CORRELATION ANALYSIS

visual displays Ancorrelation Analysis CORRELATION ANALYSIS

- The sample correlation coefficient (r) measures the degree of linearity in the relationship between X and Y.

$$
-1 \leq r \leq+1
$$

Strong negative relationship

- $r=0$ indicates no linear relationship
- In Excel, use =CORREL(array1, array2), where array1 is the range for X and array2 is the range for Y.

TYPES OF CORRELATION

correlation

positive \& negative

Simple , multiple \& partial

Linear

 \& non-linear
METHODS OF CORRELATION

- Scatter diagram
- Product moment or covariance
- Rank correlation
- Concurrent deviation

SCATTER DIAGRAM

- Perfectly +ve

LESS-DEGREE +VE

Weak Positive
Correlation

HIGH DEGREE +VE

PERFECTLY -VE

HIGH DEGREE -VE

Strong Negative Correlation

LESS DEGREE -VE

Weak Negative Correlation

ZERO DEGREE

KARL PEARSON CORRELATION COEFFICIENT

$$
\begin{aligned}
& r=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \cdot \sigma_{y}} \\
& r=\frac{\sum x \cdot y}{\sqrt{\sum x^{2} \cdot \sum y^{2}}}
\end{aligned}
$$

WHERE

$$
x=X-\bar{X}
$$

and
$y=Y-\bar{Y}$

PROBLEM

From the following data find the coefficient of correlation by Karl Pearson method X:6 21048
Y:9 11587

SOL.

X	Y	$\mathrm{X}-6$	$\mathrm{Y}-8$	x^{2}	y^{2}	$x . y$
6	9	0	1	0	1	0
2	11	-4	3	16	9	-12
10	5	4	-3	16	9	-12
8	8	-2	0	4	0	0
4	7	2	-1	4	1	-2
30	40	0	0	40	20	-26

SOL.CONT.

$$
\begin{aligned}
& \bar{X}=\frac{\sum X}{N}=\frac{30}{5}=6 \\
& \bar{Y}=\frac{\sum Y}{N}=\frac{40}{5}=8 \\
& r=\frac{\sum x \cdot y}{\sqrt{\sum x^{2} \cdot \sum y^{2}}}=\frac{-26}{\sqrt{40.20}}=\frac{-26}{\sqrt{800}} \approx-0.92
\end{aligned}
$$

DIRECT METHOD

$$
r=\frac{N \cdot \sum X Y-\sum X \cdot \sum Y}{\sqrt{\left.\left.N \sum X^{2}-\left(\sum X\right)^{2}\right] \cdot \sqrt{\left[N \cdot \sum Y^{2}-\left(\sum Y\right)^{2}\right.}\right]}}
$$

SHORT-CUT METHOD

$$
N \sum d_{x} \cdot d_{y}-\sum d_{x} \cdot \sum d_{y}
$$

$$
r=\frac{\sqrt{N \sum d^{2}{ }_{x}-\left(\sum d_{x}\right)^{2}} \cdot \sqrt{N \sum d^{2}{ }_{y}-\left(\sum d_{y}\right)^{2}}}{\sqrt{2}}
$$

WHERE

$$
\begin{aligned}
& d_{x}=X-A \\
& \&
\end{aligned}
$$

$d_{y}=Y-A$
$A=$ assume mean

PRODUCT MOMENT METHOD

$$
r=\sqrt{b_{x y} \cdot b_{y x}}
$$

where

SPEARMAN'S RANK CORRELATION(WHEN RANKS ARE NOTRERUA6 $\sum \frac{\sum D^{2}}{N\left(N^{2}-1\right)}$

where
$D=R_{x}-R_{y}$
$R_{x}=$ rank.of.X
$R_{y}=$ rank.of. y

PROBLEM

Calculate spearman's rank correlation coefficient between advt.cost \& sales from the following data
Advt.cost :39 656290827525983678 Sales(lakhs): 47535886626860915184

SOL. | X | Y | $\mathrm{R}-\mathrm{x}$ | $\mathrm{R}-\mathrm{y}$ | D | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 39 | 47 | 8 | 10 | -2 | 4 |
| 65 | 53 | 6 | 8 | -2 | 4 |
| 62 | 58 | 7 | 7 | 0 | 0 |
| 90 | 86 | 2 | 2 | 0 | 0 |
| 82 | 62 | 3 | 5 | -2 | 4 |
| 75 | 68 | 5 | 4 | 1 | 1 |
| 25 | 60 | 10 | 6 | 4 | 16 |
| 98 | 91 | 1 | 1 | 0 | 0 |
| 36 | 51 | 9 | 9 | 0 | 0 |
| 78 | 84 | 4 | 3 | 1 | 1 |
| | | | | | 30 |

