both temporally dynamic
and stochastic, it has most often been analyzed via stochastic discrete-event sim-
ulation models. However, some analytical queueing models have recently emerged
that exemplify the value of simple mathematical expressions for assessing the salient
features of ICU performance. Naturally, the models reviewed here consider different
aspects of system performance. We begin with a review of relevant discrete-event
simulation models.

Simulation Modeling of ICUs. Discrete-event simulation models of healthcare
systems have existed for several decades and have been used for a variety of
purposes (e.g., estimating and optimizing patient flow, estimating bed utilization,
facility design/redesign, inpatient and outpatient scheduling, capacity planning,
and staffing). One appealing aspect of a discrete-event simulation model is its
ability to capture complex dynamics between interacting components of the health-
care system and assess important performance parameters under a variety of
operational scenarios or design alternatives while considering resource constraints.
Additionally, the level of detail (or fidelity) of a simulation model is at the discretion
of the modeler.
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Many different units of a healthcare facility can benefit from insights obtained
through discrete-event simulation models; however, the ICU is an especially ideal
candidate for simulation modeling for at least the following reasons: First, the ICU
has a finite number of resources (namely, beds, staff, and equipment) that can be
modeled fairly easily within most commercial simulation packages. It can also
consider the impact of other hospital departments on the ICU. Second, a simulation
model allows for a heterogeneous patient population originating from a variety of
sources. Finally, it can be used as a tool to evaluate new unit design alternatives, unit
redesign alternatives, staffing policies, and ICU admission, bumping, and discharge
policies. A simulation model can also provide real-time animation of important,
dynamic performance parameters such as the number of occupied beds, patient
delay time, and the number of blocked patients waiting to enter or exit the ICU.

Several steps are involved in creating, executing, and using a discrete-event
simulation model. An excellent summary of the basic procedure can be found in
the text by Law and Kelton (2000). These steps are summarized as follows:

1. Identifying and formulating the problem
2. Collecting data to build a preliminary model
3. Assembling the appropriate model inputs using the collected data
4. Verifying the computer simulation model
5. Designing an experiment to evaluate the performance measure(s) of interest
6. Executing the replications of the simulation model
7. Statistically analyzing and interpreting the results of the experiments

This sequential procedure is well known in the operations research and industrial
engineering communities where simulation models have played a pivotal role in the
design, modeling, and analysis of manufacturing systems. However, the modeling
of healthcare systems in general, and of ICUs in particular, presents additional
challenges not faced in other arenas. As noted by Harper and Pitt (2004), healthcare
projects vary in nature, and the modeler must consider the individual needs of
the client organization. Additionally, the modeler must consider the complexity,
interactivity, and resolution of the model; its generality, and the political context
of the client organization, as well as the availability and quality of relevant data.
Lowery et al. (1994) also note that:

Patients are not parts, physicians and nurses are not machines, the clinical environment is
not just another job shop, and providing care is not manufacturing health. The healthcare
environment is far more complex than that.

The contemporary literature devoted to healthcare systems modeling discusses
a number of challenges related to healthcare simulation that are pertinent to
simulation of ICUs. Those challenges range from modeling the patient mix (patient
heterogeneity), modeling LOS and its distribution, model calibration and validation,
interpretation of simulation results, and dissemination of those results to the
clinical community (cf. Carter and Blake 2005; Davies and Davies 1995; Harper
2002; Lowery 1996; Seymour 2001; Standridge 1999). Additionally, a number of
review articles or surveys discussing the application of simulation methodology
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to healthcare delivery systems have been contributed; a representative sampling of
these includes Brailsford et al. (2009); Fone et al. (2003); Jun et al. (1999); Mustafee
et al. (2010); Jacobson et al. (2006). We especially draw the reader’s attention to
the cogent survey due to Jacobson et al. (2006). That work reviews a number of
specific models and applications while providing an extensive bibliography. The
bulk of contributions can be partitioned into two main categories: (1) estimating
and optimizing patient flow and (2) reducing operating costs while ensuring a high
level of patient care. We next review a few articles in each of these areas, particularly
those most pertinent to ICU operations.

The first category is driven by the need of many healthcare providers to
streamline patient flow in a way that minimizes delays and maximizes patient
satisfaction. Hence, a significant part of the literature adopts certain patient flow
characteristics as an objective and as a starting point for their analysis. In this
context, they examine necessary organizational and resource changes as well as
additional interventions needed to optimize patient admission rates and delay
times. Cochran and Bharti (2006) presented the methodology underpinning the
compilation and validation of a large-scale simulation model that includes the ICU
and telemetry units. (A telemetry unit is one that is equipped with the capacity for
continuous cardiac monitoring.) The validation was done using real hospital data
for an existing facility. The model was subsequently used to solve a stochastic bed-
balancing problem that leads to balanced bed utilization rates that minimize the
blocking of beds across different units. Lowery (1992) presented a simulation model
of the surgical suite and critical care areas of a large hospital. The model simulates
the flow of patients through the ICUs, including the operating room, postanesthesia
recovery unit, surgical ICU, intermediate surgical care unit, coronary care unit,
intermediate coronary care unit, telemetry unit, medical ICU, and the ventilator unit.
The primary objective was to assess the impact of critical care bed configurations
on performance measures such as bed utilization, the number of patients denied
admission, bumped, or accommodated on alternative units. A bumped patient is
one whose current, or intended, location is taken for use by another presumably
more critical patient. Harper and Shahani (2002) demonstrated the importance of
modeling the various types of patient flows when simulating bed occupancies and
patient rejection rates. They showed that the explicit modeling of patient mix results
in higher-fidelity models that are able to capture the bed occupancy fluctuations
over time.

The second broad category is motivated by the pressing need to simultaneously
reduce hospital operating costs while maintaining (or exceeding) the quality of
healthcare provided to patients. While some of the existing literature includes
simulation models to inform resource allocation decisions in budget-constrained
environments (see Jacobson et al. 2006 for a good sampling), models that consider
the effect of bed and staffing allocations have received the most attention. The latter
category of healthcare simulation models is especially relevant to the modeling,
analysis, and management of ICUs.
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Williams (1983) developed a simulation model to select the number of beds
needed to meet the hospital standards of care. The model was calibrated with
real patient data collected over a period of 12 months. The ICU is divided into
a cardiac and a medical subunit. If the destination ICU subunit is full, arriving
patients are transferred to the other, whereas if the ICU is full, the less severely
ill patients are transferred to a regular ward to make room for the new patients.
By varying the number of ICU beds between 7 and 15, the author reports the total
number of admissions, transfers, premature discharges, and empty beds. Based on
the simulation model, the hospital administration chose a configuration of 11 ICU
beds that allowed for a premature discharge rate of 2.7%. A smaller unit increased
this rate significantly, whereas a larger unit increased the ICU operating costs.

In Vassilacopoulos (1985), a simulation model was used to determine the number
of beds required by inpatient units to satisfy several measures of operating efficiency
such as high occupancy rates, immediate admission of emergency patients, and
short patient waiting lists. Ridge et al. (1998) investigated the relationship between
admission rules and rejection rates in a single ICU unit where the patients are
classified as either emergency or nonemergency. Emergency patients are admitted
upon arrival if there is an available ICU bed, and they are diverted to another
ICU otherwise; nonemergency patients are accepted only if the number of free
beds exceeds a minimum threshold. Patients who are denied admission retry as
emergency patients after waiting a random amount of time. Ridge et al. (1998)
considered a simplified version of the model for which an analytical solution
can be derived. They created a simulation model for the simplified version and
estimated the warm-up period. The warm-up period was used to execute the original
simulation model to examine (1) the effect of varying the number of ICU beds, (2)
the effect of the deferral period, (3) the effect of changing the number of beds for
emergency conditions, (4) the typical number of free beds at midnight versus the
day of the week, and (5) the typical free bed probability distribution. Highlighted
is the nonlinear relationship between the number of beds, the occupancy levels,
and the transfer rates. Additionally, they discussed the practice of reserving beds
for emergency patients and how their model can be used as a capacity planning
decision tool.

Harper and Shahani (2002) sought to unveil nonlinear relationships between
bed allocation, bed occupancy rates, and the denied admission rate. The model
was designed to highlight controllable variables that can improve the quality of
patient care and staff working conditions, subject to budget constraints. Costa et al.
(2003) illustrated the danger in using only average values to determine the number
of ICU beds in the face of nonlinearity and system variability. Considered were
the bed occupancy rate, emergency transfers (rejections), and elective deferrals.
Using a simulation model, they examined three patient classes: emergency, elective
(planned), and deferred. Emergency patients are always admitted if there is capacity;
otherwise, they are diverted to another hospital or nursed temporarily at another unit
in the same hospital. Elective or planned patients are usually deferred; however, if
the number of times they are deferred exceeds a threshold value, their priority status
becomes the same as an “emergency” patient. The severity of illness was measured
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by the APACHE II score, a commonly used system for classifying the severity of
disease (cf. Knaus et al. 1985). Costa et al. (2003) then used Classification and Re-
gression Tree (CART) analysis to group patients based on a number of explanatory
variables with respect to a chosen criterion for the classification, such as length of
stay. Consequently, four groups of ICU patients were identified (emergency short
stay, emergency normal stay, elective short stay, and elective normal stay). The
model was validated using real data from the Norfolk and Norwich University NHS
Trust ICU. By considering alternative bed configurations, it was shown that using
only average values, the bed requirements can be underestimated. Similarly, Shahani
et al. (2008) presented a simulation model for a single critical care unit (CCU).
Emphasis was given to the modeling of the patient mix using the CART method
to obtain LOS distributions for statistically different patient categories. The model
was used to implement changes in bed numbers, patient LOS, discharge policies,
and the transfer of long-stay patients out of the CCU in order to explore their effects
on bed occupancy and refused admissions. Lowery (1993) constructed and validated
a critical care simulation model by examining the occupancy rates and the number
of refused admissions to the unit due to lack of available beds.

It is a commonly held belief within the academic and clinical communities
that healthcare simulation models are not generally followed up with a similar
volume of implementation evidence (Taylor et al. 2009). Consequently, the true
value of simulation modeling may not be fully understood or appreciated by the
clinical community (Forsberg et al. 2011). This perceived disconnect between
modeling and implementation has been discussed by a few researchers. Some have
suggested practical ways to make simulation modeling an integral part of the clinical
decision making process. For instance, Lowery et al. (1994) discussed the intrinsic
barriers that exist in healthcare that make the application of simulation models more
difficult than in traditional modeling settings, such as manufacturing systems. They
provided remarks made by simulation and management professionals that highlight
the involvement of clinical personnel in the model development process and the
critical importance of managerial support when contemplating the implementation
of complex, highly technical simulation tools. In Lowery (1996), the author high-
lighted various factors that affect the application of simulation models ranging from
model complexity and input distributions to interpretation of findings. Eldabi (2009)
discussed the difficult (and often contradictory) nature of healthcare problems and
proposes a methodology towards successful implementation.

The manifold benefits of discrete-event simulation models for analyzing and
managing ICUs are not limited to the statistical results that stem from these models
or decisions that might arise from their analysis. As noted by Lowery (1996), the
entire model development process forces the modeler to document the detailed
operations of the unit in a systematic way while requiring justification for input
modeling assumptions. This structured process is likely to reveal problem areas and
opportunities for improvement, even before the model is created.

In summary, discrete-event simulation models of ICUs can be very effective
for evaluating alternative bed configurations, operating policies, and performance
parameters while incorporating detailed features of specific units. However, they



164 T. Bountourelis et al.

also have some important shortcomings. For example, a great deal of data is required
to initiate a simulation study, validation of the models can be very challenging,
and implementation (execution) of the model might be very time consuming.
Furthermore, implementation of the simulation model might be limited to only a few
select individuals in the organization who are familiar with specialized simulation
software packages or programming languages. Alternatively, analytical queueing
models can be used to provide valuable insights into the salient features of these
complex systems with fewer data requirements, though at a cost of model fidelity.
We next discuss recent developments in analytical ICU queueing models.

Queueing Models of ICUs. In simple terms, a queue is a waiting line. The origin
of the word can be traced to a sixteenth century Latin word cauda, which simply
means “tail.” We all experience queues in daily life, whether waiting at a traffic light,
in line at the grocery store, or waiting to be seen by a doctor in the emergency room.
Queues are formed when the demand for some kind of service exceeds the capacity
to meet that demand. This shortfall in service capacity stems from random variations
in the demand arrival process, as well as the service process. A queueing system can
be defined as any system of flow wherein entities arrive to receive service of some
kind, are processed by the system, and subsequently depart the system (or receive
additional service in another part of the system). The entities that demand service
are often called customers, and the resources that provide service are called servers.
It is important to note that the customers need not be human beings; however, this
term is often used generically to describe the entities that flow through the system.
For example, in a healthcare facility, the customers are typically patients, but they
might instead be requests for data, forms that must be processed, or hospital beds
that must be prepared for the next patient. The servers might (respectively) be the
physicians who care for patients, a computer that processes the form data, and a
member of the nursing staff assigned to turn over the bed. An analytical queueing
model is a mathematical representation of a queueing system, and queueing theory
is that branch of applied probability concerned with the development and analysis
of queueing models that represent stochastic service systems (Chap. 2).

Due to the nature of healthcare operations, queueing analysis can be a powerful
tool to assess system performance and identify areas for improvement in the delivery
of quality healthcare. It is ideal for modeling many units in the healthcare facility
as delays abound in nearly all areas of these systems (e.g., waiting to check in,
waiting to be seen by a doctor, waiting to be transferred out of the ICU, waiting
for resources). Analytical queueing models differ from discrete-event simulation
models in that they require far less data and can be used to develop simple
analytical expressions for important measures of healthcare facility performance
(e.g., average delay experienced by patients, resource utilization levels, and patient
throughput). However, these models also impose much stronger assumptions than
simulation models, some of which might be difficult to justify in practice (e.g.,
time-stationary patient arrival processes and/or steady-state operating conditions).
Despite these restrictions, queueing models are extremely useful for describing the
salient features of a service system, determining appropriate staffing or resource
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levels, and providing analytical expressions that can be used to mathematically
optimize aspects of system performance. They can also be used to determine optimal
policies (e.g., selecting the optimal queueing discipline or order in which queued
customers are served). The primary objective of this subsection is to survey recent
work related to queueing models in healthcare systems with a particular emphasis on
ICUs. For an excellent summary of the use of queueing models in general healthcare
contexts, the reader is referred to Green (2006).

ICUs provide care to critically ill patients, possess a limited number of beds,
accommodate a variety of patient types, and require specialized services and (costly)
resources. Because the number of ICU beds is limited, patients are not always
admitted on a first-come-first-served (FCFS) basis, but rather on priority rules that
consider the severity of the patients’ illnesses, current bed occupancy levels, and
other administrative rules. A queueing model can be very effective as an ICU design
and/or performance analysis tool because it provides insights into two key measures
of ICU performance: (1) patient admission delays or diversions (rejections) and (2)
bed or other resource utilization levels. ICU admission delays (or diversions) can
have potentially devastating outcomes for critically ill patients; a delay of only a few
hours can lead to irreversible health degradation or even loss of life. Furthermore,
admission delays for surgery patients in the ICU can result in downstream costs for
the healthcare facility. Bed utilization has typically been the primary performance
measure for bed capacity planning in ICUs (and other hospital wards) (cf. Green
2002), and bed occupancy rates are strongly correlated with the schedules of ICU
clinical personnel, which comprise a significant portion of overall ICU expenditures.
Both of these measures are prevalent in the models we review here.

Cooper and Corcoran (1974) sought to determine the number of beds required
in a cardiac care unit of a major urban hospital to achieve a 5% patient rejection
rate. The unit consists of two stations: the coronary care unit and the intermediate
care unit. Two types of patients arrive to the coronary care unit, each with its
own length of stay and arrival rate. Once the patient is discharged from the first
unit, he/she is transferred to the intermediate care unit where less intensive care
is provided. Patients are also assumed to die with some probability in each unit.
The problem is considered as a network of loss systems (i.e., a queueing system
with no waiting room) with exponentially distributed patient interarrival and service
times. The rejection probabilities were computed exactly by solving a system of
linear equations. The number of beds needed to achieve a 5% rejection rate in each
of the units was computed for different patient arrival rates. However, the model
was not validated with empirical data. Instead, the authors emphasize the potential
benefits of using operations research techniques for decision making in healthcare
environments.

Kim et al. (1999) analyze the admission and discharge processes of a particular
ICU in a public Hong Kong hospital by first using a computer simulation model
based on real data from the ICU. The authors answer the following questions:
(1) How often will a full-capacity situation arise? (2) How long, on average, will
patients have to wait for admission? and (3) To what extent might any untoward
delays be relieved by additional capacity (more beds)? There are four different
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patient types: (1) ward patients, (2) accident and emergency patients, (3) operation
theater-emergency patients, and (4) operation theater-elective patients. The ICU’s
admission decision takes two factors into consideration: the patient’s “attributes”
and the “state” of the ICU. If admitted, the patient joins a common queue and
waits for service; when their service is completed, they release the system. Arrival
rates, admission fractions, and average LOS for each patient type were estimated
using actual data. Additionally, Kim et al. (1999) use an M/M/c queueing model
to compare the results of the simulation model. The most important part of the
study compares the effects of different arrival streams for elective ICU patients.
Specifically, simulation results revealed that the average number of queued patients,
the maximum number of queued patients, and the average patient queueing time
were all reduced by approximately 67% using a uniform arrival stream as opposed
to a Poisson arrival process. Moreover, the average number of ICU diversions
(rejections) dropped from 49 to 5.15, while the bed utilization rate was 69%,
indicating the sufficiency of the current bed capacity. These observations present
an important managerial insight for ICU units, namely, that a minor adjustment
in the admissions policy can alleviate congestion, thereby obviating the need for
additional bed capacity. Although the simulation model was validated with real data,
a statistical analysis of these data was not provided.

Though not an ICU model, Gorunescu et al. (2002) present a general hospital
bed capacity management tool. They present a technique for optimizing the number
of beds needed to ensure an acceptable loss probability and a way to optimize
the average daily cost, by balancing the trade-off between empty beds and denied
admission rates. The performance measure is the long-run average cost per unit
time. In their framework, patients arrive according to a Poisson process, and their
LOS distribution is approximated by a phase-type (PH) distribution as the length of
stay is highly variable. The parameters of the phase-type distribution are obtain via
likelihood estimation techniques using real data from a large hospital. The proposed
queueing model is the M/PH/c/c loss model where c represents the number of
available hospital beds and the “PH” denotes the fact that the service time (LOS)
follows a PH-distribution. Using this model, they compute the loss probability
(fraction of arrivals that are denied admission), mean number of occupied beds,
mean LOS, and bed utilization by using standard formulae. Additionally, they
consider two optimization models. The objective of the first is to minimize the
number of required beds, subject to a loss probability constraint. This problem can
be solved using the inverse of the Erlang loss formula (cf. Ross 1996) with respect
to c (the number of beds). The second model seeks to minimize the average cost
per unit time or maximize the average reward per unit time. The problem is cast
as an inventory problem wherein a “holding cost” h (h > 0) is incurred per day
for each empty bed, and a fixed penalty cost π (π > 0) is incurred for each patient
that is turned away. It was shown that the optimal number of beds is sensitive to the
cost ratio, π/h. The model was subsequently applied to the geriatric department of a
London hospital, and it revealed that 150 beds were needed to achieve a 5% rejection
rate. In fact, for cost ratios 10,20,30, and 40, the optimal number of beds ranged
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from 140 to 160. The authors concluded that the M/PH/c/c model is appropriate
based on bed occupancy data collected in the geriatric department in 2000. One
advantage of this model is that the policy depends only on relative costs as opposed
to absolute costs, which are often very difficult to estimate.

Average bed occupancy rates have been the standard measure behind bed
capacity decision making and planning. Green (2002) examines an alternative
performance measure by considering the availability of beds upon demand, that
is, the probability that an arriving patient finds an empty bed that grants him/her
admission. Bed availability depends on a number of factors, for example, the
hospital unit type, patient type, requested service, and hospital admission policies.
In the context of a queueing model, bed availability can be viewed as the probability
that arriving patient experiences zero delay. Using the classical Erlang delay model
(namely, the M/M/c model), the zero-delay probability can be expressed as a
simple function of only the unit size (the number of beds c) and the bed utilization.
This well-known result is used to determine the number of beds needed to meet
various zero-delay probability targets and bed occupancy rates. Data from a New
York hospital revealed that average bed occupancy levels for various obstetric and
ICU units were below the commonly used standards. However, the queueing model
revealed a different picture; only a small portion of those units have the necessary
bed capacity to meet certain delay standards. For example, for a bed occupancy
rate of 75% and a delay standard of 10%, only 40% of the state hospital obstetric
units had sufficient capacity to achieve those standards. Similarly, for an occupancy
rate of 85% and a delay standard of 10%, approximately 58% of the ICU units had
insufficient capacity to meet the standards. This study illustrates that the average
occupancy rate may be a misleading measure of the quality of patient care. Even if
utilization rates meet commonly accepted standards, they can result in much higher
rejection rates, especially for smaller units.

The stochastic nature of the arrival and service processes at an ICU makes patient
scheduling a difficult task. Shmueli et al. (2003) focus on admission criteria that
maximize a different measure of performance, namely, the expected incremental
number of lives saved annually by operating the ICU. They define the incremental
surviving benefit as the increase in probability of survival that a patient gains by
being treated in the ICU as opposed to a regular hospital ward. It is assumed that
upon arrival to the ICU, a patient’s incremental survival benefit is drawn from
some general distribution. Subsequently, they use the classical Erlang loss system
(M/M/c/c) to obtain tractable steady-state probabilities and derive formulae for
the ICU expected survival rate under three different admission policies: (1) a first-
come-first-served policy (FCFS), (2) an FCFS threshold policy where patients are
admitted if their incremental benefit is greater than a specified threshold, and (3) a
FCFS threshold policy that may also depend on the current number of free beds.
The incremental survival benefit distribution is estimated using real clinical data
from the ICU of the Hebrew University-Hadassah Medical Center. It was concluded
that an optimized FCFS threshold policy can result in a significant increase (18
lives or 17.9% improvement) in the incremental number of lives saved as compared
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to a FCFS policy. A FCFS threshold policy that depends on the current number
of free beds offers only marginal improvement (1.4 lives or 1.2% improvement).
However, these policies have some ethical implications as they do not promote
parity. Nonetheless, the authors appeal to the notion that patients who are likely
to recover should take priority over patients with a very poor recovery prognosis.

McManus et al. (2004) demonstrated that queueing models can capture the
behavior of ICUs better than simple average calculations. They utilized two-year
admission and LOS data from a busy medical and surgical ICU to estimate the
parameters of an Erlang loss model (M/M/c/c). They calculated the rejection rates
by varying the bed capacity and the patient arrival rates. It was demonstrated that,
for a large unit operating at or near capacity, the model is able to accurately predict
the ICU rejection rates. The correlation coefficient between predicted and observed
rejection rates was 0.89. The model was also able to capture the exponential
increase in rejection rates when utilization rates exceed 80–85%, which are typically
observed in practice. They concluded that the stochastic nature of patient flow may
lead capacity planners to underestimate the resources needed at busy ICUs, but that
the Erlang loss model is able to accurately forecast bed capacity needs in high-
utilization environments.

Griffiths et al. (2006) created a queueing model to represent the high variability in
the LOS distribution and used the model as a capacity management tool. Considered
are two primary performance measures: the mean number of patients in the ICU and
the mean number of patients queued and waiting to enter. Using real data from a
large teaching hospital, it was determined that the arrival process is Poisson but that
the LOS distribution is highly skewed with a standard deviation that is substantially
greater than its mean; therefore, the LOS distribution is approximated by a
hyper-exponential distribution (a special type of PH-distribution whose probability
density function is a linear combination of two exponential densities). Using the
M/H/c/∞ queueing model, the steady-state equations were derived and solved to
obtain the primary queueing performance measures. Obtained were the steady-state
probability distribution of the number of patients in the ICU, the mean number of
patients in the ICU, and mean number of patients waiting to enter the ICU, each of
which were validated using real data. For example, the steady-state mean number of
patients in the ICU was computed to be 12.96 by the queueing model, whereas the
empirical value was found to be 12.91 patients. The model was subsequently used
to examine the impact of variation in the LOS and patient arrival rates. The model
suggests that 17–18 beds are needed to ensure a delay probability of approximately
0.05. A one day decrease in the LOS decreases the average number of customers in
the system from 12.91 to 9.87, and 22–23 beds are required when the arrival rate
increases by 20%.

de Bruin et al. (2007) investigated the dynamics underlying the proportion
of refused admissions (or blocking probability) Pc and bed occupancy rates ρ ,
under different bed configurations in an emergency care chain that consists of
units in tandem. Furthermore, the authors attempted to quantify the sensitivity of
these measures to varying arrival and LOS rates. The paper was inspired by the
emergency inpatient flow of cardiac patients in a university center that consists of
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three emergency units in tandem: A first cardiac aid (FCA), a coronary care unit
(CCU), and a normal care (NC) unit. The FCA unit is intended to provide some rapid
diagnosis, and upon completion of treatment, the patients exit or are forwarded to the
CCU or the NC unit. The CCU patients either exit or proceed to the NC unit. From
the NC unit, they can either return to the CCU or be discharged. The patients are
divided into two distinct flows: those that enter the system at the FCA and those that
enter at the CCU. Using computerized hospital records, arrival and LOS data were
obtained and used to investigate the relationship between blocking probabilities and
bed occupancy rates for a simple M/M/∞ queue. The data revealed that 20–30% of
the total LOS is due to blocking; therefore, solving the blocking problem is critical
to improving patient flow. Then they focused their attention on a system that consists
of a CCU and NC unit and explored the blocking probability at the CCU for various
bed configurations. To that end, they formulated a two-dimensional Markov chain
where the first component of the state space is the number of occupied beds at the
CCU and the second component is the number of occupied beds at the NC unit.
Using arrival and LOS data, they numerically obtained the blocking probabilities
assuming various bed configurations. The infinite-server queueing model highlights
the fact that the LOS distribution can be highly variable and possess a heavy tail
as it is often the case that a small number of patients consume a disproportionate
amount of resources. The analysis showed that rejections at the FCA are primarily
due to unavailability of downstream beds. The study also indicated that larger units
can attain higher occupancy rates while maintaining the same rejection rates (due to
economies of scale), and target occupancy rate of 85% is only attainable by hospital
units with more than 50 beds.

Litvak et al. (2008) proposed a cooperative solution for the ICU capacity
problem. Several hospitals in a region jointly reserve a small number of beds
for regional emergency patients. The main objective is to increase the patient
acceptance rates. An overflow model, similar to queueing models for circuit-
switched telephone systems with overflow capacity, was created. There are three
types of patients: (1) elective patients, (2) internal trauma patients, and (3) regional
trauma patients. Patient arrivals were assumed to follow a Poisson process, and
the patient LOS distribution was assumed to be exponential. To approximate
the blocking probabilities, the Equivalent Random Method (ERM) was utilized;
however, standard ERM methods cannot be applied in this model because internal
emergency patients cannot be rejected and elective patients are never sent to
the overflow. Computed were the mean and variance of the overflow via the
balance equations and corresponding probability generating functions. Additionally,
a simulation model was built using a commercial simulator, eM-Plant, that allows
for detailed acceptance rules and closely mimics actual patient flow in the ICUs,
including general LOS distributions. Similar results were obtained using the ERM,
so it was concluded that the ERM adequately captures the loss probability and
the required number of regional beds. The model was then employed to show that
cooperation between hospitals helps to achieve a high acceptance rate with a smaller
number of beds. For instance, to achieve a 1% rejection rate, 11 beds are needed with
cooperation as compared to 16 beds without cooperation.
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Though not explicitly an ICU analysis, Cochran and Roche (2009) developed an
implementable queueing network model for an emergency department (ED) with
multiple areas and utilized the model as a capacity management tool. Different ED
areas were sized using the average waiting time (Wq) and overflow probability (Pc)
as quality-of-service targets. Nonhomogeneous arrival patterns, non-exponential
service time distributions, and multiple patient types were all incorporated. The
purpose of this work is to reduce abandonment from the ED stemming from
excessive wait times. They use a strategy called Split Patient Flow (SPF) which
aims to treat lower acuity patients in a separate queue from higher acuity patients.
Five levels of patient acuity were defined based on LOS. Certain rules of the flow
pattern of these patients were given, and routing matrices were calculated to estimate
the patient flow to each ED area. The arrival rates were adjusted for seasonality
effects. Using the Allen–Cunneen M/G/c approximation, they approximate average
waiting time. To estimate the overflow probability, they employed the Erlang loss
model (M/G/c/c), where the number of servers (c) for each node is varied until
the performance targets (including utilization) are attained. Blocking between ED
areas was not considered. The model was used to redesign ED units of Banner
Health hospitals, and the results of a Phoenix hospital were provided. The capacity
requirements were computed for given quality-of-service targets (5% overflow
probability and 75% utilization). The implementation of SPF yielded a 61%
reduction in the number of patients who leave without treatment. A spreadsheet
implementation of the model is currently employed by hospital decision makers.

ICUs and surgical (or operating) theaters (OT) are critically linked in a healthcare
facility. Patients who complete surgery in the OT are often transferred to the ICU for
post-surgery care. However, patients may be rejected upon arrival at the OT (or the
ICU) due to limited ICU capacity. The probability that an arriving patient at the OT
or ICU is admitted serves as an important performance parameter for the hospital.
Rejection of such patients can have serious consequences on patient health and
survival, hospital costs, and canceled operations. In van Dijk and Kortbeek (2009),
van Dijk and Kortbeek examined a tandem queueing network model of the OT-ICU
system wherein arriving patients are first admitted to the OT for surgery and then
subsequently transferred to the ICU, or they are sent to the ICU directly. However,
if the ICU is full, arriving patients are rejected (diverted), whereas completed
OT patients remain in the OT waiting for an ICU bed. For this system, no exact
analytical solution is available for the joint steady-state probability distribution of
the bed occupancy levels in both units. However, assuming the ICU can be modeled
as an Erlang loss system with c beds, the authors prove that the overall rejection
probability of the OT-ICU system can be bounded by the loss probabilities of the
M/G/c/c and M/G/c− 1/c− 1 queueing models, that is, the former provides a
lower bound while the latter provides an upper bound. These bounds were validated
using simulation experiments and can be especially useful for bed capacity planning
at both units. A case study was provided in which the capacity requirements
are computed to guarantee certain rejection rates; however, the results were not
validated with empirical data.
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de Bruin et al. (2010) analyzed capacity decisions of different hospitals units, in-
cluding ICUs, using Erlang loss models. There are two types of patients: scheduled
and unscheduled. Statistical tests showed that the arrival process of unscheduled
patients can be modeled as a Poisson process; however, the arrival process of the
scheduled patients is not Poisson. They imposed the Poisson assumption on the
latter nonetheless for practical considerations. Using a detailed statistical analysis
of LOS, the authors argued that decisions based on fixed LOS are misleading. An
Erlang loss model (M/G/c/c) was used to compute the blocking probabilities and
occupancy rates, and the model was validated using hospital data collected during
2004–2006. They developed a decision support tool that is easily implemented in
a commercial spreadsheet program. The authors concluded that, if economies of
scale are properly applied, by merging departments (via bed pooling) or mixing
patient flows, both an acceptable service level (in terms of refused admissions) and
an economically viable occupancy rate can be realized. That is, to achieve the same
proportion of refused admissions (5%), 22 beds are needed in a merged unit as
compared to 29 beds in total.

A common assumption in bed capacity planning models is that the patient arrivals
are time stationary (i.e., that the mean rate of patient arrivals does not change
over time). However, it is well known that this is not the case for most clinical
wards. It is estimated that two-thirds of admitted ICU patients arrive during office
hours, whereas most of the scheduled admissions occur during weekdays instead
of the weekend. de Bruin and Bekker (2010) analyzed the impact of a piecewise
constant patient arrival rate on the daily offered workload and the fraction of refused
admissions for clinical wards using the Mt/H/c/c queueing model. The Poisson
arrival rate is assumed to be time varying, while service times follow a hyper-
exponential distribution. Approximations for this system were obtained using the
infinite-server M/G/∞ model for which the queue workload has a tractable form.
Since it was observed that the arrival pattern may vary on different time scales,
the authors considered daily and weekly variations of the patient arrival rate. For
daily variation, two different arrival rates and an exponential LOS distribution
were assumed. Using the aforementioned approximation, they compared different
scenarios by varying the arrival and LOS rates over a fixed traffic load. They
reported that the impact of the arrival variation on the offered workload and patient
loss fraction diminishes as the LOS increases. Thus, in clinical wards where the LOS
is a multiple of the arrival cycle length, the fluctuations have a limited impact on the
offered workload and patient loss fraction. In the case of arrival rates with a weekly
variation pattern (i.e., when the arrival rate cyclic period is in range similar to that
of the average LOS), the weekly load and loss fraction may fluctuate significantly
over their average values. These values may be relatively small or undesirably large
during certain days of the week, indicating that a varying arrival rate may have
a profound effect on unit operations. Finally, the authors examined the effect of
different LOS distributions. In the context of a weekly arrival pattern, they showed
that the fluctuations in load and blocking probability were alleviated as the variance
of LOS increases. They concluded that a more variable LOS has a stabilizing effect
in the load and blocking probability.
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It is evident that analytical queueing models can be very useful for modeling,
analyzing, and managing ICU operations. This review of queueing ICU models
reveals the prevalence of the Erlang loss and delay systems for modeling ICUs and
their surrounding departments. Many of these demonstrate that modeling assump-
tions thought to be very restrictive are often valid in practice (e.g., unscheduled
patient arrivals do, in many cases, follow a Poisson process). Moreover, it is evident
that queueing approximations are particularly useful when considering the ICU in
relation to other wards of the hospital. The final section of this chapter describes an
ongoing ICU project currently underway involving both engineering and medical
researchers at the University of Pittsburgh.

5 Case Study: Veterans Affairs Hospital

In this section, we briefly discuss recent efforts undertaken by the authors (as part
of a larger, multidisciplinary research team) to closely examine issues related to the
modeling, analysis, and management of ICUs. This collaborative project centers on
ICU operations within the Veterans Affairs Pittsburgh Healthcare System (VAPHS)
and is supported by the Veterans Engineering Resource Center (VERC) which was
established at the VAPHS in 2009. The VAPHS is a major healthcare provider
in the Pittsburgh area, serving the diverse medical needs of military veterans.
The research team includes industrial engineering faculty, medical researchers,
physicians, postdoctoral associates, and graduate students at the University of
Pittsburgh and the University of Pittsburgh Medical Center (UPMC). Oversight was
provided by management and industrial engineering staff members at the VAPHS.

Through consultation with a medical advisory board, patient congestion was
identified as a major problem in the ICUs. As is the case for most hospitals, ICU
patients in the VAPHS usually experience multiple unit transfers before or after
their ICU stay. Patients are admitted to the ICU from the emergency department, an
operating room, or some other inpatient unit. After being discharged from the ICU,
they can be transferred to other monitored or non-monitored units; however, these
transfers do not necessarily occur at the time they are requested (either by a nurse
or physician). If the receiving (or assigned) unit is at capacity, or the necessary
clinical staff are not available, patients experience a delay in their transfer. As in
Sect. 2, we refer to this phenomenon as patient blocking and the associated time
spent waiting to be transferred as blocking time or delay. Blocked patients (in
the ICUs) unnecessarily occupy expensive resources that are no longer clinically
needed; consequently, operating costs increase dramatically without improvement
in healthcare outcomes. In Sect. 2, we noted that this congestion between the ICU
and its interacting downstream units also serves to delay critical care for incoming
ICU patients or to disrupt operations at other inpatient units (e.g., an emergency
department patient may need to be diverted to another hospital).

Our review of existing ICU simulation and analytical models (in Sect. 4) revealed
that very few models explicitly address the former aspect of blocking (namely,
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patient blocking at the ICU). In fact, the vast majority of the analytical models
focused almost exclusively on the long-run fraction of patients who are denied
admission to the ICU due to bed unavailability (with the exception of van Dijk
and Kortbeek 2009; Dobson et al. 2010). Only a few simulation models explicitly
considered patient blocking. Cochran and Bharti (2006) assumed that patients
assigned to a downstream unit that is at capacity remain in their current bed until
a bed becomes available. They considered alternative resource allocation schemes
to satisfy certain blocking criteria. We contend that the literature related to patient
blocking is sparse due to a dearth of data needed to identify (and quantify) patient
blocking. Most hospital data systems (including those used by the VAPHS) record
actual patient movements (namely, origin, destination, and time of transfer) as
opposed to the time at which the patient could have been moved. Consequently,
an analysis of patient LOS data that excludes blocking results in estimates of the
actual LOS rather than the medically–indicated LOS of a patient. The problem is
exacerbated when patients experience blocking during multiple unit transfers as the
medically–indicated LOS spans the time from the last transfer, while the patient was
at another unit, to the time of current transfer request.

Study Objectives. The primary objective of the VAPHS ICU study was to develop
a simulation model that is able to (1) capture the interdependencies between ICUs
and other inpatient units, (2) replicate patient blocking and medically–indicated
LOS that are currently prevalent in the VAPHS, and (3) devise mathematical
procedures to optimally manage the ICUs based on real-time evolution of patient
physiology. The remainder of this section focuses on objectives (1) and (2) only.
The starting point of our analysis was the VAPHS databases from which we
extracted detailed patient movement information including blocking times and
medically–indicated LOS. In the sequel, we describe a large-scale simulation model
that replicates these key patient flow characteristics and accurately models patient
blocking times and bed occupancy rates. The model was also used to examine (1) the
short-term effects of sudden bed changes, (2) the long-term effects of bed capacity
changes, and (3) alternative responses to a spike in the patient arrival rate due to an
exogenous event (e.g., diversions from another hospital due to catastrophic events).

In light of the different ICU modeling alternatives discussed in Sect. 4, we
chose to create a discrete-event simulation model for two important reasons. First,
the VAPHS was interested in analyzing not only the probability that a patient
experiences blocking but also the duration and potential cost impact of that blocking.
Little to no work has been done in the queueing community to characterize blocking
durations, so a simulation model emerged as the natural choice. Second, the VAPHS
requested a high-fidelity model capable of capturing ICU interactions with other
units in the hospital; therefore, the complexity of the model precluded the use of an
analytical queueing model. Finally, the simulation model is designed to (ultimately)
accommodate the evolution of the patients’ physiological data to facilitate dynamic
ICU decision making based on each patient’s current health status.
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Description of the Facility. The VAPHS facility is comprised of several ICUs as
well as peripheral inpatient units. The units considered in our simulation model are
as follows:

1. The medical ICU (MICU) which contains 9 beds.
2. The surgical ICU (SICU) which contains 12 beds.
3. The coronary critical care unit (CCU) which contains 18 beds.
4. A step-down unit (SDU) which contains 9 beds.
5. A monitored medical unit containing 15 beds.
6. A monitored surgical unit containing 12 beds.

These various units offer a wide range of monitored care. In the VAPHS, there
also exist a number of non-monitored care units which were not modeled explicitly.
Patients are admitted to the six units from a number of physical locations including
the emergency department, operation recovery rooms, various clinical labs, or
directly from home. After examining patient data files and consulting with the
clinical advisory board, we compiled a detailed list of physical locations from which
patients apply for admission to the individual units. Subsequently, we aggregated
those locations into distinct categories we refer to as patient sources. Therefore,
each admitted patient was mapped to exactly one of the patient sources labeled as:
non-monitored medical and surgical inpatient units, emergency department (ED),
operating room (OR), post-anesthesia room (PAR), other floors and home.

Resources used for the study. To facilitate the study, we extensively utilized
(1) VAPHS clinical staff members who provided invaluable feedback regarding
clinical practice and policies within the ICUs and otherwise and (2) VAPHS patient
databases that contain explicit patient movement information. The clinical staff
provided a description of the clinical practices and policies that dictate patient
movement under different scenarios. For example, what happens to an emergency
patient who is assigned to a full SICU? Or what happens to an ED patient who
is assigned to a full medical monitored unit? With the help of the VAPHS clinical
staff, we compiled a list of documented (and undocumented) clinical practices and
policies that guide the rule base embedded within the discrete-event simulation
model.

The other critical resources were two patient databases stored in the VAPHS
data warehouse. The first database is a collection of entries corresponding to patient
transfer requests. A transfer request is logged into the system by a nurse when a
patient is medically cleared to transfer to another unit. Every patient entry contains
the patient’s current unit, the next assigned unit, the time at which the request was
made, and the time at which the request was fulfilled. By examining the entries of
each patient, we accurately identified a few critical pieces of information, namely,
(1) patient arrival sources and (2) time-dependent patient arrival rates (based on
time of day and the day of week). Using these data, we estimated the patient
blocking times experienced at each unit by calculating the time difference between
a patient transfer and the corresponding transfer request. This is precisely the
blocking time experienced by the patient waiting to be transferred. The second
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database is a collection of entries corresponding to the patients’ realized transitions.
Each entry corresponds to a patient transfer and contains the relevant unit and
the time this transition occurred. A transition can be an admission, a transfer
between units, or a discharge from a unit or the hospital. From this information, we
estimated the corresponding LOS for a patient’s visited units by calculating the time
difference between consecutive entries. Moreover, we calculated patient transition
probabilities and throughput for every unit. By combining the two data files, a
complete picture of the patient arrival processes to each unit, the total and medically
indicated LOS, the discharge rates, and the actual blocking times emerged.

While these resources proved to be invaluable for the simulation study, due to the
complexity of ICU operations, it was not possible to account for all of the possible
scenarios that might be encountered. For example, certain extraneous rules often
dictate patient movement, and these rules (which are neither documented nor easily
described) usually stem from years of empirical experience. The clinical advisory
board cited cases in which a transfer from the SICU to a SDU might be affected by
the male-to-female ratio in that unit. In other instances, a patient transfer from the
MICU to a non-monitored bed might be prohibited due to the patient’s special need
for the presence of clinical staff member.

Another complication is that the patient movement data can provide a biased
view of patient transfers. For example, not all patient blocking instances result from
downstream (or upstream) capacity issues. The advisory board noted that blocking
delays less than three hours in duration are typically attributed to the patient’s need
for reevaluation by a physician and not a shortfall in capacity. Moreover, blocking
at units such as the ED is often biased since a bed is requested almost immediately
when a patient enters the ED. Therefore, a series of adjustments were made in the
data analysis phase in order to compensate for these biasing effects. As is the case for
any large-scale simulation project, some necessary simplifications and assumptions
were needed, and these assumptions have to be considered when examining the
model’s output.

Simulation Model Description. The simulation model was coded in the software
package OMNeT++ which is an event-driven C++ simulation library designed
explicitly for building network simulators and used extensively by telecommuni-
cations engineers and researchers. This platform adopts an extensible and modular
approach for building simulation models that makes it easy to incorporate complex
experimental scenarios and configurations (e.g., the addition or removal of an entire
clinical unit). The simulation model consists of several modules representing the
patient sources and inpatient units. Patient entities originate at patient sources
with varying intensities depending on the day of the week and the time of day.
This is a necessary step to capture the differing arrival patterns for every patient
source. For example, ED patients may arrive during early morning hours or during
weekends, whereas surgery patients arriving from PAR may only arrive at particular
time frames during the weekdays.
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In the majority of existing ICU models, patient LOS data is used to fit a LOS
distribution that generates realizations and transition probabilities during simulation
runs. In order to improve model validity, some authors propose stratifying patients
into different categories depending on the treatment specialty and patient attributes
(e.g., age or some selected clinical indicators). This approach has yielded positive
outcomes for studies involving single ICU simulation models where patients receive
treatment and are discharged. However, in a large-scale simulation model, such an
approach might not provide the fidelity needed to capture patient flow dynamics
as patient entities occupy beds and transition from one unit to another. Patient
transitions may be stochastically dependent on a number of factors including patient
origin, the sequence of prior visited units, and the corresponding medically indicated
LOS. By contrast, our simulation model exploited a large database containing actual
patient instances as observed in the data files. Each patient instance was described
by an arrival source, a sequence of visited units, and a corresponding sequence of
medical LOS.

For every hour of the day and day of the week, the program retrieves the
corresponding arrival rate for each patient source and generates the corresponding
number of patients using a Poisson distribution. Subsequently, the model queries the
database to randomly retrieve the number of patients for each source. The retrieved
patients are inserted into the simulation model, and they transition through the
different units based on their predetermined sequence of units and medical LOS.
When patients reach the end of their medical LOS, they request a bed at the next
assigned unit. If the unit is full, the model searches for a bed in other units based
on predetermined rules that correspond to actual clinical practices. If a bed is not
available in another unit, the patient is blocked until a bed becomes available. The
simulation model tallies and reports patient blocking times and bed occupancy rates
for all of the inpatient units of interest.

Validation and Results. The model validation process consisted of two steps:
a conceptual validation that included demonstration of the model animation to
the VAPHS clinical staff and an operational validation focusing on the model’s
quantitative outputs (see Bountourelis et al. 2011). The aim of the conceptual
validation was to establish face validity of the model and its underlying logic.
The high-fidelity simulation animation mimics (1) patient movements as they are
admitted, transferred, and blocked in various monitored units, and (2) the visual
display of various performance measures (e.g., the number of occupied beds and
blocked patients) to ensure the observed variational patterns was consistent with
the experience of the clinical staff. For the operational validation, we compared the
simulation output statistics corresponding to patient blocking times (delay) and the
number of occupied beds with the corresponding statistics retrieved from patient
data files. Preliminary simulation runs indicated that the simulated blocking times
and bed occupancy rates were consistent with the real data. However, a set of input
parameters plays a pivotal role in the simulation model but cannot be quantified from
the available data. These parameters needed to be calibrated to further improve the
statistical proximity of the simulation output to the observed data.
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We distinguished two types of input parameters—those pertaining to the con-
struction of the simulation model and those that control patient movement. Param-
eters of the first type include, for example, the current number of beds in each unit.
We varied the number of beds to account for bed closures, that is, the phenomenon
of an empty bed not being used for reasons pertaining to staff availability and
scheduling. Since accurate bed closure data were not available, the removal of bed
capacity is an alternative way to approach the average bed availability. Parameters
of the second type included, for example, the probability of a surgery patient being
transferred upstream, that is, to a higher level of care due to a bed shortage at
the destination unit. We introduced this parameter to replicate well-known clinical
practices for which accurate estimates of the frequency of occurrence are not
available.

Model calibration can be a time-consuming process due to the many dimensions
of the parameter space induced by the total number and range of values of the
input parameters. Furthermore, there is no standardized calibration procedure in the
literature. After experimenting with various sets of parameter values, we identified
a set of values under which the model output closely matched the output observed
from the data. We focused on those units since these are the clinical areas were
critical care patient blocking occurs the most. Figure 6.1 depicts the observed
patient blocking in ED and SICU compared to the corresponding simulation output.
For the ED and SICU, the quantile–quantile (Q–Q) plot shows that the simulated
distribution of patient blocking times closely matches the historical distribution
of patient blocking times. Given the inherent complexity of the ICU operations
and the necessary simplifying assumptions, we concluded that the model performs
satisfactorily in replicating the ED and critical care patient blocking times.

Application of the Model. Subsequently, our model was used to answer questions
of interest to the VAPHS managerial and clinical staff. An important set of questions
concerned the propagating effects of sudden bed removals from a particular unit.
The clinical staff sometimes experience bed closures due to exogenous factors, such
as equipment failures or building infrastructure problems. The simulation model
allowed us to quantify the effects of sudden bed removal scenarios and the best
ways to respond to such events. Additionally, the VAPHS were interested in capacity
planning for all of the units. Therefore, we performed an analysis of the long-
term effects of a large-scale bed reconfiguration on the delay time experienced by
ED patients. The model can also potentially be used to evaluate so-called “hub-
and-spoke” policies for different patient types depending on their arrival source
and the unit of first admission. Alternatively, we may examine the impact of a
“bursty” patient arrival process stemming from an epidemic in the community and
the optimal way to handle the increased load by allocating additional resources.
Ultimately, our aim is to use the model to help guide ICU admission and discharge
decisions by explicitly taking into account a physiological indicator of the patient’s
health status (e.g., the SOFA score) as it evolves temporally.
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Fig. 6.1 Q–Q plots of patient
blocking times: simulated
versus historical data

6 Conclusions and Open Research Challenges

The primary objective of this chapter was to highlight the unique challenges
associated with designing, modeling, and managing ICUs. The ICU is an extremely
important part of any hospital, and its interactions with other hospital units are
indispensable. Due to the complex nature of the ICU, many operations researchers
have employed discrete-event simulation and/or analytical queueing models to
assess important performance measures, such as the patient rejection rate and length
of stay in the ICU. However, many challenges and opportunities remain for the
operations research community, and we highlight a few of those here.

Section 4 described differences between discrete-event simulation and analytical
queueing models of ICUs. Simulation models allow for greater model fidelity, but
can be difficult to validate and require a great deal of data, some of which may not
be available. Queueing models require far less data and are (generally) very easy
to implement, but the most accessible models usually impose strict modeling as-
sumptions (e.g., stationary arrival processes). Networks of finite-capacity queueing
stations (particularly loss systems) are not easy to analyze, and the modeler usually
is forced to resort to approximation schemes.
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Based on our review of existing models and our own experiences in modeling
ICUs, we offer the following recommendations. First, a discrete-event simulation
model should be employed if there is a strong desire to include detailed dynamics
of patient movements, medically indicated LOS, and interactions between the ICU
and the other units in the hospital. A simulation model allows for greater modeling
flexibility, even though a number of parameters need to be best estimated (and
later calibrated) for validation. However, if the modeler is primarily concerned with
assessing the likelihood of blocking, or designing ICUs, an analytical queueing
model (namely, the Erlang loss model Kharoufeh 2011) provides a very simple
means by which to assess the number of beds needed to achieve a quality-of-service
guarantee. The formulae for doing so can be easily implemented in a spreadsheet
program or coded in any common programming language (e.g., C, C++, Visual
Basic). These models can also assess the impact of increased patient arrival rates
and/or the average LOS on the patient rejection rate and bed occupancy rates.

There are a few interesting areas of open research related to the design, modeling,
and management of ICUs. First, in Sect. 5, we noted that values were assigned to
a number of input parameters that clearly influenced patient movement but could
not be estimated from data or clinical experience. To calibrate these parameters,
a multi-dimensional state-space search was performed empirically using a time-
consuming trial-and-error approach. Because each ICU is unique, one important
research direction is the development of a standardized methodology particularly
tailored to the calibration of large-scale ICU models. Such a methodology might
include both empirical rules and calibration procedures based on state space search
heuristics. Additionally, when using simulation models for capacity planning and/or
ICU design or redesign, the computational burden can be cumbersome due the large
number of design alternatives. Specifically, in a large-scale facility with many differ-
ent units and levels of care, the task of optimal resource allocation usually requires
the evaluation of an exponentially large set of alternative configurations with respect
to the number of resources being allocated. Doing an exhaustive search of feasible
configurations is very time consuming, even if parallel simulation techniques are
used on computer clusters. Alternatively, one might consider customization of
metamodeling techniques, or methods for approximating the input/output (I/O)
relationships revealed by the simulation model. Metamodels are fit using I/O data by
sampling only a subset of the possible configurations and may be used to predict the
expected simulation output for configurations that have not been simulated. They
can also be used for sensitivity analysis, what-if scenarios, and optimization of the
simulated system (Ankenman and Staum 2010; Kleijnen 2007). One such promising
direction is the problem of optimal resource allocation through the use of Kriging
methods (Kleijnen 2009; Kleijnen and Sargent 2000).

With regard to analytical queueing models of ICUs, the most natural approach is
a network of finite-capacity queueing stations arranged in tandem. This configura-
tion serves to mimic the movement of patients from the ICU to step-down beds to
hospital beds and then to discharge from the hospital (assuming recovery). However,
networks of finite-capacity queueing systems are notoriously difficult to analyze;
therefore, many researchers have resorted to useful bounds and/or approximations
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for these types of systems (van Dijk and Kortbeek 2009; Osorio and Bierlaire 2009
are good examples of relevant work). Most queueing models focus on computing the
patient rejection rate and bed occupancy rate, but it is very difficult to characterize
the distribution—or even the mean—of the delay experienced by patients due to
blocking. Another daunting challenge for the analytical modeler is the inclusion
of patients who must reenter the ICU because their health status deteriorates after
they have been released from intensive care. Obtaining analytical results for even
the simplest model (i.e., one in which all arrival processes are Poisson and all
medical LOS distributions are exponential) is nontrivial. Many opportunities exist
for analytical approaches that are able to quantify blocking and its adverse effects
on the system.
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Chapter 7
Improving the Flow of Patients Through
Healthcare Organizations

Steven M. Thompson, Robert Day, and Robert Garfinkel

1 Introduction

Healthcare organizations (HCOs) face a challenging operating environment where
delivering highly complex, specialized services requires patients to interact with
a number of different types of healthcare professionals in a variety of settings.
At the same time, advances in laboratory, radiological, and surgical technologies
have dramatically increased the number of available tests and procedures. Further
compounding these challenges, economic trends and demographic changes are
pushing HCOs to deliver higher quality care to more patients at lower total cost.

As a result of increasing financial pressures, HCOs are trying to decrease the
cost of providing healthcare by eliminating waste and improving the utilization of
existing healthcare resources. Even though HCOs aspire to achieve high levels of
staff, equipment, and space utilization, variability in demand and uncertainty in
treatment and test duration can result in situations where a given resource is not
available at the time it is needed. This creates a bottleneck that can cause a patient
to experience a delay in treatment. These bottlenecks can be due to a lack of:

• Physical capacity: The provider does not have a sufficient number of beds,
screening rooms, scanners, etc., to accommodate all demand.

• Scheduling: The provider does not take advantage of opportunities to balance
demand for healthcare services with availability.
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• Staff: The provider does not have a sufficient number of perhaps multiple types
of clinicians to meet all demand.

• Equipment and supplies: Capacity and staff are available, but various equipment,
supplies, medical devices, etc., needed to conduct a given test or procedure are
not available at that time.

• Information: In many cases, a patient flow bottleneck can occur because the
clinicians do not have access to key pieces of information, such as lab results,
consult reports from specialists, or radiological images that must be available
before treatment can be initiated or completed.

Disruptions in patient flow are not without consequence. At a minimum, it can
result in poor patient satisfaction and lower staff morale. At worst, delays in the start
or completion of medical treatment can negatively impact the clinical outcome. As
a result, the management of patient flow is fundamentally focused on striking a
balance between keeping capacity investments as low as possible while ensuring
that the HCO has sufficient capacity to handle patient demand without experiencing
bottlenecks.

Achieving “good” patient flow has different meanings in different settings. In an
emergency department, “good” flow for critically ill patients means that the patients
can be treated immediately after the ambulance arrives. In contrast, “good” flow in
a walk-in clinic could mean that patient can be seen in less than 30 min. Likewise,
some healthcare services, such as surgery, are multistage processes that involve a
range of clinicians, and the time that elapses from the patient’s first encounter with
the surgeon to their discharge from the hospital could span a period of weeks or
months. In all settings, HCOs must determine how much capacity to make available
and subsequently determine how to allocate that capacity to achieve high levels of
utilization and quality of care.

Capacity decisions are complicated by the fact that demand for healthcare
services can be difficult to predict. Efforts to improve flow after capacity decisions
have been made are typically focused on decreasing total cycle time and eliminating
waste by:

1. Decreasing the amount of time a patient spends in given stages of the healthcare
delivery process

2. Decreasing demand for urgent services with highly variable resource needs by
emphasizing preventive and disease-state management services

3. Decreasing the number of stages in the process
4. Performing stages of the process in parallel
5. Decreasing the amount of time required for a patient to move from one stage in

the process to another

All of these efforts to improve flow are challenging because they require
managing change in a high-stress environment where practitioners are accustomed
to high levels of autonomy with respect to how healthcare is delivered. Patient flow
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problems are pervasive, and prior research has explored a variety of settings and
levels of detail using a variety of empirical and analytical methods.

The rest of this chapter is organized as follows. In Sect. 2, we will provide a
background on patient flow in order to understand why patient flow problems are so
prevalent and the factors that make improving patient flow challenging. In Sect. 3
we will provide a brief overview of operations research on a variety of patient flow
problems in a variety of settings. In Sect. 4 we provide a specific example of the
complexity of breaking down and modeling patient flow problems in the context
of a hospital-based surgery practice. In Sect. 5 we describe some future research
opportunities.

2 Background on Patient Flow

Improvement initiatives in healthcare are challenging because HCOs are simul-
taneously executing a production process while providing a customized service.
Like many organizations in other industries, HCOs seek standardized processes in
order to improve efficiency and obtain economies of scale. Unfortunately, achieving
standardization is often an elusive goal. The fundamental problem is that delivering
customized healthcare services often requires clinicians to adapt the process. A
patient may have allergies, preexisting conditions, or even personal beliefs that
require the clinicians to deviate from the “plan” and use different amounts of
different resources than otherwise expected.

The patient’s perception of the quality of the service experience is also an
important consideration. While it is tempting to at least begin modeling the flow
of patients as a production process, HCOs should not lose sight of the fact that
the patients (and clinicians) involved in service delivery must be accepting of
any changes to the process. In healthcare, service quality is measured in terms of
outcomes (i.e., did the treatment work?) and in terms of the individual experience
(i.e., did I feel comfortable, respected, and valued?). This complicates efforts to
better align the availability of healthcare resources with the demand for healthcare
resources. For example, consider a patient with an upper respiratory infection that
arrives at the clinic she uses for routine healthcare. The patient is not feeling
well and would like to be seen quickly. While it may be more efficient to have
the patient evaluated by the next available physician, the patient may also have
a strong preference to be seen by the physician who takes care of her routinely.
Honoring that preference means that one physician will be idle while a queue
forms for the other. Ignoring the patient’s preference enables the HCO to obtain
better utilization and performance in the short term, but risks long-term patient
attrition.
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2.1 Unique Characteristics of Healthcare Services

Techniques commonly used in other service industries to shape demand and improve
resource utilization while maintaining steady flow are often difficult to implement in
healthcare. For example, an airline can overbook a flight and turn away passengers
they are not able to accommodate, perhaps compensating them with a free ticket on
a future flight. A hospital is not able to overbook an ICU and turn away patients that
cannot be accommodated. Likewise, a hotel can reduce rates and attract more cus-
tomers to improve room utilization during slow times. A hospital is not able to im-
prove operating room (OR) utilization by offering discounts on knee replacements.

The fundamental distinction between healthcare and other service industries is
that healthcare is a service that nobody wants to receive. That is not to say that
healthcare is not highly valued; rather it means that people consume healthcare
services because they need them. For the most part, these services are not plea-
surable, disrupt our daily lives, and in many cases are anxiety-inducing experiences.
Therefore, efforts to improve the flow of patients should not lose sight of the fact that
the object moving through the production process is a person who, at that moment,
is in a very emotionally stressful environment. The implication for patient flow
improvement initiatives is twofold. First, the fact that patients may be experiencing
emotional stress and are in need of healthcare services highlights the importance of
maintaining good patient flow. That is, effective patient flow results in faster service
with fewer disruptions in the provision of care. Second, demand management
practices, such as dynamic pricing and other yield management techniques, are
rarely used in healthcare because none of the patients really want to be there in
the first place.

The healthcare industry is also distinctive in terms of the mechanisms through
which HCOs are reimbursed for the services they provide. In most health systems,
once an individual has access to health insurance, their ability to consume healthcare
services is not dependent on their wealth or income. HCOs are subsequently
reimbursed by fiscal intermediaries, either a governmental agency, for example,
Medicare in the USA, or the patient’s private insurer. The HCO will typically receive
a fixed amount from the fiscal intermediary for treating a patient with a given ailment
and a small co-payment from the patient. This co-payment is often a very small
percentage of the total cost of providing service and is often not a function of the
cost of providing the service (e.g., a co-payment for inpatient hospitalization in the
USA might be $250 regardless of the procedures that are performed or the number
of nights the patient stays in the hospital). As a result of risk pooling and subsequent
payment through fiscal intermediaries, price-based market segmentation strategies
are rarely used to manage demand for healthcare. With a few notable exceptions,
such as concierge medicine where individuals pay an annual fee to a medical
practice in exchange for higher levels of service (Stillman 2010), price-based market
segmentation strategies are not effective because the healthcare industry does not
contain a pricing mechanism that allocates scarce resources to those that place the
highest value on those resources.
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2.2 Demand Uncertainty

For a given healthcare service, demand can be uncertain in both volume and urgency.
Further complicating matters is that even the time and resources needed to provide
a given healthcare service can be highly variable. Seasonal variation in disease-
state complications (like exacerbations of chronic obstructive pulmonary disease
and asthma), influenza outbreaks, innovations in medical therapies, demographic
and population changes, and economic factors can all impact the demand for various
healthcare services.

Likewise, the urgency of the need for healthcare services is also highly variable.
A patient needing the arthroscopic removal of a bone spur can be asked to wait for
weeks before receiving surgery. A patient experiencing chest pain and in need of a
coronary artery bypass graft must receive care almost immediately. This variation in
urgency would be less problematic if it were as condition-specific as those two prior
examples suggest. Unfortunately, assessing the urgency of demand is not condition-
specific because patient-specific factors, such as the presence of multiple concurrent
disease states, can influence that assessment. For example, a hypertensive patient
with a blood pressure of 160/90 is not considered urgent, but if that patient also
has been previously diagnosed with an abdominal aortic aneurism, then the blood
pressure must be lowered immediately.

The impact of variable demand and variable urgency on efforts to improve
patient flow is that some efficient production strategies used in other industries are
difficult or impossible to implement. For example, level scheduling involves fixing
capacity at a specific level and then scheduling patients into the next available time
slot. A level scheduling approach is challenging to implement in an environment
where patient acuity may be a factor and patient satisfaction with service quality
is partly based on wait time. In most acute care settings the common operational
strategy is to “chase demand.” For example, rather than trying to influence the
demand for emergency services or predict demand levels for a given time period, an
emergency department manager will focus on developing a flexible staffing schedule
that enables her to increase/decrease the number of nurses in response to changes
in patient volume and acuity. In this example, flexible staffing could be achieved by
making use of a “float pool” where nurses are moved from one patient care unit to
another based on need or by scheduling so-called prn nurses who can be cancelled
without pay if the actual work load for a given day is low.

Ambulatory settings, such as physician offices and clinics, handle a predomi-
nantly nonurgent population but must also be prepared to respond to urgent demand.
In some cases, a patient arrives at an ambulatory, nonurgent setting presenting with a
life-threatening condition. For example, what the patient thought was dizziness due
to an inner ear infection is diagnosed as a mild stroke by the physician or a patient
experiencing shortness of breath goes to a clinic thinking she has pneumonia but
is diagnosed with congestive heart failure. Furthermore, and related to the service
dimension of healthcare, while a patient might present with a medical condition
that does not require immediate treatment, the patient may still desire immediate
treatment.
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In an increasingly competitive healthcare environment, where many providers
are seeking to grow volume, meeting patient quality of service expectations is
becoming increasingly important. In the USA, the desire for quick service has led
to the proliferation of walk-in clinics, such as Patient First, that are taking volume
from private physician practices. These walk-in clinics adopt a chase demand
staffing and scheduling strategy that is similar to the strategy used by emergency
departments. However, in the case of the walk-in clinic, it is not that the patients
need to be seen right away but rather that they want to be seen. Providers that
ignore patient preferences for convenience and speed of service in favor of short-
term improvements in operational efficiency risk losing volume to those providers
that are more responsive.

The level of competition for patients varies across health systems. While
competition is significant in many parts of the USA, competition in systems that
are financed entirely through public funding may be lower. Some health systems,
such as Sweden, are between the two extremes. In the case of Sweden, a mixed
model is emerging where some individuals receive publically funded healthcare and
others have shifted to private insurance in order to obtain better access. Nevertheless,
even fully public systems like Canada must be responsive to patient satisfaction.
In Canada, policy makers are under constant pressure to improve the availability
of healthcare resources and reduce the length of time patients must wait before
receiving service.

2.3 Availability, Scalability, and Flexibility of Resources

The provision of healthcare services involves a number of specialized resources
including human resources (such as physicians and nurses), technological resources
(such as CT scanners and lab specimen processing equipment), and physical
resources (such as beds and rooms). If any of the required resources is not available,
then the delivery process stops and the patient must wait. While many HCOs adopt
a chase demand strategy in order to meet patient expectations for prompt and quick
service, many of the resources they need to provide healthcare services vary in terms
of scalability and flexibility, especially in the short term. For example, consider an
increase in the demand for inpatient beds from patients suffering from pneumonia.
Even if the hospital has adequate staff, if it lacks sufficient bed capacity, it is not
able to admit the patients. Likewise, if beds are available but the hospital lacks staff,
it is not able to admit the patients without risking poor outcomes due to mistakes
that occur as clinicians are overloaded. However, ensuring bed and staff availability
requires the HCO to make decisions well in advance of when those resources are
expected to be utilized. Unexpected spikes in demand can be very challenging to
meet and often result in crowding conditions. Unexpected decreases in demand can
be financially straining as the HCO is unable to cut fixed costs in response to a
decrease in variable revenue.
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In addition to costs that are sometimes prohibitively high, long-term capacity
decisions are also typically influenced by government regulation. In the USA, HCOs
must complete a Certificate of Need prior to making investments in certain types
of capacity (e.g., increasing the number of inpatient beds, operating room suites,
emergency department bays, and even acquiring certain surgical and radiological
technologies, requires governmental approval). In other health systems, capacity
is predetermined by central or local government planning agencies. The overall
consequence of government regulation is that increasing capacity may not be a
feasible choice for a HCO.

2.4 Patient Acuity

HCOs, for the most part, do not operate on a “first-come, first-served basis.” When
a patient with a severe illness or condition arrives, they preempt other patients who
may have been scheduled to receive treatment weeks or months in advance. For ex-
ample, when scheduling surgical procedures into a set of surgical suites, the sched-
uler must consider the availability of beds in the postanesthesia care unit (PACU)
where patients recover immediately after surgery. The PACU needs of a patient vary
based on patient condition and the procedure being performed. If the patient needs
to spend one or more nights in the hospital after the surgery, then the scheduler must
also consider the availability of inpatient beds on various units in the hospital. If too
many surgical procedures finish at the same time, the PACU can be overloaded, and
some patients must be recovered in the surgical suite, delaying the start of the next
case. If a patient needs to go to an intensive care unit (ICU) after PACU but there
is no bed available, then the patient must wait in the PACU until a bed becomes
available. This decreases PACU capacity by one bed and increases the risk that the
PACU will not be able to accommodate all scheduled surgical procedures.

In summary, HCOs face many idiosyncratic factors that make them distinctive.
While many firms in other industries must deal with uncertainty in demand,
HCOs must also consider individual-level factors such as acuity and concurrent
disease states. The mechanisms through which providers are reimbursed and the
pervasiveness of financial intermediaries are also unique to healthcare and impact
patient demand and HCOs ability to shape that demand. Operations researchers
must consider these factors because they help define the objectives of the HCO and
operational constraints.

3 Operations Research and Patient Flow

The operations research community has a long history of addressing the patient
flow challenges faced by HCOs. Over the past few decades, hundreds of healthcare-
related articles have appeared in operations research literature, and most have
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focused on specific operational challenges faced by healthcare providers (see Fries
1979; Brotcorne et al. 2003; Cayirli and Veral 2003; Eldabi et al. 2007; Brailsford
and Vissars 2010 for extensive reviews of the operations research literature). A great
deal of this prior operations research is related to patient flow.

In fact, any research that seeks to improve performance metrics such as wait
time, cycle time, and time in queue is fundamentally addressing a problem related
to patient flow. Over time, the problems and research methods applied have become
increasingly more advanced, reflective of the increasingly complex operating
environment faced by HCOs. As HCOs continue to evolve new organizational
structures and the delivery of health services transitions into new settings, many
new challenges, opportunities, and research questions will certainly arise.

3.1 A Typology of Research on Patient Flow

Most operations research methods applied to patient flow problems can be clustered
into setting-specific streams. This is driven by the fact that different healthcare
settings have different priorities and face different operational constraints. Methods
are considered generalizable if multiple providers in that setting could utilize the
proposed technique. This trend of setting-specific research also has likely been
influenced by the tendency of healthcare clinical researchers to conduct setting-
specific studies.

Much of the operations research work in healthcare is understandably conducted
in collaboration with clinicians or is strongly influenced by research that appears in
journals targeted towards clinicians and clinical researchers. Research appearing
in these clinical outlets tends to focus on specific settings with the goal of
disseminating best practices to managers in those settings. Consistent with evidence-
based medicine, where actions are only prescribed if robust double-blind peer
reviewed research supports their efficacy, many of these studies identify operational
processes that have been shown to perform well and communicate them so that other
HCOs might emulate the practice.

For example, Abraham and Reddy (2010) conduct a case study to evaluate
the design of workflows that prevent effective interdepartmental coordination and
delay the transfer of patients between units. The authors provide a clear set of
best practices that have been shown to successfully reduce patient flow delays
due to poor interdepartmental information sharing and capacity planning. Similarly,
Pikard and Warner (2007) describe how demand forecasting and management can
be integrated with staffing to improve patient flow through the hospital. In that
case, the authors show how patient backlogs can be reduced by making staffing and
scheduling decisions jointly. Dexter (2007) provides guidance on how managers of
surgical services can integrate information from electronic medical record systems
to improve staffing decisions by making sure PACU staffing levels reflect the
expected volume of patients flowing out of the surgical suites. This guidance can
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help managers avoid situations where, for instance, the entire staff of a surgical
suite is running into overtime because a single PACU nurse was sent home.

While the methods are very different, the research appearing in clinical outlets is
useful to operations researchers for two reasons. First, it helps convey the objectives
of HCOs and provides insight into the operational constraints that appear in different
settings. Second, it can serve as a benchmark for measuring the impact of an
alternative method. These industry benchmarks reflective of current best practice
are often used as a basis for comparison in simulation studies. The majority of the
operations research applications related to patient flow have subsequently followed
clinical research streams and focused on improving flow within specific clinical
environments.

3.2 Ambulatory Care Settings: Clinics and Physician Offices

Clinics and physician offices have an operational environment that is distinctive
from other HCOs that provide at least some acute care services. First, they are
typically not open 24 hours per day, and all previously scheduled appointments
for each day must be completed before the HCO can close. As a result, meeting
scheduled demand while minimizing the occurrence of overtime, where staff are
paid a premium rate for each hour they work beyond their scheduled shift, is a
consideration. Second, the majority of the demand is not urgent so scheduling
becomes an important mechanism to balance demand with supply. Third, patients
expect to be seen and serviced quickly, regardless of whether they have a scheduled
appointment, so total cycle time is an important performance metric.

Prior research on clinic operations has employed both simulation and analytical
modeling. Glowacka et al. (2009) use association rule mining to find patterns
in patient “no shows,” where patients fail to appear for a previously scheduled
appointment, in combination with simulation techniques to develop scheduling rules
that improve patient flow by reducing patient waiting time and reducing within
process idle time. Lumus et al. (2006) combine Monte Carlo simulation and value-
stream mapping to develop a scheduling template that improves patient flow and
resource utilization for a walk-in clinic. In that case, the authors develop scheduling
guidelines to balance demand across the day in order to decrease clinician idle time
and reduce patient wait times. Specifically they find that based on actual demand
patterns, the clinic should deliberately leave openings on the schedule for last-
minute requests, and the number of openings per hour should be lower in the
morning and higher in the afternoon. Ashton et al. (2005) also use discrete event
simulation to evaluate different scheduling and decision policies on the flow of
patients through a multiservice clinic where any given patient may receive multiple
services, while Davies and Roderick (1998) use discrete event simulation to estimate
the resources that will be required to meet future demand for renal services.

Discrete event simulation has been a popular simulation method for clinic-based
research largely because of its flexibility to model multistage processes, subject
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to uncertainty, that unfold over time and incorporate complex decisionrules (Jun
et al. (1999) provide a detailed literature review of the applications of discrete event
simulation in healthcare clinic settings). For example, Cote (1999) uses discrete
event simulation to show that clinics providing complex, potentially multistage
healthcare services with high utilization of some resources, such as examining
rooms, do not necessarily exhibit longer waiting times. The purpose of these kinds
of studies is to help HCOs determine the true sources of patient flow bottlenecks
and allocate resources accordingly.

White et al. (2011) also utilize discrete event simulation to show that integrated
management of capacity, patient flow, and scheduling can improve utilization while
reducing patient waiting times. Specifically, they use discrete event simulation
to show the impact of integrated scheduling and capacity allocation policies.
They conclude that patient waiting time and total cycle time can be enhanced
by scheduling shorter appointments that exhibit less variance in duration early in
the day and longer, more variable appointments later in the day. They also find
that overall utilization will remain high, regardless of scheduling mechanisms,
provided capacity is allocated such that the physician is the bottleneck. Considering
capacity planning and scheduling at the same time is uncommon; most other work
in this stream falls into one of two categories. The first assumes that capacity is
fixed and subsequently develops scheduling mechanisms to improve performance
under a capacity constraint. The second assumes some distribution of demand and
determines how much capacity is required to meet certain service levels.

Various analytical methods have also been brought to bear on the problem of
improving the flow of patients in clinic settings. For example, Oddoye et al. (2009)
combine queuing and goal programming to evaluate the trade-off between resource
availability and patient flow metrics such as wait time and cycle time in a multistage
medical assessment unit in the UK. The authors use simulation to identify different
scenarios for removing patient flow bottlenecks and then submit the results of
each simulated scenario to a goal program. The goal program then selects the
scenario that best reflects the organizations priorities. Bretthauer and Cote (1998)
illustrate how queuing and mathematical programming can be used to make capacity
decisions in a variety of ambulatory healthcare settings including blood bank clinics.
Jiang and Giachetti (2008) develop a queuing network model to evaluate the impact
of process parallelization, staff specialization, and coordination on patient flow
through a multiservice walk-in clinic. They find that process parallelization is
beneficial in reducing total cycle time and variation in cycle time in settings where
patients require more than one diagnostic procedure and more than one treatment
procedure.

The scheduling literature has also considered numerous deterministic and
stochastic ambulatory healthcare settings (see Cayirli and Veral (2003) for a review
of the outpatient scheduling literature). Much of the work on patient scheduling
has a direct impact on patient flow and performance metrics such as patient waiting
time and length of queue figure prominently.
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3.3 Emergency Departments

Unlike clinics, emergency departments are typically open 24 h per day, every
day of the year. They also differ from clinics in that they service two groups of
patients: those with urgent treatment needs and those with nonurgent treatment
needs. Planning is complicated by the fact that the relative size of each group can
vary considerably over the course of the day and on different days of the week.
Emergency departments also face downstream bottlenecks that clinics do not face.
In many cases a patient that is treated in the emergency department will need to
be admitted to the hospital rather than sent home. As a result, the number of beds
available in the hospital and how those beds are allocated can impact the flow of
patients through the emergency department. If patients that need to be admitted
to a hospital ward begin to backlog in the emergency department, the effective
capacity of the emergency department is reduced and the amount of time newly
arrived patients must wait prior to service increases.

Research related to emergency department (ED) operations has tended to focus
on one of three levels: within-department, within-facility, and acrossfacilities. The
first level represents research that looks specifically at the ED and does not consider
other units in the hospital. For example, Cochran and Roche (2009) develop a
queuing network to model the impact of emergency department resource availability
(e.g., staff, # of treatment bays) on total treatment time, staff and room utilization,
and queue length. The objective of this kind of study is to help ED managers
determine how much capacity to make available to achieve patient flow performance
targets.

At the second level, research that considers other units in the hospital seeks to
identify and eliminate downstream bottlenecks that are preventing the ED from
achieving its patient flow performance targets. Ceglowski et al. (2007) combine
data mining and discrete event simulation to develop a model that enables hospitals
to identify bottlenecks that form between the ED and other departments, but do
not offer guidance on how to alleviate those bottlenecks. Thompson et al. (2009)
combine integer programming and Monte Carlo simulation to develop a decision-
support tool to assist hospital bed managers as they allocate newly arrived patients
and reallocate existing patients to various specialized units in a hospital in order to
avoid bed-related bottlenecks that can impact the ED.

At the third level, research tends to define the problem setting as one of multiple
interrelated HCOs where decisions made by one can impact patient flow in the
others. For example, Patrick (2011) employs simulation and Markov decision
models to evaluate the impact of long-term care bed management policies on ED
crowding. He finds that the shortage of long-term beds results in patients spending
additional nights in the hospital. This prevents patients from leaving the ED, and
crowding conditions quickly follow.
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3.4 Hospital Inpatient Units

Hospital inpatient units represent an enormous financial investment. Construction
costs alone can range from tens of millions of US dollars to hundreds of millions,
depending on the size of the facility. Subsequent staffing costs add considerably
more to the total. The majority of these costs are fixed expenses that do not
rise (or fall) in response to actual demand. That being the case, most research
has been focused on trying to determine how much hospital capacity should be
made available in order to achieve clinical and quality of service performance
goals. Incorporating patient flow pathways, determining flow performance metrics,
and understanding and modeling different flow patterns among different patient
populations are important elements of these studies (Weiss et al. 1982).

As with most other healthcare settings, Monte Carlo and discrete event simu-
lation figure prominently as research methods. Vissars et al. (2007) use discrete
event simulation to evaluate the differential performance between chase demand
and level scheduling for hospital admissions. They find that while level scheduling
is more efficient in that it achieves higher levels of utilization, chase demand, where
resources are made available as needed in response to fluctuations in demand,
results in shorter wait times for patients. The trade-off is that efforts at achieving
higher levels of utilization and efficiency may negatively impact patient flow. At a
more unit-specific level of analysis, Ridge et al. (1998) use queuing and simulation
to develop a stochastic model to support ICU capacity planning. In that setting,
lack of available ICU beds can negatively impact patient flow because patients in
need of intensive care are either held in the ED or transferred to another hospital.
In either case, the patient experiences a delay before they are placed in a proper
venue. Likewise, de Bruin et al. (2010) develop methods for determining how
much capacity should be available on each inpatient ward. They also show that
establishing the same target for bed utilization across all units can result in excessive
refused admissions, especially for smaller units. Again, patients that are refused
experience a delay in treatment. Depending on the specific medical condition,
the patient may have to wait in the ED or be transferred to another hospital.
Vissars (1997) conducts a case study and uses empirical methods and Monte Carlo
simulation to develop a mechanism for allocating human and physical resources to
various departments within a hospital. The mechanism is reflective of anticipated
demand but also considers long-term changes in patient mix, demographics, and
population size.

While capacity planning requires a detailed specification of how patients flow
through the various units within the hospital, these flows can vary dramatically
from one hospital to another. This variability has led to some work dedicated
towards developing modeling conventions that can aid future research. Harper
(2002) develops and illustrates an elaborate framework to guide the design of
hospital-based simulation studies. Likewise, Lane and Husemann (2008) develop
a framework and modeling convention to describe patient flow pathways in order
to provide a detailed yet generalizable framework that can be used as the basis
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for future analysis, research, and planning. In a similar vein, Fackrell (2009)
reviews the use of phase-type distributions to model the flow of patients within and
among hospitals and discusses the technical implications for the design of future
research studies. These works share a common theme in that they seek to provide
a mechanism to evaluate the impact of capacity decisions on the flow of patients
through the system.

3.5 Surgical Suites

Improving the utilization and performance of surgical suites is one of the most
important considerations for managers of HCOs that provide surgical services.
Whether located in an ambulatory surgical center (ASC) that deals with nonurgent,
nonlife-threatening conditions or in an acute care, hospital setting, surgical suites
are associated with very high costs and potentially very highrevenue.

In the USA, the cost of running a single surgical suite has been estimated to be
$20 per minute when all overhead costs are included (Dexter et al. 2002). On the
other hand, surgical suites are a major source of revenue for hospitals and ASCs. The
financial benefit from performing a surgical procedure is referred to as a contribution
margin. The contribution margin is a measure of the revenue the hospital receives
above the variable costs of supplies and devices needed to perform the surgical
procedure. In the USA, the contribution margin for a given surgical procedure can
range from a few hundred dollars to a few thousand dollars per hour of surgical
time.

Providing surgical services differs from other healthcare services in that the
patient’s perception of the quality of service is less important than in other settings.
While wait time and cycle time are very important considerations when evaluating
the performance of an ED or walk-in clinic, patients receiving surgical services
are usually sedated or anesthetized and do not perceive the passage of time. As a
result, research focused on improving operating room performance tends to frame
the problem as one of improving the throughput of a production process and places
less emphasis on patient-specific quality of service considerations.

Again, simulation is a common research methodology (see Kuzdrall et al.
1974, one of the first studies to use computerized Monte Carlo simulation to
improve throughput of surgical suites). More recently, Persson and Persson (2010)
employ queuing and discrete event simulation to compare different policies for the
allocation of available surgical suite time. In that problem setting, the hospital must
decide how much time to allocate to elective, nonurgent cases and how much time to
allocate to urgent cases. They model the impact of different case scheduling policies
on utilization and throughput by examining the flow of patients through the entire
process that begins with preoperative preparation, proceeds to the performance of
the surgical procedure, and concludes with postoperative recovery in the PACU.
On a related topic, but at a finer level of detail, Fredendall et al. (2009) combine
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empirical analysis and process improvement methodologies to develop workflows
that improve patient throughput.

Some researchers have also used simulation to study the impact of pre-hospital
policies on surgical suite throughput. For example, Vasilakis et al. (2007) use
discrete event simulation to compare the impact of placing nonurgent patients on
a single list and assigning them to the next available physician rather than using
the current, common practice of assigning patients to physician-specific lists. They
find pooled lists increase surgical suite throughput and reduce physician idle time.
The benefit is identical to the benefit received when transitioning from a multiple
queue/multiple server model to a single queue/multiple server model.

Operations researchers have also used analytical modeling techniques to improve
surgical suite throughput and performance. Adan et al. (2009) develop a mixed
integer linear programming model to determine how much surgical suite time should
be allocated to different surgeons from different specialties while also considering
downstream inpatient bed availability in order to achieve throughput objectives. In
that setting, throughput is important for two reasons. First, if the surgical suites
experience a backlog, then patients must wait longer in the preoperative holding unit
or the procedure must be rescheduled for a later date. Second, surgeons place a very
high value on their time. If a surgical procedure is not able to start at the scheduled
time, then the surgeon is idle until the case can be performed. Price et al. (2011)
utilize integer programming and discrete event simulation to develop a scheduling
mechanism that balances new surgical procedures that require inpatient beds with
anticipated discharges. The basic problem is that if a bed is not available, then the
patient in need of that bed will linger in the PACU. If the patient remains in the
PACU too long, then the PACU does not have the capacity to accommodate other
patients scheduled for recovery. If patients are not able to enter PACU, then the
anesthesiologist must recover the patient in the surgical suite. This delays the start of
the next case, and if the problem persists, the entire case schedule can be disrupted.
Similarly, Gupta 2007 uses mathematical programming to evaluate the impact of
downstream resource availability on OR throughput and discusses the implications
for scheduling and capacity planning.

3.6 Health System Planning

While most operations research applications in healthcare are focused on improving
patient flow via process improvement and HCO-specific capacity planning, another
stream of research frames the patient flow problem at the level of the overall health-
care system. In some cases, the research question is focused on a particular health
service. For example, Andersson and Varbrand (2007) use integer programming and
simulation to develop decision heuristics for ambulance dispatch and relocation to
minimize transit time for patients. Almost all of the numerous papers focused on the
provision of emergency medical services (EMS) include one or both of two patient
flow metrics: decreasing the amount of time that elapses before a patient receives
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EMS and decreasing the total cycle time from the initial call for help to the time the
ambulance arrives at a hospital.

