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Frequency and Probability |
Distribution

B Probability distributions ate related to frequency
distributions.

B e can think of probability distribution as a
theoretical frequency distribution.

B Since these distributions deal with expectations
they are useful tool in making inferences and
decisions under conditions of uncertainity.
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Random variable

B A random wvariable is a variable that takes
different values as a result of the outcomes of a
random experiment (examples, breast cancer).

B[t is the mathematical rule (or function) that
assigns a given numerical value to each possible
outcome of an experiment in the sample space
of interest.
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Random variables

B Discrete random variables: It is allowed to take
on only a limited number of values (e.g. data of a
saree sale)

B Continuous random variables: It is allowed to
assume any value within a given range (e.g.
investments in the market).

B Expected value: It is the value that is guessed
based on the data. Mathematically it 1s obtained
by multiplying random variable by probability of
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The Binomial Distribution
Bernoulli Random Variables

B [magine a simple trial with only two possible outcomes

W Success ()
¥ Failure (F)

B Examples

W Toss of a coin (heads or tails)

Jacob Bernoulli (1654-1705)

M Sex of a2 newborn (male or female)

W Survival of an organism in a region (live ot die)
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The Binomial Distribution
Overview

B Suppose that the probability of success is p

B \What is the probability of failure?

B Examples
W Toss of a coin (§ = head): p = 0.5 = ¢ = 0.5
B Roll of a die (§ = 1): p = 0.1667 = ¢ = 0.8333
M Fertility of a chicken egg (§' = fertile): p = 0.8 = g = 0.2
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The Binomial Distribution
Overview

B [magine that a trial is repeated 7 times

B Examples
B A coin is tossed 5 times

B A die is rolled 25 times

W 50 chicken eggs are examined

B Assume p remains constant from trial to trial and that the trials
are statistically independent of each other
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The Binomial Distribution
Overview

B |n general, if trials result in a series of success and failures,

FESFFFESFSESSFEFFESE. ..

Then the probability of x successes 1n that order 1s




The Binomial Distribution

B However, if order is not important, then

— ﬂ' #"—X
Plo) = P q
xd(n — x)!
7!
where is the number of ways to obtain x successes
xd(n — )
inntrals,and 2=7-G(—-1)-(—-2)-...-2-1




Example

B \What is the probability of 2 successes in 3 trials
in a coin tossing game.

B Probability of 2 successes in 3 trials
W =31/2! (3-2) (.5 (.5"

W=/2(25) (.5

= (.375
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The Poisson Distribution

B When there is a large number of
trials, but a small probability of
success, binomial calculation
becomes impractical

¥ Example: Number of deaths from
horse kicks in the Army in
different years

B The mean number of successes from
n trials 1S p = np
¥ Example: 64 deaths in 20 years
from thousands of soldiers

Simeon D. Poisson (1781-1840)
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The Poisson Distribution

B [f we substitute u/ 7 for p, and let # tend to
infinity, the binomial distribution becomes the
Poisson distribution:

e

%

P(x) =
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The Poisson Distribution

B Poisson distribution is applied where
random events In space or time are
expected to occur

B Deviation from Poisson distribution may
indicate some degree of non-randomness
in the events under study

B nvestigation of cause may be of interest
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The Poisson Distribution
Emission of o-particles

B Rutherford, Geiger, and Bateman (1910)

counted the number of a-particles emitted by a
film of polonium in 2608 successive intervals of
one-eighth of a minute

BWhat is 77
B\What is p?

B Do their data follow a Poisson distribution?
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The Poisson Distribution
Emission of o-particles

] CalculathIl Of/l: No. a-particles Observed
0 57
1 = No. of particles per interval
= 10097/2608 ! 205
= 3.87 2 383
3 525
B Expected values:
Z 532
_ 8-3.87 387 x
2680 x P(x) = 2608 x £ (:87) 5 »
X!
6 273
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The Poisson Distribution
Emission of o-particles

No. o-particles Observed  Expected

0 57 54
1 203 210
2 383 407
3 525 525
4 532 508
5 408 394

6 273 254




The Normal Distribution

Overview

B Discovered in 1733 by de Moivte as an approximation to the
binomial distribution when the number of trails is large

Abraham de Moivre

B Derived in 1809 by Gauss (1667-1754)

B Importance lies in the Central Limit Theorem, which states that the
sum of a large number of independent random variables (binomial,
Poisson, etc.) will approximate a normal distribution
LAALLSS F1a7 1AM G
¥ Example: Human height is determined by a large number of
factors, both genetic and environmental, which are additive in
their effects. Thus, it follows a normal distribution.

