## Time Value of Money

- 1 crore rupee's today is more than 1 crorerupee's 5 years from now.


## Why????

- Since it could be invested on someinterest or return generating instrumentfor the 5 year period.
- Also due toinflation in most caseswhat one could buy today from the same amount would be more as compared to 5 years form now.


## Common Terminologies related to Time Value of Money

- Present Value (PV) - i.e. Today's Value

Future Value (FV) - i.e. Value in the future

- No of years or Number of time frames (n)
- Rate of Return or Discounting rate (r)
- Annuity (A)- i.e. Constant Cash flow year after year for number of years


## Relation between PV \& FV

## $\mathrm{FV}=P V{ }^{*}(1+r)^{\wedge} n$

- Above equation assumes annual compounding \& one time cash flow.
- In case of Semiannual compounding the equation would change to
$\mathrm{FV}=\mathrm{PV} *(1+r / 2)^{\wedge} \mathbf{2 n}$
- In general, if year is divided in small parts of by dividing it say ' t ' times then n should be multiplied by ' t ' times.
$F V=P V *(1+r / t)^{\wedge} t^{*} n$
- In case of continuous compounding above equation will change to,

FV $=P^{*} \mathrm{e}^{\wedge}(\mathrm{rn})$, where $\mathrm{e}=2.71828$

## Example

Q. What is the future value ofRs. 10000 invested today atthe end of7years, given the investment is to earn $9 \%$ rate ofreturn, in the following
cases ?

1. Annual Compounding
2. Semi Annual Compounding
3. Quarterly Compounding
4. Continuous compounding

Given

PV=10000
t1=7
$r=9 \%$
FV=???

## Solution

```
FV1= 10000*(1+9%)^7= 18280.39
```

FV2=10000*(1+9\%/2)^(7*2)=10000*(1.045)^14=18519.45

FV3 $=10000^{*}(1+9 \% / 4)^{\wedge}(7 * 4)=10000^{*}(1.0225)^{\wedge} 28=18645.45$

FV1 $=10000 *(2.71828)^{\wedge}(7 * 9 \%)=18776.11$

## Relation between FV \& PV

## $P V=F V /\left((1+r)^{\wedge} n\right)$

- Above equation assumes annual compounding \& one time cash flow.
- In case of Semiannual compounding the equation would change to


## $P V=F V /\left((1+r / 2)^{\wedge} 2 n\right)$

In general, if year is divided in small parts of by dividing it in say ' t ' times then n should be multiplied by ' t ' times.
$P V=F V /\left((1+r / t) \wedge t^{*} n\right)$

- In case of continuous compounding above equation will change to,

PV=FV /( $\left.\mathrm{e}^{\wedge}(r n)\right)$, where $\mathrm{e}=2.71828$

## Example

Q. What is thepresentvalue ofRs. 1000000 which you would get atthe end of10years, given theaverage inflation in the interim is say $8 \%$ per annum, in the following cases ?

1. Annual Compounding
2. Semi Annual Compounding
3. Quarterly Compounding
4. Continuous compounding

## Given

```
FV=1000000
```

t1=10
$r=8 \%$

PV=???

## Solution

```
PV1= 1000000/((1+8%)^10)=463193.5
```

PV2=1000000/((1+8\%/2)^(10*2))=1000000/((1.04)^20)=456386.9
$F V 3=1000000 /\left((1+8 \% / 4)^{\wedge}\left(10^{*} 4\right)\right)=10000 /\left((1.02)^{\wedge} 40\right)=452890.4$

FV1=1000000/(2.71828)^(10*8\%))=449329

## FV of the annuity

## FVA $=A *(1+r)^{\wedge} n-1$

Annual cash flows of fixed amount A.

## Example

What is the future value of an annuity which paysRs.25000per year at the end of the each next15years, given the investment is to earn $11 \%$ rate of return ?

Given
$A=25000$
$t=15$
$r=11 \%$

FVA=???

## Solution

## FVA $=25000$ * $(1+11 \%)^{\wedge 15-1}$

11\%
$=860133.97$

## PV of the annuity or perpetuity

PVA $=A *\left(1-(1 / 1+r)^{\wedge} n\right) / r$

Annual cash flows of fixed amount Afor n number of years.

## $\mathrm{PVP}=\underline{A}$

r

Annual cash flows of fixed amount A forinfinite number of years.

## Example

What is thepresentvalue of an annuity which paysRs.25000per year at the end of the each next15years, given the investment is to earn11\%rate of return? What if this investment is done till infinity?

Given
$A=25000$
$\mathrm{t}=15$
$r=11 \%$

PVA1=???

PVA2=???

## Solution

## PVA1=25000*(1-(1/1+11\%)^15)/11\%

= 179771.74

PVA2 $=\underline{25000}$

11\%
$=227272.73$