A study by Asaduzzaman et al. (2010) is another example of system level
analysis for a specific healthcare service. In that study the authors develop a
queuing model that enables a planner to evaluate the implications of various capacity
planning decisions on the availability of neonatal cots. In this case, the authors frame
the problem such that all neonatal beds in the healthcare system are considered along
with the time and cost of travel.

Other works at this level of analysis are more comprehensive in that they consider
all health services, not just a single service like EMS. However, these studies tend
to include less detail and treat demand in aggregate. For instance, van Zon and
Kommer (1999) develop a dynamic LP that guides central planners as they seek to
allocate and reallocate healthcare resources in response to changing health trends,
demographic changes, population growth and shifts, and changes in case mix. At
this level of analysis, researchers tend to model monthly or annual demand and
avoid the day-to-day and hour-to-hour fluctuations that are common considerations
for HCO-specific research.

4 Example: Patient Flow in a Hospital-Based
Surgery Practice

To illustrate the challenges and opportunities associated with applying operations
research techniques to patient flow problems, we take a closer look at the capacity
planning and resource allocation decisions associated with the provision of surgical
services in a typical US hospital. In essence, hospitals make a series of capacity
decisions where decisions at one stage place a constraint on the maximum available
capacity at a subsequent stage. As a result, patient flow bottlenecks can be the result
of near-term and long-term capacity decisions and scheduling decisions that can
impact how capacity is utilized. Figure 7.1, adapted from Olivares et al. 2008,
illustrates the high-level macro-process and the frequency of each step. Note that
while the macro-process shown below is general to most healthcare systems, the
information and objectives considered at each stage can vary considerably between
privatized healthcare systems and publically funded healthcare systems.

The first three steps all involve determining how much surgical suite capacity
to make available, but they differ in terms of objective and/or the information that
is considered. The final two steps are focused on scheduling urgent and nonurgent
cases into available staffed capacity.

In order to guide scheduling, many hospitals have adopted the practice of block
scheduling (Dexter et al. 2005). The block schedule specifies how much surgical
suite time is allocated to each surgeon or surgical subspecialty for each day of a
one- or two-week period. The block schedule then serves as a template that recurs
over time. The block schedule serves two main purposes. First, from the perspective
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Fig. 7.1 Determining and allocating surgical suite capacity

of the hospital, it is used to guide the scheduling of surgical procedures and is
helpful in identifying gaps in staffing. Second, it helps surgeons plan their time
efficiently. This is very important because most surgeons maintain private practices
and utilize the hospital for the provision of some, but not all, surgical procedures.
The block schedule can have a significant impact on patient flow. If the time
allocated to different surgeons and surgical subspecialties does not reflect actual
demand distributions, the capacity is misallocated. As a result surgeons can suffer
negative consequences including difficulty scheduling procedures and a greater
likelihood that the case will be performed late in the day after other procedures
have been finished.

The Integrated Block Sharing (IBS) mechanism developed in Day et al. (2012) is
based on two central concepts that are essentially relaxations of assumptions made
in prior research. The first relaxation is that the IBS mechanism allows block time
to be granted in a variety of different configurations. Prior research assumes block
time is either granted to individual surgeons or to entire surgical subspecialties (e.g.,
block time is allocated to, say, orthopedics or vascular surgery in general, and the
schedule is silent on how that time is shared among individual surgeons). IBS allows
for block time to be granted to individual surgeons, small groups of surgeons, or any
other configuration that improves surgical suite utilization.

The second relaxation is that the IBS mechanism allows for nonurgent cases
to be scheduled during a rolling two-week window of time rather than on the
day the surgeon requests. That is, IBS assumes a level scheduling approach, and
this assumption directly impacts how much block time surgeons need. Although
demand is uncertain, the ability to load balance that demand means that a given
level of service can be provided using fewer staffed hours of surgical suite time
than if load balancing were not possible. The ability to load balance also impacts
the decision of determining of how many rooms to open on a given day of surgery.
Since requests for surgical suite time can be met at a later date, schedulers can avoid
opening surgical suites to accommodate a single case in favor of putting the case on
a different day where the room can be more fully utilized.
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The impact on patient flow is twofold. First, since IBS allows groups of surgeons
to “share” block time, lower-volume surgeons no longer have to wait until a
few days before the actual surgery to schedule a case. This allows the patient to
plan in advance and makes it possible to schedule any required preoperative tests
or examinations in a manner that accommodates the patient’s schedule. Second,
load balancing demand has the net effect of reducing the peak volume of the
number of procedures performed each day and smoothing the variability in demand
experienced by the PACU and inpatient units.

5 Future Research Opportunities

As healthcare systems strive to improve patient flow, operations research will play
a strong role in shaping the operational processes of the future.

Across the industrialized world, a growing number of HCOs are gradually
transforming into increasingly large organizations. There are a number of reasons
for this growth. First, larger organizations have the ability to dedicate resources
to initiatives that would not be economically feasible for smaller organizations.
Investments in analytics and process improvement are a good example. Given the
cost of highly trained, specialized operations research analysts, any investment in
process improvement only makes sense if the improved process can be executed
numerous times. Larger organizations, through sheer volume, are better suited to
invest in process improvement initiatives because it is more likely they will yield a
return on that investment.

As talent and opportunity collide, HCOs are identifying more areas that can
benefit from the application of operations research methods. For example, HCA,
Inc., a for-profit health system that owns and operates 164 hospitals and 106 free-
standing surgical centers in the USA and UK, maintains a team of “management
engineers,” who are essentially industrial engineers with extensive training in
healthcare. That represents an investment that is far beyond the reach of a stand-
alone community hospital. For HCA, the investment has paid off. HCA hospitals
are frequently named among the most efficient in the USA with respect to achieving
good outcomes, delivering high-quality service, and keeping costs low.

On the other hand, a natural consequence of an increase in size is a corresponding
increase in bureaucracy, more complex internal controls, and a more challenging
change management environment. While greater size provides the internal resources
needed to identify and formalize improvement opportunities, larger organizations
must remain capable to move ahead with new ideas.

The implications for operations researchers are that a growing number of HCOs
are capable to evaluate and implement complex optimization models and simula-
tions into clinical practice. As these organizations deploy more complex information
systems, there are opportunities for OR researchers to develop algorithms and
optimization routines to help ensure that limited healthcare resources are used as
productively as possible. However, since larger organizations face a more complex
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change management environment, process improvement efforts must consider the
needs and objectives of multiple stakeholder groups. While considering multiple
objectives can increase the complexity of the problem, it can also result in solutions
that, once found, are easier to implement into practice.

Another area of opportunity is that many HCOs are evolving into more complex
organizations that provide a broader array of healthcare services. This trend is driven
by a variety of factors including a desire to achieve economies of scale, obtain
bargaining power over suppliers and insurance companies, and secure patient re-
ferral pipelines. The growth in complexity comes as HCOs expand horizontally and
vertically (through internal growth initiatives or through mergers and acquisitions)
across the healthcare value chain. Horizontal integration involves operating two or
more organizations that perform the same function within the healthcare value chain.
For example, three separate hospitals in a given metropolitan area might actually be
a single HCO.

Vertical integration involves operating organizations that perform different func-
tions within the healthcare value chain. For example, in the USA, hospitals and
health systems have been purchasing clinics and private medical practices. The
motivation for a hospital to purchase, say a cardiology practice, is to secure
the pipeline of referrals and procedures generated by that practice. In the past
the cardiologist may have performed some procedures at one hospital and other
procedures at a different hospital. By acquiring the practice, the hospital is able
to grow volume and revenue because it can now perform all of the physician’s
procedures. The resulting vertical integration also helps to ensure that the interests
and priorities of physicians and hospitals are better aligned. In the past, the physician
was indifferent as to where she performed the procedures. As an employee of the
hospital, she shares an interest in the economic well-being of her employer.

Vertical integration provides HCOs access to information that was not available
in the past and sets the stage for a level of collaboration among clinical providers
that did not exist in the past. Regarding access to information, many of the
studies mentioned earlier have treated demand as exogenous to the problem. That
assumption was fine and did reflect the perceived operational environment of the
HCO at that time. However, the actual situation was a bit more nuanced. Front
line HCOs, like physician offices and clinics, have a great deal of information that
is potentially useful to demand forecasting and resource planning. Unfortunately,
downstream providers did not historically have access to that information because
the front line HCOs had little incentive to share the information. As these different
HCOs merge to become vertically integrated entities, they will have access to
information that was never available to them in the past. This creates opportunities
to develop new forecasting models, scheduling methods, and resource allocation
policies that achieve better performance by taking advantage of new information.

By aligning the interests of formerly disparate HCOs, vertical integration also
creates opportunities to improve coordination across the healthcare delivery process.
In the past, downstream HCOs had to treat physicians as customers. Initiatives such
as efforts to improve surgical suite utilization through the allocation of surgical
suite time to various surgeons and efforts to decrease inpatient length of stay
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through more frequent physician assessments were all dependent on whether the
involved physicians were supportive. Gaining that support is often difficult. In many
cases where physicians are independent entities, they are understandably not overly
enthusiastic about initiatives that required them to do more work or be more flexible
without any additional compensation. Vertical integration provides an environment
where the incentives to collaborate are stronger and the leaders of the HCO can exert
a greater degree of managerial control.

The presence of more vertically and horizontally integrated organizations creates
a number of new research opportunities. For example, vertical integration enables
the HCO to more precisely integrate downstream resource availability with schedul-
ing. In the past, private physicians did not consider the needs of any given hospital as
they scheduled patient procedures. Once the physician practice has been integrated,
new processes are possible. Likewise, horizontal integration creates the opportunity
to pool similar resources. This would require new processes and procedures for
determining how the pooled resources should be allocated.

Information technology is also creating new opportunities for operations re-
search. While the specific drivers of information technology (IT) adoption vary
across the health systems of industrialized nations, two trends have emerged. IT
is becoming more prevalent and more mobile. HCOs now have access to more data
than ever before, and it is increasingly available in real time. This enables improved
performance analysis and also makes it possible to develop decision-support tools
that, in combination with mobile computing devices, actually fit the workflow.

The increased flow of information can potentially decrease the amount of time
needed to provide care, as laboratory and radiography results are made available
more quickly. Increased information transparency can be used to help bed managers
identify which inpatient units have beds and allocate patients strategically to avoid
inadvertently creating patient flow bottlenecks. Improved information flow between
HCOs will make it easier to transfer patients to the next level of care by making it
easier for case workers to find suitable long-term care, rehabilitation, and psychiatric
beds.

On the other hand, HCOs are challenged to transform increasingly large amounts
of data into policies that positively impact patient flow. While the ability of
information systems to collect and disseminate information is critical, mathematical
modeling and operations research techniques are equally important in transforming
data into actionable knowledge. For example, decisions on how to disperse patients
to skilled rehabilitation facilities should reflect future expectations of discharges and
admissions.

6 Conclusions

The healthcare industry has not historically been considered a pioneer in change
management and process improvement. Long considered “behind” on information
technology (IT) and having “discovered” Six Sigma and Lean decades after other
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industries, the healthcare industry has a reputation for rapid advances in medical
technologies but slow progress on cost containment and efficiency metrics.

However, the catalyst for future progress is present: lower margins. One of the
greatest barriers to process improvement, and the change management that ensues,
is a lack of institutional support. While other industries are dominated by for-profit,
private sector firms, many of the largest HCOs are public, not-for-profit firms that
lack the internal incentives for-profit firms use to drive innovative behavior. In most
cases, improving a process does not benefit any individual in the HCO in any
measurable way. While patients might perceive the quality of service as “better” if
they spend less time in the waiting room, those involved in the modified process did
not receive bonuses or higher pay. The net effect of the lack of incentives was that
many process improvement efforts were not pursued because the perceived benefit
or reward was outweighed by the perceived cost of change.

HCOs are increasingly finding that decreased reimbursement levels from private
insurers and government agencies are resulting in lower margins on the healthcare
services they provide. Lower margins have also increased the urgency for improved
delivery processes and higher levels of utilization. While many HCOs do not want
to change, almost all will have to change in order to survive. The need to change
sets the stage for operations researchers to explore new healthcare delivery models.
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Chapter 8
Capacity Allocation and Flexibility
in Primary Care

Hari Balasubramanian, Ana Muriel, Asli Ozen, Liang Wang,
Xiaoling Gao, and Jan Hippchen

1 Introduction

Primary care providers (PCPs) are typically the first point of contact between
patients and health systems. Broadly they include family physicians, general in-
ternists, geriatricians, and pediatricians. From a patient’s perspective, PCPs provide
the majority of care they receive during their lifetime. They are responsible for a
variety of health services including preventive medicine, patient education, routine
physical exams, and referrals to medical specialties for secondary and tertiary care.
The benefits of a strong primary care system are well documented in the clinical
literature. Papers in the health services literature, Shi et al. (2005) for example,
have established that increased access to primary care (1) improves access to
health services for relatively deprived population groups, (2) has a strong positive
relationship with prevention and early management of health problems, and (3)
leads to increased familiarity with patients and, consequently, to less wasteful
expenditures due to inappropriate specialist care.

Despite its pivotal role, primary care physicians receive lower salaries than
specialists, which has the effect of driving medical students away from pursuing
primary care careers. This is one of the main reasons for shortages in primary care,
which are common in many countries. A recent study by the American College
of Physicians (American College of Physicians 2006) reports that primary care in
the USA “is at grave risk of collapse due to a dysfunctional financing and delivery
system.” They also emphasize the growing demand for primary care; by 2015, “an
estimated 150 million Americans will have at least one chronic condition.”
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Timely access to care and patient–physician continuity, the two metrics important
to primary care practices, have been adversely affected due to these broader trends.
The focus on timely access, or the ability to secure an appointment quickly, is
well known in the operations research literature. The inability to get a timely
appointment to a primary care physician increases the likelihood of patients
visiting the emergency room (ER) (Rust et al. 2008). This hinders the appropriate
management of chronic diseases that could have been effectively treated in a primary
care setting. It also exacerbates the problem of long patient wait times in crowded
emergency rooms.

Patient–physician continuity is one of the hallmarks of primary care and
promotes a long-term relationship between the patient and the physician. Nu-
merous studies have documented the importance of continuity to patients (see,
e.g., O’Malley and Cunningham 2008; Atlas et al. 2000). Several studies (Gill
and Mainous 1999) show that patients who regularly see their own providers are
(1) more satisfied with their care, (2) more likely to take medications correctly,
(3) more likely to have problems correctly identified by their physician, and (4)
less likely to be hospitalized. The link between lack of continuity and increased
ER use has been shown in Gill et al. (2000). Continuity is especially important
for vulnerable patients with a complex medical history and mix of medications
(Nutting et al. 2003)—patients with long-standing chronic conditions (e.g., diabetes,
hypertension, and coronary artery disease). This forms a large percentage of the US
population. Continuity is also beneficial for physicians, since their workloads are
more focused (O’Hare and Corlett 2004).

How are timely access and patient–physician continuity related to capacity
planning and allocation in primary care? When it comes to access to appointments,
the two measures are often in conflict. It may be possible for a patient to get a
same-day appointment but not necessarily with his/her own physician. Alternatively,
a patient may get to see his/her own physician but only weeks later. The two
extremes are illustrated in Fig. 8.1. Figure 8.1a shows the situation where patients
see only their own physician, while in Fig. 8.1b all physician resources are pooled. In
the former, continuity is perfect but timely access may be strained, while the latter
results in high levels of timely access but patients may end up seeing unfamiliar
physicians.

The focus of this chapter is on capacity planning and allocation for primary care
practices at various levels of the planning hierarchy to balance timely access and
continuity. For the purposes of this chapter, the term capacity refers to the number
of appointment slots a physician has in a workday. Capacity allocation refers to the
assignment of patient requests for an appointment to available appointment slots.

At the strategic level, we consider the impact of size and composition of a
physician’s panel on the ability to provide timely access and continuity. In primary
care, a physician is responsible for the long-term, holistic care of the patients
in his/her panel. The size and composition of a physician panel determines a
physician’s daily appointment burden. The management of panels thus determines
capacity planning at the highest level. Next, at the tactical level, we illustrate
how a multi-physician practice can manage the inherent flexibility of primary
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Fig. 8.1 Dedicated versus pooled physician capacity illustrating the best cases for continuity and
timely access, respectively

care physicians to see patients of other physicians to balance timely access and
continuity. We study physician flexibility at the tactical level where two uncertain
demand streams–prescheduled (nonurgent) appointments and open-access (same-
day) appointments–must share the same capacity. Prescheduled appointments are
booked in advance of the workday, while open-access appointments have to be
fulfilled the same day. Finally, at the operational level, we also include a discussion
of the dynamic context, where decisions about capacity allocation under flexibility
have to be made as same-day requests for appointments arrive over the course of the
day, that is, under incomplete demand information.

The remainder of this chapter is organized as follows. In Sect. 2, we discuss
the literature relevant to capacity allocation in primary care. Section 3 provides the
background on capacity planning at the strategic level and the design of physician
panels and quantifies the impact of casemix using an example. In Sect. 4, we discuss
flexibility in primary care and how it differs from flexibility in manufacturing and
other service contexts. In Sect. 5 we provide a modeling framework for testing
the impact of flexibility at the tactical level where physician capacity has to
accommodate both prescheduled as well as same-day (open-access) appointments.
We also provide computational results. In Sect. 6, we provide an outline of the
decision framework for using flexibility in the dynamic case (as same-day requests
come in over the course of a workday) and discuss other directions for future
research. We conclude by summarizing our main findings in Sect. 7.
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2 Literature Review

The application of operations research to appointment scheduling in healthcare is
a growing area of research. We focus here only on the papers most relevant to our
research in the primary care context. For a detailed discussion of the impact of
primary care access on population health, we point the reader to key references
from the health services literature, such as Shi et al. (2005); Macinko et al. (2007,
2003).

Over the last decade the adoption of open access (Murray and Berwick 2003),
a scheduling policy which urges practices to provide same-day appointments
irrespective of the urgency of the request, has brought to the forefront questions
regarding appointment system design. What should physician panel sizes be to
allow open access? What if patients prefer to have appointments at some future
time rather than see a doctor the same day? These questions have necessitated the
use of queueing and stochastic optimization approaches that provide guidelines to
practices. For instance, Green et al. (2007) investigated the link between panel
sizes and the probability of overflow or extra work for a physician under open
access. They proposed a simple probability model that estimates the number of
extra appointments that a physician can be expected to see per day as a function of
his/her panel size. The principal message of their work is that for advanced access
to work, supply needs to be sufficiently higher than demand to offset the effect of
variability. In Green and Savin (2008) a queueing model was used to determine the
effect of no-shows on a physician’s panel size. They developed analytical queueing
expressions that allow the estimation of physician backlog as a function of panel size
and no-show rates. In their model, no-show rates increase as the backlog increases;
this results in the paradoxical situation where physicians have low utilization even
though backlogs are high—this is because patients that had to wait for long do not
show up.

In Gupta et al. (2006) results of empirical study of clinics in the Minneapolis
metropolitan area that adopted open access are presented. They provided statistics
on call volumes, backlogs, and number of visits with own physician (which
measures continuity) and discuss options for increasing capacity at the level of
the physician and clinic. In Kopach et al. (2007) a discrete event simulation is
used to study the effects of clinical characteristics in an open-access scheduling
environment on various performance measures such as continuity and overbooking.
One of their primary conclusions is that continuity in care is affected adversely
as the fraction of patients using open-access increases. The authors mentioned
provider groups (or physicians and support staff) working in teams as a solution
to the problem. Robinson and Chen (2010) compared the performance of open
access with a traditional appointment scheduling system. In the open access
system, a practice has to deal with day-to-day variability but very few no-shows,
while in the traditional appointment system, patients book their appointments well
in advance with the result that day-to-day variability is smoothed but patients
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have a higher probability of no-show. Their numerical analysis reveals the open
access generally outperforms the traditional appointment system when the objective
function is a weighted average of patients’ waiting time (lead time to appointment,
the physician’s idle time, and the physicians’ overtime). Only when the patient
waiting time is held in little regard or when the probability of no-show is small does
the traditional system work better than the open-access system. Liu et al. (2010)
proposed new heuristic policies for dynamic scheduling of patient appointments
under no-shows and cancelations. They find that open access works best when
patient load is relatively low.

The papers most closely related to the topic of this chapter are by Qu et al.
(2007) and Gupta and Wang (2008). Qu et al. (2007) derived conditions under
which a solution for the number of prescheduled appointments to reserve is locally
optimal. In Sect. 5, we show a stronger result, guaranteeing global optimality, by
first showing that our revenue maximization function has diminishing returns under
mild assumptions. Gupta and Wang (2008) explicitly modeled many of the key
elements of a primary care clinic. They considered scheduling the workday of a
clinic in the presence of (1) multiple physicians; (2) two types of appointments,
same-day as well as nonurgent appointments; and (3) patient preferences for a
specific slot in a day and also a preference for physicians. The objective is to
maximize the clinic’s revenue. They use a Markov decision process (MDP) model
to obtain booking policies that provide limits on when to accept or deny requests
for appointments from patients. In terms of flexibility, their clinic is fully flexible
with regard to both nonurgent and urgent appointments. The principal difference
between their model and the capacity allocation framework proposed in Sect. 5 is
that patient preference drives the scheduling of prescheduled appointments in Gupta
and Wang (2008), while we try to balance prescheduled demand and same-day
demand through physician flexibility and an explicit consideration of its effect on
timely access and continuity.

3 Background on Primary Care and the Impact of Casemix

3.1 Patient Types

At the strategic level of the three-part hierarchy defined in the Introduction, a
physician builds a panel of patients. The physician’s appointment burden depends
on the (1) size, and (2) casemix or composition of the panel. A physician working
full-time may have 1500–2000 patients. Casemix refers to the type of patients in the
panel and can be characterized by various patient attributes, such as age and gender
and the chronic conditions afflicting the patient, which play an important role in
determining the distribution of visits. For example, a panel where the majority of
patients are young and healthy will have a different appointment demand profile
compared to a panel consisting mostly of elderly patients with chronic conditions.
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Fig. 8.2 Histograms of the percentage (or fraction) of total patients requesting appointments in a
week for two different patient age and gender categories

Patient classification can be useful for clinics because they enhance a practice’s
understanding of its population and disease trends and allow it to design its care
models effectively. Furthermore, Barbara Starfield’s seminal work about ambulatory
care groups (ACGs) (Starfield et al. 2007) argued that understanding the role of
patient clinical complexity in care utilization forms the cornerstone for effective
resource planning and determining payment methods in healthcare.

Age and gender are the simplest patient classification in lieu of more disease-
specific data. It has also been found to be generally effective (Murray and Berwick
2003; Balasubramanian et al. 2010). Figure 8.2 shows the distribution of the fraction
of total patients requesting appointments in a week for two categories—males (48–
53 years old) and females (73–78 years old)—based on historical data from 2004
to 2006 (156 weeks), from the Primary Care Internal Medicine Practice (PCIM) at
Mayo Clinic, Rochester, MN. The two distributions show how appointment request
rates can vary with gender and age. There are 708 males 48–53 y.o. (48–53 M) and
986 females 73–78 y.o. (73–78 F) empanelled in the practice. 8.4% of all 73–78 F
patients request for appointments on average in a week as opposed to 4.8% of all
48–53 M patients. The standard deviation 73–78 F (3.07%) is more than double that
of 48–53 M (1.1%).

In Naessens et al. (2011) the authors show that more than an individual chronic
condition such as diabetes or hypertension, it is the number of simultaneous chronic
conditions (or comorbidities) that predicts the consumption of healthcare costs.
Furthermore, for primary care physicians, focusing on all comorbidities of a patient
is more holistic than focusing in isolation on specific chronic conditions. Figure 8.3
shows mean and standard deviation of visit rates as a function of the number of
patients under various counts of comorbidities. The data was simulated based on
historical visits of 27,000 patients empanelled in the PCIM practice (Ozen and
Balasubramanian 2012). Clearly, not only does the mean number of visits increase
with the number of comorbidities; the variance does as well. For instance if a
physician has 50 6-comorbidity patients, then he/she will have 450 appointment
requests on average each year. If he/she has the same number of 0-comorbidity
patients, he/she will have only 75 yearly visits on average.



8 Capacity Allocation and Flexibility in Primary Care 211

Fig. 8.3 Mean and standard deviation of yearly visits for groups with different counts of
comorbidities

Table 8.1 Four physicians at PCIM, Mayo Clinic, and their patient casemix based on comorbidity
count

Physicians 0 1 2 3 4 5 6 7 Panel size

Physician 1 260 249 226 161 108 42 14 3 1,063
Physician 2 299 293 212 147 77 26 6 1 1,062
Physician 3 214 253 223 177 115 44 21 5 1,053
Physician 4 290 296 218 145 84 27 12 5 1,077

3.2 Example: Four Physicians

We now consider an example of four physicians with approximately the same panel
size (1,050 patients), but different casemixes, based on comorbidity counts. These
panel compositions are shown in Table 8.1. The casemix can be used to simulate
the distribution of daily visits for each physician by sampling for each comorbidity
count from historical data. Once the daily visit distribution is obtained, the overflow
for a given daily appointment capacity can be calculated. Overflow is simply the
fraction of total samples in which the patients’ visit requests exceed the available
capacity of the physician. Patients that are not seen visit either an unfamiliar
physician or an ER or may choose to wait to see the physician on another day.
Thus, if overflow is high, both timely access and continuity are adversely affected.

Overflow can also be modeled in the following way. Consider a practice in
which there are J physicians and M patient classes. First a practice determines pi,
the probability that a patient of class i = 1, . . . ,M will request an appointment on
any given day. This can be obtained by calculating the total visits generated by
all patients of the class i in the practice over a period of time—for example, two
years—and dividing it by the number of unique class i patients as well as the number
of workdays in the two-year period. The method is similar to the one proposed
in Green et al. (2007). Next, suppose ni j denotes the number of class i patients
in physician j’s panel. If we assume that each patient requests independently of
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Fig. 8.4 Overflow for the physicians as a function of the daily capacity (appointment slots)

others, then the total requests from each patient class for each physician can be
modeled as a binomial random variable, with mean ni j pi and variance ni j pi(1− pi).
Going further, the mean demand for the entire panel is given by μ j = ∑M

i=1 pini j and

standard deviation σ j =
√

∑M
i=1 pi(1− pi)ni j. We will use the normal approximation

of a sum of binomial random variables. Then O j, the overflow for physician j, is
related to the percentile of the standard normal distribution, denoted by Φ, in the
following way: O j = 1−Φ(

Cj−μ j
σ j

). Here Cj is the capacity of the physician, that is,
the total daily slots that he/she has available in a day.

Note that this analysis is at the aggregate level—it does not consider the actual
duration of appointments once patients are in the clinic, but tests whether the number
of appointment slots (typically 20-min slots) a physician plans to have available in
a day is sufficient. It also assumes that all appointments are of the same type. In
reality, some appointment requests (such as follow-up appointments) are for a future
day, while some are same-day requests. Nevertheless, if overflow is high for all
appointments, then it is guaranteed that the timely access for both same-day as well
as nonurgent future appointments with one’s own PCP will be adversely affected.

The overflow for the four physicians of Table 8.1 as a function of the total
capacity (daily appointment slots) is shown in Fig. 8.4. We calculated these overflow
profiles using the binomial approximation described above, but it is also possible
to obtain the same curves by sampling from historical visit data. For the same
capacity, physician 3 and physician 1 have relatively high levels of overflow. This is
because there are more patients with two or more comorbidities in their panels (see
Table 8.1), and these patient groups generate a higher number of visits. This graph
shows that it is inappropriate for clinics to make capacity decisions based solely on
panel size. Casemix is also an important consideration. It is also clear that to keep
overflow levels down to manageable levels, 20 or more appointment slots may be
needed for each of the 4 physicians.
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Such analysis allows practices to identify which physicians are overburdened.
In the above case, it is clear that physicians 3 and 1 need to have their capacity
enhanced—either by working extra hours in a day or by additional nurse practitioner
support—or a reduction in the size of their panels. The long-term option for
practices is to achieve a better balance among physicians by moving high-demand,
high-variability patients from an overburdened physician to a physician with
available capacity. More details about the panel redesign approach are presented
in Balasubramanian et al. (2010). The paper shows that it is possible to reduce the
wait time and the number of redirections to unfamiliar physicians by more than 35%.

The difficulties of redesigning panels are also discussed in Balasubramanian et al.
(2010). Reallocating patients abruptly could damage existing patient–physician
relationships. Rather the appropriate strategy would be to redesign panels when
opportunities present themselves. Many primary care panels are dynamic. Patients
enter and leave them all the time as they age, are diagnosed with new conditions,
move out of the geographic area, and many other reasons. A useful by-product
of this constant state of flux is that it affords continuous opportunities to make
incremental changes to patient panels without disrupting the visit patterns of patients
who already have strong ties to their PCP. For example, practices can leverage
patients who have yet to decide on a PCP, new patients, and the turnover of existing
patients. Patient surveys can be used to determine preferences and inclination
towards change. In some cases, to minimize disruption, reassignment may simply be
to another physician, whom the patient has seen almost as often as his/her own PCP,
or to a physician within the same care team (if the care team consists of multiple
physicians).

Another viable alternative to panel redesign is carefully managing physicians’
ability to see patients of other physicians, depending on whether the requests are
urgent/same-day requests or nonurgent requests. This management of physician
flexibility forms the content of the next two sections.

4 Flexibility in Primary Care

The inherent flexibility of PCPs to see patients from other panels gives practices
another lever to provide timely access to care. Using this flexibility, of course,
comes at a cost: the resulting loss of continuity when a patient sees unfamiliar
physicians. How should practices be designed and managed to use this flexibility
to better balance timely access and continuity?

A practice can achieve maximum continuity of care by mandating that patients
should see only their own provider. This, however, hampers timely access to care.
At the other extreme, a practice may allow patients to see any provider. This is ideal
for timely access, but hampers continuity of care. The two extremes are shown in
Fig. 8.5a, b. In the first case, the providers are dedicated, while in the second the
providers are fully flexible. Figure 8.5c–e show partially flexible configurations that
offer a middle ground between (a) and (b). In each of them, a patient sees only one
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Fig. 8.5 Figure illustrating different flexibility configurations that trade off continuity of care with
timely access

physician other than his/her own PCP. Figure 8.5c is referred to as the 2-chain in the
manufacturing flexibility literature (Jordan and Graves 1995) and allows demand
variation to be absorbed effectively by the entire practice. In a 2-chain all physicians
are directly or indirectly linked to each other, and this property can be exploited to
cope with variability in demand. If demand is high for a particular physician, the
allocations can be designed such so that the excess demand is shifted to a physician
who has capacity available, even though the latter physician may not be directly
linked to the former. While the 2-chain is a concept new to healthcare, practices
do use the subgroup configuration (Fig. 8.5d). Physicians here may be divided into
independent, self-contained teams (such as in the PCIM practice at Mayo Clinic and
other academic primary care practices). The dedicated with overflow configuration
of Fig. 8.5e is also common—here if the patient’s PCP is unavailable, the patients
tend to see an overflow physician or nurse practitioner (we have observed this setting
at a small private practice as well as a community clinic in Western Massachusetts;
academic medical centers also use this model).

In the ideal open-access world, there are no appointment types, such as urgent
and nonurgent. All appointments are treated identically and scheduled the same
day with the patient’s PCP. However, the reality is that clinics have a fraction of
their schedule available for open-access or urgent appointments. Such appointments,
because of the perceived immediacy of need, are typically seen the same day, but not
always by the patient’s personal physician. The rest of the clinic’s schedule consists
of appointments booked a week or more in advance. We call these appointments
prescheduled appointments. These nonurgent appointments are typically physicals
or follow-up appointments for patients with chronic conditions. While the loss
of continuity has to be minimized for all appointments, it can be appropriately
sacrificed for urgent appointments needing immediate attention by introducing some
form of flexibility. We will thus assume that flexibility applies only to urgent
appointments. Nonurgent or prescheduled appointments are always seen by the
patient’s own provider.
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We approach the design and management of the flexible practice at two different
levels. At the tactical level in primary care, the design of flexibility needs to
consider capacity allocation for the two streams of uncertain demand, nonurgent
(prescheduled) and urgent (open access), each with different requirements for
timeliness and continuity; while at the operational or dynamic level, at which
same-day, urgent appointments are booked as patients call over the day, allocation
decisions have to be made in real time without full knowledge of demand.

In the remainder of this section, we first summarize the main lessons from the
flexibility literature, as they apply to the primary care context, and then consider the
tactical and operational cases in detail.

4.1 Flexibility Literature Perspective

Our study of flexibility in primary care practices builds upon the extensive literature
on manufacturing flexibility and its more recent application to service systems and
worker training and allocation. There are, however, key operational differences
that make the application of flexibility to primary care worthy of further analysis:
(1) two demand streams associated with each resource, where one (prescheduled
demand) is realized before the other (open-access demand); (2) two conflicting
objectives, timeliness and continuity of care; (3) no fixed cost associated with
installing flexibility, but a loss in continuity for using it; and (4) appointments are
booked over time, and thus future resource capacity is sequentially being allocated
under partial demand information.

As in the case of cross-training in serial production lines (Hopp et al. 2004),
flexibility improves efficiency in two main ways in the primary care environment.
The first benefit is in what they refer to as capacity balancing: If physician
panels are imbalanced with respect to the induced average number of visits to a
physician per day, flexibility will allow the load to be shared between physicians,
therefore improving overall timeliness of care and physician utilization. The second
is in variability buffering: Even if the average workloads are balanced between
physicians, variability in patient requests for a particular day/time will be better
accommodated by a flexible environment. Hopp et al. (2004) compares a strategy
that balances capacity using the minimum amount of cross-training with the
chaining of skills in the sequence of the serial line. They find that skill-chaining
strategies are more robust and more effective in variability buffering. The concept
of chaining has received much attention since it was first introduced in the seminal
work of Jordan and Graves (1995). In a single-period, multiproduct, multiplant
production network, they show that the 2-chain (Fig. 8.2c) results in increased
sales and capacity utilization, relative to the dedicated configuration (Fig. 8.2a),
comparable to those achieved by a fully flexible system (Fig. 8.2b). That is, a few
links, configured in the right way (2-chain), provide almost the same performance
as the complete, fully flexible network. Furthermore, this strategic analysis has
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been extended recently to multistage supply chains (Graves and Tomlin 2003) and
to a made-to-order environment where flexibility is also used to hedge against
operational variability (Muriel et al. 2006). Chou et al. (2010) distinguishes between
range (the different demand scenarios that can be accommodated) and response (the
cost of doing so; that is, the cost of using secondary rather than primary resources for
production/service) of flexible systems. They show that upgrading system response
(i.e., building systems where physicians can handle other physician’s panels at lower
additional cost) outperforms improving system range (creating systems that can
accommodate ever more extreme patient demand scenarios). This result suggests
that in the primary care setting, the benefits of restricting the number of doctors that
can see a particular patient (resulting in lower cost of service because of familiarity
and thus increased response) are likely to outweigh the higher range provided by a
fully flexible team care practice where any doctor can see the patient.

A number of computational reports in the literature (e.g., Jordan and Graves
1995) point out an increase in the marginal benefit associated with adding one more
flexibility link (i.e., allowing one more panel to see a second physician) in forming
the 2-chain, culminating with a markedly higher increase when the last link that
closes the chain is put in place. Recently, Simchi-Levi and Wei (2012) prove that is
always the case, and show that long chains are always superior to any other strategy
where each product (panel) can be produced at two plants (can be assigned to two
physicians). This suggests that the larger practices will benefit most by managing
their inherent flexibility in the form of a long chain.

5 Example of Flexibility in Primary Care

In this section we provide a specific example of a model for evaluating the influence
of flexibility in a primary care practice. We focus at the tactical level. We provide
theoretical results relevant to the model and numerical experiments that illustrate
the relative benefits of flexibility.

The basic question addressed by the model is how much of the physician’s total
daily workload should be dedicated to prescheduled versus urgent appointments.
This will depend on how much flexibility the practice allows when allocating urgent
patient demand. We thus need to address this question under different flexibility
configurations, as illustrated in Fig. 8.2. This will also allow us to compare their
resulting performance in terms of system revenue, continuity, and timely access.
For that purpose, we develop a two-stage stochastic integer program that can
accommodate any flexibility configuration and greedy, but exact, algorithms to
quickly calculate the optimal capacity allocations in dedicated and fully flexible
systems. The analytical and experimental results and conclusions summarized here
are from Balasubramanian et al. (2010).

Two-stage capacity allocation model: We solve the capacity allocation prob-
lem for a single workday using a two-stage stochastic integer programming model.
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We consider a general primary care practice with M physicians, indexed by i =
1,2, . . . ,M, each with Ni available appointment slots. Let A be the set of all
possible panel–physician links (i, j) such that the open-access (same-day) requests
of patients in panel i (i.e., physician i’s panel) can be served by physician j. The set A
represents the particular flexibility configuration under consideration. Let Rp

i be the
revenue associated with physician i seeing one of his/her prescheduled patients and
Ro

i j be the revenue associated with physician j seeing an open-access patient of panel
i, for any (i, j) ∈ A. The demand for prescheduled and open-access appointments is
represented by a random vector D = (Dp

1,D
o
1, . . . ,D

p
M,Do

M) where the superscript
p refers to prescheduled and o to open access and the subscript indicates the
primary care physician. Vector D follows a discrete distribution that assigns a
probability qs to each possible realization of demand, indexed by s, s = 1,2, . . . ,S.
That is, P[D = (dp

1s,d1s)
o, . . . ,dp

Ms,d
o
Ms)] = qs. We introduce the following capacity

allocation variables:

Np
i : Number of slots allocated for prescheduled demand of physician i.

xp
is: Number of patients allocated to physician i under demand realization s.

xo
i js: Number of open-access patients of panel i assigned to physician j under

demand realization s, for all i = 1,2, . . . ,M and (i, j) ∈ A.

The objective is to maximize the expected revenue of satisfying prescheduled and
open-access appointments. We use binary decision variables to capture whether the
prescheduled demand for a physician is less or greater than the corresponding Np

i
value. Inequality (8.3) ensures that φiuis = 1 if dp

is < Np
i . Inequality (8.4) ensures that

φiuis = 0 if dp
is > Np

i . Equations (8.5) and (8.6) limit the number of prescheduled
appointments to the allocated capacity and the realized demand, respectively.
Inequalities (8.7) and (8.8) ensure that the total open-access appointments for
any physician j do not exceed remaining capacity, when φiuis = 1 and φiuis = 0,
respectively. Inequality (8.9) limits the total number of open-access appointments
scheduled from a panel to the realized demand for such appointments from that
panel. Inequality (8.10) is the binary constraint.

(SIP) max

{
S

∑
s=1

m

∑
i=1

qs
{

Rp
i xp

is + ∑
{i, j}∈A

Ro
i jx

o
i js

}}

(8.1)

s.t.

Np
i ≤ Ni ∀i (8.2)

Np
i ≤ dp

is +Niφiuis , ∀(i,s) (8.3)

Np
i ≥ dp

isφiuis , ∀(i,s) (8.4)

xp
is ≤ Np

i ∀(i,s) (8.5)

xp
is ≤ dp

is ∀(i,s) (8.6)

∑
i:(i, j)∈A

xo
i js ≤ Nj − dp

jsφ ju js ∀( j,s) (8.7)
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∑
i:(i, j)∈A

xo
i js ≤ Nj −Np

j +φ ju jsNj ∀( j,s) (8.8)

∑
i:(i, j)∈A

xo
i js ≤ do

is, ∀(i,s) (8.9)

φiuis ∈ (0,1),∀i, ∀uis = 0,1, . . . ,Ni (8.10)

Np
i ,x

p
is,x

o
i js ≥ 0, ∀(i, j) : (i, j) ∈ A, ∀s (8.11)

We note in the above revenue optimization that Ro
i j > Rp

i j. This is because in
a relative sense, open-access appointments are more valuable than prescheduled
appointments, as explained in Balasubramanian et al. (2012). First, we note that
open-access appointments, because they have such short lead times, tend to have
much lower no-show rates. Second, if a prescheduled appointment results in a no-
show, it can be substituted by an open-access appointment, while the reverse is not
possible at such a short notice. Third, because prescheduled appointments are made
generally a week or more in advance, the patient is likely to be flexible about choice
of the appointment day, and thus this may result in postponed but not lost demand
if denied timely access. An open-access patient, on the other hand, needs to see a
physician immediately and hence is flexible in provider choice.

In the next two sections, we present analytical solutions to the capacity allocation
problem for dedicated practices, where physicians can only see patients in their
own panel, and fully flexible practices where open-access patients can be seen by
any of the physicians in the practice. For large practices using partial flexibility
such as the 2-chain configuration, unfortunately, the above stochastic program is
too large to solve efficiently in practice. While the number of binary and integer
variables is quite manageable, the sheer number of possible demand realizations
makes the problem intractable. To overcome this issue, we will solve the problem
using a computationally effective sample average approximation method proposed
by Solak et al. (2010) for two-stage stochastic integer programming problems (see
Sect. 5.1).

The Dedicated Case: In a dedicated practice, physicians can only serve the
prescheduled and open-access patients from their own panel. They need to decide,
however, a maximum number of appointment slots to make available to presched-
uled patients, Np

i , so that enough capacity is reserved for the more lucrative open
access ones. The system configuration is shown in Fig. 8.6.

Let E[Ri(N
p
i )] be the total expected revenue from the panel of physician i, as

a function of Np
i ∈ 0,1,2, . . . ,N. Our goal is to find the optimal value of Np

i . The
conditions for local optimality presented in Qu et al. (2007) for the problem of
maximizing the expected number of patients consulted in a single-physician practice



8 Capacity Allocation and Flexibility in Primary Care 219

can be easily adapted to our revenue maximizing objective. In Balasubramanian
et al. (2012), we show a stronger result, guaranteeing global optimality, by first
showing that the objective function has diminishing returns under mild assumptions.

Proposition 1. If P[Do
i ≥ Ni −Np

i |Dp
i ≥ Np

i ] is nondecreasing in Np
i , the difference

in revenue associated with increasing the number of prescheduled slots by one,
E[Ri(N

p
i + 1)]−E[Ri(N

p
i )], is nonincreasing in Np

i .

The above condition holds when the demand for prescheduled and open-access
appointments is independent of each other. Furthermore, it will be satisfied in
most practical scenarios. Intuitively, for it to be violated, the probability of open-
access demand being large would need to significantly decrease as the demand
for prescheduled appointments grows; that is, the demand for open-access and
prescheduled appointments would need to be heavily negatively correlated.

As a result of Proposition 1, we have that the expected revenue function exhibits
diminishing returns, an analog of concavity for a discrete function, and thus its
global maximum must occur at the largest integer Np

i ≤ N such that E[Ri(N
p
i )]−

E[Ri(N
p
i − 1)]≥ 0 leading to the following theorem.

Theorem 1. If P[Do
i ≥ Ni − Np

i |Dp
i ≥ Np

i ] is nondecreasing in Np
i , the optimal

solution to the dedicated problem is the largest nonnegative integer Np
i ≤ N such

that P[Do
i ≥ Ni −Np

i |Dp
i ≥ Np

i ]≤ Rp
i /Ro

i .

The optimal solution can thus be easily obtained by calculating that probability
starting at Np

i = 0 and increasing one unit at a time until it exceeds the threshold
Rp

i /Ro
i . A binary search could also be used. Observe that in the case of independent

open-access and prescheduled demands, the optimal value of Np
i does not depend

on the distribution of prescheduled demand for physician i.

The Fully Flexible Case: In a fully flexible practice, open-access patients can
be seen by any available physician. In this case, the optimal number of slots to make
available to prescheduled demand of the physicians, Np∗

1 and Np∗
2 in the case of two

physicians, can still be found with a simple greedy algorithm. This is because the
revenue function again exhibits diminishing returns as the number of slots offered
to prescheduled patients is increased. For ease of exposition, we assume that all
physicians have the same capacity of N slots and that the revenue of an open-access
appointment is identical for all physicians and panels and denoted by Ro. We first
consider the case of two physicians, i and j. See Fig. 8.7.

Proposition 2. If P[Do
i + Do

j > 2N − (Np
i + min(Dp

j ,N
p
j ) + 1)|Dp

i ≥ Np
i + 1] is

nondecreasing in Np
i and Np

j , the difference in revenue associated with increasing

the number of prescheduled slots of physician i by one, E[Ri(N
p
i + 1,Np

j ]) −
E[Ri(N

p
i ,N

p
j ]), is nonincreasing in Np

i and Np
j .

Observe that, as in the dedicated case, the conditions will hold when open-
access and prescheduled demands are independent and in any practical scenario
except for contrived cases where the demands for prescheduled and open-access
appointments are significantly negatively correlated. Since the revenue function
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exhibits decreasing returns in both Np
i and Np

j under those mild conditions, which
can be interpreted as concavity of the discrete revenue function, a greedy algorithm
that keeps increasing one appointment slot at a time to the physician where it
produces the highest system revenue will provide the optimal capacity allocation
scheme.

Proposition 2, and therefore the optimality of a greedy algorithm, can be easily
extended to the general case of M physicians that fully share open-access demand.
Full details of the theorems and the proofs are given in Balasubramanian et al.
(2012).

5.1 Computational Experiments

The exact greedy algorithms allow us to find the optimal capacity allocation and
system revenues for dedicated and fully flexible practices. To test the performance
of partial flexibility configurations (see Fig. 8.5), which promote continuity by
restricting the number of doctors that a patient can be assigned to, we use the two-
stage stochastic integer program (SIP). In what follows, we present a summary
of the results emphasizing (1) the value of the 2-chain to improve open access
while keeping acceptable levels of continuity and (2) how the optimal portion of
clinic capacity reserved for open access changes as more flexibility is allowed when
allocating open-access demand; for full details, please see Balasubramanian et al.
(2012).

Value of Partial Flexibility : Following the findings of Bennett and Baxley
(2009), we assume a typical no-show rate for prescheduled demand of 25% and a
10% no-show rate for open-access demand. Thus, an appointment slot given to an
open access patient brings higher expected revenue, 0.9, as compared to revenue of
0.75 for scheduling one prescheduled patient. To encourage continuity in the system,
we assume that there is a 0.05 cost of seeing patients from another physician’s
panel (the revenue of giving an appointment slot to one open-access patient not
from a physician’s panel is therefore 0.9− 0.05 = 0.85). While the no-show rates
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Fig. 8.8 Comparison of timely access rate (TAR) improvement between 3 and 6 physicians in the
symmetric (left figure) and asymmetric (right figure) cases

for the two types of appointments can be estimated from past data, the cost of
diverting an open-access patient to a non-PCP physician is very difficult to quantify.
Furthermore, in a limited flexibility environment, where the patient only sees at
most one physician beyond his/her PCP, the actual cost of redirection is minimal,
very different from that occurring in a large, fully flexible practice where care is
significantly more fragmented and much harder to coordinate. For that reason, rather
than comparing the expected revenues obtained under the different configurations,
we focus here on the resulting timely access rates (TAR). We define TAR as the
percentage of all patients, both prescheduled and open access, who get access to an
appointment on the given workday.

Figure 8.8 shows the gains, relative to a dedicated practice, of implementing
partial flexibility (configured as a 2-chain) and full flexibility to share open-
access demand as system workload increases in practices with 3 and 6 physicians.
Workload is defined as the ratio of the expected total demand for the clinic and total
available capacity. Each physician has 24 appointment slots available in the day. The
left graph, or symmetric case, involves a practice where all physicians face identical
panel demand distributions (Poisson demands with a rate of 10 for prescheduled
appointments and 14 for open-access demand). The right graph, or asymmetric
case, considers a practice where physicians have varying panel compositions and
therefore varying appointment burdens. This is common in practice. Senior and
well-established physicians may have higher workloads since their panels are larger
and include older, more complex patients, while physicians who have been recently
hired may have lower workloads. In particular, we test a practice where physician
1 has an expected prescheduled demand of 6 and an expected open-access demand
of 12 (low workload), physician 2 has an expected prescheduled demand of 8 and
an expected open-access demand of 16 (balanced or full workload), and physician
3 has an expected prescheduled demand of 10 and an expected open-access demand
of 20 (high workload). For the six-physician case, we merely double the 3-physician
case, thus retaining the imbalances.
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Fig. 8.9 Trends in Np∗
i values summed over all six physicians with prescheduled demands

[6,8,10,6,8,10] and open-access demands [12,16,20,12,16,20]

The timely access rates of 2-chain flexibility and full flexibility are nearly the
same no matter what the size and workload level of the system are. This is consistent
with the results reported in the literature on flexibility in manufacturing settings. The
difference is even lower in the healthcare setting that forms our test case, since we
assume that prescheduled demand cannot be shared between physicians; flexibility
can only be used for open-access demand. We also observe, as in the manufacturing
literature, that the gains accrued through flexibility increase significantly as (1) the
number of physicians increases from 3 to 6 and (2) the physicians have different
workloads, that is, in the asymmetric case, when flexibility helps not only to
accommodate demand variability but also to balance physician workloads.

These results suggest that flexibility provides an important lever for practices
to increase their ability to accommodate open-access demand. Furthermore, the 2-
chain configuration allows them to do so without severely compromising continuity
and patient/physician bonds.

Capacity Allocation : The results above illustrate the value of flexibility. But
how are capacity allocation decisions affected by the flexibility configuration used?
What trends do they follow, if at all, and can the trends provide clues to capacity
allocation decisions in practice? In our model, the capacity allocation is decided
with the optimal first-stage variables, Np∗

i , which represent the capacity made
available to prescheduled appointments. Figure 12 shows the average values for the
entire clinic (i.e., for all the physicians) under different workloads and the three
flexibility configurations for the 6-physician asymmetric case. We see the same
trends by looking at the individual physicians’ values (irrespective of the number
of physicians, symmetry, and prescheduled to open-access demand ratios). Thus,
Fig. 8.9 summarizes our conclusions about Np∗

i values concisely.
In general, for the case of very low system workload, the total Np∗

i values for
the dedicated and flexibility configurations, not surprisingly, are very close. Since
the demands are so low, the values are likely to be fairly robust at this level. As
the system or clinic workload increases to 80% and 100%, the clinic as a whole
reserves more prescheduled appointments in the flexibility cases than the dedicated
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case. This is a direct consequence of flexibility: Open-access appointments can be
absorbed effectively by pooling the (lower) remaining capacity of all physicians
together. The effect is especially strong in the case of 100% workload: The
dedicated case increases the capacity reserved for the more profitable and now
more abundant open-access patients (N −Np) relative to the lower workload cases,
while the flexible configurations decrease it to allow for more of the now plentiful
prescheduled patients and still meet open-access demand through sharing any
unused capacity.

In contrast, in the high system workload cases (120% and 140%), there is enough
demand for the high revenue open-access appointments to lower the total of the
clinic. The flexibility cases have a lower total Np∗

i value than the dedicated case,
reserving more capacity for open access. This is because there is a higher probability
of using the additional capacity when physicians are able to see each others’ open-
access appointments.

Thus, using the easily computable dedicated case Np∗
i as a reference, practices

can heuristically determine their capacity allocation to be above or below the
dedicated value, depending on their flexibility configuration and overall system
workload.

6 Future Research Opportunities

In this section, we first outline the decision framework for using flexibility in the
dynamic case, report our preliminary findings, and then discuss other directions for
future work.

6.1 Flexibility in the Dynamic Case

The discussion of flexibility so far assumed that demands are instantly realized and
fulfilled. In practice, however, allocation decisions for open-access and same-day
appointments have to be made without full realization of demand. At the beginning
of the day, all nonurgent appointments scheduled on physician calendars are known
in advance, but calls for same-day appointments come throughout the day and have
to be dynamically assigned to available physician slots. As before, the challenge is
to balance timely access (minimize the number of denied same-day appointment
requests) with continuity (ensuring patients see their own physician as much as
possible).

Consider again a clinic with M physicians, each with a panel of patients for
which he/she is the primary care physician (PCP). Depending on the flexibility
configuration, patients will be allowed to see one or more physicians. The time
horizon begins when the clinic opens its open-access appointments and ends when
the clinic stops taking further appointments. This will typically mean the entire
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duration of a day (7–8 h). Calls for a given physician’s slots come with a certain
probability (pi for physician i) at every time point during the horizon. Each
physician’s calendar consists of successive 20-min slots that are booked as calls
come in during the day. In the ideal situation, all open-access appointments are
contiguous and occur during the same time of the workday. In practice, because of
patient preferences for time slots, available same-day slots will be interspersed with
prescheduled slots. The situation is shown in Fig. 8.10.

The decision framework can be modeled in a finite-horizon stochastic dynamic
program. For the mathematical details, see Hippchen (2009). At each time point t,
if there is a request from physician panel i, the decision facing the clinic is whether
this request should be (1) assigned to his/her PCP, (2) to some other physician (as
allowed by the flexibility configuration), or (3) denied. If there are no requests at
time t for any of the physicians, then the action is to “do nothing.” The optimization
problem is to choose the best action at each decision epoch to minimize total cost
of denied requests and missed continuity (measured by the number of non-PCP
diversions) for the day. The state of the system at any decision epoch t is represented
by the number of open-access patients booked in the future in each physician’s
calendar. Denying a request incurs a cost—denied requests are a reflection of the
lack of timely access to primary care or the costs needed to provide care to these
patients outside the regular hours of clinic operations.

What impact does flexibility have in the operational or dynamic case? Recall
that in the tactical case, flexibility was beneficial in hedging against variability
of demand. In the dynamic case, there is an additional component of variability,
since appointment requests arrive randomly over time. There is therefore greater
opportunity for flexibility to meet demand imbalances at different points in time. On
the other hand, patient calls require an immediate appointment allocation decision,
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under only partial demand information available at that point; this decreases the
impact of flexibility, since allocation decisions that can be made optimally in the
tactical case may not be as effective in the dynamic case. These counteracting
effects may be the reason why the benefits of flexibility are mostly identical in both
the tactical and dynamic cases. Our computational experience with the stochastic
dynamic program (Hippchen 2009) shows that the benefits of full and partial
flexibility in the dynamic case produce the same percentage improvements in timely
access rate shown in Fig. 8.8.

While the stochastic dynamic program has been used to illustrate the impact of
flexibility, primary care offices require easily implementable policies or heuristics
that can be put into practice as calls for same-day appointments come in. Consider
two contrasting policies in the fully flexible case: primary first (PF) and most slots
(MS). PF assigns incoming same-day calls to the patient’s PCP first, so long as slots
are available. If PCP slots are not available for the day, it assigns the patient to the
physician with the most available slots. MS, on the other hand, assigns an incoming
patient call to the physician with the most slots available.

PF thus maximizes continuity, while MS utilizes physician slots more effectively
and increases the number of patients seen per day. A hybrid approach that balances
continuity with timely access would be assigned to PCP so long as the difference
the available slots between PCP and other physicians does not exceed a certain
predetermined threshold. Our results show that the choice of heuristic also depends
on the system workload or utilization. PF is the best choice in an underutilized as
well as overutilized setting, while MS and the hybrid approach are better choices in
systems where arrival rates and available capacity are relatively balanced.

6.2 Other Research Directions

The dynamic case discussed above considers flexibility at the level of a workday.
However, there is one further level that we have not considered in this chapter. This
pertains to patient flow measures such as in clinic patient waiting, idle time, and
overtime for the clinicians. The relevant questions here are how many patients can be
seen per day and how the appointments should be spaced and sequenced, and where
overbooking is appropriate in the workday to counter no-shows. The decisions—
from panel design to using physician flexibility—discussed in this chapter are at the
highest planning level. Integrating these decisions and quantifying their impact on
patient flow are a natural direction for future work. How do panel size, case-mix and
the degree of continuity provided impact the time spent with clinicians? How robust
are the tactical level decisions (such as the number of same-day patients clinics
should plan for) to changes at the patient flow level? Simulation–optimization
approaches can be used to answer these questions.

Another important research direction is capturing patient flow measures empir-
ically and making such data sets (or prototypes of such data sets) more widely
available. While most of the operations research literature focuses on new models,
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few papers examine the validity of these models in practice. Rigorous time studies,
reconstructions of patient flow through time-stamp data, and the use of real-time
location systems (RTLS) are all methods of capturing the operational aspects of
patient flow.

7 Summary and Conclusions

In summary, we have discussed capacity allocation for primary care practices at
three different levels of the capacity planning hierarchy. The goal in each case has
been to maximize timely access and continuity. At the highest level, the design of
physician panels, we demonstrated the impact of casemix, or the type of patients in
a physician’s panel, on the ability to provide timely access and continuity. Casemix
can be considered using age and gender as predictors or, when patient clinical data is
available, using comorbidity counts. Using casemix, a practice can create overflow
profiles for the physicians in the practice as function of daily capacity and determine
which physicians are overburdened. This in turn can point to opportunities for
redesigning panels so that patients can see their own PCP as much as possible and
redirections to unfamiliar physicians are minimized.

Panel redesign involves changing existing patient–physician relationships. A
viable alternative to redesign is managing the flexibility of physicians—the ability
of physicians to see patients of other physicians. We discussed flexibility at tactical
as well as operational levels. The design of flexibility at the tactical level has
to consider two types of appointments: (1) prescheduled appointments which are
booked in advance and require continuity with the patient’s PCP, and (2) same-
day or open-access appointments which have to be fulfilled during the course of
the day. We proposed a framework—commonly observed in practice—in which the
short notice open-access appointments can be flexibly shared between physicians
while mandating continuity for the prescheduled appointments. Using a two-stage
stochastic integer programming model, we demonstrated the impact of flexibility on
the ability to provide timely access to patients, measured by the number of patients
seen in a given workday. Specifically, we found that the 2-chain partially flexible
practice, which restricts the number of physicians a patient sees to two, performs
almost as well as the fully flexible practice with regard to timely access. The impact
of flexibility increases as the number of physicians in the practice increases and
as the demand loads between physicians are asymmetric or uneven. Our results
also show that practices can heuristically determine their capacity allocation for
prescheduled appointments depending on their flexibility configuration and overall
system workload.

Finally, the implementation of flexibility at the level of a workday has to be made
under partial demand information, since calls arrive dynamically over the course of
a day. We outline a decision framework to evaluate the impact of flexibility in this
dynamic case and discuss heuristics that practices can use to balance timely access
and continuity.
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Chapter 9
Improving Scheduling and Flow in Complex
Outpatient Clinics

Craig M. Froehle and Michael J. Magazine

1 Outpatient Care: Workhorse of the Healthcare System

By nearly any measure, outpatient care is increasingly critical to healthcare systems’
abilities to care for the masses of patients requesting service. In the USA, like many
countries, outpatient services are growing the fastest of any mode of care delivery
(Fig. 9.1). Three drivers of this trend are (a) the increasing ability of medicine to
treat patients without admitting them to the hospital, (b) the financial advantages of
providing care via outpatient means, and (c) the ongoing need to reserve inpatient
capacity (which is not growing at the same rate as the population and, in some areas,
is actually shrinking) for the most severely ill patients (Bazzoli et al. 2003).

One of the greatest concerns of outpatient facility managers is the rapidly rising
cost of providing care, both overall and per capita (Peterson and Burton 2007). This
trend reinforces the need to operate outpatient clinics in the most efficient ways
possible. Human resources, such as physicians and nurses, and physical resources,
like exam rooms and testing equipment, often represent significant fixed expenses,
so maintaining a reasonable level of utilization is vital to maintaining the financial
viability of a clinic or hospital.
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Another motivation for improving the ability to manage flow, or the ability of
a healthcare organization to “serve patients quickly and efficiently as they move
through stages of care” (Hall 2008), in outpatient environments is that many of
the lessons we learn there are applicable to other healthcare settings. For example,
scheduling of non-emergency surgeries has benefited from the extensive work on
scheduling in outpatient care, as both involve elective visits and are appointment-
driven operations (Cardoen et al. 2010; Gul et al. 2011). Additionally, inpatient
and emergency care areas of a hospital often have common patient-contact points
or share resources with outpatient functions; staff can provide care in more than
one location, and the services can share common physical space, such as parking
facilities. In some instances, emergency department (ED) flow can be modeled
very similarly to outpatient care clinics, especially for that portion serving less
urgent patients. In fact, scheduling of non-emergent ED visits, just as is typical of
outpatient visits, is becoming increasingly common (Fiore 2010). Thus, the findings
from research on outpatient operations can often be immediately useful in other care
contexts, if not also to other service industries.

As the title suggests, the focus of this chapter is on “complex” outpatient clinics.
We use that term here to refer primarily to those clinics caring for patients who need
access to more than a few different types of care providers during their visits and
whose paths through the system may be significantly heterogeneous. For example,
Fig. 9.2 shows the actual paths (i.e., the sequence of care providers) through a
pediatric, pulmonary clinic taken by a sample of 30 patients. This clinic provides
outpatient care to children who suffer from pulmonary diseases, such as asthma and
cystic fibrosis. Note that while there is a single path that represents a typical (i.e.,
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Source: Cincinnati Children’s Hospital Medical Center, Division of Pulmonary Medicine

most common) route through the system (i.e., PCA (patient care assistant)→RN
(registered nurse)→MD (medical doctor)→RN), less than half the patients in the
sample traveled along this path. Also note that this does not include the registration
activity, nor does it include initial or mid-process waits, all of which can add
complexity to the flow in a clinic.

Operational complexity is often a concern for specialty and multidisciplinary
clinics (Gupta and Denton 2008), those caring for patients with comorbidities or
who are chronically ill, and teaching institutions that employ fellows and residents.
Large patient volume is a contributing factor to complexity, but large patient volume
alone does not necessarily make a clinic complex. Similarly, even if different types
(medically diverse) of patients are treated, it may not be an operationally complex
environment if all patients progress through the same care process. Akin to a
typical assembly line, homogeneous flow, even at high volumes, is generally more
straightforward to plan for and manage.

Realistically, different outpatient clinics may choose rather different operational
objectives. For example, the high-volume, low-acuity pediatric clinic may prefer
to minimize patient waiting, while the for-profit, imaging clinic may wish to
maximize facility utilization, and the orthopedic clinic may prefer to maximize
provider (physician) utilization while keeping average patient waits below some
chosen value. Or each of these may choose a different metric (or set of metrics),
depending on their priorities, constraints, and stakeholder preferences. Devising
desirable performance metrics, and balanced combinations of metrics, is a vital
element of improving any clinic’s operations (see Table 9.1 for examples).
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Table 9.1 Some common operational metrics used in outpatient clinics

Metrices Notes/description

Patient-centered metrics
Time to access clinic Also referred to as “indirect waiting” (Gupta and Denton 2008)
Flow time Total duration a patient is in the clinic
Waiting time Also referred to as “direct waiting” (Gupta and Denton 2008)
Touch time ratio Time patient is being served divided by flow time

Provider-centered metrics
Provider idle time Total time a provider is in clinic, but not serving patients
Provider utilization Time a provider is serving patients divided by available time

Provider touch time ratio Time serving patients divided by available time
Organization-centered metrics
Clinic overtime Amount of time past scheduled end that patients are in clinic
Number of patients seen Less useful in clinics with heterogeneous patient mixes
Facility (exam room) utilization Can be helpful for space allocation decision-making
Revenue per clinic Can depend greatly on reimbursement assumptions

In this chapter, we broadly examine some of the primary barriers and op-
portunities for operational performance and improvement in complex outpatient
environments. That makes this work different but complementary to those focused
on primary care. After reviewing the challenges, we propose a managerial and
analytical framework that illustrates how solving various problems can contribute
to a comprehensive operational approach to improved clinic flow. While this
chapter is neither a comprehensive literature review nor an in-depth methodological
treatise, it should help healthcare professionals understand how different studies
and topics within operations research may be relevant to this context. It should
also aid academics in identifying specific research opportunities for extending our
knowledge of, and capability for improving, outpatient clinic operations.

2 Pervasive Barriers to Outpatient Clinics Operating
Effectively

Two phenomena that greatly inhibit a clinic’s ability to manage itself in an efficient
and effective manner are uncertainty and complexity. By uncertainty, we mean the
inability to know in advance, with perfect accuracy, some operational aspect of the
clinic, such as the duration of a consultation activity or the set of providers with
whom a patient will need to interact during his visit. By complexity, again, we
refer primarily to the quantity and diversity of medical staff and physical resources
involved in providing care to the clinic’s patients.

These phenomena affect two fundamental operational activities of a clinic—
(a) planning and scheduling and (b) managing clinic flow—in different ways (see
Table 9.2). Planning and scheduling activities for an outpatient clinic involve those
functions that help ensure that clinics will be as accessible to patients, and executed
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Table 9.2 Some implications of complexity and uncertainty for clinic operations

Planning and scheduling
(prior to clinic)

Managing clinic flow
(during the clinic)

Complexity 1. Identifying all resources each
patient needs to access takes more
effort

5. Necessary to orchestrate multiple
providers’ and patients’ activities

2. Requires joint scheduling of
multiple providers

6. Aggregating and analyzing complete and
timely operational data difficult to do
manually

Uncertainty 3. Patient/provider activity
sequencing is generally
suboptimal

7. Arrival of patients unknown

4. Total patient resource needs unclear

8. Timing of tasks unknown
9. Care needs (especially new patients)

unknown

as smoothly, as possible. This encompasses a wide variety of tasks, such as initial
scheduling of patient appointments, determining (or estimating) which services and
providers each patient will need to see, reserving the necessary equipment and
facilities, and so forth (Pinedo 2009). All of these planning and scheduling activities
related to a specific clinic session occur before that particular clinic session starts.

In contrast, managing clinic flow is the daily challenge of implementing the clinic
plan and directing the activities of staff and patients as the clinic occurs. During
the clinic session, as patients arrive (early, on time, late, or not at all) and clinic
staff meet with patients (for various amounts of time), deviations from the original
schedule for that clinic nearly always occur. Reaction, in a timely manner, to these
changes necessitates the constant reformulation of a new plan. That, combined with
the responsibilities of guiding people and coordinating resources needed to deliver
the appropriate care, contributes to the potential difficulty of managing clinic flow.
Below, we discuss some of the particular challenges associated with both planning
and scheduling activities and managing patient flow in complex and uncertain clinic
environments.

2.1 Planning and Scheduling Prior to the Clinic Session

A great deal of planning for a clinic session generally takes place well in advance
of the session actually getting underway. In complex and chronic care clinics,
scheduling patients in advance is commonplace. Creating the ideal appointment
templates (the arrangement of appointment times and durations reserved for dif-
ferent patient/visit types who need to see specific providers or provider types),
and scheduling in general, has been the subject of extensive operations research
in healthcare over the years. SeeCayirli and Veral (2003) and Gupta and Denton
(2008) for excellent overviews of this area of study and Pinedo (2009) for a general
review of scheduling work that potentially could be applied to this environment.
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After the schedule has been filled, or is nearly full, a common practice for
planning for a clinic is for staff to hold a meeting prior to the clinic session to
review the medical needs of the slate of patients scheduled to receive care during
the clinic session. This meeting, which some hospitals and clinics refer to as a
“chart conference,” is typically held to ensure that each patient’s visit includes all
care activities needed to address that patient’s particular condition, and is often
additional work for clinicstaff (#1 in Table 9.2). One result of a chart conference
is the need to then schedule those care providers who may not already be scheduled
to see that particular patient. Coordinating the schedules of the various providers
can be challenging, especially if the providers are being drawn from a multitude of
specialties or practices (#2 in Table 9.2).

Just as in manufacturing and other production environments, in complex outpa-
tient clinics, uncertainty can make planning and scheduling more difficult. Patient
arrivals to the clinic can be earlier than scheduled, on time, later than scheduled,
or not at all (no-shows) (Salzarulo et al. 2011). Another source of uncertainty
is the duration of the patient–provider consultation. While most clinic schedule
templates have predetermined blocks of time roughly corresponding with the
expected duration of the patient’s consultation with the physician and/or other staff,
the actual durations can be highly variable (Harper and Gamlin 2003; Chand et al.
2009; LaGanga 2011).

This combination of uncertain patient arrivals and uncertain consultation dura-
tions makes creating the optimal schedule of all clinic activities difficult (#3 in
Table 9.2) (Please see our approach to this in the research opportunities section
of this chapter). Research has shown that scheduling low-variance patients earlier
in the clinic, and high-variance patients later, can generate small reductions in
patient waiting and overall clinic duration (White et al. 2011a). However, with few
exceptions, these studies have generally considered only simple clinic environments
(e.g., a single patient flow through a fixed sequence of providers), and there is as yet
little evidence to guide scheduling of patients who need to see multiple providers
and with different variability profiles.

Further complicating matters is that the exact resource needs of patients are
not often fully known when planning the clinic session. For example, the specific
providers a patient will need to see may not be entirely known until he has consulted
with one or more care providers (#4 in Table 9.2). This is especially common with
new patients and those with complex, chronic diseases. It creates a situation where
the clinic must then react to changes in their assumptions about who needs to interact
with that patient during his visit. An alternative that few prefer is to ask the patient
to come back another day to meet with additional staff; this puts a hardship on
the patient and creates another planning and scheduling responsibility for a future
clinic. A different form of uncertainty regarding total patient resource needs (#4 in
Table 9.2) is the fact that not all patients who will participate in the clinic may be
known when planning and scheduling activities occur; add-ons (those added to the
schedule after the chart conference has occurred) and walk-ins (those showing up
without advance notice or an appointment) are two examples.
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2.2 Managing the Flow of the Clinic

One of the keys to effective flow is proper planning and scheduling before the clinic
session begins. As shown in Table 9.1, both complexity and uncertainty can limit
the organization’s ability to effectively manage clinic flow. As the complexity—
the number and variety of care providers and patients—of the clinic increases, it
becomes progressively more difficult to track and coordinate the actions of everyone
involved (#5 in Table 9.2). The location and activity of each provider and patient,
the time elapsed since they began those activities, and other details are essential
to actively managing flow in a clinic. Keeping track of one or a few exam rooms
with one or a few staff might be possible, even effective, using purely manual
methods; however, any clinic more complex than that will likely require some form
of information system to support the human decision-makers (#6 in Table 9.2).

Uncertainty surrounding patient arrivals creates a challenge for staff trying to
manage the flow of the clinic (#7 in Table 9.2). Unless a patient contacts the
clinic to let it know he will not be showing up on time, the clinic has no reliable
information about when, or even if, the patient will ultimately arrive. This can make
task sequencing decisions difficult. For example, a patient has arrived early (ahead
of his appointment time) and another patient is late (has not yet arrived even though
his appointment time has passed). If we place the present patient in an exam room
(ahead of his appointment), it will delay serving the late patient should he arrive
soon thereafter. While first come, first served (FCFS) may have been honored, FAFS
(first appointment, first served) would be violated. See White et al. (2012) for work
with an outpatient clinic that considered different queue disciplines.

Clear policies can help ensure consistent decision-making, but left unresolved is
the question of whether or not the policy leads to the best decision at this particular
moment with respect to the clinic’s performance measures (e.g., average patient
waiting, overtime, etc.). In the above example, the policy may be to make the early
patient wait until his appointment time. Of course, that may be suboptimal if the
late patient turns into a no-show; the waiting patient was delayed for no benefit to
anyone. Some clinics have specific policies for this and other situations, but many
do not, instead leaving it up to whoever may be managing the clinic at the time.

Similarly, if a patient and physician began their consultation 25 min ago and the
scheduled duration is 30 min, there is little guarantee they will be done in less than
5 min, let alone exactly 5 min. This type of uncertainty (#8 in Table 9.2) creates
a need for constant monitoring of all activities. Then, making decisions based on
both actual events (the end of the consultation) and anticipated events (the fact that
the physician and patient should both be freed up within the next few minutes) can
easily overwhelm manual systems or those relying simply on a clinic manager acting
as an “air traffic controller” (a common analogy in outpatient clinics).

Also, in complex clinics, the exact care needs of a particular patient may not
be easily determined prior to physically meeting with the patient in the clinic (#9
in Table 9.2). Apart from the planning and scheduling challenges identified above,
this complicates managing the flow of the clinic because additional activities may
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need to be inserted into the schedule while the clinic is happening. These real-time
adjustments can pose significant problems for clinic managers for two reasons. First,
the schedule was likely based on some estimates of how much staff time each patient
would consume; if that time gets increased significantly, many other activities may
need to be pushed back, potentially resulting in an overly long clinic, excessive
patient waiting, and other issues. Second, if the added care component requires a
specific type of medical staff, that resource may not be available at the time she
is needed in the clinic. This can even further exacerbate an already chaotic and
operationally compromised clinic.

In order to move patients through their clinic visits with minimal delay while
keeping staff and facilities adequately utilized, a comprehensive approach is
needed that integrates decision-making associated with planning and scheduling
and managing flow in real time. A proposed framework for such a system is
described in the next section. The framework represents an assembly of existing
policies and practices that can be found in many hospitals and clinics today
as well as opportunities for overcoming the inadequacies of unassisted, manual
decision-making in these dynamic, complex, and uncertain environments. Those
opportunities are then further discussed in the final section of this chapter.

3 COMS: A Proposed Approach for Improving Flow
in Outpatient Clinics

We refer to the Clinic Operations Management System (COMS) as a set of policies,
practices, and analytical methods that may be embedded in a clinic’s information
system. It is a conceptual framework, used here to frame the discussion about the
broader problem of planning and scheduling outpatient clinics in a comprehensive
manner. To date, the literature has largely focused on planning and scheduling
scenarios that consider only simplified models (e.g., a single server or no recourse
over the clinic’s duration) or address only subsets of the overall process. In
contrast, COMS details one possible vision of an integrated system, with many
opportunities for applying advanced analytical methods to improve the clinic’s
operating performance. A functional schematic is shown in Fig. 9.3, where COMS
can be seen to assume four main responsibilities:

(a) It serves as the central clearinghouse for clinic schedule data.
(b) It assists planning by providing information about past patient visits and by

recording decisions made about upcoming patient visits (e.g., which providers
a patient must see during his visit).

(c) It tracks patients and providers as they move through the clinic (or works in
conjunction with a separate real-time locating system, or RTLS).

(d) It supports real-time operational decision-making for coordinating the activities
of staff and patients as the clinic progresses.



9 Improving Scheduling and Flow in Complex Outpatient Clinics 237

Patient Scheduling

Existing
System

or

COMS
Module

Patient
Visit

Planning
Module

Clinic Plan
Optimization

Module

CPS

Appts
~~ ~
~~ ~
~~ ~

Preliminary
Clinic Plan

Staff
Input

Optimized
Clinic Plan

RFM

Pat 
~~ ~
~~ ~
~~ ~

Doc
~~ ~
~~ ~
~~ ~

Final
Itineraries

Current
Clinic Plan

Patient
Activity

Continuous
Patient Status

Tracking

(e.g., RTLS)

Tracking
Module

Analysis
Module*

Staff
Alerts

Staff Make/Approve Changes
to Current Plan

Staff Redirect Patients
As Needed

Staff
Status

Real-time Flow Management

Clinic Planning & Scheduling

Historical
Data

(to improve
Planning
accuracy)

Distributed
to Providers
and Patients

Fig. 9.3 COMS functional architecture. The Clinic Operations Management System (COMS)
represents the major information flows, analytical components, and coordination mechanisms of
a complete outpatient clinic planning, scheduling, and flow management system. Asterisk could
employ analytical approaches similar to the Clinic Plan Optimization Module (see Sect. 4 for more
details)

Responsibilities (a) and (b) are associated with improving the clinic’s planning
and scheduling activities, whereas responsibilities (c) and (d) have to do with
improving the clinic’s ability to do real-time flow management. Planning and
scheduling activities occur prior to a clinic session, while flow management occurs
during a specific clinic session.

3.1 Clinic Planning and Scheduling Functions

Clinic Planning and Scheduling (CPS) incorporates all functions needed by clin-
icians to collect, structure, and organize the operational information involved in
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planning a particular clinic session (e.g., morning clinic, Wednesday, August 14th),
including:

1. Patient appointment requests—Ideally, when a patient contacts the clinic (or call
center) for an appointment, the system (COMS or a separate scheduling system
with information fields populated by COMS) would suggest appointments of
appropriate durations based on the type of appointment being requested (e.g.,
new vs. follow-up) that permit that patient to see all appropriate providers in as
compact a schedule (minimal patient waiting and provider idle time) as possible.

2. Patient visit planning—Before the patient arrives at the clinic, a list (or sequence,
if task precedents are important) of service activities (providers, tests, etc.)
for that patient’s visit must be provided by clinic staff, such as, through the
aforementioned chart conferences. These lists can be, and will likely initially start
out as, generic templates, perhaps differentiated by patient category. However,
the more accurate and detailed these patient visit plans are, the better able the
system will be to optimize the operating plan for that clinic. This combination of
patient arrivals (appointments) and the slate of providers each patient should see
represents a preliminary clinic plan for that clinic session and is fed into the next
step: optimization.

3. Clinic plan optimization—Once a clinic’s available appointment slots have been
filled, or the start of the clinic is a minimum planning period away (e.g., two days
from now), an “optimization”1 module will arrange patients, providers, and/or
tasks so as to achieve one, or a combination, of several objectives (e.g., minimize
patient waiting, minimize staff idle time, minimize total patient flow time, and
maximize robustness to disruption). This can be achieved in several ways, which
are discussed in the last section of this chapter.

The result of these three tasks is a comprehensive plan for a specific clinic
session, including the roster of patients to be served, the (desired) order of their
arrival, the sequence of service activities for each patient, and the planned start and
end times for each activity. These sequences, plus their associated start and end
times, create itineraries for both patients and providers as they travel through the
clinic’s overall operating plan. Figure 9.4 shows a small clinic plan covering one
physician, a total of four different care providers/activities (e.g., medical assistant,
nurse, physician, and phlebotomy), and six patients.

Patient 4’s itinerary (shaded row) would consist of:
a. Arrive and see Provider A at 9:00
b. See Provider C at 9:15
c. See Provider B at 9:45
d. See Provider D at 10:15
e. Exit at 10:30

1The term “optimization” is used here to include both models/systems that produce truly optimal
solutions as well as those that may rely on other methods, such as heuristics, to generate optimal
or near-optimal solutions.
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8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00

Patient 1 A B C D
Patient 2 A B D
Patient 3 A C B
Patient 4 A C B D
Patient 5 A B C D
Patient 6 A B C

Fig. 9.4 Example of a clinic plan

Provider C’s itinerary would consist of:
1. See Patient 1 at 8:45 for 15 minutes
2. See Patient 3 at 9:00 for 15 minutes
3. See Patient 4 at 9:15 for 30 minutes
4. See Patient 5 at 9:45 for 15 minutes
5. Break at 10:00 for 45 minutes
6. See Patient 6 at 10:45 for 15 minutes
The planned duration of each scheduled patient–provider task on the itinerary

(e.g., a physician consulting with the patient) should be based on a combination
of historical performance (i.e., data), ideal consultation times depending on the
particular patient and reason for his visit, and the clinic’s operational objectives.
The system should know these estimated/planned task durations, which could
be determined by clinic management, calculated from historical data, or some
combination thereof.

3.2 Real-Time Flow Management Functions

All planning and scheduling activities described immediately above take place prior
to the start of the clinic session. Then, with the optimized clinic plan in place, and
after all patients and providers have been informed as to their individual itineraries,
the clinic session begins. Ideally, all patients arrive at their designated start times
and do not require significantly more time from any provider or in any task than was
originally scheduled in the plan. If these conditions are met, it should be possible to
come close to achieving the clinic’s operational performance goals.

However, it will be rare that all patients show up when they are asked, that all
providers spend the planned amount of time with each patient, and that there are no
delays due to missed communication, misplaced files, or the myriad other sources
of disruption typical of an outpatient clinic. When such disruptions happen, COMS
must be able to advise the clinic manager as to the best recourse depending on
the nature and magnitude of the deviation(s) from the plan, the current state of the
system, and other policies and objectives that may influence the clinic’s operations.
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For example, patient D shows up 20 min late for his 10 a.m. appointment (10
a.m. being the time he was scheduled to first sign in with registration, not when
he was to see the physician, as is the customary use of the “appointment time”
concept). Should the clinic serve this patient (i.e., move him to the next part of
his itinerary) next, should it prioritize another waiting patient who was not late,
or should it take some other action? Few individuals running a clinic larger than
a single physician and a few exam rooms will not have the awareness and real-
time analytical capacity necessary to ensure that optimal decisions are consistently
known. The system should assess the state of the clinic (e.g., patient A is in task 3
of his itinerary, patient B is in task 2, and patient C is in task 1; each has been in that
task for a number of minutes and, therefore, is estimated to have a certain number of
minutes remaining before moving onto the next task); consider patient D’s itinerary,
as well as any patients scheduled to show up soon; and determine what course of
action will most likely achieve the clinic’s desired operational results.

Rerunning the decision model every few minutes (or on demand, perhaps
motivated by a significant event) would ensure that the clinic staff constantly
have access to the best (or approximate best, if heuristics are relied on) course of
action based on the latest information about the current state of the clinic. While
powerful, this rescheduling capability, which also exists in many MRP systems (Ho
1989), causes disruptions to the system that may actually make things worse. These
frequent shocks to the system, called “system nervousness,” may not actually move
the solution to a better place and can lead to staff and patient unrest. The challenge
is to find the proper level of nervousness that balances the value of acting on new
information with the cost of frequent adjustment.

One common scenario that such a decision model should be ready to address is
the arrival of an unscheduled, or add-on, patient who was not part of the original
plan developed for the clinic during the planning and scheduling process. Upon
being informed that a patient will be arriving, or has arrived, for which the clinic
plan was not prepared, COMS would ideally provide clinic management with the
best course of action (e.g., serve immediately and at which task, serve at some later
point in the clinic, or schedule for another day). It would also be necessary to input a
new preliminary plan for the add-on patient. COMS would then generate an itinerary
for him as well as update the staff itineraries for all those providers who will see the
add-on patient during that clinic session.

3.3 Other Functions

In order to maximize its usefulness and overcome the barriers to clinic operating
effectiveness identified earlier, COMS should handle several other responsibilities.
Tracking of individuals and other resources will be requisite in order for the
system to know the status of each patient, provider, and exam room at all times.
Tracking should not rely on manual entry of one’s status into the system, as that
introduces data errors, delay, and unreliability, all of which reduce COMS’ ability
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to make accurate recommendations. Therefore, the tracking system should require
no action on part of providers or patients for it to know where they are at all times
during the clinic. Some existing, commercially available RTLS solutions have this
functionality, relying on RFID, ultrasound, and other technologies, but a constant
data feed from the RTLS to COMS would be necessary.

An equally important function is the ability to record operating data as it is
generated during the clinic session and synthesize those data into useful inputs
for the planning and scheduling process. For example, if every consultation by a
physician is accurately measured, then the system will be much better equipped
to estimate the duration of a specific consultation involving that physician and
a patient of a certain type (if not the specific patient). Or if patient arrivals are
tracked accurately, then the clinic can have more confidence in certain decisions,
such as determining which appointment slots should be overbooked with a second
patient. Without these data, the clinic must resort to relying on averages and
rough estimates at best, or simple guesses at worst. Unfortunately, in practice, the
quality of operational data is often less than ideal, possibly because hospitals and
clinics must often rely on manual data collection methods, which can be costly (or
frustrating for staff and patients) to adopt as a standard practice. Automating the
collection of highly detailed operational data, which many healthcare information
systems do not do, represents a significant opportunity for improvement.

A system like COMS could also enhance the clinic staff’s ability to partici-
pate during the planning and scheduling process. A browser-based interface for
collaborative patient-visit planning by multiple providers would be helpful when
face-to-face chart conferences are impossible. Automating the distribution of patient
and provider itineraries (e.g., via email or post) would also be a natural function for
the system.

