Operations Research

23-04,2009

OR02

Roll No.

Total No. Of Printed Pages: 05

Total No. Of Questions: 7

Maximum Marks: 60

Duration (hrs.): 3

Note: Solve any five out of given seven questions. Each Question is of 12 marks ($12 \times 5 = 60$ marks). Draw neat and clean diagram as per need of question.

(Marks 12)

Q) 1) Define LPP . Also write one important limitation of Graphical Method in LPP solving. Solve the given LPP using Simplex Method :

Max
$$Z = 3 X_1 + 2 X_2$$

subject to,
 $X_1 + X_2 \le 4$
 $X_1 - X_2 \le 2$ and $X_1, X_2 \ge 0$

(2)

(Marks 06)

(a) Use the graphical method to solve the following LP Problem:

Max
$$Z = X_1 + X_2/2$$

Subject to,

$$3X_1 + 2X_2 \le 12$$

$$5X_1 = 10$$

$$X_1 + X_2 \geq 8$$

$$X_1 + X_2 \ge 4$$
 and $X_1, X_2 \ge 0$

(b) Find dual of given LP Problem

(Marks 06)

$$Min Zx = 2X_1 + 3X_2 + 4X_3$$

Subject to,

$$2X_1 + 3X_2 + 5X_3 \ge 2$$

$$3X_1 + X_2 + 7X_3 = 3$$

$$X_1 + 4X_2 + 6X_3 \le 5$$
 and $X_1, X_2 \ge 0$; X_3 is unrestricted.

(Marks 12)

Q) 3) The projects x, y and z requires truck loads of 45, 50 and 20, respectively per week. The availabilities in plants A, B and C are 40, 40 and 40 truck loads respectively per week. The cost of transportation per unit of truck load from plant to project is given below:

	Proj	Project			
		\mathbf{X}	\mathbf{Y}	\mathbf{Z}	
P					
1	\mathbf{A}	-5	20	5	
a					
n	B	10	30	8	
t					
S	\mathbf{C}	10	20	12	

Obtain an optimal solution by **MODI** method to minimize the total cost of transportation .

(Marks 12)

Q) 4) Assign the jobs (J1, J2, J3, J4) to the employees (A, B, C, D) such that the profit is maximum

Jobs / Employee	A	В	C	D
J1	62	78	50	101
J2	71	84	61	73
J3	87	92	111	71
J4	48	64	87	77

Q) 5)

(Marks 06)

(a) Solve the following 2 x 3 game graphically

			Y1	Playe Y2	er P2 Y3
D.4	PI	X1	1 .	3	11
P1	ay er	X2	8	5	2

(Marks 06)

(b) Using dominance principle, solve the following game problem:

			Player B			
			B1	B2	В3	B4
	P	A1	2	-2	4	1
	a	A2	6	1	12	3
4	\mathbf{y}					
	e	A3	-3	2	0	6
	r					
-		A4	2	-3	7	7

: Le :

 $(Marks\ 12)$ Q) 6) The time and cost estimates of the different activities constituting a project are given as :

Activity	No	orma	l Time	Normal Cost (Rs.)	Crash Time	Crash Cost
1 – 2	to 1	tp 5	tm 3	15,000	1	19,000
2 – 3	1	7	4	18,000	3	24,000
2 – 4	1	5	3	14,000	2	16,000
2-5	5	11	8	15,000	7	16,000
3 – 6	2	6	4	13,000	2	15,000
4 – 6	- 5	7	6	12,000	4	13,000
5 – 7	4	6	5	20,000	4	24,000
6 – 7	- 1	5	3	17,000	1	20,000

The normal delivery time is 16 weeks for a constant price of Rs. 1,24,000. Based on the probability for each of the following specified delivery time, recommend the delivery schedule that the Patel Machinery Co. should follow:

Contract Delivery Time	Contract Amount		
(Weeks)	(Rs.)		
•			
1 5	1, 42, 500		
1 4	1, 45, 000		
1 3	1, 50, 000		
1 2	1, 52, 500		

(Marks 12)

- Q) 7) A road transport company has one reservation clerk on duty at a time. He handles information of bus schedules and makes reservations. Customers arrive at a rate of 8 per hour and the clerk can service 12 customers on an average per hour. After stating your assumptions, answer the following:
 - (a) What is the average number of customers waiting for the service of the clerk.
 - (b) What is the average time a customer has to wait for the service .
 - (c) The management is contemplating to install a computer system to handle the information and reservations. This is expected to reduce the service time from 5 to 3 minutes. Calculate changed waiting time for the customers in the system after installation of computer .