CORRELATION ANALYSIS

VISUAL DISPLAYS AN Correlation Analysis CORRELATION ANALYSIS

• The *sample correlation coefficient* (*r*) measures the degree of linearity in the relationship between *X* and *Y*.

$-1 \leq r \leq +1$

Strong negative relationship Strong positive relationship r = 0 indicates no linear relationship

• In Excel, use =CORREL(array1,array2), where array1 is the range for *X* and array2 is the range for *Y*.

METHODS OF CORRELATION

- Scatter diagram
- Product moment or covariance
- Rank correlation
- Concurrent deviation

SCATTER DIAGRAM

• Perfectly +ve

LESS-DEGREE +VE

Weak Positive Correlation

HIGH DEGREE +VE

Strong Positive Correlation

PERFECTLY -VE

HIGH DEGREE -VE

Strong Negative Correlation

LESS DEGREE -VE

Weak Negative Correlation

ZERO DEGREE

KARL PEARSON CORRELATION COEFFICIENT

$x = X - \overline{X}$

and

 $y = Y - \overline{Y}$

PROBLEM

From the following data find the coefficient of correlation by Karl Pearson methodX:6 2 10 4 8Y:9 11 5 8 7

SOL.

X	Y	X-6	Y-8	x^2	y^2	x.y
6	9	0	1	0	1	0
2	11	-4	3	16	9	-12
10	5	4	-3	16	9	-12
8	8	-2	0	4	0	0
4	7	2	-1	4	1	-2
30	40	0	0	40	20	-26

SOL.CONT.

DIRECT METHOD

SHORT-CUT METHOD

 $N\sum d_x.d_y - \sum d_x.\sum d_y$ $\sqrt{N\sum d^2_{x} - (\sum d_{x})^2} \cdot \sqrt{N\sum d^2_{y} - (\sum d_{y})^2}$

$d_x = X - A$ &

 $d_v = Y - A$

A = assume mean

PRODUCT MOMENT METHOD

 $r = \sqrt{b_{xy} \cdot b_{yx}}$

where

$$b_{xy} = \frac{\sum xy}{\sum y^2}$$
$$b_{yx} = \frac{\sum xy}{\sum x^2}$$

SPEARMAN'S RANK CORRELATION(WHEN RANKS ARE NOT EQUAD² $R = 1 - \frac{1}{N(N^2 - 1)}$

where

 $D = R_x - R_y$ $R_x = rank.of.X$

 $R_y = rank.of.y$

Calculate spearman's rank correlation coefficient between advt.cost & sales from the following data Advt.cost :39 65 62 90 82 75 25 98 36 78 Sales(lakhs): 47 53 58 86 62 68 60 91 51 84 SOL.

X	Y	R-x	R-y	D	D^2
39	47	8	10	-2	4
65	53	6	8	-2	4
62	58	7	7	0	0
90	86	2	2	0	0
82	62	3	5	-2	4
75	68	5	4	1	1
25	60	10	6	4	16
98	91	1	1	0	0
36	51	9	9	0	0
78	84	4	3	1	1
					30

SOL.CONT.

$$R = 1 - \frac{6\sum D^2}{N^3 - N}$$
$$\Rightarrow R = 1 - \frac{6.30}{10^3 - 10}$$
$$\Rightarrow R = 1 - \frac{2}{11}$$
$$\Rightarrow R = \frac{9}{11} = 0.82$$

IN CASE OF EQUAL RANK

$$R = 1 - \frac{6\left\{\sum D^2 + \frac{1}{12}\left(m^3 - m\right) + \frac{1}{12}\left(m^3 - m\right) + \dots\right\}}{N(N^2 - 1)}$$

where

m = no.of repeated items

PROBLEM

A psychologist wanted to compare two methods A & B of teaching. He selected a random sample of 22 students. He grouped them into 11 pairs so that the students in a pair have approximately equal scores in an intelligence test. In each pair one student was taught by method A and the other by method B and examined after the course. The marks obtained by them as follows

Pair:1 2 3 4 5 6 7 8 9 10 11 A: 24 29 19 14 30 19 27 30 20 28 11 B: 37 35 16 26 23 27 19 20 16 11 21 SOL.

Α	В	R-A	R-B	D	D^2
24	37	6	1	5	25
29	35	3	2	1	1
19	16	8.5	9.5	-1	1
14	26	10	4	6	36
30	23	1.5	5	-3.5	12.25
19	27	8.5	3	5.5	30.25
27	19	5	8	-3	9
30	20	1.5	7	-5.5	30.25
20	16	7	9.5	-2.5	6.25
28	11	4	11	-7	49
11	21	11	6	5	25
					225

SOL.CONT.

in A series the items 19 & 30 are repeated twice and in B series 16 is repeated twice ∴

$$R = 1 - \frac{6\left[\sum D^{2} + \frac{2(4-1)}{12} + \frac{2(4-1)}{12} + \frac{2(4-1)}{12}\right]}{11(121-1)}$$

 $\Rightarrow R = -0.0225$

PROPERTIES OF CORRELATION COEFFICIENT

- r always lies between +1 & -1
- i.e. -1<r<+1
- Two independent variables are uncorrelated but converse is not true
- r is independent of change in origin and scale
- r is the G.M. of two regression coefficients
- r is symmetrical

PROBABLE ERROR(PE)

Standard Error
$$SE(r) = \frac{1 - r^2}{\sqrt{n}}$$

 $PE(r) = 0.6745 \times SE(r)$
or

$$PE(r) = 0.6745 \times \frac{1 - r^2}{\sqrt{n}}$$

PARTIAL CORRELATION COEFFICIENT

 $r_{12} - r_{13} \times r_{23}$ $1 - r_{13}^2 \sqrt{1 - r_{23}^2}$ r_{12.3} $r_{13} - r_{12} \times r_{23}$ r_{13.2} $r_{23} - r_{12} \times r_{13}$

MULTIPLE CORRELATION COEFFICIENT

 $r_{1.23} = \sqrt{\frac{r_{12}^2 + r_{13}^2 - 2r_{12}r_{13}r_{23}}{1 - r_{23}^2}}$ $\frac{r_{12}^2 + r_{23}^2 - 2r_{12}r_{13}r_{23}}{1 - r_{13}^2}$ $r_{2.13} = 1$ $\frac{r_{13}^2 + r_{23}^2 - 2r_{12}r_{13}r_{23}}{1 - r_{12}^2}$