The chaotic environment of a busy clinic can make coordinating, and communi-
cating with, the patients, staff, rooms, etc., during the clinic session a daunting task.
COMS should facilitate these activities by providing real-time status updates via
a variety of media and means. For example, real-time display of the current clinic
plan on large displays (e.g., wall-mounted displays) as well as portable devices (e.g.,
smartphones) would be invaluable to staff who are constantly circulating around the
clinic. Also, flexible, multimode delivery of staff alerts, such as via text messaging,
paging, email, and perhaps push notifications (such as through custom smartphone
apps), would improve the timeliness of staff being alerted to changes to the clinic
plan without being overly intrusive and disrupting patient–provider consultations.
Or there may be a need to disrupt those meetings, such as in the case of a provider
being unaware of the time (and patients queueing up in the waiting room), where
an automated nudge would be helpful to indicate that it is time to wrap up the
consultation.

COMS is a general concept, comprised of many elements, some of which are
well established in practice, whereas others have yet to be developed. The next
section explores in greater detail opportunities represented by some of the functions
included in the COMS model, both in terms of innovation for practice and research
for academics.
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4 Optimizing the Clinic Plan

Perhaps, the primary opportunity for innovative improvement to outpatient clinic
management is the clinic plan optimization component required by COMS. Multiple
approaches could be taken in constructing a model (or system of models) to optimize
the clinic plan. While solving a flow shop-style scheduling problem has been
widely addressed in the literature (e.g., Minella et al. 2008; Li and Ierapetritou
2008; Pinedo 2009; Baker and Trietsch 2009), the fact that some tasks may have
appointment times (versus complete jobs having due dates, as is typical of job-shop
scenarios) makes this variation on the traditional machine-scheduling problem more
complicated.

One approach could be to treat the set of patient arrival times—the order
and approximate times of patient arrivals—as exogenous and fixed, unable to be
modified by clinic plan optimization. Taking that approach would limit the model
to manipulating only the sequence of activities for each patient within his visit.
This can become a challenging problem as more activities, other than arrival times,
are associated with appointment times: If there is only one scheduled activity (e.g.,
a physician’s consultation) for each patient, there may be greater opportunity to
resequence all of the patient’s other activities in order to avoid provider conflicts,
reduce patient idle time, etc. However, some care providers in addition to the
primary physician may also have their appointments scheduled. This is common
for hospital-based providers who may see patients in several different specialties’
clinics throughout the day. If several of a patients’ tasks are associated with
appointment times (e.g., the physician consultation, the dietician consultation, and
the physical therapist consultation), the opportunities for improving the patient’s
itinerary may be very limited. If meeting all of these patient–provider appointment
times is considered desirable, but not mandatory (e.g., deviation from the desired
appointment time is included in the objective function instead of making task
start times constrained to be equal to appointment times), the model may produce
better results while still staying within reasonable windows around the original
appointment times. This approach also lends itself very well to application both
as the initial planning optimizer and the real-time clinic management re-optimizer,
since reasonably short solution times should be possible, especially if deterministic
consultation times are assumed (Froehle et al. 2011).

An alternative approach to planning the clinic could be to treat the patient
scheduled arrival times as flexible, which should permit better solutions through
manipulation of patient arrival order in addition to the provider/task sequence within
each patient described above. In the absence of a scheduling policy where all
patients arrive at the beginning of the clinic, taking this approach may require a
two-stage patient appointment-setting process; the patient would first be assigned to
a specific clinic (e.g., the morning of Wednesday, August 14th), and then, once the
roster is full and the planning problem is solved, the patient would be contacted with
a specific arrival time (e.g., 10:30 a.m.). A similar two-stage approach is relatively
common in scheduling elective surgeries, where “first, advance scheduling gives
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patients some future date for surgery [and] second, allocation scheduling determines
the sequence and resource assignment of the cases in a given day” (Pham and
Klinkert 2008). Of course, in an outpatient setting, patients’ unwillingness to learn
the specific time of their appointment so close to the visit date may limit the utility
of this approach.

Another method commonly used is “open access” (also known as “advanced
access”) scheduling, where some capacity is reserved for patients who need
appointments on short notice (Murray and Berwick 2003). While not typically
used for the complex and/or multidisciplinary clinics discussed in this chapter,
investigating its use in those contexts may be fruitful. See Dobson et al. (2011)and
for discussion of this topic.

Many, if not most, clinic scheduling optimization models take a single-period
approach; they determine the best plan now and assume future disruptions, which
could drive the clinic away from the optimal plan, will not happen. Immediately
below is an example of a mixed-integer programming model that provides an initial
plan for a clinic using predetermined patient arrival times and focusing on arranging
the sequence of patient–provider tasks within each visit.

4.1 Example: Sequencing of Tasks in a Clinic

Considering the clinical environment, an optimization model that would determine
the sequence of tasks to be performed on a set of patients with scheduled
arrivals could be useful. Here, a mixed-integer programming model has the aim of
sequencing all the given tasks for all patients such that the total time in the system
for the patients, weighted by their respective processing time, would be minimized.
As a first step, we assume processing time for each task to be deterministic and
therefore minimizing total time in system amounts to minimizing patient wait time.
Weighting by total processing time results in taking a relative perspective on patient
wait time, where patients who necessitate longer processing time can wait longer
than patients who only need short services.

Consistent with clinical workflow, the model uses the following inputs: a set of
patients scheduled for the given block schedule; a set of tasks to be performed on
each patient; a set of resources that will perform the tasks; and a duration for each
task. In addition, the tasks are assigned to one of four categories (not counting the
registration task, which must occur first): (a) tasks that must be performed before
the patient sees the physician; (b) tasks that must be performed after the patient sees
the physician; or (c) tasks that can be performed either before or after the patient
sees the physician. For example, taking the patient’s vitals may be a task that has to
occur before the patient sees the physician. Similarly, a patient might have to get a
blood test after seeing the physician. Other tasks, such as seeing a dietician, could
take place either before or after the encounter between the patient and physician. The
fourth category of tasks is (d) the encounter between the patient and the physician.
This categorization constitutes a constraint on the sequencing and has to be captured
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in the optimization model. The physician is typically viewed as the bottleneck
resource, and thus, the objective of the model is to minimize physician idleness. In
summary, each task is uniquely identified, involving a patient, a resource, a duration,
and a sequencing category. We now define the elements needed to formulate the
optimization model and then express the model in mathematical terms.

Decision variables:

• su = the start time of task u
• wl = the amount of time in the system for patient l= completion time—

appointment time for patient l
• xk

u,v = 1 if task u occurs before v for resource k, zero otherwise
• yl

u,v = 1 if task u occurs before v for patient l, zero otherwise

Sets:

• T = {Tasks to be sequenced during the time horizon (e.g., one clinic day)}
• P= {Patients scheduled to visit the clinic during the time horizon}
• R= {Resources involved in the clinic (the nurses, the physician, the dietician,

etc.)}
• Rk = {Tasks to be performed on resource k}
• Pl = {Tasks to be performed on patient l}
• Ol = {Registration task(s) for patient l}
• Al = {Tasks of category A to be performed on patient l, where A tasks have to

occur before the physician sees the patient}
• Bl = {Tasks of category B to be performed on patient l, where B tasks involve the

physician}
• Cl = {Tasks of category C to be performed on patient l, where C tasks have to

occur after the physician sees the patient}
• Dl = {Tasks of category D to be performed on patient l, where D tasks can occur

either before or after the physician sees the patient}
Model parameters:

• tu = the duration of task u
• al = the appointment time of patient l
• pl = ∑

u∈Pl

tu

• αl =
1
pl

• M is a nonrestrictive large value in the context of this environment (e.g., the sum
of all the processing times)

The objective function can then be defined as:

min
P

∑
l

αlwl (9.1)
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The objective is fulfilled by determining the starting time of each task, thus
providing a sequence of tasks. To ensure that the sequence of tasks is valid, we
insert the following constraints, where each equation below represents a set of
constraints:

su � al ∀l ∈ P, ∀u ∈ Pl (9.2)

M(1− xk
u,v)+ sv � su + tu ∀k ∈ R, ∀u,v ∈ Rk such that u < v (9.3)

Mxk
u,v + su � sv + tv ∀k ∈ R, ∀u,v ∈ Rk such that u < v (9.4)

M(1− yl
u,v)+ sv � su + tu ∀k ∈ P, ∀u,v ∈ Pl such that u < v (9.5)

Myl
u,v + su � sv + tv ∀k ∈ P, ∀u,v ∈ Pl such that u < v (9.6)

yl
u,v = 1 ∀l ∈ P, ∀u ∈ Al , ∀v ∈ Bl such that u �= v (9.7)

yl
u,v = 1 ∀l ∈ P, ∀u ∈ Bl , ∀v ∈Cl such that u �= v (9.8)

yl
u,v = 1 ∀l ∈ P, ∀u ∈ Ol , ∀v ∈ Al such that u �= v (9.9)

yl
u,v = 1 ∀l ∈ P, ∀u ∈ Ol , ∀v ∈ Dl such that u �= v (9.10)

wl � su + tu − al ∀l ∈ P, ∀u ∈ Pl (9.11)

su,wl � 0 ∀u, l xk
u,v,y

l
u,v ∈ {0,1} ∀u,v,k, l (9.12)

Equation (9.2) ensures that a patient’s tasks cannot start before the patient’s
appointment time. Equations (9.3) and (9.4) capture the fact that a given resource
can only process one task at a time and that any task is either before or after another
task. These two equations capture these requirements as they are the integer program
formulation of a disjunctive pair, meaning that either one or the other constraint, but
not both, must hold for a solution to be feasible. Similarly, Eqs. (9.5) and (9.6)
capture the fact that for a given patient, only one task can be performed at a time
and that any task is either before or after another task. With Eqs. (9.7) through (9.10)
we account for the categorization constraints on the order in which tasks have to be
performed for a given patient, where any task in Al should be before any task in
Bl, any task in Bl should be before any task in Cl, and registration tasks should be
performed before any other task. Finally we use Eq. (9.11) to capture the total time
in system for each patient.
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To test this example, we coded the model in the AMPL language and solved
several small instances using CPLEX (ILOG). Based on an actual pediatric clinic
as a convenient example, in each instance solved, we kept the number of resources
constant, capturing registration, two nurses, a physician, a dietician, and a social
worker, totaling six different caregiver resources. We assumed one unit of each
resource (one person), so that the resource can only handle one patient at a time.
Also, for convenience, we assumed the patients arrived every 15 min, and, given
the short registration task, we assumed this created no initial patient waiting. We
were able to solve these problems in a reasonable amount of time, but further work
refining the model and developing solution techniques (or heuristics) will likely be
necessary for clinics having more patients, providers, and provider types.

5 Opportunities for Future Research and Practice

The improvement of outpatient clinics’ operational effectiveness is a broad topic
area with many avenues to explore further. Below, we discuss three: (1) the effects of
disruptions on efforts to optimize the clinic plan; (2) multidisciplinary coordination;
(3) the use of operational data to improve future planning and scheduling activities;
and (4) the challenges of managing human behavior in these complex operational
environments.

5.1 Disruptions

Since optimizing the clinic plan, such as is accomplished by the model in Sect. 4, is
a planning problem, typically solved one or more days prior to the start of the clinic
session, we can afford the luxury of finding optimal solutions. But, further research
on reformulations (see, e.g., Camm et al. 2008) may improve computation times
and enable real-time use of this model. Naturally, this MIP uses deterministic data.
However, given the almost certainty of disruptions (e.g., tardy or no-show patients
or longer-than-expected consultation times) occurring during clinic operation, we
suggest taking one of two approaches. First, the solution process could incorporate
an iteration loop that takes the above model’s solution and simulates the clinic with
realistic and stochastic processing times. Research is needed to develop appropriate
measures of robustness (ability to remain a “good” plan even in the face of ordinary
disruptions) for the clinic and, using these metrics, revise the optimization model to
develop a new clinic plan. This could be repeated until there is an acceptable and
reasonably robust plan. Other approaches that might be appropriate here could be
the use of safe scheduling, where buffers are added to task times to take into account
potential task time changes (Baker and Trietsch 2009).

A second alternative (or perhaps complimentary) approach to handling disrup-
tions would involve regularly re-solving the optimization model during the clinic
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session. Once we enter the real-time flow management (RFM) phase (i.e., at the start
of the clinic), disruptions will occur, making the current plan potentially difficult
to adhere to, if even still feasible. With each event epoch (e.g., patient arrivals,
task completion, patient departure) or on some predetermined schedule (e.g., every
10 min), we could attempt to re-optimize the clinic plan to get the patient flow back
on track to try to meet the clinic’s operational goals. Unfortunately, these disruptions
can happen often, and solving a mixed-integer program to make adjustments may
take too long. Plus, system nervousness might dictate less frequent changes. So, fast
heuristics, such as swapping upcoming tasks, may be needed to guide rapid updates
to the current clinic’s operating plan. Research into practical algorithms, both from a
run-time point-of-view and also from realistic clinic change possibilities, is needed.
For instance, a new solution that tells the next arriving patient (due to arrive in 5 min)
to come 1 h later is likely not a reasonable response.

5.2 Coordination

A related area of opportunity concerns the growing use of multi-specialty clinics,
where patients with very complex conditions may end up seeing physicians and
specialists from several different areas of medicine (e.g., cardiology, immunology,
and pulmonology) in a single visit. Since these specialists will be coming from
different parts of the organization, if not from different organizations entirely,
scheduling them in a way that works with their other commitments as well as
produces a reasonably compact schedule for the patient is increasingly desirable.
Analytically, as the scope of the scheduling problem grows, dimensionality can
become a significant barrier to producing optimal schedules. Therefore, again,
heuristic-based approaches will likely need to be developed.

And since these heuristics will be of little use by themselves, embedding them
within pan-organizational, or even interorganizational, information systems, will
be necessary to add the most value to practice. This problem of coordination
across multiple divisions of a hospital or other large healthcare provider has been
around for decades. Mayo Clinic first dealt with this issue shortly after World War
II by establishing a “central appointment desk,” which coordinated appointment
scheduling for multispecialty patient visits (Berry and Seltman 2008). Today, fast,
responsive, and automated information systems offer significant opportunities for
improving the effectiveness of these scheduling coordinationactivities.

5.3 Using Operational Data Better

One important function of COMS is its use of historical clinic data to forecast con-
sultation durations involving different combinations of care providers and patients.
This is helpful in determining a clinic plan that will be less likely to disruption, as the
plan will already reflect the best possible estimate of the task duration (and likely
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far better than a standard schedule template, which generally attempts only crude
differentiation among patients). Mining those historical data in order to make better
forecasts about upcoming clinic visits represents a significant opportunity for both
research and practice. While standard regression models may provide more accurate
predictions than taking global means, using methods to identify and disaggregate
influential subpopulations may further improve the accuracy of these estimates.

Another opportunity for future research is to develop ways to draw from the
advances made in goods-producing industries, such as by seeking multiple sources
of data and using multiple forecasting techniques, including quantitative as well
as qualitative methods (Makridakis and Winkler 1983; Fisher and Raman 1996).
While historical data will likely be informative, there may be some special cause or
new influence that may create deviation from historical patterns. Seeking estimates
from all the nurses and physicians that have cared for this patient, or patients like
him, could be a useful supplement to the historical data when developing the best
prediction of how long an upcoming consultation will take.

5.4 Managing Behavior

Finally, there is the issue of modifying the behavior of patients or providers, if not
both. To this point, we have largely focused on accommodating sources of variability
(which can lead to uncertainty if the variability is not easily predicted) by improving
both our ability to plan for it and our ability to react to it in a more timely and
rational manner. A complementary strategy that exists is reducing the variability
so that less uncertainty has to be accommodated. For example, while much of
the discussion above has involved approaches to predicting and compensating for
consultations of uncertain durations, we could combine that with managerial tools
that reward more consistent adherence to the scheduled durations (or, alternately,
that discourage gross deviations). While there will always be legitimate reasons to
extend a consultation (or to end it earlier than planned), not all activities during a
consultation might add value and could be safely eliminated to help keep the clinic
on schedule. If awareness of the time elapsed during a consultation is a barrier to
providers keeping true to their itineraries, a system of automated reminders, such as
pages or texts sent to cellular phones, might be implemented (an excellent addition
to the functionality of COMS, which will already be trackingactivities).

A better understanding of the sources of this variability will require further
research but will be invaluable in helping outpatient clinics plan and manage their
flow. This is especially true in complex clinics, as the variability from multiple con-
sultations can accumulate to produce wildly varying operational performance from
clinic session to clinic session. It is important to understand that variability cannot be
eliminated completely. It is possible, however, to distinguish that variability created
by provider input, or even the schedule itself, from “natural” (exogenous) variation,
such as that arising from different patients’ needs. It is desirable to minimize this
first kind of variability, as suggested by Litvak (2005).
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6 Conclusions

This chapter explored some of the challenges of achieving consistently excellent
operational performance in complex outpatient clinics, offered a comprehensive
model of how scheduling and flow might be improved, and discussed related
opportunities for innovation in practice and in research. As complex outpatient
visits becomes increasingly common, the problem of poor clinic flow will continue
to undermine the financial viability of healthcare providers while simultaneously
motivating patients to avoid care (or seek it through alternate means). If complex
care clinics are to improve their operations, they must begin to consider how tools
like COMS can be developed and implemented. Researchers must also contribute
to this objective by developing new analytical methods and technologies. With
the increasing investment in electronic health record (EHR) systems, and the
evolution of new technologies, such as RFID and other sensors, there is tremendous
opportunity for making dramatic gains in the operational effectiveness of complex
outpatient clinics.
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Chapter 10
No-Show Modeling for Adult
Ambulatory Clinics

Ayten Turkcan, Lynn Nuti, Po-Ching DeLaurentis, Zhiyi Tian, Joanne Daggy,
Lingsong Zhang, Mark Lawley, and Laura Sands

1 Introduction

Access to health services is usually controlled by appointment scheduling practices.
Over the past few years, there has been resurgence in appointment scheduling re-
search, largely fueled by healthcare applications where access is vital and challenges
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are unique. Perhaps the most visible and difficult problem is the prevalence of nonat-
tendance or no-show among scheduled patients. No-show rates of 20% are typical in
ambulatory settings and can exceed 50% in some environments. Further, no-show
behavior is often worst among those most in need of care due to socio-economic
challenges, and it has far-reaching effects on clinic efficiency, patient outcomes,
and healthcare costs. Clinic efficiency suffers when scheduled patients do not
attend and resources are underutilized or when overbooked schedules result in
clinic congestion, provider overtime and burnout, and patient dissatisfaction. Health
outcomes suffer when no-show patients miss the care they need or when patients
cannot get timely appointments because part of the schedule is filled with patients
who will not attend. Healthcare costs rise when patients who miss appointments
seek emergency care or experience hospital admissions that could have been avoided
with proper ambulatory care. In fact, no-show behavior is much more than a
scheduling annoyance; it negatively impacts all major healthcare policy areas. Thus,
understanding no-show behavior is fundamental for delivering effective care.

Our objective in this chapter is to provide a blueprint for modeling no-show
behavior. We believe that the most basic ability is to accurately estimate the
probability that a given patient will keep a scheduled appointment. If this is well
done, many possibilities emerge, ranging from patient-specific interventions such
as identifying and targeting patients at risk for bad outcomes, to system and
software design efforts such as developing and implementing effective appointment
scheduling systems, to answering policy questions such as estimating the expected
yearly national cost of no-shows.

In this chapter, we first provide a structured, representative literature review that
will serve as a guide and provide entry points into the no-show research literature.
We will then discuss practical data issues such as the types of data required and how
data should be cleaned, maintained, and managed. We follow this with a discussion
of the model building process, the most appropriate statistical techniques, and how
to perform validation studies. We then present an example no-show model from our
own research and discuss it in detail. Finally, we conclude by discussing practical
implementation issues, summarizing thoughts, and directions for future research.

2 Literature Review

This section provides a structured and representative review of no-show literature up
to 2011. Our aim is not to provide a comprehensive review, but to provide coverage
sufficient to reveal the structure of the literature, that is, to illustrate the variety of
perspectives, contexts, methods, and results that the literature holds. Further, we
believe our review will serve as a guide for the interested reader who wants to
explore the literature in more detail.

Throughout the literature, the term “no-show” indicates scheduled appointments
that patients unexpectedly miss. This typically does not include canceled appoint-
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ments. Terms from the literature that are equivalent to “no-show” include visit
non-adherence (Alafaireet et al. 2010), appointment breaking (Bean and Talaga
1992), nonattendance (Cohen et al. 2008), dropping out (Deyo and Inui 1980),
missed appointment (Karter et al. 2004), and appointment failures (Lindauer et al.
2009).

We searched the databases “PubMed” and “Academic Search Premier” using
keywords “missed appointment,” “no-show and appointment,” “visit nonadher-
ence,” and “nonattendance and appointment.” We considered only full-text articles
that we could find electronically. We excluded the articles that were not written
in English and that considered pediatric patients. We also excluded studies that
consider mitigating the effect of no-show (e.g., overbooking). Based on our search,
we identified more than 100 papers in total.

Table 10.1 provides the detailed listing and categorization. The literature is
organized by ambulatory setting, which includes Mental Health, HIV, Dialysis,
Primary Care, Chronic Care/Diabetes, and others. We further classify each paper
with respect to its specific no-show-related topic. These topics include Health
Outcomes, Statistical Prediction Models, Interventions, and Self-Reported Reasons,
and they provide the basis for discussion in the following subsections. Also,
we indicate those papers for which an overall no-show rate is reported. Thus, a
researcher interested in no-show prediction models and overall no-show rates in
dentistry could access the row labeled Dental and the columns labeled Statistical
Prediction Models and No-show rate to find the most relevant sets of papers.

As part of our review, we identified several literature review papers. These are
presented in Table 10.2. The first paper, (Deyo and Inui 1980), reviewed studies
published in 1953–1979. At that time (1980), most of the published literature
had focused on psychiatric and pediatric populations. The no-show rates ranged
from 15% to 33% in adult clinics. The review identified the determinants of no-
show, self-reported reasons for no-show, and interventions to reduce no-show.
Determinants of no-show were classified according to patient features (both demo-
graphic and sociobehavioral), medical provider, disease or reason for appointment,
patient–provider interaction, therapeutic regimen, medical facility, and adminis-
trative process. Most studies emphasized the demographic features, while other
factors were less studied (Deyo and Inui 1980). The most frequently self-reported
reasons were forgetting the appointment, not knowing about the appointment
or misunderstanding. Other self-reported reasons were family problems, lack of
transportation, time or work conflicts, and patient’s health status (feeling better
or feeling too sick). Among several interventions related to patient education and
follow-up, appointment reminders were the most successful.

Bean and Talaga (1992) reviewed the literature published in 1977–1990. During
those years, the studies used more sophisticated methods (multivariate statistical
techniques) compared to simple descriptive methods of earlier studies, and most of
the research focused on interventions to reduce no-show. The predictors of no-shows
were classified as demographic, patient behavior (previous appointment keeping,
psychosocial problems, and health belief), situational characteristics (seriousness of
problem, referral source, day and time of appointment, and weather), and marketing
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Table 10.2 Literature review papers

Year Reference Setting Focus
Number of papers
reviewed

1980 Deyo and Inui
(1980)

General No-show predictors,
self-reported reasons,
interventions

87 references

1992 Bean and Talaga
(1992)

General No-show predictors,
self-reported reasons,
interventions

51 references

1992 Macharia et al.
(1992)

General Interventions 38 references

1998 Garuda et al.
(1998)

General No-show predictors,
self-reported reasons,
interventions

50 references

1998 Griffin (1998) Diabetes No-show predictors,
self-reported reasons,
interventions

136 references (59
reviewed in full)

2003 George and
Rubin (2003)

Primary Care No-show predictors,
self-reported reasons,
interventions

55 references (31
reviewed in full)

2007 Denhaerynck
et al. (2007)

Dialysis Health outcomes 88 references (17
reviewed in full,
8 on attendance)

2010 Bowser et al.
(2010)

Diabetes Mental
Health

No-show predictors,
self-reported reasons,
health outcomes

64 references (50
reviewed in full,
9 on attendance)

2010 Rowett et al.
(2010)

Mental Health Interventions 88 references (4
reviewed in full)

mix (service, communication, price, and transportation). The interventions included
appointment reminders, health belief interventions (educating the patient about
the disease), and incentives. Appointment reminders were the most commonly
studied and most effective interventions. The authors proposed strategies to reduce
no-shows such as minimizing the time to appointment, changing health beliefs of
the patient, maintaining patient satisfaction, using reminders, reducing financial
costs of an appointment, reducing transportation costs, and conducting follow-up
appointments by phone. They also proposed overbooking, estimation of no-show
probabilities, block booking of high-probability no-show patients, and physician
activity scheduling to mitigate the effect of no-shows.

Macharia et al. (1992) reviewed the interventions used to improve patient
compliance with screening, referrals, and appointments for counseling or ad-
ministration of medications. The studies that consider appointments for ongoing
care were not included. The interventions were classified as cuing (appointment
reminders by phone or mail), reducing perceived barriers (orientation statement,
automatic appointment, and clerical assistance), and increasing patient motivation
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(enhanced information and health belief model card). The most commonly tested
and successful interventions were reminders.

Garuda et al. (1998) provided background information on the predictors of
no-show (waiting time, payer type, number of visits, previous no-show behavior,
referral source, day and time of appointments, transportation, education and
socioeconomic status, age, gender, race, and personal illness) and interventions
that had been empirically tested (reminders, education, incentives, orientation,
automatic rescheduling, self-appointment scheduling, and overbooking). Once
again, appointment reminders were the most studied and successful intervention.
The authors also proposed a marketing approach to choose the best strategies
that address the particular needs and characteristics of a patient population. The
marketing approach included segmentation of the population into distinct groups,
understanding the most common reasons for no-show in each group, developing a
plan to use the most effective interventions for targeted patient groups, and testing
the plan on a sample to evaluate its effect.

Griffin (1998) focused on a diabetic patient population and reviewed the
predictors of no-shows and interventions to reduce no-shows. The author pro-
vided several factors (patient sociodemographic features, patient clinical features,
appointment characteristics, environmental factors, and provider–patient relations)
that show positive or negative association with no-shows. The interventions related
to changing patient appointment keeping behavior such as reminders, changes in
organization and delivery of care, and patient–provider relationship are discussed.
The author mentioned that interventions targeting the delivery of healthcare and
the patient–provider relationship were more effective because they were stronger
predictors of no-shows. This study identified only eleven papers about diabetes and
emphasized the need for further research on chronic care patients due to increasing
number of patients and the strong association of no-show with the adverse patient
outcomes.

George and Rubin (2003) performed a systematic review to identify the char-
acteristics of no-show patients, self-reported reasons for no-show, and impact
of appointment systems on no-show. They also discussed the effectiveness of
interventions such as appointment reminders, reminding patients to cancel, and
orientation statements in the existing studies. Even though the included studies
were shown to reduce no-show, the authors discussed the issue of having accurate
records of phone numbers to make reminder calls, the patient’s access to phones to
make cancellation calls, and the practice’s ability to handle cancellation calls. They
presented open-access scheduling and demand management as new approaches to
address the no-show problem.

Denhaerynck et al. (2007) reviewed the literature on nonadherence (fluid, dietary,
medication, and appointment nonadherence) to hemodialysis treatment and effect
of nonadherence on health outcomes. Nonadherence was shown to be associated
with higher morbidity and mortality in four studies that consider appointment
nonadherence. The authors concluded that patient behavior should be considered
to achieve adequate treatment outcomes.
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Bowser et al. (2010) reviewed the literature to determine the relationship between
the diagnosis of diabetes and depression and missed appointments in a low-
income, uninsured adult population. The existing studies identified depression as
an important predictor of no-shows and showed the effect of no-show on diabetes
patient health outcomes (poor glycemic control).

Rowett et al. (2010) reviewed the literature to identify the effect of prompts
(phone calls and orientation letters) on attendance for severe mental illness patients.
They found only four studies that showed the effectiveness of prompts for severe
mental illness patients. However, there were no statistical differences between the
intervention groups and control groups based on the reported confidence intervals.
The authors mentioned that there should be more studies with larger sample sizes.
They also proposed using automated systems for contacting people and using other
means of reminders such as text messages and emails.

The following sections provide more detailed information about additional
papers that identify self-reported reasons for no-shows using interviews and surveys
(Self-Reported Reasons), studies that use interventions to reduce no-shows (Inter-
ventions), studies that develop statistical prediction models to identify predictors of
no-show (Statistical Prediction Models), and studies that identify the relationship
between no-show and health outcomes (Health Outcomes).

2.1 No-Show Rates Reported in the Literature

This section presents the variety of no-show rates reported in our literature sample.
Our purpose is to give the reader some idea of the pervasiveness and variability of
this problem.

No-show rates were taken from 62 journal articles. The mean across all studies
was 23.8%, with rates of 24.3% for Asian studies, 14.9% for European studies, and
27.1% for North American studies (see Figs. 10.1–10.3 for histograms). Further,
Fig. 10.4 provides no-show rates for a variety of populations, including mental
health and primary care. It is remarkable that some North American clinics suffer
no-show rates of 48–64%.

2.2 Self-reported Reasons for No-Show

We identified eighteen papers that investigate self-reported reasons for no-show.
Eight papers covered studies in US clinics (Blankson et al. 1994; Bowser et al. 2010;
Campbell et al. 2000; Defife et al. 2010; Gany et al. 2011; Lacy et al. 2004; Sarnquist
et al. 2011; Sparr et al. 1993), seven papers in European clinics (Corfield et al. 2008;
Herrick et al. 1994; Killaspy et al. 1999; Martin et al. 2005; Neal et al. 2005; Peeters
and Bayer 1999; Potamitis et al. 1994), and three papers in other countries (Collins
et al. 2003; Park et al. 2008; Tuller et al. 2010). Further, mental health was
represented most often with five papers, followed by HIV, which had three (see
Table 10.1). These papers used either written surveys or interviews to identify the
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Fig. 10.1 Histogram of reported no-show percentages in all regions based on results from 62
articles

Fig. 10.2 Histogram of reported no-show percentages in North America based on results from 43
articles

reasons for no-show. Special populations studied included rural HIV in both the
USA and Africa (Sarnquist et al. 2011; Tuller et al. 2010), Chinese immigrants
in the USA (Gany et al. 2011), and women’s high-risk obstetrics (Blankson et al.
1994; Campbell et al. 2000). Self-reported reasons include patient-related factors,
scheduling system problems, and environmental and financial factors.
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Fig. 10.3 Histogram of reported no-show percentages in Europe based on results from 10 articles

Fig. 10.4 Histogram of reported no-show percentages by population: chronic care/diabetes
(5 articles), HIV (5 articles), mental health (17 articles), other (14 articles), and primary care
(21 articles). Patient populations studied in less than 5 articles are grouped as “other,” and
it includes dental, dermatology, dialysis, endocrinology, multispecialty, neurology, obstetric,
orthopedic, tuberculosis, urological, and vascular
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Patient-related reasons include forgetting the appointment, other competing
priorities or conflicts, and the patient’s health status. The most commonly reported
reason for no-show is “forgetting the appointment” (Blankson et al. 1994; Campbell
et al. 2000; Collins et al. 2003; Herrick et al. 1994; Killaspy et al. 1999; Martin
et al. 2005; Neal et al. 2005; Park et al. 2008; Potamitis et al. 1994; Sparr et al.
1993). Competing priorities include work schedules and taking care of a family
member (Blankson et al. 1994; Campbell et al. 2000; Defife et al. 2010; Gany et al.
2011; Martin et al. 2005; Neal et al. 2005). Reasons related to patient health status
include being physically or mentally ill (Bowser et al. 2010; Collins et al. 2003;
Defife et al. 2010; Gany et al. 2011; Lacy et al. 2004; Peeters and Bayer 1999;
Potamitis et al. 1994; Sarnquist et al. 2011) and feeling better and not needing the
appointment any more (Corfield et al. 2008; Killaspy et al. 1999; Murdock et al.
2002; Potamitis et al. 1994).

Scheduling problems were also reported as reasons for nonattendance in eight
studies (Collins et al. 2003; Corfield et al. 2008; Gany et al. 2011; Herrick et al.
1994; Lacy et al. 2004; Martin et al. 2005; Peeters and Bayer 1999; Potamitis
et al. 1994). The problems related to scheduling system include difficulty in
getting an appointment with the primary care provider, difficulty in canceling the
appointment, not receiving an appointment card, losing the appointment card, and
wrong information about the date and time of the appointment. As George and
Rubin (2003) mention, appointment systems can become barriers to healthcare
when waiting times to appointment day are long. As the waiting time increases,
no-show rates increase.

Transportation is another commonly reported reasons for no-show (Blankson
et al. 1994; Campbell et al. 2000; Gany et al. 2011; Neal et al. 2005; Park et al.
2008; Peeters and Bayer 1999; Sarnquist et al. 2011; Sparr et al. 1993; Tuller
et al. 2010). Even though financial problems are reported only in two studies (Gany
et al. 2011; Tuller et al. 2010), other performance measures such as unavailability
of transportation can be thought as proxy measures for socioeconomic status. As
noted by Campbell et al. (2000), patients are constantly challenged with very real
unfilled needs related to housing, food, employment, education, and transportation.
Inadequate social support systems and difficult societal issues adversely affect
patient motivation and attitudes toward care.

Table 10.3 provides a summary of all studies that identified most commonly
reported reasons for no-shows. While many reasons were given for missing appoint-
ments, the most common self-reported reasons were “forgetting the appointment”
(9 papers), “transportation” (8 papers), “mentally or physically unwell” (8 papers),
and “scheduling system problems” (8 papers). Limitations cited for these studies
include the fact that reasons for no-show were self-reported (not observed) so
that independent verification was not possible. Further, there were concerns about
sampling or “no-response” bias since not all selected patients could be reached for
interview and the response rates for surveys were sometimes low.

Some researchers believe that objective reasons, such as lack of transportation,
are cited in lieu of more difficult problems such as depression, resentment, and
fear. Defife et al. (2010) claim that keeping a clinic appointment is the result of
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Table 10.3 Most common self-reported reasons

Self reported reasons
Number
of papers Papers

Forgot appointment 10 Blankson et al. 1994; Campbell et al. 2000;
Collins et al. 2003; Herrick et al. 1994;
Killaspy et al. 1999; Martin et al. 2005;
Neal et al. 2005; Park et al. 2008;
Potamitis et al. 1994; Sparr et al. 1993

Conflicts with appointment 6 Blankson et al. 1994; Campbell et al. 2000;
Defife et al. 2010; Gany et al. 2011;
Martin et al. 2005; Neal et al. 2005

Transportation 9 Blankson et al. 1994; Campbell et al. 2000;
Gany et al. 2011; Neal et al. 2005; Park
et al. 2008; Peeters and Bayer 1999;
Sarnquist et al. 2011; Sparr et al. 1993;
Tuller et al. 2010

Physically or mentally unwell 8 Bowser et al. 2010; Collins et al. 2003;
Defife et al. 2010; Gany et al. 2011;
Lacy et al. 2004; Peeters and Bayer
1999; Potamitis et al. 1994; Sarnquist
et al. 2011

Scheduling system problems 8 Collins et al. 2003; Corfield et al. 2008;
Gany et al. 2011; Herrick et al. 1994;
Lacy et al. 2004; Martin et al. 2005;
Peeters and Bayer 1999; Potamitis et al.
1994

Perceived disrespect 2 Lacy et al. 2004; Martin et al. 2005
Bad weather 2 Killaspy et al. 1999; Neal et al. 2005
Financial problems 2 Gany et al. 2011; Tuller et al. 2010

a combination of several factors that include personal meanings of the symptoms,
resulting emotions, anticipated consequences, and the perceived relationship of the
patient with the provider and the clinic staff. As Blankson et al. (1994) point out,
the patient might not perceive the benefits of the appointment and thus places
no emphasis on keeping it. Lacy et al. (2004) urge providers to understand the
patient’s fears and educate the patient about what to expect and why treatment is
important. Campbell et al. (2000) emphasize the need for providers to develop a
deeper understanding of a patient’s daily priorities.

2.3 Interventions to Reduce No-Shows

Interventions to reduce no-shows include appointment reminders, patient education,
follow-up after a no-showed appointment, open-access scheduling, and lean process
improvement methods. Tables 10.4 and 10.5 show the no-show rates before and after
implementation of several interventions in 26 studies.
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Table 10.5 Open-access scheduling and lean methodology to reduce waiting times

No-show rate (sample size)

Study Intervention No intervention Intervention

Belardi et al.
(2004)

Traditional access vs. advanced
access

9.23% 6.67%

Bennett and
Baxley
(2009)

Advanced access 20–25% 17.6–23.7%

Bundy et al.
(2005)

Open access 16% (n = 1,633) 11% (n = 3,248)

Cameron et al.
(2010)

Open access 3.33%
(n = 21,838)

1.89%
(n = 21,819)

Fischman
(2010)

Lean methodology to improve
efficiency and reduce in-clinic
waiting times

30.8% 26.0%

LaGanga
(2011)

Lean process improvement 13.85%
(n = 816)

2.20% (n = 910)

Mehrotra et al.
(2008)

Open access (5 practices) 3–18%
(n = 49,603)

3–17%
(n = 115,167)

Snow et al.
(2009)

Improved access 5% 4–5%

Williams et al.
(2008)a

Advanced access 52% 18%

a First appointment

One of the most commonly self-reported reasons for no-show is forgetting
the appointment, as discussed in Sect. 2.2. Different methods such as mailing
letters or postcards (Can et al. 2003; Hochstadt and Trybula 1980; Jayaram et al.
2008; Swenson and Pekarik 1988), phone calls (Hardy et al. 2001; Hochstadt
and Trybula 1980; Kluger and Karras 1983; Leong et al. 2006; Liew et al. 2009;
Satiani et al. 2009; Tanke and Leirer 1994), and text messages (Leong et al.
2006; Liew et al. 2009; Milne et al. 2006) are used as appointment reminders.
According to the studies that compare letters and phone calls, phone calls are more
effective in reducing no-show rates (Hardy et al. 2001; Hochstadt and Trybula
1980). However, the timing of the intervention is also an important factor. As
the time of intervention gets closer to the appointment time, the reduction in no-
show rate increases (Hochstadt and Trybula 1980; Swenson and Pekarik 1988).
The applicability of text messages is limited because not all patients have cell
phones (Milne et al. 2006).

Orientation and information packages give detailed information about when and
where to come, where to park, what to bring, who the patient will see, and what will
occur during the appointment. There are a few studies that show the importance of
providing information and orientation packages before the appointment on reducing
no-show rates (Hardy et al. 2001; Kluger and Karras 1983; Swenson and Pekarik
1988). This method is mainly used for the initial appointments to reduce the
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uncertainty and possible fear of patients. In Guse et al. (2003), patient education
is performed in the form of an exit interview after the appointment. The interview
included visit debriefing, written patient information where appropriate, and review
of clinic policies. Guse et al. (2003) showed that the exit interview improved
attendance in subsequent visits.

Follow-up after a no-show appointment is used to reduce no-show rates for
subsequent visits. Letters, phone calls, home visits, and text messages are used as
follow-up strategies (Blank et al. 1996; Guse et al. 2003; Kunutsor et al. 2010b;
Lowe 1982). Lowe (1982) reported that the follow-up letter asking to reschedule
does not reduce no-show rates, which shows the importance of patient agreement
on scheduling an appointment at a convenient time.

Waiting time for an appointment and in-clinic waiting times increase patient
dissatisfaction and might lead to perceived disrespect. Open-access scheduling and
lean methods are used to minimize waiting times. “Open access” (also known
as “same-day scheduling” or “advanced access”) aims to reduce waiting time by
providing appointments within a day or two (Murray and Tantau 2000). Even
though there are studies that show the effectiveness of open-access scheduling in
reducing no-shows (Bundy et al. 2005; Cameron et al. 2010; Williams et al. 2008),
implementation of open-access scheduling does not always reduce no-show rates
significantly (Belardi et al. 2004; Bennett and Baxley 2009; Mehrotra et al. 2008;
Snow et al. 2009). In a recent survey on open-access scheduling by Rose et al.
(2011), it was shown that open-access scheduling was not effective in reducing no-
show rates significantly for practices with lower baseline no-show rates.

Lean methodology is implemented to improve efficiency and reduce waiting
time (Fischman 2010; LaGanga 2011). Fischman (2010) implemented lean method-
ology to improve workflow processes, and LaGanga (2011) implemented several
changes such as providing intake assessment on the same day and realigning
appointments to better-attended days. Both studies show the effect of lean method-
ology in reducing no-show rates.

Although several studies illustrate the effectiveness of interventions in reducing
no-show, patient no-show remains a widespread problem. Garuda et al. (1998)
mention that one of the most important reasons for current failure of institutions
to sufficiently resolve the no-show issue is the sparse number of studies that match
specific causes of no-show behavior with appropriate solutions to these problems.
For example, transportation was one of the most commonly reported reasons for
no-show. However, Andersen et al. (2007) is the only study that evaluates the
effectiveness of providing transportation in reducing no-shows. Another problem is
limited resources to implement a full range of appropriate interventions. Research
is needed to determine the optimally effective mix of no-show interventions for a
given clinic environment and patient population.
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2.4 No-Show Predictors

This section discusses patient, provider, and scheduling factors that are associated
with no-show behavior. Factors identified below were from studies with adequate
sample sizes and robust experimental and statistical methods.

Patients who are middle aged or older are less likely than younger patients to
miss appointments with their providers (Cashman et al. 2004; Cohen et al. 2008;
Daggy et al. 2010; Hurtado et al. 1973; Lehmann et al. 2007; Parikh et al. 2010;
Tseng 2010). Some studies reported that patients younger than middle age are twice
as likely to no-show compared to older subjects (Cashman et al. 2004; Daggy et al.
2010). For example, one study of more than 3,000 patients in a primary care clinic
reported that 31% of patients younger than 50 years of age did not show up to their
medical appointments compared to 17% of patients aged 51–60, and 9% of subjects
older than 70. Two studies distinguished no-show rates for younger (aged 18–25)
patients and found that younger patients were significantly less likely to no-show
than patients aged 26–50 (Cashman et al. 2004; Kruse et al. 2002).

Most studies that considered whether males and females differed in no-show rates
did not find a significant difference in rates between the genders (Cashman et al.
2004; Catz et al. 1999; Cohen et al. 2008; Lehmann et al. 2007; Livianos-Aldana
et al. 1999; Moore et al. 2001; Mugavero et al. 2009b; Weinerman et al. 2003).
Of the few studies that did find statistically significant differences, most found that
females were less likely to no-show (Hurtado et al. 1973; Lindauer et al. 2009),
although the differences in rates were small. For example, in a study of over 5,000
health maintenance organization patients, 17.2% of males did not show up to their
medical appointment compared to 15.7% of females (Hurtado et al. 1973).

A few studies considered whether no-show rates are associated with having
family members or being married (Alafaireet et al. 2010; Daggy et al. 2010; Hurtado
et al. 1973). Typically, having family members or being married is associated with
lower no-show rates. For example, a study of veterans at a Midwestern outpatient
facility reported that the no-show rate for married patients was 9.5% compared
to 22.7% for non-married patients (Daggy et al. 2010). Large families, however,
may worsen no-show rates. A study of over 5,000 patients enrolled in a health
maintenance organization found that appointment failures were greater for larger
families. For example, no-show rates were 11.3% for a family of size two, but they
were 22.6% for a family size of six or more members (Hurtado et al. 1973).

In the USA, patients from minority racial or ethnic groups were more likely to no-
show than whites (Alafaireet et al. 2010; Bennett and Baxley 2009; Catz et al. 1999;
Kruse et al. 2002; Moore et al. 2001; Mugavero et al. 2009b). For example, a study
of attendance to the first appointment at a psychiatric clinic revealed that Hispanics
were less likely to attend their first appointment compared whites (OR = 0.48; 95%
CI = 0.23–0.99) (Kruse et al. 2002). An odds ratio (OR) of 0.48 indicates that
Hispanics are 48% more likely to miss their first appointment than are whites. If the
95% confidence interval (CI) about the odds ratio includes the value one, then the
odds of the outcome is not significantly different between the two categories being
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compared. Similar trends are found among other patient populations including HIV
patients (Catz et al. 1999; Mugavero et al. 2009b) and primary care patients (Bennett
and Baxley 2009; Moore et al. 2001). The finding that minority race and ethnic
status is associated with greater likelihood of no-showing was also consistent across
studies that statistically controlled for financial and insurance status (Bennett and
Baxley 2009; Kruse et al. 2002; Mugavero et al. 2009b).

Patients without health insurance are more likely to no-show than patients
with health insurance (Alafaireet et al. 2010; Bennett and Baxley 2009; Kruse
et al. 2002). For example, one study of primary care patients found that self-pay
patients were nearly 40% more likely to no-show (OR = 1.38; 95% CI = 1.23–
1.54) (Bennett and Baxley 2009). Similarly, a high patient co-payment is associated
with higher no-show rate. A study of outpatient diabetics found that patient co-
payments exceeding ten dollars were associated with a 30% increase in no-show
rate (OR = 1.20; 95% CI = 1.2–1.4) (Karter et al. 2004). Not surprisingly, a study of
orthodontic patients found that those patients whose payments were overdue or with
a collection agency were much more likely to miss their appointments (Lindauer
et al. 2009).

The greater the length of the interval between the day the appointment is made
and the actual appointment day, the greater the risk for no-show (Alafaireet et al.
2010; Cohen et al. 2008; Compton et al. 2006; Daggy et al. 2010; Hamilton et al.
2002; Livianos-Aldana et al. 1999). For example, no-show probability for the first
appointment after psychiatric hospitalization increased by 4% (OR = 1.04; 95%
CI = 1.01–1.07) for each day between time the appointment was made and the
actual day of the appointment (Compton et al. 2006). A similar result was found for
primary care patients. A study of veteran outpatients revealed that patients scheduled
more than 2 weeks in advance were more than twice as likely to no-show (OR =
2.68; 95% CI = 1.90–3.85) (Daggy et al. 2010). Other appointment characteristics
such as time of day and day of the week were inconsistently associated with no-
show status (Alafaireet et al. 2010; Cohen et al. 2008; Livianos-Aldana et al. 1999;
Tseng 2010). A few studies concluded no-shows were more likely to occur for
winter appointments than appointments scheduled during other seasons (Bennett
and Baxley 2009; Daggy et al. 2010). For example, Daggy et al. found that among
veteran outpatients, those with winter appointments were twice as likely to miss an
appointment than those whose appointments were scheduled during other seasons
(OR = 2.14; 95% CI = 1.67–2.73) (Daggy et al. 2010).

Patients with diseases that were likely to require hospitalization were less likely
to no-show than patients with less illness severity (Daggy et al. 2010; Hurtado
et al. 1973). In contrast, psychiatric diagnoses are associated with high no-show
rates (Cashman et al. 2004; Charupanit 2009; Ciechanowski et al. 2006; Compton
et al. 2006; Weinerman et al. 2003). Among patients with psychiatric diagnoses,
those who had the greatest severity of psychiatric illness (Axis 4 diagnoses)
were nearly twice as likely to no-show compared to other psychiatric patients
(OR = 1.83; 95% CI = 1.00–3.34) (Compton et al. 2006). Similarly, those who
needed psychiatric medications were significantly more likely to miss medical
appointments (R = 4.32; 95% CI = 1.32–14.22) than those who did not need
medications (Kruse et al. 2002).
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Few studies considered whether provider characteristics are associated with no-
show status. Of those who considered provider characteristics, several trends were
evident. Clinicians with greater expertise (e.g., faculty versus resident) are less likely
to have patients no-show (Bennett and Baxley 2009; Tseng 2010) as are clinicians
whose practice focuses on continuity of care (Bennett and Baxley 2009; Compton
et al. 2006).

2.5 No-Show and Health Outcomes

While ample literature is available discussing predictors of no-show and interven-
tions for no-show, there is little that describes the relationship between no-show and
health outcomes. Research studying the association of no-show and health outcomes
can be found across the following clinical populations: diabetic (Davidson et al.
2000; Karter et al. 2001, 2004; Rhee et al. 2005; Samuels et al. 2008; Schectman
et al. 2008), dialysis (Denhaerynck et al. 2007; Obialo et al. 2008; Saran et al.
2003), human immunodeficiency virus (HIV) (Mugavero et al. 2009a,b; Murphy
et al. 2011), primary care (Bigby et al. 1984), and psychiatric (Murphy et al. 2011;
Pang et al. 1996).

To date, the no-show literature studying health outcomes consistently reveals
that diabetic patients with greater rates of missed appointments were associated
with higher glycosylated hemoglobin (A1C) levels indicating poorer glycemic
control (Davidson et al. 2000; Karter et al. 2001, 2004; Rhee et al. 2005; Samuels
et al. 2008; Schectman et al. 2008). Poor glycemic control is associated with
increased risk for long-term vascular complications such as coronary disease, heart
attack, stroke, heart failure, kidney failure, blindness, and neuropathy (American
Diabetes Association 2010). In addition to elevated A1C levels, Samuels et al.
(2008) found those diabetic patients least adherent with their medical appointments
had significantly higher mean systolic blood pressure.

Of the research studying no-shows in the dialysis population, two articles
discussed that missing at least one dialysis session a month was associated with
a 25–30% increased risk of mortality (Denhaerynck et al. 2007; Saran et al.
2003). In conjunction with increased mortality, Saran et al. (2003) showed that
skipping one or more dialysis sessions a month was associated with 13% increased
risk of hospitalization. One article illustrates that patients dialyzed on a Tuesday,
Thursday, Saturday schedule missed more appointments and had higher morbidity
than patients dialyzed on a Monday, Wednesday, Friday schedule; however, these
findings were found to be not statistically significant.

Mugavero et al. (2009a) in discussing no-show and associated health outcomes
in the HIV population revealed that appointment nonadherence was significantly
associated with antiretroviral therapy failure. Mugavero et al. (2009b) showed
that mortality rates were more than two times higher for patients with missed
appointments compared to patients who attended all scheduled appointments during
the first year of care.
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One article describes no-show and health outcomes in the primary care pop-
ulation. Bigby et al. (1984) examined 200 primary care patients finding that no
hospitalizations or deaths could be directly attributed to a missed appointment. This
article was published in 1984, and more current literature regarding no-shows and
health outcomes in the primary care population is needed.

Pang et al. (1996) examined the association of missed appointments in a
psychiatric outpatient setting in Hong Kong and found that nonattendance was
significantly associated with mortality.

In summary, the literature shows that missed appointments are associated with
poorer glycemic control in diabetic patients, increased risk for mortality and
hospitalization in dialysis patients, increased antiretroviral therapy failure and
higher mortality rates in HIV patients and increased mortality in psychiatric patients.
It is apparent from the scarcity of literature examining the relationship between
no-show and health outcomes that more research is needed with diverse patient
populations in a variety of healthcare settings.

3 Data and Methodology

We now turn our attention to no-show modeling. Our intention is to provide the
reader with a practical guide for obtaining and managing data and building and
validating models.

Modeling no-show behavior of patients allows us to determine the associated
patient and environment factors. This information is needed to identify which
patients are at highest risk for not showing up to their medical appointments and to
determine whether there are modifiable factors that can be targeted for interventions
to reduce no-show rates. No-show modeling has the potential for informing the
design of clinic interventions (e.g., advanced scheduling considering patient no-
show probability) to mitigate the impact of patient no-show and improve clinic
performance and patient outcomes.

3.1 Data Requirements

It is becoming common for healthcare organizations to store data related to clinic
operations. For example, scheduling is typically conducted using electronic schedul-
ing systems that store information about appointments including the timing of the
appointment, the type of appointment, the clinicians involved in the appointment,
and whether the patient kept the appointment. Similarly, electronic billing systems
store information about the services a patient received during an appointment, the
diagnoses associated with the appointment, and basic demographic and insurance
information about the appointment. Electronic medical records store data about
the patient’s medical history, current diagnoses, laboratory values, prescriptions
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ordered, and treatment plans. These sources include many of the variables that have
been shown in prior research to be predictive of no-show behavior.

Data use should be guided by federal, state, local, and institutional guidelines and
principles of fair use. It is outside of the scope of this chapter to discuss regulatory
guidelines; however, we will state that it is the responsibility of each individual
who uses clinic data to understand and adhere to existing guidelines (e.g., HIPAA,
institution specific guidelines, internal review board). Fair use of data refers to
using data only for purposes of improving clinic operations including improving
performance to optimize patient outcomes. In the case of extracting data for no-show
modeling, fair use indicates that the data will be used only for the purposes of
devising and validating no-show models.

Selection of electronic data that are relevant to developing and validating no-
show models first requires a basic understanding of reasons why patients are likely
to no-show. We recommend beginning with a framework that describes the factors
that should theoretically contribute to no-show status. For example, a commonly
used conceptual framework for studying factors related to healthcare utilization is
Andersen’s behavioral model which has been used by many to predict future use of
health services (Andersen and Newman 2005). That model describes predisposing,
enabling, and need characteristics associated with healthcare utilization. This is one
of many possible models to guide derivation of hypotheses about which patient,
provider, clinic, environmental, and policy factors explain no-show behavior. We
will not recommend a specific model to guide the derivation of hypotheses because
the choice of a model should be influenced by characteristics of the population
and the healthcare setting to be studied. Existing scientific literature should be
systematically reviewed to provide validation of a priori hypotheses about factors
associated with no-show behavior. Beginning with a strong conceptual framework
that is validated (at least in part) by existing research avoids extracting data unrelated
to the objective of creating an accurate and parsimonious no-show model.

Our prior work and the existing literature describe important factors for no-show
modeling including predisposing characteristics (e.g., age, gender, race, marital
status), enabling characteristics (e.g., insurance status), encounter type (e.g., new
patient or follow-up), need characteristics (e.g., comorbidities, patient no-show
history), and environmental characteristics (e.g., types of provider, appointment
reminder system in place). Data representing these characteristics may be collected
from clinic scheduling systems, patient medical records, and billing information
systems. The data used to develop a no-show model should accurately represent
the hypothesized patient and system characteristics related to no-show status.
A thorough understanding of the data is developed from learning how the data are
collected and coded. Typically, the data are collected by clinic personnel and entered
into an electronic system. Data are usually coded according to clinic specified
criteria. For example, appointment attendance status is usually coded as canceled,
arrived, or no-show. Which code is applied to the patient’s visit is determined
by criteria set by clinic personnel (e.g., the designation of no-show is used when
the patient did not show up within an hour of the scheduled appointment). Some
electronic data systems include a coding manual in which each variable within
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the electronic system is specified and defined. The manual may also specify and
define all possible values for each variable. Coding manuals are invaluable for
understanding of the meaning of the data. Whether or not a coding manual is
available, it is critical that the personnel involved in coding and entering data into
electronic systems be interviewed about the processes and guidelines used to code
each of the variables that will be considered in the no-show model.

Currently, most clinics do not have integrated scheduling, billing, and medical
records systems. To link data across systems, an encrypted patient identification
system (often referred to as a “crosswalk”) must be created that allows each patient’s
scheduling, billing, and medical records information to be combined. Typically
this crosswalk is created by clinic information technology personnel who use that
crosswalk to combine data from all electronic resources. Extracted data should be
in the form of a limited data set (U.S. Department of Health and Human Services,
National Institute of Health 2007). A limited data set excludes sixteen identifiers that
could be used to identify the individual associated with the data. Accurate no-show
modeling does not depend on knowing the identity of the individuals contributing
the information. Rather, it is the combination of data from all clinic patients that
is needed to create a model that can be applied across patients. It is recommended
that the data are stored on a secured server for secure data management. A secured
server is typically password protected and housed within a fire-walled network
environment with a limited number of users allowed to access it.

3.2 Data Analysis for No-Show Modeling

Most no-show models consider whether or not the patient showed up to a specified
appointment (e.g., the most recent appointment). Most models do not include
cancellations because cancellations reflect a different type of patient behavior than
no-shows and likely would not have the same predictors. Further, patient and clinic
operations outcomes associated with cancellations are different than for no-shows.
Logistic regression is a natural choice to model the association between multiple
predictors on no-shows, since the response is a dichotomized variable (e.g., Hosmer
and Lemeshow 2000). The remainder of this section reviews steps associated with
constructing a logistic regression equation to model no-show probability.

3.2.1 Variable Selection

Examination of candidate variables for inclusion in a no-show model is the first
analytic step in building a predictive model. All variables that are considered
conceptually and empirically relevant to predicting no-show status should be
examined for distributional characteristics. Distributional characteristics relevant to
modeling no-show status include determining whether there are missing values for
a variable. Although missing values can occur at random, typically they do not.
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Clinic personnel involved in data entry may know reasons for missing values which
will inform how missing values should be treated. Options include excluding the
variable from analysis, recoding the missing values using agreed upon criteria or
imputation techniques, or deleting cases with the missing value. We caution readers
that many statistical packages use a default listwise deletion technique that excludes
a subject from the analysis if there are missing values for one or more variables for
the subject. This might result in biased model estimates. However, treated, missing
values can affect results. Thus, interpretation of results must be in the context of
how missing values may have biased findings.

We recognize that categorizing variables may reduce resolution of the association
between a variable and the outcome. A reduced number of categories increases
interpretability of the results and increases sample size within a category which
in turn improves statistical power to detect differences between categories.

Graphing or listing the frequency for each possible value for a variable is
critical for understanding the data. Extreme values should be examined to determine
whether they reflect error in measurement or data entry. Clinic personnel can be
extremely helpful in interpreting unusual values of variables. Some variables have
infrequent values. When this occurs, variable distributions may be transformed. For
example, age is a variable with a continuous set of response values. Few patients
are aged 90 or greater, so it would be logical to categorize those aged 90 or above
into one category. Typically categories are constructed so that a variable distribution
is represented by the fewest categories needed to describe which individuals are at
increased risk for the outcome. Determining how many categories to use and the
numerical cutoffs for the categories should be guided by clinical relevance and the
distribution of responses. For example, most no-show models categorize insurance
type into private payer (e.g., Blue Cross), state payer (e.g., Medicaid), federal payer
(e.g., Medicare), or self-pay. The clinical relevance of these categories reflects
the patient’s out of pocket cost of attending the appointment. The distributional
relevance of these categories is that typically there are too few subjects represented
by specific types of health insurance to have adequate statistical power to detect
risk for each type of health insurance. We recognize that categorizing variables may
reduce resolution of the association between a variable and the outcome. A reduced
number of categories increases interpretability of the results and increases sample
size within a category which in turn improves statistical power to detect differences
between categories.

Selection of independent (predictor) variables is influenced by relationships
between independent variables. Inclusion of highly related independent variables
can result in unstable estimates of the regression coefficients and their significance
and therefore affect interpretation of model results. To avoid this, we suggest
considering both conceptually and statistically whether independent variables are
highly associated. It is logical to begin by considering whether independent
variables are conceptually related. For example, income and insurance status are
conceptually related. If one were to categorize income according to poverty status,
there would be both a conceptual and statistical association between poverty status
and Medicaid status. When two predictor variables are highly related, that variable
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that is conceptually better related to the outcome should be selected. It is also
important to statistically assess associations between variables. It is reasonable to
begin these assessments by computing correlations between continuous variables
and associations between nominal variables. However, bivariate associations may
not reveal that groups of variables may be related. Many statistical packages provide
regression diagnostic statistics by which to assess associations between independent
variables. It is outside of the scope of this chapter to discuss these techniques;
we refer the readers to standard statistical references to learn more about these
techniques (Hosmer and Lemeshow 2000; SAS Institute 2002).

Once a set of candidate predictor variables is determined, each candidate
variable should be evaluated, it is recommended that the association between each
predictor variable and the outcome be assessed. Typically, variables that do not
have an association with the outcome at a level of significance of 0.25 or less
are not considered in the regression model because it is unlikely that they would
significantly contribute to the prediction of the outcome (Hosmer and Lemeshow
2000).

3.2.2 Logistic Regression

Logistic regression with multiple independent variables allows simultaneous assess-
ment of the contribution of multiple predictors of no-show. The outcome in the
logistic model is a dichotomous variable indicating whether the ith patient does
not show up to its next medical appointment with probability pi or shows up to
the medical appointment with probability of 1− pi. The equation that describes the
relationship between the predictor variables and the outcome follows:

logit(pi(xi)) = log

(
pi(xi)

1− pi(xi)

)

= α +β1xi1 + · · ·+βnxid

where α is the constant of the equation, the β ’s are the coefficients of the predictor
variables, and xi is the vector of predictor variables for patient i, that is, xi =
(xi1 , . . . ,xid )

T. Statistical packages include a variety of variable selection techniques
(e.g., forward, backward, stepwise) to select from the set of candidate variables
the most parsimonious set of predictors that most accurately predicts the outcome.
We refer readers to standard statistical references to determine the type of variable
selection technique that is most appropriate for their work.

There are several ways to evaluate the fit of the model. The coefficients in
the model should be examined to make sure the directions of the regression
coefficients make sense. The Wald chi-square statistic will inform whether a variable
significantly contributes to the prediction equation (Hosmer and Lemeshow 2000).
One should also consider the fit of the model as a whole. Most statistical packages
present a chi-square goodness of fit test that compares whether the number of
persons predicted to have the outcome is similar to the actual number of persons with
the outcome for categories of the independent variable. A nonsignificant chi-square



10 No-Show Modeling for Adult Ambulatory Clinics 275

test indicates that the number predicted to have the outcome is similar to the number
who actually experienced the outcome. The Hosmer–Lemeshow test is similar
to chi-square goodness of fit test, except that the categories of the independent
variables that are compared have approximately equal numbers of observations. The
c-statistic is also used to assess the prediction performance (Hosmer and Lemeshow
2000).

3.3 Validating the No-Show Model

The next important step is to validate the no-show predictive model. Validation can
be done by internal and external methods (Harrell 2001a; Steyerberg 2009). This
involves determining whether an estimated no-show probability accurately reflects
an individual’s no-show behavior. Since the number of appointments for any given
person in the data set is likely to be small (assuming that the researcher has obtained
2–3 years worth of data and the typical patient schedules 2–3 appointments per
year), it is better to assess differences between expected and observed no-show
behaviors for groups of patients. For example, if we randomly select a “sufficiently
large” group of patient appointments from the validation cohort and compute the no-
show probability for each patient appointment, we can easily compute the expected
number of no-shows for the group. This expectation can then be compared with
the actual no-show results for that randomly selected group since, as noted earlier,
missed appointments will be coded as no-show. Once this is repeated for many
randomly selected groups, goodness of fit tests can be used to access differences
between expected and observed group no-shows. Further refinement of the model
may be required if the comparison indicates large differences in the expected and
observed no-shows.

Another approach to model validation uses the receiver operating characteristic
(ROC) curve, which plots the model sensitivity versus the model specificity. We
note that sensitivity is the probability that the model correctly predicts success
(in our case, no-show), and specificity is the probability that the model correctly
predicts failure (in our case, attendance). The logistic regression model will predict
the probabilities of success. A decision rule is formed by selecting a threshold,
and thus the pair (specificity, sensitivity) can be calculated. Different thresholds
lead to different pairs of (specificity, sensitivity). The ROC curve plots all pairs
of (1-specificity, sensitivity) by different thresholds. It is expected that a good
predictive model should be very close to both the Y -axis and Y = 1 line, that is, has
both high sensitivity and high specificity, and thus, the area under the ROC curve
(typically referred to as c-statistic) will be large as well. Usually, a model with an
ROC area exceeding 0.7 is considered to be valid in practice.
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4 Example Application

This section presents an example of the no-show model building process from
our research. We begin by discussing the data set and then present the bivariate
associations from which we select candidate variables. Then we present the results
of the logistic regression for estimating no-show probabilities. Finally, we validate
no-show probabilities using the approach discussed in the previous section.

4.1 Methods

Data for no-show modeling was obtained from 20 outpatient clinics of a midwestern
hospital. The data used for analysis included information from 130,819 patients
obtained over a 3-year period. SAS Version 9.1 (SAS Institute Inc., Cary, NC)
was used for all statistical computations. Demographic variables and scheduling
information were used to determine a patient’s probability of no-showing to their
most recent scheduled appointment using logistic regression.

To begin model building, all bivariate associations with no-show status were
examined for the development cohort using likelihood ratio chi-square tests or
t tests. Variables were considered as candidates for inclusion in the multivariate
logistic regression model if the significance level from their univariate test was less
than 0.25 as recommended by Hosmer and Lemeshow (2000). Tables 10.6 and 10.7
present patient demographics and appointment characteristics of the data. The
associations between the outcome “no-show for last appointment” and categorical
and continuous predictor variables are provided in Tables 10.6 and 10.7. These
tables reveal that all predictor variables have an association with the outcome
variable at a significance level of p ≤ 0.25.

A full multivariate logistic regression model predicting the probability a patient
was a no-show to their appointment included all candidate variables along with
prior total number of scheduled visits, prior cumulative no-show rate, and the
interaction of prior total number of scheduled visits and cumulative no-show rate.
Both backward and forward model selection with a threshold of p = 0.05 resulted
in the same final model. The final logistic regression model for predicting no-
show probability included the following variables: race, learning site, provider type,
insurance type, whether the prior scheduled visit was bumped, the time and the date
of the appointment, whether the appointment was for a new visit, whether the patient
received a telephone reminder via Televox, whether the appointment was the same
day, and whether the appointment was overbooked.

Continuous variables included in the model were age, days of lead time for the
appointment, and days since the last provider visit. Restricted cubic spline functions
were used to allow a nonlinear relationship between the continuous variables and no-
show probability. The interaction of number of previous scheduled visits and prior
no-show probability was also included. The odds ratios for the logistic regression
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Table 10.6 Associations for categorical variables

Last appointment no-show

Yes No

N = 130,819 N (%) N (%) p value

Gender Male 12,705 (24.4%) 39,296 (75.6%) 0.1663
Female 19,521 (24.8%) 59,291 (75.2%)

Race White 9,118 (18.2%) 40,887 (81.8%) <0.0001
Black 15,554 (31.6%) 33,753 (68.4%)
Other/unknown 7,557 (24.0%) 23,950 (76.0%)

Learning site Yes 25,811 (30.5%) 58,798 (69.5%) <0.0001
No 6,418 (13.9%) 39,792 (86.1%)

Provider type MD staff 27,925 (23.7%) 89,880 (76.3%) <0.0001
MD resident 1,942 (37.4%) 3,251 (62.6%)
NP/PA 2,362 (30.2%) 5,459 (69.8%)

Insurance type (last
known)

Medicaid 8,782 (25.9%) 25,145 (74.1%) <0.0001

Medicare 1,468 (13.7%) 9,269 (86.3%)
Self-pay 2,673 (34.5%) 5,065 (65.5%)
County tax-funded

program
5,469 (22.9%) 18,405 (77.1%)

Other 3,891 (12.1%) 28,284 (87.9%)
Unknown 9,946 (44.5%) 12,422 (55.5%)

Prior scheduled visit
bumped

Yes 2,413 (34.0%) 4,674 (66.0%) <0.0001

No 29,816 (24.1%) 93,916 (75.9%)
AM appointment Yes 16,096 (24.5%) 49,641 (75.5%) 0.2031

No 16,133 (24.8%) 48,949 (75.2%)
Appointment day Monday 7,045 (25.8%) 20,274 (74.2%) <0.0001

Tuesday 7,266 (24.8%) 21,997 (75.2%)
Wednesday 5,053 (21.8%) 18,154 (78.2%)
Thursday 7,345 (25.9%) 20,994 (74.1%)
Friday/Saturday 5,520 (24.3%) 17,171 (75.7%)

New visit Yes 3,847 (47.7%) 4,224 (52.3%) <0.0001
No 28,382 (23.1%) 94,366 (76.9%)

Televox
appointment
reminder

Yes 22,150 (21.4%) 81,147 (78.6%) <0.0001

No 10,079 (36.6%) 17,443 (63.4%)
Same-day

appointment
Yes 1,030 (4.1%) 24,296 (95.9%) <0.0001

No 31,199 (29.6%) 74,294 (70.4%)
Overbooked visit Yes 251 (2.7%) 9,178 (97.3%) <0.0001

No 31,978 (26.3%) 89,412 (73.7%)
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Table 10.7 Associations for continuous variables

Last appointment no-show
Yes No

Mean (SD) Mean (SD)
N = 130,819 N = 32,229 N = 98,590 p value

Age (at last visit) 26.5 (20.3) 32.7 (23.6) <0.0001
Lead time (days) 46.4 (46.1) 24.1 (37.0) <0.0001
Days since prior scheduled

provider visit
103.8 (124.2) 119.8 (135.8) <0.0001

Prior scheduled visits 6.4 (9.4) 7.6 (7.1) <0.0001
Prior no-show rate 34.6 (33.5) 16.9 (25.1) <0.0001

are provided in Table 10.8. In the regression equation, which is used to estimate
no-show probability, the coefficient for each variable is the natural logarithm of
the associated odds ratio, that is, βTelevox = ln(0.51). For continuous variables, the
restricted cubic spline components are calculated based on the restricted cubic spline
function (see Harrell 2001b for more information). Based on restricted cubic splines
for continuous variables, younger patients are more likely to no-show than older
patients, the patients with lower lead times between the time appointment is made
and the actual appointment time are less likely to no-show compared to the ones
with higher lead times, and as the time since the last appointment increases, the
patients become less likely to no-show.

4.2 Model Validation

Model validation was assessed by calculating the area under the ROC curve which
may be characterized by the c-statistic for dichotomous outcomes. The c-statistic
that measures the model’s ability to discriminate between patients who no-showed
versus those who attended was high, at 0.8236 (Fig. 10.5). This shows that the
logistic regression model has excellent discrimination between no-show patients
and patients who attended.

In addition, we considered the performance of the model in the context of
provider workload. We devised 100 groups of 30 patients from a randomly selected
set of approximately 12,000 patients. Note that 30 patients is the approximate size
of one provider’s daily schedule at our collaborating clinics. For each patient in
a group, we calculated the no-show probability of the patient using the no-show
prediction model. We also noted the patients actual no show status. Then, we
determined the expected number of no-shows for the group by summing the no-
show probabilities of all patients in the group. We computed the actual number of
no-shows by summing the number of appointments for which patients did not attend.
We then calculated the difference between these two values. The overall average is
−0.14 with a standard deviation of 1.77. Approximately 40% of all groups fall in the
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Table 10.8 Odds ratios and confidence limits for candidate variables

Effect
Odds
ratio 95% C.I. p value

Age 1.05 [1.04, 1.05] <0.0001
Age restricted cubic spline

component 1
0.82 [0.81, 0.83] <0.0001

Age restricted cubic spline
component 2

1.42 [1.37,1.47] <0.0001

Race White vs. black 0.71 [0.69, 0.74] <0.0001
Other vs. black 0.67 [0.65, 0.70]

Learning site Yes vs. no 1.19 [1.13, 1.24] <0.0001
Provider type MD resident vs. MD staff 1.32 [1.24, 1.41] <0.0001

NP/PA vs. MD staff 1.13 [1.06, 1.20] 0.0001
Insurance Medicaid vs. unknown 0.61 [0.58, 0.64] <0.0001

Medicare vs. unknown 0.65 [0.60, 0.71 ] <0.0001
Self-pay vs. unknown 1.01 [0.95, 1.08] 0.7114
County tax-funded

program vs. unknown
0.63 [0.60, 0.66] <0.0001

Other vs. unknown 0.4 [0.38, 0.43] <0.0001
Prior scheduled visit bumped Yes vs. no 1.37 [1.30, 1.46] <0.0001
Lead time (days) 1.07 [1.07, 1.08] <0.0001
Lead time (days) restricted

cubic spline component 1
0.3 [0.24, 0.38] <0.0001

Lead time (days) restricted
cubic spline component 2

4.23 [3.17,5.64] <0.0001

Days since prior scheduled
provider visit

0.99 [0.99,1.00] <0.0001

Days since prior scheduled
provider visit restricted
cubic spline component 1

1.04 [1.01,1.07] 0.0095

Days since prior scheduled
provider visit restricted
cubic spline component 2

0.95 [0.91,1.00] 0.0339

AM appointment Yes vs. no 0.95 [0.93,0.98] 0.0015
Appointment day Monday vs.

Friday/Saturday
1.06 [1.01,1.11] 0.0243

Tuesday vs.
Friday/Saturday

0.99 [0.95,1.04] 0.7421

Wednesday vs.
Friday/Saturday

0.93 [0.89, 0.98] 0.0072

Thursday vs.
Friday/Saturday

1 [0.95,1.05] 0.8998

New visit type New visit vs. Return 1.11 [1.05,1.17] 0.0004
Televox Yes vs. no 0.51 [0.49,0.52] <0.0001
Same-day appointment Yes vs. no 0.33 [0.30,0.35] <0.0001
Overbooked appointment Yes vs. no 0.07 [0.06,0.08] <0.0001

The regression model includes an interaction between the prior cumulative no-show rate and
cumulative number of visits. Main effects of prior cumulative no-show rate and cumulative number
of visits have p values of <0.0001, and their interaction has p value of <0.0001. We do not present
the regression estimate for this interaction because it is not easily interpreted
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Fig. 10.5 Receiver operating
characteristic (ROC) curve
for the logistic regression
model

range [−1,1], indicating that observed no-show differs from the expected no-show
by no more than 1. Similarly, 71% fall in the range [−2,2], and 91% fall in the range
[−3,3]. Further, the chi-square test indicates good agreement between observed and

expected, with the test statistic of ∑ (expected−observed)2

expected = 61.23, which is much less
than the critical value of 123.24 for a test with 99 degrees of freedom. Thus, we
conclude that the no-show model provides important information for determining
provider workload.

5 Discussion

It seems clear that the true reasons for no-show are context dependent and difficult to
accurately identify. Consider, for example, the following set of reasons that a clinic
might encounter in surveying no-show patients:

• I forgot.
• I did not have a ride.
• I had to take care of my kids.
• I was broke.
• I felt too bad.
• They don’t respect me.
• I don’t like my doctor.
• I was afraid.
• I just don’t care.
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The drivers of no-show cover the spectrum of human frailty. Patients who have
missed appointments in the past are likely to continue missing them in the future.
This lends credence to the point that the true reasons for no-show are often hidden,
and thus it is unclear that straightforward interventions targeted toward objective
reasons will reduce no-show below some benchmark level. Clearly, interventions
targeting emotional, entrenched reasons such as fearfulness, perceived disrespect,
or lack of motivation need to be much more sophisticated (and perhaps more costly)
than those targeting forgetfulness. The clinic needs to understand which reasons
are most prevalent for its patient panel, what interventions can be selected for
addressing them, and what the cost/benefit implications of implementation are.

Statistical no-show modeling typically involves some type of statistical regres-
sion on a few years worth of historical data to identify important “predictors.”
Published studies tend to end with the reporting of these predictors. But, little
has been done with these types of models to operationally mitigate the no-show
problem. What shortcomings would emerge if these statistical models were used
in practice over time? This is unclear. One can imagine that dynamic changes in
a clinic’s patient panel might soon render a no-show model obsolete. How should
such a model be kept up-to-date? No such studies or recommendations have been
published. As for mitigating the effect of no-show, the most commonly suggested
method is overbooking, which has gotten much attention in the appointment
scheduling literature of late. To our knowledge, there are few implementations of the
“optimal” overbooking models that have been proposed, only computer simulations.

Many authors note that their no-show models might not be generalizable because
studies were always conducted in specific clinical populations. Therefore, it appears
that every clinic needs its own unique model. What is the most effective way to
develop such a model? Does every clinic need to follow the methods spelled out in
this chapter or can methods that require no initial data by taking advantage published
work be developed? Intuition tells us that it should be possible to let new models
develop and “evolve” with clinic operation, but the precise means of doing this are
not currently known.

Finally, there is only limited literature addressing the health outcomes of no-
show behavior, and almost none appears to address the costs to society. We believe
the fragmented nature of health information record keeping has made this line of
research very difficult in the past. Based on very rough and unreported estimates
from our own work, no-show among diabetics could be costing as much as $10
billion per year in increased medical costs in the USA. But no one really knows,
and the full implications of the no-show problem remain hidden.

6 Future Research Opportunities

Based on our reading and work, we believe the following statements capture the
essence of the patient no-show problem:

1. No-show behavior is harmful and costly.
2. No-show behavior has its root causes in the human condition.
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3. No-show behavior can be reduced through interventions, but it cannot be
eliminated.

4. No-show behavior can be statistically “predicted,” but statistical models are not
generalizable.

These statements drive what we believe are the greatest research needs. The
first need is to understand the full impact of no-show. More research needs to
address the health outcomes and systemic impact of no-show for a larger set of
conditions. We hope that this research will become more broadly feasible in the
future with emerging electronic medical record systems and health information
exchange technology.

The second need is to have a better understanding of the underlying drivers and
how to devise optimal intervention programs to deal with them. More research is
needed to devise better interventions, to map interventions onto underlying no-
show drivers, to identify costs and benefits, to develop acceptable methods of
economic analysis, and to formulate models for identifying a clinic’s optimal mix
of interventions.

The third need is to develop more effective methods for predicting no-shows
and mitigating their impact. Since each clinic needs its unique no-show model,
“meta-methods” that use the published literature to devise a first-pass model that
can continuously evolve during clinic operations should be developed to reduce the
time spent for model development.

7 Conclusion

This chapter provides a review of existing no-show studies and develops an example
of a statistical no-show prediction model. The studies in the literature are discussed
in four classes: self-reported reasons for no-shows, interventions to reduce no-
shows, statistical models to predict no-shows, and impact of no-shows on health
outcomes. The most commonly self-reported reasons include patient-related factors,
scheduling system problems, and environmental and financial factors. Interventions
to reduce no-shows are patient-related interventions such as appointment reminders,
patient education, follow-up after a no-showed appointment, and system-related
interventions to reduce waiting times such as open-access scheduling, and lean
process improvement methods. The predictors of no-shows identified using sta-
tistical methods include age, sex, family status, race/ethnicity, insurance status,
appointment characteristics, patient diagnoses, and type of provider. The effect
of no-shows on health outcomes is analyzed for different patient populations
such as diabetes, dialysis, HIV, primary care, and psychiatric patients. The no-
show percentages reported in these studies are presented according to the patient
population (mental health, primary care, HIV, chronic care, etc.).

The second part of the chapter explains how statistical no-show prediction
models can be developed. The data requirements, determination of significant



10 No-Show Modeling for Adult Ambulatory Clinics 283

factors, development of logistic regression models, and validation of prediction
models are explained. A regression model is developed using the scheduling and
billing data from 20 outpatient clinics of a midwestern hospital. The variables
identified as predictors of no-show include age, race, learning site, provider type,
insurance type, whether the prior scheduled visit was bumped, the time and the
date of the appointment, whether the appointment was for a new visit, whether the
patient received a telephone reminder via Televox, whether the appointment was
on the same day and whether the appointment was overbooked, lead time for the
appointment, and days since the last provider visit. The regression model includes
variables that are not included in earlier studies such as appointment reminders, and
the type of the clinic (learning site for residents or not).
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Chapter 11
Simulation and Real-Time Optimised Relocation
for Improving Ambulance Operations

Andrew James Mason

1 Introduction

For many years, the Ambulance Logistics Group (Mason 2011) at the Department of
Engineering Science (University of Auckland, New Zealand) has been collaborating
with a university-spin-off company, The Optima Corporation (2011a), on the
development of software for ambulance operators. Systems developed by Optima
are now used to improve emergency response times for over 15 million people
in New Zealand, Australia, Denmark, the United Kingdom, Canada and the USA.
This chapter discusses the operations research models and methods that have been
developed as a result of this successful university and industry collaboration

Work in the ambulance logistics area began when BartSim (Henderson and
Mason 1999, 2004), an ambulance simulation system, was created to address
staff scheduling questions being raised by St John Ambulance in Auckland, New
Zealand. As part of this staff scheduling project, it became clear that there was a
need to quantify the staffing required by St John. The number of staff required by an
ambulance provider such as St John depends in a complex way on the number and
location of calls and the contractual response targets the organisation must meet. To
determine the staffing level required for St John, an initial queuing theory model was
developed. When this proved to be inadequate, a discrete event simulation system
was developed instead that could better model the complexity of the operations.
This system allowed response-time performance to be simulated and thus estimated
under different scenarios.

In 2001, an opportunity arose to develop and implement an improved ambulance
simulation system for the Metropolitan Ambulance Service in Melbourne, Australia.
This software, originally known as Siren, has been developed further to create the
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Optima Predict software system. This proved to be the first step in an ongoing
process to develop and deliver operations research tools for assisting ambulance
operators. These tools now include a real-time software system, used in a number
of cities, that solves an integer-programming model to determine how best to move
idle ambulances to improve the future performance of the ambulance operation.

Healthcare is an area of growing importance and cost, around the world, and
thus an important area for operations research. By documenting our experiences
in delivering operations research solutions to ambulance operators, we hope to
encourage both practitioners and researchers to become more involved in this area.
Simulation is now a well-established technique but has typically being applied
to ambulance operations on a case-by-case approach with varying degrees of
realism. Our contribution here is the development and documentation of a generic
simulation system that has proven its ability to accurately model the full range
of problems we have encountered during a decade of implementation experience.
We describe the use of this simulation as part of an optimisation algorithm for
base location; this is a novel contribution within the simulation/optimisation area.
The widespread availability of real-time vehicle location and status information
means that the problem of optimising idle ambulance locations in real-time has
become an important practical problem for ambulance operators seeking better
performance from their current resources. While there have been exciting new
research developments in this area, much work is still required; we hope our analysis
and discussion of this problem will encourage both practitioners and researchers to
contribute to this research effort.

The remainder of this chapter is organised as follows. In Sects. 2 and 3, we
introduce a typical ambulance operation and describe the associated ambulance
response process. Section 4 describes the simulation software we developed to
model this response process. Some practical applications and comments on this
are given in Sect. 5. A new simulation–optimisation algorithm for determining
improved base locations is detailed in Sect. 6. Sections 7 and 8 conclude the chapter
with a detailed examination of the real-time ambulance repositioning problem.
These sections start with a literature review, describe the operations research model
we have developed for repositioning and then comment on our experience in
implementing this. This chapter then finishes with some concluding remarks.

2 A Typical Ambulance Operation

The Metropolitan Ambulance Service (MAS) in Melbourne, Australia, now part
of the larger Ambulance Victoria organisation, is a good example of a typical
ambulance operator. MAS provides services to almost 4 million residents over an
approximately 9,000 km2 area (Wikipedia 2011). In the 2009–2010 financial year,
ambulances were dispatched to 330,000 incidents within the MAS response area
(Ambulance Victoria 2010a).
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Like most ambulance services, Ambulance Victoria operates under contracts that
stipulate minimum levels of service as specified by certain performance targets.
These targets relate to response time, which is defined as the time interval between
receiving a phone call requesting an ambulance and an ambulance arriving at the
scene. Ambulance Victoria’s performance is measured by their achievement of
these various performance targets. These include responding to at least 85% of
emergency (code 1) incidents within 15 min, and, for centres with more than 7,500
people, achieving at least 90% for this measure (Ambulance Victoria 2010a). The
percentage of calls meeting these targets is a key figure of interest when simulating
a possible process change.

Ambulance Victoria staff their vehicles with various combinations of officers
with different levels of training. Staff training designations include MICA (mobile
intensive care ambulance), qualified ambulance paramedics and ACO (ambulance
community officer) (Ambulance Victoria 2011). Both MICA paramedics and quali-
fied ambulance paramedics work full-time, with MICA paramedics having the more
advanced training. ACOs typically have less training and work on a casual basis to
provide first-aid skills to rural communities. Each ambulance officer operates either
as part of a two-person crew or works alone as a single responder. The resulting
vehicle types, which include single- and double-crewed MICA, ALS (advanced life
support) and ACO vehicles, provide varying capabilities to treat different degrees
of injury. Ambulance Victoria publicly reports the types, locations and times of
availability of all their vehicles (Ambulance Victoria 2010b).

Ambulance Victoria is facing growing demand for its services. Since 1999–2000,
ambulance caseload in Victoria has grown by an average of 5.7%p.a. (Ambulance
Victoria 2009). An example of how Ambulance Victoria might improve the system’s
performance under this increasing demand can be found in the Ambulance Victoria
2009–2010 Annual Report (Ambulance Victoria 2010a). This report lists amongst
its statement of priorities the following goal: “Restructure of metropolitan MICA
road response, converting the existing 16 MICA units and 4 single responders to 8
MICA units, 4 MICA Peak Period Units and 14 MICA single responders.” Changes
such as these are typical of those that can be tested using simulation systems, such
as Predict.