Karl F. Gauss
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The Normal Distribution

Overview

B A continuous random vatiable is said to be normally distributed

with mean 4 and variance o~ if its probability density function is

1 —(X - W?/20°

J () = \/2

B /) is not the same as P(x)

B P(x) would be 0 for every x because the normal distribution is
continuous

W However, Plx; < X = x,) = j j{x)dx
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The Normal Distribution

Overview
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The Normal Distribution

Overview
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The Normal Distribution
Length of Fish

B A sample of rock cod in Monterey Bay suggests that the mean
length of these fish is 4 = 30 in. and @ = 4 in.

B Assume that the length of tock cod is a normal random variable
B [f we catch one of these fish in Monterey Bay,

M What is the probability that it will be at least 31 in. long?

¥ That it will be no more than 32 in. long?
¥ That its length will be between 26 and 29 inches?
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The Normal Distribution
Length of Fish

B What is the probability that it will be at least 31 in. long?
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Fish length (in.)
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The Normal Distribution
Length of Fish

B That it will be no more than 32 in. long?
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The Normal Distribution
Length of Fish

B That its length will be between 26 and 29 inches?

Fish length (in.)
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Standard Normal Distributio

B, =0 and 6°=1
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Usetul properties of the norma ﬁ
distribution

1. The normal distribution has usetul
properties:

B Can be added E(X+Y)= E(X)+E(Y)
and 62(X+Y)= 62(X)+ c2(Y)

B Can be transformed with shift and
change of scale operations
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Consider two random variables X anghs

Let X~N(u,0) and let Y=aX+b where a and b area

constants

Change of scale 1s the operation of multiplying X by a

(A

constant “a’”’ because one unit of X becomes “a’’ units

of Y.

Shift 1s the operation of adding a constant “/” to X
because we simply move our random variable X “b”
units along the x-axis.

If X 1s 2 normal random variable, then the new random
variable Y created by this operations on X is also a
random normal variable
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For X~N(p,0) and Y=aX+b

BE(Y) =ap+b

M’ (Y)=2’ 0°

B A special case of a change of scale and shift
operation in which a = 1/c and b =-1(p./0)

BY=(1/0)X-p/o

BY=X-p)/o gives

BE(Y)=0 and 6*(Y) =1
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The Central Limit Theore

B That Standardizing any random variable that
itself 1s a sum or average of a set of independent
random variables results in a new random
variable that 1s nearly the same as a standard
normal one.

B 'The only caveats are that the sample size must be
large enough and that the observations
themselves must be independent and all drawn
from a distribution with common expectation
and variance.
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Hypergeometric Distributio

B Hypergeometric distribution is a discrete
probability distribution that describes the
number of successes in a sequence of n draws
from finite population without replacement.

B 'The basic characteristics of this distribution ate
BTt is to be used when the population size is small.
®W'The samples are drawn without replacement

W'The trials are independent.
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INlustrative Example

B A class contains N students. Let M be the
number of boys, that means girls would be (IN-
M), Now if we draw a sample of n students
(without replacement) then the probability of
getting k boys out of n students would be given
as follows:

BP(K)= MC* ®MC ]/NC_

B 'This distribution is not useful in the situation
when the population size 1s relatively large.
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Example

B A box contains 30 items out of which 5 items
are defective. What 1s the probability that if a
sample of 8 is chosen at random

M 3 items will be defective (0.060)
B No item will be defective (0.184)
B At least one item will be defective (0.815)
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Exponential Distribution

B WWhen events occur continuously and
independently at a constant average rate, the
distribution followed by the random variable
representing occurrence ot event is said to
follow Exponential distribution.

BT ct A>0 be a real number, the random variable
X 1s said to be exponentially distributed if its
probability density function is

B {(x)= Ae™
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Example

B 'The average time the customer spends at a Pizza
shop 1s 20 minutes. Find the probability that a
customer has to spend more than 25 minutes at

a shop.
B Given p=20, A=1/20
B Pr(X>25)= 1-Pr (X<25)
= = 0.286
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Uniform Distribution

B \When equal probability is assigned to random
variable for all the outcomes, it 1s the case of
uniform distribution.

B Examples are tossing of coin or rolling of a dice
as the probability of getting one result remains
the same.

B The probability density of a uniformally
distributed random variable x is given as

BE(x)= 1/b-aif a=x =<b
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Example

B 'The time passenger shall wait at a ticket counter
of a railway station is uniformally distributed on
the interval .50. What is the probability that a

passenger waits less than 15 minutes?
BE(x)= x-0/50-0=x/50
BPr (X<15= {(15)
= = 15/50
- = 3/10
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Thank You
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