

Probability Distributions

S C Agarkar
Dr V N Bedekar Institute of
Management Studies, Thane

Frequency and Probability Distribution

Probability distributions are related to frequency distributions.

- We can think of probability distribution as a theoretical frequency distribution.
\square Since these distributions deal with expectations they are useful tool in making inferences and decisions under conditions of uncertainity.

Random variable

A random variable is a variable that takes different values as a result of the outcomes of a random experiment (examples, breast cancer).
It is the mathematical rule (or function) that assigns a given numerical value to each possible outcome of an experiment in the sample space of interest.

Random variables

\square Discrete random variables: It is allowed to take on only a limited number of values (e.g. data of a saree sale)
Continuous random variables: It is allowed to assume any value within a given range (e.g. investments in the market).
\square Expected value: It is the value that is guessed based on the data. Mathematically it is obtained by multiplying random variable by probability of occurrence and then summing these products,

The Binomial Distribution Bernoulli Random Variables

- Imagine a simple trial with only two possible outcomes
\square Success (S)
\square Failure (F)
- Examples
-Toss of a coin (heads or tails)
- Sex of a newborn (male or female)

Jacob Bernoulli (1654-1705)

- Survival of an organism in a region (live or die)

The Binomial Distribution Overview

- Suppose that the probability of success is p

What is the probability of failure?
$\square q=1-p$

- Examples

Toss of a coin $(S=$ head $): p=0.5 \Rightarrow q=0.5$
\square Roll of a die $(S=1): p=0.1667 \Rightarrow q=0.8333$
\square Fertility of a chicken $\operatorname{egg}(S=$ fertile $): p=0.8 \Rightarrow q=0.2$

The Binomial Distribution Overview

- Imagine that a trial is repeated n times
- Examples

A coin is tossed 5 times
A die is rolled 25 times

- 50 chicken eggs are examined
- Assume p remains constant from trial to trial and that the trials are statistically independent of each other

The Binomial Distribution
 Overview

In general, if trials result in a series of success and failures, FFSFFFFSFSFSSFFFFFSF...

Then the probability of x successes in that order is

$$
\begin{aligned}
& P(x) \quad=q \cdot q \cdot p \cdot q \cdot \ldots \\
& =p^{x} \cdot q^{n-x}
\end{aligned}
$$

The Binomial Distribution

However, if order is not important, then

$$
P(x)=\frac{n!}{x!(n-x)!} p^{x} \cdot q^{n-x}
$$

where $\frac{n!}{x!(n-x)!}$ is the number of ways to obtain x successes
in n trials, and $\lambda=i \cdot(i-1) \cdot(i-2) \cdot \ldots \cdot 2 \cdot 1$

Example

-What is the probability of 2 successes in 3 trials in a coin tossing game.

- Probability of 2 successes in 3 trials
$\square=3!/ 2!(3-2)(.5)^{2}\left(.5^{1}\right)$
$\square=6 / 2(.25)(.5)$
$\square=0.375$

The Poisson Distribution

- The mean number of successes from Simeon D. Poisson (1781-1840) n trials is $\mu=n p$
Example: 64 deaths in 20 years from thousands of soldiers

The Poisson Distribution

\square If we substitute μ / n for p, and let n tend to infinity, the binomial distribution becomes the Poisson distribution:

$$
P(x)=\frac{e^{-x} \mu^{x}}{x!}
$$

The Poisson Distribution

Poisson distribution is applied where random events in space or time are expected to occur
Deviation from Poisson distribution may indicate some degree of non-randomness in the events under study
Investigation of cause may be of interest

The Poisson Distribution Emission of α-particles

- Rutherford, Geiger, and Bateman (1910) counted the number of α-particles emitted by a film of polonium in 2608 successive intervals of one-eighth of a minute
What is n ?
What is p ?
\square Do their data follow a Poisson distribution?

The Poisson Distribution Emission of α-particles

Calculation of μ : No. α-particles Observed

$$
\begin{array}{rlrl}
\mu & =\text { No. of particles per interval } & \\
& =10097 / 2608 & 1 & 203 \\
& =3.87 & 2 & 383
\end{array}
$$

Expected values:

$2680 \times P(x)=2608 \times \frac{e^{-3.87}(3.87)^{x}}{x!} \quad$| 532 | | |
| :--- | :--- | :--- |
| | 5 | 408 |

The Poisson Distribution Emission of α-particles

No. α-particles Observed Expected

0	57	54
1	203	210
2	383	407
3	525	525
4	532	508
5	408	394
6	273	254

The Normal Distribution Overview

- Discovered in 1733 by de Moivre as an approximation to the binomial distribution when the number of trails is large

Derived in 1809 by Gauss

Abraham de Moivre (1667-1754)

- Importance lies in the Central Limit Theorem, which states that the sum of a large number of independent random variables (binomial, Poisson, etc.) will approximate a normal distribution

Example: Human height is determined by a large number of factors, both genetic and environmental, which are additive in their effects. Thus, it follows a normal distribution.