3 Overview of the Response Process

The ambulance dispatch process used by Ambulance Victoria, shown in Fig. 11.1, is
typical of that found in most ambulance organisations. When a new emergency call
is received by the ambulance-dispatch call centre, the call taker assesses the new
call and determines its urgency. Different ambulance organisations classify calls
in different ways. A common scheme is the commercial ProQA scheme (Priority
Dispatch Corporation 2005) in which a call is classified into one of several hundred
different types. These are then typically grouped into a smaller number of call
priorities. Each call classification then determines the dispatch logic that should
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Ambulance waiting at station

Ambulance waiting at station

I: Ambulance arrives back at station

E: Ambulance departs for hospital

F: Ambulance arrives at hospital

H: Ambulance dispatched to new call

G: Ambulance departs for station

A: New call arrives in dispatch call centre

B: Call classified & allocated to ambulance

C: Ambulance departs for incident scene

D: Ambulance arrives at scene

TR

TS

TM

Fig. 11.1 The ambulance
response process, showing
the response time TR, the
remaining service time TS
until the vehicle becomes free
and the mobilisation delay TM

be used to determine which vehicle or vehicles are sent to the accident scene. For
a typical ambulance organisation, the dispatch logic specifies that, for all but low-
priority calls, the closest vehicle is sent to ensure some form of on-scene treatment
is provided as quickly as possible. For high-priority calls, a second vehicle with
higher skilled officer may also be dispatched to ensure the correct level of care is
provided at the scene.

Once an ambulance vehicle has been given the details of a new call, there is
typically a short mobilisation delay (also termed chute time) TM before the vehicle
begins driving to the accident scene. This is typically zero if the vehicle is already
on the road but can be several minutes, for example, during the night when the
ambulance officers might be asleep at an ambulance base. The vehicle may then
travel to the scene either with lights and sirens operating or without, with this
dispatch priority being determined by the dispatch logic. Vehicles responding to
high-priority calls typically travel at the higher lights-and-sirens speeds, while lower
priority calls are responded to at standard traffic speeds. Occasionally the call will
be cancelled before the vehicle reaches the scene, in which case the vehicle becomes
free and returns to its base.

The most important statistic summarising this response process is the call
response time, TR, which is the elapsed time between the call being received at the
dispatch centre and a vehicle arriving at the scene. This duration comprises three
parts: the call-taking duration, the mobilisation delay and the travel time.

Once at the scene, the ambulance officers assess the patient and determine
whether they can be treated at the scene or need to be transported to a hospital.
(This at-scene assessment can change the classification initially assigned to the call
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and can occasionally result in further vehicles being dispatched to the scene.) If no
transport is required, then the vehicle becomes free at the scene and typically returns
to its designated home base to await its next call. If transport is required, then the
patient is loaded into the vehicle and taken to a hospital. Depending on the call
classification, this transport operation can be either at lights-and-sirens or normal
travel speeds. The vehicle then becomes free after the patient handover process has
been completed. Note that once a vehicle has become free, it is typically available
to be dispatched either while on the road returning to its home base or once it has
reached its home base. The time between the call arriving at the scene and the
vehicle becoming available for re-dispatch is termed the service time, shown as TS

in Fig. 11.1.
The dispatch process is complicated by diversions. The most common form of

diversion—so-called en-route diversion—occurs when a vehicle that is en-route to a
low-priority call is sent instead to a higher priority call. The original low-priority call
then needs to be processed again to re-dispatch one (or more) vehicles to this call.
A much less common procedure is on-free diversion under which the vehicles being
sent to a call can be changed whenever a vehicle becomes free. On-free diversion
can involve a significant overhead in communicating new destinations to multiple
vehicles and, in our experience, does not appear to be commonly used. However, it
can occur informally when a vehicle closer to an accident scene overhears a dispatch
instruction and requests that they be sent instead.

Each ambulance organisation uses their own rules to determine the dispatch and
at-scene behaviour. The various combinations of vehicle types and call priorities can
lead to complex sequences of actions. For example, if two single-crewed vehicles
are dispatched to a call, then during any transport to hospital, one of the vehicles
is typically left parked at the scene while the two officers travel in the second
vehicle to the hospital. Both these officers then need to travel back to the scene to
reunite the parked vehicle with its officer. Particularly serious incidents can require
three officers in the vehicle during the patient transport, with one officer driving
and two officers attending to the patient. Typically, two double-crewed vehicles are
dispatched to such a call, in which case the fourth officer follows the transporting
ambulance in his or her own vehicle. The officers then regroup in their own vehicles
at the hospital. This situation becomes more complex when one double-crewed
vehicle and two single-crewed vehicles are dispatched to such a call, and thus,
a vehicle must be left at the scene to be collected once the transport operation
becomes complete. More complicated scenarios can also occur, such as the initial
dispatch of a rapid response vehicle to the scene which, after assessing the patient,
may then request that additional vehicles be dispatched to provide a higher level
of care for the patient. Although these cases may be rare in practice, they exist to
better handle the highest-priority calls which are often of the greatest interest to
an ambulance organisation. Thus, it is important that any simulation model handles
these complexities and that working examples of these cases can be demonstrated
to the organisation during the implementation process.

We note that the dispatch of multiple vehicles to a single scene complicates
the definition of response time. The first, perhaps more common, definition is
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first-vehicle response time which is computed using the time at which the first
vehicle arrives at the accident scene. However, another possibility used by some
organisations is to define a required-skills response time, which instead uses the
time at which sufficient officers of the correct skills have arrived at the scene. It can
be useful to report both these times in any simulation results.

The performance targets for response times typically vary by the location of the
call (often whether the call is in a metropolitan or in a rural area) and the priority of
the call. Metropolitan calls that are designated as life threatening typically have the
smallest target response time, while low-priority rural calls have larger target times.

4 Simulation Design

The Optima Predict software has been developed using C++ to provide a realistic
simulation environment for modelling the ambulance operations described above.
It includes a customised simulation engine written in C++, a travel model, a call
generator and graphical data analysis capabilities.

The simulation system works by using historical data to run a trace-driven
simulation, that is, the calls used in the simulation are real calls (typically a year’s
worth) that are read in from a stored file. The data used from each call includes
the call arrival time, call-taking duration, initial call classification, call location,
any updated call classification made at the scene, time spent by an ambulance at
the scene, destination hospital to which the patient was transported (if any), the
time spent at the hospital, and several other minor fields. A call-cancelled time can
also be given, in which case many of the other fields are left empty. The use of
this historical data is beneficial for testing and validation of the simulation model
and also removes the need to develop and validate statistical models for generating
calls with their complex temporal and spatial structures. (Such statistical models are
typically required, however, for simulating call growth scenarios; we consider this
later in this section.)

A vital component of the simulation is the travel model that computes driving
routes and travel times between any pair of locations. This model is based on a
road network model that supplies both road layout information and travel times
along roads (arcs) at various times of the day, including the morning and evening
rushes. Travel times are allowed to vary across the day and across the week. As
part of configuring the system for a new city, the travel times are calibrated for both
lights-and-sirens and standard travel using historical trip data, including GPS data
when this is available (Mason 2006; Mason and Henderson 2010). The accuracy
of Predict’s travel models have been steadily improving due to the availability
of ever-better road models, thanks to the growing demand for in-car and online
navigation and ever-faster computers to process these more detailed networks. To
illustrate this, the original travel model used for Melbourne, which was developed
by the Victorian government, contained less than 18,000 arcs, while the current
commercially developed model has several million arcs.
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Predict allows modelling of ambulances with different capabilities both in terms
of the number and skill level of the associated ambulance officers and the possible
capability to transport a patient to a hospital. The rules controlling the dispatch and
at-scene behaviour of these vehicles vary from city to city, and so, these are not
embedded directly in the C++ code but instead are controlled using the scripting
language Python (Python Software Foundation 2011). The simulation executes
Python procedures to determine what vehicle(s) to dispatch and the behaviour of
these vehicles at the accident scene. This approach gives a very flexible but still
fast-running software system.

Ambulance availability is specified in terms of when and at what home base an
ambulance is brought into operation and when it ceases to be available. This allows
shifts to be effectively modelled and simulated.

The most important source of variability in an ambulance system is the observed
demand, being the number, times, locations and priorities of the incoming calls.
Because the simulation software reads this data as input, this source of variability
can be controlled. Thus, each simulation is essentially deterministic in nature. This
allows Predict to accurately replay historical data, which is important in validating
the system against historical records. This also assists with variance reduction,
an important technique in the analysis of simulated output data (Law and Kelton
1999). However, some stochastic components are required to handle dispatches
that differ from those seen in the historic data. In particular, the mobilisation
time is typically generated from a user-defined base-specific distribution unless the
vehicle is already on the road, in which case a zero mobilisation delay is used. (In
some rare cases, such as in the base optimisation algorithm we present below, the
historic mobilisation time for a call is used for dispatches to that call from any
base.) Further, the user can specify the parameters for a distribution that is used
to scale the transport duration predicted by the travel model. However, to minimise
variance, such variability is often turned off (and simple means used instead) in runs
comparing different system configurations.

A typical Predict run will process a set of historic calls using a given set
of base locations, vehicle shifts and rules for dispatch and at-scene behaviours.
Predict allows the operator to view the ambulance operation unfolding on the
computer screen. Extensive statistics, such as vehicle utilisation and response-time
distributions, are collected during the simulation for later analysis and to assist in
comparing simulation runs.

An important feature of the Predict software is the detailed graphical analysis
capabilities provided. When this software was first shown to St John in 1998, it
provided their first visual representation of call locations and response performance.
More recent versions of Predict allow this data to be further analysed in multiple
ways such as by time of day or day of week, vehicle type, call priority, calls impacted
by diversion and other user-defined attributes.

Figure 11.2 shows an example of the graphical analysis that can be performed
in Predict. Detailed call-filtering rules have been used to produce this figure from
a completed simulation run for a problem based on Auckland, New Zealand. The
percentage value in each square region shows the fraction of calls in that area that
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Fig. 11.2 A screen shot from Predict showing the percentage of calls in each area that are
responded to by a vehicle from base “Demo Base 5” located near the centre of this figure

have been served by a vehicle from the centremost base in the figure (base “Demo
Base 5”). The value in brackets shows the number of calls that this percentage
represents. Only regions with 20 or more calls in total have been included in this
display.

Predict is most typically used by clients to test operational changes, such as
base location changes or shift changes. Many such tests can use historic call data.
However, simulation runs can also be used to predict future performance given
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forecast changes in call volumes. This requires creating a new set of calls (or
modifying an existing call set) to match some forecast call volumes.

Predict contains a flexible call generator module that allows the user to specify a
step-by-step process for creating new calls for use in a subsequent simulation run.
Each call has a set of fields that must be assigned values. These include the call time,
call location, call priority and so on. The call generator allows the user to assign
values to these fields either by drawing samples from analytical distributions or
by so-called bootstrapping in which samples are drawn from marginal distributions
created from a historic call set. For example, to determine a new call’s location,
the user may specify call arrival rates for each time period for each suburb which
are used to generate call arrival times assuming exponential inter-arrival times.
Call locations could then be generated assuming a uniform distribution within that
call suburb’s boundaries or could be sampled from historic call locations for that
suburb. Each call’s priority could then be sampled from the marginal distribution
of priorities formed by considering the set of historic calls in that suburb. The
call priority could then be used to define a marginal distribution for the at-scene
duration by considering all at-scene durations for historic calls of the given priority.
Alternatively, if the user believes the at-scene durations vary by suburb, then they
could sample the at-scene duration from historic calls which are in the given suburb
and match the call’s assigned priority. By proceeding in this manner, the user is able
to specify an essentially arbitrary sequence of rules for determining values for the
call’s fields.

This call generator module has been used successfully by Ambulance Victoria
and other clients to generate data sets to assist in planning under alternative growth
scenarios and call patterns.

5 Practical Applications

Since being developed, the Predict software has been used to model many ambu-
lance operations around the world. As an example of its use, a European operator
wanted to investigate how response-time performance would change if single-
crewed vehicles were added and the dispatch policy was changed to dispatch these
single-crewed vehicles for some classes of call. These vehicles would then request
that a transport-capable vehicle be dispatched only if their at-scene assessment of
the patient deemed this necessary. This change was tested by modifying embedded
rules in the simulation model so that once the single-crewed vehicle arrived at the
scene, the at-scene patient criticality (as recorded in historic data) was examined
and a transport-capable vehicle dispatched if required. Simulation results suggested
this would increase a key performance metric from 62.9% to 71.5%, being an 8.5%
increase. When the changes were implemented by the operator, they reported that
an 8% performance increase was observed in the field.

Another example comes from Denmark, where the government used Predict sim-
ulations to redesign the ambulance operations in the Copenhagen area. The details
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of this, which we summarise here, are documented by Optima (The Optima Cor-
poration 2011b) and on the Danish Capital Region’s website (Region Hovedstaden
2009a).

Historically, 95% of the ambulance services in Denmark have been provided
by a single private operator in association with the municipal fire services (Region
Hovedstaden 2009b). However, in 2003, the Danish tender complaints board ruled
that a new formal tendering process had to be adopted to meet EU competition
requirements. The private operator had traditionally been given a lot of freedom
in their operating procedures. Performance was traditionally evaluated in terms of
a yearly average response time across a large area (Region Hovedstaden 2008),
allowing potentially wide variations in response times to occur unnoticed.

In 2008, a decision was taken by the regional health officials in Denmark’s
Capital Region to take more direct control of the area’s ambulance operation by
setting up their own dispatch centres. These new centres would be responsible for
controlling the approximately 160,000 dispatches made per year over a 2,561 km2

area to a population of 1.6 million (The Capital Region of Denmark 2009). It was
also decided at this time to improve the care being delivered by adding paramedics
to some of the vehicles.

Taking control of the dispatch operation forced the region’s officials to become
directly involved in planning their ambulance operations, and so before the tender-
ing process could begin, officials had to decide the numbers and types of vehicles
needed across the day and the bases at which these were to be located. Service-
level measures were also re-evaluated, with the historical emphasis on average
response time being replaced by the more common percentage of calls reached
within specified response time targets. Extrapolating arrival rates from 2005 and
2006 data, simulation experiments were conducted to determine the 2009 vehicle
requirements across the day for each region. These simulation runs allowed average
response times to be calculated and compared with historical data. This analysis was
important in assuring the Danish public that the major changes being proposed to
their ambulance operations were still going to deliver a high quality of service.

Once the vehicle requirements had been determined, a tendering process was
conducted, seeking providers to deliver the required numbers of ambulances and
crews across the day. Thus, the tender process was for the provision of ambulances
and crews at specific times of the day instead of the traditional hands-off response-
time-based approach. The separation between the dispatcher and the vehicle
provider allowed for interesting tender conditions, such as the specification of a
maximum mobilisation time of 90 s for high-priority calls, with large fines being
imposed where these were exceeded.

The tendering process proved to be a complicated one, with new firms submitting
tenders but then withdrawing them because of difficulties in concluding collective
agreements in the labour market. Media interest was significant, with public
criticism of the process being made by some of the parties who lost contracts.
However, the tendering process was completed, and the new process commenced
operation on 1st September 2009. To meet public demand for information, a website
(Region Hovedstaden 2011) was created to document the performance of this new
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system, and provide information on how this performance was being measured. This
shows that the new system is performing well. For example, in March 2011, 90% of
ambulances arrived within 9.49 min, well within the 90% 13 min target.

It is interesting to consider how the actual and simulated performances compared.
Actual call volumes in 2009 were 8% higher than forecast, and the proportion of
high-priority calls was also higher at 54% compared with a forecast 44%. The
region responded to these changes by increasing the number of vehicle hours by
6%. Re-running the simulations developed in 2007 with this corrected data gives a
mean response time of 6 min 35 s, compared with the measured value in the field of
6 min 4 s, an error of just 8% (The Optima Corporation 2011b).

An important part of any project such as this is communicating the benefits
(or otherwise) of possible changes to decision makers. For example, Ambulance
Victoria has used Predict’s graphical displays to support requests to their funding
body for additional resources. More recently, Predict’s visualisation capabilities
were used to convince elected US officials that they should reject demands to move
a resource to an affluent (and politically important) area (The Optima Corporation
2010). Simulation results showed that such a move would improve average response
times for the small number of calls originating in the area but worsen performance
for the much greater numbers of calls occurring in other parts of the county.

An important issue in simulation is the interpretation of results. The Predict
software uses the method of batch means (Law and Kelton 1999) to estimate
confidence intervals around performance measures. However, we have found that
there is little awareness of the importance of statistical significance amongst
practitioners when interpreting either simulated or actual performance results. For
example, the performance reports of one operator are based on the daily percentage
of on-time calls within zones that can have, on average, as few as 5 calls per
day. The percentage of calls reached on time in each zone is reported back to
management twice a day, giving an often false sense of success or failure arising
purely from statistical variability. Such reporting requirements are often forced upon
the ambulance organisation by their funding bodies, suggesting that there is a need
to better educate ambulance operators so that they can better interpret performance
figures and can also engage more actively in the contractual process to ensure
statistically meaningful targets are developed.

6 Simulation–Optimisation for Base Locations

An important problem facing ambulance operators is to determine where their bases
should be located. We were interested in addressing this problem for an ambulance
operator that leased many of their base locations and thus was able to move bases
relatively easily. This operator was interested in using the simulation system—
with its validated model of their operations—to help determine new possible base
locations. Unfortunately, the simulation approach is not itself a prescriptive tool in
that it does not by itself directly answer such questions. However, we now describe a
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simulation–optimisation approach we have developed to find good-quality solutions
to this problem while preserving the high-fidelity modelling offered by simulation.

The problem of where to locate ambulance bases, or, somewhat equivalently,
which of a set of bases to assign vehicles to, has been addressed many times
in the literature. Brotcorne et al. (2003) have completed an extensive review of
the ambulance location and relocation models that existed up to 2002. See also
Wright et al. (2006) for a more recent survey of operations research models in the
wider context of homeland security and Berman and Krass (2002) for a review
of general location models including ambulances. Goldberg (2004) provides an
excellent layperson’s overview of the problems faced by ambulance operators,
including base location, and the solution approaches developed for these problems.
See also the recent review by Henderson (2010).

To solve the vehicle location problem, we need to address (1) the prediction of
the system performance for a given vehicles-to-locations assignment and (2) the
assignment of vehicles to locations to maximise this performance. Unfortunately,
these requirements conflict in the sense that if we use simplified models to predict
system performance, then we can use integer-programming optimisation procedures
that guarantee an optimal solution, albeit to the simplified problem. However,
as we improve our modelling of the system performance, the problem becomes
increasingly complicated and correspondingly more difficult to optimise.

In an ideal world, all vehicles would be idle, waiting at their bases, when the
next call arrives, and so, an emergency call would be served by the closest occupied
base. If this were the case, then for any given set of vehicle waiting locations, it
would be easy to determine those areas which are covered in that the area’s closest
vehicle is within some specified driving time. This coverage concept underpins
the early set covering approaches presented by Toregas et al. (1971) and Church
and ReVelle (1974). Various modelling extensions have been proposed, including
“double coverage” or “backup coverage” models (Hogan and ReVelle 1986) where
the formulation counts the areas covered by two or more vehicles, models for
handling multiple response-time targets (Gendreau et al. 1997), models for variable
travel times (Daskin 1987) and probabilistic coverage models (Daskin 1983) where
ambulances are modelled as being busy or free with some probability, and the model
calculates the probability of an area being covered by at least one vehicle.

Optimisation models that explicitly consider ambulances being unavailable
require estimates of the busy probabilities, where the busy probability for a base
is the probability that the base will have no vehicles available to serve a call.
An established approach for predicting these is the hypercube model (Larson
1974) and its approximations and extensions (e.g. Larson 1975; Budge et al.
2009). The hypercube model constructs a Markov chain that models transitions
between states formed by all possible combinations of busy and idle ambulances.
For small numbers of vehicles, it is possible to calculate the probability of the
system being in any state and use this to predict system performance for any
given assignment of vehicles to bases. When the number of vehicles becomes
too large to consider all possible states, an approximate model is typically used
which uses so-called correction factors to predict the response times in each suburb.



11 Simulation and Real-Time Optimised Relocation for Improving . . . 301

Budge et al. (Ingolfsson et al. 2008) have developed an iterative process that solves
a convex optimisation problem (assuming known busy probabilities) to allocate
vehicles to bases, updates these busy probabilities for the new vehicle allocation
using hypercube and then repeats this process iteratively. A recent alternative to the
hypercube model, which performs better in simulation experiments for problems
with light to moderate vehicle utilisation, is presented by Restrepo et al. (2009).

The modelling approaches detailed above are limited in their accuracy because
of their dependence upon analytical (or simpler covering) models for predicting
performance. For example, such models assume exponential service times (includ-
ing the driving time component; see Budge et al. (2010) for an analysis of travel
times) and that vehicles are always dispatched from their bases. Our experience has
been that ambulance operators are wary of such simplifications and place greater
trust in a simulation model that they have been able to verify with historical data.
Indeed, authors proposing analytical methods still recommend that simulation be
used in any final decision making (Restrepo et al. 2009). Hence, we have focused
on a simulation–optimisation approach.

The use of a closely coupled simulation/optimisation algorithm for solving
ambulance logistics problems is not new. For example, Maxwell et al. (2010) and
Alanis et al. (2010) have found good vehicle-to-base assignments by simulating a
large number of possible solutions. Silva and Pinto (2010) developed a simulation
model for Belo Horizonte, Brazil, using the Arena system (Rockwell Automation
2011). They performed a number of what-if analyses, including using the OptQuest
optimiser (OptTek Systems Inc 2011) to determine how many vehicles to place at
each base to meet prescribed performance targets.

A common approach in the simulation–optimisation literature, which we will
adopt, is to use a local search or other heuristic to find a good local optimum. In
its simplest form, this involves repeatedly evaluating a number of neighbours of
some current solution and then choosing the best of these. An alternative approach
is to fit a response surface that predicts how the system performance varies with
the parameters being optimised. This and other simulation–optimisation options
are discussed in more detail in Andradóttir (2006b) and Fu et al. (2005). In the
next section, we formally present our problem and a novel solution approach
which implements a local search that uses an approximate local response surface
to estimate the performance of neighbouring solutions.

6.1 Base Location: Problem Definition and Algorithm

Consider some simulation model of a system that includes all the real-world
complexity of multiple vehicle types, vehicle shifts, multiple vehicle dispatches,
diversions to higher priority calls, dispatching of on-road vehicles and cancelled
calls. We fix all the operating parameters for our ambulance system except for
the locations of the bases. We then wish to alter the locations of these bases to
maximise the performance of the system. This problem differs subtly from those
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discussed above in that we are interested in moving existing base locations, not
assigning vehicles to existing bases, and so, we have a continuous problem in
which there are infinitely many possible base locations. We note that this objective
has discontinuities in that even small changes in a base location can alter the
vehicle used to serve a later call, resulting in an arbitrary change in performance.
(This suggests that gradient-based simulation–optimisation methods, such as those
discussed in Fu (2006), may not be the most useful for this problem.) In practice,
we consider a discretised version of the problem in which we reduce the number
of candidate base locations to some manageable but still large number by requiring
bases to be located at nodes on the road network (where these nodes include both
intersections and bends in the roads). We only move the base locations without
changing other parameters such as the allocations of vehicles to bases or the shift
times for the vehicles, and so, the vehicles will continue to operate as currently but
with their bases moved to new locations.

We adopt a sample path optimisation approach (Fu et al. 2005) in which a single
representative set of input data is used to form a deterministic equivalent problem.
We follow the approach typically adopted by Predict users and use a single year’s
worth of historic calls as input data, with just a single replication being performed.
However, to validate our approach, we will solve the model using one set of training
calls and then test its solution using another evaluation set.

Let B = {1,2, . . . , |B|} denote the set of bases and C denote the set of historic
calls that we will use in our optimiser’s simulation runs. Each base b ∈ B can be
located at any node vb ∈ V , where V is the set of nodes in the road network. We
assume that the simulation run uses the input data (C,v1,v2, . . . ,v|B|, . . .), being a set
of historic calls C, base locations {vb,b ∈ B} and other data such as shifts and road
speeds.

Given this input data, the simulation then produces a range of data outputs. These
include system performance measures such as the percentage of calls responded to
within their target times. We generalise this by computing an average call score,
where the score for a call depends on its target and actual response times. Rather
than recording a call as being either on time (1) or late (0), this score function gives
a numerical value that decreases smoothly with increasing response time. This has a
number of advantages. It creates a smoother objective surface that is more suited to
the neighbourhood search approach we use. Furthermore, Erkut et al. (2008) present
a number of computational and medical arguments for using such non-0/1 reward
values.

Let us denote the full set of simulation outputs by S. This output S includes the
call scores f1, f2, . . . , f|C|, where fc = fc(tc(v1,v2, . . . ,v|B|)) is the score that results
for call c ∈ C given the associated response time tc(v1,v2, . . . ,v|B|). Each call score
depends on the call’s target time and response time, where the latter depends on all
the simulation inputs, including the base locations we are optimising.

We can now write our problem as follows. Given a set of simulation inputs,
including the set C of historic calls, we seek a set of base locations v1,v2, . . . ,v|B| that
maximises the sum of call scores F(v1,v2, . . . ,v|B|) = ∑c∈C fc(tc(v1,v2, . . . ,v|B|)).
This gives rise to the following base location (BL) model:
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BL(C) : maxv1,v2,...,v|B|F(v1,v2, . . . ,v|B|) = ∑
c∈C

fc(tc(v1,v2, . . . ,v|B|)) (11.1)

We adopt a neighbourhood search strategy for solving BL(C). We will start the
search using the existing base locations. We expect to find a good solution but offer
no guarantees of optimality. Instead, we are willing to accept some solution that is
within the general neighbourhood of this starting solution and thus is not a major
change over the existing base locations.

One approach to perform this neighbourhood search would be to perturb the
location of one base, run the simulation to see if this improves the performance
and then keep the change if it is better. This local search process would need to be
repeated many times to find a good set of base locations. An obvious disadvantage
of this method is the large time required to obtain performance values; a simulation
of a year’s worth of call data for a large city can take around 10 or 20 min to
complete, and so, we could only test three changes per hour. To counter this, we
could construct a multidimensional response surface (Andradóttir 2006a) which
uses completed simulation runs to predict the system performance for new base
configurations. This is the approach taken in the general purpose simulation opti-
miser OptQuest (OptTek Systems Inc 2011) sold with many commercial simulation
packages. However, for our problem, many runs would still be required before the
response surface was well developed. Instead, we developed a customised local
response surface to predict performance for neighbouring solutions. This is possible
because we can exploit detailed simulation trace information. This helps negate the
slow runtimes often associated with simulation–optimisation techniques.

To formulate our approximate response surface, we assume the simulation output
S includes detailed call response information of the form Croad,C1,C2, . . . ,C|B|,
where set Croad contains all calls for which the first arriving vehicle was on the
road (i.e. not at its base) when it was dispatched and Cb, b ∈ B contains those calls
for which the first arriving vehicle was dispatched from base b ∈ B.

Using this partitioning of the calls, we can write our objective function as:

F(v1,v2, . . . ,v|B|) = ∑
c∈Croad

fc(tc(v1,v2, . . . ,v|B|))+ ∑
b∈B

∑
c∈Cb

fc(tc(v1,v2, . . . ,v|B|))

(11.2)

However, if we assume call c ∈Cb will always be served by a vehicle at base b,
we can approximate the response time tc(v1,v2, . . . ,v|B|) by the simpler response-
time estimate t̂c(vb) that depends on the location vb of just the single base b, giving

F(v1,v2, . . . ,v|B|) ≈ ∑
c∈Croad

fc(tc(v1,v2, . . . ,v|B|))+ ∑
b∈B

∑
c∈Cb

fc(t̂c(vb)) (11.3)

Equation (11.3) assumes call c’s score fc(t̂c(vb)), c ∈ Cb depends on the response
time t̂c(vb) when travelling from node vb. As we discuss shortly, changing the
base locations may invalidate this assumption. However, as we will see, (11.3) still
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Algorithm 1: A local search algorithm for base locations. The constant 0< ε <
1 defines a finish condition, while function Vb() uses the simulation outputs Si

to determine a new (hopefully) better location for each base b.

Basic Local Search
Initialization
Let i = 0
Let (v0

1,v
0
2, . . . ,v

0
|B|) be the set of initial base locations

Simulate: (C,vi
1,v

i
2, . . . ,v

i
|B|, . . .)→ Si = { f i

1, f i
2, . . . , f i

|C|,C
i
road,C

i
1,C

i
2, . . .,C

i
|B|, . . .}

repeat
Use the simulation output to improve each base location
for each base b ∈ B

Determine a new location vi+1
b =Vb(Ci

b)
Simulate using the new base locations
Let i = i+1
Simulate: (C,vi

1,v
i
2, . . . ,v

i
|B|, . . .)→ Si = { f i

1, f i
2, . . . , f i

|C|,C
i
road,C

i
1,C

i
2, . . .,C

i
|B|, . . .}

Fi = ∑c∈C f i
c

until (Fi −Fi−1)/Fi < ε
Return the best set of base locations generated
Let j = argmax{F1,F2, . . .,Fi}
return (v j

1,v
j
2, . . .,v

j
|B|)

provides a useful estimate. Note that t̂c(vb) depends on the road speeds when call c
arrives, the call’s priority, its call-taking time and the mobilisation delay at base b.
These are all assumed to be invariant across simulation runs. Thus, in the simulation,
the mobilisation delay for call c does not change even if the call is served by a
different vehicle coming from a different base.

Our local search proceeds in an iterative fashion where at each iteration i, a
different choice of locations for the set of bases B will be evaluated. Our search
algorithm is shown in Algorithm 1, where superscript i is used to indicate data values
at iteration i.

An important component of this algorithm is the function Vb() that uses the
output Si from the ith simulation run to determine a new improved location for
each base. We estimate the impact of moving each base b by considering just the
term associated with base b in (11.3). Of course, in general, moving a base may
change the calls that are closest to that base, hence changing Ci

b. Furthermore small
changes in base locations may change the availability or location of a vehicle at
the time of a call’s dispatch, causing further changes in Ci

b or in Croad. However, we
might expect this approximation to be a useful predictor if the base location changes
are small. Furthermore, and most importantly, this approximation allows the impact
of moving a base to be estimated without running the simulation. Our approach for
Vb() is to simply enumerate all nearby nodes v : |v− vi

b| ≤ r, where |v− vi
b| denotes

the Euclidean distance between nodes v and vi
b and r is some user-defined radius. For

each of these nodes v, we evaluate the travel time and hence expected response time
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t̂c(v) and call score, for each call c ∈ Ci
b, that would result if the base were located

at node v. The best of these nodes gives our new base location. Thus, we have

Vb(C
i
b) = argmax

v∈V :|v−vi
b|≤r

∑
c∈Ci

b

fc(t̂c(v)) (11.4)

Equation (11.4) ignores factors such as changes in the resulting call-to-vehicle
assignments. Therefore, after finding new locations for all the bases, we perform a
full simulation run to accurately evaluate the combined impact of these new loca-
tions. This optimise-then-simulate process is iterated until no further improvement
in performance is obtained.

Our local search approach has been tested using a model that is similar to that
of a real system. We solved a problem with approximately 250,000 calls over a
one year duration, of which about 65% of calls were high priority, about 25%
medium priority and the remaining 10% low priority. About 80% of calls were
responded by vehicles from their base (well below the 100% that would be assumed
by a hypercube model). New base locations were found using one set of calls, and
then, the effectiveness of these new base locations was tested using a different but
similar test call set. Simulation using this test set showed an increase within just
one iteration of approximately 8% in the number of high-priority calls responded
to within 8 min and an approximately 2% increase in the number responded to
within the 13 min target. Further iterations made improvements for the call set being
simulated, but not for the test set. The improvements generated are significant for
an ambulance operation and indicate the potential value of this approach.

7 Ambulance Repositioning

In a traditional ambulance operation, the vehicles follow a static return-to-home-
base policy under which each vehicle has a designated home base to which it returns
after completing each call. There are a number of factors that might motivate a more
dynamic approach in which changes are made to these vehicle waiting locations
during the day. These include:

1. Changes in the call arrival rate during the day
2. Changes in the spatial distribution of incoming calls during the day
3. Changes in the ambulance travel times during the day caused by changing road

congestion patterns
4. Planned changes in the number of available vehicles
5. Random changes in the number of available vehicles caused by the dispatching

to and completion of calls

The first four factors above can be addressed at the planning stage when
the number and locations of the vehicles are being determined. For example,
Repede and Bernardo (1994) break the day into separate time periods and solve
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an optimisation problem to determine the number of ambulances required in each
period and their locations. A similar approach is taken by Schmid and Doerner
(2010) to planning the vehicle locations in Vienna except that they solve a single
full-day model that takes into account the distances vehicles must travel when
moving from one configuration into the next. Rajagopalan et al. (2008) consider a
similar problem but use a hypercube-based model to evaluate system performance.
They do not have any vehicle repositioning costs and so can solve each time period
independently using a Tabu search algorithm that allocates vehicles to bases while
minimising the number of vehicles required.

We consider here the more complex problem of repositioning vehicles in
real time in response to changing vehicle availability caused by the arrival and
completion of calls. This problem arises from the recognition that a sequence of
dispatch operations may deplete the number of available ambulances in an area,
resulting in a poor response time for future calls in that area. Careful selection
of the destination bases for newly available vehicles can help repair these holes
in ambulance coverage. These repositioning strategies should, ideally, take into
account all the factors listed above and thus are an extension of the planned
repositioning models discussed above.

Repositioning approaches can deliver significant benefits. For example, Alanis
et al. (2010) cite a simulation study showing that repositioning in Edmonton,
Canada, generates performance improvements equivalent to having 8 additional
ambulances operating 24 h a day. Such results suggest that repositioning will
play an increasingly important role in future ambulance operations. We recognise,
however, that repositioning can be disruptive for ambulance staff; see Henderson
(2010) for comments on this as part of a wider discussion of operations research
contributions to ambulance logistics. We next review the literature and then present
the repositioning solution developed by Optima.

Kolesar and Walker (1974) proposed one of the first repositioning algorithms,
which they designed for fire companies. One of the first proponents of vehicle
repositioning for ambulances was Stout (1983), who used the term “system status
management” to refer to “the formal or informal systems, protocols, and procedures
which determine where the remaining ambulances will be when the next call
comes in.” Stout details a process where the preferred base locations for vehicles
are determined by local experts for each hour of the day and for each number
of idle ambulances, producing a system status plan. While the terminology is
somewhat interchangeable, we reserve this term for such a repositioning scheme
that specifies the number of ambulances xt, f ,b to be allocated to each of the |B| bases
b ∈ B = {1,2, . . . , |B|} if f = 1,2, . . . ,n of the n ambulances are free during one of
the T distinct time periods t = 1,2, . . . ,T . Any such plan must necessarily satisfy
∑b∈B xt, f ,b = f , ∀ f = 1,2, . . . ,n; t = 1,2, . . . ,T . We consider such a repositioning
plan to be an offline plan in the sense that any optimisation of the plan occurs well
before it is used.

Unless carefully designed, system status plans can unnecessarily increase the
miles driven by the ambulance vehicles. The driving distance can be reduced by
using a nested plan for which xt, f+1,b ≥ xt, f ,b∀ b ∈ B, f = 1,2, . . . ,n− 1, meaning



11 Simulation and Real-Time Optimised Relocation for Improving . . . 307

that when a new vehicle becomes free, the desired configuration can be achieved by
sending this vehicle to the unique base b ∈ B : xt, f+1,b = xt, f ,b +1 without having to
move any of the other vehicles.

A relaxed version of the nested system status plan is proposed by Gendreau et al.
(2006) who define a maximal expected coverage relocation problem (MECRP) that
is solved offline to generate a plan. This model allows up to α f of the f vehicles
available in state f to be moved when going to state f + 1, giving the constraint
∑b∈B |x f+1,b − x f ,b| ≤ 1+α f . (Note that Gendreau et al.’s model does not have any
time dependence, and so, we have dropped t in this case. As before, f denotes the
number of free vehicles.) They formulate an integer programme which seeks a set of
vehicle configurations, one for each state f , f = 1,2, . . . ,n, which together maximise
the weighted coverage ∑n

f=1 C(x f ,1,x f ,2, . . . ,x f ,|B|)q f , where C(x f ,1,x f ,2, . . . ,x f ,|B|)
is the number of calls that are within the target driving time of an occupied base
under the vehicle-to-base assignments x f ,b, b ∈ B and q f is the proportion of time
there are f vehicles free, as estimated using a binomial distribution. Their model
does not incorporate travel costs and, because it optimises coverage, will place only
one vehicle at any base. After solving their integer-programming model for different
variants of a small problem in Montreal, Canada, with between n = 3 and n = 6
vehicles, Gendreau et al. use simulation experiments to test the policy this generates.
Their simulation solves a simple transportation problem to determine how to move
the vehicles from the current to their new configuration for each change in the
number of free vehicles f . They show that using a strictly nested plan (α f = 0 ∀ f ),
they can increase the number of calls responded to within 8 min by between 5%
and 8% over a base-line solution with no vehicle repositioning, depending on the
problem variant they are considering. These values change to between 14% and
23% when non-nested system status plans are permitted. We note, however, that
no details are provided on how vehicles were allocated to bases in the base-line
solution, and thus, the quality of their starting point and hence of their reported
improvements is difficult to assess.

As well as their work on offline system status plans, Gendreau et al. (2001) also
present an online repositioning scheme in which an integer-programming model is
used in real time to reposition the idle vehicles after each new call arrives. Unlike
system status plans, online optimisation systems are able to explicitly calculate the
cost of moving vehicles from their current positions and can balance this against
the coverage benefits provided by multiple alternative candidate vehicle-to-base
configurations. The Gendreau et al. online model requires all demand points to
be covered within a drive time r2 and some proportion β < 1 of the demand to
be covered within a drive time r1 < r2. They seek to maximise the proportion of
demand that is double covered within the drive time r1, less some penalty term
associated with changes in vehicle locations. Ideally, the model would be solved
in real time every time the number of free vehicles changes. However, because the
model is slow to solve, they pre-solve in parallel (using Tabu search) a large number
of problems corresponding to each possible currently idle vehicle becoming busy.
The vehicle movement penalty terms, which get updated before each new solve,
are chosen to discourage undesirable features such as moving the same vehicle
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multiple times, making round trips and long repositioning movements. The authors
conducted a detailed simulation study of the effectiveness of their approach in which
vehicle repositioning was performed after each call arrival (but, apparently, not on
other events such as call completions). They found that repositioning occurred after
38% of the call arrival events, with an average of about two vehicles (of the 40 or so
available on average) being repositioned. Unfortunately, they do not report the gain
achieved by their repositioning approach when compared to a static return-to-base
policy.

Nair and Miller-Hooks (2009) consider an offline relocation model to generate
repositioning policies for Montreal. They solve a location–relocation integer-
programming model that attempts to allocate vehicles to meet single- and double-
coverage requirements for demand locations under a number of network states,
where a network state represents a unique combination of the call arrival distri-
bution, the number of available vehicles and the road travel speeds. The model
explicitly considers the movement of vehicles to new waiting locations whenever
the system changes from one state to another, which is assumed to happen with
known probabilities. They solve their problem for a system with three distinct states
(the nature of which is not well described); the size of the model prevents more
states being used. After making a number of approximations, they then give an
analytical model for predicting the performance of the solved system. These show
only minimal benefits from repositioning. The lack of any simulation results makes
it difficult to quantify the value such an approach might offer to an ambulance
operator.

Andersson and Värband (2007) have adopted an alternative approach in which
they develop their own “preparedness” measure to predict system performance.
They present work showing how this can be used to assist in both dispatch and
repositioning decisions.

An alternative approach to the vehicle repositioning problem is dynamic pro-
gramming; see Berman (1981a,b) for the first such models for ambulances. Com-
pared with integer-programming approaches, these models have the advantage of
more accurately modelling the stochastic elements of the problem. Zhang et al.
(2009, 2012) have extended these models and used them to gain interesting insights.
Optimal policies developed for small problem instances with just a single vehicle
possess a number of interesting features, many of which are useful for designing
repositioning algorithms for larger problems. Firstly, when deciding whether to
move a vehicle, it is important to consider not just the change in coverage achieved
by the move but also the call density along the vehicle movement path. For example,
moving from a quiet area to a very busy area may not be optimal if it requires driving
through an area with a very low call density. Where moves are made, the optimal
vehicle paths are often chosen to pass through areas of high call density, even if this
extends the time required to reach the destination. We are not aware of any existing
repositioning models that take this effect into account. Secondly, the importance of
this effect varies with the call arrival rate. Low call arrival rates make it likely that the
vehicle will have completed its repositioning before the next call arrives, and thus,
the optimal policy for a low call arrival rate is more likely to include repositioning
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operations even if these move vehicles through areas of low call density. Thus, a
high call arrival rate appears to reduce the opportunities for repositioning. Third,
Zhang et al. present an example showing that while achieving a high call coverage
is obviously important, the system performance is also improved by reducing the
service time. Thus, an optimal vehicle waiting location must consider both coverage
and the expected response time to all calls, not only those reached within the target
time. Zhang et al. have also considered problems with two vehicles and show that,
for example, when one vehicle is dispatched to a call, any decision to reposition the
other vehicle should be delayed until it is known if the first vehicle will become free
at the scene or must first complete a patient transport operation. The detailed real-
time tracking of vehicle status found in most modern ambulance operations means
that complex dispatch policies such as this would be possible to implement if the
associated optimisation models could be formulated and solved. How to best use
such operational details when repositioning larger numbers of vehicles remains an
important research question.

While dynamic programming can give valuable insights, the solution approach
becomes impractical for realistic-sized problems. Instead, approximate dynamic
programming approaches can be used in which the expected performance values
associated with the system being in some state are computed approximately, for
example, by using a weighted set of basis functions to approximate the optimal
value function. Such systems can then perform online optimisation to choose the
best of multiple reconfigurations given the costs of moving vehicles from their
current positions. Maxwell et al. (2010) (see also Henderson (2010)) have made
significant contributions in the application of approximate dynamic programming
to ambulance repositioning. They present an approximate dynamic programme
for ambulance repositioning for Edmonton and for a larger unnamed city. Using
simulation, they showed that by repositioning ambulances when they became free,
they could achieve an approximately 4% performance improvement for Edmonton
over a good return-to-base solution in which the vehicle-to-base assignment had
been determined heuristically using enumeration. This figure dropped to 2% for the
larger city. Although these figures appear small, they showed that the benefits from
repositioning for the Edmonton problem were similar to those gained by deploying
another two additional vehicles and thus represent significant potential savings.
They also showed that allowing repositioning moves to be made for all idle vehicles
(not just the newly free vehicle) allowed a further 3% improvement. In subsequent
work (Maxwell et al. 2011a,b), they show that they can obtain better results using
a simpler approximate value function, the parameters of which are tuned using a
Nelder–Mead local search algorithm instead of the more standard method of fitting
to simulated results. This simpler model produces a surprisingly simple policy in
which some estimated marginal benefit of adding one more vehicle to a base is used
to determine the base to which a newly free vehicle should be assigned. Because
they ignore vehicle movement costs, this policy would be equivalent to a system
status plan if all vehicles were being repositioned. In simulations of ambulance
operations in Auckland, New Zealand, (Zhang L, Personal communication, 2011)
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has shown that he can obtain better results by discarding the basis functions and then
using local search to directly manipulate the base ordering. Research in this area is
continuing.

An alternative approach has been proposed by Alanis et al. (2010) who have
developed a Markov chain model for predicting ambulance performance under a
system status plan. Their model assumes that for each number of free vehicles f ,
there is some given assignment of these vehicles to waiting locations. When the
vehicles are in this configuration, the system is said to be in compliance. They
model the system as a Markov chain with states corresponding to f = 0,1,2, . . . ,n
free vehicles which are either in or out of compliance. Whenever a call arrives or a
service completes, the system is assumed to go out of compliance, and so, vehicle
repositioning is required to regain compliance. While the Markov chain allows a
call to arrive when the system is out of compliance, the underlying calculations
used for determining service and repositioning times assume that the system is in
compliance immediately before a call arrival or a call completion occurs. Thus,
rates at which calls are completed and the system returns to compliance can be
estimated using a careful analysis of expected travel times and times to reposition
the vehicles assuming the system is in one of the restricted set of states formed by
starting in an in-compliance state and having either one vehicle become busy (with
a probability for each vehicle being given by the proportion of calls closest to that
vehicle) or a vehicle become free (either at a hospital or at a demand location). A
procedure based on convolution is given to predict the response-time distribution
after the Markov chain probabilities have been calculated. Using comparisons
with simulation runs, they have shown that this analytical model gives very good
predictions of the response-time distributions. This approach is an important step
forward in developing good offline algorithms for system status plans.

8 Real-Time Repositioning

Optima has developed an online real-time optimisation system, known as Optima
Live, that is being implemented in Canada, Australia and Lee County (USA) to
make real-time repositioning decisions. This optimisation system integrates with
the ambulance operator’s dispatching software, ensuring the latest vehicle positions
and statuses are always available. An online optimisation model (described below)
uses this data to generate repositioning recommendations which are then presented
to the operators for their approval and subsequent automatic transmission to the
vehicles. The repositioning policy generated using this model differs from a system
status plan in that multiple vehicle-to-base configurations can be generated for the
same number of free vehicles, with the optimised plan then being chosen based on
movement costs given the current vehicle configuration. While some other software
exists for moveup, Optima Live is, to our knowledge, the first such system being
actually used by multiple ambulance operators that optimally solves an all-vehicle
optimisation problem to generate its recommendations.
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Fig. 11.3 The Optima Live current view (left) and future view (right) showing call arrival rates
(red) and vehicle coverage (blue). The three recommended vehicle repositioning moves are shown
using arrows. These moves improve the vehicle coverage in the top right which is an area predicted
to have a higher arrival rate than average

An important feature of the optimisation system is its strong visualisation
capabilities that can portray both the current call coverage and the coverage expected
if the recommended vehicle moves are completed. Because repositioning takes
time, it is important to consider changes in the availability of vehicles that are
likely to occur in the near future. Because the status and position of each vehicle
are known, it is possible to predict the likely vehicle positions and availabilities
once their current activities are completed. This calculation takes into account shift
starts and finishes, meal breaks and vehicles completing current calls. Ideally, a
scenario tree would be developed that modelled multiple alternative futures, but this
would further complicate an already difficult optimisation problem. Instead, just a
single future scenario is determined, and this future view is displayed to the user
in the form of a predicted future call coverage map. This visual display also shows
predicted call arrival rates generated using a forecasting model based on historic
data. This combined future call/coverage display helps users identify areas that have
poor coverage and a high expected future call demand and thus could benefit from
repositioning. An example of such a display is shown in Fig. 11.3.

The data used to construct the call/coverage display is also fed into the
repositioning optimisation model. This model is similar to that of Gendreau et al.
(2006) but extends their work in a number of directions. While Gendreau et al.
seek to maximise double coverage, the Live model allows the user to specify more
general concave piecewise linear functions specifying the reward for each demand
location in terms of the number of vehicles covering that location. If there are
different classes of vehicles, such as when only some vehicles are transport capable,
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then separate piecewise linear coverage functions can be specified for (combinations
of) these different vehicle classes, with a weighted combination of these piecewise
functions then being used in the objective. (This approach is similar to that found in
Schilling et al. 1979.) Thus, for example, the user can maximise some combination
of the 8 min coverage provided by first-responder vehicles and the 20 min coverage
provided by transport capable vehicles. The objective includes terms for the total
reward resulting from the new vehicle positions and a penalty term that costs
the vehicle movements. As in Gendreau et al. (2001), this second term penalises
undesirable vehicle movements such as those involving a long travel distance, those
resulting in repeated moves for the same vehicle and those that change an en-
route vehicle’s destination. Repositioning moves that take a vehicle too far from
its designated home base can also be penalised. More details of this model are given
in Appendix.

While the focus of Live has been on improving response times, the software
also includes tools for monitoring upcoming meal breaks and ends of shifts. The
repositioning optimisation can use this information to direct vehicles back to their
home bases in anticipation of these events.

As mentioned above, Optima Live is being used in Lee County, USA. Since
introducing Live, Lee County reports an 11 s decrease in average response time
and a 3% improvement in their on-time performance during a period in which call
volumes increased by 5.8% (The Optima Corporation 2010).

9 Conclusions

This chapter has reviewed a number of contributions made in the application of
operations research techniques to problems faced by ambulance operators. The
important problem of allocating vehicles to home bases, which many operators
solve using what-if simulations, is still an area of ongoing research. Despite the
availability of many integer-programming-based models, experienced researchers
in the area still rely on relatively unsophisticated enumerative approaches based
on simulation, hypercube or related models to solve this problem. Simulation–
optimisation techniques such as that presented here can help by exploiting the
fidelity provided by a validated simulation but can offer no optimality guarantees.

The problem of how to optimally reposition ambulances during the day to max-
imise on-time performance is a complex and challenging stochastic optimisation
problem which can currently only be solved to optimality for small theoretical
instances. The development of approximate dynamic programming and Markov
chain models for this problem are two new significant research contributions in this
area but have currently only been used for developing restricted classes of policies.
Integer-programming models are more flexible but more limited in their ability to
accurately model the stochastic elements of the problem. There is now substantial
evidence that repositioning can improve on-time performance. However, ongoing
research is required to fully exploit the possibilities this offers.
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The impact of the operations research contributions discussed in this chapter is
perhaps best illustrated by a quote from Ambulance Victoria. Ambulance Victoria’s
2010/2012 strategic plan includes a stated goal to “Improve the efficiency of the
response process by . . . more dynamic deployment of resource units, building on
current use of the Siren [i.e. Optima Predict] decision support system” (Ambulance
Victoria 2009). It is very pleasing to see the benefits of operations research being
recognised at such a strategic level.
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Appendix: A Real-Time Multi-view Generalised-Cover
Repositioning Model

Let Z be the set of demand locations (termed zones), V the set of all views (defined
below), A the set of all available (i.e. free) ambulances and W be the set of all per-
mitted waiting locations for the ambulances. The following formulation describes
the real-time multi-view generalised-cover repositioning model (RtMvGcRM) used
in Optima Live. Although not shown explicitly, these sets and all constants in this
model are assumed to depend on the vehicle positions, call arrival rates and road
speeds applying at the time t the model is solved.

RtMvGcRM(t) : max ∑
z∈Z

∑
v∈V

gzv(yzv)− ∑
a∈A

∑
w∈W

cawxaw (11.5)

s.t. ∑
w∈W

xaw = 1 ∀ a ∈ A (11.6)

yzv = ∑
a∈A

∑
w∈W

dawzvxaw ∀ z ∈ Z,v ∈V (11.7)

xaw ∈ {0,1} ∀ a ∈ A,w ∈W (11.8)
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In this model, decision variable xaw = 1 if ambulance a is to be assigned to
waiting location w, and xaw = 0 otherwise. The cost caw takes into account factors
such as a fixed and variable cost of moving an idle ambulance, the cost of redirecting
an en-route vehicle, any maximum driving times and the distance of w from the
vehicle’s original home base. This model is defined in terms of views, where a
view v is a combination of a user-specified subset Av ⊂ A of ambulances, a set of
zone-specific target response times rzv ∀ z ∈ Z and a dispatch priority (either lights-
and-sirens or otherwise). For example, the user may be interested in the coverage
provided by transport-capable vehicles dispatched without lights and sirens to meet
a 20 min target in metropolitan areas and a 30 min target in rural areas. We define
dawzv to be the coverage an ambulance a provides to zone z under view v when
assigned to waiting location w. Typically, we will have

dawzv =

{
1 if a ∈ Av and twzv ≤ rzv

0 otherwise

where twzv is the driving time under the view v’s dispatch priority when going
from waiting location w to zone z. However, more general options are possible
which recognise the benefit of arriving earlier or later than the target time or having
variability in the driving time.

Variable yzv defined by (11.7) measures the total coverage of zone z under view
v, and gzv(yzv) is the resulting contribution zone z makes to the user’s performance
measure. Function gzv(·) is a piecewise linear convex function which is typically
proportional to the current call arrival rate in zone z and the importance associated
with view v. For example, the standard single-coverage measure can be implemented
using

gzv(y) =

{
wz if y ≥ 1
0 otherwise

where wz is the call arrival rate in zone z. Other choices of gzv(·) are possible,
such as that used in Daskin’s MEXCLP (Daskin 1983). Function gzv(·) can be
modelled within the integer-programming formulation using additional upper-
bounded variables not shown above. The objective (11.5) seeks to maximise the
weighted reward generated from these gzv(·) values less the cost of the vehicle
repositioning moves, where (11.6) ensures each free ambulance is assigned one
waiting location.
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Chapter 12
Planning and Managing Mass Prophylaxis
Clinic Operations

Rachel L. Abbey, Katherine A. Aaby, and Jeffrey W. Herrmann

1 Introduction

Public health can be defined as “what we as a society do collectively to assure
the conditions in which people can be healthy” [Institute of Medicine (IOM) 2003,
p. xi]. Public health focuses not on the individual but on the population as a whole,
setting it apart from the traditional healthcare system. The definition of a public
health system is even more complex. It is a system that includes a network of
individuals and organizations working together to create the conditions for health.
It is the working together that enables them to act as a system (IOM 2003). This
network can include government agencies, community organizations, healthcare
providers, schools, businesses, and the media. Each network member, including
local health departments, has a role to promote public health that may vary by
community [National Association of County and City Health Officials (NACCHO)
2008].

An effective public health system includes the following core functions: pre-
venting diseases, protecting against environmental hazards, preventing injuries,
promoting and encouraging healthy behaviors, responding to disasters and assisting
communities in recovery, and ensuring the quality and accessibility of health
services (NACCHO 2003). Local health departments, the preferred term used by
the NACCHO, are often the first line of defense within the public health system
to support these core functions for many communities. Local health departments
include all jurisdictional types and sizes. Throughout this chapter, the term “state
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Fig. 12.1 Point of dispensing (POD) Operations Cycle. This figure outlines the four steps, along
with specific processes, that public health planners work through when creating an effective
efficient POD operation for a public health emergency or other public health activity. Step 1
begins at the top of the figure and continues clockwise through the specific processes (a–e) moving
similarly through steps 2–4. (Asterisk) Strategic national stockpile

and local health departments or governments” is used to be inclusive of tribal health
departments and governments.

This chapter will discuss the steps local health departments take to dispense
medication to the public using PODs (points of dispensing) during a public health
emergency or every day event, such as annual flu vaccination. The authors provide
the POD Operations Cycle in Fig. 12.1 as a way to visually demonstrate the steps
necessary to ensure an effective POD response. This chapter is intended to provide
public health professionals an overview of the processes involved in planning and
managing a POD operation from the perspective of a local public health department
and local public health emergency planners (hereinafter known as “planners”).

The chapter discussion applies to preparing for and responding to several public
health emergency scenarios, including pandemic influenza, an aerosolized anthrax
attack, a smallpox outbreak, as well as other smaller scale public health operations
including annual influenza PODs. Although this chapter is written from a United
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States (US) perspective, many of the concepts may apply to other countries. The
authors recognize that PODs for public health emergencies and PODs for daily
activities are different in scalability and urgency; however, some of the same steps
can be applied to either situation. Throughout the chapter, the authors provide
examples of the 2009–2010 H1N1 influenza pandemic as well as annual flu vaccine
PODs to attempt to compare and contrast the two situations and the use of PODs. For
more information on emergency preparedness and public health, visit the following
web sites: Centers for Disease Control and Prevention (CDC) www.bt.cdc.gov and
the Federal Emergency Management Agency (FEMA) www.fema.gov/areyouready.

The remainder of this chapter is organized as follows. Section 2 provides an
overview of emergency preparedness and public health. Section 3 specifically
addresses PODs and their role in emergency preparedness. Section 4 outlines and
describes the specific steps and activities, shown in the POD Operations Cycle
(Fig. 12.1), that local planners perform in POD planning and response. Section 5
discussed future research and practice challenges, including new and innovative
solutions to increase the efficiency of PODs.

2 Background on Emergency Preparedness

As part of the public health system, local health departments, in collaboration
with our state, tribal, and federal partners, have been charged with preparing for,
responding to, and recovering from threats to public health. These threats can
include acts of biological and chemical terrorism such as the dissemination of
aerosolized anthrax spores or food product contamination and naturally occurring
infectious disease threats such as pandemic influenza. Although predicting when
and how such an event might occur is difficult, public health departments cannot
ignore the possibility of events like the terrorist attacks on September 11, 2001, the
anthrax attacks in 2001, the 2003 outbreak of severe acute respiratory syndrome
(SARS), the 2004 earthquake and tsunami in Indonesia, Hurricane Katrina in 2005,
the 2009–2010 novel H1N1 influenza pandemic, the 2010 Haitian earthquake, and
the 2011 cascading disaster of an earthquake, tsunami, and nuclear event in Japan.

Preparing a nation to address these types of public health threats is a formidable
challenge, but the consequences of being unprepared can be devastating. Today, with
the increase in globalization, addressing health issues worldwide is critical. The
ease and speed of transporting goods, services, and people across borders allows a
small town or village to spread disease to the largest city in record time. The public
health infrastructure must be prepared to prevent illness and injury that would result
from a chemical, biological, radiological, and nuclear incident. As with emerging
infectious diseases, the early detection and control of biological and chemical
attacks depends upon a strong and flexible public health system at the local, state,
federal, and international levels. In addition, primary healthcare providers must be
vigilant to report and observe unusual illnesses or injuries.

www.bt.cdc.gov
www.fema.gov/areyouready
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In the USA, specific local state and federal laws and regulations provide guidance
and authority to local health departments during an emergency. State laws grant
powers to local governments in the form of police powers to quarantine, investigate
disease outbreaks, and regulate facilities (Vinter et al. 2010). The federal Homeland
Security Presidential Directive HSPD-21 names disease surveillance, caring for the
sick and deceased, medical and nonmedical prevention strategies, and community
resiliency critical to biodefense. The 2006 Pandemic All-Hazards Preparedness Act
contains many functions of local health departments and emphasizes that local
health departments and other medical first responders are critical to the response.

Local health departments undertake many roles and responsibilities during a
public health emergency and are guided, in collaboration with many community
and government partners, by specific federal frameworks to assure an organized
and effective response. The National Response Framework (NRF) provides guiding
principles for governments and their partners to provide a unified response to disas-
ters and emergencies. Part of the NRF addresses the 15 emergency support functions
(ESF) under which many local, state, and federal governments organize their
resources and capabilities. ESF #8 is Public Health and Medical Services, which
covers most of the functions of federal, state, and local health departments as well
as other healthcare partners [U.S. Department of Homeland Security (DHS), FEMA
2011b]. Some of the core actions include assessment of public health/medical needs,
health surveillance, managing mass fatalities, providing public health and medical
information, managing behavioral healthcare, and protecting against environmental
hazards (U.S. Department of Homeland Security 2008). In an effort to create a
united response among agencies and organizations, local health departments follow
the National Incident Management System (NIMS). NIMS can be applied across a
full spectrum of potential all hazards regardless of size, location, and capacity of the
incident (U.S. DHS, FEMA 2011a). For more information on NIMS, please visit
www.fema.gov/emergency/nims/.

Federal program guidances such as the 2009 National Health Security Strategy,
the 2010 Biennial Implementation Plan, and the 2011 Public Health Emergency
Preparedness (PHEP) capabilities provide measures, benchmarks, and funding for
local health departments to improve their PHEP capacity. In addition, CDC and state
representatives conduct annual technical assistance reviews (TAR) to assess plans
and to ensure readiness; these reviews use a 0–100 score system (U.S. CDC, October
14, 2011). However, since PHEP is relatively new to the field of public health, there
is limited research and data regarding performance and program measures. Over the
next few years, especially with the release of the new PHEP capabilities, additional
data will be collected and analyzed to help inform future PHEP policies.

3 Purpose of PODs in Emergency Preparedness

If required, PODs, or points of dispensing, are a key function of local health de-
partments in their mass prophylaxis and vaccination response to a public health and
medical disaster or emergency. The goal of PODs is to medicate the population as

www.fema.gov/emergency/nims/
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quickly and accurately as possible to prevent morbidity and mortality. In emergency
preparedness, PODs, or mass prophylaxis clinics, are the primary strategy used by
local health departments to distribute medical countermeasures, such as medications
(vaccine or antibiotics), to the public. PODs are also used in the everyday function
of local health departments such as annual flu or routine immunization clinics. They
vary in size, number, and location depending upon the jurisdiction, disease, and
other factors. The annual TAR guidance requests localities to collect some baseline
data which includes hourly estimated throughput, numbers of PODs, types of PODs,
and levels of staffing. PODs are aimed at prophylaxis (prevention of illness), rather
than at treatment (medical efforts to treat symptomatic individuals) (IOM 2008).

There are two primary POD models used by local health departments. The first
is a centralized POD design in which the local health department and their partners
set up several locations across a jurisdiction and ask the public to come to these
PODs to pick up their medications; this is referred to as the “pull method” (Ablah
et al. 2010). These could include traditional “walk-up” clinics where persons arrive
one by one at multiple venues or “drive-through” clinics where cars drive up to
receive medication. These clinics were popular during the H1N1 pandemic and
often are used for annual flu or traditional vaccination clinics. The second design
is a decentralized POD model, where the local health department and its partners
would deliver directly to the public; this concept is referred to as the “push model”
(Ablah et al. 2010). For example, if a target population were school children, as
during annual flu season, then PODs in the schools might be the fastest method
to dispense the vaccine. Local health departments may choose to use either one of
these models or a combination.

In addition to using different POD models, local health departments may staff
PODs using medical or nonmedical staff, or a combination. Depending on the
type and scale of the incident or event, it may be necessary to use primarily
nonmedical staff. For example, if the event or incident is small and manageable,
primarily medical staff can provide accurate screening, triage, and exams, and
could answer medical questions. If an incident is so large that it exceeds the local
health department’s medical staff capacity, nonmedical personnel may be used
to supplement medical staff. The nonmedical workers would be able to dispense
medications and triage as appropriate but would not be able to provide medical
consultation or assessments (IOM 2008).

4 The POD Operations Cycle

The POD Operations Cycle, illustrated in Fig. 12.1, demonstrates the processes
necessary for an effective and efficient POD response. The first step of the cycle,
which begins at the top of Fig. 12.1, is disease detection, situational awareness,
and response determination. This includes an assessment of surveillance data and
additional information, which will help to determine the affected population and a
decision about the scope of the POD operation. The second step involves specific
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planning considerations that are necessary to clinic operations as well as the
identification of resources necessary for the clinic. The third step is the setup and
operation of the PODs. The fourth (and last) step is post-operation analysis and
corrective actions, which involve capturing and analyzing the lessons learned during
the clinics’ operations in order to improve future operations.

4.1 Step 1: Disease Detection, Identification, and Response
Determination

The first step of the POD Operations Cycle allows clinic planners to create a picture
at a specific time and place to determine the type of disease (or biological agent)
and to make critical decisions. The initial detection will likely occur at the local
level. The detection and identification of the disease will determine the type of
response which includes the type of prophylaxis medication necessary, identification
of the target populations, the request for medical supplies, and the type of dispensing
method(s). The order of when these processes occur may vary, and some may occur
simultaneously, but the first step in the POD Operations Cycle always includes an
assessment of the situation at hand and what immediate decisions need to be made
in order to provide prophylaxis to the affected populations.

4.1.1 Disease Detection and Identification

Epidemiological data and information about the disease are critical when making
an assessment of any outbreak, pandemic, or other biological event. Epidemiology
is the study of the determinants and distribution of disease in the human population
(Morton et al. 2001). Planners use epidemiological data to determine the type and
size of the affected population to whom they will provide prophylaxis. During
an emergency, understanding the epidemiological determinants and distribution of
disease is important, and time sensitive, in order to save as many lives as possible.
The populations that are of concern may be different and may change during the
course of the event as more information develops about the disease or agent. In order
to make the best-informed decisions about the disease and the affected populations,
planners use many tools to gather and analyze information.

Disease surveillance systems at state and local health agencies must be in place
and capable of detecting unusual patterns of disease or injury, including those
caused by unusual or unknown biological agents. In the USA there are a number
of disease surveillance systems used by states and localities to collect, report, and
track reportable disease data. It goes beyond the scope of this chapter to discuss
the different disease surveillance systems; however, they can differ from locality
to locality, are often disease specific, and are fragmented (IOM 2003). This often
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makes it difficult to received timely and accurate data, particularly as it relates to a
public health emergency.

Syndromic surveillance systems are of particular interest in the field of public
health emergency response. They use health-related data such as symptoms which
are often precursors to an actual diagnosis and may serve as a warning system.
One particular system, Electronic Surveillance System for Early Notification of
Community-based Epidemics (ESSENCE IV), which was designed by the Johns
Hopkins University Applied Physics Laboratory and the US Department of Defense,
is used by many local and state health departments. In practice, ESSENCE is an
ongoing systematic collection of indicators of health status, grouped into health
syndromes among a patient population. The application collects information from
hospitals, healthcare providers, over-the-counter pharmaceutical sales, and school-
based absenteeism reports. It applies statistical algorithms to detect unexpected
changes in the data and provides the information to health officials in a web-based
application [U.S. Department of Health and Human Services (DHHS), CDC 2011].
In particular, both exponentially weighted moving average (EWMA) models and
autoregressive moving average (ARMA) models are used in ESSENCE.

The goals of ESSENCE are early detection of large-scale outbreaks, enhance-
ment of traditional notifiable disease surveillance systems, monitoring the progress
of recognized outbreaks, and ruling out existence of an emergency. The benefit of
ESSENCE is that early detection accelerates response time; early response time
reduces transmission, and reduced transmission limits incidence and mortality.
During the H1N1 pandemic, ESSENCE provided planners a system to monitor the
outbreak and information about the incident, including demographic characteristics
of those who became ill and died from the disease.

In addition to syndromic surveillance, an additional system that planners use to
identify an agent or disease is public health laboratories. The laboratory response
network has been established to assist in a response to infectious diseases and bioter-
rorism. According to the association of public health laboratories, public health
laboratories provide clinical diagnostic testing, disease surveillance, environmental
and radiological testing, emergency response support, applied research, laboratory
training, and other essential services to the community. There are central public
health laboratories in every state, and the District of Columbia and many states have
local public health laboratories as well that range in size and capacity.

Another system planners use in the USA is the Health Alert Network (HAN).
HAN is a nationwide, integrated information and communication system whose
goal is to strengthen state and local preparedness by serving as a platform for
the distribution of health alerts, dissemination of prevention guidelines and other
information, distance learning, national disease surveillance, and electronic labo-
ratory reporting (U.S. DHHS, CDC 2001). In addition to HAN, many local health
departments depend upon additional local and state systems to send and receive
critical health information.

The US Department of Homeland Security’s (DHS) BioWatch Program is also
used by planners to help identify what is going on in the community. In 2003, the
newly created DHS introduced the BioWatch Program. The program’s objective is
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to swiftly detect specific biological agents that could be released in aerosolized form
during a biological attack. BioWatch and infectious disease surveillance through
the public health and healthcare systems are complementary. However, BioWatch
has the potential to provide a timelier alert than the public health systems due to
the quick turnaround time in reporting results. Also, the testing is focused on only
select biological agents, unlike the wide range of infectious agents tested in the
public health systems (Shea and Lister 2003).

Lastly the media (e.g., television, Internet, social media, and radio) serves as a
tool to distribute timely information and should be monitored closely for analysis
of any event. In addition, federal partners are also part of the information collection
process. DHS and the U.S. DHHS are in constant communication during an incident
of national importance. As one of the offices within the U.S. DHHS, the CDC
plays an important role in communicating to state and local health departments the
most current epidemiological data on the disease as well as providing guidance for
prophylaxis medications. The CDC was critical in providing information on vaccine
priority groups during the H1N1 pandemic.

In conclusion it is necessary for planners to collect and analyze data and
information from many different sources in order to determine the type of event, the
disease, and the affected population. This information will then be used by medical
experts to determine the type of prophylaxis medication dispensed.

4.1.2 Prophylaxis Medication

As part of the assessment process, after determining the agent or disease, planners
must determine the type of prophylaxis to dispense. Prophylaxis can be defined as
“the prevention of or protection from disease.” In public health, types of devices
(e.g., condom), treatments, and medications can be referred to being prophylactic
(Agnes 2005, p. 1150). Different types of diseases will require different types of
prophylaxis, including vaccination and/or distribution of antibiotics. In addition to
the type of prophylaxis, the route (e.g., oral, injection, and patch) and the number
of doses are also important, particularly when planning for a mass prophylaxis
operation.

The type, route, and dose of prophylaxis for even a common disease, like
influenza, can vary. The primary prophylactic treatment for influenza is a vac-
cine (injection); however, since 2003 an influenza vaccine nasal spray has been
available for those three years to 49 years of age (Fiore et al. 2010). In some cases,
as during the early stages of the H1N1 pandemic, two doses of the influenza vaccine
were initially recommended for individuals for full immunity (U.S. DHHS, CDC
2009); however, this was later reversed to only apply to children under age 10 (U.S.
DHHS, CDC 2009). Another example is aerosolized anthrax, oral antibiotics, and/or
a vaccine (injection) may be dispensed. Both methods include multiple doses to treat
the affected population. It is important for planners to recognize that the type, route,
and dose of prophylaxis, which is determined by scientific evidence from CDC, will
affect the overall design, staffing, processing time, and throughput of the POD.



12 Planning and Managing Mass Prophylaxis Clinic Operations 327

4.1.3 Target Populations

Planners must determine the size of the affected target population and identify
subpopulations or priority groups that may be especially vulnerable or need special
assistance. Local health departments often follow disease guidances developed by
state and federal officials. The decisions made regarding the target populations, as
well as any subpopulations or priority groups, are made based upon epidemiologic
data of the disease as well as information collected from the various sources
mentioned in Sect. 4.11.

An example scenario is influenza. The CDC’s Advisory Committee on Immu-
nization Practice (ACIP) meets regularly to update their annual flu guidance, which
is based upon epidemiologic and clinical data and input from the general public
(Fiore et al. 2009). This guidance is used to inform local and state public health
officials as to the target population and priority groups for annual flu. It is important
that there be a consistent message to the public about who is included in the
priority groups and the reasons behind this decision. For routine annual influenza,
the target populations have remained fairly constant. However, for the 2010–2011
influenza season, ACIP updated its guidance to include all persons aged 6 months
and older. The previous guidance recommended annual vaccinations of adults aged
19–49 years, but the new recommendations were supported by evidence that annual
flu vaccination is a safe and effective preventive strategy that could benefit all age
groups (Fiore et al. 2010). The target population for annual flu is extremely large,
and with enough vaccine to meet the demand, subpopulations or priority groups are
not necessary.

During the H1N1 pandemic, the primary priority groups determined by ACIP
were different than annual influenza. They included pregnant women, people who
live with or provide care for infants, healthcare and emergency medical services
personnel, people aged six months to 24 years, and those aged 25–64 who have
medical conditions (Fiore et al. 2009). The epidemiological data showed that those
groups were most at risk for the H1N1 virus. With limited vaccine at the time, these
were the priority populations that local health departments were to target to limit
morbidity and mortality.

There are challenges associated with outreach to target populations. Many
populations may be resistant to receiving a vaccine. For example, despite the
fact that Hispanics and African-Americans are more at risk for chronic illnesses
(e.g., asthma, diabetes), influenza vaccination rates are still lower in these groups
[Trust for America’s Health (TFAH) 2010; U.S. DHHS, CDC, National Center for
Chronic Disease and Health Promotion 2010]. Data from focus groups on the H1N1
pandemic found that some target populations felt that immunization or vaccine were
not viewed as an important health issue, that the media exaggerated H1N1 as a
pandemic, and that there was inadequate information on participants of clinical trials
(Gist 2011). It is important for planners to be aware of cultural barriers, including
concerns about receiving medication, and additional strategies may be required, i.e.,
public messages may need to target specific populations to inform them about the
safety and importance of vaccination.
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4.1.4 Request Strategic National Stockpile Assets

Once it is recognized that a significant public health incident has occurred, or is
occurring, the need for supplies and resources, specifically medical, is urgent. The
Strategic National Stockpile (SNS) is a national repository of medicine and other
medical supplies used to supplement and resupply state and local resources. The
decision to request and deploy SNS assets will be a collaborative decision made by
local, state, and federal officials. The decision will begin most likely at the local
level when officials first identify a potential or actual situation that they believe has
the potential to threaten the health or safety of their community. The SNS supplies
will be used as a supplement to state, local, and personal stockpiles (IOM 2011). The
task associated with the delivery of federal SNS assets from their original warehouse
location to the receiving, staging, and storing (RSS) warehouse sites and then to the
dispensing sites is referred to as distribution (IOM 2008).

SNS stockpiles are strategically located in secure warehouses throughout the
USA to ensure that once federal and local authorities agree that SNS deployment
is needed, “12-hour push packs” of medications and/or supplies can be delivered to
any designated RSS site within 12 h, while other managed inventory can be in place
within 24 h of the decision to deploy. Once the SNS supplies arrive at the designated
site, state and local authorities assume responsibility for the supplies and equipment
and oversee storage, distribution, and dispensing (U.S. DHHS, CDC 2011).

4.1.5 Dispensing Method

After the target populations are identified and the request for supplies (either through
the SNS or local or state stockpiles) and assistance has been sent, planners must
select one or more methods for dispensing prophylactic medication. Dispensing
involves providing prophylactic medication to the affected population in response
to an incident or threat (IOM 2008). Ideally, those in the target population could
obtain the prophylaxis from a web of entry points such as primary care providers,
PODs, pharmacies, and other private healthcare providers. In some localities,
prepositioning medications, or storing medications close to or in possession of those
who need rapid access, is also being explored as another strategy in addition to
PODs to rapidly distribute and dispense medication (IOM 2011). This variety of
sources makes the prophylactic medication more accessible, thereby increasing the
likelihood that people will decide to receive it to protect themselves.

Most local health departments have a mass prophylaxis plan that includes PODs.
In an event requiring mass prophylaxis, the target population will be instructed
to receive prophylactic medication using either one model or a combination of
the POD models previously discussed in Sect. 3 of this chapter. The appropriate
mass prophylaxis response for some disease agents, such as smallpox, may be
accomplished over several days, because of the long incubation period. However,
others, especially aerosolized anthrax, will require the target population to receive
the first prophylactic medication within 48 h or less to minimize morbidity and



12 Planning and Managing Mass Prophylaxis Clinic Operations 329

mortality (Heymann 2004). The type of POD(s) and length of operation will vary
depending upon the location site, the disease agent, and the size of the target
population. Therefore, it is all the more important for planners to develop a scalable
and flexible mass dispensing plan.

4.2 Step 2: Planning Considerations and Identification
of POD Resources

After determining the type of disease and medications, requesting the SNS, targeting
populations, and deciding on the dispensing method, planners move to the second
step of the POD Operations Cycle. Planning considerations are made based upon
information collected in the first step and include design and layout of PODs
and access and security. Resource planning models can then assist to identify
some of the resources necessary such as staffing and associated costs. Additional
resources necessary for PODs include supplies and logistics, communications,
outside partners, and political influences. Many of these planning considerations
and identification of resources can be done pre-event, while others may occur during
real time after the incident begins.

Throughout step 2, it is necessary to assess funding at each stage of the process.
For example, during an annual influenza vaccination campaign, funding may be
limited. To have the largest community impact, planners may decide to use limited
resources for PODs at elementary schools to target young children, an at-risk
population that can spread disease quickly within the community, along with a
few selected small public PODs targeting other at-risk populations. In the case of a
declared public health emergency, the Robert T. Stafford Disaster and Emergency
Assistance Act states that incurred expenses may be reimbursed by the federal
government; this may allow for more flexibility in providing increased outreach
to the target population (U.S. DHS, FEMA 2007).

4.2.1 Design and Layout

The design and layout of the POD operation is critical. Design refers to conceptual-
izing the plan and purpose of the POD. Layout refers to the actual laying out (i.e.,
on paper or in a computer program) the design or plan to move people through the
POD. See Figs. 12.2 and 12.3 as sample POD layouts. Ideally, much of the design
and layout of the clinics is performed pre-event. However, in some cases, they may
need to be created at the time of an event, if facilities are being occupied, renovated,
or otherwise in use. The processes would be the same, but time will be a factor
during real time.

There are some design elements that need to be considered. The size and
dimensions of the facility must be well suited to handle large crowds and long lines
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Fig. 12.2 Point of dispensing (POD) layout A. This is an example layout of a POD using an
elementary school all-purpose room, with associated staff positions. The flow of the POD begins
and the entrance and follows the arrows to the exit. This figure was created using Microsoft
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PowerPoint
®

of waiting people (including those with special needs, e.g., wheelchair bound and
blind), preferably under cover and sheltered from the weather. Large areas inside
the facility where people can receive handouts (e.g., disease and medication fact
sheets and other information) will be needed. People receiving medications should
enter from one area and exit from another without having to backtrack past others
who are still waiting in line. Specific stations that clients visit during the process
of receiving the medication will need to be designed. These stations can include
greeting, triage, registration and forms completion, medical screening, education,
and dispensing of medication. Some PODs have many stations, while others will
have as few as two. The number of stations and staff needed may depend upon the
amount of data collection or additional patient education required by local, state,
and federal governments at the POD. This may not be determined until the event.

The time to serve the target populations must also be considered. When time
is of the essence (i.e., it is critical to provide a target population with medication
as quickly as possible due to the epidemiological characteristics of the disease), it
may be better to have as few stations as possible in order to reduce the time in the
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Fig. 12.3 Point of dispensing (POD) layout B. This is an example layout of a POD using an
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POD. For an annual flu vaccination POD, it is necessary to collect paperwork and
documentation on the client or resident receiving the medication; additional stations
are necessary to process this paperwork, but time is not as critical as during an
emergency.

Most local mass prophylaxis plans include a general POD layout which may need
to be adjusted depending upon the event. This layout is intended to be flexible and
may change, expand, or contract, depending upon the characteristics of the mass
prophylaxis campaign (considered in the first step). This is particularly evident
in the difference between annual flu vaccination POD operations and the H1N1
pandemic flu vaccination PODs, which was treated as a public health emergency.
Since the volume of patients exceeded annual flu vaccination PODs, in some cases,
layouts had to be reevaluated in order to accommodate additional staff and space for
screening patients.
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Planners should perform a site assessment, pre-event if possible, to determine
each site’s capacity to meet the design needs of the POD. Once the POD sites have
been selected, a site-specific plan must be developed for each site. The following
additional information should be collected:

• Equipment and furniture
• Staff accommodations
• Accommodations for people with disabilities or special needs
• Location of the EMS/ambulance/first aid staging area
• Number of restrooms
• Location of the medication receiving area (if necessary)
• Environmental health concerns
• Security arrangements
• The number and location of entrances and exits
• Space available for an incident command post
• Number of parking spots
• Potential traffic problems
• 24/7 contact information for the facility manager and procedures for accessing

the site
• Other basic needs of the public (Phillips and Williamson 2005)

During the H1N1 pandemic, the demand for the vaccine was initially unknown.
In the beginning the demand in some areas was so high that portable toilets had to
be ordered and delivered in order to accommodate the people waiting in line outside
the facility. An actual layout of the floor plan will need to be designed and can be
created easily using paper, pencil, and measuring tape once a location for the POD
operations is established.

4.2.2 Access and Security

Accessibility, time, and security are essential factors that affect the design of POD
operations. Many of these decisions can be made pre-event, but again some may
need to be changed or modified real time.

Flu vaccination strategies that create better access for the target population
can increase vaccination rates (TFAH 2010). Issues such as providing adequate
traffic flow and accommodating large numbers of people often lead local health
departments to partner with local school systems to use their facilities. If the schools
are in session, planners may need to consider nontraditional community venues
such as community centers, convention centers, sports arenas, recreation centers,
libraries, armories, churches, and private businesses. During the H1N1 pandemic,
PODs were opened in schools, hospitals and large provider groups, public health
departments, pharmacies, and occupational and institutional PODs (Rambhia et al.
2010). It is important to use existing places of congregation in the community that
people already know and can easily access.
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In order to maximize accessibility, it is important to have PODs at venues and
times that best reach the target population. For example, if the target population is
seniors, it may be advantageous to open PODs at senior centers or other gathering
venues for seniors in the community. Working adults may prefer evening hours and
drive-through PODs that they can visit on the way home from work.

Security for POD sites is a local law enforcement responsibility. It is critical for
mass dispensing during a public health emergency, especially in controlling large
crowds and/or in dealing with a shortage of the medications. Local planners must
coordinate with local law enforcement to ensure that thorough security assessment
is conducted by law enforcement on each designated POD site and that a security
plan is written by law enforcement.

4.2.3 Resource Planning Models

After determining the scope and strategy of the response, planners must estimate
the resources required for executing the response. Because of the scale of mass
prophylaxis operations, tools such as planning models can help planners create
estimates of resources, especially staffing requirements, and generate and evaluate
plans for the logistics of distributing supplies. Many of the models discussed here
can be used for pre-event as well as real-time planning and as an evaluation tool for
POD plans. It is always important to keep in mind that models provide predictions
(not guarantees), and their accuracy is limited by the quality and uncertainty of the
information used to build the model. Also, in general, a key tradeoff in modeling is
that models that are more accurate (i.e., they capture more details of the situation)
usually require more information and more time to build and run.

Planning models are operations research models that are implemented as web
sites, spreadsheets, and computer software. These models require inputs about the
scope of the mass prophylaxis operation and the steps that will be performed. Many
of these inputs are gathered from mass prophylaxis and POD plans or previous POD
data collected. From this information, planning models estimate the staff required
to operate the PODs. Some models can also estimate the congestion, which affects
how long people will wait in line and how much space should be allocated for lines.

The Weill/Cornell Bioterrorism and Epidemic Outbreak Response Model
(BERM) was the first widely available mass prophylaxis planning tool that performs
capacity analysis to estimate staffing requirements (Hupert and Cuomo 2003). The
model has been implemented as a spreadsheet and as an interactive web site.
Version 2.0 is available online (http://www.ahrq.gov/research/biomodel.htm). This
model simplifies the modeling process by limiting the analysis to a small number
of options, which reduces the time required to build a model.

RealOPT (Lee et al. 2009) is another popular POD planning model. The
RealOPT suite of models uses a combination of simulation and optimization to
solve a variety of planning problems, including selecting locations for PODs,
estimating staffing needs, and allocating staff to stations. RealOPT is a software
application available upon request from the developers, who are based at Georgia

http://www.ahrq.gov/research/biomodel.htm
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Tech (http://www2.isye.gatech.edu/∼evakylee/medicalor/). The use of simulation
and optimization requires additional computational resources but allows the tool
to model many details and find automatically good staffing plans.

The Clinic Planning Model Generator (CPMG) (http://www.isr.umd.edu/Labs/
CIM/projects/clinic/) is a spreadsheet-based tool that generates, for a specific
POD configuration, a customized capacity-planning and queuing model spreadsheet
(Aaby et al. 2006a, b; Herrmann 2008). The model allows planners to enter known
population information and set time constraints specific to their applications. The
immediate results include the minimum staff levels required, along with detailed
POD information regarding waiting times, queue lengths, and cycle time. This
approach can model a wide range of POD designs and avoids lengthy simulation
runs by using queuing network approximations to estimate how long persons will
wait.

