# VPM's <br> DR VN BRIMS, Thane <br> Programme: MMS (2014-16) <br> Third Semester (Operations) Examination October 2015 

| Subject | Quantitative Methods for Operations |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
| Roll No. | Marks |  |  |  | $\mathbf{6 0}$ Marks |
| Total No. of Questions | 7 | Duration | 3 Hours |  |  |
| Total No. of printed pages | 2 | Date | $\mathbf{3 0 . 1 0 . 2 0 1 5}$ |  |  |

Note: Q1 is compulsory and solve any FOUR from the remaining SIX questions.

## Q1) $\mathbf{2 0}$ Marks (Compulsory)

A manufacturer produces two products $A$ and $B$ and has his machines in operation for 24 hours a day. Production of $A$ requires 2 hrs of processing on machine $M_{1} \& 6$ hrs on machine $M_{2}$. Production of $B$ requires 6 hrs of processing on machine $M_{1}$ and 2 hrs on machine $M_{2}$. The manufacturer earns profit of Rs. 5 on each unit of $A \& R s .2$ on each unit of B. Using Linear Programming determine how many units of each product should be produced in a day in order to achieve maximum profit?

Formulate this problem as an LPP to maximize the profit.
Using Simplex method find the optimal level of production for $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$.

## Attempt Any FOUR from the Remaining SIX Questions

Q2) Any two from (a) or (b) or (c) ----- (5x2) = 10 Marks
Given below is a network from node A to node E. There are various routes possible from node A to E. A traveler wants to travel by the shortest path for the network. Use dynamic programming for solving the following questions.

| Path | Duration |
| :---: | :---: |
| A-B | 9 |
| A-C | 14 |
| B-D | 8 |
| B-E | 11 |
| C-E | 12 |
| C-F | 7 |
| D-G | 10 |
| D-H | 11 |
| E-H | 13 |
| E-I | 12 |
| F-I | 10 |
| F-J | 19 |
| G-K | 8 |
| H-K | 5 |
| I-K | 7 |
| J-k | 10 |

a) Construct the network for the data.
b) Construct the payoff tables for the last 2 stages of the network.
c) Construct the payoff tables for the first 2 stages of the network and find the shortest path.

Q3) Any two from (a) or (b) or (c) ----- (5x2) = 10 Marks
A company has to choose between 8 tasks to be performed. The tasks are numbered task 1, task 2, task 3 and so on. The following conditions should be selected while choosing the tasks.
Not more than 7 and not less than 5 tasks should be selected.
If task 1 is selected task 8 cannot be selected.
If task 2 is chosen task 7 has to be chosen.
One of task 5 and 6 has to be chosen.
a) Formulate the objective function for the problem.
b) Formulate the constraints for the problem.
c) What are the constraints that will ensure that it is a integer solution?

Q4) Any two from (a) or (b) or (c) ----- (5x2) = 10 Marks
A company manufactures certain products and requires a part M for the same. M is produced in-house in the company in a job-shop at the rate of 60 items / day. The annual requirement of M by the assembly line is 9300 items. The setup cost of the job shop is Rs. 2,000 per setup. Assume 300 working days in a year. The holding cost per unit is Rs. 18 per annum. The cost per unit of the item is Rs. 12.
a) For the above problem, what is the economic order quantity?
b) For the above problem, what is the total cost?
c) Write a short note on ABC classification?

Q5) Any two from (a) or (b) or (c) ----- (5x2) = 10 Marks
Assume that at a bank teller window the customers arrive in their cars at the average rates of twenty per hour according to a Poisson distribution. Assume also that the bank teller spends an average of two minutes per customer to complete a service, and the service time is exponentially distributed. Customers, who arrive from an infinite population, are served on a first come first served basis, and there is no limit to possible queue length.
a) What is the expected waiting time in the system per customer?
b) What is the mean number of customers waiting in the system?
c) What is the probability of zero customers in the system?

## Q6) Any two from (a) or (b) or (c) ----- (5x2) = 10 Marks

A rural clinic hires its staff from nearby cities and towns on a part-time basis. The clinic attempts to have a general practitioner (GP), a nurse, and an internist on duty during at least a portion of each week. The clinic has a weekly budget of Rs. 12,000. A GP charges the clinic Rs. 400 per hour, a nurse charges Rs. 200 per hour, and an internist charges Rs. 1500 per hour. The clinic has established the following goals, in order of priority:
(1) A nurse should be available at least 30 hours per week.
(2) The weekly budget of Rs. 12,000 should not be exceeded.
(3) A GP or an internist should be available at least 20 hours per week.
(4) An internist should be available at least 6 hours per week.

Treating this as a goal programming problem
a) Formulate the objective function for the problem.
b) Formulate the resource constraints for the problem.
c) Formulate the goal constraints and variable constraints for the problem.

## Q7) Any two from (a) or (b) or (c) ----- (5x2) = 10 Marks

a) Write a short note on dynamic programming.
b) Write a short note on branch and bound algorithm.
c) Write a short note on cutting plane algorithm.