Karl F. Gauss
(1777-1855)

The Normal Distribution Overview

- A continuous random variable is said to be normally distributed with mean μ and variance σ^{2} if its probability density function is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

- $f(x)$ is not the same as $P(x)$
- $P(x)$ would be 0 for every x because the normal distribution is continuous
However, $P\left(x_{1}<X \leq x_{2}\right)=\int_{x_{1}}^{x_{2}} f(x) d x$

The Normal Distribution
 Overview

The Normal Distribution
 Overview

The Normal Distribution Length of Fish

- A sample of rock cod in Monterey Bay suggests that the mean length of these fish is $\mu=30 \mathrm{in}$. and $\sigma^{2}=4 \mathrm{in}$.
- Assume that the length of rock cod is a normal random variable

If we catch one of these fish in Monterey Bay,
\square What is the probability that it will be at least 31 in . long?
That it will be no more than 32 in. long?
That its length will be between 26 and 29 inches?

The Normal Distribution Length of Fish

What is the probability that it will be at least 31 in. long?

The Normal Distribution Length of Fish

- That it will be no more than 32 in. long?

The Normal Distribution Length of Fish

- That its length will be between 26 and 29 inches?

Standard Normal Distributio

$\square \mu=0$ and $\sigma^{2}=1$

Useful properties of the normal distribution

1. The normal distribution has useful properties:
Can be added $\mathrm{E}(\mathrm{X}+\mathrm{Y})=\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y})$ and $\sigma 2(\mathrm{X}+\mathrm{Y})=\sigma 2(\mathrm{X})+\sigma 2(\mathrm{Y})$
Can be transformed with shift and change of scale operations

Consider two random variables \mathbf{X} an

Let $\mathrm{X} \sim \mathrm{N}(\mu, \sigma)$ and let $\mathrm{Y}=\mathrm{aX}+\mathrm{b}$ where a and b area constants
Cbange of scale is the operation of multiplying X by a constant " a " because one unit of X becomes " a " units of Y.
Sbift is the operation of adding a constant " b " to X because we simply move our random variable X " b " units along the x -axis.
If X is a normal random variable, then the new random variable Y created by this operations on X is also a random normal variable

For $\mathrm{X} \sim \mathrm{N}(\mu, \sigma)$ and $\mathrm{Y}=\mathrm{aX}+\mathrm{b}$

$\square E(Y)=a \mu+b$
$\sigma^{2}(\mathrm{Y})=\mathrm{a}^{2} \sigma^{2}$
A special case of a change of scale and shift operation in which $a=1 / \sigma$ and $b=-1(\mu / \sigma)$
$\square \mathrm{Y}=(1 / \sigma) \mathrm{X}-\mu / \sigma$
$\square \mathrm{Y}=(\mathrm{X}-\mu) / \sigma$ gives
$\square \mathrm{E}(\mathrm{Y})=0$ and $\sigma^{2}(\mathrm{Y})=1$

The Central Limit Theorem

That Standardizing any random variable that itself is a sum or average of a set of independent random variables results in a new random variable that is nearly the same as a standard normal one.
-The only caveats are that the sample size must be large enough and that the observations themselves must be independent and all drawn from a distribution with common expectation and variance.

Hypergeometric Distributio

Hypergeometric distribution is a discrete probability distribution that describes the number of successes in a sequence of n draws from finite population without replacement.
\square The basic characteristics of this distribution are
\square It is to be used when the population size is small.
The samples are drawn without replacement
\square The trials are independent.

Illustrative Example

A class contains N students. Let M be the number of boys, that means girls would be (N M), Now if we draw a sample of n students (without replacement) then the probability of getting k boys out of n students would be given as follows:
$\square \mathrm{P}(\mathrm{K})=\left[{ }^{\mathrm{M}} \mathrm{C}_{\mathrm{k}} *(\mathbb{N}-\mathrm{M}) \mathrm{C}_{\mathrm{n}-\mathrm{k}}\right] /{ }^{\mathrm{N}} \mathrm{C}_{\mathrm{n}}$
-This distribution is not useful in the situation when the population size is relatively large.

Example

\square A box contains 30 items out of which 5 items are defective. What is the probability that if a sample of 8 is chosen at random

- 3 items will be defective (0.066)
- No item will be defective (0.184)
\square At least one item will be defective (0.815)

Exponential Distribution

When events occur continuously and independently at a constant average rate, the distribution followed by the random variable representing occurrence of event is said to follow Exponential distribution.
\square Let $\lambda>0$ be a real number, the random variable X is said to be exponentially distributed if its probability density function is
$\square \mathrm{f}(\mathrm{x})=\lambda \mathrm{e}^{-\lambda \mathrm{x}}$

Example

-The average time the customer spends at a Pizza shop is 20 minutes. Find the probability that a customer has to spend more than 25 minutes at a shop.
Given $\mu=20, \lambda=1 / 20$
$\square \operatorname{Pr}(X>25)=1-\operatorname{Pr}(X<25)$

$$
=0.286
$$

Uniform Distribution

\square When equal probability is assigned to random variable for all the outcomes, it is the case of uniform distribution.

Examples are tossing of coin or rolling of a dice as the probability of getting one result remains the same.
-The probability density of a uniformally distributed random variable x is given as
$\square \mathrm{F}(\mathrm{x})=1 / \mathrm{b}-\mathrm{a}$ if $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$

Example

-The time passenger shall wait at a ticket counter of a railway station is uniformally distributed on the interval .50. What is the probability that a passenger waits less than 15 minutes?
$\square \mathrm{F}(\mathrm{x})=\mathrm{x}-0 / 50-0=\mathrm{x} / 50$
$\square \operatorname{Pr}(\mathrm{X} \leq 15)=\mathrm{f}(15)$

$$
\begin{aligned}
& =15 / 50 \\
& =3 / 10
\end{aligned}
$$

Thank You