Using the spreadsheet that CPMG creates, planners can easily adjust staffing
levels and various inputs until they are satisfied with the efficiency of the PODs.
Users can accept default values if they have little information about their PODs,
or input more detailed information, such as routing probabilities and process times.
Planners can use the model spreadsheets, which they have created using the CPMG,
to determine the number of staff members they need to achieve the capacity they
need and to design PODs that avoid unnecessary congestion. The CPMG uses data
collected from POD exercises, and they have been validated by those exercises and
by public health professionals.

Planning mass prophylaxis PODs also requires the close tracking of funds. This
will assist local and state health departments when requesting for reimbursement
from the federal government or if limited resources are available. A mass pro-
phylaxis budgeting tool (Cho et al. 2011) allows planners to estimate the cost
of operating a POD. The model includes setup costs, labor costs, supplies and
materials, and facility costs. The model requires the user to enter data about
the resources required and their value. Based on this data, the model aggregates
everything to determine the overall cost of the POD, with costs by activity.

4.2.4 Staffing

Staffing is one of the largest challenges for local health departments when planning
PODs. Considerable pre-event planning must be devoted to recruiting, training, and
maintaining sufficient numbers of POD staff and volunteers to open and operate the
PODs. Many local health departments will depend upon government employees,
Medical Reserve Corps members, and other medical and nonmedical volunteers
to serve as staff in PODs. As described above, planning models can be used to
determine the number of direct service staff (i.e., those who provide the medication
to the resident) to assure maximum capacity and to prevent unnecessary bottlenecks.
The non-service-related staff (i.e., those who oversee the POD operations, assist
with line direction, and serve as replacements) also need to be determined by
planners.

http://www2.isye.gatech.edu/~evakylee/medicalor/
http://www.isr.umd.edu/Labs/CIM/projects/clinic/
http://www.isr.umd.edu/Labs/CIM/projects/clinic/
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Flu POD Manager

Site Director

Clinic Logistics
Leader

Vaccination Team

Registration
Staff

Medical Screening
Team

Vaccinator A

Vaccinator B

Vaccinator C

Vaccinator D

Screener A

Screener B

Fig. 12.4 Point of dispensing
(POD) organizational chart
small venue. It includes
suggested staff for a flu clinic
serving 300–500 clients. It
might take place at a medical
clinic or other small site

The NIMS or Incident Command System (ICS) provides a structure to assure
a clear chain of command, communication, and supervision and includes the
functional areas of finance, logistics, operations, and planning. ICS is the on-site
structure used at the scene of an event (U.S. DHS, FEMA 2011c). Because the
public health functions during an emergency are much more complex than they
are during typical public health activities and require collaborating with many
different agencies and disciplines, having a common structure like the ICS is key
to the function of the response, which include PODs (Landesman 2001). POD plans
should include detailed ICS organizational staffing charts for use in emergencies,
and it may be necessary to include other agencies, such as law enforcement,
to demonstrate a unified response. For annual flu vaccination PODs and other
nonemergency PODs, a modified version of these organizational charts can be used.
Nonemergency POD operations provide an ample opportunity to practice using the
ICS structure and NIMS. A sample organization chart for a small venue (300–600
clients) flu vaccination POD is seen in Fig. 12.4; a large venue (5,000–7,000 clients)
flu vaccination POD is seen in Fig. 12.5.

During a large public health emergency, once their staffing resources have been
exhausted, local health departments may need additional staff from other organi-
zations such as colleges, universities, and community-based organizations (e.g.,
Rotary Clubs, Lions Clubs, sororities and fraternities, professional associations,
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faith-based groups, and private industry). Formal agreements (e.g., memoranda of
understanding or agreement) should be in place in advance so that this type of
mutual aid can be requested and provided promptly.

Once the positions and duties are determined, staff must be told where and when
to report to duty. This can be accomplished through notification methods (e.g.,
phone trees and electronic alert systems) that contact staff at any time, including
outside normal hours. Call down drills that test core leaders and workers should be
conducted at least quarterly, and improvements should be made prior to the next test.

Finally, planners should create a detailed staffing schedule for multiple shifts if
necessary. As part of their POD plan, the planners should be encouraged to develop
procedures for the care and feeding of the POD staff and volunteers.

4.2.5 Supplies and Logistics

The demands placed upon a local health department to manage supplies and logistics
can be overwhelming. Some of the supplies will arrive real time (e.g., vaccine);
however, supplies may also be stockpiled (e.g., gloves, alcohol wipes, antibiotics)
as part of the pre-event planning. Planners should determine how much medication
to order or to request. During annual flu season, supplies and medication may be
ordered using existing contractual services within the health departments. The actual
amount of annual flu vaccine may be determined by the amount of funding available
(i.e., federal, state, and local funds) to purchase vaccine and by the demand from the
previous flu season.

The trucks that will move supplies from the RSS, which may be overseen by
the state or local health department, to the PODs will follow routes determined by
the planners or the trucking company (if one is used). Planners at the state or local
level will want to create routes that are short and require little time to distribute the
supplies while taking into account the capacity of the trucks (how much they can
carry) and the requirements for supplies at each POD. CDC has made available the
TourSolver software to assist with this planning task (C2Logix 2011).

During a pandemic influenza situation, where there is a declared emergency, the
vaccine supply chain will require the federal government to deliver medications
to state health departments which in turn distribute them to the local health
departments. During H1N1, localities were solely dependent upon this vaccine
supply chain. Vaccine deliveries were sporadic and limited, and challenges arose
such as the wrong size needles and syringes were provided and the vaccine required
refrigeration. These were real logistical challenges for local health departments.

In addition to medication, other medical supplies (e.g., needles, alcohol wipes,
and gloves) need to be considered as well as the removal of hazardous waste.
Supplies for staff such as vests for identification, directional signs, communication
tools (e.g., walkie-talkies), printed materials for the public (e.g., screening forms,
drug/vaccine information), and other event-specific materials should also be in-
cluded. Local health departments should have an inventory system that is used to
ensure that other supplies are easily accessible and on hand for the POD. These
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supplies may be stockpiled at a specified location and rotated on a regular basis
after use.

4.2.6 Communications

Public messaging and risk communications, communicating to the public the true
health benefits and health risks, is important in planning for a POD operation. In
assessing resources, some messages may have been created prior to the event and
are part of an overall risk communications plan. The primary communicators with
the public are the public information officers at the state and/or local levels. They
are charged with ensuring that messages address the target audience and utilize
communication methods commonly used among that population. For example,
during the H1N1 pandemic, some planners used bus advertisements, designed and
field tested by the CDC, in specific county locations to encourage the African-
American community to get vaccinated. It is important to communicate clear and
concise messages to the public about who is at risk (i.e., target populations) and
what preventive measures can be taken (i.e., flu vaccinations). Public information
messages should be developed to inform the public that symptomatic persons should
not go to a POD to receive prophylactic medication but to seek medical treatment
at hospitals or other facilities or from their private physicians. During annual flu
vaccine campaigns, the federal government provides public service announcements
to encourage the public to get vaccinated; state and local efforts focus more on
providing information on when and where to receive the vaccination (Rambhia et
al. 2010).

In addition to risk communication, communication between staff and agencies is
a critical function. In order to ensure that appropriate and accurate information is
being shared with the public and/or internally between agencies and staff, the State
and Local Emergency Operations Center or a Local Health Department Operations
Center serves as the primary communicator of messages to operations staff during
an emergency. During an annual flu event, using the ICS structure, the incident
commander or operations section chief may serve as the primary communicator
of messages. To ensure successful communication during normal and emergency
operations, information technology support is important. To support an effective
emergency response, the following items must be in place in all Operations Centers:
primary power and back-up power, computers with controlled access and security
policies, telephone (cell and landline) systems, radio systems, and information
technology staff to support these devices.

4.2.7 Outside Partners

Planners must assess the resources and capabilities of outside partners. During pre-
event planning, when no PODs are operational, local health departments should
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collaborate on some level with outside partners in the community on emergency
preparedness activities. During a mass prophylaxis operation, these partners (e.g.,
the Medical Reserve Corps, Emergency System for Advance Registration of
Volunteer Health Professionals, Community Emergency Response Teams, volun-
teers, community-based organizations, pharmacies, faith communities, healthcare
organizations, the American Red Cross, and others) may be able to assist by
providing resources for the response.

In some cases local health departments may partner with businesses (e.g., retail
chains, large employers, banks, drive-through businesses) or healthcare organiza-
tions [e.g., Health Maintenance Organizations (HMO) and private PODs] to provide
a POD operation. Most hospitals will not serve as public PODs because of the
increase in the number of emergency room visits; PODs will hopefully divert those
who are not ill. During the H1N1 pandemic, an increased number of state and local
health departments used pharmacies to administer vaccine [Association of State
and Territorial Health Officials (ASTHO) 2009]. That partnering with pharmacies
during H1N1 opened the door for local and state health departments to continue the
relationship for future emergencies. Outside businesses and organizations may assist
with staffing, outreach to at-risk populations, physical facilities, security, storage of
supplies, and other logistical support (IOM 2008).

4.2.8 Political Influences

Political influences are a factor during a POD operation. Sometimes these can
be predicted, but sometimes they cannot, and political considerations may trump
public health concerns. Politicians must make critical policy decisions with limited
information and in a short amount of time in a public health emergency. During
the H1N1 pandemic, many jurisdictions closed schools for days and weeks in
attempting to contain the disease; however, there continues to be ongoing political
and scientific debate over whether the effectiveness of this strategy outweighs the
greater economic impact (Cauchemez et al. 2011; Lempel et al. 2009; Jackson et al.
2011; Gift et al. 2010). It is important to be aware that some decisions made prior to,
during, and after the POD operations may be solely or partially based on political
influences.

4.3 Step 3: POD Operations

POD operations begin in step 3 of the POD Operations Cycle. The POD operations
will last for one or more days depending upon the scope of the mass prophylaxis
campaign. Annual flu vaccination POD operations are approximately 1–3 months,
depending upon public demand and the availability of vaccine and resources. During
the H1N1 pandemic, POD operations began in September 2009 and continued
beyond May 2010. The schedule of the PODs changed as public demand and
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the availability of vaccine changed. POD operations will generally flow more
smoothly if sufficient time (pre-event) is allocated to the planning considerations
and identification of resources discussed in the above section.

4.3.1 On-Site Setup and Command Structure

POD staff should arrive at the POD location several hours prior to the start of POD
operations to set up the POD. If the POD is large and will be open for many hours,
it may be useful to staff a setup team and a demobilization team to perform these
tasks in order to prevent fatigue among the staff working the first and last shifts.
The staff should utilize the detailed POD layout and design that was created from
the site assessment and floor plan of the facility during step 2 of the POD Operations
Cycle. Tables, chairs, directional signs, and supplies should be positioned correctly
according to the POD layout.

Staff not participating in setup activities should arrive before the start of POD
operations to sign in and receive just-in-time training for their POD duties and
assignments. There may be last minute reassignments due to absences or other
changes.

For most POD operations, the NIMS model is utilized in order to ensure clear
leadership roles, delegation of duties, chain of command, personnel reporting
system, identification of personnel, and record keeping (Phillips and Williamson
2005). On site the staff follow the ICS communications structure in that there is
only one person who oversees the operation and no one supervises more than five
direct staff. It is important to note that the ICS structure is flexible and is used
for a variety of incidents across all levels of nongovernmental and governmental
organizations and many different disciplines. Everyone who is part of the response
effort should be trained in the basics of NIMS and the ICS structure (U.S. DHS,
FEMA 2011a, c). Please refer back to Sect. 4.2.4 for sample POD organizational
charts.

Off-site command personnel will depend upon the size of the entire POD
operation. A command post will be set up on site at a predesignated location. The
POD leaders will oversee operations from the command post.

4.3.2 Just-in-Time Training

Before the POD begins serving the public, it is important to provide just-in-time
training to staff, usually led by the team leaders to the service staff. Ideally, all
staff should have received training, participated in an exercise or previous PODs,
or received information on POD operations prior to the event, but this may not
happen. Therefore, it is important to plan for and implement just-in-time training
immediately before a POD operation to ensure that all personnel, including those
from outside organizations, are able to participate fully. Effective just-in-time
training can help staff to:
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• Increase their knowledge of the duties they are being asked to perform, which
may be different from their normal tasks

• Feel more confident to perform these duties in an unfamiliar environment and
under high-stress circumstances

• Work better with unfamiliar people and clients

Just-in-time training has been shown to be effective if it supports the responder,
provides opportunity to practice, and takes into account the cultural environment
(Cress et al. 2010).

4.3.3 Flexibility and Limitations

Once the POD is open to the public, there will be challenges. Planners should
recognize this and realize that no one plan can address every possible challenge.
The important thing is to be flexible when trying to solve problems. For example, if
a queue of people has formed outside the POD, ask those in the line to fill out the
paperwork while they are waiting (rather than when they arrive at registration).

Some challenges require solutions that cannot be implemented feasibly during
operations. Planners should note such problems and analyze them thoroughly
afterwards.

4.4 Step 4: Post-analysis and Corrective Actions

The fourth (and final) step of the POD Operations Cycle involves capturing lessons
learned and identifying next steps. This includes the things that worked well during
the POD operation and the challenges. This step is an important opportunity for
local health departments to learn and to document how they will improve their mass
prophylaxis plans in the future.

Many state and local governments are strongly encouraged to follow the Home-
land Security Exercise and Evaluation Program (HSEEP) standards (https://hseep.
dhs.gov). HSEEP is used to provide a standardized policy, methodology, and lan-
guage for designing, developing, conducting, and evaluating all exercises. However,
some of the templates can also be adapted for actual events (Montgomery County,
Maryland Advanced Practice Center for Public Health Preparedness and Response
2007). After-action reports developed by state and local health departments for the
H1N1 pandemic as well as annual flu vaccination PODs were created using HSEEP
standards.

https://hseep.dhs.gov
https://hseep.dhs.gov
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4.4.1 Hot Wash and After-Action Report

Although a hot wash is usually conducted after an operations-based exercise, many
local health departments and other emergency responders also find it useful after a
real event. A hot wash is a facilitated discussion that allows participants in the POD
operations to engage in self-assessment of their roles and responsibilities and to help
form an overall assessment of the response. Ideally, the hot wash is conducted soon
after the POD operation is complete, preferably the same day while information is
still fresh, and by a facilitator who was not part of the operation. The facilitator
works to ensure that the discussion is constructive and brief and focuses on both
the strengths of the operation and the areas for improvement. Some local health
departments may develop evaluation forms that can be distributed to all participants,
while others may choose to designate someone to take notes during the hot wash
discussion. The HSEEP standards provide a template for the hot wash minutes.
Whatever form this review may take, it is imperative to document this information
in order to include it in the after-action report (AAR) (U.S. DHS 2007).

The AAR serves as the primary documentation of what happened during a
POD operation. The AAR describes what happened, outlines best practices or
strengths, identifies areas that need improvement, and suggests recommendations
for improvement (U.S. DHS 2007). The HSEEP standards provide a template for an
AAR and specific requirements including an improvement plan.

4.4.2 Improvement Planning

Improvement planning is the final piece of an effective POD operation. Planners
should use the recommendations recorded in the improvement plan in the AAR
and put them into action. A facilitated after-action conference can be used to
bring together all the agencies and organizations involved in the real event to first
identify the corrective actions and second who and by when they will be completed.
Concrete corrective actions are then prioritized, tracked, and incorporated into a
continuous quality improvement plan. Many of the actions may require changes
in POD operations plans, fine-tuning policy and procedure manuals, or partnering
with additional organizations to acquire additional staff. It is crucial to begin to
implement these recommendations in order to improve POD operations in the
future.

5 Future Research and Practice Challenges

Although PODs remain the primary means for local health departments to adminis-
ter prophylactic medication to the population, there are additional modalities being
studied. Other modalities, such as MedKits, the US Postal model, and stockpiling
of pharmaceuticals, are critically important to explore, especially for other diseases
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or agents when time is of the essence. These modalities could be used by local
jurisdictions to support POD operations by closing gaps and increasing access. In
addition, there are new and innovative technologies that local health departments
have developed in order to improve efficiency of PODs. In the remainder of
this section, the authors discuss opportunities for future research, and practical
challenges to be overcome, related to these additional modalities.

5.1 Additional Modalities to Support PODs

In 2006 the CDC partnered with the Missouri Department of Health and Senior
Services to conduct an 8-month evaluation on the effectiveness of using MedKits
as another means of providing timely medication to the public during a public
health emergency. MedKits is a concept that prepositions medications, in this
case antibiotics for anthrax, in individual households. The MedKit concept was
developed in collaboration with the Food and Drug Administration (FDA) and met
all federal and state regulatory requirements. For this research study, approximately
4,076 households participated, mainly from St. Louis City, St. Louis County, and
St. Charles County. Each household was asked to maintain a MedKit in the home
as directed and to reserve it for emergency use. Results found that 97% of the
study respondents returned their MedKits upon completion of the study; 75% of the
respondents reported that having the MedKit in their home increased their awareness
to prepare for a public health emergency and the majority, 94% or more of each
cohort, acknowledged that they would like to have a MedKit in their homes (U.S.
DHHS, CDC 2007). The FDA and CDC continue to explore MedKits as one of the
different modalities for increasing the nation’s capacity to respond to a public health
emergency requiring medical countermeasures.

In 2009 President Obama issued an Executive Order which directs DHHS, DHS,
and the US Postal Service (USPS) to establish a model that allows postal workers to
deliver medicine directly to residences. The Postal Model, as it is known, serves as
another modality for states, cities, and counties to use to enhance their existing mass
prophylaxis plans [U.S. DHHS, Office of the Assistant Secretary for Preparedness
and Response (ASPR) 2011]. Funding was provided to localities in 2011 to test
specific components of the model.

Currently, additional medical countermeasure modalities are being explored by
federal government officials. The priority is to study strategies that can increase
local access to lifesaving medications in a timelier manner. One strategy involves
prepositioning medications. This could be caches of pharmaceuticals stored at or
near where they will be dispensed such as workplaces, pharmacies, and other
healthcare facilities (IOM 2011). Another strategy is prepositioning or predispens-
ing of medications with first responders as a strategy to increase the response
time to biological or chemical emergencies (U.S. DHHS, CDC 2007; IOM 2011).
The September 2011 Institute of Medicine Report, Prepositioning Antibiotics for
Anthrax, describes in detail the pros and cons of these strategies and encourages
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more research if the potential benefits outweigh the potentials risks and increased
costs (IOM 2011).

It is important that local as well as federal and state health officials continue
to research, evaluate, and share additional strategies that can be used to support
POD efforts. PODs should be viewed as only one strategy state, local, and tribal
jurisdictions can use to quickly and effectively dispense medical countermeasures
to their populations.

5.2 Using Technology to Improve POD Functionality

Federal, state, and local health departments continue to create best practices and
develop innovative ideas and solutions to improve the overall function of PODs.
The following are examples of innovative ways local and state health departments
are exploring technology to address POD functionality, specifically bottlenecks or
congestion of people in PODs.

One innovative practice is the use of handheld devices to perform the screening.
The Montgomery County, Maryland Advanced Practice Center, and the University
of Maryland have studied this possibility using personal digital assistants (PDAs),
Blackberry

®
, and iPhone

®
devices. They have developed a basic patient screening

for both anthrax and hepatitis A scenarios. The PDA version was field tested in
2009 during an actual drive-through clinic in Tarrant County, TX, for a hepatitis
A vaccine. The results found that screeners using the PDA screening were two
times faster than those using the traditional paper screening (Tarrant County, Texas
Advanced Practice Center 2009). More information about this project can be found
at http://www.isr.umd.edu/Labs/CIM/projects/clinic/.

The Bay Area Mass Prophylaxis Working Group (BAMPWG) in California has
created an online screening form for anthrax prophylaxis based on the concept
that residents can easily prescreen themselves for medications prior to arrival at
a POD (see http://www.bayareadisastermeds.org/). The residents answer a limited
number of questions for up to 20 people then receive a printout of which resident
should receive which drug, along with dosing instructions, if applicable. The site,
pretested with 8,000 people per minute, was created in web-based software that
can be modified easily by the BAMPWG. Some of the benefits in using an online
screening form are that residents can go directly through an “express” route at the
POD and that throughput increases at the POD by reducing the number of people
who need to go to screening (Relucio and Pine 2010).

Another online screening form used during the H1N1 pandemic was developed
by Yolo County Health Department, California. Created in order to ease the
screening process for staff and to increase throughput at the POD, it was field
tested in 2008 at three exercises and used real time during the H1N1 pandemic.
The health department had anticipated approximately 10% of the population would
arrive at PODs with printed screening forms including answers to questions as

http://www.isr.umd.edu/Labs/CIM/projects/clinic/
http://www.bayareadisastermeds.org/
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well as identifying the medication. In testing, it was found that 11.4% utilized this
process. In the future Yolo County is considering having the screening tool available
in other languages and compatible with smartphones (Carey 2010). Strategies that
use technology and innovation are the future. As resources are reduced, it only
makes sense to utilize these strategies to improve POD functionality.

6 Conclusion

Planning and managing a POD operation is an important function for local health
departments in conjunction with local county government and community partners.
The POD Operations Cycle represents the steps and activities associated with
organizing a successful operation. However, it should be remembered that the Cycle
is meant to act as a guide only and that it is important for plans and operations to
be scalable and flexible. The importance of including lessons learned and follow-up
on improvement plans for real events and exercises is vital to improving response
efforts.

As the threats become more complex, the response effort by local health depart-
ments will continue to remain a challenge. The use of technology and innovative
solutions to tackle these challenges will improve the planning and response to these
threats.
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Chapter 13
Emergency Departments: “Repairs While
You Wait, No Appointment Necessary”

Kenneth N. McKay, Jennifer E. Engels, Sahil Jain, Lydia Chudleigh,
Don Shilton, and Ashok Sharma

1 Introduction

The flows within and surrounding Emergency Departments have been the subject of
systematic, mathematical analyses since the 1950s (e.g., Newell 1954). While there
has been a long history, the degree of quantitative analysis using methodologies
such as simulation and queuing theory has been relatively limited compared to
other areas of healthcare (e.g., see reviews by Fries 1979; Boldy 1976; Pierskalla
and Brailer 1994; Flagle 2002; Fomundam and Herrmann 2007; Wiler et al. 2011).
In general, the quantitative analyses performed on the Emergency Department
flows have been in response to classical operations management challenges about
demand and supply, wait times, time in system, queuing, staffing, and supply chain
interactions. With a few exceptions, the detailed research on flows has not included
specific resource characteristics and behavior, implicitly or explicitly assuming that
such factors do not significantly influence the research effort or results.
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In this chapter, we focus on research targeted towards the operations of the
Emergency Department and investigate the underlying problem characteristics and
salient features. We do not address clinical decision making within emergency
medicine, nor topics such as patient safety, or nurse and physician planning models.
These are all important topics which must be considered in parallel when analyzing
an Emergency Department in a holistic fashion.

The intent of this chapter is multifold: (a) to summarize and review relevant
research identifying strong contributions and solid foundations upon which to
move forward, (b) to discuss the closest analogy to the Emergency Department
and identify shared characteristics which might assist with understanding the
Emergency Department conundrum, and (c) to present possible detailed modeling
characteristics that might be relevant when building and validating models at the
operational level.

The chapter contains a discussion of Emergency Departments and the relation-
ship to repair shops, modeling challenges, a literature review of recent results
in aggregate and detailed modeling of Emergency Departments, a field study
methodology section on how an Emergency Department might be studied, followed
by subsections on key constraints and concepts found in the literature and additional
modeling requirements observed in a field study at St. Mary’s General Hospital. The
chapter concludes with a discussion on potential research topics. Throughout the
chapter, we will interleave theoretical and applied insights, as appropriate, based
on the authors’ experience with an Emergency Department at St. Mary’s General
Hospital, Kitchener, Ontario, Canada.

2 Repair Shop Analogies and Translational Insights

A major challenge when performing research on an Emergency Department is un-
derstanding how the department functions throughout the day and year, how various
resources relate to each other, what input flow implies, what types of uncertainty
exist, and so forth. While an Emergency Department has some similarities to many
other service situations, there are a number of traits which are unique or extreme. As
noted in the chapter title, an Emergency Department can be described as a “repairs
while you wait, no appointment necessary” situation.

Repair shops are a subset of the dynamic job shop problem combined with
service characteristics. In a repair shop, specialized skills and knowledge are needed
to assess the specific service required and perform the repair service. The possible
priorities, risks, and benefits associated with the repair will depend on the con-
text. In Emergency Departments, the context is centered on human life, medical
diagnosis, treatment, and the patient’s well-being. The healthcare context implies
a service/repair situation with high expectations, risks, and many constraints. In
this chapter, the repair shops we are referring to are not maintenance shops or the
product repair areas located in a factory associated with a manufacturing line (e.g.,
Sleptchenko et al. 2005) but are small self-standing repair enterprises.
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2.1 Repair Shop Characteristics and Implications

Some of the extreme or severe service/repair traits attributable to the Emergency
Departments and not found in simple service cases are:

• Triage or initial inspection requires experience and specialized training to assess
and to route the prioritized work to the appropriate area. The complexity or
specialty associated with the case is also assessed to augment the routing
decision.

• The time in queue or before service is critical because the work can deteriorate
further, increasing the priority and complexity. For example, repairs on materials
can be susceptible to aging, rupture, and exposure, and might also have some
form of breakage or leakage causing negative impact during queue time.

• External, specialized consultations from scarce resources are relatively common
for both diagnosis and treatment advice.

• There are many legal and professional policies and practices mandated through-
out the process (e.g., charting).

• Once certain types of repairs are started, they cannot be set aside, stopped, or
interrupted.

• Customers expect correct and timely made critical repairs; return visits and
delays are not desired or acceptable.

These extreme characteristics can be seen in certain service/repair fields other
than healthcare. For example, many of these aspects can be observed in a repair fa-
cility servicing nuclear plants and the mining industry (McKay 1987). In healthcare,
some of the extreme constraints may drive particular behaviors. For instance, the
real or perceived implications of patient transfer between two attending physicians
during a shift change or anticipated patient complexity can possibly affect which
patients a physician will see towards the end of a shift and what activities the
physician does towards the end of a shift. Some physicians may only attend to
extremely critical patients, or new patients who can be processed in their entirety
without a handoff, and they will try to clear out existing patients to reduce the
amount of transfer to the incoming physician.

If we make the assumption that Emergency Departments are a subset of the small,
independent service/repair shops, there are a few observations that can be made
which assist in understanding how to study, analyze, and improve the department:

• In repair shops, there are many resource conflicts ranging from floor space,
specialized equipment, supporting services, technicians, and infrastructure. It is
usually not possible to have enough tools and resources to simultaneously satisfy
all possible requirements.

• If a repair shop is running 24× 7, it is rare that all supporting services are also
running 24× 7. This creates resource and skill shortages beyond the day shift.

• Certain types of repairs or situations can require substantially greater amounts of
resources and capacity than others. If the required resources are in scarce supply
but are in frequent demand, other repair jobs will be often delayed. There can
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also be a high variance in requirements and in processing times. Specific work
mix can create floating bottlenecks or dramatically affect the performance of a
bottleneck resource.

• Repair shops use loosely formed teams in a collaborative fashion. Communica-
tion flows and efficiency are critical for successful execution. If communication
practices are subpar, mistakes and delays result.

• Repair shops typically work on more than one repair at a time. If there are
too many repairs active, the workflow is too fragmented and all repairs incur
extended delays as the repair team attempts to work on all jobs in parallel;
however, if there are too few repairs active, the repair resources might be idle
waiting for secondary tasks to be completed before they can complete their own
work.

• Repairs may require additional specialist advice or specialized tests to be
performed. If the advice or tests are not available in a timely fashion, workflows
start to slow down which can cause additional work to be started, leading to
congestion in the area.

• Repairs may span shift boundaries and require debriefing and transfer of
knowledge about the problem, diagnosis, treatment plan, work done to date, and
current status. While the transfer is being processed, actual repair work is not
being performed on any job. This can delay all work in the queue. Repairs across
shift boundaries can also increase the risk of miscommunication, possible errors,
and increased inefficiency.

Observations such as the above can inform a field study and data analysis. At
St. Mary’s General Hospital, this knowledge meant that we specifically looked
for floating bottleneck resources (e.g., nurses, beds, physicians, testing, inpatient
admitting), patient mix and arrival patterns that implied substantial differences in
resource requirements and processing times (e.g., old and young patients), issues
that would starve or block bottleneck resources (e.g., delays in lab tests, lack of
beds), shift-to-shift hand-off processes (e.g., how long resources do the processes
take), external dependencies (e.g., specialists), and any special “out of the ordinary”
events or situations which had the potential for derailing the department (e.g.,
isolation requirements, code announcements in other parts of the hospital to which
the Emergency Department personnel respond to).

The service/repair nature of Emergency Departments implies that most of the
classic challenges will exist: nonuniform demand patterns throughout the day, high
variance in the demand patterns, and peak demand servicing. Additional operational
challenges are:

1. High demand, process variability, and 24× 7 work patterns will challenge
traditional learning curves, skill acquisition, and organizational learning. While
some tasks are routine and performed often enough on each shift for the learning
processes to take place, other specific tasks may not take place often enough for
every nurse, physician, or other staff member on every shift to have gained prior
experience through practice. For the classical learning theory to apply, the same
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“standard” tasks need to take place with cognitive reflection many times within
a relatively short time window and also to have ongoing practice opportunities.

2. High demand, process variability, and 24× 7 work patterns will challenge the
creation, deployment, and sustainability of any improvement activity. Many of
the continuous improvement and lean methods originating in industry assume
the flow characteristics associated with high-volume and low-mix situations.
Emergency Departments will rarely satisfy the underlying assumptions related
to analytical techniques such as statistical process control.

3. Medical diagnostic and treatment situations are often a web of activities involv-
ing teams, multiple resources with non-standardized routings, and flows created
dynamically for each patient. Floating bottlenecks, unintended starving, and
blocking of bottlenecks can create ripple effects affecting many other direct and
indirect resources and their related processes.

4. Extensive relationships with other parts of the hospital such as diagnostic testing
and admittance into wards create interdependencies, flow pinch points, and
possibly flow stoppage. These types of relationships and dependencies are likely
rare in self-standing repair shops.

5. In many jurisdictions (e.g., US EMTALA policy, see www.cms.gov), the Emer-
gency Department cannot refuse or turn away a patient under certain conditions,
and while some repair shops have a “never say no to a possible job”, the legal
requirements create a tightly constrained situation beyond the authority and
control of the Emergency Department.

6. Risk management practices are also more extreme in healthcare situations
because of malpractice and the direct impact on human health and well-being.

Variance is perhaps the most important, general aspect to focus upon in a
production setting and has been noted as early as 1832 (Babbage 1832). Internal
and external sources of variance impact fixed and variable costs, yield, storage
requirements, and management methods. Variance is not always equal throughout
a process, and variance towards the end of a process does not carry the same
implications as variance near the beginning. For example, variance beyond a desired
level towards the end of a process can result in losing all of the investment made in
previous steps, as well as perhaps not leaving enough time before the delivery due
date for recovery. Relatively common sources of variance can be managed and the
negative impacts mitigated, but rare events are more difficult to deal with and can
greatly increase variance when they occur. The size of the Emergency Department
will also affect how important variance will be to daily operations. For example,
in a small community hospital, there might be two physicians on duty, and if one
is required to help elsewhere in the hospital, the impact is greater than at a larger
teaching hospital having more resources on duty.

One of the challenges in a repair shop situation is creating a reasonably balanced
workload for the majority of resources. For example, if one resource does a batching
process instead of a pipeline transfer, the lumpy deliveries can create peaks and
troughs of work undulating through the department. In the Emergency Department,
this might take place when a physician processes a number of charts before

www.cms.gov
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providing test order instructions to the other Emergency Department staff. Then
the staff members have multiple tests to be processed in parallel instead of having a
slow trickle feed, spaced apart.

3 Modeling Framework

The focus of this chapter is on operational, tactical, and planning models at the
hospital and not the types of models used in policy making by governments.
In mature research areas such as manufacturing assembly lines, there have been
many quantitative efforts on problem abstraction and model frameworks (e.g.,
Buzacott and Shanthikumar 1993). It is difficult to find similar quantitative research
abstracting the Emergency Department situation, creating modeling frameworks. It
appears that most of the Emergency Department literature pertains to a specific site
with a specific research question. Exceptions do exist at higher, conceptual levels.
For example, the conceptual model by Asplin et al. (2003) provides a starting point
for framing and understanding the challenges faced by Emergency Departments and
for guiding research efforts.

Although general, abstract models have not been developed or broadly adopted
at the detailed, quantitative level, there have been a number of claims about
generalizable simulation and analytical models of Emergency Departments. For
example, Facchin et al. (2010) state in their paper about a generalized, flexible
simulation model of an Emergency Department that “no essential characteristics of
any department behavior is neglected; the model may be adapted to many different
services.” Fletcher et al. (2007) describe a generic UK model for Emergency
Departments that was used in policy making on the broad scale and then at specific
hospitals. The terms “generalizable” and “generic” are problematic because the
claims may be appropriate for the specific units involved in the research but not
for all Emergency Departments worldwide (e.g., Shingo 2010).

Fletcher and Worthington (2009) provide a discussion about types of generic
models, create a four-tiered taxonomy for discussing generic models, and then
conduct a review on the modeling literature covering various parts of the hospital
interacting with emergency flows. They note that “more evidence of specific A&E
(accident and emergency) models than generic” exists. They observe possible issues
for the three generic A&E models reviewed with either validation or implemen-
tation. Fletcher et al. (2007) describe their own experience using the generic UK
emergency model in a local setting, and while they used the generic model in various
ways with ten Emergency Departments, none of the experiences went as far as to
“test if the predicted improvements were made.”

Unfortunately, supporting evidence that any of the developed models and tools
are indeed general beyond a specific context has not been forthcoming, and there
was no evidence found that generic models developed by one research effort have
had ongoing research performed with them, nor that they have been adopted by
another researcher or practitioner.
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The operation of Emergency Departments is not dissimilar to that facing
relatively small, dynamic repair shops in industry, which also have not been
systematically or broadly studied as part of the industrial engineering or operations
management research agendas. While it is sometimes possible to translate results
from one domain to another to gain insights or to create a foundation, it is not
possible in this case as an insufficient amount of results and insights exist for
translation. There has been work on maintenance shops and on production repair
areas directly associated with a production unit, but there have not been similar
efforts on a small independent repair shop. We can use general behavior and flow
dynamics from repair shops to help understand the Emergency Department as
described in Sect. 2 of this chapter, but there are not any analytical results for
comparison or to transfer.

One goal of this chapter is to discuss constraints and dynamic relationships which
might be relevant when studying or modeling a specific Emergency Department or
when thinking about general models for Emergency Departments. Before discussing
specific modeling issues or delving into the literature review, it is useful to consider
why truly general models of the Emergency Department might not have been
developed yet, and might never be. There are four framework challenges which are
relevant to this question: (a) vertical or decision scope integration, (b) horizontal or
multipurpose inclusion, (c) specific purpose-built models, and (d) in situ relevance.
To put it more concisely: depth, breadth, specialty, and context.

The vertical or decision scope challenge relates the three level taxonomy of
models dating back to the seminal work of Anthony (1965): strategic, tactical,
and operational. The three levels of hierarchical decision making are for different
decision horizons and scope, with:

• Strategic and long-term planning level: decisions typically focused on location,
capacity and size, and type of business or specialization (e.g., decisions affecting
many years, major investments in time and funds).

• Tactical level: decisions affecting time frames measured in months or fiscal
quarters, dealing with policies and intermittent decisions such as hiring and
staffing levels, guided by the strategic decisions.

• Operational level: decisions made daily, weekly, or monthly addressing the day-
to-day details of what is done, when, how, and by whom in the most efficient
and effective fashion as guided by the constraints imposed by the strategic and
tactical levels.

The vertical decomposition often implies different degrees of granularity with
operational decisions requiring finer detail and many factors included and the
strategic level using aggregated data and models. While it is sometimes possible
to combine two levels (e.g., strategic and tactical, or tactical and operational), it is
rare to find models that combine all three vertical levels of decision making because
of the data and model component granularity.

Horizontal or multipurpose inclusion suggests that a general, horizontal model is
possible at each layer, addressing similar types of decisions, using a common level
of information granularity. This is sometimes possible in manufacturing and service
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situations where the processes are well-defined and integrated models crafted.
These situations are relatively clean and pristine (e.g., a controlled supply chain
with highly automated factories). Imagine the complexity and challenges that an
Emergency Department tactical model might entail when combining all relevant
and interdependent tactical topics such as physician/nurse staffing levels, physician
skill and training, department flow policies (e.g., based on triage), ambulance
locations, ambulance redirection, policies for nurse and physician decision making
with respect to standing orders for diagnostics, and interdepartmental polices for
inpatient admission. These are just some of the Emergency Department factors at
the tactical level. None of these factors really exist in isolation from the others. The
list does not address a fully integrated, tactical model, including all of the hospital
elements associated with the Emergency Department (e.g., diagnostic imaging, labs,
surgical suites, inpatient wards, and clinics).

Specific, purpose-built models are targeted towards a single theme within a
horizontal layer. Assuming that integrated vertical and horizontal models are not
reasonable, it might be reasonable to construct general models for a specific topic,
at a specific level, such as creating a general model for physician staffing in the
Emergency Department. In fact, a number of research results and efforts fall into
this category (e.g., Carter and Lapierre 2001; Gendreau et al. 2006; Jones et al.
2008). Topics such as physician staffing are not dependent upon any operational
characteristics associated with the emergency flow and are more suitable for general
models.

It is possible that the real-world characteristics associated with Emergency
Departments will make even a general, specific purpose model almost impossible
for application. Consider the following potential reasons for lack of relevance of a
general model:

1. There are significant differences between situations where there is one hospital
in a smaller community versus situations where two or more hospitals are in
the same community working together. Two hospitals working together can
create specific ambulance flows related to specialties, as well as flows when one
hospital becomes busier than the other. For example, one hospital may specialize
in trauma and pediatrics versus another hospital that may specialize in cardiac
care. The two hospitals might also want to model the interaction between the
two hospitals when one becomes congested or has diminished capacity. Multiple
hospitals also imply the ability to redirect and transfer patients from one to
another, as part of the normal flows and treatment plans. While some of these
characteristics might be possible to model as part of the patient arrival patterns,
some of the issues impact the flow and disposition options.

2. The implications of the size and capacity of Emergency Departments can be
significant. For example, there are extreme differences when resources are
relatively few (e.g., only one physician on duty) and where sufficient resources
exist to absorb perturbations and can maintain other patient flows. In addition,
small, rural hospitals create many challenges as they are faced with very low vol-
umes and fixed, minimum, and in some cases indivisible supply characteristics
associated with the professional caregivers.
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3. Teaching and research hospitals have different processes and resources compared
to community, nonteaching hospitals and models for one would not be appropri-
ate for the other. Interns and medical students constitute resources that are not
available to other hospitals to the same degree. Furthermore, attending physician
time is used differently as students and learners are monitored, instructed, and
debriefed by the attending physician.

4. The range of services needed within the population base served by the Emer-
gency Department can be homogeneous with low variety or heterogeneous with
high variety. For example, an inner city hospital surrounded by low-income
housing and close to high-volume traffic patterns will likely have a different
demand pattern compared to a small, community hospital close to a skiing area
with a population dominated by retirees. The situations can also be complicated
when two or more hospitals work together to stream patient flows based on
presenting symptoms, allowing for hospital-based specialization. In low-variety
situations where generalizations are possible, it is feasible to use simpler models
and more robust assumptions which address a greater portion of the patient pool.
For example, the percentage of pediatric patients might not be significant and
modeling this age group as a separate factor might be unnecessary. These types
of variations can create difficulty when analyzing a single hospital using a general
model, or when comparing two institutions.

5. There are differences between publicly and commercially funded healthcare
systems. Public health systems can have a greater number of imposed policies
and budget constraints. In addition, commercial enterprises can apply more
traditional business models with fewer constraints when it comes to justifying
resources and acquiring them.

These domain-centric observations suggest that instead of monolithic and
“generic” models, a collection of models, each with limited scope and purpose,
might be required for each “specific purpose” type of analysis. For example, a
model designed to address location, size, and emergency service specialties offered
by an Emergency Department might need model variants recognizing the possible
implications of sister facilities, public versus private funding, high- versus low-mix
population bases, and geospatial factors.

The contextual or scoping differences are relatively easy to identify in the
literature where the researchers are stating their assumptions and explaining why
their models may or may not fit the specific hospital situation motivating them.
We will return to these domain-centric ideas occasionally in the chapter to explain
modeling issues which may or may not be relevant in a given situation. In Sect. 5,
we will present a number of possibly relevant constraints and modeling issues from
both the reviewed literature and a study conducted at St. Mary’s General Hospital, a
medium-sized, community, nonteaching hospital which shares the population base
with another hospital.

It is important to remember that the intent of this chapter is to highlight possible
constraints and issues that might be required, and to make both researcher and
practitioner aware of the possible requirements, not to mandate their inclusion
in all models and in all studies. In some cases, a particular aspect will be
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important and will bias the results if not included; in other cases, the same concept
would be unnecessary. For example, a researcher may decide to exclude process
characteristics of the highest severity cases in an aggregate analysis because the
severe cases are relatively few and this exclusion might make sense depending on
the research question being addressed; however, if the research is probing why the
Emergency Department stalls occasionally and there is a sudden outbreak of unduly
long wait times, it is important to include any events which might occupy an unusual
number of resources for an extended time.

4 Literature Review: Scope, Methods, Data, and Results

To understand the Emergency Department challenges in context, Hoffman (2006) is
recommended as it provides an excellent historical overview of the US Emergency
Department evolution. Hoffman notes: “emergency rooms have been described as
‘in crisis’ since the late 1950s. The nature and intensity of the crisis, however,
has changed over time.” For example, the long-term issues with nonurgent care,
overcrowding, and longer than desired wait times are discussed. Even though the
specifics are based on the US experience, it appears that most of the issues are
global and that many regions of the world have experienced a similar journey. It
is important to realize that there are many possible differences in the way that
Emergency Department services can be delivered. For example, Shingo (2010)
points out the differences between the traditional emergency service model in Japan
and the North American model which has been recently introduced in Japan.

Although there have been a number of heuristic approximations, optimiza-
tion formulations, and simulations conducted during the last seven decades, the
Emergency Department has remained a place of perplexing complexity, mystery,
and challenge. It is an intricate and difficult problem for healthcare providers.
Overall efficiency in the Emergency Department remains problematic (e.g., Taylor
2006; CIHI 2011; NHS 2011; MHNZ 2011; GAO 2009; Jayaprakash et al. 2009;
Wilper et al. 2008). There are many expectations, goals, and policies set by
governing bodies for Emergency Departments, some of which have been retracted
or altered after deployment (e.g., 4 h rule in UK—Fletcher et al. 2007; Mayhew
and Smith 2008; Topping and Campbell 2010; Bell 2011). There have been many
discussions of possible solutions and remedies, but these have not yielded any
generic solutions or strategies that address the widespread concerns about efficiency
and effectiveness.

Over the last half century, there have been a number of review articles sum-
marizing the various applications of operations research in healthcare, including
the Emergency Department (e.g., recent reviews can be found in Fomundam and
Herrmann 2007; van Sambeek et al. 2010; Rais and Viana 2010; Turner et al. 2010;
Wiler et al. 2011). There have also been texts and chapters in which the quantitative
analysis of healthcare is reviewed and summarized (e.g., Hall 2006; Gaur 2008).
This is just a brief list of reviews; there are many others to be found in the literature.
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We concluded our review by searching the operations research and healthcare
literature including the applied methodology components of operations research,
management sciences, operations management, industrial engineering, and applied
mathematics, and the application research arising from the medical fields such as
emergency physician education and practice, emergency medicine management,
emergency services, nursing education and practice, and general healthcare man-
agement.1

Inclusion and exclusion are additional factors when considering a review.
Reviews such as van Sambeek et al. (2010) provide a clear description about the
criteria they used. This type of clarity is critical because they provide some insights
about the literature with respect to Emergency, but explicitly exclude any articles
with a primary focus on predicting demand or length of stay, two key topics of
Emergency Department research.

Any researcher probing the topic of modeling Emergency Departments should be
aware of these issues and limitations. For example, this review and chapter is limited
to what information can be found in English language sources. We did attempt to
cover both methodology and application literature using the variety of descriptors
and terms noted above.

What is clear from reviewing the literature on modeling Emergency Departments
is that while there has been a long history of quantitative analysis of the challenges
facing Emergency Departments, including mathematical programming, statistical
analysis, queuing theory, and simulations, the body of work is not large when
compared to the similar types of research performed on manufacturing topics, other
service situations, or healthcare aspects such as the surgical suite.

As with most applied topics, there are four dimensions to consider: scope or
topics addressed, data used, the methodologies employed, and results obtained.
While in this section we will overview the methodologies used to study the
Emergency Department, more specific details about particular methodologies can
be found in other chapters. We will also provide a review of the various scopes, data
used, and results.

4.1 Scope

The most common theme in the Emergency Department literature seems to focus
on wait times and related issues such as crowding, resource utilization, capacity
planning, room shortages, and triage flows. Topics such as batching of work by

1Terminology is also a factor in performing literature searches on this topic. For example, various
terms are used to describe the functionality and include emergency room, Emergency Department,
trauma unit, medical assessment unit, and accident and emergency unit. Spelling is an additional
issue with terms such as queuing and queueing. Phrasing is also important as queuing theory versus
queuing model will provide different results. These are just the English language semantics and do
not address the challenges associated with research disseminated in different languages.
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physicians has been studied, but it is relatively rare (e.g., Dobson et al. 2012).
Secondary topics include such areas as physician and nurse scheduling (e.g.,
Beaulieu et al. 2000; Gascon et al. 2000; Carter and Lapierre 2001; Pinedo 2009;
Yang et al. 2009), and arrival pattern analysis and forecasting (e.g., Hoot et al.
2008; Jones et al. 2008). Tertiary topics look at the interfaces with other parts of the
hospital, for example, inpatient admissions (e.g., Bagust et al. 1999). Early research
such as Newell (1954) and Handyside and Morris (1967) focused on bed usage
in Emergency, and Newell (1965) and Bailey (1956) addressed Emergency arrival
patterns.

Over time, the components and targets of the analyses have varied in response
to the type of crisis facing the hospitals. For example, the concept of triage was
introduced to hospitals from the battlefield in the early 1960s (e.g., Weinerman
and Edwards 1964; Weinerman et al. 1965) and was mentioned as a topic of study
and investigation in the 1970s to determine how effective it was (Hamilton 1974).
Hoffman (2006) notes that triage was not accepted by all and there were debates
as to its merit. It is now common in hospitals, and it is also common for almost all
studies, to include various triage levels. The benefit of triage is no longer debated
in many areas but is still relatively new to some jurisdictions (e.g., Andersson et al.
2006). How triage might work and who does the triage is still debated (e.g., Holroyd
et al. 2007; Ting et al. 1991; Han et al. 2010), but most researchers appreciate
the need to include the triage levels and their impact on resource utilization and
treatment plans. Boarding (admitting ED patients when no inpatient rooms are
available, and similar to banks in flow lines) and overcrowding caused by slow
movement of admitted patients towards (i.e., blocking) have been the subject of
research for an extended time as well (e.g., Hamilton 1974; Lynn and Kellermann
1991). The arrival demographics and the impact of nonurgent care patients have
also been the subject of studies and commentary since the 1960s (e.g., Coleman and
Errera 1963; Hamilton 1974).

The tertiary topics also have a long history. In some cases, it is possible to include
the Emergency Department component as a black box via an approximation or input
distribution. Alternatively, the Emergency Department is modeled at some level
of detail, and this information is used to guide planning of the tertiary area. The
interaction of emergency patients with other parts of the hospital such as elective or
scheduled surgery has been a major focus since the early 1960s. An early example
of the first type of tertiary inclusion was provided by Fetter and Thompson (1965).
They describe a simulation model taking into account scheduled and unscheduled
events on beds and operating rooms. Hannan (1975) is an example of the second
type of tertiary model. Hannan simulated a holding or observation area as part of
the Emergency Department to act as a buffer area to reduce premature admissions
to inpatient wards. Another tertiary interaction is the general impact of emergency
admissions on the hospital resources. Kolesar (1970) presented an early queuing
analysis of scheduled and unscheduled admissions.
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4.2 Methods

A variety of methods have been used to study aspects of Emergency Departments
including queuing (e.g., Green 2006; Soni and Saxena 2011; Dobson et al. 2012)
and simulation analyses (e.g. Jun et al. 1999; Jacobson et al. 2006; Seila and Brails-
ford 2009; Paul et al. 2010). While there are examples of dynamic programming and
queuing theory applied in the area, the majority of research publications focus on
simulation or queuing with some empirical component. The inclusion of empirical
data clearly enhances the understanding of the problem and provides a base for
validation, as suggested by Fisher (2007). Challenges relating to simulation in
the healthcare field were described in detail by Carter and Blake (2005). Recent
simulation efforts such as Duguay and Chetouane (2007) and Facchin et al. (2010)
illustrate two general categories of simulation efforts. Duguay and Chetouane’s
purpose was to reduce the wait time at a specific hospital, while Facchin et al. were
trying to create a generic, flexible simulation base with which to “correctly describe
many existing emergency services” through simple adaptations of the base tool.
Duguay and Chetouane do an excellent job in explaining how their modeling effort
relates to prior work such as Saunders et al. (1989), their data collection and analysis
techniques, the model, limitations, and results. Many simulation-based articles gloss
over many of these aspects, focusing on the model and results. It is important for
a reader to understand what the model is actually modeling, and papers such as
Duguay and Chetouane achieve this clarity, as does Blake et al. (1996).

Facchin et al. also present a good discussion of the existing literature and issues
found in simulation efforts. In discussing general simulation models, it is difficult to
make supported claims and understand the limitations of the model. Facchin et al.
were able to deploy the model at several regional hospitals and to provide value;
however, it is a recently developed tool and it is not clear how useful their model
will be at different levels of decision making, with various scopes or target purposes,
or in different contexts beyond their current, regional experience.

The ability to claim successful adaptation of a general tool to a specific case
has always been a tricky topic; you can adapt the tool with less than 10% of the
original effort, or with 90% of the original effort, or with more than the original
effort. Simulation methodologies have also been applied in very innovative ways.
For example, Hoot et al. (2008) use a sophisticated simulation approach for the real-
time forecasting of overcrowding in Emergency Departments. The specifics of the
technique might need to be adjusted for different hospital situations, but the general
approach is intriguing and appears to have merit.

Although the vast majority of research has been conducted using traditional
discrete event simulation and queuing methods, other methods have also been
explored. For example, Lane et al. (2000) use systems dynamics, Jones and Evans
(2008) agent-based models, Yeh and Lin (2007) genetic algorithms, and Malakooti
et al. (2004) group technology.
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4.3 Data

Models do not exist in a vacuum. They are created to address a specific question
or issue, or are created to assist a line of inquiry. They exist to help make some
decision. The data used in a model will depend on the question or line of inquiry.
In reviewing the literature, we found a wide range of data granularity used in the
research efforts. At the highest level of abstraction, the data will not have per
patient records but will be summarized by fitted distributions for arrivals, service,
and disposition (e.g., discharged home or admitted to an inpatient ward). This level
is adequate for getting to ballpark estimates for regional distribution of resources,
specialized services, impact of nonurgent care clinics, approximate number of
physicians, nurses, beds, and so forth, with the accuracy possibly within an order
of magnitude.

The next level of granularity addressed topics such as wait times, lengths of stay,
admissions to inpatient wards, flows to different areas such as Acute and Subacute,
ambulance diversion, physician and nurse counts, impact of physician assistants,
nurse practitioners, beds, bays, and stretchers, and auxiliary processes such as
diagnostic imaging and blood work. Most of the reviewed literature used rather
simple models and constructs. For example, the simplest “black box” data does
not have any detailed patient or treatment characteristics. As the models become
more detailed, the triage level and some measures of average processing or wait
time based on triage level are included. Data driving the resource performance
can also be simple with standards or estimates for physician, nurse, and test times,
with and without shifts. The models using this type of data assume many detailed
differences are not significant for the analysis being conducted. For example, this
level of data assumes that the triage level is a sufficient predictor of flow, that there
are no significant differences between physicians, that physician productivity is the
same for each hour of the day, and so forth. While it might be possible to obtain
aggregate results over an appropriate horizon, it is difficult for this level of modeling
to explain what has been happening or might happen at finer resolutions.

Some of the research used more detailed data about each patient visit. For
example, information about specific tests might be involved, and the patient is
tracked through the process in order to start creating a more detailed model (e.g.,
Samaha et al. 2003). In most cases, additional information about the patient is not
used (e.g., past medical history, age, gender, and drug usage), nor are specific nurses
or physicians identified. The patients are still considered to be abstract entities at a
very high level. This type of data modeling can be seen in many models as the
researchers look at the steps associated with triage, diagnostic assessment by nurses,
physicians, tests ordered, and final dispositions (e.g., Saunders et al. 1989; Sinreich
and Marmor 2005).

Saunders et al. (1989) and Sinreich and Marmor (2005) are two examples that
may extend the model the greatest at this level of data construct to include many
small processing steps within and around the Emergency Department; however,
there are still many assumptions in both studies. For example, there are no detailed
personalizations at the patient or physician experience levels. The patient level
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Level I – additional data from electronic records

Level II – resource specific
performance characteristics

Level III –
resource
behaviors

Fig. 13.1 Extended data modeling levels

modeling in Saunders et al. was based on triage levels, and Sinreich and Marmor
distilled eight different types of patients (derived from detailed patient information
including age, gender, and presenting complaints). Patients were assumed to be
generic in both studies, as were the physicians. Sinreich and Marmor had the
physicians grouped by assessment and by treatment tasks, but physicians within
these groupings were generic. Another model, which is reasonably detailed and also
used processing information on a per patient basis, can be found in Connelly and
Bair (2004).

The research efforts noted above either implicitly or explicitly assume that it will
not matter what physician is on duty, what the experience level is the physician, if
the patient is overweight, if the patient is geriatric and requires additional resources,
what happens during a shift change, or if the patient has to be isolated because of
possible infection concerns. If it is the goal of the model to provide an idealistic,
general baseline, then these types of assumptions are quite acceptable. It is also
possible that these differences are not important and that the limited model can
provide realistic insights; however, it is incumbent upon the researcher to justify the
latter case and provide evidence that the assumptions are valid.

In our own research, we encountered three additional categories of data to
consider. They may or may not matter depending on the Emergency Department
situation being modeled, and they are context dependent (e.g., similar to the data and
heuristics discussed in McKay 1992). The three levels are illustrated in Fig. 13.1.

Level I—The first level of additional information includes more information
from the patient and hospital records. For example, it is common to find presenting
symptoms, patient age, whether or not the patient has a family physician, and
diagnosis. If the department has a significant number of elderly and pediatric
patients, modeling this difference may be important. An elderly patient may
imply more tests, lengthier diagnosis and assessment time because of preexisting
conditions, and other challenges such as dementia. Pediatric patients may imply
other types of specialists, equipment, tests, and processes.
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We have seen some research that uses secondary data, such as presenting
symptoms, to help guide the analysis (e.g., Sinreich and Marmor 2005). With respect
to other personal data about the patient, we have seen some examples that used
the patient’s age for routing control (e.g., to a pediatric area, Chan et al. 1997);
however, we have not seen any research that uses information about the patient’s age
to predict the types of diagnostics required or specialists who might be required for
consultation on a case-by-case basis as part of the physician assessment. At a higher
level, Asaro et al. (2007) statistically analyzed a large number of input and output
factors (including a number of patient characteristics) with respect to a regression
model for overall throughput times, but note the limitations of the data available in
the electronic records to which they had access. They analyzed over 176,000 records
and were able to create a regression model that explained approximately 25% of
the variance using a combination of system, time, and patient factors. Innes et al.
(2005) did an in-depth analysis of possible factors affecting emergency physician
workload and included a large number of patient and case factors. They looked at
the procedure required, triage level, arrival by ambulance, Glasgow Coma Scale
score, age, any comorbidity, and number of prior visits. Their model explained
approximately 31% of the variance in the physician’s time per patient visit.

Level II—The second level of additional data addresses unique performance
characteristics about resources. For example, specific information about physicians
can help decode or understand what is going on and what might happen in the future.
We are not aware of any published work on Emergency Departments which include
specifics on individual physician productivity or skill level based on actual physician
analysis.

Gunal and Pidd (2006) modeled junior and senior physicians in a generic
fashion and used this information to control the amount of multitasking a physician
will do and the time a physician will take. This was the only research we have
encountered in the literature that included some experimental control of physician
levels and productivity. Random physician differentiation was done by Jones et al.
(2008). They varied the patients per hour capacity for a physician using a Poisson
distribution. While not working with individual physician data, Crane and Noon
(2011) provided a discussion and modeling concept for how physicians spread their
time across a patient case and suggested how this can be incorporated in an analysis
and how it could improve the result validity. The modeling of emergency nurse
resources at a detailed level is also limited. The Komashie and Mousavi (2005)
study was the only one we have seen that included different levels of nurses with
different processing times.

Level III—The third level of additional data requires observation periods and
longer research efforts. This level of information pertains to behaviors, and what
people actually do in the Emergency Department during their shifts, and what may
or may not happen with regard to unusual events and their implications. With
the exception of the work noted above by Gunal and Pidd (2006), Jones et al.
(2008), and Crane and Noon (2011), the inclusion of any individual work patterns is
rare. None of the reviewed quantitative research included any extensive discussion
or modeling of individual work behavior or work patterns. The Gunal and Pidd



13 Emergency Departments: “Repairs While You Wait, No Appointment Necessary” 365

research is noteworthy in that they used results from the work of Chisholm et al.
(2000) on physician multitasking and interruptions to guide their modeling effort.
Laxmisan et al. (2007) performed an ethnographic analysis on physician decision
making, and they discussed multitasking, interrupts, and patient handoff. Levin et al.
(2006, 2007) also studied shift changes and the timing impact of the change on
physician workload.

Other research efforts that have studied the Emergency Department and that may
provide insights for quantitative modeling at a deeper level include works such as:

1. Mentis et al. (2010) and Mentis (2010) explored emotions in the emergency room
with respect to electronic record keeping and possible side effects to safety and
efficiency.

2. Andersson et al. (2006) looked at nurse decision making at triage and discussed
possible errors and inconsistencies in the triage process. This can be important if
a researcher wants to consider a realistic situation where triage errors occur and
need to be handled in the subsequent flows.

3. Ullman et al. (1975) did an extensive demographic analysis of emergency patient
characteristics and implications on hospital resources. Their research can provide
insights about nonrandom patterns in the arrival stream and how this can be
related to evolving community populations.

4. Coiera and Tombs (1998), Fairbanks et al. (2007), and Woloshynowych et al.
(2007) probed communication behavior, linkages, and patterns, all of which can
impact detailed flows and interaction points between resources.

In summary, almost all of the current and past literature uses generic data at the
aggregate or probability distribution level. Models and analyses using additional
data from the individual records, data about individual resource performance, and
data about the resource behavior appear to be rare. It is important to realize that
the additional data may or may not be important in a specific situation, and it is
important to know the limitations of any model which excludes relevant data. For
example, Downey and Zun (2007) perform a detailed analysis on an Emergency
Department, including many factors such as age, gender, presenting illness, as well
as linkages to other, supporting areas of the hospital. They found that many factors
beyond the department itself should be included in the analysis as the turnaround
time from other units (e.g., psychiatry, medicine, and laboratory) was the largest
contributor to extended wait times.

4.4 Implementation in Practice

The literature review of Sect. 4 was based on approximately 200 sources, not all
of which have been cited. We found that research focusing on the internal flows
of an Emergency Department is limited. We did not find studies in the Emergency
Department process context that focused on methods, nor did we find a substantial
number of generic models or modeling frameworks at the process level for this



366 K.N. McKay et al.

application domain. The generic models in the literature do not appear to have
been adopted beyond the originating research group. It appears that change and
implementation in the healthcare domain are lengthy activities, and it is possible
that positive results will be forthcoming; however, this delay adds to the difficulty
of validating claims of generality and value.

In the applied sense, it is clear that discrete event simulation can be used
to capture the core processes in a specific Emergency Department and provide
some form of claimed value, either theoretical or of practical value to the studied
institution. Some but not many of the simulation-based studies have seen their
results used in an actual setting and have been able to claim substantial impact (e.g.,
Blake et al. 1996). There have been some studies using queuing (e.g., Green et al.
2006), but again with few actual implementations. If the applied research does not
result with changes implemented by the hospital, there is always the question about
the validity of the model and the assumptions underlying the model and validation. It
is hard to know with certainty if the “necessary and sufficient” real-world constraints
and factors have been included for real-world adoption.

Even in cases when changes have been implemented, the claims are not always
transparent or self-evident. For example, were the research results (observations or
recommendations) previously unknown to the hospital? Did the research confirm
and quantify what the hospital expected? Did the research provide support for
moving forward? Were the what-if scenarios suggested by the hospital or were the
solutions and recommendations the result of academic and theoretical inspiration?
Did the effort required to document and build the model result in the changes, or
were the changes driven by the actual analysis and results? Were any recommenda-
tions implemented and sustained with quantitative evidence of impact?

Several applied publications have appeared in recent years. For example, Crane
and Noon (2011) and Shiver and Eitel (2009) provided guidance for how to improve
Emergency Departments using a combination of qualitative and quantitative meth-
ods. Books such as these can serve as a starting point for practitioners and academics
who wish to understand some of the general aspects of the problem space and how
some of the techniques can be applied. The material is generally case study style
and the data modeling typically does not go beyond levels I and II, but the texts
do describe the value of good analysis, mapping and understanding the problem,
understanding variance, and how to use the methods in an applied way.

5 A Field Study

In 2011, an extensive field study was conducted of the Emergency Department at
St. Mary’s General Hospital, in Kitchener, Ontario, Canada. Approximately 1,000
person hours were involved in the study and analysis, and of these, 500 h were spent
in the department observing day-to-day flows and processes. Roughly three-quarters
of this effort was at the senior, consulting analyst level, the rest at the intermediate,
postgraduate level. Detailed time studies were not done with the exception of key
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Fig. 13.2 General flow of St. Mary’s Emergency Department

narratives for unusual flows. The majority of time was spent on understanding the
dynamic flows, how this related to the data captured by the hospital, and how the
data could be analyzed. The hospital is a medium-sized community, nonteaching
hospital with a 25-bed Emergency Department which sees over 45,000 patients
each year. The hospital works with other regional healthcare facilities to provide
specialized services and ambulance routing. Another community hospital provides
a more general service, and St. Mary’s is considered to have a less-varied patient
portfolio (e.g., majority of trauma, mental, and pediatric are routed elsewhere). As
such, the modeling and contextual constructs at St. Mary’s are likely to be less
challenging compared to other situations and are possibly the best case scenario for
simplicity. A combination of field and quantitative methods was used as part of the
study (the general field methods are described in McKay 2011).

Figure 13.2 shows the general flow and structure of St. Mary’s Emergency
Department.

The detailed flow through Acute and Subacute areas is shown in Fig. 13.3. There
are multiple exit points and additional loops and streams associated with orders (lab
and imaging), and specialists. There are two points in the flow where blocking or
flow limits exist that constrain the number of patients in process (e.g., the physicians
and nurses constrain the number of patients being seen at the same time).

The department has been recently renovated, is considered “modern,” uses triage
and fast tracking to stream noncritical patients to a minor care area, deploys nurse
practitioners and a physician assistant, and has had a number of improvement
activities in the last few years. There are also clerks used for registration, organizing
movement into wards, and facilitating communication and flow throughout the area.
Porters perform the room preparation, assist with patient care, and are responsible
for moving patients to the imaging department. The Emergency Department also
uses electronic tracking and flow monitors in each of the treatment areas. They
also recently introduced a “lean” continuous improvement process throughout the
hospital, including Emergency.
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Fig. 13.4 Patient volume distribution (star indicates the mean and median—131 per day)

Historically, there seemed to be contradictory variation in patient flow and wait
times. There was a great deal of speculation about cause and effect relationships,
what to change, and how improvement would be obtained. Furthermore, a number
of early gains associated with recent changes seemed to disappear over time.

Data from December 1, 2010, to March 31, 2011, was analyzed as a Flu Season.
Data from April 1 through August 31, 2011, was used as a Non-Flu Season. For
the examples presented in this chapter, the Non-Flu Season data was used unless
explicitly noted. The insights are grouped into the following categories:

• Arrival patterns
• Age dependencies
• Physician dependencies
• Wait time, flow analysis
• “Out-of-the-ordinary” impacts
• General modeling

5.1 Arrival Patterns

Sinreich and Marmor (2005) presented one of the best discussions and analysis of
arrival patterns. They developed a method for arriving at a pattern that seemed to
fit the mean hourly pattern at the hospital they were working with. It is not clear
how the fit is by-hour or by-day, or what the standard deviation is by-hour, by-day
for each point. They used 24 months of data and found weekly, daily, and hourly
effects.

At St. Mary’s, we restricted the analysis to cases since December 2010 because
the data electronically captured was more extensive than prior to that time. We broke
the time period into two distinct seasons, Flu and Non-Flu. Just as others have noted
in studies, there were differences at the month, week, day, and hourly levels. At St.
Mary’s, the mean and median arrival of patients per day for the 6 months, Non-Flu
sample period was 131 (highlighted with a star). Unfortunately, this “average” day
only occurs 3% of the time, and the frequency distribution is presented in Fig. 13.4.
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Fig. 13.5 Patient volume by day

The volumes were distributed across the 153 days as shown in Fig. 13.5.
Mondays are considered by the hospital staff as always being the busiest day of
the week. We found that the total, aggregate volume for Mondays was indeed the
highest when compared to the other days; however, analyzing the data week by
week, Mondays were the busiest day only 33% of the time. Figure 13.5 points
out another type of pattern, sequences of days below and above the mean of 131,
suggesting that each day may not be independent of what happened the previous
day, and that some form of underlying, short term trend might exist.

Another interesting pattern was that the patient flow times were shorter on the
weekend compared to the weekdays. Volumes are relatively high on Saturdays and
Sundays, so this was not the causal factor. There has been some speculation about
the causes, but nothing definitive has yet been identified. For example, some tests
are not done on the weekends and therefore patients are scheduled to return on
Monday, speeding up the weekend flow while contributing to the higher congestion
on Monday.

Many studies have pointed out the importance of modeling the hourly arrival
times. We also found this a challenge at St. Mary’s. The St. Mary’s electronic
tracking system starts with the triage time, and not when the patient actually arrives.
Thus, the triage time gives a slightly distorted picture of arrival patterns, further
confounded when two nurses, instead of just one, are triaging during busy periods.
The electronic system does not measure the time a patient is waiting for triage. We
were able to obtain the true arrival times for half of the time period via a different
method, but not for the full analysis, and this then required a merge and match
procedure to properly synchronize the data. If the triage data is being used to model
the patient arrivals, then the analysis and discussion would need to start after this
point (e.g., the pattern arriving at registration) and should not be used to model
arrivals into triage or the triage process itself. The true arrival time is possibly more
important to a researcher than a practitioner. If the hospital and governing body
start the wait time and length of stay measurement clocks at the point of triage, they
might not be as concerned about patients waiting pre-triage. A researcher studying
the whole system is likely to be concerned about pre-triage as well.

A major weakness in our analysis was the inability to assess complexity of an
incoming patient. We had the usual acuity, presenting complaint data, diagnosis,
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Fig. 13.6 One standard deviation confidence interval for hourly arrivals

age, and medical disposition, but we did not have an indication of the patient’s
complete condition. For example, you can have two patients with the same acuity
and presenting complaint, but one might take far fewer resources to process and a
shorter elapsed time compared to another patient. Specifically, we did not know
from the data if the patient required special isolation handling due to possible
infections (e.g., a high-risk patient), if the patient would be problematic to get
information from (e.g., elderly with dementia), if the patient would need additional
resources for any task (e.g., because of a high body mass index), or if the patient
was part of a police investigation, and so forth.

St. Mary’s has the Emergency Department split into areas for Acute, Subacute,
and Minor Treatment (e.g., fast tracking using nurse practitioners). The highest
triage levels of acuity (I and II) almost always go to the Acute area, and the
nonurgent (IV and V) go to Minor Treatment when it is open. Level III cases are the
most numerous and might be routed to any of the three areas based on the presenting
complaint and the expertise of the triage nurse. Electronic triage has just been
implemented at St. Mary’s, and we will be investigating the use of the electronic
data for predictive purposes on a case-by-case basis. During the study period there
were 1,100 different complaint codes recorded and not all were unique. We do not
know yet if this path of reasoning will be fruitful, but it looks like a potential path
to pursue.

The arrival patterns are often modeled at the hourly level, and many papers
present a graph showing the hourly means (although most papers do not share
variance information). The hourly mean and the upper and lower bounds based on a
standard deviation for the St. Mary’s Non-Flu Season are shown in Fig. 13.6.

We found that there were volume and “acuity mix” differences by hour and
by day. For example, Mondays and Thursdays usually presented different volumes
and acuity patterns which are possibly related to weekends and Wednesday family
physician office closures which are common in the region. The acuity mix and
arrival patterns were also found to be different in what is considered Flu Season
versus Non-Flu Season.
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Fig. 13.7 Total patient arrivals by age grouping per hour

Most studies we reviewed assumed that the arrivals are unique and are inde-
pendent of each other. We did not find that this was the case at St. Mary’s. For
example, during the Non-Flu period, approximately 6–7% of the arrivals were at
the department less than two days earlier. They returned for a number of reasons
and the numbers varied by physician. In total, approximately 20% of the arrivals
were associated with patients who visited the department two or more times during
the Non-Flu period. The returning patient phenomenon is a topic being looked at
by many hospitals, and it is also a topic for future research. It will require more
medical analysis to understand the reasons for returning as some of the patients
are returning for secondary treatments, tests, or instructions and not for new issues.
For example, we know that deep vein thrombosis (DVT) follow-ups are scheduled
Monday through Friday and are part of the emergency arrival pattern. At St. Mary’s,
the 20% is a significant portion of the total department arrivals, and this will need
to be accounted for when modeling arrivals or when analyzing past history.

5.2 Age Dependencies

In some studies, the age of the patient has been used when there are special pediatric
areas. Figure 13.7 shows the hourly arrival pattern by age segment for the 6 months
period. There were also some minor differences per day of week, but not significant.
Four age segments were used and the segmentation was based on the normal hospital
grouping whenever age was discussed: 0–15 capturing the young and juvenile,
15–50 for the normal young adult to middle-aged grouping, 50–65 for the middle-
aged, but not yet senior citizen, and the 65+ category for the elderly.

We found that the age of the patient affected the acuity mix (using the Canadian
Triage Assessment Scale—CTAS—http://caep.ca/resources/ctas), care flows, and
diagnoses which followed. Figure 13.8 shows the age distribution across the acuity
levels.

http://caep.ca/resources/ctas
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There are also differences by age regarding presenting complaints and final
disposition. Unfortunately, everything is a mixture, and it is not possible to say
that X is always related to Y when it comes to age. There are patterns, and the
general patterns would need to be modeled to ensure an appropriate mixture. This
is highlighted in Fig. 13.9 which shows two of the major activities that affect the
length of stay in the department: specialist consultation (during diagnosis) and tests
associated with diagnostic imaging.

On average, patients with an imaging test will spend an additional 2 h in the
department, and patients requiring a specialist consultation will have their length of
stay extended by approximately 4 h. When both are needed by a patient, the length
of stay will be extended by approximately 5–6 h. It is clear that age is a significant
contributor and that the acuity level is not sufficient for modeling the type of services
a patient will need. The relationship between tests, consultant involvement, and
length of stay speaks to the potential of flagging patients requiring both testing
and consultant involvement as the highest priorities to have testing done as soon
as possible.
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Fig. 13.10 Triage and physician assessment (stars indicate start times of physician shifts)

5.3 Physician Dependencies

During the St. Mary’s study, a number of insights were developed about physician
behavior and productivity. First, several shift-based patterns were observed and most
physicians seemed to follow it. Figure 13.10 shows the triage arrivals per hour and
the physician initial assessments per hour. The graph starts at midnight. Physician
start times are staggered through the day with start times at midnight, 7:30 AM,
10:00 AM, 4:00 PM, and 5:00 PM. The physician shifts are 8.5 h each. As the graph
shows, there were definite shift patterns around the start and end of shifts which are
highlighted with stars.

There were observed phases to a physician shift. The first phase deals with
inheriting the department at the start of shift and then ramping up to a steady state.
The start of shift can range from 10 to 30 min (or more) and see a decrease in
patients-per-hour of 25–75%. The physician builds up an active portfolio of patients
being seen, and while this number can vary, a typical number is 4–6 active charts at
a time (e.g., the multitasking behavior noted by Gunal and Pidd 2006). Towards the
end of a shift, the physicians will see any critical patients but will also be selective
about which noncritical patients will be seen, leaving certain patients to the next
shift. Extra paperwork for admissions and charting is also done during this time.
The last part of the shift is used to interact with the incoming physician(s). This is
illustrated in Fig. 13.11.

The mean day-shift productivity per physician was approximately 33% less than
on the evening and midnight shifts. This was independent of individual physician
(individual physician activity was analyzed as part of the study). There are a
number of possible factors contributing to this consistent drop in productivity for
this particular shift, but more analysis and field data are needed before any causal
relationships can be stated with confidence. For example, we know that the elderly
patient arrivals peak in the morning and it is possible that the additional time needed
for elderly patients contributes to the lower efficiency. We also know that a number
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Fig. 13.11 Physician shift pattern

of return patients are scheduled for the morning and these could also contribute
to the backlog and congestion. At this point, more analysis is necessary to probe
possible linkages.

The field study identified different doctor flow patterns related to work flow
strategies (e.g., batching of patients, areas focused upon, when different triage levels
are attended to). These are important at the detailed level since a physician’s work
flow can cause peaks and troughs of work to flow through various parts of the
department. For example, if a physician does not cycle through the areas quickly
enough, there will be lumpy demands for tests, treatment plans, etc., and this
can cause momentary traffic jams of flows, resource shortages, and expediting. To
confound the matter further, different work flow patterns and heuristics exist if the
physician is working with another physician on the day and night shifts or is the sole
physician on the night shift.

During the study period in this department, there was a mixture of medical
providers: emergency physicians, medical students, a physician assistant, and nurse
practitioners. The NPs can deal with certain types of acuity without requiring an
attending physician. Each NP has different qualifications, and these control the
types of acuity, presenting complaints, diagnoses, and treatment plans that the NP
has independent control over. Depending on the mix, there is little or almost no
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interaction between the NP and physician. There are times when the NP is in
consultation with the physician, and this takes the physician out of service for that
time interval.

The medical students, interns, and physician assistant “helpers” turn the physi-
cian into multiple servers. The physician is involved with the helpers’ patients
for the diagnosis review and treatment plan but also sees to their own patients. If
the individual physicians are analyzed, the presence of a helper can increase the
physician’s overall shift rate (i.e., patients assessed per hour) by 20–30%, depending
on the number of shifts a helper is present (note: the attending physician is the
healthcare provider of record). The time for physician initial assessment is better on
these shifts since there are multiple, parallel servers, but the length of stay is longer
due to the consultations on every case.

As part of the study, we examined the relationship between physician experience
and skill against performance. There were three major physician groupings of
experience and skill: junior, intermediate, and senior. We found definite patterns
of performance based on skill level.

5.4 Wait Time and Flow Analysis

A number of constraints and relationships were discovered when focusing on the
wait times and process flows. The topics have been broken down into area or shift,
individual staff, and external factors.

5.4.1 Area or Shift

This category of constraints and relationships is similar to a repair shop situation.
There are some common tools and resources found in every Emergency Department
room at St. Mary’s, but there are some resources which are not duplicated. This issue
can create a resource conflict and extend the processing times for some patients.
There are also some rooms with a specialization (e.g., fractures, isolation), and there
are specific heuristics used for room allocation (e.g., which ones are the last to be
allocated).

The shift patterns also affect the patient flow times. For example, patients arriving
“in room” just before a shift change will possibly face three factors which can affect
flow. First, the assessment of noncritical patients might not occur until the new shift
(to reduce the transfer of patients among providers). Second, there is a period of
time at the start of shift when everyone huddles, gets debriefed, and prepares for the
shift. During this time, the “in room” to “seen RN” times will be extended compared
to the rest of shift, and any treatment or test processes will also be extended. Third,
there might also be regular events during a shift or day such as “bed” meetings to
discuss the patients being admitted. Events similar to these decrease the capacity
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for extended periods of time and become important for modeling. This is especially
true whenever small numbers of resources are involved.

The Emergency Department is not always fully staffed due to illness or other
factors. This affects the allocation of nurses and other personnel during the short-
staffed periods and can affect the patient flow times. Knowing if a time period was
short staffed is useful in interpreting performance metrics and building distributions.
We did find that it was very rare for the physicians to be suddenly short staffed,
caused by a physician calling in without having arranged coverage; however,
unexpected short staffing was not rare in the other personnel areas such as nursing or
clerks. When the area is short staffed, this creates an “out-of-the-ordinary” condition
which often derails one or more of the departmental treatment areas. For example,
the Acute area will almost always be fully staffed by nurses, and the short staffing
will be felt elsewhere.

5.4.2 Individual Staff

Regarding individual staff constraints and relationships, there are a number of finite
resources which can contribute to wait times and flow patterns. The nurses may
or may not be pooled by area or be assigned rooms or specialties for the shift.
They also have different efficiencies based on Emergency Department experience.
These types of distinctions are important to ensure balanced workflow that matches
the real situation. Porters, communication clerks, bed allocators, and registration
clerks also have the potential for blocking or starving the nurses and physicians. For
example, if the communications clerk is busy trying to help track down a specialist,
they are not monitoring and moving patients from the triage/waiting area back to
the treatment areas. If the porter is tied up transporting a patient to the diagnostic
imaging area, they are not doing other duties which may impact flow for other
patients. If the bed allocator is having trouble finding isolation beds for patients
being admitted to the inpatient wards, the beds in Emergency remain occupied and
delay new incoming patients. While the patient remains in Emergency, they will
require additional nursing resources, which may impact the flow of other patients.

At St. Mary’s, there are a number of medical directives which relate to initial
care and assessments that can be possibly performed by the registered nurses. The
medical directives are optional, and they can affect the timing and types of tests
ordered. It cannot be assumed that all orders occur after the physician assessment,
and it is not possible to assume that all possible medical directives are applied.

The nursing processes might also affect patient flow. For example, when is the
nurse charting done and when can the physician turn their attention to the patient?
In most cases, once the nurse completes the charting, the physical patient record
becomes available for the physician to process. When a level I acuity arrives, the
normal process is preempted by the emergency situation. This type of distinction is
important if electronic records are used to generate simulated time distributions as
there are different ways to interpret the time data based on the acuity.
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5.4.3 External Factors

Modeling the constraints and relationships external to the department at St. Mary’s
is important, and there are differences by time of day as well. For example, the time
it takes to track down a specialist for consultation is not the same during the day as
it is between midnight and 7:30 AM. The time to admit, transfer, or have diagnostic
imaging performed is also variable by time of day.

If the medical disposition involves anything other than simple departure, it is
likely that the departure paperwork and communications will be more extensive and
will require more resources. It is not common for patients to expire at St. Mary’s
Emergency Department (i.e., it is not the trauma Emergency Department for the
community), yet when this happens, it is a major impact on physician and nursing
resources.

5.5 “Out-of-the-Ordinary” Impacts

During the observation period of the study, we consistently observed periods when
the work flowed smoothly and the length of stay times were relatively short. Staff
and patient flows were balanced and there was little stress in the department. This
flow pattern was confirmed by looking at the patterns of flow and the number
of times patients received quick service (40–50% of the time). The balanced and
smooth flow periods were also physician independent for the most part. There was
some difference based on physician experience, but even the junior physicians had
significant portions of their patients receiving quick service.

We also noted periods of time when the work flow was not balanced, patients
were waiting for extended periods of time, and the personnel were dealing with a
chaotic situation. The “bad days” were not always related to volumes, days of the
week, or any obvious pattern trigger. The staff was often unable to explain why one
day was better than another just by looking at the daily performance numbers. The
overall behavior was similar to what had been observed in lean or fragile production
systems where the capacity is tuned to the mean situation. Whenever something
unusual presented itself, the system became overloaded as it does not have any
spare capacity or resources to deal with the changing situation. Depending on the
type and magnitude of the perturbation, other work flows were impacted. These
observations led to a specific analysis for symptoms and causes of the department
process deteriorating and leading to extended length of stays.

There were occasionally specific events which impacted multiple resources for
an extended time. During these events, the resources were unable to attend to
other patients or move any of the processes forward. For example, if a Code Blue
(patient incurring a cardiac arrest) occurred elsewhere in the hospital, Emergency
Department personnel (including a physician) were part of the response team. When
such a situation occurred, the department’s capability was reduced and depending
on when the event took place, quite a few patients were affected. Other observed
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special events included fire alarms, machine breakdowns in the test area, patients
accompanied by police officers, isolation cases, long-term drug users, patients with
dementia, agitated patients admitted without their permission, language barriers,
and certain treatment plans which required frequent nursing attention.

There are four possible impacts whenever a special event occurs. First, more
resources than normal are allocated to the patient. Second, any multitasking is
preempted and the resources are removed from the average work distribution
pattern. Third, the dispatching or work flow after a special event is not normal as
special heuristics are used to restore the department to its usual behavior. Fourth,
when the resources return to normal processing, a wave of activity and requirements
may flow downstream. When you often have one or more special events happening
per shift, it is important to include such events and subsequent work flows in the
model. At St. Mary’s, approximately 75% of the days studied had some form of
special event, and any detailed model will have to include this type of situation as a
noise-generating event.

It is possible that a categorization schema could be developed for the most
common types of special situations and distributions developed for analytical
purposes. One of the problems is gaining sufficient information about when a
special event or situation has occurred and what is the impact. This type of data
is not normally gathered and entered on a patient’s chart. The occurrence and
impact of special situations is an area for further research at St. Mary’s. Analyzing
the nonrandom clumping of slow patients has assisted in understanding the types
of potential improvement associated with continuous improvement versus special
operational procedures to deal with special cases.

5.6 Operations Research Models

In a relatively complex situation such as the Emergency Department, it is important
to validate any detailed operational model. It is not sufficient to simply look at
one or two average output metrics and state that the model has internal validity.
For example, at St. Mary’s, the internal flow patterns for the major population
groups (e.g., triage level and age) must also be validated on a base case if different
operational options are being explored. Specifically:

• Any known drivers of resource or extended wait times would need to match (e.g.,
arrival patterns, acuity mix, presenting complaints, seasonal indices).

• The physician productivity model would be a key component for validation. Does
the patient per hour rate make sense?

• The flow times for major population segments (e.g., age) for the process steps
and services (e.g., imaging tests) would be important to validate.

• Because bottlenecks may float, any starving and blocking patterns on bottleneck
resources, as well as resource conflict patterns must match the real situation. For
example, in the base line case, does the queueing behavior match reality?
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• Low probability out-of-the-ordinary patterns must be generated, and the system
components react accordingly.

As noted, this would be for the baseline before introducing any changes. These
five aspects should have a close resemblance to a known case if claims are to be
made for the results of an intervention.

6 Conclusions

It appears from the academic and practice literature that the majority of research on
Emergency Department has been at the aggregate level interfacing with ambulance
arrival or bed utilization, resource scheduling for nurses or physicians, or a simu-
lation style analysis of a specific Emergency Department. There have been fewer
studies of multiple Emergency Departments, research involving specific resource
performance characteristics, or resource behavior; however, as these studies have
shown, there are many relationships and details at the operational level that should
be taken into account when preparing a detailed model. It is also important to clearly
state assumptions and validation criteria to ensure that the limits of the modeling
effort are well understood.