SOL.CONT.

$$
\begin{aligned}
& R=1-\frac{6 \sum D^{2}}{N^{3}-N} \\
& \Rightarrow R=1-\frac{6.30}{10^{3}-10} \\
& \Rightarrow R=1-\frac{2}{11} \\
& \Rightarrow R=\frac{9}{11}=0.82
\end{aligned}
$$

IN CASE OF EQUAL RANK

$$
R=1-\frac{6\left\{\sum D^{2}+\frac{1}{12}\left(m^{3}-m\right)+\frac{1}{12}\left(m^{3}-m\right)+\ldots \ldots \ldots .\right\}}{N\left(N^{2}-1\right)}
$$

where
$m=$ no.of repeated items

PROBLEM

A psychologist wanted to compare two methods A \& B of teaching. He selected a random sample of 22 students. He grouped them into 11 pairs so that the students in a pair have approximately equal scores in an intelligence test. In each pair one student was taught by method A and the other by method B and examined after the course. The marks obtained by them as follows
Pair:1 243456481011
A: 2429191430192730202811
B: 3735162623271920161121

SOL.

A	B	R-A	R-B	D	D^{2}
24	37	6	1	5	25
29	35	3	2	1	1
19	16	8.5	9.5	-1	1
14	26	10	4	6	36
30	23	1.5	5	-3.5	12.25
19	27	8.5	3	5.5	30.25
27	19	5	8	-3	9
30	20	1.5	7	-5.5	30.25
20	16	7	9.5	-2.5	6.25
28	11	4	11	-7	49
11	21	11	6	5	25
					225

SOL.CONT.

 in A series the items 19 \& 30 are repeated twice and in B series 16 is repeated twice $\therefore$$\mathrm{R}=1-\frac{6\left[\sum \mathrm{D}^{2}+\frac{2(4-1)}{12}+\frac{2(4-1)}{12}+\frac{2(4-1)}{12}\right]}{11(121-1)}$
$\Rightarrow R=-0.0225$

PROPERTIES OF CORRELATION COEFFICIENT

$\circ \mathrm{r}$ always lies between $+1 \&-1$
i.e. $-1<\mathrm{r}<+1$

- Two independent variables are uncorrelated but converse is not true
$\circ r$ is independent of change in origin and scale
${ }^{\circ} \mathrm{r}$ is the G.M. of two regression coefficients
${ }^{\circ} \mathrm{r}$ is symmetrical

PROBABLE ERROR(PE)

$$
\begin{aligned}
& \text { Standard Error } S E(r)=\frac{1-r^{2}}{\sqrt{n}} \\
& P E(r)=0.6745 \times S E(r) \\
& \text { or } \\
& P E(r)=0.6745 \times \frac{1-r^{2}}{\sqrt{n}}
\end{aligned}
$$

PARTIAL CORRELATION COEFFICIENT

$$
\begin{aligned}
& r_{12.3}=\frac{r_{12}-r_{13} \times r_{23}}{\sqrt{1-r_{13}^{2}} \sqrt{1-r_{23}^{2}}} \\
& r_{13.2}=\frac{r_{13}-r_{12} \times r_{23}}{\sqrt{1-r_{12}^{2}} \sqrt{1-r_{23}^{2}}} \\
& r_{23.1}=\frac{r_{23}-r_{12} \times r_{13}}{\sqrt{1-r_{12}^{2}} \sqrt{1-r_{13}^{2}}}
\end{aligned}
$$

MULTIPLE CORRELATION COEFFICIENT

$$
\begin{aligned}
& r_{1.23}=\sqrt{\frac{r_{12}^{2}+r_{13}^{2}-2 r_{12} r_{13} r_{23}}{1-r_{23}^{2}}} \\
& r_{2.13}=\sqrt{\frac{r_{12}^{2}+r_{23}^{2}-2 r_{12} r_{13} r_{23}}{1-r_{13}^{2}}} \\
& r_{3.12}=\sqrt{\frac{r_{13}^{2}+r_{23}^{2}-2 r_{12} r_{13} r_{23}}{1-r_{12}^{2}}}
\end{aligned}
$$

