VPM's DR VN BRIMS, Thane

Programme: MMS (2023-25)
First Semester Regular Examination December 2023

Course Name:	Business Statistics	Course Code	C103								
Roll No.		Marks	60								
Total No. of Questions	6	Duration	3 Hours								
Total No. of printed pages	4	Date	25-12-2023								

Course Outcome Statements:

- CO1. DEFINE the basic terminologies related to the concepts taught through the syllabus of Business Statistics
- CO2. EXPLAIN the concepts related to Data Representation, Central Tendency, Dispersion, Skewness, kurtosis, Probability, Probability Distribution, Sampling Distribution, Estimation, Hypothesis, and the various Statistical Tests.
- CO3. MAKE USE OF data to calculate the value of various statistical measures to solve a business problem
- CO4. EXAMINE the value of statistical findings to analyse the various business problem
- CO5. PRAISE the results of statistical tests for taking a business decision.

Instruction p		For solving Qn1 a, Q2 a and Q2 b refer the tables attached with the	Marks	BL	СО
		Questions are Compulsory)			
Q. No.		Questions			
Q. 1		Case/Case-let Study (500-800 words)			
	a.	In Research facility, a team of diligent scientists embarked on an intriguing experiment to unravel the mysteries of tomato growth. They sought to ascertain whether there existed any significant disparity in the growth rates of three distinct tomato varieties: Variety A, Variety B, and Variety C. Five separate greenhouses were meticulously set up, each designated for the cultivation of these tomatoes under controlled conditions. As the experiment unfolded, meticulous records were maintained, documenting the growth progression of each tomato variety in their respective greenhouses. The data, represented in the table, revealed the height measurements of the tomato plants at five different time points. The researchers claim that there is no statistically significant difference in the growth rates of these tomato varieties in the given greenhouses. PLOTS Variety A Variety B Variety C 1 5 3 2 6 4 2 3 2 2 6 4 4 4 5 5 5 3 4 Analyse the data given in the table and verify the claim at 5 % Significance level	6	Level 4	CO4
	b.	Compare the growth rates of three distinct tomato varieties (Variety A, Variety B, and Variety C) based on their mean and standard deviation of height measurements.	6	Level 5	CO5
Q. 2		Answer Any one from the following.			
	a.	A group of friends gathered together to engage in a game of chance. They rolled a die 174 times, noting each outcome:	6	Level 5	CO5

		Face V	alue	Occurrence				
		1	28					
		2	32					
		3	28					
		4	32					
		5	28					
		6	26					
				ertain numbers, prompti	_			
		level.		S				
	b.			n weight of 60 kilogram ypothesis that mean wei		6	Level 5	CO5
		the population is 55 Decide whether this		level of significance		U		
Q. 3			wer Any one from t					
	a.	table. Analyse the re expenditure (X) and	lationship between	npany is given in the be the online advertising tphones sold (Y) using	low		Level 4	CO4
		correlation.	Y]				
		100	185	1		6		
		120	195 170	_				
		130	140					
		120 160	165 170	-				
		100	170	_				
	b	Two analysts Sarah bearings from differ		the diameters of ten batches.	all		Level 4	CO4
		Sarah measured Bat	ch A's ball bearings	(21, 22, 21, 21, 27, 27,		6		
		22, 22, and 24 units, 22, 23, 23, 28, 28, 2		ved Batch B's (24, 28, 2	29,			
		Examine the given of	- · · · · · · · · · · · · · · · · · · ·					
Q. 4		Answer Any two from	m the following.					
	a.			f smartphones. Over the			Level 3	CO3
		seven years, the con The table below disp						
		(X, in dollars) and t						
		year. Develop the re	gression equation of	Y on X.				
		Х	Υ]		6		
		90	105	1				
		85	120					
		85	130					
		75	150					
		70	115					~~-
	b	Fair coin is tossed 6 probability of obtain		oility concept to determi heads	ne the	6	Level 3	CO3
<u> </u>	1	processing of occurre	O		<u> </u>		I	I