As an applied research field, Emergency Department problem(s) can be consid-
ered relatively immature and undeveloped in the context of resource characteristics
and behavior. Research efforts and practitioners should be aware of this and should
treat results with appropriate care. It is necessary to shift from one-off simulation
studies of specific hospitals and develop systemic and holistic research agendas and
efforts focused on dynamic relationships, sources of uncertainty and variance, and
resource behavioral patterns.

Section 5 presented a number of observations that arose from an extensive
study of the flows and behaviors at a particular Emergency Department, and we
believe that many of these observations would be relevant to other Emergency
Departments; however, it is clear that any single concept or recommendation has to
be understood in the context of the different Emergency Department practices found
within a region. There are also significant differences between teaching hospital
situations and community hospitals. When healthcare resources in a community
are collaborating on emergency care, this can also create unique flow patterns
and relationships. We believe that it is important for researchers to understand the
context they are studying and how this might limit the generality of any results.

The Emergency Department is a fascinating applied research problem. There
are many inter-connected components and dynamic relationships which are not
immediately obvious from the static data found in the electronic records. At an
aggregate modeling level, these factors are not important but become critical when
speculating about individual patient flows and daily efficiency and effectiveness. We
hope that this chapter has helped shed some light on the modeling challenges and
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what might be considered in detailed research models. We also hope that we have
been able to provide insights and guidance to practitioners who are interested in
understanding the issues and relationships to be found in an Emergency Department.
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Chapter 14
Location Models in Healthcare

Bjorn P. Berg

1 Introduction

Decisions about the location of critical resources in a geographic network are
important in many industries. For healthcare delivery these decisions have included
the location of emergency care services (Toregas et al. 1971; Revelle et al. 1977),
preventive care (Verter and Lapierre 2002), and public health planning (Lapierre
et al. 1999). Location decisions are important because they determine the travel
time between health resources (supply) and patients (demand). Location decisions
are particularly important for emergency preparedness, where location decisions
determine the response time and therefore access to care.

Decisions that form the basis for location models include the number of resources
that should be located, where to locate the available resources, and how customers
should be assigned to resources locations. The criteria used to evaluate the quality of
solutions to location models include the total travel distance between for customers,
the total cost of locating the decided number of resources, the maximum distance
that any customer will need to travel, or the number of customers that have access
to a resource within a predetermined distance tolerance. However, the decisions
surrounding location models are difficult due to the large number of possible
resource location. Systematically comparing every set of location decisions can be a
computationally cumbersome process and may not be possible within a reasonable
time frame for many decision makers.

The purpose of this chapter is to present an overview of location models and
their application to healthcare settings. We begin by reviewing examples of location
models applied to problems in healthcare. We do not intend to provide an exhaustive
survey of the literature; rather, the goal is to identify examples of location modeling
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that present the nuances that healthcare problem settings present. Next, we present
an overview of model formulations that are commonly used in location models for
the purpose of identifying each model’s benefits and limitations. We then use a
case study based on the location of stockpiled nerve gas antidote in North Carolina
to compare the alternative models discussed. Multiple performance criteria for the
nerve gas antidote problem are identified and compared. Finally, we discuss the
chapter’s conclusions and identify important areas for future research.

2 Examples of Healthcare Location Models

In this section we present examples of application areas where location models have
been used in healthcare. These examples demonstrate the wide variety of problems
within healthcare that benefit from the insights that location model formulations
offer. For a more inclusive review and classification of location models in healthcare,
the reader is referred to Daskin and Dean (2005).

The authors of Price and Turcotte (1986) describe the challenges in deciding
where to locate a blood bank. Many of the challenges identified are common to other
types of location problems in healthcare and the public sector in general, including
having many stakeholders, needing to serve a large and diverse population, and
making decisions based on little or no data. In the process of locating a blood bank
in Quebec City, Canada, high levels of public access needed to be obtained while
maintaining convenience for surrounding clinics that deliver blood to the bank.
The authors used donor transportation surveys, postal codes from donor addresses,
and census data to create location models to identify potential locations for the
new blood bank. Following analysis, the potential locations were then reviewed
for practical constraints not included in the models, such as freeway access and
geographical limitations. The sites were then ranked across multiple criteria and
recommendations were made to the stakeholders.

Another example motivated by timely access to care is the model developed in
Côté et al. (2007) where patients with traumatic brain injuries (TBI) need timely
treatment to achieve the best outcomes. A mixed integer programming model is
formulated to locate treatment units, which include access to various types of
multidisciplinary therapies, within the health system of the Department of Veterans
Affairs. To obtain a region’s expected TBI incidence, TBI hospitalization incidence
rates from the Centers for Disease Control (CDC) were applied by adjusting for
a region’s age, gender, and veteran population. The model was solved for various
scenarios constructed based on managerial preference criteria such as the level of
centralization of the treatment units. The authors note that the optimal location-
allocation policy is dependent upon the managerial preferences and environment
parameters. However, the analysis presented a set of policies to which decision
makers could apply their judgment.

The role of location models in developing health systems in developing nations
is articulated in Rahman and Smith (2000). The authors explain the implications
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that access to health services has on a nation’s economic development and quality
of life. A common trait of location models in a developing nation’s health system is
the need to include the hierarchical structure that is inherent to the health system
organization. For example, each neighborhood or community may have a small
number of primary care clinics that serve as the first contact to the health system.
As the need for more specialized and coordinated care arises, patients may be
referred to more centralized healthcare centers for surgery or more intensive care.
The authors go on to explain that although location models are often dismissed
as too sophisticated for use in health system planning in developing nations, there
are many reported applications of location models in developing nation settings
including identifying new hospital locations, locating rural clinics, and locating
medical supply centers.

Many location models in healthcare are concerned with timely access to emer-
gency services. A recent review of location models in emergency services is
provided in Jia et al. (2007). Besides identifying common emergency service
location model formulations, the authors concentrate on services for large-scale
emergencies, such as natural disasters or terrorist attacks, and identify the unique
aspects that need to be considered when locating medical services for rare, but high
impact, events. The authors explain that for large-scale emergency events, medical
services need to be redundant and dispersed. Redundancy is necessary due to the
extremely large demands being placed on single facilities. However, if such facilities
themselves are rendered inefficient as a result of an emergency, other facilities need
to be dispersed in order to provide continuing service. Another important aspect that
needs to be included in large-scale emergency service location models is accounting
for differences in the likelihood of different types of events occurring in different
regions based on geographic or population differences. The authors adapt common
location model formulations to account for the differences presented by large-scale
emergency planning and use several example scenarios for demonstration.

Location models have also been formulated using medical outcomes as an
objective, extending the traditionally operations-based decisions in location models
to the area of medical decision making. As an example, the problem of organizing
transplant regions in the United States was formulated as a mixed integer program
(MIP) in Stahl et al. (2005). In the hierarchical organization of liver donations,
donor livers are made available first to recipients in the same region due to faster
transportation time of the organ and thus higher organ quality. However, a smaller
regional structure also creates inefficiencies since it results in a smaller donor pool.
The authors formulate a model whose objective is to maximize efficiency and
equity through transplant region design. Although the focus is on how to organize
the country into transplant regions, the relevance to location models is clear in
the decision process of allocating patients to the transplant regions. The authors
conclude that their optimal region design offers important insights when compared
with the current region design in place, such as organizing regions based on densely
populated areas.

Preventive care is another healthcare setting that presents unique challenges
for location models. For example, as the authors explain in Verter and Lapierre
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(2002), utilization of preventive care service is inversely related to the distance
and access that patients have to preventive care locations. The intuitive solution
is to develop many preventive care settings dispersed throughout a community.
However, the high cost of opening and operating many facilities is not the only
constraint involved. For example, each facility must serve a minimum number
of patients so providers may maintain their accreditation. In Verter and Lapierre
(2002), the authors formulate a location model to maximize participation while
ensuring a defined patient threshold. Data from public health centers in Fulton
County, Georgia, and breast cancer screening centers in Montreal, Canada, are used
to compare two proposed solution methods. The author’s also note the potential
extension of the work within a hierarchical model framework.

In a more recent example, the authors of Chanta et al. (2011) introduce equity
as a criterion in locating emergency medical services. In determining the locations
of ambulances at stations, the authors location model seeks to balance customer
perceptions of equity in access to services by minimizing customer envy. The
location model is formulated as an integer program. A heuristic method is intro-
duced as a result of the integer programming formulation’s computational challenge.
The solution quality of the heuristic results are shown to perform favorably when
compared to other common location model formulations. By including equity in
their location model formulation, the authors demonstrated how location models
motivated by healthcare applications are generating opportunities for developing
novel models and methods in the broader scope of location models.

3 Types of Location Models

Location models are commonly formulated as MIPs. The decision variables often
define the choice of locations for resources within a defined network and how
customers are to be assigned to the chosen locations. The objective function defines
the criteria by which alternative locations are compared, usually in terms of distance
or some measure of access. Criteria can vary among decision makers and may
include minimizing cost, maximizing the proportion of customers within a desired
distance of the resources, or minimizing the maximum distance of any given patient
from a resource. The constraints typically limit the location decisions based on the
availability of limited resources. We review the most common MIPs used for making
location decisions in practice and discuss the pros and cons of each formulation. We
also present an easy-to-implement heuristic that can provide near optimal solutions
to large problems.

Many applications of location problems have been reported in the literature.
Although facility location problems have been formulated in stochastic and dynamic
contexts, we focus on the deterministic models due to their ease of implementation
and because they are often reasonably effective even in stochastic environments. For
more comprehensive coverage of location models, including stochastic models, we
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refer the reader to Francis and Goldstein (1974), Handler and Mirchandani (1979),
Love et al. (1988), Daskin (1995).

In a location problem there are customers that need to be served. Serving the
populations are a set of resources, often referred to as facilities. There are assumed
to be a predetermined set of N potential locations for facilities that the decision
maker may choose from. Often the number of resources are limited, and the decision
maker must choose a subset of size p from the N potential locations. Thus, the total
number of possible decisions is

(N
p

)
. Therefore, the number of alternative decisions

is often very large. The decision maker is faced with the challenge of choosing the
best set of locations among a large number of alternatives.

3.1 p-Median Formulation

The p-median model locates a fixed number, p, of resources out of a greater set of
preselected possible locations, N. Populations to be served by the locations have a
size and location, where the location is the centroid of the zip code. The distance
a population travels to a possible facility location is weighted by the size of the
population. In the p-median model and all the models covered in this section,
populations are served by the nearest located resources. The p-median model is
suitable for settings where there are a limited number of resources available, such
as the limited number of treatment units in Côté et al. (2007).

In the p-median model formulation, populations are indexed by i, and locations
are indexed by j. The objective is to determine the subset of size p that minimizes
the weighted travel distance. The MIP formulation can be written as follows:

Parameters

di j: Distance from population i to possible facility location j
wi: Size of population i (weight)
p: Number of facilities to locate

Decision Variables

y j =

{
1 if a facility is located at possible location j
0 otherwise

xi j =

{
1 if population i is served by a facility at location j
0 otherwise
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min ∑
∀i

∑
∀ j

widi jxi j (14.1)

s.t.∑
∀ j

xi j = 1 ∀i (14.2)

∑
∀ j

y j = p (14.3)

xi j ≤ y j ∀i, j (14.4)

xi j, y j ∈ {0,1} ∀i, j (14.5)

The objective, (14.1), is to minimize the total demand-weighted distance between
populations and facilities. The constraints limit the allowable decisions to feasible
decisions. Constraint (14.2) ensures that each population is assigned to exactly one
located facility, whereas constraint (14.3) guarantees exactly p facilities will be
located. Constraint (14.4) states a population can only be assigned to a location
if a facility is located there, and (14.5) defines the decision variables as binary.

3.2 Uncapacitated Facility Location Model

Closely related to the p-median formulation is the uncapacitated facility location
(UFL) model. In the UFL, constraint (14.4) of the p-median formulation is relaxed.
That is, there is no longer a limit on the number of facilities that can be located.
Therefore, there is no reason not to locate a facility for every element of the
population. In order to discourage opening an unnecessary number of facilities, a
cost term is added to the objective function. This can be interpreted as the cost
of opening an additional facility relative to the cost of the distance traveled. UFL
models may be appropriate for identifying flu clinic locations, for example, since the
cost for locating flu clinics will likely be the limiting factor as opposed to available
resources such as staff or facilities. Similar to the p-median formulation, the MIP
formulation for the UFL model can be written as follows:

Parameters

di j: Distance from population i to possible facility location j
wi: Size of population i (weight)
f j: Cost of locating facility j
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Decision Variables

y j =

{
1 if a facility is located at possible location j
0 otherwise

xi j =

{
1 if population i is served by a facility at location j
0 otherwise

ppp-Median Formation

min ∑
∀i

∑
∀ j

widi jxi j +∑
∀ j

f jy j (14.6)

s.t.∑
∀ j

xi j = 1 ∀i (14.7)

xi j ≤ y j ∀i, j (14.8)

xi j, y j ∈ {0,1} ∀i, j (14.9)

3.3 ppp-Center Model

The third model, called the p-center model, seeks to minimize the maximum
distance traveled by any population. Thus, it differs from the p-median and UFL
models in that it focuses on limiting the worst case. Such models are more likely to
be applicable to public sector settings where reasonable access to resources such as
a hospital, or emergency services, is necessary for the entire public. The p-center
MIP is formulated as follows:

Parameters

di j: Distance from population i to possible facility location j
p: Number of facilities to locate

Decision Variables

y j =

{
1 if a facility is located at possible location j
0 otherwise
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xi j =

{
1 if population i is served by a facility at location j
0 otherwise

D = maximum distance between a population and the nearest facility

ppp-Center Formation

min D (14.10)

s.t. ∑
∀ j

xi j = 1 ∀i (14.11)

∑
∀ j

y j = p (14.12)

xi j ≤ y j ∀i, j (14.13)

D ≥ ∑
∀ j

di jxi j ∀i (14.14)

xi j, y j ∈ {0,1} ∀i, j (14.15)

This formulation is similar to the p-median formulation, but the objective function
(14.10) minimizes the distance, D, that is defined as the maximum travel distance
any population travels to the nearest facility. As in the p-median formulation, the
p-center formulation requires that every population is assigned to one facility, p
facilities are located, and a population can only be served by a facility that has been
located. This model favors equity of cost over efficiency (UFL) and average travel
distance (p-median)

3.4 Maximal Covering Model

In the context of allocating emergency resources, it may be the case that there
exists a tolerance, or maximum distance, to which a location plan must adhere. For
instance, there may be a maximum acceptable response time. For example, in North
America a common EMS response time target is 9 min 90% of the time in urban
settings and 15 min 90% of the time in rural settings (Fitch 2005). Thus, resources
within a specified proximity satisfy this requirement, and resources outside do not. A
population is considered covered if a facility is located within the required distance.
The MIP corresponding the maximal covering model can be written as follows:

Parameters

di j: Distance from population i to possible facility location j
wi: Weight of population i (size)
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p: Number of facilities to locate
A: Acceptable distance between a population and a located facility

Decision Variables

y j =

{
1 if a facility is located at possible location j

0 otherwise

xi j =

{
1 if population i is served by a facility at location j
0 otherwise

zi =

{
1 if population i is covered

0 otherwise

Maximal Covering Formulation

max ∑
∀i

wizi (14.16)

s.t. ∑
∀ j

xi j = zi ∀i (14.17)

∑
∀ j

y j ≤ p (14.18)

di jxi j ≤ Ay j ∀i, j (14.19)

xi j, y j, zi ∈ {0,1} ∀i, j (14.20)

In the covering formulation the objective (14.16) maximizes the weighted sum of el-
ements that are covered. Similar to the p-median and p-center models, the maximal
covering model limits the number of facilities to p, and every population is served
by no more than one location. However, unlike the previous models, the covering
formulation requires that if a population is served by a located facility, that facility
must be within a certain distance as defined by (14.19). As in all of the above for-
mulations a feasible solution is guaranteed to exist; however, it is no longer required
that every population be served. That is, the acceptable distance, A, and the number
of facilities, p, may not allow for a location plan that covers all population elements.

3.5 Other Models

While the models discussed in Sects. 3.1–3.4 represent the most commonly used
models in research and practice, there are other location models that have implica-
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tions for location planning in healthcare settings. Other location models that apply
to healthcare contexts are briefly discussed in this section.

Similar to the maximal covering problem, the set covering problem is focused on
covering customers with accessible demand locations. In the set covering problem,
however, the objective is to group populations into sets and assign them to resources
such that the number of sets is minimized. Potential sets and resource locations are
constrained by predefined acceptable distance limitations, similar to the maximal
covering problem. If significant costs are associated with the resource locations, the
objective of the set covering problem can be adjusted to minimize the total cost
rather than the number of resources located.

Another alternative location model is the p-dispersion model. The objective of
the p-dispersion model is to maximize the distance sum between located resources.
The result of the p-dispersion model could be advantageous when deciding where
to locate outpatient clinics within a provider network, for example. In this context,
clinics that are located too close to each other may end up competing with each
other for a patient population in addition to other provider clinics in the surrounding
area. An important note regarding the p-dispersion problem is that the objective
focuses only on the location of resources relative to each other and not the distance
to customer demand.

One final alternative formulation is the hub location problem. The objective of
the hub location problem is to minimize the total cost, including resource location
costs and travel distance costs, of locating hub networks where large resource hubs
are located along with a branching network of resources that service the hub. In
healthcare, services such as labs are often described by the hub location problem
where patients will have blood drawn and lab work collected at a local clinic, but the
blood work and labs are processed at a centralized location for surrounding clinics.

3.6 Solution Methods

Methods for solving MIPs, such as the above models, fall under the scope of the field
of mathematical programming, specifically integer programming due to the discrete
nature of the decisions. For a discussion and explanation of integer programming
and solution methods, the reader is referred to Nemhauser and Wolsey (1988). Many
advanced solution methodologies have been developed for common location model
formulations that take advantage of each formulation’s mathematical structure. For
further information on location model solution methods, Daskin (1995) and Drezner
and Hamacher (2004) provide an overview of solution methods as well as identify
when particular solution methods may be more suitable based on the context.

In many location model settings, the formulations discussed above, and variants
thereof, are often computationally challenging and have high solution times, even
when using advanced solution methods. Therefore, heuristics are often resorted to
in such settings. Even though the heuristic solution may not be optimal, the ease of
implementation along with a fast and near optimal solution may make heuristics a
suitable method.
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Algorithm 1: Greedy Heuristic for p-median location problem.
input : w = Weighted matrix of populations for each population center i = 1, . . . ,n

D = Matrix containing the distances from each population center i to each possible
facility location j = 1, . . . ,m

output: Feasible location of facilities and allocation of populations to facilities.

1 Matrix multiply wD. Find the minimum entry in the 1×m matrix and locate a facility there.
2 If a node was just assigned a facility, set the corresponding value in wD equal to ∞, so it is

not chosen again. If the number of currently located facilities equals p, stop; the current
location of the p facilities represents the feasible solution. Otherwise, go to Step 3.

3 Determine which unassigned possible facility location has the lowest cost in terms of
weighted distance by updating wD. Each entry that does not have a value of ∞ is
recalculated by multiplying the population weight, wi, by the smallest of the distances from i
to either that location or a facility already located. Locate a facility at the node with the
minimum matrix entry and go to Step 2.

In Eiselt and Sandblom (2004), the authors present one of the first and simplest
heuristics for the p-median problem presented in Sect. 3.1. Their heuristic falls into a
class of heuristics known as “greedy” or “myopic” heuristics. Such heuristics work
by initially assuming only one resource is to be located and then finds the best
location possible for that one facility. It then fixes this choice and iteratively repeats
the process of assigning one more resource until all p resources have been located.
In practice this often results in near optimal decisions. The algorithm adapted from
Eiselt and Sandblom (2004) is as follows:

The benefits of the above greedy heuristic are that it is easy to understand, easy to
implement, and results in a feasible solution, often in less computation time than is
required for traditional integer programming solution methods. The above heuristic
is described in the context of the p-median problem, but similar heuristics can be
adapted for the other location problems described in this section.

4 Case Study

In this section we present four of the most common types of location models for a
specific example: the p-median model, the UFL model, the p-center model, and the
maximal covering model. We use the optimal location of nerve gas antidote as an
example to illustrate the use of the models described. The models are presented in
the context of optimally locating ChemPacks within North Carolina. ChemPacks are
large containers of stockpiled antidotes that can be used in response to the accidental
or intentional release of a nerve agent or organophosphate. The ChemPack program
is part of the Strategic National Stockpile (SNS). The purpose of the program is
to place repositories of chemical-agent antidotes throughout the USA to be used
in response to biological, radiological, or chemical attacks. Inside the ChemPacks
are atropine sulfate, pralidoxime chloride, and diazepam along with MARK I auto-
injectors loaded with single doses.
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Fig. 14.1 North Carolina population density

In this hypothetical example we assume the federal government has allocated 50
of these containers to the state of North Carolina. Antidotes must be administered
very soon after exposure to be effective. Therefore, the State Health Department’s
goal is to locate the ChemPacks so that everyone in the state is as close as possible,
and preferably within 50 miles, of a ChemPack. However, a finite number of
ChemPacks combined with a geographically distributed population density makes
this a challenging problem. Thus, the ChemPacks are limited resources to be
located across the geographic region. The potential locations are hospital emergency
departments in the state. The customers are potential residents in need of access to
a ChemPack. As is common in location models, the customers are aggregated into
groups within the geographic network. In the results we present “customers” are
aggregated populations defined by zip codes in North Carolina.

We show how location models can be employed to find the optimal placement
of ChemPacks within North Carolina. We use population data for the state of
North Carolina to formulate a location optimization problem which considers all
hospital emergency departments across the state as potential locations for one of the
ChemPacks. Four alternative MIPs are compared. We compare the optimal solutions
to the alternative MIPs as well as a very easy to implement, and often effective,
“greedy heuristic.”

In North Carolina, there are 112 emergency departments that are possible
locations for ChemPacks (NCDETECT 2009). We collected location and population
data at the ZIP Code level for North Carolina, assuming the emergency departments
and populations are located at the centroid of the ZIP Code area. Population data
for the 783 populated ZIP Codes in North Carolina was extracted from the 2000
US Census (United States Census Bureau xxxx). The population density for North
Carolina is illustrated in Fig. 14.1.
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Table 14.1 Four location model formulations are compared based on multiple criteria

Model Objective
Average travel
distance (miles)

Maximum travel
distance (miles)

Total cost
($millions)

p-median Minimize the weighted
sum of travel
distance

10.58 62 $16.28

UFL Minimize the total cost
without a limit of
available ChemPacks

7.18 59 $11.20

p-center Minimize the maximum
travel distance

41.53 59 $63.62

Maximal
covering

Maximize covered
population (A = 50)

% population
covered 99.96

NA $35.33

To compare the location models, we defined a problem instance and compared
the resulting criteria among the models. To create the matrix of travel distances
between each population element and emergency departments, we use functions
written in Matlab to calculate the geographic distance between two ZIP Codes
(population center to emergency department) and multiply it by 1.2 in order to
estimate the mean road distance. The weighted demand matrix is generated from
ZIP Code census data and is defined as the population residing in each ZIP Code.
In the UFL model we use the IRS standard mileage rate for medical purposes
($0.19/mile) as a travel cost estimate, and the estimated storage costs for ChemPacks
($2,000–$2,500) as the cost of locating a ChemPack at an emergency department.
In the maximal covering model, where there is a limit to the acceptable travel
distance for a population to be covered, we report results for a distance of 50 miles.
We assume p = 50 as a base case, and we explore the sensitivity of performance
measures to p.

Table 14.1 summarizes the criteria for each of the location models. Using the base
case estimates of costs, the UFL model minimizes each of these measures but may
be unrealistic as it requires a ChemPack to be located at every potential location.
This result is in part due to the assumed low storage cost of a ChemPack relative to
the travel cost. The p-median, p-center, and maximal covering formulations limit the
number of ChemPacks to p = 50. While the p-median formulation does not achieve
the minimum maximum travel distance, as in the p-center model, the result is very
close (3 miles) and offers significant improvement in the average travel distance
over the p-center formulation. The maximal covering model results show that a vast
majority (99.96%) of the population can be within 50 miles of a ChemPack.

In addition to the four models presented as part of the models in Table 14.1, the
greedy heuristic was also analyzed for the scenario with 50 available ChemPacks.
The greedy heuristic shares a similar objective with the p-median formulation in
minimizing the weighted sum of travel distance. The results were also close to
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Fig. 14.2 Sensitivity of average and maximum travel distances to the number of ChemPacks
available, p

those of the p-median formulation with an average travel distance of 9.98 miles, a
maximum travel distance of 62 miles, and a total cost of $15.38 million. In general,
one can observe that the greedy heuristic provided competitive results through an
easy-to-implement algorithm.

Figure 14.2 illustrates the sensitivity of the results to the number of ChemPacks
available, p, in the p-median and p-center models. Both the average and maximum
travel distance decrease as more ChemPacks are available. The performance
measures that are not the primary objectives of each model are more sensitive to p
than the primary objectives. That is, the maximum travel distance for the p-median
model and the average travel distance for the p-center model are more sensitive to
p than the average travel distance for the p-median model and the maximum travel
distance for the p-center model. The maximum and average travel distances for both
formulations are more sensitive to p ≤ 50, and the marginal benefits diminish for
p > 50.

The location models described in this section have a number of limitations. For
example, they are deterministic models that assume knowledge of the exact size of
the population within the geographic region. The models are uncapacitated in that
they assume that a single ChemPack will be sufficient to treat a population in the
event of an emergency. Finally, the approximate distribution of the population using
aggregation of the population into ZIP Codes may not perfectly represent the true
population distribution. In spite of these assumptions, which are common to most
applications of location models, these types of models have proven effective in the
location of critical resources for emergencies.



14 Location Models in Healthcare 401

5 Conclusions

In this chapter we discussed location models in the context of healthcare
applications. Location models have the opportunity to play an integral role in
healthcare planning in many settings. As evidenced by examples in the literature,
new formulations and adaptations of location models allow policy insights to be
gleaned in healthcare settings which present unique challenges in the decision
making process.

We presented four location model formulations that are commonly employed
in location applications. In addition, we discussed the benefits of using heuristics
as solution methods and presented the greedy algorithm in the context of the p-
median location problem formulation. The four model formulations and heuristic
were compared using a case study of allocating ChemPacks to hospitals in North
Carolina. While each model formulation may be preferred for certain performance
criteria, in general, the easy-to-implement greedy heuristic provided a competitive
solution across multiple measures.

While location models have an established presence in many application settings,
including healthcare, there are many opportunities for future research. One of these
future areas is incorporating clinical outcomes and performance measures among
the criteria that are used for decision making in location models. For example, in
identifying future locations for preventative services, it will likely be important
to study the demographics and health status of the populations being considered.
If certain communities are expecting to have populations with high utilization
levels of such services in the near (or far) future, this weighting needs to be
considered in a location model. Including clinical measures in location models
will continue to bridge a gap between applying location model methodologies to
traditional healthcare planning settings that focus on capital-intensive resources
and infrastructure, to medical decision making settings where such models help
decision makers in clinical settings. While location models have proven valuable in
settings such as prostate cancer treatment planning (Lee et al. 1999), there are many
opportunities for new applications in healthcare.

Another direction for further research is including location models in analyses
supporting healthcare policy decision making. As focus on preventive care and
screening for chronic diseases continues to increase, patient access to such services
will continue to play an informative role in identifying cost-effective healthcare
policies. Location models can not only aid in the decisions of where preventive care
and screening facilities should be located but also help determine the number and
size of such facilities in order to provide sufficient capacity required by the demand
resulting from policy recommendations.
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Chapter 15
Models and Methods for Improving
Patient Access

Jonathan Patrick and Anisa Aubin

1 Introduction

The goal of most health systems is to ensure access to quality healthcare for all
its members through the implementation of policies designed to further that goal.
Laudable as this goal is, it is often the case that access to quality healthcare has not
been as readily available as we might hope. For example, the Canada Health Act,
adopted in 1984, mandated healthcare provision in Canada to be comprehensive,
universal, portable, and accessible. While there is debate about what constitutes
a “comprehensive” healthcare system, the major cornerstone where the Canadian
system is seen to have fallen short of its ideal is in accessibility. While patients have
access to the right care, it is often only after a significant period of waiting. This
problem is not unique to Canada as many countries report similar struggles with
providing timely access to care. For example, in countries such as the USA, where
universal healthcare is not provided, there are still issues surrounding lengthy wait
times for treatment—especially for those without insurance.

There are now numerous studies that demonstrate long and growing wait lists
in a variety of OECD (Organization for Economic Cooperation and Development)
countries. Australia, Canada, Denmark, Finland, Ireland, Italy, Netherlands, New
Zealand, Norway, Spain, Sweden, and the UK have all reported significant wait time
challenges within their healthcare systems (Siciliani and Hurst 2004). One report
stated that 38% of patients wait at least 4 months for elective surgery in the UK, 27%
in Canada, 26% in New Zealand, and 23% in Australia (Hurst and Siciliani 2003).
Another showed that 89% of patients waited more than 3 months for cardiovascular
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procedures in the UK, 47% in Canada, and 18% in Sweden (Blendon 2002). The
excessive nature of these wait times is highlighted by a Canadian study that surveyed
physicians across the provinces and across specialties. Each physician was asked to
give both the length of time a patient should expect to wait for treatment as well
as their own assessment as to what would be the maximum recommended waiting
time. In 88% of the cases (each case representing a different specialty and province),
the expected waiting time was significantly longer (Esmail 2005). The same study
suggested that overall average waiting time was 92% higher in 2004 than it was in
1993. In a separate study, 19% of patients who were surveyed after having visited
a specialist reported having been adversely affected by the length of the waiting
time (Sanmartin 2004). Both these studies face the obvious criticism that they are
based on surveys and not concrete waiting time data, but they nonetheless highlight
the fact that, in the opinion of both the professionals in the system and the patients
using it, wait times have reached unacceptable levels.

Basic queuing theory demonstrates that wherever demand and/or service times
are stochastic, there is the potential for the development of a queue (see Chapter 2
for a review of queuing theory). It has also demonstrated that small changes in the
distributions of the demand and/or the service times can have significant impacts on
the nature of the resulting queue, suggesting that health systems are well-served
ensuring that they are running in an efficient manner. Of course, if the system
is seriously under-capacitated, then improvements in the management of the wait
list will fail to have any major impact. Conversely, if the system is seriously over-
capacitated, then multiple wait list management policies will likely perform equally
well. Thus, the management of wait lists becomes crucial only in that narrow range
where capacity is sufficient but only just so. Of course, it is within this narrow range
that a health system must function if it is run most efficiently.

Few systems face more variability than healthcare. Demand and/or supply are
often highly stochastic. Even for planned procedures such as elective surgeries, it
is not the demand that is fixed but the number of scheduled surgeries for a given
day. The daily arrivals of new requests for surgery remain a stochastic process.
Similarly, very few medical procedures are deterministic in their actual service
times. For example, a computed tomography (CT) scan scheduled for 15 min may
take anywhere from 10 min to half an hour. This, statistically, is the nature of
healthcare where unexpected complications and delays are common place. The
result is that queues are ubiquitous throughout the system. Of course, variability
can be managed if capacity is increased sufficiently and one is willing to allow for
a significant amount of idle time. However, many health systems, on top of dealing
with significant variability, are chronically short on capacity as well. Rural areas
for instance are most often the hardest hit in terms of a dearth of providers. Thus,
the chronic lack of capacity combined with significant variability means that health
systems are generally dealing with significant patient access challenges.

Wait lists arise because demand cannot be met immediately, and thus a queue
forms. For the purposes of this chapter, the management of the wait list will
refer to the process of determining when and in what order those patients in the
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queue are going to receive treatment. There are, of course, other aspects of wait
list management that could be discussed, but the purposes of keeping this chapter
succinct we will narrow the scope as outlined.

Operations researchers have applied an impressive array of methodologies in an
effort to improve resource management and, therefore, improve accessibility and
quality of care. This chapter provides the reader with an overview of the work to
date as well as some insight into general policies that have proven useful and further
challenges that remain to be tackled. For many health services, the primary method
for managing queues is through the appointment schedule, and thus we will often
alternate between talking about patient access and determining a scheduling policy.

Patient access decisions can be divided into two stages. The first stage involves
the day-to-day decisions as to how many patients to assign for a given procedure
each day within a booking window (e.g., the number of days in advance an
appointment can be set). This is often referred to as the advanced scheduling
problem. It is complicated by the common reality that there exist multiple priority
classes of patients (differentiated by the urgency of the need for a health service) all
competing for a single resource. Thus, the decision facing the resource manager is
to look at the current booking slate (number of patients of each priority class booked
into each day for the duration of the scheduling window) and determine where to
book each patient from each priority class. This problem is even further complicated
by the reality that not all patients will necessarily show up for their appointment, and
different patients may in fact have different service time distributions and vary in the
type and amount of resources they require.

Surgical scheduling is a classic example where there are multiple priority classes
within each type of surgery competing for time in the operating rooms as well
as time in the hospital. Thus, the optimal policy needs to take into account the
stochastic nature of both service times (operating room time and length of stay in the
wards) in order to determine the best schedule. Moreover, outside constraints (e.g.,
surgeon availability) may impose further restrictions on the potential scheduling
strategy. This is just one example of how the human element often plays a significant
role—whether it be the patient who cannot make the appointed time or the provider
who influences the potential form of the scheduling policy. The importance of
each potential complication may vary depending on the context. For instance,
in outpatient clinic scheduling, no-shows are a major factor, whereas in surgical
scheduling, they are not. The form of the objective function may also vary depending
on the context. Is it to minimize wait times, maximize profit through ensuring high
throughput, or ensuring that the majority of patients in each priority class meet a
prespecified wait time target? All of these, as well as others, may be of interest to
the various stake holders in the decision-making process that drives patient access.

But even once the decision regarding how many patients to book into a given
day has been determined, there remains a second stage of the decision-making—a
further scheduling problem regarding how much resource time to allocate to each
patient and in what order. This is often referred to as the appointment scheduling
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problem. Most formulations of this problem have attempted to set the appointment
time of each patient so that some combination of patient wait time, resource idle
time, and overtime is minimized. Again, there are complications to the standard
problem, including no-shows, resource breakdown or interruption, and the question
of how one weights the three components in the objective function.

The combination of an advanced schedule and an appointment schedule provides
a complete policy for managing patient access from decision-to-treat date to the
date of service. In other words, the combination of the two outlines when and in
what order patients in the queue will receive service. For those scenarios where
multiple resources are used in sequence, a potential third consideration for patient
access is patient flow. Poor downstream capacity planning can disrupt patient flow
leading to unforeseen cancelations and backlogs disrupting even the most efficient
schedules. However, for the purposes of this chapter, we will concentrate on the
scheduling issues and not capacity planning. Nonetheless, it is worth noting that in
reality, the implemented scheduling policy clearly impacts on the required capacity,
and the available capacity will clearly impact on the optimal scheduling policy. We
refer the reader to Chap. 7 for a more detailed analysis.

A major stumbling block often faced by those seeking to manage patient access
is the inaccurate or incomplete nature of demand data. Demand arrives once a
decision to treat has been made, but this date is often not captured, leading to
wait times that are usually underestimates. Oftentimes, a patient’s total wait time
consists of a number of wait times (e.g., time to physician consult, time from
physician to specialist consult, time from specialist to actual treatment), all of which
are captured in different systems further exacerbating the challenge. Furthermore,
data about demand for health services is often censored since most systems record
actual appointment dates and times, and not requested dates and times. Finally, it
is often problematic to base conclusions on collected wait times simply because
organizations differ on what they consider to be the start of the wait time.

Both the appointment scheduling problem and the advanced scheduling problem
have been tackled in a wide variety of applications and using a wide variety
of methodologies. Applications include surgeries, outpatient clinics, diagnostic
imaging, and hospital ward management. Methodologies include stochastic linear
programs, approximate dynamic programming (ADP), Markov decision processes,
simulation, and queuing theory. We provide an overview of all these attempts at
tackling what has proved to be a very challenging and fruitful area of healthcare
management for the operations research community.

The remainder of this chapter is organized as follows. Section 2 will provide
an overview of the research done to date on appointment scheduling problems
detailing the methodologies used, the variations of the problem studied, and the
policy insights that can be gleaned. Section 3 does the same for the advanced
scheduling problem. Section 4 provides a brief summary of research dealing with
patient flow. Finally, we conclude with future challenges and insights in Sect. 6.
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2 Appointment Scheduling

The appointment scheduling problem seeks to determine the optimal start times for
n patients who are scheduled for service on a particular day. The goal is often to
minimize some combination of server idle time, patient wait time, and overtime.
Server idle time occurs whenever a service finishes before the start time of the next
patient. Patient wait time occurs whenever the accumulated service times and idle
times of previous appointments extend beyond the start time of the current patient.
Overtime occurs whenever the prespecified length of day is exceeded. Here, the
management of patient access is reduced solely to the problem of scheduling a set
number of patients for a particular day.

One of the earliest papers on appointment scheduling is the work of Charnetski
(1984) in the context of surgical scheduling. In this chapter, the author looks solely
at waiting time and idle-time costs and seeks to minimize a ratio of the two costs by
intelligently choosing the start times for each surgery. A simulation model is used
to test various scheduling policies that seek to determine the optimal allocation of
time for each surgery providing an efficient frontier for the best scheduling policies
among the ones tested in the paper.

Ho and Lau (1992) similarly attempt to minimize a combination of physician idle
time and patient wait time by testing a number of scheduling rules across a variety of
scenarios characterized by the probability of a no-show, the coefficient of variation
of service times, and the number of patients per clinical session. They demonstrate
that the Bailey–Welch (Ho and Lau 1992) scheduling rule (schedule n patients at the
beginning of the day and then separate all subsequent appointments by the average
service time) does reasonably well in a number of the scenarios.

More recently, Denton and Gupta (2003) provide a stochastic linear program-
ming approach that also solves this classic appointment scheduling problem. Based
on a large set of sample paths of potential service times, Denton and Gupta develop
a two-stage stochastic linear program to set the start times for a fixed number of
services based on a weighted average of idle time, wait time, and overtime costs.
One result demonstrated by their model and also earlier by Wang et al. (Wang
1993), is that, provided services times are i.i.d., and wait time and idle time costs
are the same for all appointments; the start times exhibit a “dome” shape. That
is, start times are more tightly bunched at the beginning of the day and at the
end and are more spread out in the middle of the day. The dome structure would
seem to accomplish the same goal as the Bailey–Welch scheduling rule (avoiding
idle time at the beginning of the day) without imposing such a wait time burden
on patients. They also demonstrate numerically instances where scheduling based
on mean length of service time is reasonable and highlight the importance of the
variability of service time in setting an optimal schedule (Denton and Gupta 2003).
Finally, they demonstrate that a heuristic that books patients for service from least
to most variable performs very well in a range of scenarios. More recent work by
Denton extends the model to a situation where the number of patients scheduled in
a day is uncertain due to the arrival of unscheduled appointments.
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Gul et al. (2011) look at the impact of variable surgical times. They use a discrete
event simulation to evaluate 12 different appointment schedules in an effort to
minimize a weighted combination of wait times and overtime. The authors then
seek to improve these appointment schedules through a bi-criteria genetic algorithm
that takes into account both total patient waiting time and surgical suite overtime.
Finally, they expand into the area of advanced scheduling by allowing surgeries to
be bumped to another day. They test four different sequencing schemes: increasing
mean of procedure time, decreasing mean of procedure time, increasing variance of
procedure time, and increasing coefficient of variation of procedure time. Patients
are separated by the estimated procedure time of the previous patient (with that
estimation varied over various percentiles of the distribution). They conclude that
the longest processing time first leads to high expected overtime while the shortest
procedure time first appears to perform well in a number of settings.

Begen and Queyranne (xxxx) provide an integer programming approach to the
appointment scheduling problem. Initially they assume that the distribution of
processing times is integer and follows a known discrete probability distribution.
They demonstrate that an optimal solution can be found in polynomial time. They
then relax the assumption of a known discrete probability distribution and determine
the necessary sample size of surgical times to obtain provably near-optimal solutions
with high probability. While they provide an analytical model that can be solved for
specific instances, they do not provide any generalizable policy insights.

Green et al. (2006) look at a scheduling problem for diagnostic imaging that is
somewhat of a departure from the above-cited papers on appointment scheduling.
Here, the appointment schedule is already set (a fixed number of outpatients are
scheduled uniformly throughout the day) so that the issue instead is whether to
serve a scheduled outpatient or whether to give the current service slot to a waiting
emergency patient or inpatient. Decisions are made based on the number of waiting
outpatients, inpatients, and emergency patients, and the optimal policy is found
through formulating this as a stochastic dynamic program. They demonstrate that
the optimal policy lies in the set of monotone switching curve policies where
outpatients are served as long as the number of waiting outpatients exceeds a certain
threshold and where that threshold is a function of the number of waiting inpatients.
As the number of waiting inpatients increases, the threshold naturally increases
as well.

Since the form of the optimal policy in their model is complex, Green et al.
further tested the sensitivity of a number of heuristic appointment policies using
a simulation model. They looked at service (i.e., the ordering of patients) and
appointment policies separately. The service policies include critical-first and a
linear approximation heuristic based on their model. (This heuristic essentially
simplifies the original policy to allow for easier implementation.) Appointment
policies include fill all slots, balanced, news-vendor, and fill alternate slots. The
research suggests that if a threshold appointment schedule is used, then fill all
slots and critical-first priority rules result in the best capacity management for the
majority of scenarios. Waiting costs as an end-of-day penalty refer to the costs
applied when an inpatient is not served by the end of the day, or in the case of
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an outpatient, the overtime associated with examining a patient after hours. When
the waiting costs and revenue are close, then the linear approximation heuristic is
the better priority rule. If patient service takes priority, then the balanced heuristic is
preferable to the fill all slots. If waiting costs are high, the fill alternate slots policy
appears to be the most profitable (Green et al. 2006).

Another important aspect of appointment scheduling is the sequencing of patients
on the day of service. Sequencing heuristics, in the context of surgical scheduling,
such as shortest case first (SCF), longest case first (LCF) and first-come-first-served
(FCFS) or first in first out (FIFO) were investigated by Dexter (Dexter and Marcon
2006). Although LCF is most commonly used in practice, Dexter suggests that it
performs very poorly. Random sequencing although trivial to implement yields poor
results in some cases (Gul et al. 2011). However, other research suggests that it is
not the length of service that should determine the sequence of patients but rather the
variability in service. Scheduling patients from the least variable to the most variable
is a good heuristic in some cases (Denton and Gupta 2003). Of course, this may be
difficult to implement in practice as it often equates to leaving the more complex
cases to later in the day which may not be advisable—depending on the particular
type of health service under investigation. Another possibility is to schedule patients
based on the ratio of variation in service time to wait time cost. However, as wait
time costs are difficult to quantify, such a policy is less easily justified.

The advantage of the appointment scheduling problem is that it has a neatly
contained scope, and yet, nonetheless, analytical solutions and policy insights have
largely been contained to simplified models that ignore key components such as
the prioritization of patients and the variability in service distributions between
patient classes. Such models are motivated by the goal of improving efficiency on a
particular day of service. This may ultimately translate in an increase in the number
of patients that can be scheduled on a particular day and therefore a decrease in the
waiting time from the requested date of service to the scheduled date of service.
However, most appointment scheduling models do not explicitly consider this.

3 Advanced Scheduling

This section breaks down advance scheduling problems into those composed of
scheduling a single day, and problems of scheduling multiple days in advance.

3.1 The Single-Day Scheduling Problem

The advanced scheduling problem is broader in scope than the appointment schedul-
ing problem. We will first discuss the restricted problem of scheduling a single
day (or period) before discussing the multi-period scheduling problem. The single-
day advanced scheduling problem somewhat blurs the line between appointment
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scheduling and advanced scheduling (since it does not deal with the issues arising
from day-to-day scheduling) but more aptly fits under advanced scheduling as these
models assume the appointment times have been set while the number of patients
booked into a day is flexible.

Green and Savin (2008) use a queuing approach to investigate the scheduling of
patients for physician appointments. They assume equal appointment lengths and
seek to determine the panel size (e.g., number of patients per physician) that can
reasonably be handled given a fixed rate of demand associated with each patient
on the panel. The model is quite stylized reflecting its high-level goal of capacity
planning. They take into account the reality that patients do not always show up
to a scheduled appointment thus allowing physicians to carry a larger panel than
they might otherwise. Their model includes backlog-dependent cancelation rates
and provides upper and lower bounds on the size of the backlog for large patient
panels.

Another paper that relaxes the assumption of a fixed number of appointments
for a given day is the stochastic model developed by Muthuraman and Lawley
(2008). They look at a single day’s bookings and seek to determine the necessary
overbooking in order to offset the probability of no-shows. Here, the appointment
times are fixed, but it is up to the clinic manager to determine when to stop accepting
patients for that day. They seek to minimize an objective that takes into account
revenue generated by each patient seen as well as wait times. This work is extended
to the case where patients may have different no-shows rates in Zeng et al. (2009).

Kim and Giachetti (2006) solve a very similar problem by developing a stochastic
overbooking model that seeks to maximize revenue by using overbooking to
compensate for no-shows while also incorporating walk-ins. They too do not seek
to determine actual start times for each appointment but rather to set the optimal
number of appointments that should be accepted each day. They demonstrate that
their model can do significantly better than one that simply adds the mean number
of no-shows minus the mean number of walk-ins to the number of appointments to
accept.

Gupta and Wang (2008) incorporate into their model the additional complication
of patient choice. They build a Markov decision process (MDP) model that seeks to
determine the number of advanced appointments to accept for a specific day given
a known distribution of same-day demand. Patients call in with specific requests for
a particular time of day and physician. The clinic’s decision is simply to look at
the current slate for that day and determine whether to accept or reject that request.
They demonstrate that for a single physician’s clinic the optimal policy is to allow
patients to book any one of the unreserved slots up to a booking limit.

One final paper in this vein is the work of LaGanga and Lawrence (2007) who
use a simulation model to demonstrate the value of overbooking in a variety of
settings for an outpatient clinic where the trade-off is between patient wait times and
overtime. They again ignore the issue of start times by assuming that appointments
are evenly spread out throughout the day. Their model demonstrates that the utility
of overbooking is dependent on the size of the clinic and the no-show rate.
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3.2 The Multi-day Advanced Scheduling Problem

All the above research considers a single day and seeks either to determine the start
times for a fixed number of appointments or else seeks to determine the optimal
number of appointments to schedule into fixed appointment lengths. Concentrating
on objectives that deal only with rewards or costs associated with a single day
(e.g., idle time, overtime, and wait time) neglects the fact that for most healthcare
operations, demand that is unmet on one day must be met on another.

The issue of scheduling patients in a multiday context has received much less
attention in the literature with one notable exception—the scheduling policy for
outpatient clinics proposed by Murray and Tantau (1999) called Advanced Access
or open access. The idea behind this policy is to combat the real issue of no-shows by
attempting to serve today’s demand today thus negating the need for any day-to-day
wait list management as demand does not spill over from one day to the next. (This
is a bit of an extreme description of open access as in reality some appointments,
such as follow-up appointments, have to be scheduled in advance, but the goal of the
policy is to keep these to a small percentage of the whole.) Under the open access
policy, clinics are largely left unscheduled, and clients call in at the beginning of the
day to book an appointment for later that same day. This simple scheduling policy
has generated a surprising amount of research that has sought either to validate it or
suggest alternatives.

One such attempt to validate open access is the work of Kopach et al. (2007)
where they develop a simulation model to determine the impact of four clinic
characteristics on the successful implementation of open access—namely (1) the
fraction of patients being served on open access, (2) the scheduling horizon for
patients scheduled in advance, (3) the existence of provider care groups, and (4)
the permissibility of overbooking. They demonstrate the potential for open access
to improve throughput but caution that too aggressive an implementation of open
access may harm the continuity of care.

Robinson and Chen (2009) use a linear programming model that seeks to
minimize a combination of patient waiting time, physician idle time, and overtime
to demonstrate that, for clinics experiencing a significant no-show rate, same-day
booking outperforms a traditional advanced booking policy with no overbooking.
Moreover, they show that the added flexibility of being able to defer some demand
till tomorrow improves on a strict adherence to open access.

Patrick (2012) uses a MDP model to demonstrate that, for a clinic primarily
interested in maximizing revenue, a short booking window with the potential
for overbooking can do as well as open access and with much more predictable
throughput thus requiring less capacity. Moreover, for a clinic primarily concerned
with resource efficiency, the policy developed by the MDP model outperforms open
access in a wide variety of scenarios. The policy developed is described as delayed
open access. It fills remaining capacity in a given day’s schedule with any new
demand but resists overbooking unless the queue size reaches a derived threshold(s).
At that point, it will begin to overbook. Depending on the scenario, the policy may



412 J. Patrick and A. Aubin

then simply revert to open access and book any additional demand into today or
it may book only one additional client today and then delay again until another
threshold triggers a second overbook. The model is a simplification of reality in that
it ignores stochastic service times and thus treats overtime as simply the number of
appointments above the capacity limit.

Perhaps the most realistic model for outpatient scheduling that has been devel-
oped to date is the work of Liu et al. (2009). They build a MDP model that tracks the
number of days in advance each patient is booked and uses a no-show distribution
that is dependent on the number of days between the booking date and the scheduled
date. They also allow for advance cancelations that free up reusable capacity. The
downside of such a complete model is that it is no longer solvable. The authors
therefore develop heuristic policies based on applying a single step of the policy
iteration algorithm starting with a “good” initial solution. In line with other work,
they demonstrate that a 2-day booking window outperforms open access and that
they can improve on an initial solution by applying a single step of policy iteration.

What the majority of the above research suggests is that a short booking window
with overbooking will outperform open access. Liu et al. (2009) as well as Robinson
and Chen (2009) demonstrate the value of a 2-day booking window, while Patrick
(2012) demonstrates that the optimal booking window may stretch out to 5 days
depending on the variability in demand, the ratio of demand to capacity, and
the severity with which the no-show rate increases as the appointment lead time
lengthens.

The only paper described above that explicitly captures patient wait times over
days is the Liu et al. (2009) paper. This is unsurprising as tracking patient wait times
creates challenges of problem size that make many methodologies intractable. As a
result, Liu et al. (2009) resorted to a heuristic approach. The challenge is that in the
advance scheduling problem, the decision depends on the number of appointments
already booked into each day of the booking horizon. This yields a state space that
is computationally prohibitive either for a linear program or a MDP model.

One methodology that has been applied to the multi-period advanced scheduling
problem and that seeks to overcome this issue of problem size is that of ADP.
Schutz and Kolisch (2010) provide an advanced scheduling model for a single
future day for a diagnostic imaging department that seeks to maximize revenue by
selectively choosing to accept or reject requests for service over the course of the
booking window. Similar to Liu et al. (2009), they allow for no-shows and advance
cancelations but also incorporate variable services times. To derive a solution, they
implement a simulation-based approach to ADP developed by Gosavi (2004) that
allows them to formulate a near-optimal policy. They then extend their work to a
multiday problem where booking occurs over a period of days instead of just one.

Patrick et al. (2008) study a similar problem where patients of varying priority
classes are scheduled into a booking window of available treatment days. The goal
is to ensure that the majority of patients are seen within priority-specific wait time
targets. The authors develop a MDP model translated into the equivalent linear
programming form. They then solve the linear program under the restriction that
the value function is assumed to take a specific form. This restriction is required in
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order to make the linear program tractable. The chosen form of the approximation
is, of course, crucial to the success of the resulting policy and is an area of active
research in ADP. The authors provide a solution that is easily translated into a readily
implementable policy and derive bounds on the necessary capacity for this policy
to function well. The derived policy books the highest priority class into the first
available slot, while lower priority classes are given booking windows (with the
upper bound of the window being the wait time target) within which a patient of
that priority class can be booked. If no space is available in the booking window for
a given patient, then overtime is used to alleviate the stress on the system. Overtime
is also used if there is no available space for the highest priority class within its wait
time target. This policy is coupled with a capacity plan (how much overtime capacity
to anticipate given a certain base capacity) in order for the policy to function well.

Saure et al. (2011) extend the work of Patrick et al. (2008) to the scenario of
radiation treatment scheduling. This scheduling problem is complicated by the fact
that scheduling a single patient does not equate to one appointment but rather to
a series of appointments, all of which are not necessarily the same length. They
too implement the linear programming approach to ADP in order to derive a near-
optimal scheduling policy. Conforti et al. (2010) also look at radiation treatment
scheduling. Rather than resort to an approximation scheme, they simplify the
problem by developing a linear program that seeks to minimize mean wait time
or maximize throughput. This allows them to avoid tracking actual wait times.

It is clear from the above literature review that the multiday advanced scheduling
problem is typically more challenging than the single-day advanced scheduling
problem. As a result, research in this area has resulted in advances in the area of
heuristics and approximation methods.

In this subsection, we have concentrated on applications to outpatient services
primarily. There are also a number of papers that deal with the advanced scheduling
of surgeries. We refer the reader to the review by Gupta (2007) and Chap. 5 of this
book.

4 Patient Flow

Systems where patients move through a number of services from first entry into
the health system to exit can present significant challenges to patient access. A lack
of downstream capacity can result in bottlenecks that create a ripple effect on all
upstream services. Examples within the acute care setting include the cancelation
of surgeries due to a lack of beds and the escalation of wait times in the emergency
department due to the inability to readily move admitted patients to the wards. This
last example is in turn the result of the inability to readily move patients out of the
acute setting and into more appropriate facilities in the community once the acute
phase of their treatment is done.

Problems where multiple resources are consumed in sequence are understandably
quite complex and therefore difficult to model. Often, the only feasible methodology
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is discrete event simulation, or a very stylized queuing model. Still, some attempts
have been made of which we provide a sample as illustrative of the work done in
this area.

Oddoye et al. (2009) formulate a goal programming model with simulation in an
attempt to eliminate bottlenecks impeding optimal clinical work flow. The model
was successful in determining the impact of disruptions such as staff sick days
or an increase/decrease in beds. The goal programming model sought to balance
optimization and equity of allocation (Oddoye et al. 2009). The model provides
users with a capacity estimate given predetermined costs associated with each
additional bed and the penalty associated with increased wait time for patients.

Koizumi et al. (2005) develop a queuing network model that tracks the flow of
psychiatric patients through a series of treatment units depending on the severity of
their condition. They develop a methodology for extending service times in order to
account for the reality that patients may remain in a facility longer than necessary
due to a lack of resources at the more appropriate facility. Their model helps identify
where increases in capacity might be most beneficial.

Thompson et al. (2009) built a MDP model that seeks to determine when it is
optimal to transfer patients between wards in an attempt to anticipate demand surges
and thus prevent blockages. Due to the complexity of the model, they resort to
random sampling in order to generate an approximate solution that they demonstrate
in practice results in a more efficient use of resources. The authors demonstrate that
a policy that transfers patients in anticipation of demand surges can both improve
revenue and reduce the time for an admitted patient to receive a bed.

Patrick (2011) develops a MDP model that determines the necessary access for
a hospital to maintain the census of patients waiting for long-term care below a
given threshold. This model is augmented with a simulation model that can be used
for capacity planning in long-term care in order to meet both the threshold census
levels for multiple hospitals in a region as well as wait time targets for those clients
who apply for long-term care directly from the community. Again, the link to wait
list management is that such capacity planning downstream is a pre-requisite for the
success of the scheduling policies that more immediately impact on the management
of the wait list.

As these articles demonstrate, the complexity of multiple stages of service means
that methodologies tend to depend on approximations and/or heuristics to generate
solutions. Patient flow is thus one of the areas in wait list management that remains
most challenging.

5 Case Study: Managing Patient Access
to Diagnostic Imaging

In this section, we provide a case study from one of the authors past work on
patient access to diagnostic imaging (Patrick et al. 2008) and specifically for
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scheduling patients for CT scans. Diagnostic imaging is complicated by the presence
of multiple priority classes competing for a single resource. Lower priority demand
is scheduled in advance, but if that is not done well, it can lead to either unacceptable
wait times for later-arriving higher priority demand or else high levels of overtime.
Thus, the balancing act is between insuring that wait time targets are met for all
priority classes while minimizing, as much as possible, the use of overtime.

The model developed in Patrick et al. (2008) assumes that there are I different
priority classes and that service times are deterministic and of equal length. This is
a simplification as, in reality, patients are assigned to 15, 30, 45, or 60 min slots.
However, since all assigned lengths are multiples of 15, demand can be viewed as
the number of requests for 15 min slots with a patient requiring a 30 min scan being
viewed as demand for 2 slots. The model has actually been adapted to incorporate
different scan lengths with predictable results that will be discussed below. Here, we
present the simpler model.

Since this is a natural sequential decision problem, it was modeled as a infinite
horizon, discounted MDP model. A MDP model bases a periodic decision or action
on a set of information called the state. Demand arrives according to a known
distribution and is collected each day, prioritized by a radiologist and returned to the
booking clerk for scheduling. The state of the system, denoted as s = (x,y), (i.e., the
information upon which a decision is based) consists of the current booking slate,
x = (x1, . . . ,xN), where xn represents the number of scanning slots already booked
on day n as well as the waiting demand, y = (y1, . . . ,yI), where yi represents the
number of patients of priority i waiting to be booked. Based on this information,
the booking clerk must determine an action, (a,z), where the components of a,
ain, represent how many of the waiting priority i patients to book on day n and
the components of z, zi, represent how many priority i patients to serve through
overtime. Costs, represented by c(a,z), are incurred if demand is not booked (delay
cost), if demand is booked further out than a priority-specific wait time target, or if
overtime is used to satisfy demand.

An MDP model is solved by determining the value function, V π(s), which is a
policy-specific vector that represents the total discounted cost from starting in state
s and using a policy π to govern future actions. The policy π defines what action to
take in every state. The cornerstone of the MDP approach is the Bellman equation
written as:

max
a

{

c(s,a)+λ ∑
s′∈S

p(s′|s,a)V (s′)
}

∀s ∈ S (15.1)

This equation balances the cost, c(s,a), of taking a given action, a, in a given state,
s, against the expected future costs associated with that action. The major challenge
in solving an MDP is that, for applications such as the one described above, the
computational costs of solving the Bellman equations and finding the optimal policy
are prohibitive due to the large size of the state space. For instance, if the booking
clerk is booking over a 30-day window and there are only 10 scanning slots in a
day, then there are 3010 different configurations of x. It thus becomes impossible to
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determine the value function for every possible state for any policy. This is referred
to as the “curse of dimensionality.”

One possible solution to this dilemma is to assume that the value function has a
certain parametric form and solve over that reduced space instead. This approach is
often referred to as approximate dynamic programming or ADP. For instance, in the
case study presented here, we assumed that the value function had the form:

V (s) =V0 + ∑
(i,n)

Vinxin +∑
i

Wiyi (15.2)

where V0,V,W are tunable parameters. Thus, the value function, V (s), is assumed
to be a linear function of the number of appointment slots already booked and the
number of patients waiting to be booked. There are a number of methods available
for choosing the best parameter values for the value function approximation with
the two broad streams being a simulation-based approach or a linear program-
ming approach (Bertsekas and Tsitsiklis 1996; Powell 2011). There is, however,
no methodology for determining what is the best form for the value function
approximation. Quite often, an approximation that is linear in the state vector, as
above, works well, but it is certainly likely that there are other more sophisticated
approximation schemes that would work better. In this work, we used a linear
programming approach to ADP to determine the optimal linear approximation to
the value function. The full details of the formulation can be found in Patrick et al.
(2008). Here, we present some results to illustrate some important aspects of patient
access.

For each priority class, the policy gives a booking window in which clients of
that priority can be booked. The upper bound on that window is the wait time
target, while the lower bound depends on a number of factors including the demand
rates for higher priority classes. Clients from each priority class are booked into
the appropriate window starting from the lower bound to the upper bound for the
highest priority class but starting from the upper bound and moving forward to the
lower bound for all other priority classes. This gives the booking clerk the greatest
flexibility in terms of insuring capacity is available for the highest priority class
while still meeting the targets of the lower priority classes. The solution to the
model also gives a threshold priority class such that if a patient is from a priority
class that is classified as more urgent than the threshold priority class and there
is no scanning slot available in the appropriate booking window, then that client
is serviced through overtime. (Should there not be sufficient overtime to service
all eligible clients, then the lower priority clients booking decision is delayed.) All
other clients simply have their booking decision delayed should there be no capacity
available in the appropriate booking window.

In addition, the ADP approach yielded a capacity constraint that specified the
necessary available overtime capacity for a given regular-hour capacity in order
for the above policy to function well. This is a surprising result in that there is
no guarantee that an ADP model for scheduling would give any insight into the
required capacity. However, the nature of the conditions required for proving the
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Table 15.1 A comparison of AOP and the booking limit policy for a small
outpatient clinic with 95% confidence intervals

Approximate optimal Booking limit policy
Criteria Priority class policy BL = (1,7,9)

Percent P1 (0.18,0.26) 0
late P2 0 (0.25, 0.59)

P3 0 (47.4, 48.16)
Overall (0.09,0.13) (9.56,9.82)

Percent P1 (1.49,1.63) 0
Served through P2 0 0
overtime P3 0 (20.19, 21.75)

Overall (0.71,0.85) (4.04,4.36)
Utilization (98.97,99.13) (95.59,95.87)
percentage

Note that P1 refers to priority class 1, P2 to priority class 2, and P3 to priority
class 3

optimal form of the approximation provided a lower bound on overtime capacity
that nicely links the capacity planning problem and the scheduling problem together.
Both problems clearly impact on patient access and are generally treated in isolation
when in reality they are very much related.

The paper in Patrick et al. (2008) provides simulation results for running the
derived policy from the ADP model in four different settings—small and large
outpatient clinics and two different-sized hospitals including one based on data from
a hospital in Vancouver. The largest-sized problem consisted of a hospital with
the capacity for 126 15 min slots per day. Current practices are rather difficult to
simulate. For comparison purposes, we consider a strict booking-limit policy that
will not book a lower priority patient into a given day unless the number already
booked is below a threshold. For a small-sized clinic, such a booking-limit policy
can be determined by enumeration. Table 15.1 provides the comparison between the
approximate optimal policy (AOP) and the optimal booking-limit policy for a small
outpatient clinic with three priority classes. The results demonstrate how the AOP
trades off a small increase in overtime use for the highest priority class in order to
greatly improve the timely access of the lower priority classes. The intuition is that
by using overtime in a judicious fashion to service the highest priority class, the
booking manager can avoid the congestion that leads to lengthy wait times for the
lower priority classes. Thus, the policy acts proactively to avoid congestion rather
than reacting to congestion that has already occurred.

The above case study demonstrates the significant impact on patient access of an
intelligent advanced scheduling policy. Poor scheduling can lead to unnecessarily
lengthy delays in treatment and significant variation in wait times even within the
same priority class. In contrast, the kind of policy derived from the above model
provides equitable and timely access while using resources as efficiently as possible.
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6 Conclusion and Future Research

While there now exist some excellent models for the appointment scheduling
problem, there remain some serious computational challenges that make solving
realistic instances challenging. Exact solutions are often too time-consuming, and
thus approximation methods come into play. However, with these methods, we need
some means of determining a bound on the optimality gap between our approximate
solution and the true optimal solution. This is a serious issue in the ADP literature
where the bounds that have been developed to date are too loose to be of much
practical value. There are also complications to the appointment scheduling problem
that need to be addressed. What, for instance, is the impact of interruptions on the
form of the optimal policy? Does the dome shape still hold if interruptions are
known to follow a nonstationary distribution? Surgical scheduling, as an example,
is often interrupted by the arrival of an emergency surgery, and these arrivals are
much more likely at certain times of the day. Surely, this may impact on whether a
dome-shaped policy remains optimal? Another issue is that much of the literature
assumes i.i.d. service times which is not true in a number of settings and would
impact on the form of the optimal policy.

In advanced scheduling there are perhaps even more open challenges. While the
model in Patrick et al. provides an easily implementable policy, it is unlikely to
be optimal due to its simple approximation architecture. Can a better approximation
architecture lead to a better policy? Schutz et al. (Schutz and Kolisch 2010) improve
on the Patrick (Patrick et al. 2008) model by incorporating no-shows and stochastic
service times, but their policy loses any easily implementable form and in fact
is counterintuitive at times perhaps because of the limitations of the simulation-
based approach. Thus, there would seem to be plenty of opportunity for improving
both policies. In addition, neither policy has yet been implemented, and thus an
observational study of the impact of such policies in practice would be an interesting
avenue of research.

Finally, perhaps the most obvious area where continued challenges lie is in
patient flow. The movement of patients within an acute hospital is extremely
complex and driven by any number of uncertain events. Unexpected complications,
bed blockages downstream, and staffing shortages are just some of the factors that
come into play. While queuing models can help, they are necessarily high level in
order to maintain tractability. Simulation models, on the other hand, have tended
to get bogged down in details that make generalizable insights next to impossible.
Moreover, neither methodology optimizes patient flow leaving it to the ingenuity of
the modeler to determine potentially useful policy changes.

It is encouraging that many health systems have begun to recognize the potential
for operations research to improve healthcare management. The challenge that
patient access management presents to the operations research community provides
an abundant opportunity for researchers and participants alike to have an impact on
patient access thus serving to improve the quality of care that lies at the heart of
well-functioning health systems.
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Chapter 16
Coordinating Health Services: An Operations
Management Perspective

Thomas R. Rohleder, David Cooke, Paul Rogers, and Jason Egginton

1 Introduction

The rising costs of healthcare in the USA and around the world are well documented.
A recent report from the Commonwealth Fund (Davis et al. 2010) showed that costs
throughout the world have been rapidly increasing in recent decades. Driving these
cost increases are new technologies, tests, patient access, inefficiencies, and myriad
other factors. Such cost increases might be justified if the healthcare delivered
was of higher quality. However, this is highly questionable. For example, in the
previously referenced report by Davis et al., the USA was last of seven major
developed countries in overall health system performance (see Fig. 16.1). Yet, the
cost of healthcare in the USA is nearly double the cost of the top performer, the
Netherlands.

The Commonwealth Fund Report has several different categories that make up
health system performance. One of the components of the Quality Care category is
Coordinated Care. Based on the rankings in Fig. 16.1, it appears that this component
may have some influence on both the quality of care and healthcare expenditures.
In the context of the Commonwealth Report, Coordinated Care focuses on how
well care is managed among health services from a medical perspective. However,
from an operations research perspective, coordination is also about having the right
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Fig. 16.1 Report on healthcare system performance: Commonwealth Fund (2010)

quantities of healthcare resources and how well they are managed together. This
latter perspective of coordination affects the former by ensuring patients have access
to the needed healthcare resources and flow through them effectively and efficiently.

Why is this type of coordination important? There are many reasons, including
avoiding duplication of services. Without coordination, the same information from
patients may be gathered at several points, tests may be repeated, and redundant
health services may be provided, resulting in higher cost and burden to patients.
In addition, a lack of coordination may lead to delays in patient treatment. Chronic
shortages of key resources may lead to bottlenecks and long waiting times. As a way
to avoid waiting, patients may use (or be referred to) inappropriate and more costly
resources. For example, shortages of primary care capacity often lead to increased
use of emergency departments and similar more costly and inappropriate resources
(Cheung et al. 2011). Thus, poorly coordinated healthcare resources may lead to
poor quality and higher costs.

The various symptoms of a lack of coordination may lead to lower satisfaction
for patients and result in less than optimal treatment. Potentially, deadly errors could
occur if patients receive conflicting medications or treatments. Poor coordination is
one of the issues discussed in the report “To Err is Human: Building a Safer Health
System” (IOM 1999) that notes “One oft-cited problem arises from the decentral-
ized and fragmented nature of the healthcare delivery system–or ‘nonsystem,’ to
some observers.”
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Lack of coordination of healthcare resources has been considered from many
perspectives. Clinicians look at the issue from the perspective of the frontline
healthcare provider and consider improved communication and information sharing
as a key to improvement (Sucliffe et al. 2004). Related to better communication
is the push for better patient record sharing and management, particularly better
electronic medical records (Hillestad, et al. 2005). However, we propose to look
at coordination from an operations management (OM) perspective and focus on
methods that simultaneously increase effectiveness and reduce costs.

In this chapter we will focus on how operations research can improve service
coordination in health systems. An overview is provided to show how operations
research contributes to value in healthcare systems. Next, we highlight previous
research that looks specifically at health services. Two case studies will focus on
different aspects of coordination:

• Case one uses system dynamics modeling to show the importance of coordinating
the right capacity levels of resources and the need for long-term planning models
in a regional health system.

• Case two uses discrete-event simulation to show the value of coordinating health
services within a hospital to ensure timely patient access.

Finally, we will discuss future challenges in coordinating health services that are
being driven by changes in healthcare delivery models such as the medical home,
shared decision making, and centralization of health services.

2 Background on Health Systems

Operations management within healthcare can be viewed from the traditional trans-
formation process perspective (Meredith and Shafer 2007), as shown in Fig. 16.2.
Various staff, facilities, technology, and patients are inputs to the healthcare trans-
formation process. The healthcare delivery process is the value-adding stage and
includes how the inputs are managed. The effectiveness of delivery strategies and
policies and how these are executed in the healthcare operations are key in creating
valuable outputs. Treating patients, medical and healthcare service research, and
training of healthcare staff are all common outputs for healthcare organizations. In
the end, value is defined by the patient and healthcare market. Effective coordination
of the inputs is a key to achieving high-value healthcare. High value can be defined
as achieving high system performance and low per capita costs (as highlighted in
Fig. 16.1).

A complication with understanding value in healthcare is that it entails multiple
dimensions. Certainly improved patient health or condition is one dimension of
value. However, patient perceptions of what treatment was received and how this
treatment was delivered are another dimension and may be at odds with the health
outcome. An arduous treatment process or treatment that does not use the inputs
desired by the patient may cause dissatisfaction even though the health outcome
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is positive. In this chapter we will consider value in a multidimensional context
that includes service quality, timeliness, price/cost, as well as treatment outcomes.
However, we will assume that patient outcomes are highly correlated with patient
satisfaction even though for individual patients this may not always be true.

Tension between the individual versus population-based orientation in healthcare
is another complication to understanding value. This is particularly relevant when a
health system has significant resource constraints. If the capacity for a technology
like positron emission tomography (PET) is scarce, then it makes sense from
a population perspective to allow only the most appropriate patients access to
this diagnostic/treatment. This may exclude some patients from receiving the
treatment, even though they could benefit. Thus, individual value may be sacrificed
to maximize population or system-wide value. We will consider value from both
perspectives, but focus on the system or population perspective.

2.1 Literature Review

In “Building a Better Delivery System: A New Engineering/Healthcare Partner-
ship,” the Institute of Medicine and the National Academy of Engineering (2005)
partnered with the goal “ . . . to transform the U.S. healthcare sector from an
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underperforming conglomerate of independent entities (individual practitioners,
small group practices, clinics, hospitals, pharmacies, community health centers
et. al.) into a high performance ‘system’ in which every participating unit recognizes
its dependence and influence on every other unit.” The report notes the importance
of systems engineering, operations research, and operations management as a means
to achieve health systems coordination at both the inter- and intraorganizational
levels. The report is US based; however, we believe the basic philosophy is globally
relevant. To emphasize the IOM/NAE’s suggested direction, this review will focus
on operations research-oriented literature that emphasizes resource coordination.

2.1.1 Macrolevel Health Systems Modeling

In this section we discuss macrolevel modeling that considers flows and decision
making across organizations and/or major health services functions. The focus is on
policy level decisions such as overall capacities of the organizations and functions
(e.g., hospitals, primary care). The following section will focus on microlevel
modeling that emphasizes flows within organizations or patient pathways. To some
extent, this delineation is artificial, and there will be overlaps between problem
domains and the tools used for analysis. However, there is likely affinity for certain
methods in each modeling level, and therefore, we believe separating them provides
a useful structure.

Considering the integration of healthcare systems requires conceptual and
quantitative methods that incorporate their inherent breadth and complexity. While
detailed operations problems in healthcare can rely on available or collectable data,
often healthcare systems entail elements where data are not available. Thus, research
and planning methods need the capability to include relationships without data
support.

System dynamics (SD) is a methodology that meets these requirements. Its
simple set of constructs made up (primarily) of stocks and flows are designed for
high-level model building (Sterman 2000). Stocks are accumulations in systems and
in healthcare can represent tangible elements such as patients waiting for treatment
or intangible elements such as physician’s commitment to safety. The flows control
the dynamics of the changes in the stocks by specifying the rate of transition
from one stock to another. In healthcare, systems flows can represent service rates
controlled by the capacity of resources such as physicians or diagnostic equipment.
Flows could also be the motivational forces that cause an increase or decrease of
intangible stocks such as commitment to safety. As such, the tool is effective for
considering policies that address both healthcare system structure and infrastructure.
Further, the method is designed to incorporate the effects of time lags and feedback
(Morecroft 2007). All of these aspects are prevalent when considering a systems
perspective of healthcare.
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An area where the SD approach has been applied to healthcare systems is
coordinating urgent and elective (or scheduled) care. Brailsford et al. (2004) used an
SD model focusing on the accident and emergency department (ED) of a hospital
in England. The model showed that if growth in ED patients continued, it would
require the eventual reduction of elective admissions to the hospital and missing
government prescribed patient access performance targets. The model was also used
to evaluate scenarios where some patients were seen in community-based diagnostic
centers rather than the hospital ED. Thus, this example shows some of the strengths
of SD modeling: analyzing the changes in systems over an extended period of time
and exploring broad-based policy options.

Lane et al. (2000) used SD to consider a similar environment to that of Brailsford
et al.; however, their model focused on the system effects of hospital bed reductions
on the ED. The authors noted that because of patient priority policies, decreasing
inpatient beds did not have the expected effect of delaying ED patients; rather it
caused elective surgery cancellations. Thus, an important, generalizable conclusion
from this work is that healthcare systems should be considered from a holistic
perspective that assesses performance of all system components.

The conceptual system model developed by Cooke et al. (2010) considered
a similar environment to those of Brailsford et al. and Lane et al.; however, it
emphasized the role of changing patient demographics in explaining healthcare
system capacity problems. An aging population placed increasing demands on the
EDs in the health system studied. Poor planning and coordination of the capacities of
primary care, hospital beds, and medical specialties created surprising delays in the
EDs given the new demands on the healthcare system. Using causal loop diagrams
that showed the complex interrelationships and feedback effects among the health
system elements and supporting health system data, the Cooke article hypothesized
the many reinforcing factors that created waiting time and access issues at EDs in
a Canadian health system. A more complete quantitative model developed for this
environment will be discussed in Sect. 3.

Wolstenholme (1993) developed a similar model with a focus on how elderly
patients flowed in a healthcare system in the UK. This study showed the value
of system dynamics modeling tools to enhance systems thinking. The model
identified that as posthospital care of elderly in nursing homes was passed on
to budget constrained community care entities, the indirect effect would be to
transfer even higher costs back to the National Health System (NHS) via a need
for more hospital beds and associated resources. This article, again, reinforces the
theme of coordinating multiple elements of systems for achieving effective health
systems.

2.1.2 Microlevel Health Systems Modeling

System dynamics is often a good choice of methodology for the macrolevel and
where its simple constructs have sufficient explanatory capability. However, more
detailed modeling methods such as queuing analysis and discrete-event simulation
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(DES) are often required for studying integration of healthcare services within
organizations, healthcare functions, and patient pathways. Brailsford et al. (2004)
used DES to evaluate the efficacy of streaming patients with minor issues to
separate resources within EDs. This model addressed the ED as a system within a
hospital that cares for patients with significantly different levels of acuity. Streaming
these different patient types is increasingly considered a practical way to improve
performance (Kelly et al. 2007). This type of detailed policy is generally not easy or
appropriately modeled using SD.

Levin et al. (2011) presented a case study in which they considered the effect
of increasing heart surgery volumes on ED patient access to cardiology services.
They used regression analysis to model the relationship of patient characteristics
and length of stay (LOS) at various care resources. This analysis was incorporated
into a DES model that explored options of increasing capacity and reducing patient
LOS on patient access. A unique aspect of this study is that it considered how
the resources and operations issues in one department (surgery) affect the service
received in another (ED).

Another way that detailed modeling has been applied to healthcare coordination
is looking at how upstream decisions affect downstream performance. The article by
Bekker and de Bruin (2010) used queuing analysis to report on a number of analysis
scenarios, including how operating room scheduling influences the number of ward
beds required for recovering patients. Using typical operating room schedules (i.e.,
no elective surgeries on weekends), the authors show how changing these schedules
affects the number of ward beds required. In particular, they show that front loading
surgeries on Mondays and Tuesdays lead to a more balanced load on the wards
and less overall beds are required. Haraden and Resar (2004) discussed the various
issues integrating hospital services to improve patient flow, in particular the need
for better management of variability in volumes that are created by hospital staff
and decision makers. One example from the article noted that in most hospitals,
elective surgery schedules are based on individual preferences and do not consider
the downstream patient demands in the ICU and other recovery resources. Without
coordination, the downstream recovery resources simply have to react to the highly
variable upstream decisions.

Rohleder et al. (2007) discussed facility design and implementation decisions
associated with building and locating patient service centers (PSCs) for laboratory
testing. Opening new service centers in a Canadian city where existing service
centers were being phased out led to initial underutilization and very high initial
patient satisfaction at the new PSCs. However, the dynamics of patient visitation
eventually led to lower satisfaction and patient complaints. By considering the
implementation and facility design decisions together rather than sequentially,
some of the issue could have been anticipated and the dissatisfaction mitigated.
Assisting decision making for this kind of coordination may also require several
methodologies. Like Brailsford et al. (2004), this study used both SD and DES
methodologies.
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3 Case Studies

This section will discuss two case settings showing the value integration of health
services and the potential of operations management concepts and techniques to
assist decision makers. The first case will discuss the use of system modeling
to diagnose and provide policy decision support for a large Canadian urban
healthcare system. The second case will look at coordination of patient pathways
for downstream planning of patient services.

3.1 A System Dynamics Model of the Calgary Health Region
Emergency Departments

Rohleder et al. (2009) expanded on the qualitative model described in Cooke et al.
(2010) to create a macrolevel system dynamics model of the Calgary Health Region
(CHR). The original purpose of the model was to explain the causes for delays in
treating patients in the city’s EDs; however, as the study progressed, it was evident
that the scope needed to consider the whole of the major health services in the
region. Therefore, this case shows the importance of looking at healthcare from a
systems perspective and the importance of coordinating capacity levels across all
health services.

At the start of the study, the average LOS of patients in the largest ED was 8 h,
and the average time for initial treatment by an ED doctor was about 1.5 h. Due to
the effects of variability, sometimes the wait time before being seen by a physician
was even longer and led to some unfortunate outcomes in the ED waiting rooms
(Lang 2006). An original hypothesis of the causes for delays is shown in Fig. 16.3.

An aging demographic was believed to be driving up the overall severity level
of patients in Calgary EDs. The proportion of patients that had higher acuity and
greater complexity increased. This increased the load on the ED resources and
therefore the number of patients in the waiting rooms.

Initial data on patient ages and acuity were collected, and they supported the
model in Fig. 16.3; however, the full scope of the problem quickly expanded to
include components of the healthcare system outside of the ED. As the model
evolved, the focus remained on the congestion in the EDs. It also showed the
interconnectedness within health systems and the need to plan and implement
integrated services.

While decision makers continued to try and resolve the problems by improving
ED operations, it became clear from our model that over time the ED became the
safety net to accommodate the demographic effect on healthcare capacity from a
growing population of older and sicker patients. The model helped explain why the
EDs’ patient access performance was declining rapidly when year-over-year patient
volume growth was almost flat. Essentially, the performance problems in the EDs
were a symptom of capacity and coordination problems throughout the healthcare
system.
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Fig. 16.3 Causal loop diagram to explain delays in EDs

The purpose of the system model was to examine the impact on the EDs of patient
flows in the overall CHR system. For example, insufficient inpatient capacity for
elective surgeries increased the possibility that patients on the hospital waiting list
had to go to an ED. Similarly, if a patient was unable to access a family physician,
then they were more likely to go to an ED or urgent care center. In this study
we were interested in long-term impacts of changes in population demographics
and available health services. Thus, we were not concerned with the hour-to-hour
fluctuations in demand for health services, but rather with the month-to-month and
year-to-year ability of the system to cope with the average demand for services
from the regional patient population. The following subsections will briefly discuss
the model building process and results from the model related to coordination and
operations management.

The qualitative model that served as the basis for the SD model was developed
using an iterative group process that required many interviews with people involved
in the healthcare system and bringing groups of healthcare staff and administrators
together to understand the patient flows and factors influencing patient access.
Figure 16.4 shows a highly simplified version of the model of the patient flows
that evolved from this process and became the basis for the quantitative SD model.
Three sub-models emerged from the overall systems view. The ED care sub-model
is the set of stocks and flows along the bottom of Fig. 16.4; the acute care sub-model
included the stocks and flows associated with hospital services (right side of figure);
and the primary care sub-model includes the primary care, urgent care (and other
clinics), and specialist consulting services (top left of figure). Splitting the model
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Fig. 16.5 Data for emergency physician time by CTAS (1–5) and age

into sub-models made it easier to handle the complexity of the entire system. The
ED sub-model has greater detail due to the initial focus on this area. Nonetheless,
the important flows from each service sector are included.

With the model components and boundaries established, sources of available data
were identified to populate the model. To incorporate the urgency of a patient’s
condition, we included patient age and an urgency score based on the Canadian
Triage Assessment Scale (CTAS) as patient attributes. Together these account for
much of patients’ usage of healthcare resources. The CTAS score of a patient has
a particular meaning in the ED where it is used to prioritize patients; however, we
used CTAS throughout the model to determine when patients required urgent or
acute care.

As an example of how we used data in the model, we will use the time required
for an ED physician to perform a first assessment on a patient. The time spent
waiting for an emergency physician (EP) is called mean EP time. The model uses
EP time data that were collected from an ED during the April–September 2006
time period, involving treatment of over 31,000 patients. Figure 16.5 shows that
the mean EP time is about 23 min for CTAS 1, about 58 min for CTAS 2, and about
100 min for CTAS 3–5 patients. We assume no correlation with age in this situation;
however, for other flows, age was an important factor. Although there appears to be
some correlation with age for CTAS 4 patients, the data is skewed by just a few very
old patients with long wait times. For CTAS 4 patients aged 80 and under, there
is little or no correlation between patient age and EP time. Probabilitydistribution
functions were used in the model to represent CTAS 1–5 patients.

The overall model was built in this manner, incorporating relationships between
age and patient acuity as appropriate. As identified in Fig. 16.4, the stocks in the
system are where patients accumulate and wait for access, and the flows control
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Fig. 16.6 Comparison of ED admitting rates for model validation

the movement of patients between stocks. Together, these stock and flow constructs
required hundreds of data elements.

Toensure the model created was valid, we compared model results to actual
results for several measures including ED admission rate, inpatient admission
rate, and ED and inpatient LOS, among others. Figure 16.6 shows the graphical
comparison for the average number of patients admitted to the ED per day. The
model reports slightly better performance than occurred in practice. In part this is
due to the fact that the SD model does not incorporate the effects of short-term
variability where within-day peaks and valleys have a negative impact on resource
utilization due to congestion. Nonetheless, the differences were deemed acceptable
to decision makers.

Having a valid model is not enough to ensure its usefulness. A key concern with
use of the model for making system-wide decisions was, would it do a better job
of explaining system behavior than the simple, standard measures in current use?
Typically, health system planners use metrics, such as number of beds per unit
population, to plan the capacity of the healthcare system. A common expectation
in practice is that if the growth in the number of staffed beds grows with the
population, and support services such as laboratory testing and diagnostic imaging
keep pace with bed growth, then capacity needs should be met. To show why the
SD model may be more useful than such simple rules of thumb, Fig. 16.7 reports a
comparison of various key measures related to population changes and healthcare
system performance.

Bed growth kept pace with general population growth over the 2001–2006
period, but the ED admitting rate did not. A good measure of system capacity is
throughput, and in the case of hospital EDs, this is measured by the ED admitting
rate per day. While the SD model results are not exact, Fig. 16.7 suggests that they
do a better job of predicting actual ED admitting rates than would be expected
from a bed growth projection. As noted in Fig. 16.7, part of the reason for the
inability of bed growth projections to satisfy future demographic demands is that
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Table 16.1 Bed policy scenarios

Scenario number Scenario name Brief description

1 Base 2008 No change in ED or hospital capacity (beds
and staffing) from 2008 to 2016

2 ED expansion only ED capacity is expanded by ∼20% to
match 2008–2016 population growth

3 Hospital expansion only Hospital capacity expansion to 2011 per
CHR plan

4 ED and hospital expansion Combination of cases 2 and 3
5 Further hospital expansion As case 4, but further 10% hospital capacity

expansion 2014–2016

the aging population is growing at a much faster rate than the general population.
The system dynamics model is able to take these demographic changes and system-
wide capacity levels that influence ED patient demand into account.

Our focus in the analysis was on the effect of bed capacity on health system
performance; however, as described later, the model could be used to explore many
facets of resource coordination including staffing. We considered five scenarios,
summarized in Table 16.1, which represent different possible alternatives for staffed
bed expansion. Examination of the results will illustrate the use of the system
dynamics model for policy evaluation.

Scenario 1 provides a baseline projection of what would happen if no capacity
expansion took place beyond what existed at the end of 2007. Scenario 2 assumes
that ED bed capacity is expanded at the same rate as population growth. As shown
in Fig. 16.7, this essentially replicates historical practice. Scenario 3 assumes that
inpatient bed capacity is expanded according to projections provided by senior-level
decision makers. This projection takes into account the planned hospital expansions.
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Scenario 4 is a combination of scenarios 2 and 3, and these three cases will let us
answer the question, is it better to expand ED beds, inpatient beds, or expand both
together? Finally, scenario 5 was added because the results of scenario 4 revealed
that capacity limitations will again be encountered in 2014 unless further inpatient
bed capacity is added. Scenario 5 assumes the same ED bed capacity as in cases 2
and 4.

In all scenarios we use the actual CHR population figures for 2001–2006 and
the CHR population projections for 2008–2016. We assume that there is sufficient
support staff and services to operate the beds and all five scenarios have the
same assumptions for capacity increases in family physicians, urgent care centers,
consultants, and outpatient clinics.

An important issue is the effect of bed expansion on hospital discharge rates, a
measure of patient throughput. In Fig. 16.8 we compare the hospital discharge rates
for each of the five cases to the growth in population rate. The main conclusions that
can be drawn are as follows:

• Without inpatient bed expansion, throughput will actually drop. This is because
in a capacity constrained system, the sickest people will be given priority and
they will consume more resources and stay longer than the less sick people who
are displaced. This point emphasizes the need to look at the healthcare services
as a coordinated system.

• Adding ED beds does nothing to change the throughput of hospital inpatients.
• The planned 2008–2011 expansions (inpatient beds) will close the gap that has

developed between population growth and hospital throughput during the 2001–
2007 period.
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Fig. 16.9 Patients who leave the ED without being seen

• While capacity from the 2008–2011 planned expansions will be sufficient to
support population growth to 2013, further capacity expansion in the 2014–2016
time frame will be required to prevent future system bottlenecks.

Another major concern for ED performance is the proportion of patients who
leave the ED without being seen (LWBS). Figure 16.9 shows the results for this
measure for the five scenarios. The model picks up the degradation in performance
in 2006 when several highly publicized adverse events occurred (including a death
that was partly attributed to a patient who left an ED, Lang 2006). Again, it is
clear that a coordinated planning perspective that considers increasing both ED and
hospital beds together is required. Further, additional expansion to that which is
planned is needed to avoid running into severe access problems in the future.

Our model emphasized the role that bed capacities and their coordination play
in the access of integrated health services. However, we could have easily used
the model to explore a variety of strategic level decisions beyond bed capacities.
For instance, there was a prevailing perception that there was a chronic shortage of
primary care services in the CHR. Our model could explore the effect of increasing
primary care capacity on patient access. The effect of adding any type of the
resources in the model versus any other could help shape recruiting and future
system design decisions of a long-term strategic nature.

Overall, this case helps to show the importance of understanding the system-
wide flow of patients when considering a single service. System dynamics is a good
tool for this purpose due to its ability to incorporate the relationships between many
system elements, including feedback from other system elements. Further, SD’s
ability to incorporate dynamic changes of key inputs like the demographics of a
patient population makes it useful for high-level healthcare planning over a long
horizon.
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3.2 A Simulation Model to Improve Coordination of Health
Services in a Hospital

The previous section described an SD model that considered the potential value of
improving capacity decisions at a long-term, strategic level. In contrast, the discrete-
event simulation model described in this section will focus on some shorter-term
decisions that are more operational in nature. It will focus on a care pathway for
patients who are admitted to the Hospital Medicine Service (staffed by Hospitalists
who provide delivery of comprehensive medical care to hospitalized patients). This
service typically handles patients with multiple comorbidities or with complex
diagnoses that do not fit well into another specialized service. Therefore, Hospitalist
patients were frequently elderly patients or those that require significant care
services upon discharge from the hospital.

The primary purpose of this model is to show how the downstream operations
of an admitting service affect patient flow in the ED. In this model we consider
some of the specific mechanisms causing the boarding delay of ED patients in the
Hospitalist Service at a Calgary hospital. Thus, we are looking at coordinating the
decision making of healthcare services at the process level. Using the model, our
major objectives were:

1. To show the key factors in the Hospitalist admitting service that cause boarding
delays in the ED.

2. Identify opportunities to improve patient flow for both the ED and the Hospitalist
Service.

As the system model demonstrated in Sect. 3.1, there are interlinkages among
many health services that contribute to delays and impediments to smooth patient
flow. The model in this section considers one of the links in the system in
more detail, so as to increase understanding of these interactions. This will help
understand how the system structure can affect performance at the operational level
and vice versa. As is common in the OR discipline, our objective was to find
improvement solutions that worked well within the whole system and benefited all
of the services involved.

The high-level patient flow for the Hospitalist Service is shown in Fig. 16.10.
Some of the key highlights of the model are:

• The targeted capacity of the Hospitalist Service was 180 patients. However, up
to 203 patients could be handled depending on circumstances.

• Patients under consideration for admission from the ED could be diverted to other
services when the target capacity limit was reached or passed. From a patient
level of 180–203, there was a specified probability that patients would not be
admitted. This probability increased with the number of patients. Once the hard
limit of 203 patients under care was reached, admissions via the ED and transfers
from other services were not accepted. The exception to this was ICU patients
who were always accepted, given the importance of maintaining ICU availability.



16 Coordinating Health Services: An Operations Management Perspective 437

Patients on
Acute List Under

Care of
Attending
Physician

Patients on Sub
Acute List Under

Care of
Attending
Physician

Alternative Level
of Care

Patients In ICU
Transferable to

Hospitalists

Patients in Other
Services

Transferable to
Hospitalists

Patients in ED
Admitted to
Hospitalists

Patients Under Care of
Hospitalists

ED Patients

Discharges

Discharges

Fig. 16.10 Diagram of high-level patient flows within Hospitalist Service

For this reason, ICU patients are given priority when multiple patients are waiting
for a bed.

• Two classifications of patients were considered: acute and subacute. Acute
patients required greater care and attention than those considered subacute. A
higher level of staff were required to handle acute patients. Subacute patients
were often waiting to get into an alternative level of care (ALC) space such as a
nursing home bed.

Figures 16.11 and 16.12 show a couple of the key data elements incorporated
in the simulation model of the Hospitalist Service. Figure 16.11 shows the hourly
patterns for the ED and OS (other, non-ED hospitalized) patients that are admitted
or transferred to the Hospitalist Service. The figure shows that ED patients tend
to be spread more evenly across all hours of the day with several small peaks. On
the other hand, the transfers from other services tend to be concentrated during the
hours of 9 am to 6 pm. ICU patient transfers are also concentrated during standard
working hours.

Figure 16.12 shows that patient volumes also varied by day of the week. The
figure shows the pattern for each of the three incoming patient streams to the
Hospitalists. Note the peaks on Fridays for the transfer of patients form other
services (OS) in the hospital. This was, in part, due to a desire for these services
to pass their patients on to another service before the weekend.

Along with the patient arrival data, we incorporated the utilization level of
various hospital resources into the simulation model, in particular, LOS in hospital
beds. Table 16.2 shows the average LOS for patients coming from the ED, ICU,
and other medical services as well as for patients who are eventually classified
as subacute within the Hospitalist Service. Various mathematical functions were
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Table 16.2 LOS means for
Hospitalist patients (days)

From Acute Subacute
ED ICU OS All

Mean LOS 11.13 13.34 16.27 31.82

evaluated to determine how well they fit the data. The gamma distribution was
found to be a good fit because the LOS data all had a significant right skew and
was therefore used in the simulation model.
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Table 16.3 Discharge patterns evaluated

Discharge pattern Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Current (%) 14.8 18.2 18.1 17.1 19.3 6.8 5.6
Smoothed (%) 14.3 14.3 14.3 14.3 14.3 14.3 14.3

Finally, the discharge process also had to be built into the model. Figure 16.13
shows the empirical discharge patterns for acute and subacute patients. The process
for modeling the discharge patterns is fairly complex, but requires adding additional
time onto the raw LOS obtained from the data. To avoid biasing the model with
longer lengths of stays than in reality, we adjusted the means and variance levels
of the treatment LOS so that when the discharge adjustment was made, the overall
LOS times in the model would be approximately the same as in the real system.
We tested the discharge modeling approach and were able to achieve the desired
discharge patterns and average LOS times.

A key focus in looking at the decision making for the Hospitalist Service is how it
affected the waiting time for patients in the ED who were eventually admitted to the
Hospitalist Service. We evaluated three options to address these integrated effects:
smoothing discharges, smoothing transfers from other services, and reducing the
LOS for subacute patients.

Table 16.3 shows the current and proposed average discharge rates we tested. The
hourly patterns were not adjusted since we viewed these as more difficult to change
given the various parties that need to come together to complete a discharge.

Table 16.4 reports the results for the alternative discharge patterns. Smoothing
the discharges more evenly across the week makes a significant difference, reducing
boarding time by over a half an hour on average. Extreme delays are reduced even
more, with the smoother pattern resulting in a 17 h reduction. Significant reductions
in the number boarding and the % of ED patients who are diverted also result from
a more even discharge pattern.
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Table 16.4 Results for ED waiting from smoothing discharge pattern in Hospitalist Service

Scenario
Avg. boarding
time (h)

Max boarding
time (days)

Avg. #
boarding

% ED patients
diverted

Base 6.95 4.75 3.14 2.21
Smoothed discharge 6.43± 0.2a (7.5%)b 4.04 (15.0%)b 2.89± 0.1a (8.0%)b 2.00 (9.5%)b

a95% confidence interval halfwidth
bPercentage improvement in parentheses

The smoothed discharges across all days are not necessarily optimal—it is likely
we could identify an even better weekday pattern of discharges, particularly given
the uneven arrivals to the Hospitalist Service. However, the constant average values
across the weekdays were viewed as a reasonably implementable target.

Figure 16.12 showed that Fridays have significantly more transfers from other
services than other days (nearly one third on Friday alone). However, all things
being equal, smoothing these transfers did not have a positive effect on performance.
Because transfers are somewhat controllable, the current pattern already adapts to
the flow of patients from other sources.

Finally, the results of interviews with Hospitalist Service staff led us to believe
that one of the major causes of delays and poor patient flow from the ED through the
Hospitalist Service was the inability to move patients from subacute care to ALC
options. The primary impact of such a situation in the system would be lengthy
stays in subacute care. This was confirmed by the data once we combined all stays
after a patient was initially classified as subacute. The average LOS was nearly
33 days for subacute patients. Thus, our final analysis shows the effects of reducing
subacute LOS.

Figure 16.14 shows the results of reducing the average subacute LOS by 5%
increments down to 50% of the current (or base) value (or about 16 days). The
combined effect of discharge smoothing is also shown in the figure. The results
show that ED boarding time is significantly reduced for patients admitted to the
Hospitalist Service as the subacute LOS is reduced. Even a relatively modest 10%
reduction in LOS leads to over a 1.5 h reduction in boarding time for patients waiting
to get into Hospitalist Service beds. If subacute LOS could be reduced by 50%, the
impact on the flow of ED patients is dramatic. Boarding times are projected to be
reduced to less than an hour, and on average, nearly two bed spaces in the ED are
freed compared to the base case results.

It is interesting to note that the discharge smoothing essentially has the constant
effect of reducing boarding times by an average of about a half hour regardless of
subacute LOS. Therefore, since there is little or no interaction effect between the
two improvement options, it appears they could be implemented independently and
both significantly improve ED boarding time performance.

In summary, this case used discrete-event simulation to show the value of
coordinating health services for a specific patient pathway in a hospital. This level
of coordination is just as important to creating high-value outcomes as the previous
strategic level coordination model described in Sect. 3.1. While strategic capacity
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decisions are certainly constraints for tactical and operating level decisions, if
effective operations management that coordinates the higher level capacity is not
applied at these lower level decision tiers, system performance will be suboptimal.

4 Future Research Challenges

Some emerging trends in healthcare delivery have significant implications for the
coordination of health services. In this section we will discuss two of these trends:
the patient-centered medical home and the centralization of health services at
medical centers.

An emerging movement in healthcare coordination is the concept of a PCMH,
a term first coined by the American Academy of Pediatrics in 1967. Proponents
of PCMH in healthcare share many of the same objectives as health systems
engineers/operations managers, that is, to improve the efficiency and effectiveness
of delivering medical care and, by extension, the health and wellness of the whole
patient.

A PCMH is a team-based model of care led by a personal physician who provides
continuous and coordinated care throughout a patient’s lifetime to maximize health
outcomes (American College of Physicians 2011). Further, a PCMH is where
the responsibility for coordinating all of their healthcare is intentionally focused,
and serves as the repository for a patient’s entire medical record (Hughes and
Stiles 1977). A PCMH is, essentially, part of an engineered health system that
incrementally reorganizes and leverages existing resources to serve the patient.

One area where the PCMH concept will require OM expertise is the design and
management of large groups of patients with chronic conditions. Appropriate teams
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and resourcing will be need to be structured in a coordinated and systems focused
manner. Instead of small groups of primary care doctors caring for chronically ill
patients, teams that include doctors and care managers will likely be used. Homer
et al. (2004) discuss the use of an SD model to help in the transformation in chronic
care services for diabetes and cardiac patients at the county level in the USA. They
highlight that new, focused teams of resources can provide better care at lower cost;
however, it requires a reconfiguration of the healthcare system away from traditional
primary care practice. OM may help in making appropriate trade-offs among health
quality performance and cost to improve the level of healthcare value.

Another emerging trend in healthcare is for greater centralization of healthcare
services. Major medical centers offer the opportunity to provide inpatient and
outpatient services together using the same facilities (or campus) under a single or-
ganizational structure. This allows for unique advantages to care, most importantly
the ability to quickly bring together a multidisciplinary group of physicians and
services to diagnose and treat patients. One such center, Mayo Clinic, was founded
on the concept of integrated health services by housing physicians of all disciplines
in concentrated locations at their three campuses (Jacksonville FL, Rochester MN,
and Scottsdale AZ). This allows for coordination in treatment and use of resources
in ways that standard healthcare systems cannot achieve.

Mayo Clinic and similar centers are considered destination medical because pa-
tients will travel significant distances, including internationally, to receive treatment.
High-quality health services are required to attract patients from long distances;
however, operational performance must also be excellent. In particular receipt of
required health services in a short period of time is of prime importance. This allows
patients to plan stays of reasonable length for travel and expense purposes.

While destination medical centers like Mayo Clinic have many potential advan-
tages, they also have operations challenges related to coordination. To avoid many
patients being scheduled or seeking to use the same services simultaneously, careful
management of physician schedules and capacities is required. To this end, Mayo
Clinic uses advanced decision support systems to help with scheduling for certain
key diagnostic services. Nonetheless, bottlenecks still occur and may cause delays
for patients. To alleviate such circumstances, visits of patients of different types may
be coordinated. For example, national or international patients coming to Mayo
Clinic with similar schedules may cause peaks of demand for particular services.
Local patients can be scheduled to smooth out these peaks since they have more
flexibility with respect to travel.

Another issue in managing medical centers where patients make appointments
well in advance is no-shows, reschedules, and cancellations (NRC). A significant
proportion of appointments end up in these categories and create additional load on
staff to resolve schedules as well as unused capacity due to unfilled appointment
slots. Figure 16.15 shows a causal loop diagram describing the reinforcing system
behavior associated with NRCs. As patient volumes increase, appointment availabil-
ity decreases. Less availability causes delays in finding appointments (increasing
Appointment Latency) which causes more NRCs. This type of behavior is also



16 Coordinating Health Services: An Operations Management Perspective 443

Patient Volume

Specificity of
Appointment Types

Appointment
Availability

Appointment
Latency

Length of Appointment
Calendars

Proportion of NRC
Appointments

−

+

−
+

−

−

+
Long
Wait

Fig. 16.15 Causal loop diagram of no-show, reschedules, and cancelation behavior

described in Gallucci et al. (2005). The NRCs take up false capacity and hence
serve to further reduce appointment availability.

This negative cycle may be alleviated by shortening the length of time that
appointments can be scheduled and by creating more flexibility in physician
calendars. However, patients who are traveling from a long distance often want to
make travel plans well in advance of their visit, and physicians prefer to specialize in
treating particular types of patients for research and quality purposes. Thus, while
Open Access scheduling, where little or no time occurs between the demand and
delivery of the health service (see Kopach et al. 2007 for a discussion), may alleviate
NRCs, it may not be easily implementable at large medical centers. Using advanced
scheduling approaches like that discussed in Helm et al. (2011) that consider the
interaction of hospital resources may be more appropriate for advanced scheduling
of patients moving through several healthcare services.

In summary, emerging trends in healthcare like the PCMH and centralization of
healthcare services into medical centers create new challenges for healthcare opera-
tions management. Operations management, systems engineering, and systems level
modeling can play important roles in how effectively these new delivery approaches
create healthcare value to patients.

5 Conclusions

In this chapter we focused on the value of coordinating healthcare services. With
costs of healthcare rapidly increasing and changes in demographics and policies
that are expanding patient populations, the value of both high-quality and efficient
healthcare systems is paramount. The discipline of operations research will play
a key role in the success of healthcare service integration because of its focus on
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coordinating resources to achieve desired outcomes. In the past, this coordination
tended to focus on individual health services. For the future, the coordination of
several services or a system of services will become increasingly important.

It is clear that operations management can play a valuable role in improving the
coordination of existing healthcare services. However, it is likely that new healthcare
systems will evolve in the future, often pushed by the need for radical change due to
increasing costs and policy changes. Our section on research challenges provided
two examples of emerging trends in healthcare delivery important to operations
management. With the patient-centered medical home, new team structures and care
management approaches will be necessary to success. Another trend toward the
growing role of medical centers that patients travel to creates unique opportunities
for integrated care, but significant challenges in ensuring timely and efficient
delivery.

Thus, operations management has much to offer health services in managing
current healthcare process and designing new ones to maximize the delivery of value
to patients.
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Chapter 17
Managing Supply Critical to Patient Care:
An Introduction to Hospital Inventory
Management for Pharmaceuticals

Anita R. Vila-Parrish and Julie Simmons Ivy

1 Introduction

Hospital operations and patient care are inextricably linked to the supply chain. Like
procurement personnel in other industries, hospital buyers are challenged to develop
inventory policies in light of changing demand, limited suppliers, manufacturing
issues, and regulatory rulings that affect drug supply (Choudhary et al. 2011).
While on the surface these challenges are similar to those faced by other industries,
the impact of shortages in critical hospital supplies can have detrimental impacts
to patient care, patient outcomes, and the cost of care. This chapter focuses
on inventory management of critical materials and supplies that directly impact
patient care. We will focus on one category of hospital supplies: pharmaceuticals.
Pharmaceuticals can be categorized by the form of medication: raw drug (i.e.,
a powder or solid that requires further processing prior to administration) and
prepared medications (e.g., an intravenous fluid, IV).

A unique challenge in the inventory management of pharmaceutical supplies that
are critical for providing patient care is the impact of suboptimal control on both
a patient’s treatment plan and the resources involved in ordering, producing, and
administering medications. As Choudhary et al. (2011) described, drug shortages
can force patients to alternative treatments or result in the denial of treatment. The
impact on healthcare providers must also be considered as time spent developing
and executing contingency plans results in time away from providing care. Drug
shortages have been increasing over the past decade, tripling since 2006, as shown
by data collected by the University of Utah at the Drug Shortages Summit in 2010
(ASHP 2010). Data from the University of Utah Hospitals and Clinics revealed that
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Fig. 17.1 Impact on pharmacists and patients as a result of a drug stockout

25% of buyers’ time was spent managing shortages (Choudhary et al. 2011). Finally,
it is estimated that medical supplies account for 30–40% of a hospital’s budget
(Neil 2005). In the last decade it has been estimated that a hospital could reduce its
total expenses by approximately 2% through improved inventory and distribution
processes (Schneller and Smeltzer 2006).

Inventory management of pharmaceuticals within the hospital pharmacy is a
complex task. There may be as many as 2,000 drugs inventoried, many drugs are
perishable (i.e., they have a short shelf life), and demand for the drugs changes
from day to day. The impact of increased time spent on managing stockouts goes
far beyond the pharmacy inventory manager. Figure 17.1 characterizes some of the
impacts to pharmacists and patients in the event of drug shortages.

As depicted by the figure, the impact of mismanagement extends beyond
healthcare costs (due to waste and shortages) to patient care and utilization of
resources (Baumer et al. 2004). Drug availability is a critical factor in a hospital’s
ability to provide effective, timely, and safe patient outcomes. These issues are
so pervasive that in a national survey of 374 U.S. pharmacy directors, 75% of
respondents indicated they were forced to purchase the drug off-contract from their
current vendor, borrow the drug from another institution, or purchase the drug
from an alternative vendor at an increased price when confronted with a drug
shortage (Baumer et al. 2004). In addition to the increase in purchasing costs,
two-thirds reported delayed or canceled medical procedures due to drug shortages
resulting in an interquartile range of $33–300 million dollars in additional costs
to the US healthcare system (Baumer et al. 2004). Further, suboptimal inventory
systems cause hospital pharmacies to average a low 10.2 inventory turns per year,
lose contract compliance opportunities, and continue costly process inefficiencies
(Alverson 2003). In fact, most pharmacies average between 8 and 10 turns per year
(Blackburn 2010). Blackburn (2010) provides a compelling example regarding the
impact of this low number of inventory turns, suggesting that a pharmacy purchasing
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$100K per month could save $20,000 per year in on-hand investment dollars (or
cash flow savings) with each single-digit increase in the inventory turnover rate.
While some drug shortages are uncontrollable (e.g., due to a natural disaster),
improper inventory management can result from the lack of procurement expertise
of the pharmacists managing the inventory (Alverson 2003).

This chapter will describe the unique modeling challenges associated with
inventory decisions for pharmaceuticals, such as their multi-echelon nature, the
potential for perishability and/or obsolescence, and internal production/preparation
lead times. Further, we will discuss the broader implications of inventory manage-
ment including the impact of resource constraints and risk, demand uncertainty, and
unique outcome considerations such as the impact of supply availability on patient
outcomes.

We have organized this chapter by first presenting an introduction to current
inventory systems in healthcare, followed by a discussion of supply chain structures,
in Sects. 2 and 3, respectively. In Sect. 4, we discuss the current state of research
focused on optimization of hospital inventory and conclude with a discussion of
areas for future research in Sect. 5. Before we present the aforementioned research,
it is important to put the discussion into the context of the current state of hospital
inventory management.

2 Introduction to Inventory Systems in Hospitals

Simple inventory management strategies are often used to focus the efforts of
pharmacy materials managers. For example, classification systems have been
developed and implemented in order to create a simple method for improving
inventory costs and service levels. Hospitals often use ABC inventory classification
strategies, which identify the small fraction of items that account for the highest
percentage of expenditures, to include the criticality of the item. In Table 17.1 we
describe the types of control procedures commonly used depending on the ABC
classification category.

In order to accurately categorize medication inventory, Srinivasan (2008) sug-
gests that substitutable drugs should be considered as a single item in order to
simplify their management. Gupta et al. (2007) used the ABC method and the
criticality classification analysis called VED, where “V” is for vital items that
the hospital relies on to function, “E” is for essential items which can impact the
quality of service, and “D” stands for desirable items that do not hinder hospital
functionality, and classified nearly 500 drugs procured at the Armed Forces Medical
Services in India. They found that if ABC analysis were used in isolation, there
would be approximately 22 drugs that would have fallen into the B and C group
but were vital to the functionality of their hospital. Al-Qatawneh and Hafeez (2011)
took this analysis a step further and combined these classification methods with a
continuous replenishment inventory and order-based production control system.
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Table 17.1 Connection between ABC classification category and levels of hospital supply
inventory management control and effort (adapted from Reddy 2008)

Control procedure
A items: high
consumption value

B items: moderate
consumption value

C items: low
consumption value

Degree of safety stock Very low or stockless
strategy, combined
with frequent
ordering

Low, ordering done on
a less frequent basis

High, bulk ordering on
an infrequent basis

Demand Should be regularly
occurring (e.g.,
daily)

Monthly Quarterly

Material planning Accurate and updated
regularly

Can rely on historical
data

Estimates are sufficient

Optimization effort High, focus on
reducing waste,
obsolescence, and
surplus

Moderate Review policies
annually

# of suppliers High, short lead times
required,
centralized control

2–4 sources, shorter
lead time preferred

1–2 sources,
decentralized
control

Given that a hospital pharmacy will stock hundreds if not thousands of materials,
these classification methods help focus the hospital’s limited resources. However,
these methods have limitations. After the subset of materials is chosen through
ABC/VED analysis, it is still necessary to establish inventory and medication
preparation policies.

A number of pharmaceuticals used in hospitals are produced on site. The
consideration of the production strategy, make-to-order verses make-to-stock, is
complementary to the classification and prioritization of pharmaceutical supplies
as well as any inventory management strategy. There has been research regarding
make-to-order versus make-to-stock policies for hospital-administered pharmaceu-
ticals, in particular, strategies for premixing doses of intravenous (IV) medications,
and the impact of these strategies on waste have been studied. Chiu (2010) examined
various IV batching schedules focusing on the resulting waste cost. The IVs were
produced and stored as finished goods inventory in a cart which was then sent
directly to a patient care unit (PCU). A unique challenge in planning both inventory
and production/scheduling strategies was due to the fact that there was a no reuse
policy for IVs. Once the IVs left the pharmacy, they could not be returned for
reuse in part because of their perishability and stability. Further, Chiu (2010) found
that changes in patient condition, discharge, or regimen contributed to an order
being discontinued thus becoming waste. These occurrences prompted the author
to model the impact of increasing the frequency of batching operations from one
time per day to three times per day as well as shifting production/delivery times
on waste costs. Model results suggested that preparing finished goods three times
per day reduced waste by ∼80% or $15,000 per month in the pediatric unit while
a less disruptive change, shifting the preparation time and delivery in a one time
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per day model, yielded a reduction of 47–60%. A close examination of the data
showed a strong correlation between time of day and the probability of an order
being discontinued. An interesting area for future research would be to develop
models to truly understand the linkage between time of day, physician rounds, and
discharge times in order to develop more intelligent models and inventory ordering
and preparation strategies.

Given the prevalence of inventory challenges, there is a need for modeling
and analysis of critical medical supplies, such as pharmaceuticals. Questions such
as how often to perform periodic replenishment or how to set adequate periodic
replenishment policies or critical levels have not been adequately addressed in the
literature (Rosales 2011). Next, we discuss some examples of supply chain strategies
that have been instituted in hospital organizations in an attempt to improve their
inventory systems.

3 Characteristics of Hospital Inventory Systems

As suggested by the above discussion, the unavailability of critical supplies can
endanger the health of patients, making the reliability of supply chains within
hospitals important. This is a challenging problem because demand is uncertain.
Demand for medication is based on the patient population in the hospital which is
uncertain and varies through time due to seasonal factors, e.g., flu season. Due to this
stochastic demand, inventory levels are set artificially high in order to hedge against
uncertainty. Many have described specific impacts of drug shortages and overages
on hospital costs and efficiencies. For example, in a large scale study spanning
1 year in a large tertiary hospital, Gillerman and Browning (2000) found of six
anesthesia drugs that they tracked, waste costs from five of them contributed to 26%
of the total cost of departmental pharmaceutical budget and 2% of the total annual
hospital expenditure. Because of the high waste costs for certain drugs, preparation
of doses in the dispensed form (i.e., syringe or IV) in advance of demand has
decreased (Fraind et al. 2002). However, in a study of IV preparation in European
hospitals, many medication errors, such as the use of the wrong diluents, incorrect
administration rate, and products that were not mixed, were found when doses were
prepared on demand (Cousin et al. 2005). Fraind et al. (2002) and Cousins et al.
(2005) suggested having pharmacy departments or suppliers prepare IVs in advance
(internally or by a supplier) in order to mitigate some of the mistakes. Though
these studies discuss the challenges of managing medications, quantitative models
or methods to aid decision making have not been developed or well studied.

In conventional hospital inventory systems, inventory is stored in a central
pharmacy. The satellite pharmacies (located in the PCU) place their orders with
the central pharmacy, while the central pharmacy orders products from the distribu-
tors/manufacturers. In the healthcare context, the term stockless inventory system
implies that products are stocked at the distributor or manufacturer. Orders are
placed from the hospital’s units directly to these upstream supply chain partners.
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Distributor Hospital Storeroom Patient Care Unit

Supply Chain Echelons

Conventional

Stockless

Fig. 17.2 Comparison of conventional versus stockless healthcare distribution network (adapted
from Rivard-Royer et al. 2002)

Stockless inventory systems have been explored in healthcare primarily through case
studies and trade journals (see Rivard-Royer et al. 2002; Wade 2011, respectively).
Figure 17.2 depicts the conventional (distributor–hospital–PCU) distribution system
and a stockless system which bypass the hospital level. The remainder of this section
discusses research associated with each of these types of systems. Our discussion of
these distribution systems will focus on the movement of drug within the hospital,
i.e., from the hospital storeroom to the PCU, in the context of a conventional system
and from the distributor directly to the PCU in the stockless system. Similar to
other industries, inventory management of hospital supplies is being outsourced to
a variety of entities, such as the manufacturers of automated dispensing equipment.

3.1 Conventional Inventory Systems: Automated Systems

The focus of our discussion of conventional inventory systems will be on the inter-
mediary distribution process, i.e., the movement and management of drug inventory
from the hospital storeroom to the PCU, and systems implemented to enhance
this process. Automated drug delivery systems describe a class of technologies
that facilitate this aspect of conventional distribution systems commonly found in
hospitals. In an attempt to improve their drug delivery system, many hospitals
have implemented automated systems such as Pyxis machines (Handfield 2007).
Pyxis is an automated medication management system that dispenses prescribed
patient medication to clinicians for administration to the patient. While these
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machines allow for greater efficiency in comparison to drug delivery in patient-
specific trays, they are labor intensive and inefficient without the implementation
of proper inventory management policies. Inaccurate inventory policies necessitate
refilling the machine several times per day due to machine stockouts. Handfield
(2007) found that many hospitals have not experienced the anticipated benefits
of optimizing inventory by simply deploying Pyxis; in fact, some have reported
decreased performance. Similar to Pyxis machines, perpetual inventory systems
while providing real-time information to hospital management regarding supply
levels do not provide guidance regarding inventory policy. The potential of these
types of systems cannot be realized without a robust inventory policy to guide
decision makers to make the best use of the real-time information. While there
have been efforts to automate the dispensing of drugs, computerize ordering
transactions, and electronically track medical supplies and goods, there has been
limited quantitative analysis or optimization of inventory management.

3.2 Stockless Inventory Systems

Stockless inventory systems take the automated drug delivery systems one step
further by completing removing the drug distribution process from the hospital
to the distributor. Rivard-Royer et al. (2002) cited many studies that discuss
the staff reductions and higher service levels achieved when stockless inventory
systems are employed. However, Wade (2011) discussed the complexities involved
in the outsourcing decision-making process citing factors such as cost, preparation
time, forecasting, and shelf life as drivers in the decision to outsource medication
compounding.

As a result of the challenges associated with a pure stockless strategy, Rivard-
Royer et al. (2002) proposed a hybrid approach “combining the stockless method
with a conventional approach to PCU replenishment.” This hybrid strategy entailed
distribution of products with case quantities by distributors while bulk purchases
of low-volume products were broken down into point-of-use increments at the
hospital’s central pharmacy (Rivard-Royer et al. refer to the central pharmacy as
a storeroom). While their study showed some cost savings, the authors highlighted
the need for further integration between all supply chain partners (including the
manufacturer) and the development IT infrastructure (e.g., HL7) to communicate
effectively between these groups.

4 Pharmaceutical Inventory Policy Optimization

The optimization of inventory systems in healthcare has been explored under
various assumptions and supply chain structures such as conventional distribution
systems and centralized stockless systems described above. The majority of the
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Fig. 17.3 Healthcare sector supply chain. Source: Rivard-Royer et al. (2002)

literature that discusses multiple echelon supply chains defines the echelons as
various physical locations. For example, inventory may be held in various locations
throughout the supply chain: manufacturer, distributer, hospital’s central pharmacy,
and PCU pharmacy. Rivard-Royer et al. (2002) represented the healthcare supply
chain echelons focusing on the internal and external supply chain partners as shown
in Fig. 17.3.

Within the healthcare supply chain, particularly at the hospital level, fulfilling
patient needs in a timely and accurate manner is the top priority, and hence
inventory management is critical. As motivated in Fig. 17.3, inventory management
in hospitals involves a number of interacting entities. Lapierre and Ruiz (2007)
is an example of a study that has taken an integrative approach to managing
hospital supply decisions by considering factors beyond costs that influence hospital
operations. Lapierre and Ruiz (2007) explicitly modeled the impact of inventory
management on resource balancing and scheduling of hospital supply management
activities. Two models, one with and one without (i.e., inventory cost focused)
workload balancing in the objective function were developed in order to compare
inventory quantities by location, time, and supplier. They found that taking these
factors into account resulted in more evenly balanced workload schedules with little
increase in inventory costs.

The hospital inventory system and the supply chain within which it operates is
complex. Demand originates at the patient level and is a defining factor in inventory
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optimization modeling. The majority of the medical supply chain research to date
has assumed that demand is stationary (i.e., static) and independent of the system
dynamics. However, a number of factors cause demand to be nonstationary. For
example, patient condition dynamics change over time affecting their drug needs;
there is seasonality in demand (i.e., the number of patients in the hospital) due to
events such as flu season; and dosing requirements vary as a function of dynamic
patient characteristics such as age, weight, blood pressure, and platelet count, as
such demand is a function of the patient population mix as well as the individual
patient dynamics. In the following subsection we discuss these operations research
models with stationary demand and multiple echelons.

4.1 Stationary Demand

Nicholson et al. (2004) considered the impact of supply chain structure on inventory
policy. They developed two inventory models in order to compare a 3-echelon
(distributor–hospital–patient unit) distribution system, termed Scenario A (similar to
the conventional inventory system shown in Fig. 17.2), to a 2-echelon (distributor–
patient unit) distribution model, termed Scenario B (similar to the stockless system
shown in Fig. 17.2), for non-critical items. The decision variables were the par
levels (i.e., the amount of material needed on hand to satisfy demand) for each
of the echelons depending on the specified scenario for a single review period
where shipments are assumed to arrive instantaneously. Any back orders were
assumed to be fulfilled via an emergency shipment, and the minimum service
level was set to 90% which the authors’ state is indicative of current practices
in hospitals for non-critical items. Since the problem has a non-convex constraint
set representing hospital unit specific service levels, it has been shown to be NP-
hard, and thus, greedy heuristics were developed to obtain feasible solutions. Their
results showed an inventory cost savings (without loss of service) when outsourcing
occurs (i.e., from the distributor/supplier directly to the patient unit). Additionally,
based on observations there was a benefit to the workload of healthcare providers
when Scenario B was implemented—increasing the staff’s time with patient care.
However, the authors also noted the need for coordinated communications if such a
distribution network is to succeed.

Little and Coughlan (2008) developed a constraint programming optimization
model for determining optimal stock levels for hospital supplies considering storage
space restrictions, item criticality, and delivery frequency. Their proposed inventory
control policy was a standard base stock policy whose parameters were found by
optimizing the minimum (or average) service level under these constraints where
the demand distribution for each item was assumed to be known and stationary.
Their model attempted to capture the various objectives of the many stakeholders
invested in hospital inventory management by incorporating these constraints and a
non-cost-based service level objective in a bounded knapsack problem where there
are different types of items (i.e., drugs), each with a weight and value. Although



456 A.R. Vila-Parrish and J.S. Ivy

weight corresponds to volume in this context, Little and Coughlan argue that value
is not simply a summation but that the objective relates to a measure of service level
across all products. The resulting inventory policies were characterized according
to the percentage of items at each service level, the average service level, and total
amount of space used. Little and Coughlan (2008) showed that the same service
levels can be reached by delivering every day with low space usage compared with
delivering every three or five days with a high space usage. They suggest the need for
good quality data that can provide real-time information between inventory systems
and complex demand patterns.

Bijvank (2009) compared the performance of a fixed order size inventory policy
(FOSP) to an (s, S) policy; both consider service level and capacity restrictions for
hospital inventory systems. In an (s, S) policy, the firm places an order when the
inventory level reaches s, and they order up to the quantity S. The focus of this work
was on inventory policies for disposable items that are distributed throughout the
hospital such as gloves, needles and sutures, and readily available (i.e., negligible
lead time) items. These items are commonly stored in bins, and thus, capacity (C) is
dictated by the bin size. An initial single-item model was derived and then extended
to consider a multi-item system. In this multi-item system, the decision was how
many bins to allocate to which product—becoming a knapsack-type problem. The
two types of replenishment policies are evaluated for infusion liquids (i.e., fluids
used in an injection or IV) at three point-of-use locations. The best performing
policy was an (s, S), where (s=C − 1), policy; however, the high frequency of
orders was prohibitive to implementation. Thus a new reorder level was found that
resulted in a similar order frequency to the FOSP. An inventory rule consisting of
three steps was developed to simplify the search for the near-optimal parameters,
making the problem-solving process easy for practitioners to implement.

Rosales (2011) compared ordering medications out-of-cycle (e.g., ad hoc) and
periodic/continuous review replenishment policies. Rosales (2011) developed a
hybrid policy where inventory is replenished periodically at the beginning of every
period (e.g., shift) using an (s, S) inventory policy. However, in contrast to a typical
(s, S) policy, if the inventory position of a particular item reached a threshold level
R, an out-of-cycle replenishment was placed which followed an (R, Q) policy. The
key finding was that a hybrid policy outperformed both pure periodic or continuous
review policies. Extending this work to a multi-item context, Rosales (2011) also
characterized the benefit attained if other items were included for restocking once
an out-of-cycle order was triggered for a single item. The evaluation of four hybrid-
joint replenishment strategies revealed that most of the benefits came from joint
replenishment during an out-of-cycle order.

DeScioli (2005) evaluated the performance of various inventory policies in
automated point-of-use systems (such as Pyxis machines) under conditions of
intermittent demand modeled using Croston’s method. DeScioli found that an (s,
Q) policy, where Q was found using an EOQ model, performed best under these
conditions. The consideration of sporadic demand takes a step toward a dynamic
demand model that incorporates nonstationary demand.
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4.2 Nonstationary Demand

As discussed earlier, demand originates at the patient level. Demand for the
medication depends upon not only the number of patients but also the condition of
those patients and their length of stay. The patient condition, length of stay, and the
patient mix are each dynamic, stochastic, and change over time. In a departure from
the above literature which assumes stationary demand, Duclos (1993) developed a
simulation model of a hospital inventory system in order to explore the impact of
operations under normal and emergency demand situations (e.g., system shocks).
They considered policies that evaluate the cost of operating under various inventory
review intervals for both the central store and point-of-use. Duclos (1993) found
that changing the review frequency was an important factor in reducing the number
of stockouts and expedited fill requirements under these demand conditions.

Vila-Parrish et al. (2008) studied a dynamic inventory model that explicitly
considers the link between patient condition, patient admissions, and the resulting
demand for perishable medications. In their study, the echelons were representative
of the physical state of a pharmaceutical drug product (e.g., raw material and
finished good). These products, many of which must be prepared to be administered
intravenously, become highly perishable as a result of the preparation of the
“raw materials.” The simulation–optimization model developed demonstrated that
incorporating knowledge of the changes in patient condition that impact medication
demand improved the inventory costs.

Vila-Parrish (2010) developed one of the first analytical models to consider
nonstationary demand in the context of a multi-echelon, perishable inventory man-
agement. Extending the simulation model developed in Vila-Parrish et al. (2008),
Vila-Parrish (2010) and Vila-Parrish et al. (2012) developed a Markov decision
process model where the state space was defined by not only the inventory on hand
but also the number of patients in a PCU. The items of interest were perishable
intravenous medications that expire within 24 h of preparation. This model included
decision variables for ordering as well as preparation of medications in advance
and in response to patient demand for a conventional inventory system. Two
demand fulfillment strategies were explored: (1) external fulfillment—shortages
are expedited from an external source (e.g., another hospital) only and (2) hybrid
fulfillment—shortages are fulfilled internally via an additional production run, and
if there is insufficient inventory in-house, the balance is fulfilled externally. Optimal
policy structures were derived that were nonstationary and showed the dependence
of ordering and preparation quantities on the patients in the system and the available
fulfillment strategies. The findings in Vila-Parrish (2010) suggested that a hybrid
policy that includes a combination of make-to-order and make-to-stock product may
best fit the hospital environment requirements to minimize waste while satisfying
dynamic patient needs in a timely fashion. Lastly, the value of investing in resources
or infrastructure to execute a hybrid fulfillment strategy can be found by comparing
the costs from each model.
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In Vila-Parrish et al. (2012) this modeling framework was applied to the demand
for an antibiotic from patients in a particular PCU of a large community hospital.
The data analysis from 1,427 patient encounters for 154 distinct patients revealed
a statistically significant correlation between the number of admitted patients and
number of doses. Two representations of patient demand were modeled; in the first,
patient demand is represented by a stationary aggregate demand distribution, and in
the second, a Markov chain was developed to represent the change in the number of
patients in the each unit period. The number of patients (i.e., the state of the Markov
chain) corresponded to a unique demand distribution derived from the dataset and
was shown to be a statistically significant predictor of demand for the antibiotic.
The results of this analysis showed a cost advantage to using the nonstationary
Markov chain-based demand model, and further research to include more patient
information that may predict demand in the state definition was suggested. In
the following section we present a small example motivated by this application
presented in Vila-Parrish et al. (2012).

4.3 Meropenem Case Study

We present an example of a nonstationary demand process driven by patient
dynamics within a hospital. As discussed in Sect. 4.2, Vila-Parrish et al. (2012)
analyzed data from a large urban hospital in order to model the patient demand
process for meropenem and proposed a nonstationary model for managing the
drug. Meropenem is an antibiotic used for complex bacterial infections such as
bacterial meningitis which costs approximately $30 per 1-g vial. In addition to being
fairly costly, meropenem becomes highly perishable when it is converted into an
intravenous form—depending on the diluents and storage; its shelf life varies from
1 to 24 h.

The focus of this study was to characterize the meropenem usage for patients
in the progressive intensive care unit (PICU) during 2008 and use this information
for improving the understanding of the drug demand dynamics. There were over
1,400 patient encounters (where an encounter was defined as each time a patient
received the drug) for over 150 patients. The analysis of the drug demand for
these patients over time suggested a dynamic and nonstationary demand pattern that
corresponded nonlinearly to the number of the patients receiving meropenem. The
demand distributions derived from the data as a function of the number of patients
are shown in Fig. 17.4. Note the distributions for the number of patients are not
simple convolutions of the one patient demand distribution. Figure 17.5 shows the
state transition diagram corresponding to the patient-based Markov chain developed
where the state was the number of patients and each state corresponds to a demand
distribution shown in Fig. 17.4.

The analysis in Vila-Parrish et al. (2012) shows the number of patients in the
hospital per day is stochastic, and hence, the meropenem demand is nonstationary.
The inventory and production policies for this case were state-dependent (i.e.,
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0 1 2 3 4 5

Fig. 17.5 Example of a
Markov chain in which each
state is the number of patients
receiving meropenem per day,
up to a maximum of 5

Table 17.2 Percent change in total expected cost of the dynamic model evaluated with the policies
derived by assuming that the demand model is stationary

Ratio of internal expediting
cost to external expediting
cost

1/25 1/10 1/5 2/5 3/5 4/5

%Change in total cost 2.59% 7.08% 10.86% 15.08% 17.23% 18.12%

dependent on the number of patients in the system). The state-dependent policies are
then compared to policies derived from an aggregate demand model that ignores the
number of patients in the system. Using an internal to external expediting cost ratio
of 1:10, the percent change in total expected cost of the dynamic model evaluated
with the policies derived by the stationary demand model is shown in Table 17.2.
The state-dependent policies outperform all stationary policies. Further, the more
similar the internal and external expediting costs are to each other, the worse the
stationary policy performs.

The key take-away from this example is that using a patient-driven inventory and
production model yields a total cost improvement over a stationary policy that uses
an aggregate demand distribution.

5 Open Research Challenges

While there have been efforts to incorporate technological advances for managing
the pharmaceutical supply chain, e.g., electronic data collection and equipment
tracking, the information provided by these innovations is often not used to inform
supply management decision making and improve the inventory policy. One critical
area for future research will be to consider how to optimize the entire supply
network (shown in Fig. 17.3). Improved hospital-based inventory management will
result in more accurate ordering by hospitals as well as more informed relationships
with suppliers and distributors. While many hospitals belong to group purchasing
organizations (GPOs) to improve their purchasing contracts, they have not linked
the entire supply chain. GPOs have primarily been focused on purchasing and
contracting decisions but have not been utilized fully to influence the pharmaceutical
supply chain. As hospitals communicate with each other through GPOs, they could
create their own supply chain—sharing inventory across hospitals—and, as a result,
could achieve greater efficiency and cost savings by jointly managing inventory
across the group.
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Orders Fulfilled Order Requests

Other Hospital

Other Hospital

Orders
Materials

Orders

Materials

Real Time Forecast Link & Inventory Level

Fig. 17.6 High-level material and information flow considering hospital, wholesaler, and manu-
facturer network

Figure 17.6 shows a potential future healthcare supply network with increased
visibility that may result in part from improved inventory management by hospitals
and hospital networks. Increased inventory visibility among supply chain partners
due to real-time information links between the central pharmacy and the pharma-
ceutical wholesaler can improve the overall management and allocation of a finite
supply of pharmaceuticals over time.

Further, at the hospital level, there is a need to use improved information to
understand the link between patient arrivals and condition and demand for medical
supplies. The development of real-time forecasting, ordering, and order fulfillment
systems that consider patient information as an input is an opportunity for research.

As this discussion of the current literature presented in this chapter implies,
healthcare supply networks present a rich field for future research. There have
been few analytical studies that consider the complexities that are inherent in
pharmaceutical inventory control such as dynamic nonstationary demand, multiple
stakeholders, and the fact that the key customer, the patient, is not the payer. The
development of models that integrate these dynamics will be necessary for hospitals
to understand and control their pharmaceutical supply costs, improve patient care,
and efficiently use resources.
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Chapter 18
The Challenges of Hospital Supply Chain
Management, from Central Stores to Nursing
Units

Sylvain Landry and Martin Beaulieu

1 Introduction

In the vast majority of countries, the healthcare sector is the focus of a great deal of
attention from public decision makers and media alike. Although healthcare is by
definition a clinically driven environment, the practice of patient care is supported
by a range of activities that notably include purchasing, inventory management,
and the distribution of supplies to the point of care. These activities are associated
with healthcare supply chain management, also referred to by many as healthcare
logistics. Improving the efficiency of such logistics can provide opportunities for
healthcare institutions and health systems to increase the quality of care and reduce
costs.

This chapter will describe the challenges of healthcare supply chain management
with a focus on the hospital’s internal supply chain and more specifically on the
distribution of medical supplies from the central storeroom to nursing units (point
of care). Section 2 provides background information on healthcare supply chain
management, with particular reference made to the efficient healthcare consumer
response (EHCR) report, the first industry-wide report on healthcare supply chain
integration. Section 2 goes on to discuss the complexities of the internal hospital
supply chain and addresses how the materials management function overseeing this
activity is structured. Section 3 covers the challenges and methods of distributing
medical supplies to nursing units. Sections 4 and 5 identify best practices and future
research opportunities. Section 6 concludes the chapter.
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2 Background on Healthcare Supply Chain Management

Hospitals are much more than simply a link in the healthcare supply chain. They are
on the receiving end of a wide range of supplies that support the delivery of care.
This section will address the challenges of the internal and external supply chain and
will examine how these activities and processes within the hospital are structured.

2.1 Efficient Healthcare Consumer Response

Publication in the USA of the EHCR report in 1996 marked a turning point in
healthcare supply chain management. This analysis presented a global vision of
the supply chain in the sector by placing particular focus on medical and surgical
supplies and pharmaceutical products (CSC Consulting 1996). The document
followed on the heels of studies conducted previously in other sectors, such as
those in the apparel industry supply chain in 1986, which led to the Quick Response
movement (Blackburn 1991; Hunter and Valentino 1995) and in the (nonperishable)
food industry in 1993, which prompted the Efficient Consumer Response (ECR)
report (Kurt Salmon Associates Inc. 1993). The EHCR report was largely inspired
by the ECR report; however, healthcare issues are much different from those
faced by retail businesses, if only in the identification of the consumer, who may
be the patient (to whom the supplies are directed and in certain cases charged), the
healthcare professional (who prescribes or uses the products or supplies), or the
taxpayers, employers, government programs, or insurance companies (who pay).

The vision put forward in the EHCR report brought to light supply chain ineffi-
ciencies shared by manufacturers, distributors, and healthcare providers, including
duplication of tasks, multiple storage areas, a fragmented information flow, delays
of all types, and substandard service. The study itself led to the creation of a
number of committees and expectations for changes in the strategies deployed by
the stakeholders [providers, distributors, manufacturers, group purchasing organi-
zations (GPOs), etc.]. In turn, substantial savings were expected—savings that at
the time were estimated at $11 billion across the US health system or almost half
of the costs associated with documented logistics process. However, once the new
strategies had been drafted, the corporate priorities of the stakeholders involved,
many of them competitors, led a large number of decision makers to take isolated
action and dissolve the EHCR committees a few years after their creation (Landry
and Beaulieu 2008).

In 2009, a team of researchers from the University of Arkansas Center for
Innovation in Healthcare Logistics (CIHL) published a report on the advancement
of healthcare logistics practices since the EHCR. The report stated that “despite
this effort, a lack of clear and measurable cost and quality improvements is evident
within the industry” (Nachtmann and Pohl 2009). Almost half of the respondents,
most of whom were employed by hospitals or health systems in director-level
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positions, indicated that their organization’s supply chain was at a low level
of maturity (i.e., neither linked nor integrated/extended). Moreover, the report
concluded that the healthcare supply chain was starved for accurate and accessible
data, the lack of data standards being a major hurdle. However, there was evidence
of implementing the strategies recommended in the 1996 report. Indeed, according
to this report, 41% of respondents had attempted at least half of the suggested
EHCR strategic initiatives, such as e-commerce implementation and supply chain
automation, and had achieved performance improvements.

2.2 Hospital Supply Chain Management Challenges

Although the trend is moving toward the establishment of a continuum of care
among multiple healthcare providers, such as outpatient clinics, acute care hospitals,
and nursing homes within a health system or an integrated delivery network (IDN),
hospitals remain the backbone of these systems and present multifaceted supply
chain management challenges. In 2009, for example, the just under 6,000 hospitals
in the USA (AHA 2010) accounted for close to one third of the national health
budget and were the primary expenditure item (California Healthcare Foundation
2011). The challenges these institutions face pertain to the integration of the external
supply chain as defined in the EHCR report, that is, manufacturers, distributors, and
healthcare providers, as well as the integration of hospital’s internal supply chain
(Fig. 18.1).

The hospital is much more than simply a link in the supply chain (Landry and
Beaulieu 2007), and its internal supply chain is highly complex. Hospitals are
generally structured around clinical departments such as emergency, intensive care,
oncology, cardiology or coronary care, the catheterization laboratory or cath lab,
and surgery [performed in operating rooms (ORs)], with inpatient beds organized
in wards or nursing units averaging two dozen beds each. These departments and
nursing units must have on hand pharmaceutical products and medical supplies
to support patient care, and these products and supplies go through a series of
steps before they reach the end user (clinical staff or patient) for consumption.
Medical supplies tend to come under the responsibility of the materials management
department and most often must be processed by receiving and central stores before
being delivered to end users. (An exception is pharmaceutical Thitchie et al. 2000
products, which are processed and managed by the pharmacy and are discussed in
Vila-Parish and Ive and therefore fall outside the scope of this chapter.)

Nursing units generally have a main storeroom where medical supplies are kept.
However, this room is rarely the final storage position, as secondary storage points
located closer to the point of use throughout the unit cater to the specific needs
of clinical staff. These points, which are replenished with supplies drawn from the
main storage room, may take several forms, from mobile carts that transport supplies
from patient to patient to stationary storage units in patient rooms.
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Distributors

Manufacturers

Hospital

Hospital central storeroom

Nursing units

Points of care

Vendors

Internal chain

External chain

Source : Adapted from Rivard-Royer et al., 2002

Fig. 18.1 Healthcare sector supply chain

In addition, certain supplies commonly known as nonstock items (or direct
purchases) are, as their name implies, not stored in central stores but rather delivered
directly to a specific nursing unit shortly after being received, often because the unit
is the sole user of these supplies. Other supplies, such as food, linens, and surgical
instruments, must go through a “transformation” process before being delivered
to users (e.g., cooking, washing, or sterilization). After use, certain supplies must
go through what is called reverse logistics to be transformed once again (e.g.,
linens), while other supplies become a waste management issue (e.g., cardboard).
Hospitals produce a variety of waste matter (biomedical, chemical, metal, etc.)
(Tudor et al. 2009), which often must be managed according to regulatory standards
(Tyagi et al. 2010). For ecological reasons, hospitals also develop practices to
reduce environmental impacts, such as unpacking and recycling cardboard boxes in
central stores to promote paper recuperation and prevent boxes from accumulating
in nursing units (Tudor et al. 2008).

Hospitals therefore receive a wide range of supplies that support the delivery
of care, either directly (medical supplies, pharmaceutical products) or indirectly
(linens, meals, stationery, cleaning products). In most cases these supplies carry a
high level of awareness as to the risks of stocking out. Moreover, the many different
flows of information and material in a hospital have resulted in a range of clinical
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staff contributing to the logistics activities associated with the various supplies
used. This means that within a hospital, almost everyone is involved in the supply
chain, although few realize it (Landry and Beaulieu 2002). Among the professionals
involved, clinical staff often have neither the expertise nor resources to efficiently
manage logistics activities. And, considering that most industrialized countries are
facing nursing shortages, it is vital to find ways to ensure that all of the efforts of
clinical staff are channeled toward patient care. Instead, many of these employees
currently spend more than 10% of their time on logistics tasks (Chow and Heaver
1994; Rivard-Royer et al. 2002; Fereng 2010). Added to this is the fact that nurses
are often interrupted in their work because of supply shortages and other logistics
problems (Tucker and Edmondson 2003).

The diversity of flows and the dispersal of logistics activities among the various
departments and nursing units in a hospital tend to inflate the costs associated with
these activities. In fact, North American studies have found that more than 40% of
a hospital’s expenses are related to supply chain activities (Chow and Heaver 1994;
Nachtmann and Pohl 2009; AHRMM 2010). Similar studies conducted in France
and Holland have revealed that 30–35% of a hospital’s operating budget is spent on
logistics (Bourgeon et al. 2001).

Not all products are alike; their cost or the impact of a shortage will vary
(Schneller and Smeltzer 2006). In some cases, the material manager must change
strategies to take advantage of any savings that may be available. Tendering strate-
gies and the consolidation of suppliers are primarily used for commodity products
(Pedersen 1996). It remains that physicians’ preference items (PPI), that is, supplies
and expensive disposable items used during surgical procedures, hold the greatest
potential for savings in hospitals (DeJohn 2005). Indeed, surgeons’ decisions are
frequently based on factors unrelated to cost, such as their experience with a
particular product, their sense of what is in the best interests of a particular patient, or
their relationship with a manufacturer’s representative (Montgomery and Schneller
2007). Savings on these products can be generated through supply standardization
strategies or utilization management (Governance Committee 1997). However, such
strategies ultimately depend on physician participation (Montgomery and Schneller
2007; Aston 2010).

The hospital, due to the particularities of its internal supply chain, consequently
merits greater attention, and solutions are needed that address its unique situation.
The benefits that can be generated through sound management of the hospital supply
chain are equally unique. Whereas using effective logistics in the industrial and
retail sectors can lead to reduced costs and increased customer service, efficient
logistics in the healthcare sector can yield other substantial gains. For example,
improved logistics in this sector can become a tool to enhance job satisfaction
among clinical staff. To this end, given the complexity and challenges being faced
by the healthcare sector, it is important to integrate the internal supply chain in order
to fully benefit from its integration with the external chain (Schneller and Smeltzer
2006).
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2.3 Organizational Structure of the Materials Management
Function

In North America, as reported by Landry and Beaulieu (2002), the emergence of
the materials management or logistics department in its current form is the result of
many changes that have taken place over a 100-year period within the hospital envi-
ronment. Indeed, “in the early 1920s, the American College of Surgeons endorsed
the concept of standardized surgical dressings and the centralized preparation and
handling of all surgical supplies” (Thorsfeldt 1988, p. 64). By the 1940s, W.R.
Underwood and others were paving the way for a central service organization
(Thorsfeldt 1988), and in the 1970s, analysts became proponents of a centralized
system to manage purchases, inventory, and distribution in hospitals (Driscoll 1981).
During the same decade, this central department evolved further, integrating new
functions and becoming the materials management department; one of the functions
rolled into it was purchasing, although this emerging organizational structure varied
from hospital to hospital (Thorsfeldt 1988).

Prior to 1950, few hospitals had a centralized purchasing department; each
department managed its own purchases and inventory. However, this approach was
feasible only when a limited assortment of products was involved. The technological
evolution that followed the Second World War brought with it a surge in the range
of products available as well as an increase in deliveries, further complicating the
management of supplies. To eliminate duplication and labor costs, hospitals turned
to a centralized purchasing approach (Burnette 1994).

The consolidation of a central service and purchasing unit within a new
materials management department responded to a need for greater efficiency and
productivity by eliminating waste and duplication in the management of material
flows (Thorsfeldt 1988). It also put responsibility for purchasing supplies into the
hands of professionals, which in turn led to an increased knowledge of the markets
(Fearon and Ayres 1967). These centralization efforts gave birth to what we know
today as healthcare supply chain management or healthcare logistics, which take
concrete form through these various terms and the different roles that logistics play
within a hospital. Yet, despite the clear benefits of assigning an increasing number
of activities to the materials management, logistics, or supply chain department, as
noted above, we continue to see many hospitals dealing with fragmented logistics
activities and a host of players (Parker and DeLay 2005), which can impede the
emergence of a single, credible entity to handle supply chain activities.

Moreover, in many sectors, including healthcare, the purchasing function is
largely ignored by senior management (Bales and Fearon 1993; Cammish and
Keough 1991). Often, responsibility for this department is assigned to a middle
manager, whose authority is by definition limited (Janson 1985). In more than
half of the hospitals in the USA, the materials management department reports
to the financial director or CFO, which means that the manager must negotiate
with decision makers in other departments as well as with his or her own internal
clients (Kowalski 1993; AHRMM 2000; HFMA 2010). Chow and Heaver (1994)
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agree, stating that this situation initially leads to an inability to implement solutions
that involve both the hospital and its suppliers and goes on to disrupt operational
activities, as the department is left to find its own solutions.

Recent developments in the healthcare sector demonstrate the extent to which
supply chain management is gaining the attention of leaders. In Canada and
the USA, healthcare reforms are prompting a number of materials management
departments to outsource a portion of what were once their traditional activities.
Most departments, for example, turn to a group purchasing organization (GPO) to
find suppliers and negotiate contracts; others use the stockless approach, calling
on medical supply distributors to deliver products directly to nursing units (Arthur
Andersen 1990; Souhrada 1998; Rivard-Royer et al. 2002). In recent years, we have
also seen the emergence of consolidated service centers (AHRMM 2010), which use
a shared services or 3PL approach to serve many institutions in the same province
or state or indeed in several states. More and more hospitals are also creating
materiel/materials management or supply chain departments and in some cases, the
position of Chief Resource Officer. This shift is not unique to North America; in
France, for example, the first such platforms made their debut in the late 1990s
(Landry et al. 2000).

3 Distribution of Supplies to Nursing Units

As mentioned above, the distribution of medical supplies to nursing units represents
a key component of the hospital’s internal supply chain, given the many nursing
units found in a hospital, the large quantity of items replenished on a daily
basis, the number of clinical staff impacted, and the cost of these items. Methods
of distributing supplies to nursing units can be classified according to whether
decisions regarding the quantities to be replenished are centralized in the materials
management/logistics department or decentralized in the nursing units themselves,
and, on another level, according to whether supplies are managed in nursing units
as perpetual inventory (online real-time inventory status) or as periodic inventory
(where items on hand have to be counted to establish reordering quantities).

In most cases, supply purchases are charged to the nursing unit (or user
department) at the time of delivery and no longer appear on the hospital’s books
as an asset. This “unofficial inventory” can represent up to ten times the value of the
official inventory, that is, the supplies kept in central stores and managed through a
perpetual inventory management system (Berling and Geppi 1989).

Based on the literature on this subject (primarily Perrin 1994) and our own field
experience, we note that the methods most commonly used to distribute supplies
to hospital nursing units have ranged from clinically driven requisition-based sys-
tems (decentralized-periodic inventory), exchange carts (centralized-periodic), and
periodic automatic replenishment or par level system (centralized-periodic) to the
more recently introduced two-bin system (centralized-periodic), RFID-enabled two-
bin system (centralized-perpetual), weight control bins (centralized-perpetual), and
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user-driven unitary demand capture systems (centralized-perpetual). See Table 18.1
for a detailed description of these different types of inventory management systems.

The order in which the above replenishment systems are presented is not random;
it follows the same sequence as their introduction into the healthcare sector. This
evolution has come in three waves. In the 1970s, the exchange cart system began
to overtake the requisition system in popularity (Perrin 1994). Although rarely
used today, the exchange cart concept nevertheless introduced a key objective that
subsequent replenishment systems only served to reinforce: transfer responsibility
for replenishment from clinical personnel to a centralized administrative body [e.g.,
hospital central stores or, in the case of stockless materials management, distributors
(Rivard-Royer et al. 2002)], which would perform this task for all of the hospital’s
nursing units. To a certain degree, this is a sort of “internal” vendor managed
inventory (VMI) system. This division of duties allowed for greater specialization
of functions, with clinical personnel now able to focus on their core mission of
patient care. It also allowed staff in the centralized administrative unit to spend time
establishing minimum and maximum thresholds for the various supplies kept in
stock and identifying the optimal replenishment frequency—in short, managing the
inventory, a task that clinical personnel were often forced to neglect (Landry and
Philippe 2004).

In the 1980s, the par level system proved itself more efficient than the exchange
cart system by delivering appreciable gains through reductions in stock and storage
space in central stores, as it eliminated the need to manage duplicate mobile supply
carts. Par level was also more flexible, in that it could be used with any and
all storage equipment in the nursing unit (fixed carts, fixed shelving, cabinets,
etc.), while enabling staff to manage a wider range of products than with the
exchange cart system, as the process was no longer limited to using a particular
type of mobile cart. Moreover, it permitted the use of portable readers to enter
quantities in stock or scan label barcodes. However, these gains were achieved at
the expense of additional contact between the material handler (a stores clerk who
is part of the materials management department) and clinical staff (mainly nurses
or nursing aides), as the handler now had to spend more time in the nursing unit
to count the supplies requiring replenishment and put away delivered products. It
was nevertheless possible to diminish the disruption by conducting rounds to scan
barcodes and put away supplies during the evening or night shifts, when there was
less activity on the unit.

The third development came at the end of the 1980s, when the two-bin or kanban
system emerged from Denmark and Holland (early 1990s in France; late 1990s
in North America) and delivered significant gains over its predecessors. During
scanning rounds (order taking), rather than material handlers drawing on their
experience only and “eyeballing” the materials as with par level (Leone and Rahn
2010), they could now simply scan labels that had been removed from empty bins
and affixed to a wall-mounted board within each nursing unit storage area. It is
important to note that the gains generated by the two-bin system did not come at the
expense of increased inventory. In fact, compared to the par level system, the two-
bin method did not double the quota of supplies, but rather divided it between each
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bin. The two-bin system also brought with it greater control over the quantities to
order (a fixed quantity per bin). In addition, the two-bin system forced stock rotation
and in doing so reduced the risk of products expiring. It could also be combined
with a high-density storage system, which enabled a greater variety of products to
be stored in the same storage area, including direct purchases that could be managed
with this system (Landry et al. 2004).

In the early 1990s, the USA saw the introduction of automated storage cabinets
in nursing units, the first user-driven unitary demand capture systems to provide
perpetual inventory management. Used primarily for medical supplies and phar-
maceutical products, these systems emerged in the American healthcare sector as
a result of private hospitals seeking to better reconcile the supplies consumed by
patients with those invoiced to them. A few years later, less expensive point-of-
use technologies using open bins with transponders were introduced. However,
the challenge with these systems, both closed and open, has been compliance
by users to record consumption, with one notable consequence being inventory
inaccuracies. In the case of the automated cabinets, once the door of a closed cabinet
is opened, clinical staff can remove items without accounting for them. Indeed,
in a study that targeted the dispensing of pharmaceutical products, Klibanov and
Eckel (2003) found that 19.5% of 2,895 drawers contained incorrect inventory.
Moreover, in certain countries, such as the USA, the practice of invoicing patients or
insurance companies for individual items used is gradually changing to a diagnostic
and treatment-related system. For this reason, some are questioning the ongoing
practicality of using such sophisticated permanent inventory systems in nursing
units.

In the early 2000s, in an effort to reduce compliance issues, some vendors
introduced RFID transponder technology, thus eliminating the requirement for
nursing unit staff to record transactions (Bendavid et al. 2010). Still, the deployment
of this technology has been limited, as each item must be conditioned by affixing
an RFID transponder to it, an activity that can become cost-prohibitive given the
relative low cost of most medical supplies (Bendavid et al. 2010). The use of
this technology has therefore been restricted to a small group of products, such as
implants, in specialized areas (operating rooms, cath labs, etc.).

In the mid-2000s, in a further effort to reduce compliance and demand capture
issues, a weight control bin solution for general supplies was adapted from the
industrial sector and introduced in the US healthcare sector. The solution auto-
matically triggers the replenishment process using order point logic. However, the
solution is challenging from a space utilization point of view; not only is it a wall-
mounted system, but in many cases the walls used must be reinforced. The offering
has a limited assortment of bins and can also be unreliable in a live environment
(technology failure, recalibration, items returned to the wrong bin, monitoring of
expiry dates, etc.).

The mid-2000s also saw the development of the RFID-enabled two-bin re-
plenishment system. Initially developed in Canada (Beaulieu and Landry 2010;
Bendavid et al. 2010), this replenishment system has since become popular in
Europe, particularly in France and Spain. In 2011, a computer vision-enabled
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version of the two-bin replenishment system (video capture) was introduced in
North America at the annual AHRMM conference (Association for Healthcare
Resource & Materials Management). Using video cameras, the new application
is capable of recognizing empty bins and generating replenishment orders. This
further reduces human intervention while maintaining the benefits of the two-
bin system. Building on the gains delivered by the two-bin system, both RFID
and video capture technology allow for the elimination of data collection through
preestablished rounds and provide real-time, remote visibility of inventory levels
and replenishment needs. At the bin level, the periodic review model has thus
evolved into a perpetual inventory model.

All of these inventory management systems use a fixed-interval reordering
process (periodic review system), order point logic, or a combination of both (hybrid
system). This means that the review period duration, maximum inventory level,
order point, reordering quantities, and safety stock can all be calculated using
various stochastic inventory models to try to find the right balance between ordering
costs and inventory carrying costs. Research has shown that keeping these inventory
management parameters up to date can lead to improved performance (Landry
et al. 2004). Unfortunately, in many hospitals, the rule of thumb prevails; too often
demand is not tracked, and parameters are not kept up to date.

Over and above what has been presented for a typical nursing unit, the operating
room presents unique challenges, as a large proportion of the items it carries are
nonstock (direct purchase) and consignment items. Moreover, these supplies are
often very expensive, with inventory costing five to six times more than that stocked
in the hospital’s central stores and with an inventory turnover rate of 2.5, compared
to 12 in central stores (Park and Dickerson 2009). However, the OR offers a rare
opportunity in healthcare, as material usage could theoretically be planned days
or sometimes weeks in advance by taking advantage of the forward visibility
of the OR schedule and surgeons’ preference lists (bills of materials). Material
requirements planning (MRP) systems, common in the manufacturing sector for
dependent demand items, could then be used (Steinberg et al. 1982; Lafond and
Landry 2001). To our knowledge, however, very few examples of such utilization
exist in practice in the OR. Currently, forward visibility is restricted to using OR
schedules and preference lists (for predictable items) to enable the preparation of
case carts before a surgical procedure. Rather than having OR staff pick supplies and
instruments from OR storerooms right before the operation, the ability to prepare in
advance also paves the way for automating of charge capture, with data collection
greatly streamlined for patient charging where applicable.

And finally, the OR has recently seen the introduction of RFID technology to
manage high value items via a number of applications, such as RFID shelves,
cabinets, and receptacles (Bendavid and Boeck 2011). Although they use the same
technology to collect data, RFID-enabled shelves and cabinets manage the process
differently from RFID receptacles: shelves and cabinets read tags on product
packages when within the field of the antenna and therefore in inventory, and
removing a product from a shelf will deplete this product from inventory. In the case
of the receptacle, data is read when a product is consumed, with its RFID-tagged
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packaging disposed of in an RFID-enabled receptacle. The logic here is that a
product recorded in the conditioning process is in inventory until its packaging is
disposed of in the receptacle, thus requiring less technology per item managed. As
for the RFID-enabled shelves and cabinets, these are used to track the usage of
unpredictable high value items—usually consignment products—such as orthopedic
prostheses (Philippe and Beaulieu 2010).

4 Best Practices in Medical Supply Distribution Methods

In many situations, the two-bin/kanban replenishment method has proven to be a
better inventory management system for medical supplies and common drugs, office
supplies, etc. than clinically driven requisition-based methods, exchange carts, par
level, or more expensive automated cabinets (Landry et al. 2004; Black and Miller
2008; Graban 2009; Landry and Beaulieu 2010; Leone and Rahn 2010).

As mentioned above, generally speaking, the two-bin system offers the following
advantages over other periodic review systems:

• No-count replenishment system (built-in decision rule; no “eyeballing,” as is
often the case with other systems)

• Reduces the average inventory level, because it increases the quality of informa-
tion at the point of use

• Reduces the time taken for the ordering process (four to seven times faster than
par level systems, Landry et al. 2004) and thus reduces the time spent by material
handlers in the nursing unit (less chance of disruption to clinical activities)

• Reduces product handling and increases event-related sterility (infection control)
• Reduces the risk of products expiring (built-in stock rotation)
• Manages products with different replenishment cycles in the same storage units
• Leads to better ergonomics when implemented with high-density storage systems
• Integrates a number of lean healthcare features (visual management, standardized

process, kanban; Landry and Beaulieu 2010)

The addition of RFID technology has further improved the two-bin system.
It has eliminated the need to conduct rounds of the nursing unit to scan the
labels of empty bins, thus doing away with movements with little or no added
value (elimination of waste) and disruptions on the nursing unit, particularly in
hard to access areas (Landry and Beaulieu 2010). Moreover, RFID technology,
combined with a materials management information system, can immediately alert
the materials management department via pager or other device that there is a
stockout in the nursing unit (i.e., that the label from the second bin has been
affixed to the board; Landry and Beaulieu 2010). The emerging application of voice
technology used in conjunction with portable RFID readers also improves the put
away process by locating labels on the board faster and reducing the risk of errors.

While we consider the RFID-enabled two-bin system a better way to manage
supplies in nursing units or specialty areas such as the OR, one must remain open
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minded about using other systems or techniques in specific circumstances. For
example, we have seen the exchange cart work well in dialysis, with sourcing
directly from the vendor. Indeed, according to Szulanski (1996), best practices
are replicated organizational routines where “practice refers to the organization’s
routine use of knowledge and often has a tacit component, embedded partly in
individual skills and partly in collaborative social arrangements.” Winter (1995)
states that these organizational routines intuitively rely on behaviors that generate a
predictable result. On a more conceptual level, these routines “can be conceived as
a web of coordinating relationships connecting specific resources” (Winter 1995).
A practice is therefore not limited to technology and work processes. Under these
circumstances, a practice can qualify as “best” based on the environment where it is
deployed (Moore 1999).

For example, Hôpital du Sacré-Cœur de Montréal, a hospital in Montreal,
Canada, transformed the secondary storage locations in its emergency department
examination rooms into more than 30 primary storage points replenished by the
hospital’s central stores. These storage locations had previously been replenished
by clinical support staff from a central storage area in the emergency department
itself. The change gave material managers a greater awareness of the replenishment
process of a very busy area of the hospital (Beaulieu and Landry 2010). It also
generated substantial clinical productivity gains that could then be refocused on
patient care.

This transformation was supported by the implementation of an RFID-enabled
two-bin application housed in a high-density storage system, a solution perfectly
suited to the challenges at hand. But, in keeping with the above account of the
impact of combining resources, behaviors, and a practice, it was also supported
by a revamping of the working methods of materials management employees and
the training of clinical personnel. In this example, not only was a technology
deployed that offered intrinsic advantages, but the hospital implemented it within
a perspective of optimizing the entire logistics process in terms of who does what at
each step of the process. The hospital also moved away from replenishing nursing
units during the busy day shift, when there is a greater likelihood of disrupting
clinical flows and when access to elevators is more challenging (Beaulieu and
Landry 2010). With respect to putting away supplies, Sacré-Cœur opted to have
two designated teams deliver supplies to nursing units and put the supplies away
in each bin while performing stock rotation. This further illustrates what we cited
about best practices earlier in the section and the fact that better practices become
“best” in real-life situations and in a specific context that integrates both hard and
soft dimensions.

We can therefore define best practices as a set of organizational characteristics
that produce superior performance. A best practice may take the form of a tech-
nology, work method, work organization, or a combination of all of these elements
(Landry et al. 2000). During its 10-year initiative, Sacré-Cœur has demonstrated the
importance of patience, continuous improvement, and innovation while maintaining
a clear vision of what it means to have an integrated internal supply chain. Today,
the logistics department is considered as playing a strategic role within the hospital
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(Amaya et al. 2010). Its involvement goes beyond the simple transferring of supplies
in response to the needs of clinical staff; it has become a major stakeholder
in developing solutions to the various logistics problems faced by the hospital,
for example, patient movements and the positioning of medical equipment. This
department has demonstrated its ability to coordinate resources in order to produce
new organizational routines. In short, when it comes to best practices, perhaps W.
Evert Welch said it best: “There are no bad techniques [ . . . ] just bad applications”
(cited in Plossl 1994, p. 288).

5 Future Research Opportunities

Due to the real-time visibility of inventory status associated with the two-bin
replenishment concept, RFID technology and more recently video capture have
made it possible to proactively manage supplies by triggering replenishment rounds
based on a range of criteria (number of labels on the kanban board, time elapsed
since a label has been on the board, stockout situation, etc.) (Landry and Beaulieu
2010). These innovations open the door to a large number of research avenues.
For example, when deciding on replenishment triggers, what criteria might help
optimize the management of inventory? Also, in terms of transport, this makes
possible a field of research on deterministic or stochastic inventory-routing problems
in the world of medical supply distribution. Currently, the replenishment of nursing
units is for the most part done according to a predetermined schedule that is rarely
updated (e.g., a hospital may decide to replenish a nursing unit every day, on
Mondays and Thursdays, or once a week). This schedule can remain unchanged
over a number of months or even a year and beyond. Increased knowledge of the
stock status in the nursing units can enable staff to plan replenishments according
to a variable schedule based on one or more criteria, while optimizing the transport
route in consideration of the supplies being delivered, the location of the deliveries
(nursing units), the hospital configuration (corridors and elevators), and the capacity
of the transport cart (capacitated vehicle routing problem).

In addition, when combined with the implementation of a warehouse manage-
ment system, the RFID-enabled two-bin system offers the possibility of tracing each
medical supply lot from the moment it enters the hospital, through the receiving
area, until the moment it is used in a nursing unit, by linking each lot to specific
storage bins. This opens yet another research avenue. Simulation may constitute a
way of approaching these questions and addressing issues that include, for example,
whether secondary storage locations in the nursing units should be replenished
by clinical staff from primary locations or whether central stores should replenish
these directly. In other words, what should the key drivers be in defining a primary
vs. secondary storage location? Simulation also offers the possibility of weighing
different options during a major renovation project or the construction of new
nursing units or even a new hospital.
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The emergence of centralized distribution platforms also generates interesting
research possibilities. For example, does a better model exist between shared
services and third party logistics (3PL) providers, or under what conditions should
one or the other organizational mode or governance structure be selected? Does a
third option exist? Given the emergence of distribution platforms, which often are
region-wide, what impact might these platforms have on upstream partners in the
supply chain, primarily GPOs and distributors?

Change management also offers interesting research opportunities, as the imple-
mentation of the innovative systems discussed in this chapter (e.g., two-bin system,
RFID-enabled two-bin system, or the preparation of case carts using surgeons’
preference lists) introduces varying levels of transformation to the organization.

6 Conclusion

We have demonstrated the important role of supply chain management in a hospital
setting and the various ways of structuring the associated activities, and we
have emphasized the main challenges of distributing medical supplies to nursing
units. Operational excellence is thus achieved through the use of “best” inventory
management and distribution systems, combined with continuous supply chain
process improvements and better integration with the patient care process. With
respect to the latter, dramatic clinical advancements have been made in recent years.
However, generally speaking, the management processes supporting the delivery
of care have not moved at the same pace (Spear 2009). Emerging healthcare
supply chain innovations, many of which, such as RFID technology and the lean
approach, originated in the industrial sector, offer an opportunity to fill the gap. The
implementation of best practices in the distribution of medical supplies to nursing
units is a good illustration of how improving the healthcare supply chain releases
clinical staff from the frustrations associated with managing inventory at the nursing
unit level and provides them with the time to focus on problems that more directly
involve them and that they have been trained to resolve.
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Lafond N, Landry S (2001) Gérer plus efficacement les stocks du bloc opératoire à partir de la
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Chapter 19
Overcoming the Challenges of the Last Mile:
A Model of Riders for Health

Jessica H. McCoy

1 Introduction

More than eight million children under the age of 5 died in 2009, largely of
preventable causes; the majority of these deaths (74%) were in developing countries.
A child dies every 30 s from malaria alone, and each day, 1,500 women die from
causes related to pregnancy and childbirth that could be avoided by care from trained
health professionals. These deaths are preventable, but even so, millions of people
die every year because they do not have access to basic healthcare (World Health
Organization 2011).

People in resource-limited regions face numerous barriers to healthcare access.
Countries with strong health resources in their capital cities may not have the
channels necessary to distribute those resources beyond the city limits. Resources
and funding for healthcare may come from all over the world, but are of little use
unless they reach the intended patients. We refer to the final leg of the journey
of healthcare from a point of access (such as a local clinic or traveling health
worker) to patients as the “last mile” (Fig. 19.1). Whether healthcare is accessible
to a community often comes down to this critical last mile of health delivery. Upon
her election as director-general of the World Health Organization in 2006, Margaret
Chan noted that “all the donated drugs in the world won’t do any good without an
infrastructure for their delivery” (United Nations 2006).

Last-mile challenges are diverse and widespread. It is difficult to build and
support remote clinics, particularly in the absence of a road network. In addition,
some regions may be unreachable during certain seasons (e.g., rainy season).
Transient populations are difficult to reach consistently. For example, rates of
childhood vaccination and assisted births in nomadic populations in Chad are
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Fig. 19.1 Hypothetical supply chain for medical supplies such as drugs. The “last mile” is the
final step of providing healthcare to the end consumer of the supply chain: the patients

unacceptably low (Hampshire 2002). To diagnose and treat patients properly, clinics
must have appropriate equipment, capacity, and resources such as nurses and drugs.
Health worker shortages are widespread: trained health workers are in short supply
in many parts of Africa, so some rural health workers in Africa are each responsible
for thousands of people (Chen et al. 2004; World Health Organization 2011).

Accessibility is affected by a number of financial, social, and physical factors.
The high cost of treatment, in addition to the cost of transportation and missed
work, is prohibitive for many (Weiser et al. 2003). Social stigma attached to diseases
such as HIV may deter patients from seeking treatment (Mills et al. 2006; Weiser
et al. 2003). Some patients are unable to seek routine care due to unstable lifestyles
(Chesney 2000; Hampshire 2002). Additionally, unsafe environments caused by
armed conflict can disrupt healthcare access (Reilley et al. 2002).

Transportation barriers to healthcare are significant in developing regions and
have far-reaching implications regarding the health of rural populations (Porter
2002). Physical access challenges such as the long distance to a treatment center
or the need to rely on public transportation to travel to that treatment center are
common reasons for nonadherence to tuberculosis treatment (Shargie and Lindjørn
2007). Poor roads directly affect a population’s ability to access emergency obstetric
care, and people in developing countries who live more than 4 or 5 miles from
a clinic receive less frequent healthcare (Howe and Richards 1984; Samai and
Sengeh 1997). Improving transport could lead to better health outcomes (Ahmed
and Hossain 1990; Operations Evaluation Department 1996). Despite these findings,
transportation options tend to be severely limited in most developing countries. In
the poorest 15 countries in sub-Saharan Africa, only 37% of people living in rural
areas are within 2 km of an all-season road (Transport Sector Board 2008).

Some researchers propose to bypass physical barriers altogether by implementing
alternatives to traditional health delivery. Telemedicine programs use communica-
tions technology to facilitate diagnoses and appropriate care of rural patients. For
example, Project Tristan connects patients on the remote island of Tristan da Cunha
to specialists at the University of Pittsburgh Medical Center via a dedicated satellite-
internet connection; otherwise, healthcare for these patients is a 6- to 7-day boat ride
away (Economist 2008). Real-time videoconferencing can connect cancer patients
worldwide with oncologists in order to provide advanced care (Hazin and Qaddoumi
2010). Using text messages to remind patients to take their antiretroviral medication
improved treatment adherence rates in a trial in Kenya (Lester et al. 2010).
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Even though telemedicine programs have not yet been collectively demonstrated
to be cost-effective in the developed world (Whitten et al. 2002), many researchers
believe that such programs could improve health delivery in the developing world
in a cost-effective manner, especially given advancements in wireless technology
(Anupindi et al. 2009; Istepanian et al. 2006). Although telemedicine programs
have the potential to help alleviate the logistics challenges of the last mile, they
are unlikely to eliminate those challenges on their own.