	c.	A detergent Company has launched a new advertisement on TV. The company estimates that a person who comes across the advertisement will buy a product with the probability of 0.55 and those who do not see advertisement will buy a product with the probability of 0.2. The ad agency estimates that 60% of the target population will see the advertisement. If a person taken at random has purchased the product, Solve for the probability that he has seen the advertisement?	6	Level 3	CO3
Q. 5		Answer Any two from the following.			
	a.	Explain with the help of suitable example concept of mean median and mode.	6	Level 2	CO2
	b	Illustrate any one type of probability distribution.	6	Level 2	CO2
	c.	Explain conditions applicable for binomial distribution.	6	Level 2	CO2
Q. 6		Answer Any two from the following.			
	a.	List business applications of statistics.	6	Level 1	CO1
	b	What is type I and Type II errors.	6	Level 1	CO1
	c.	Define hypothesis testing.	6	Level 1	CO1

				F-t	able	of Cr	itical	Valu	es of	α = 0	.05 f	or F(c	lf1, d	f2)					
	DF1=1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
DF2=1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	243.91	245.95	248.01	249.05	250.10	251.14	252.20	253.25	254.31
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25

			t Distribution		1.3					
α										
Degrees of freedom	.005 (one tail) .01 (two tails)	.01 (one tail) .02 (two tails)	.025 (one tail) .05 (two tails)	.05 (one tail) .10 (two tails)	.10 (one tail) .20 (two tails)	.25 (one tail) .50 (two tails)				
1	63.657	31.821	12.706	6.314	3.078	1.000				
2	9.925	6.965	4.303	2.920	1.886	.816				
3	5.841	4.541	3.182	2.353	1.638	765				
4	4.604	3.747	2.776	2.132	1.533	741				
5	4.032	3.365	2571	2.015	1.476	727				
6	3.707	3.143	2.447	1.943	1.440	.718				
7	3.500	2.998	2.365	1.895	1.415	.711				
8	3.355	2.896	2.306	1.860	1.397	.706				
9	3.250	2.821	2.262	1.833	1.383	.703				
10	3.169	2.764	2.228	1.812	1.372	.700				
11	3.106	2.718	2.201	1.796	1.363	,697				
12	3.054	2.681	2.179	1.782	1.356	.696				
13	3.012	2.650	2.160	1.771	1.350	.694				
14	2.977	2.625	2.145	1.761	1.345	.692				
15	2.947	2.602	2.132	1.753	1.341	.691				
16	2.921	2.584	2.120	1.746	1.337	.690				
17	2.898	2.567	2.110	1.740	1.333	.689				
18	2.878	2.552	2.101	1.734	1.330	.688				
19	2.861	2.540	2.093	1.729	1.328	.688				
20	2.845	2.528	2.036	1.725	1.325	.687				
21	2.831	2.518	2.080	1.721	1.323	.686				
22	2.819	2.508	2.074	1.717	1.321	.686				
23	2.807	2.500	2.069	1.714	1.320	.685				
24	2.797	2.492	2.064	1.711	1.318	.685				
25	2.787	2.485	2.060	1.708	1.316	.684				
26	2.779	2.479	2.056	1.706	1.315	.684				
27	2.771	2.473	2.052	1.703	1.314	.684				
2.8	2.763	2.467	2.048	1.701	1.313	.683				
29	2.756	2.462	2.045	1.699	1.311	.683				
Large (a)	2.575	2.327	1.960	1.645	1.282	.675				

Critical values of the Chi-square distribution with d degrees of freedom

	Probability of exceeding the critical value													
d	0.05	0.01	0.001	d	0.05	0.01	0.001							
1	3.841	6.635	10.828	11	19.675	24.725	31.264							
2	5.991	9.210	13.816	12	21.026	26.217	32.910							
3	7.815	11.345	16.266	13	22.362	27.688	34.528							
4	9.488	13.277	18.467	14	23.685	29.141	36.123							
5	11.070	15.086	20.515	15	24.996	30.578	37.697							
6	12.592	16.812	22.458	16	26.296	32.000	39.252							
7	14.067	18.475	24.322	17	27.587	33.409	40.790							
8	15.507	20.090	26.125	18	28.869	34.805	42.312							
9	16.919	21.666	27.877	19	30.144	36.191	43.820							
10	18.307	23.209	29.588	20	31.410	37.566	45.315							

INTRODUCTION TO POPULATION GENETICS, Table D.1 © 2013 Sinauer Associates, Inc.