In this chapter, we focus on the physical accessibility of healthcare; our
discussion applies broadly to the developing world, but many of our examples are in
the context of sub-Saharan Africa. Rural populations are often underserved because
both patients and their local health workers lack transportation options. Even if roads
do exist, individuals in rural communities do not own motor vehicles (Transport
Sector Board 2008). In Zambia,1 we interviewed rural health workers who resort
to hiring taxis to transport critically ill patients to the closest hospital—but can do
so only if the patients can afford it. Other health workers we interviewed bring fuel
to the local market to trade for rides in order to conduct outreach visits to outlying
communities. While some clinics may have a motorcycle or car, the vehicle is of
little use if it is broken down or out of fuel. Public health budgets are stretched far,
and frequently there is insufficient funding for fuel or fleet maintenance.

The remainder of this chapter is organized as follows. In Sect. 2 we provide a
brief review of the literature on operations research as applied to resource-limited
settings and last-mile problems. We adapt a traditional operations research modeling
approach to the context of last-mile health delivery in Sect. 3 and illustrate this
framework by presenting a case study and model in Sect. 4. We review model next
steps and limitations in Sect. 5 and conclude with a discussion of the challenges of
modeling in this context in Sect. 6.

2 Literature Review

Operations research is a powerful methodology for process improvement and can
be applied to model the last mile of health delivery to help decision makers choose
viable solutions. While the application of operations research to health delivery is
well studied, modeling in the context of resource-limited regions is less common.
In this section, we review work that has been done in developing regions and, more
specifically, with regard to the critical last mile.

The relatively new field of humanitarian logistics contains numerous examples
of operations research applied in the developing world (for more extensive reviews,
see (Apte 2009) and (McCoy 2008)). For example, Beamon and Kotleba proposed

1Over the course of several trips to Zambia in 2010–2012, our team interviewed dozens of health
workers and health officials. We mention some of their anecdotes here but suppress names to
preserve anonymity.
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the use of (Q,R) inventory policies for the ongoing relief supply chain in southern
Sudan (Beamon and Kotleba 2006). McCoy and Brandeau (2011) used dynamic
programming to develop optimal shipping policies from a stockpile to a relief oper-
ation, informed by the authors’ work with the United Nations High Commissioner
for Refugees in sub-Saharan Africa and the Middle East. De Angelis et al. (2007)
worked with the World Food Programme to build a vehicle-routing schedule for
cargo planes in Angola.

Researchers have also studied the supply chains of sub-Saharan Africa to under-
stand the challenges of operating in resource-limited regions. Yadav et al. (2011)
developed a case on the differences between medical and beverage supply chains
in sub-Saharan Africa. Spiliotopoulou and Yadav used a dynamic compartmental
model governed by differential equations to model the pharmaceutical supply
chain in Africa and understand the impact of drug assortment on disease resis-
tance to malaria medication (Spiliotopoulou et al. 2011). Additionally, researchers
have linked operations within clinics to successful treatment programs. Using an
optimization model of clinic capacity management that incorporated treatment
adherence, McCoy and Johnson (2012) proposed more effective treatment programs
for rural clinics treating infectious diseases such as HIV. Deo et al. (2010) used a
time and motion study to inform a simulation of clinic wait times.

These models also shed light on the challenges of and possible solutions for
the last mile of health delivery. In addition, Balcik, Beamon, and Smilowitz
developed a mixed integer program to allocate resources and route vehicles between
local distribution centers and final beneficiaries (Balcik and Beamon 2008). Other
researchers have focused on fleet management as a method for overcoming the
last mile. Pedraza Martinez and van Wassenhove (2012) modeled the International
Federation of Red Cross and Red Crescent Societies’ optimal vehicle replacement
policy as an optimal stopping problem, and Pedraza Martinez et al. (2011) used
game theory to develop contracts that alleviate incentive misalignments in vehicle
replacement.

Operations research models and methods are well suited to identifying solutions
to problems with the last mile in resource-limited regions. Operations in developing
regions are different enough from those in developed regions that models for
developed regions are not directly applicable. Models created for the developed
world may have assumptions and objectives that do not apply to developing regions
such as sub-Saharan Africa. We contribute to these growing streams of literature by
modeling the effectiveness of fleet management in health delivery. We present our
approach in the following section.

3 Framework for a Model-Based Approach

Not all of the problems that plague health delivery supply chains are common to both
the developed and the developing world, and so models that are insightful and useful
in the context of the former do not necessarily apply to the latter and vice versa;
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for example, operating room scheduling might not be a priority in rural Botswana,
while models on the spread of malaria do not apply in Canada. Each organization
in the health delivery supply chain in a region likely operates under different
objectives with different incentives, so the context of the problem is very important.
In addition, translating model results and policy into sustainable programs is itself a
tremendous hurdle (Madon et al. 2007; Sanders and Haines 2006). In recent years,
research on implementation science has burgeoned to understand how policies can
be implemented more successfully; for examples, see Chokshi and Kesselheim’s
analysis of why access to vaccines remains inadequate in resource-limited countries
(Chokshi and Kesselheim 2008), and Zwarenstein et al.’s work on improving the
quality of care to children with asthma in South Africa (Zwarenstein et al. 2007).

With these concerns in mind, we apply a traditional operations research modeling
implementation approach (e.g., see Chap. 2 of Hillier and Lieberman (2005)) to our
context: last-mile health delivery in resource-limited regions. In this section, we
adapt the approach (Fig. 19.2) to frame our work with Riders for Health in Sect. 4.

First, in order to understand the problems of the last mile, researchers must be
sure to include stakeholders in the modeling process and identify how stakeholders
contribute to and are affected by each challenge in order to ensure relevant
results. Health delivery supply chains in developing regions involve a number of
stakeholders, not just the decision makers or funders of the supply chain. The
end consumers of these supply chains are the local communities, families, and
individuals that need care. The health workers who serve these communities are
the next members of the supply chain, followed by their employers, who are health
officials at the district, provincial, and national levels. Nonprofit organizations
comprise a large fraction of the health sector in some resource-limited regions.
Finally, global aid agencies and donor nations funnel donations (both monetary and
in-kind) into health delivery supply chains.
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Second, all of these entities are invested in the success of the health delivery
supply chain but may have different approaches for improving operations as well as
different metrics to gauge any improvement. Patients may value low waiting times
and inexpensive treatment at their local clinic (cf. Deo et al. (2010)), while health
workers might want additional coworkers to lessen their workload. Administrators
may be concerned with minimizing costs, while donors might propose programs
to increase intervention access or coverage (c.f. Bryce et al. (2004) and Rosero-
Bixby (2004)). After identifying the challenges faced by different stakeholders,
researchers should select a reasonable objective that is supported by many if not
all of the stakeholders.

Having identified the problem and clarified an objective function, the next step is
to apply the tools and techniques of operations research to build an insightful model.
Creating models for the developing world involves some unique challenges. For
example, reliable data may be especially scarce in a resource-limited environment.
Lack of data presents a barrier to an organization’s ability to estimate need (e.g.,
Samii et al. (2002)). One possible solution is to identify proxy variables for
variables that are unavailable, unreliable, or costly to measure. Conversations with
stakeholders can identify what data are available and how available data relate to
desired but unavailable data; for examples in health modeling, see Acharya and
Cleland (2000), Dovlo (2005), and Ranson et al. (2003). Modelers should take care
to identify metrics that are measurable and that make sense in the context of the
supply chain.

At the final stage of the modeling approach, hopefully any model results will
answer the questions provided by stakeholders in earlier stages of the project. If the
model relies on uncertain data, sensitivity analyses are critical for validating the re-
sults. By identifying which parameters the model is robust or sensitive to, sensitivity
analyses can help decision makers determine which variables should be estimated
most carefully. Evaluating a program goes hand in hand with communicating the
results with stakeholders in a clear, relevant manner. If model results are not
reasonable, stakeholders can inform the adjustment of assumptions or parameters
to improve the model. Involving stakeholders in each step of the modeling process
not only instills confidence in the results but also leaves them in a better position to
implement any findings.

In the next section, we illustrate this framework by presenting a case study and
model from our experience working with Riders for Health.

4 Case Study: Evaluating the Effectiveness
of Riders for Health

Riders for Health (referred to henceforth as “Riders”) is a nonprofit organization that
focuses on improving last-mile health delivery by providing transportation solutions
to health workers. In particular, Riders’ approach relies on managing motorcycles
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since motorcycles are cheaper to procure and maintain than automobiles and are also
more suited to the unpaved roads and footpaths common in rural areas. Rural clinics
whose health workers previously walked or used bicycles to visit outlying villages
can increase the number of health interventions they deliver using motorcycles
managed by Riders (Lee and Tayan 2007). For example, Riders’ involvement in
the Gambia has coincided with an increase in infant vaccination coverage from 62
to 73% (Riders for Health 2011). In a district of Zimbabwe where all community
health workers are mobile thanks to Riders, deaths from malaria have decreased
by 20%.

Riders’ rigorous fleet management enables it to maintain fleets with few or no
breakdowns and to extend the life of each motorcycle in the fleet (Rammohan
2010). Riders achieves these results through its core competencies: driver training
programs, a hub-and-spoke service system, and efficient spare parts inventory
management. When operating in a region, Riders trains everyone who will be using
a Riders motorcycle in safe driver practices and basic maintenance. In addition,
Riders establishes a service network and hires and trains mechanics. For more
details on Riders’ inception and its fleet management program, see Lee and Tayan
(2007) and Lee et al. (2011).

After enjoying success on a small scale, Riders is now interested in securing
national-level contracts. Before pursuing such contracts, Riders must evaluate its
program effectiveness. Recently, our team at Stanford University has worked to
design a 2-year trial (begun in 2011) to measure Riders’ effectiveness at improving
health worker mobility. The insights in this chapter are based on our experiences
developing and initiating this trial. First, we explain the strategic and tactical
decisions that have driven the trial design.

Though it is a nonprofit organization, Riders charges its customers for the fleet
management it provides. Together with potential clients (typically ministries of
health), Riders develops a contract of fleet management to suit the needs of the
client. The contract specifies both the level of service that Riders will provide (e.g.,
management of existing fleet or provision and management of a new fleet) and the
cost that Riders will charge the client per kilometer driven by the fleet.

From conversations with national-level health officials in Zambia, Riders chose
to base the trial in the Southern Province of Zambia. The Southern Province is
home to 1.6 million people, spread out over 85,283 km2 (Encyclopædia Britannica
2010b; Zambia Central Statistical Office 2010).2 For the trial, we have randomly
selected four experimental and four control districts from the 11 districts of the
Southern Province. Each district has between 10 and 40 health centers, each of
which is responsible for supporting several health posts and/or outreach sites
(Zambia Ministry of Health 2010). Each district has 5–30 motorcycles to meet
the health needs of their populations; prior to the start of the trial, more than

2As a comparison, note that Austria is smaller at 83,879 km2 yet has more than five times the
population with 8.4 million people (Encyclopædia Britannica 2010a).
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half of these motorcycles were broken down. The quality of garages varies widely
from well-stocked dealerships in the main cities of Lusaka and Livingstone to
small operations run out of entrepreneurial mechanics’ homes in more rural areas.
The majority of the road network in Zambia is unpaved; only 18% of Zambia’s
37,000 km of gazetted roads are paved, and only 57% of those roads are in
good condition (Organisation for Economic Co-operation and Development 2006;
National Road Fund Agency 2005). Compared to neighboring countries, Zambia’s
rural road accessibility is poor: only 17% of rural Zambians live within 2 km of
an all-season road, compared to the average of 37% across sub-Saharan Africa
(World Bank 2010). As of 1998, half of rural Zambians lived more than 5 km
from the nearest health center, and only a third attempted to consult with a medical
professional when ill (World Bank 2006).

The parameters of the trial, including the number of existing motorcycles that
Riders will manage as well as the number of new motorcycles that Riders will
procure, were established through negotiation between donors, Riders, and Zambian
officials. After selecting a location and determining the size of the program, Riders
extensively interviewed health workers throughout the experimental districts of
the Southern Province to identify specifically where to station the motorcycles
(i.e., the actual health facilities and health workers). In parallel, Riders worked to
establish a service system to support the fleet by setting up a garage and hiring
mechanics. Additionally, Riders worked to train each person that would be using
one of the fleet motorcycles. During the trial, Riders will manage the fleet of the
experimental districts according to the parameters outlined in the contract with the
client organization.

As evaluation partners, our team at Stanford is tasked with demonstrating the
link between Riders’ program and changes in health outcomes in the experimental
districts. We propose to do so using three levels of evaluation. First, we plan
to quantify the effectiveness of Riders’ management in reducing fleet downtime.
Second, any changes in fleet availability should be connected to changes in health
intervention delivery; for example, perhaps more vaccinations are administered, or
more bed nets are distributed by a health worker with a reliable motorcycle than by
a health worker traveling on foot. And finally, the accumulation of the increased
number and improved quality of health interventions delivered over time may
contribute to measurable improvements in health outcomes (e.g., higher vaccination
coverage, lower malaria incidence). A rigorous evaluation of such hypotheses will
help Riders structure future programs and will inform potential donors as to Riders’
efficacy. In this chapter, we focus on the first evaluation step. A robust model of
Riders’ fleet uptime (equivalently, downtime) will provide a solid foundation for the
remainder of our evaluation of Riders’ effectiveness. During the trial, we will collect
data using surveys and GPS technology to estimate the parameters of this model.

We now illustrate the modeling considerations outlined in Sect. 3 by presenting
an analytical model that we developed to help Riders understand the impact of its
program in Zambia on health worker mobility. In the following sections, we present
our approach (following the steps of Fig. 19.2) and preliminary results.



19 Overcoming the Challenges of the Last Mile 491

4.1 Step 1: Consult with Stakeholders

During ten trips to Zambia over the past 2 years, our team interviewed nurses,
midwives, and environmental health technicians at more than 100 health centers.
We have established relationships with health officials at the national, provincial,
and district levels. In addition, we have been in close contact with management at
Riders and with the trial funder, the Gates Foundation, throughout our study design.
Each of these four groups of stakeholders has different viewpoints, but all agree that
insufficient reliable transportation for health workers in Zambia is a key challenge.

Without transportation, health workers must cancel outreach visits or walk to
sites that are nearby. One nurse that we interviewed walks 4 h each way to an
outreach site every month in order to continue providing care to that remote
community. Several health workers that we spoke with felt that they were unable
to meet their commitment to provide healthcare to the local communities without
reliable transportation. Others expressed frustration at having to call taxis to
transport patients to the hospital and for not having enough of their own money
to help patients pay the cab fare.

District and provincial health officers are similarly concerned. District-wide
meetings held to bring all clinics up to speed on new developments or campaigns
are sometimes canceled because so many health workers cannot make it. Attempts
to manage or improve the quality of the fleet have not been very successful. Health
workers do not necessarily take broken motorcycles to designated garages or to
any garage. Broken down motorcycles may remain unusable for weeks or even
months. The Ministry of Health in Zambia recently organized the distribution of
a large donation of motorcycles from China, but has few resources set aside for the
eventual repair or maintenance of those motorcycles. Fuel is a constant constraint;
even though approximately 15% of each district’s health budget is reserved for fuel,
it is frequently insufficient. For example, one health center that is responsible for
communities that are 50 km away has a fuel allotment of 20 l per month. Since
motorcycles’ fuel efficiency is about 20 km per liter, this allotment is nowhere
near adequate. Policies outlined by the Ministry of Health have little chance of
succeeding when resources are so constrained. In addition, some health officials
that we spoke with believed that driver negligence was at least partly responsible
for the motorcycle failure rates.

With its sizable investment of time and resources, Riders is also a stakeholder
in the success of the Zambian health delivery supply chain. Riders has conducted
programs in several countries in sub-Saharan Africa and chose to conduct the
trial in Zambia after developing a relationship with the Ministry of Health there.
Riders feels that its fleet management program can provide a tremendous impact
in Zambia and similar countries because so much of the population resides in rural
areas away from roads and clinics. By providing rural health workers with reliable
transportation, Riders believes that it can overcome the problematic last mile of
health delivery in Zambia.
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Finally, donors are also stakeholders due to current and potential future
involvement (both monetary and political). The Gates Foundation relies on rigorous
evidence-based decision-making to identify effective ideas and interventions
(The Gates Foundation 2011). By funding this evaluation, the Gates Foundation
demonstrates its dedication to finding solutions to last-mile challenges. If the trial
results indicate that fleet management is a cost-effective way to improve health
outcomes in rural regions, the quantitative analysis can be used to attract and retain
future donors.

Our initial trips and interviews provided strong baseline information on which to
design the trial. During the trial, we will be interviewing approximately 120 health
workers and motorcycle mechanics every week. Additionally, our team has fitted
80 motorcycles with GPS trackers to validate uptime and utilization data. We have
trained our in-country data collection officers to use a number of data collection and
survey tools, including handheld scanners and netbooks. The data collected over the
next 2 years will be instrumental in validating and improving our analytical models
of motorcycle downtime.

4.2 Step 2: Identify Appropriate Performance Indicators

We focused on choosing a performance measure that addresses the needs of multiple
stakeholders. “Performance” could be interpreted in several ways. According to
its website, Riders’ vision is “of a world in which no one will die of an easily
preventable or curable disease because barriers of distance, terrain or poverty
prevent them from being reached” (Riders for Health 2011). This vision touches
on several aspects of healthcare delivery and encompasses many possible orga-
nizational objectives. For example, Riders may be interested in monitoring the
utilization of its motorcycles by health workers or may want to estimate how factors
such as road density and terrain affect motorcycle utilization. To isolate the problem
of insufficient transportation, and to create a measurable benchmark, we turned to
Riders’ mission, which is to “manage [vehicles] on a planned, preventive basis so
that the vehicles do not break down however difficult the conditions.” When Riders
operates in a region, it trains drivers, maintains the fleet, and establishes a spare
parts supply chain. We hypothesized that these components of the Riders program
are responsible for reducing the number of breakdowns. Thus, we chose to measure
performance as the expected number of motorcycles down in a given period. We
reasoned that fewer down motorcycles would permit health workers to perform more
outreach and follow-up visits and to transport patients to local hospitals for further
treatment. Riders’ provision of driver training could help decrease wear and tear on
the motorcycles and thus contribute to improvements in performance. Additionally,
a functioning supply chain for service and spare parts would reduce motorcycle
downtime.

Our performance metric can be trivially extended to measure the expected
percentage of a fleet that is down. This modification would enable Riders to compare
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its operations between regions and over time if fleet size changes. Alternatively, our
performance metric could easily be adjusted to measure “up” motorcycles instead
of “down” motorcycles.

Through interviews with management at Riders, we learned about the causes of
motorcycle downtime and grouped the causes into two broad categories based on
the spare parts inventory literature (cf. Sherbrooke (2004)): repairable failures and
consumable failures (Fig. 19.3). Repairable failures refer to largely unpredictable
failures that necessitate motorcycle repair. For example, a fender bent from an
accident or a leaking tire may inhibit a motorcycle from working properly, so that the
motorcycle must be sent to a repair shop. From what we have learned in Zambia,
motorcycles needing more involved repairs tend to wait weeks and even months
before being taken to a garage. Hence, the primary factor determining the length of
downtime following a repairable failure appears to be human delay.

Consumable failures involve the replacement of a spare part and in general are
more predictable than repairable failures. For example, brake pads must be replaced
every 12,000 km for most motorcycles, and the drive chain every 24,000 km.
Without servicing at regular intervals, these parts may wear out to the point of
causing a motorcycle to fail (either directly or indirectly through being unsafe to
drive). Then, once the motorcycle is down and in need of a spare part, the motorcycle
remains inoperable until the spare part arrives and can be installed. Because most of
these installations are straightforward and take considerably less than a week (the
proposed period length of our analysis) to perform, for the purposes of our model,
they are instantaneous. From our observations in Zambia, motorcycles needing a
quick part installation are typically repaired much more quickly than those suffering
from repairable failures.

Once a motorcycle has failed, the length of the ensuing downtime depends on
the availability of trained mechanics and, in the case of consumable failures, on
the availability of appropriate spare parts. Riders’ comprehensive fleet management
program addresses both the occurrence of failures and the length of consequent
downtimes and thus may be able to reduce the expected number of down motor-
cycles in a fleet. Several factors influence the number of motorcycles down due
to repairable and consumable failures, such as the length of the repair time and
the inventory management system in place for spare parts. We were interested
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in understanding how the different initiatives in Riders’ program (namely, driver
training, routine maintenance, and inventory management) ultimately impact the
number of motorcycles down. In the next section, we organize these relationships
into an analytical model.

4.3 Step 3: Develop a Model

Consider a region containing N clinics, where clinic i has Mi motorcycles, i =
1,2, . . . ,N; the regional fleet has MT = ∑N

i=1 Mi motorcycles (see Table 19.1 for
a definition of all model parameters). We first develop a status quo model of the
expected number of motorcycles down assuming that these clinics rely on private
garages to repair fleet motorcycles. Then, recognizing that Riders is able to impact
the motorcycle failure rates and inventory stocking levels with its driver training,
maintenance, and inventory management, we show how the expected number of
motorcycles down changes when Riders is contracted to manage the fleet. In
particular, we develop an optimization model to understand how Riders should
invest in its driver training and maintenance programs to minimize the expected
number of motorcycles that are down, subject to a budget constraint.

Suppose that in the status quo scenario, each clinic in the region uses a different
garage to maintain its motorcycles. (A “garage” could be as informal as a neighbor
with repair knowledge or a mechanic working out of his or her home.) Let garage i
be the garage that manages repairs for clinic i. Let XT ≤ MT be the random number
of motorcycles that are down in a given period. Then, per our assumptions on the
causes of downtime, the expected number of down motorcycles can be expressed as
the expected number down due to a repairable failure (driver negligence/accidents
or insufficient maintenance) plus the expected number down due to a consumable
failure (waiting for a spare part). We consider each term separately. Consistent with
the spare parts literature (cf. Sherbrooke (2004)), we assume that the failures of a
single motorcycle follow a Poisson process with rate λ1 +λ2, where λ1 is the rate
of repairable failures and λ2 is the rate of consumable failures. We assume that each
motorcycle operates and fails independently of the other motorcycles in the fleet
(i.e., the failure processes are independent). The failure rates of the fleet at clinic i
are therefore Miλ1 and Miλ2.

Repairable failures require the time and resources of a mechanic to return the
motorcycle to a functioning state. We suppose that once a motorcycle is down due
to a repairable failure, it takes a deterministic amount of time to repair it due to
the amount of human delay mentioned earlier. Let S, a constant, denote the number
of periods that a motorcycle is down following a repairable failure. Then, at any
point in time (assuming that the system is at steady state), the expected number of
motorcycles down due to repairable failures at clinic i is given by Little’s Law and
is simply Miλ1S.
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Table 19.1 Comprehensive list of parameters

Parameter Description

α Service level for the spare part in the centralized inventory management case
β j Effectiveness of program j at reducing failure rate λ j; j = 1,2
λ1, λ1(e1) Rate of repairable failures for a single motorcycle (exogenous and as a

function of effort e1)
λ2, λ1(e2) Rate of consumable failures for a single motorcycle (exogenous and as a

function of effort e2)
μi, μT Mean of demand for spare part at garage i and for the region
φ (·), Φ(·) Standard normal density and distribution functions, respectively
σi, σT Standard deviation of demand for spare part at garage i and for the region
A, Ã Riders’ available budget and adjusted budget defined for notation

convenience: Ã ≡ A− c3
√

β2MT

b1(e1), b2 Benefit–cost ratios for driver training and routine maintenance, respectively
Bi Number of backorders for the spare part at garage i
c j Cost of effort e j; j = 1,2
e j Effort that Riders invests in its core competencies of training programs (e1)

and maintenance (e2)
f (e2,yi) Current-period holding and penalty costs of the inventory policy with

stocking level yi and effort e2

h Unit holding cost per period of the spare part
Di, Di(e2) Random demand for spare part at clinic i in one period (exogenous and as a

function of effort e2)
L(z) Standard normal loss function
Mi, MT Number of motorcycles at clinic i (i = 1,2, . . .,N) and in the regional fleet
N Number of clinics in the region
p Unit penalty cost of the spare part
S Number of periods that a motorcycle is down following a repairable failure
TBd, TBr Total expected number of backorders per period for the decentralized and

Riders scenarios, respectively
TCd, TCr Total expected cost per period for the decentralized and Riders scenarios,

respectively
Xi Number of motorcycles down at clinic i
XT , XT (e1,e2,y) Total number of motorcycles down across the region (exogenous and as a

function of decisions e1, e2, and y)
yi, yT Stocking level for the spare part at garage i and the regional stocking level

for the spare part under Riders’ centralized inventory management
z Score of the standard normal distribution corresponding to service level α

The discussion of consumable failures is more nuanced. When a motorcycle fails
in need of a critical spare part, the motorcycle will remain inoperative until that part
is available. For simplicity, we consider a single critical spare part. We assume that
if the part is in stock, it is available more or less immediately. On the other hand, if
the spare part is not in stock when the motorcycle fails, the motorcycle will remain
down until the spare part arrives and can be installed. Thus, the downtime due to
consumable failures depends on the inventory policy of the local garage. In fact, the
expected number of motorcycles down at a clinic that need the spare part is exactly
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the expected number of backorders for that spare part at the clinic’s garage. We
arrive at the following performance metric to evaluate fleet management:

E[Xi] = Miλ1S+E[Bi] = Miλ1S+E
[
(Di − yi)

+
]
, (19.1)

where Xi is the number of motorcycles down at clinic i and Bi is the number of
backorders for the spare part at corresponding garage i in a period (given stocking
level yi and random demand Di for the spare part). The expected total number of
motorcycles down for the region is E[XT ] = ∑N

i=1E[Xi].
The expected number of backorders at garage i depends on the garage’s inventory

management policy. We assume that the garage uses a base-stock policy; that is, in
each period, garage i replenishes its inventory of the spare part up to yi units. For
simplicity, we focus on a spare part for which there is low demand and high holding
cost (per the definition of consumable items in the spare parts literature (Sherbrooke
2004)), such as clutch overhaul kits. Typically, a motorcycle clutch should be
overhauled every 30,000 km; by Riders’ estimates, health workers’ motorcycles
travel 900 km per month on average. Hence, a motorcycle should only need a
clutch overhaul kit about every 3 years, so demand for this part is low. Further,
compared to other spare parts for the low-end motorcycles typically used in sub-
Saharan Africa, clutch overhaul kits are expensive for local garages to stock. Based
on our initial survey data from Zambia, clutch overhaul kits cost about $35, a large
sum in a country where the average monthly income for a family is about $100
(Encyclopædia Britannica 2010b).

We assume that the associated costs are linear, including a unit holding cost h
per period and a unit penalty cost p.3 By our failure rate assumptions, demand for
clutch overhaul kits per motorcycle per period is Poisson with parameter λ2. Then
demand at clinic i, Di, is Poisson with parameter Miλ2. Because our model context
is a developing region, our assumption that the fleet failure rate grows linearly in the
fleet size is reasonable. (For a resource-rich region, a larger fleet size might imply
that individual motorcycles are used less frequently and so a linear relationship
between fleet size and fleet failure rates would not hold.)

Now, if Riders is contracted to take over fleet management in the region, the
status quo model in (19.1) will change to reflect the impact that Riders has on
the failure rates. Until now, we have assumed that the failure rates λ1 and λ2 are
exogenously given and constant. However, in reality, the failure rates depend on the
effort that Riders puts into its program initiatives. Let e j ∈ [0,1] represent the effort
that Riders invests in its core competencies: e1 is the effort invested in driver training
programs to reduce the repairable failure rate (now a function of e1, λ1(e1)), and
e2 is the effort invested in routine maintenance intended to reduce the consumable
failure rate (now a function of e2, λ2(e2)). In addition, Riders is able to reduce the
expected number of motorcycles that are down by choosing the spare part stocking
levels yi (which affect the expected number of spare parts backorders). Because
Riders’ choices of decision variables e1, e2, and yi drive demand for spare parts and

3We omit procurement costs in our model, as the average procurement over the long term is
independent of the stocking decision.
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ultimately the total number of motorcycles that are down, these values are now also
functions of the decision variables: Di (e2) and XT (e1,e2,y), respectively, where
y = (y1,y2, . . . ,yN)

T .
If Riders had an unlimited budget, it would be able to hold large spare part inven-

tories and to invest maximum effort in driver training and maintenance programs.
Let c j be the cost of fully investing in program initiative j, j = 1,2 (i.e., c j is the
cost incurred when e j = 1); then, the cost of exerting effort e j is c je j. In the absence
of an unlimited budget, Riders must trade off which core competencies it will invest
in (driver training, routine maintenance, inventory management). To investigate
this cost tradeoff, suppose that Riders seeks to maximize regional mobility by
minimizing the expected number of motorcycles that are down, E[XT (e1,e2,y)].
Riders’ challenge can be formulated as the following optimization problem:

min E[XT (e1,e2,y)] (P)
s.t. c1e1 + c2e2 +∑N

i=1E[ f (e2,yi)] ≤ A,
1 ≥ e1,e2 ≥ 0,

y1,y2, . . . ,yN ≥ 0,

where c1,c2 > 0, and A > 0 is the available budget. In addition, E[ f (e2,yi)] is the
expected current-period holding and penalty costs of the inventory management
policy given stocking level yi and effort e2:

E[ f (e2,yi)] = hE
[
(yi −Di(e2))

+
]
+ pE

[
(Di(e2)− yi)

+
]
. (19.2)

Modeling demand as a function of invested effort has been done in the marketing
and operations management literature; for examples, see Taylor (2002) and Rao
(1990).

In the remainder of this chapter we work with the probability density and
distribution functions of this aggregated Poisson distribution. To simplify our
analysis, we approximate the Poisson distribution (parameter Miλ2(e2)) using a
normal distribution with mean Miλ2(e2) and standard deviation

√
Miλ2(e2); let φ(·)

and φ(·) be the standard normal density and distribution functions, respectively. This
approximation improves as Miλ2(e2) increases, so it is more accurate for larger fleet
sizes.4 Of course, one could proceed without applying a normal approximation;

4The Poisson distribution with parameter λ can be approximated using a normal distribution with
mean and variance λ by the central limit theorem. Concordant with the theorem, as λ increases,
the approximation becomes more accurate. For our base case in Sect. 4.4, λ ≈ 200. When tested
against the null hypothesis that 1,000 random samples drawn from a Poisson distribution with
parameter 200 followed a normal distribution with mean and variance 200, a Kolmogorov–Smirnov
test resulted in a p-value of 0.3364. In addition, the normal distribution is commonly used to
model demand in operations management literature, despite its being a continuous distribution with
probability placed on negative values (cf. Lee et al. (1997) and Lee and Özer (2007)). Because our
scenario here is for high values of λ , the probability of negative demand is negligible, and we thus
conclude that the normal distribution is a reasonable approximation.
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however, the calculations would be considerably more challenging. The results that
follow are an approximation that reflects the trends and provides useful insights.

Existing data to populate this model are scarce. As part of the 2-year trial, we
are collecting data on holding and penalty costs (h and p) through conversations
with mechanics. Interviews with health workers will help us estimate the length
of downtime following a failure (S) and the motorcycle failure rates (λ1 and λ2).
Regarding the cost parameters, the cost of inventory management can be calculated
once stocking level yi and demand Di(e2) are established. Estimating c1 and c2

is more involved. While e j = 0 corresponds to doing nothing towards program
initiative j, Riders may calibrate the meaning of e j = 1 as well as the corresponding
cost of effort c j ( j = 1,2) differently for each region it operates in. Here, we assume
that the cost of e1 = 1 is the cost of providing extensive and ongoing driver training
for all drivers in a region and that the cost of e2 = 1 is the cost of providing routine
maintenance to all motorcycles in the region. Service schedules are well-known and
can be used to estimate the former, whereas experience in maintaining motorcycles
is necessary to estimate the latter.

In the next section, we solve a special case of (P) to understand how Riders
should implement its fleet management program.

4.4 Step 4: Use the Model to Evaluate the Program

In the previous section, we developed a status quo metric of motorcycle downtime
for a decentralized system of N clinic–garage pairs, and then showed how Riders
could use that metric to balance efforts invested in its three core competencies of
driver training, routine maintenance, and inventory management. We now analyze
this model to gain insights into Riders’ performance. In the following sections, we
first explore how Riders improves the status quo scenario by centralizing resources,
then solve Riders’ optimization problem under a special case of an exogenous
service level and quadratic failure rates, and finally perform univariate sensitivity
analyses to understand the robustness of the model to various parameters.

4.4.1 Centralized Spare Parts Inventory Management

Riders’ optimization problem (P) can be simplified by observing that the status
quo model involves decentralized inventory management. If Riders is contracted
to manage the regional fleet, its management of the inventory will be centralized,
and so the expected penalty and holding costs as well as the expected number of
backorders will all be lower under Riders.

Instead of considering the needs of each clinic individually, Riders can analyze
the demand patterns of all clinics in a region and leverage the aggregated demand
to keep less inventory. We now establish the benefits of centralization through
demand pooling; our results here parallel those of Eppen (1979). First, we define our
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notation. Let L(z) represent the standard normal loss function: L(z)≡ E
[
(ξ − z)+

]
,

where ξ is a standard normal random variable. Using properties of the normal
distribution, we can rewrite the expected current-period cost in (19.2) for garage
i under the decentralized system as c3σi, where c3 = hz+(p+h)L(z), yi = μi +σiz,
μi =Miλ2(e2), and σi =

√
Miλ2(e2). Similarly, we can rewrite the expected number

of backorders at garage i during a period as L(z)σi. Then the total expected cost
and backorders per period for the decentralized system are, respectively, TCd =
c3 ∑N

i=1 σi and TBd = L(z)∑N
i=1 σi.

We now calculate the total expected cost and backorders for the centralized
system. Suppose that the fleets of all N clinics are managed centrally by Riders.
Then the demand faced by the system is the sum of the demands faced by each
clinic, and we can approximate the aggregated Poisson demand distribution as a
normal distribution with mean μT and standard deviation σT , where

μT =
N

∑
i=1

μi = MT λ2(e2) and σT =

√
N

∑
i=1

σ2
i =

√
λ2(e2)MT .

Now, the total per-period expected cost and backorders of Riders’ centralized
system are, respectively, TCr = c3σT and TBr = L(z)σT . Several observations are
immediate. Since σT ≤ ∑N

i=1 σi, the total expected cost and backorders are lower in
Riders’ centralized system; that is, TCr ≤ TCd and TBr ≤ TBd. Further, we observe
that if each clinic has the same number of motorcycles (i.e., σi = σ̄ for all i), then
TCd = c3Nσ̄ and TCr = c3

√
Nσ̄ . (Similarly, TBd = L(z)Nσ̄ and TBr = L(z)

√
Nσ̄ .)

Thus, economies of scale are present: when each clinic has the same number of
motorcycles, the total expected cost and backorders in a centralized system increase
as the square root of the number of clinics (whereas this increase is linear in a
decentralized system).

We conclude that Riders’ central management of a system of clinics’ fleets can
be expected to bring better performance (i.e., fewer expected backorders) at a lower
cost than the management of those same fleets by a decentralized network of private
garages.

4.4.2 Exogenous Service Level and Quadratic Failure Rates

Because of the analytical intractability of (P), we now propose two modifications.
First, we consider controlling the spare parts inventory policy not with a series
of stocking levels but with a single, system-wide service level. We have so far
assumed that the stocking levels yi are decision variables. In light of the demand
pooling, Riders only chooses yT = μT +σT z, where z corresponds to the (type I)
service level α: z ≡ φ−1(α). Incorporating α as a decision variable complicates the
solution to (P); at optimality, it is a function of the dual variable associated with the
budget constraint and so offers some insights, but the problem is difficult to solve
analytically. For the following analysis, we assume the service level, α , is given
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exogenously. This special case illustrates Riders’ fundamental tradeoff: should
Riders invest more effort into reducing the repairable failure rate through driver
training programs or into reducing the consumable failure rate through improved
routine maintenance?

In addition, the objective of (P) is neither convex nor concave in its variables
for general λ1(e1) and λ2(e2). The failure rates should each be decreasing in effort
exerted, and arguably, there are diminishing returns in failure rate reduction as more
effort is exerted. Thus, it is reasonable to assume that λ ′

j(e j) ≤ 0 and λ ′′
j (e j) ≥ 0,

j = 1,2. To satisfy these conditions, we propose that λ j(e j) = β j(1− e j)
2 for j =

1,2.5 We can interpret β j > 0 as the effectiveness of program j at reducing failure
rate λ j, j = 1,2. The revised problem is a quadratic program:

min MT β1(1− e1)
2 S+TBr

s.t. c1e1 + c2e2 + c3
√

β2MT (1− e2) ≤ A,
0 ≤ e1,e2 ≤ 1,

where c1,c2 > 0, and c3 are as defined above. From our earlier derivation, we
substitute TBr = L(z)σT and σT =

√
λ2(e2)MT . Additionally, we define Ã ≡ A−

c3
√

β2MT . Then the above becomes

min MT β1(1− e1)
2S+L(z)

√
β2MT (1− e2) (P′),

s.t. c1e1 + c2e2 − c3
√

β2MT e2 ≤ Ã
0 ≤ e1,e2 ≤ 1.

Now, the marginal benefit (i.e., decrement to the expected number of motorcycles
down) of investing more in driver training is 2MT β1S(1−e1), and the marginal ben-
efit of investing more in maintenance is L(z)

√
β2MT . Similarly, the marginal costs

of investing more in driver training and maintenance are c1 and c2 − c3
√

β2MT ,
respectively. We define the benefit–cost ratios for driver training and maintenance,
respectively, as

b1(e1) ≡ 2MT β1S(1− e1)

c1
and b2 ≡ L(z)

√
β2MT

c2 − c3
√

β2MT
.

The solution to (P′) can be interpreted using these marginal benefit–cost ratios.
Since (P′) is a convex program, its solution can be found using the Karush–Kuhn–
Tucker conditions:

Solution to (P′) . If Ã ≥ c1 + c2, then e∗ = (1,1). Otherwise:

5Riders’ goal is to maintain a fleet with zero breakdowns, so here we allow the failure rates to
decrease to zero given maximum effort. If failures still occur given e j = 1, a minimum failure rate
λ0 can easily be incorporated into this formulation so that λ j(1) > 0, j = 1,2.
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Fig. 19.4 Hypothetical scenario illustrating the three possible solutions; the solid line is b2 and the
dashed line is b1(e1). In all graphs, β1 = 0.1, β2 = 10, S = 1, c1 = c2 = 200, Ã = 100, p = 0.02,
and h = 0.01. We vary the service level α to distinguish between the three solutions: α = 0.25
(Fig. 19.4a), α = 0.50 (Fig. 19.4b), and α = 0.75 (Fig. 19.4c)

1. If b1(Ã/c1) > b2, then it must be that Ã ≤ c1, and driver training should be
prioritized: e∗ = (Ã/c1,0).

2. If b1(0) < b2, then maintenance should be prioritized: if Ã ≤ c2, then e∗ =

(0, Ã/(c2 −c3
√

β2MT )), and if c2 < Ã < c1 +c2, then e∗ = (
Ã−(c2−c3

√
β2MT )

c1
,1).

3. Otherwise, there exists ê ∈ [0, Ã/c1] such that b1(ê) = b2. The solution is to

balance the available budget between the two initiatives: e∗ = (ê, Ã−c1 ê

c2−c3
√

β2MT
).

The solution relies on the comparison between b1(e1), which is a decreasing
linear function of e1, and b2, which is constant in e1; Fig. 19.4 illustrates the three
possibilities. For restrictive budgets (i.e., Ã < c1 + c2), Riders must balance its
two program initiatives. When the marginal benefit–cost ratio for driver training
is greater than that of maintenance for all feasible e1 (sufficient to check for
e1 = Ã/c1), it is optimal to use the entire budget to fund driver training (solution 1,

Fig. 19.4c). This comparison is equivalent to 2MT β1S(c1−Ã)
c2

1
>

L(z)
√

β2MT

c2−c3
√

β2MT
. Hence,

driver training becomes a more effective investment as the fleet size (MT ) increases,
as its effectiveness coefficient (β1) increases, and as the length of downtime
following a repairable failure (S) increases. If c1 > 2Ã, b1(e1) is decreasing in the
marginal cost of driver training; otherwise, b1(e1) is increasing in c1.

On the other hand, when the marginal benefit–cost ratio for driver training is
less than that of maintenance for all feasible e1 (sufficient to check for e1 = 0),
it is optimal to prioritize the maintenance program (solution 2, Fig. 19.4a). Only
if there are funds remaining after investing the maximum in the maintenance
program should funds be allocated to the driver training program. The marginal

benefit–cost comparison for this scenario is equivalent to 2MT β1S
c1

>
L(z)

√
β2MT

c2−c3
√

β2MT
.

The maintenance program becomes a more attractive investment as its effectiveness
coefficient (β2) increases, as the fleet size increases, and as the cost c3 increases
(hence, b2 is also increasing in the unit penalty and holding costs, p and h,
respectively). Additionally, b2 is decreasing in the service level (α) and the marginal
cost of the maintenance program (c2).
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Table 19.2 Parameter settings for sensitivity analysis. The remain-
ing parameters were held constant at B = 100, N = 100, and Mi = 1
for all i; c2 = 200, p = 0.02, h = 0.01, β1 = 0.1, and S = 2

Parameter Base value Range

α 0.75 [0.50,1.00]
β2 0.5 [0.1,2.0]
c1 150 [50,400]

Finally, if there exists an ê ∈ [0, Ã/c1] such that the marginal benefit–cost ratios
for driver training and for maintenance are the same (solution 3, Fig. 19.4b), then
Riders should split its budget between the two program initiatives. In particular,

ê = 1− c1L(z)
√

β2MT

2MT β1S(c2−c3
√

β2MT )
. Since e∗1 = ê, we see that Riders should shift more of

its budget to the driver training program as the costs c1 and c3 decrease, or as the
cost c2 increases. That is, Riders should shift its budget toward driver training as
that option becomes a more effective investment in terms of reducing the number of
motorcycles that are down on average.

4.4.3 Sensitivity Analysis

In addition to identifying the analytical solution, we have also performed univariate
sensitivity analyses on some model parameters to learn which parameters the model
is most sensitive to. The base case and ranges are given in Table 19.2. For simplicity,
we assumed that each of N = 100 clinics has one motorcycle each: Mi = 1 for
i = 1,2, . . . ,N. Further, we held some cost parameters constant: B = 100, c2 = 200,
p = 0.02, and h = 0.01. We observed that changes in c2, p, and h did not impact
the model. In addition, changes in the effectiveness coefficient and the repairable
failure downtime had little impact on the expected number of motorcycles down;
for example, changing S from 0.5 to 4 periods only elicited a change from 2.06 to
2.10 motorcycles down on average, and changing β1 from 0.01 to 4 resulted in a
change from 1.97 to 2.11 motorcycles down on average. We held these parameters
constant at β1 = 0.1 and S = 2 for the results presented here.

For the base case of parameters outlined in Table 19.2, the total cost of maximum
effort is 300—far exceeding the actual budget Ã. If Riders chooses to do nothing,
then for the base case, on average 22.1 motorcycles are down out of the total fleet
of 100. The optimal solution for the base case setting is 2.1 motorcycles; that is,
with a budget of 100, Riders can decrease the expected number of motorcycles
down from 22.1 to 2.1. We verify that the expected number of motorcycles down
decreases as the service level increases (Fig. 19.5a), since a higher service level
leads to fewer backorders on average. Similarly, we find that as the effectiveness of
maintenance programs (β2) increases, the expected number of motorcycles down
increases (Fig. 19.5b). This result is not universally true; by taking a first-order
condition, we find that the objective evaluated at e∗ is not necessarily increasing or
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decreasing in β2. For the base case parameter setting, however, it is the case that the
expected number of motorcycles down is increasing in β2. As the effectiveness of
the maintenance program increases, the marginal benefit of investing in maintenance
increases, and the marginal cost decreases, so the solution shifts to increase e∗2 at the
expense of e∗1. However, due to the relative benefits and costs in the base parameter
setting, the expected number of motorcycles down actually increases as β2 increases.

The model is more sensitive to changes in the cost of driver training programs, c1.
In Fig. 19.6, we see that increasing c1 changes the optimal solution from splitting
the budget between the initiatives to allocating the entire budget to driver training.
Recall that the benefit–cost ratios intersect when the optimal solution is to split the
budget. When c1 increases, the intercept of b1(e1) decreases and the slope is less
and less negative, effectively pulling b1(e1) above b2 for all feasible e1. In addition,
the expected number of motorcycles that are down increases in this cost.

These solutions articulate how Riders should allocate its budget in order to
maximize regional mobility. In the next section, we provide an analysis of this
model, its limitations, and possible extensions.

5 Model Results: Next Steps

The model that we have presented here represents a first pass at understanding the
effectiveness of Riders’ fleet management program. We found that by increasing
investment in driver training programs and routine maintenance, Riders can decrease
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the motorcycle failure rates and hence the expected number of motorcycles down
in a regional fleet. The attendant increases in fleet availability can improve health
worker mobility and help health workers accomplish their outreach objectives.

Specifically, our model connects reductions in motorcycle failure rates and
improvements in spare parts inventory management with decreases in motorcycle
downtime. The cost and effectiveness parameters of the model determine how
Riders should split its investment in driver training and maintenance. To estimate the
various parameters of the model, we have developed logistics surveys to ask health
workers and motorcycle mechanics each week during the trial. Questions about
the uptime and utilization of the health workers’ motorcycles, and about causes of
downtime, can help us estimate the failure rates and lengths of ensuing downtimes.
In the garage survey, we will track both a high-demand, low-value critical spare
part and a low-demand, high-value critical spare part to see how often mechanics
order and use the parts in repairs. Other questions about these parts are designed to
estimate the procurement, holding, and penalty costs associated with each part.

The model provides useful insights, but has some limitations that could be
addressed in future research. First, the failure rates realistically depend on the
number of kilometers that each motorcycle is driven per period since a motorcycle
that is not driven at all cannot fail. The model could be modified so that the failure
rates are also functions of this distance, and the objective could be changed to
maximize the average number of kilometers driven per period. Second, the service
level could also be treated as a decision variable: how responsive should Riders’
inventory management program be? And finally, Riders may be able to proactively
impact the length of downtime following a repairable failure; that is, S may be a
function of e2.

Our estimation of status quo operations (i.e., the decentralized network of private
garages) is very conservative and likely overestimates status quo performance. For
example, one garage owner that we interviewed kept no inventory at all. Instead,
when a customer needed a part, he scheduled a 2-day trip to the capital city to
buy the part there (the relative importance of the customer influenced how quickly
the trip was undertaken). We also observed a “culture of waiting” in Zambia and
believe that in general, garage owners and customers alike may not emphasize high
service levels or fast turnaround times. The differences between the status quo and
operations under Riders are probably greater than indicated by our model because
of our conservative assumptions.

Our team has learned a great deal about conducting research in a resource-limited
environment. Because health delivery and fleet management in Zambia are so
different from those in the developed world, early in the trial design phases, we
sketched out a list of primary data that we would need to collect in order to evaluate
the effectiveness of Riders compared to status quo operations. To collect primary
data in the Southern Province, we had to plan and build a massive infrastructure
of data collection officers, weekly surveys, and GPS trackers. The surveys alone
took a year of testing and retesting to finalize, and installing the GPS trackers on
a randomized selection of motorcycles itself took months due to the challenges of
moving from clinic to clinic over poor roads. A lack of cell phone signal in many
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areas has hampered our ability to regularly make appointments or conduct surveys.
The data that we will collect in the trial will be unique in its breadth and depth, and
we hope that future research will be able to build on what we have learned.

From a modeling standpoint, we have refined our assumptions and understanding
continuously as we learn more about the operations on the ground in Zambia. As
we have emphasized, the modeling process is iterative. The results that we have
identified here will be reviewed and either validated or rejected by our stakeholders.
Based on their feedback, we plan to modify the model and its assumptions
appropriately.

6 Conclusions

Health delivery in developing countries is typically underfunded and understaffed.
Developing countries bear much more than their fair share of the global disease
burden while accounting for only a small fraction of global healthcare spending
(Schieber and Maeda 1999). Exacerbating the lack of funding in many nations are
accessibility issues. Barriers in the last mile of health delivery prevent millions
of people from accessing even basic healthcare. These last-mile issues could be
resolved through an influx of resources and support: new clinics, more health
workers, more drugs, and better road networks. But policy makers in developing
regions are constrained by very limited resources. Identifying the best solution
in light of constraints is a strength of operations research. Thus, researchers can
use operations research modeling tools to help improve the last mile of the health
delivery supply chain.

In this chapter, we have adapted traditional problem-solving guidelines to frame
our model of a problem in the context of sub-Saharan Africa. In particular, we
identified challenges including a lack of data and a need to tailor the problem to
operations on the ground. To illustrate one approach to addressing these challenges,
we have provided a case study on our work with Riders for Health, an organization
devoted to overcoming the challenges of health delivery in rural Africa by increasing
the accessibility of healthcare.

For our project in Zambia, we have worked to address the lack of available data
by establishing an infrastructure to collect primary data. We have also performed
sensitivity analyses on model parameters to understand which parameters should
be most carefully estimated by decision makers. In addition, we tailored our model
to Riders’ objective and chose to minimize the expected number of motorcycles
down subject to a budget constraint rather than formulate the optimization as a
cost minimization problem. Many of our modeling assumptions were informed by
interviews conducted in Zambia and conversations with Riders management over
the past 2 years.

Using our model, we are able to quantify the reduction in costs and backorders
from Riders’ centralized spare parts inventory management. In addition, we have
modeled the connection between Riders’ investment in its driver training and routine
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management programs and the reduction in repairable and consumable failure rates,
respectively. We are collecting data in our trial in the Southern Province of Zambia
in an ongoing effort to improve our estimates of the parameter values that we
have used here; the data will serve to validate our model or inform modifications.
This work is an initial step in our evaluation of Riders’ performance. Future steps
include linking motorcycle availability to increased numbers of health interventions
delivered and finally to regional health outcomes.

Research on health delivery supply chains for resource-limited regions is still
nascent. Our hope is that operations researchers can use what we have learned
in the design and implementation of this trial to model other last-mile prob-
lems. Particularly in resource-limited regions, these problems are complex, and
researchers must engage stakeholders at every step of the process to ensure that
the resulting models are relevant and applicable. Improvements in health delivery
could have a significant impact on health in developing nations, particularly when
implemented using rigorous approaches from implementation research. Operations
research modeling will be instrumental to improving the healthcare delivery supply
chain in the developing world, and evaluations such as ours are necessary to identify
effective programs and support evidence-based decision-making.
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Chapter 20
Allocating Scarce Healthcare Resources
in Developing Countries: A Case for Malaria
Prevention

Jacqueline Griffin, Pinar Keskinocak, and Julie Swann

1 Introduction

One of the primary challenges in healthcare operations, whether for disease
prevention or treatment, is the imbalance between the availability of resources
and public health needs. As a result, allocation of scarce resources is among the
most critical decisions within healthcare operations management. While financial
constraints are prevalent in almost all healthcare settings, other limited resources
include hospital beds, operating room time, nurses, and vaccines.

Decisions regarding the best use of scarce resources can become increasingly
complex in the setting of a developing country due to greater disease incidence,
poorer healthcare system infrastructure, and other societal factors. As a result,
significant tradeoffs associated with resource allocation in developing countries
provide opportunities for the use of analytical techniques. We demonstrate tradeoffs
in the operation of a malaria prevention campaign with an optimization model and
decision support tool. Both the model and tool include features that specifically
address challenges of the developing world and the variety of resources that must
be allocated in interrelated stages of decision making. The performance of different
resource allocation heuristics is explored.

The remainder of this chapter is organized as follows. In Sect. 2 we present
a summary of recent research concerning resource allocation decision making in
developing countries. In Sect. 3, we present a case study of the development of a
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mathematical model and decision support tool for the allocation of scarce resources
in a malaria prevention campaign. This includes a description of the system
including the constraints balancing supply (Sect. 3.1.2) and demand (Sect. 3.1.1) and
the resource allocation decisions (Sect. 3.1.3). The mathematical model is defined in
Sect. 3.2. The use of the decision support tool is demonstrated through a numerical
example in Sect. 3.3.

2 Literature Review

Resource allocation models, regardless of location or industry, examine decisions
for optimizing a stated objective function provided a limited budget or other set
of resources. With regard to improving health in developing countries, both the
types of decisions to be made and the measurement of the objectives can vary.
While most objectives relate to improving overall health, metrics can include
disability-adjusted life years (DALYs) (Lasry et al. 2008), quality-adjusted life
years (QALYs) (Zaric and Brandeau 2001), and the number of infections (Brandeau
et al. 2003). Additionally, models specific to developing countries must consider
unique characteristics such as road infrastructure (Balcik et al. 2008; Rahman and
Smith 2000), spatial accessibility (Carr and Jallah 2008; Wilson and Blower 2005),
nomadic populations (Ndiaye and Alfares 2008), and rainy seasons (Oppong 1996).

In addition to the variety of performance metrics utilized, resource allocation
models can consider a variety of types of decisions including the funding of different
health programs (Epstein et al. 2006). Flessa (2000) develops a linear program to
study allocation of curative and preventative treatments for a variety of diseases
in developing countries (Flessa 2000). Often, the funding of different programs
is determined by calculating the cost-effectiveness of each program to identify
appropriate prioritization (Hansen and Chapman 2008). While cost-effectiveness
measurements are useful, when prioritizing investment in programs which address
the same health condition, the interactions between different programs should be
incorporated into resource allocation models, often requiring nonlinear components
(Alistar and Brandeau 2012).

Rather than addressing prioritization among health programs, some models
address decisions for the prioritization of patient populations (Brandeau et al. 2003)
which can differ by a variety of factors including health condition (Lee et al.
2010) and location (Balcik et al. 2008). Wilson and Kahn (2006) examine the
epidemiological impact of drug allocation strategies on urban and rural populations
through the development of a spatially explicit model.

Budget allocation decisions are further complicated by the sequential distribution
of funds among different stages (e.g., regional and local levels) within a healthcare
delivery system. For example, Lasry et al. (2007) examine the distribution of funds
for HIV prevention at multiple levels, by comparing the use of heuristic and optimal
policies, and the interactions between decisions at the different stages (Lasry et al.
2007). Similarly, Zaric and Brandeau (2007) use an optimization model to examine
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budget allocation at two levels to address the difference between proportional and
efficient distribution policies in HIV prevention.

When modeling resource allocation for the treatment or prevention of infectious
diseases, often the epidemiology, or interaction of the disease and the population,
is explicitly modeled. One approach is the use of compartmental models (Zaric and
Brandeau 2001). The use of epidemic models addresses the importance of timing in
resource allocation and the dynamic nature of disease prevalence. Through use of
optimization and epidemic models, Brandeau et al. (2003) examine prioritization of
independent populations for resource allocation within a limited time horizon. Zaric
and Brandeau (2002) find that heuristic methods for allocation perform well and
that reallocation of resources throughout a limited time horizon produces superior
results to making a single allocation in the first period.

While there is interest in developing analytical models to aid in resource
allocation, often simple heuristics and gut instincts are employed in practice.
Researchers have examined the loss of efficiency or effectiveness with the use of
these heuristics. For example, Deo and Sohoni (2011) compare the use of simple
heuristics and optimal resource allocation for locating diagnostic testing equipment
in developing countries.

While many complex models have been developed for addressing public health
concerns in developing countries, few are developed specifically for implementa-
tion. Lasry et al. (2008) develop a resource allocation model for HIV prevention.
The model is implemented in a spreadsheet-based decision support tool, S4HARA.
The tool deconstructs decision making into four interrelated stages including
prioritization of HIV prevention methods and allocation of funds (Lasry et al. 2008).

In Sect. 3, we present a case study of a decision support tool for allocating
resources in a malaria prevention program across time and locations. Similar to
previous models, this model considers the disease dynamics and decisions for
population prioritization. Additionally, the model includes characteristics that are
unique to developing countries including a focus on road infrastructure quality.
Similar to Lasry et al. (2007) and Zaric and Brandeau (2007), the model can
be deconstructed into multiple levels of decision making and the relationship
between decisions at different stages is examined. Similar to Lasry et al. (2008),
a spreadsheet-based decision support tool incorporating these stages is developed
using the model.

3 Case Study: Indoor Residual Spraying Operations
Management

Malaria is a vector-borne illness transmitted by infected Anopheles mosquitoes.
Malaria poses a serious global public health threat, but is especially prevalent
and has its most significant impact in the developing world. Approximately 500
million clinical cases of malaria occur each year, resulting in approximately one



514 J. Griffin et al.

million deaths worldwide (Thomson et al. 2006). While almost half of the world’s
population lives in an area at risk of malaria transmission, 89% of deaths occur in
Africa, resulting in the second largest number of deaths from an infectious disease
after HIV/AIDS in Africa (Centers for Disease Control and Prevention Division of
Parasitic Disease 2010).

Despite being a preventable and curable disease, there is a continued prevalence
of malaria in Africa due in part to increasing drug resistance towards inexpensive
and readily available medications (Cox et al. 1999) and severe underfunding by
the international community for achieving malaria control goals (Kiszewski et al.
2007; Snow et al. 2008). Also, many pharmaceuticals for malaria treatment are
prohibitively expensive for widespread use in developing countries. Due to the
state of healthcare infrastructure, the logistics of diagnosing and treating infected
individuals can be challenging. Hence, increased focus has been given to prevention
methods.

The most prevalent malaria prevention methods, long lasting insecticide-treated
nets (LLINs) and indoor residual spraying (IRS), both work by reducing the rate of
mosquito bites, which is the method of transmission for malaria. LLIN programs
provide bed nets for individuals to drape over their beds while sleeping. In addition
to providing a physical barrier, the insecticide repels and kills mosquitoes that come
in contact with the net. With the IRS method, trained spray teams apply insecticide
to the walls and ceilings of residences. Both LLIN and IRS require retreatment at
regular intervals. While both methods have been shown to be effective, Ministries
of Health choose a prevention method based on the individual circumstances of
their country (Over et al. 2004). In addition to government agencies, some non-
governmental organizations (NGOs) participate in the treatment and distribution
of bed nets. For example, the United Nations Foundation has created a Nothing
But Nets campaign to distribute bed nets across Africa (United Nations Foundation
2012).

Regardless of the choice of prevention program, operational decisions for a
malaria prevention campaign include (1) which areas to target for prevention, (2)
when to schedule spraying or net distribution given the seasonal nature of the
disease, and (3) how to allocate resources such as insecticide, labor, and trucks.
Often, these decisions are made by members of the Ministry of Health or NGOs
based on personal experience and gut instincts, rather than analytical methods that
capture the true complexities of the system. Because of the complexities, these
practices can result in poor allocation of resources with impaired effectiveness due
to undercoverage, overcoverage, or poor timing.

In Sect. 3.1, we describe the development of an operations research model for an
IRS program and present its formulation in Sect. 3.2. In Sect. 3.3, we discuss how
this model is adapted into a decision support tool. With a small numerical example,
we demonstrate the value of the tool in evaluating complexities and tradeoffs that
exist in the allocation of limited resources for an IRS program.
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3.1 IRS Problem Definition

One goal for an IRS campaign is to minimize the number of contracted cases
of malaria. The number of cases of malaria prevented is a consequence of both
the deployment of limited resources for prevention and the population at risk of
contracting malaria, or the demand. As a result, decisions in the design of a malaria
prevention program must address both supply and demand. The model presented
below addresses strategic, tactical, and operational decisions in the design and
operation of an IRS program.

3.1.1 Demand

Demand for malaria prevention is a function of several factors including population
size, location, and timing. To represent this demand, the total area being considered
for treatment is divided into zones. For each zone, the total population and malaria
risk factors are considered.

The rate of transmission of malaria exhibits a seasonal pattern, consistent with
mosquito population trends. In addition to time of the year, mosquito prevalence is
also affected by environmental factors (i.e., annual rainfall and temperature) (Craig
et al. 1999). Due to these characteristics, a model for malaria prevention should
account for dynamic decision making, incorporating changes in risk by time and
location.

To model the disease dynamics, forecasts for malaria risk factors can be
estimated with data compiled by the Mapping Malaria Risk in Africa (MARA)
initiative a group of scientists that have processed and summarized data pertaining
to geographic representations of the malaria burden in Africa (www.mara.org.za)
(Mapping Malaria Risk in Africa 2004). MARA considers environmental factors
such as rainfall and temperature in forecasting annual malaria risk on a 0–1 scale,
with 1 as the highest risk. This risk factor is calculated for 25 km2 zones in Africa.
Additionally, data pertaining to the first and last month of the high transmission
season further classifies the time-dependent nature of malaria risk. This data on
the overall risk factor and the timing of the high transmission season is combined
to calculate a risk factor for each time period and zone considered by the model.
A map developed by MARA depicting the endemic risk of malaria for the African
continent is shown in Fig. 20.1.

3.1.2 Supply

The supply of resources in an IRS campaign includes distribution centers, teams
of trained sprayers, spray equipment, insecticide, and transportation vehicles. Each
team of trained sprayers is employed at a distribution center (DC). During spraying
operations, a team utilizes spray equipment as well as a truck for transport to and
from the assigned zone. We assume that each team only visits one zone per time

www.mara.org.za
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Fig. 20.1 A map of endemic risk of malaria in Africa based on climatic factors including rainfall
and temperature as calculated by Mapping Malaria Risk in Africa’s (MARA) (www.mara.org.za)

period and returns to the distribution center at the end of the period. While trucks and
spray equipment can be used in subsequent time periods, the inventory of insecticide
is depleted as spraying occurs.

Quantities of these resources are limited by the supply of funds or the total
budget. In the model, we assume there is a fixed cost for opening a distribution
center and a variable cost for each time period in which the distribution center
operates. There is a unit cost for training sprayers and renting equipment and trucks.
Additionally, there is a unit cost for the insecticide needed to treat each home. Lastly,
there is a transportation cost between distribution centers and zones for which the
budget is allocated.

Unlike developed countries, road infrastructure is less reliable in developing
countries, and as a result, the time to travel a similar distance may take much
longer on roads in undeveloped areas. Additionally, it is possible that a road may

www.mara.org.za
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be impossible to cross during certain parts of the year (i.e., the rainy season).
As a result, it is unrealistic to treat all roads as equivalent or to assume a constant
multiplicative factor for cost per mile in the model. Instead, a road quality-adjusted
transportation cost is calculated accounting for the classification of the roads in the
associated zone. These costs can be estimated using data from the World Health
Organization’s HealthMapper, a public health mapping application (World Health
Organization 2012). The estimated transportation cost between a distribution center
and a zone incorporates the quality of the roads. By considering the road quality,
it is possible for the best location of distribution centers or assignment of zones to
differ considerably as compared to a model that only considers road distance.

3.1.3 Model Decisions

Decisions for matching supply and demand to maximize the number of prevented
cases of malaria must address the quantity and timing of resource allocation and
system constraints. For instance, insecticide treatment continues to be active for
a limited number of time periods following application. Capacity restrictions for
equipment and insecticide at the distribution centers limit the number of teams
deployed. There is also a limit on the number of homes that can be treated by one
spray team in one time period. To prevent duplicate spraying, each zone is assigned
to exactly one open distribution center. Since it is assumed that a team can only visit
one zone per period, routing is not considered.

With the objective of maximizing the number of cases of malaria prevented,
the following decisions are made for IRS program operations:

• How many distribution centers (DC) should be opened?
• Where should the distribution centers be located?
• When should the distribution centers be operational?
• How should zones be allocated to the (open) distribution centers?
• How many teams (i.e., employees, spray equipment, vehicles) should be

located at each distribution center?
• When should teams be deployed to each zone?
• How many homes should be treated from each zone in each time period?
• How much insecticide (DDT) should be purchased at each distribution

center?

While all of these decisions are interrelated, the decisions can be classified
into three stages of decision making:

1. Location of distribution centers [strategic]
2. Assignment of zones to distribution centers [tactical]
3. Scheduling team deployment [operational]
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Table 20.1 Decision variables for team deployment MIP

Decision variable Definition Type

Open j 1 if DC j is open, 0 otherwise Binary
Ldc j Number of spray teams to employ at DC j Integer
Pj,t 1 if DC j is open at time t , 0 otherwise Binary
zoneServedi, j 1 if Zone i is assigned to DC j, 0 otherwise Binary
Li,t , j Number of teams of workers allocated to Zone i at

time t from DC j
Integer

Cnewi,t , j Number of newly protected people in Zone i at time
t by teams deployed from DC j

Integer

Enew Quantity of new equipment (spray tanks) to purchase Integer

3.2 Team Deployment Model

Creating one mixed integer programming (MIP) model to incorporate all three
stages of decisions would require approximately 700,000 binary variables for an
instance representing Swaziland, one of the smallest countries in Africa, with
approximately 800 million variables in total. By deconstructing the problem into
three stages of decision making, the size of the MIP for the scheduling team
deployment stage becomes more manageable, but possibly still difficult to solve
to optimality for large regions.

The formulation of the MIP for scheduling team deployment including the
model decision variables (Table 20.1), parameters (Table 20.2), constraints ((20.2)–
(20.19)), and objective function (20.1) is provided below. This MIP can be extended
to incorporate decisions about the location of distribution centers, including the
number to open, and assignments of zones. These decisions are incorporated into
the decision support tool discussed in Sect. 3.3.

The objective of this MIP (20.1) is to maximize the number of prevented malaria
cases or the effective coverage. The total effective coverage is calculated as the sum
of the product of the number of people treated and the risk in all periods in which
the insecticide is active or the subsequent activeT periods after spraying occurs.
Constraints (20.2) and (20.3) allow for each zone to be served by exactly one open
distribution center. Constraints (20.4), (20.5), and (20.17) limit the number of people
covered by spraying to be less than the total population and the amount defined by
the assignment of teams. Constraints (20.6)–(20.10) restrict assignment of spray
teams according to capacity and supplies allocated at each distribution center.
Constraints (20.11)–(20.16) limit deployment to the periods of time in which a
distribution center is open, which is all periods between the first and last deployment
from that distribution center. Constraint (20.18) restricts the total cost of the program
to be less than the available budget.
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Table 20.2 Parameters for team deployment MIP

Parameter Definition Units

Sets J Set of DC locations
I Set of zones
T Set of time periods {1, . . . ,NT}

Zones populationi Population in zone i People
riski,t Percent of population at risk in zone i at time t % risk
ph Estimated number of people living in each home People/home
disti, j Road quality-adjusted straight line distance

from zone i to DC j
km

cPerKm Estimated transportation cost $/km

DCs capDCeq j Capacity of DC j for equipment Spray tanks
capDCtr j Capacity of DC j for trucks Trucks
capDCddt j Capacity of DC j for DDT g DDT
cOpenDCj Fixed cost to open DC j $
cRentDCj Cost to keep DC j open per unit time $/time
t pdc Time to prepare and close a DC Time

Spray teams M Upper bound on the number of spray teams,
budget/cDDT

Teams

tt Time required to train spray personnel Time
kt Workers per team (based on the capacity of a

truck to hold the workers and their
equipment)

Sprayers/truck

rs Work rate of the spray personnel Homes/time
ws Wage of spray personnel $/time
cMiscEq Cost of safety gear and equipment per worker $/sprayers
ctr Cost of renting trucks per unit time $/time/truck
Einit Initial amount of equipment available Spray tanks
pCover People that can be covered by one team,

kt · rs · ph
People

cEquip Cost of tanks, safety gear, and equipment per
team, kt · (chTank+ cMiscEq)

$/team

cHire Cost to hire one team, kt · tt ·ws $/team
cWage Wage per team per time period, kt ·ws $/time/team

Insecticide
(DDT)

activeT Time periods in which DDT is active after
spraying

Time

sh Amount of DDT needed per home g/home
cgDDT Total cost per gram of DDT $/g DDT
cue Unit cost of new spray tanks $/spray tank
chTank Total cost per tank for repair and replacement $/spray tank
ddt perP Quantity of DDT needed to protect one person,

sh/ph
g DDT

ddtCover Quantity of DDT needed for one team working
at full capacity, kt · rs · sh

g DDT

cDDT Cost of DDT needed for one team working at
full capacity, cgDDT · kt · rs · sh

$/team

Financial
Re-
sources

budget Maximum monetary funds available for
deployment

$
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max ∑
i∈I,t∈T, j∈J

∑
s∈{0,...,activeT :t+s≤T}

Cnewi,t, j riski,t+s (20.1)

s.t.
∑

i∈I, j∈J

zoneServedi, j = 1 ∀i ∈ I (20.2)

zoneServedi, j ≤ Open j ∀i ∈ I, j ∈ J (20.3)

∑
j∈J,t∈T

Cnewi,t, j ≤ populationi ∀i ∈ I (20.4)

∑
j∈J

Cnewi,t, j ≤ pCover ∑
j∈J

Li,t, j ∀i ∈ I, t ∈ T (20.5)

∑
i∈I

Li,t, j ≤ Ldc j ∀ j ∈ J, t ∈ T (20.6)

kt Ldc j ≤ capDCeq j ∀ j ∈ J (20.7)

Ldc j ≤ capDCtr j ∀ j ∈ J (20.8)

∑
j∈J

kt Ldc j ≤ Einit +Enew (20.9)

∑
i∈I,t∈T

ddt perP Cnewi,t, j ≤ capDCddt j ∀ j ∈ J (20.10)

Ldc j ≤ M Open j ∀ j ∈ J (20.11)

Li,t, j ≤ M zoneServedi, j ∀i ∈ I, t ∈ T, j ∈ J (20.12)

Pj,t ≤ ∑
i∈I

Li,t, j ∀ j ∈ J, t ∈ T (20.13)

∑
i∈I

Li,t, j ≤ M Pj,t ∀ j ∈ J, t ∈ T (20.14)

∑
l∈{1,...,t−activeT }

Pj,l ≤ M (Pj,t−1 −Pj,t + 1) ∀ j ∈ J, t ∈ {activeT, . . . ,NT}
(20.15)

∑
l∈{t+1,...,NT}

Pj,l ≤ M (Pj,t −Pj,t−1 + 1) ∀ j ∈ J, t ∈ {activeT, . . . ,NT} (20.16)

∑
t∈T, j∈J

Li,t, j ≤
⌈

populationi

pCover

⌉

∀i ∈ I (20.17)
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Enew cue + ∑
j∈J

(cEquip+ cHire) Ldc j

+ ∑
i∈I,t∈T, j∈J

(2 cPerKm disti, j) Li,t, j

+ ∑
i∈I,t∈T, j∈J

(ctr+ cDDT + cWage) Li,t, j

+ ∑
j∈J,t∈T

cRentDCj Pj,t

+ ∑
j∈J

(t pdc+ tt)Open j + ∑
j∈J

cOpenDCj Open j ≤ budget (20.18)

Cnewi,t, j ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T (20.19)

Li,t, j ,Ldc j,Enew ∈ {0,1,2, ...} ∀i ∈ I, j ∈ J, t ∈ T (20.20)

zoneServedi, j,Open j,Pj,t ∈ {0,1} ∀i ∈ I, j ∈ J, t ∈ T (20.21)

3.3 Decision Support Tool

We created a spreadsheet-based decision support tool that incorporates the frame-
work and structure of the MIP. Through use of the tool, decision makers can evaluate
the impact of proposed strategies (i.e., conduct what-if analyses) and identify the
nature of tradeoffs in resource allocation in the process of arriving at a final decision.
Note that a decision maker in this case can include an actual user with an NGO or
health agency, or a student in a classroom exploring alternatives and gaining insights
about resource allocation.

We demonstrate the use of the decision tool with a small numerical example,
defined in Sect. 3.3.1. In Sect. 3.3.2, for this instance, we present an example of
the process a decision maker may go through, testing and evaluating instinct-
based heuristics with use of this analytical tool, when the assignment of zones to
distribution centers is fixed. We demonstrate how the use of the tool can highlight
key tradeoffs and improve understanding of the deployment problem. In Sect. 3.3.3,
we further demonstrate the impact of additional flexibility of decision making,
including zone assignment decisions.

3.3.1 A Numerical Example

The decision support tool is implemented in Excel on a sample instance. This
instance has five zones, four distribution centers, and three time periods. A similar
decision support tool could be applied to a larger instance. A map of the location of
the zones and distribution centers is shown in Fig. 20.2. Additionally, the population
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Zone 1 Zone 2

Zone 3 Zone 4

Zone 5
DC
C

DC
DDC

A

DC
B

Fig. 20.2 Map of the
location of four distribution
centers (A, B, C, D) and five
zones for the numerical
example

Table 20.3 Population and time-dependent risk factor by zone

Zone Population Risk period 1 Risk period 2 Risk period 3
(i) (populationi) (riski,1) (riski,2) (riski,3)

1 1,350 0.8 0.6 0.3
2 1,500 0.2 0.7 0.5
3 2,150 0.7 0.3 0.1
4 1,650 0.1 0.3 0.9
5 2,350 0.6 0.4 0.2

Table 20.4 Quality-adjusted transportation cost between distribution centers and zones

DC Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
( j) (dist1, j) (dist2, j) (dist3, j) (dist4, j) (dist5, j)

A 23.14 25.12 6 20.9 23.25
B 8.94 15.65 14.23 25 35.37
C 42.25 39.37 24.67 20.95 6.4
D 40.7 25.16 33.11 6.71 28.5

and risk factors for each time period are presented in Table 20.3. These risk factors
account for both the overall risk as well as the disease dynamics. The quality-
adjusted transportation costs between distribution centers and zones are shown in
Table 20.4. These data sets have been defined to provide an instructive example.

In this numerical example the equipment, truck, and insecticide capacities
are identical for all distribution centers, as well as the cost of opening and the
variable operational costs per time period. The model assumes that spraying is
effective in the time period in which the spraying occurs and all subsequent periods
of the model. Reapplication is not needed within the time horizon considered here
(activeT = 2), e.g., a 1 year period.
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Fig. 20.3 A view of the IRS decision support tool which calculates the total cost and total effective
coverage based on the team deployment decisions entered into the spreadsheet

The spreadsheet-based decision support tool reflects the three stages of decision
making defined above. First, the spreadsheet user inputs a decision concerning
which distribution centers will be opened and where they will be located. Second,
based on which distribution centers are open, the user makes a decision regarding
the allocation of zones to distribution centers. Finally, the tool requires the user to
schedule the number of teams allocated to each zone in each time period. Using the
MIP model framework, the spreadsheet automatically updates defining which time
periods distribution centers are open, the equipment purchased and teams trained
at each distribution center, and the number of malaria cases prevented. With this
design of the decision support tool, the total cost and number of prevented cases is
quickly calculated based on user input, and a feasibility check is completed for all
constraints. The decision support tool is constructed to use basic Excel functionality,
with no macros or VBA components. A view of the decision support tool interface
is shown in Fig. 20.3.
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3.3.2 Evaluating Resource Deployment Strategies

In this section, we go into more detail on one stage of decision making demon-
strating how the tool can be used to better understand the problem and to evaluate
the performance of heuristic strategies. We examine the use of the tool in the team
scheduling stage, in which the location of the distribution centers and the assignment
of zones are fixed. In this instance, we assume a fixed budget of $50,000 and the
assignment of Zones 1, 2, and 4 to DC D and Zones 3 and 5 to DC A.

In practice, strategies based on simple heuristics may be considered for schedul-
ing team deployment. Considerations in development of strategies may include risk,
transportation costs, population, and balanced allocation of resources.

Utilizing the tool to evaluate the performance of schedules based on instinctual
strategies, we demonstrate how a decision maker can gain an understanding of
key system behaviors and utilize this understanding to develop better strategies.
With a risk-based approach, one goal may be to spray in zones with the highest
overall malaria risk in the earliest time periods. This would cause the prioritization
of spraying in Zone, 1 (total risk = 1.7), then Zone 2 (total risk = 1.4), and finally
in Zone 4 (total risk = 1.3). Due to the fixed assignment of zones, all three of
these zones are served by DC D. Possible trials of team deployment that may be
considered are shown in Table 20.5. Because the number of teams deployed must
be integer, the total cost for each trial is slightly less than the total budget.

In the first trial, Zone 1 is prioritized and receives enough teams to protect the
total population, and additional teams are allocated to Zone 2 using the remaining
budget. If instead, Zone 2 is prioritized over Zones 1 and 4, with a similar allocation
heuristic, more malaria cases are prevented, with an effective coverage of 3,671
(Trial 2). This improvement is a result of the less costly transportation costs to Zones
2 and 4 rather than Zone 1. Therefore, although Zone 1 has a higher total risk,
prioritizing Zone 2 leads to greater prevention overall. Further considering quality-
adjusted transportation costs in addition to risk, 5,558 cases can be prevented by
prioritizing Zone 2 over Zone 4 and not spraying in Zone 1.

While spraying only in the first time period may ensure the highest effectiveness
per spray team deployed, it may not be the most cost-effective strategy. For example,
due to the preventative nature of IRS, ideally all homes would be sprayed in the
first period, to prevent infection in subsequent periods. This requires many teams
to be hired in the first period, resulting in high costs for purchasing equipment and
training. Additionally, due to disease dynamics, earlier spraying is more valuable in
some zones compared to others. The decision support tool can be used to examine
the impact of deploying teams over multiple periods.

Table 20.6 displays allocation strategies that improve on the trials from Table
20.5 with similar prioritization of risk and transportation costs, but instead allocate
teams over multiple periods. Comparing Trials 1 and 4, by delaying spraying in
Zone 2 until the second period, more homes receive treatment and more cases are
prevented. Additionally, by utilizing teams across two periods, the total number of
teams employed decreases from 10 to 7, thereby allocating less of the budget to
hiring and training teams and more to spraying in Zone 4.
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Similarly, improvements over Trial 2 can be achieved through scheduling team
deployment to Zone 2 among multiple time periods (Trial 5). Improvements over
Trial 3, through rebalancing of team deployments to minimize the number of teams
hired, are demonstrated in Trials 6 and 7.

While the zones with the highest overall risk are served by teams from DC D,
the zones with the highest population, Zones 3 and 5, are assigned to DC A. The
decision support tool can be used to examine the impact of deploying teams from
both distribution centers and accounting for population by zone and transportation
costs. Table 20.7 includes strategies that utilize both distribution centers. In Trial 8,
deployment is prioritized with respect to the expected number of malaria cases in
each zone. By reducing the number of teams deployed from DC D, 5,712 malaria
cases are prevented in Trial 9. This is an 81% increase in total effective coverage
over the starting strategy in Trial 1, demonstrating the valuable information a
decision maker may gain from use of the decision support tool.

3.3.3 Evaluating Distribution Center and Zone Assignment Strategies

As demonstrated in Sect. 3.3.2, the decision support tool can be used to highlight key
features in the development of an effective resource deployment strategy including
transportation costs, malaria risk levels, population, and disease dynamics. In this
section, we demonstrate the value of the tool in the tactical decision making stage
in which decisions for the best allocation of zones to DCs A and D are made.

The initial assignment of zones (A: 3,5; D: 1,2,4) balances the total population
covered by each distribution center. Under this assignment, the maximum number
of malaria cases prevented, with a budget of $50,000, is 5,938, only a 4% improve-
ment over Trial 9. In the optimal strategy with fixed locations and assignments
(Table 20.8), all resources are deployed to Zones 2, 3, and 4, the zones with the
smallest transportation costs. Due to the high population and risk in Zone 3, teams
are deployed in the first time period. Deployment from DC D balances the number
of teams used in the first and second periods. This demonstrates the usefulness of
the tool in identifying the key system tradeoffs.

Heuristics for assigning zones to distribution centers may be similar to those
considered when making deployment decisions. One strategy may be to balance the
total risk among zones assigned to each distribution center. With this goal, Zones 2
and 4 would be served by one distribution center, and Zones 1, 3, and 5 by the other
distribution center. For the two possible assignments of zones to DC A and DC D
using these groupings, the optimal schedules and the number of prevented cases are
shown in Table 20.9.

Another strategy a decision maker might select is to balance the total expected
number of infections in zones for each distribution center. Under this strategy, Zones
1, 2, and 3 would be served by one distribution center, and Zones 4 and 5 served
by the other. For the two possible assignments to DC A and DC D using these
groupings, the optimal schedules and the number of prevented cases are shown
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in Table 20.10. As shown here, even when a reasonable heuristic is developed
for grouping zones, the decision support tool can aid in making the appropriate
assignments (3,959 vs. 6,101 prevented cases). Assuming that DCs A and D are
open, Assignment 4 is an optimal strategy for both allocation and assignment, with
6,101 malaria cases prevented.

The same effective coverage, 6,101, is achieved in the optimal solution when
assignments of zones are made to the closest distribution center with respect to
quality-adjusted transportation costs (Table 20.11). This is the optimal effective
coverage that can be obtained while opening DCs A and D, as determined by solving
a revised MIP to optimality.

As demonstrated above, the use of the decision support tool can be valuable in
gaining an understanding about the best allocation and assignment strategies and
for learning about the tradeoffs within the system. Additionally, the model can be
used to examine sensitivity to inputs or to examine objectives not in the model,
such as geographical equity. By utilizing a decision support tool, rather than a strict
optimization model, it is possible for decision makers to identify a strategy that
accounts for the many tradeoffs of the model in addition to social and political
concerns.

4 Conclusion

The model for IRS malaria prevention presented here provides an example of the
types of healthcare resource allocation models that can be created for the developing
world. First, the model addresses the role of poor infrastructure, a significant
challenge in developing countries, in allocation decisions. Additionally, resource
allocation must incorporate the interdependencies of different levels of decision
making. Here, the decision support tool addresses the tradeoffs in location of
distribution centers, assignment of distribution centers to zones, allocation of teams
to distribution centers, and scheduling of teams.

To have practical value in affecting health in developing countries, models
incorporating the many levels of decisions are needed. While this model can be
extended to address alternate malaria prevention methods, such as LLIN, or preven-
tion of other vector-borne diseases, research is needed to develop similar models
and applications for other diseases and illnesses. In such cases, resource allocation
models should also address specific disease characteristics, such as seasonality, risk
factors, or the heterogeneous nature of disease incidence by geographic location.

While there is potential for the development and application of new tools
and analytical models for use in developing countries, a variety of challenges
exist. For example, limitations in our model include the use of a finite time
horizon and difficulties in estimating model parameters, such as quality-adjusted
transportation costs and expected number of infections. Another key roadblock in
model development is the availability of data about infrastructure and population
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density. Therefore, general assumptions may need to be made pertaining to the
transportation costs or other model input. Due to the scarcity of reliable data,
developers should consider model robustness, e.g., uncertainties or inaccuracies in
the data.

In addition to model development, a key feature in the design of a decision
support tool for use in developing countries is the software platform that is used.
For example, spreadsheet-based tools may be easier to use and more affordable
than sophisticated optimization software. An application that requires an expensive
software package or even extensive computing power may not be appropriate for
application in the field. Therefore, a key consideration must be the situational
factors of those using the application. One possible consideration for applications
is to utilize cell phone technology, such as text messaging, for the collection or
dissemination of information. Additionally, web-based tools can prevent the need
for the installation of sophisticated software technology. Although, in many ways,
technology considerations are limiting, they encourage the development of creative
approaches that result in high value products which are easy to implement.

With extremely limited funds, the difference in impact from making efficient
or inefficient allocation decisions can be significant, as demonstrated by the
numerical example in Sect. 3. Evaluating decisions can be challenging when disease
prevalence changes with time and location, as is the case with malaria. For this
reason, utilizing an optimization model for the development of a decision support
tool can have significant benefit in evaluation of allocation decisions and teaching
the value of analytic methods.

Decision makers participated in ongoing discussions about the development of
the model presented here, which influenced the tool structure, input parameters,
and the overall approach. Several other decision makers have expressed interest in
the tool for educational or planning purposes. In addition to providing a learning
experience for decision makers, decision support tools can be useful for education
of a broader audience about the complexities of resource allocation decisions.

The development of decision support tools based on analytical modeling has the
ability to bring awareness to the value and importance of integrating resources from
a variety of research areas. Research that continues to merge different areas such
as epidemiology, operations research, and economics is needed to improve decision
making for resource allocation in developing countries.
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