

Programme Name: MMS

Semester: - II

Name of the Course: Operations Research

Maximum marks: 100

No. of Sessions: 15

Name of the Faculty: MR. Marathe Mobile No:

Email:

Weblink: NA

Learning Objectives:

Formulate and solve problems as networks and graphs. develop linear programming (LP) models for shortest path, maximum flow, minimal spanning tree, critical path, minimum cost flow, and transshipment problems. use CPM and PERT techniques, to plan, schedule, and control project activities.

Reference Books:

- 1. Operation Research Taha
- 2. Quantitative Techniques in Management N.D. Vohra
- 3. Quantitative Techniques in Management J.K.Sharma
- 4. Operations Research, Methods & Problems Sasieni M. & others
- 5. Principles of Operations Research N.M. Wagher
- 6. Operation Research V.K.Kapoor
- 7. C. R. Kothari: Introduction to Operations Research (Vikas)
- 8. Gupta & Khanna: Quantitative Techniques for decision making(Prentice Hall India)
- 9. Introduction to Operations Research Gillett McGraw Hill Publications
- 10. Introduction to Management Science Hillier McGraw Hill Publications

<u>Plan:</u>

Session No	Topics to be covered	References-Print/Online	Learning outcomes
1	 Introduction to OR : Concepts, Genesis, Application Potential to Diverse Problems in Business & Industry, Scope and Limitations. Assignment Problem (AP)– Concepts, Formulation of Model Hungarian Method of Solution – Maximisation / Minimisation Balanced / Unbalanced– Prohibited Assignments - Problems 	Lecture and case analysis	To Understand concepts, application
2	 Transportation Problem (TP) Concepts, Formulation of Model - Solution Procedures for IFS and Optimality Check Balanced / Unbalanced Maximization / Minimization Case of Degeneracy Prohibited Routing Problems Post-Optimal Sensitivity Analysis 	Lecture	To understand Transportation problem
3	 Linear Programming (LP) : Concepts, Formulation of Models Diverse Problems- Graphical Explanation of Solution - Maximisation / Minimisation - Simplex Algorithm- 	Lecture and case analysis	To understand Linear programming

Academic Tear (2013-2017)				
	 Use of Slack /Surplus / Artificial Variables – Big M Method/TwoPhase Method – Interpretation of the Optimal Tableau – (Unique Optimum, Multiple Optimum, Unboundedness, Infeasibility & Redundancy Problems.) 			
4	 Linear Programming (LP) : Duality Principle- Primal /Dual Inter-relation PostOptimal Sensitivity Analysis for changes in b-vector, c-vector, Addition/Deletion of Variables/Constraints Dual Simplex Method- Problems Limitations of LP vis- a-vis - Non-linear Programming Problems. Brief introduction to NonLP models and associated problems. 	Lecture	To understand the Duality Principle	
5	 Network Analysis Minimal Spanning Tree Problem - Shortest Route Problem Maximal Flow in Capacitated Network - Concepts and Solution Algorithm as Applied to Problem Project Planning & Control by use of CPM/PERT Concepts. Definitions of Project Jobs, Events- Arrow Diagrams - Time Analysis and Derivation of the Critical Path – Concepts of Floats (total, free, interfering, independent) - Crashing of a CPM Network - Probability Assessment in PERT 	Lecture and case analysis	To understand Network Analysis	

	Network.		
6	Queuing (Waitingline)Models	Lecture	To understand Queuing
	 Concepts- Types of Queuing Systems (use of 6 Character Code) - Queues in Series and Parallel – 		
	□ Problems based on the results of following models (M/M/1) Single Channel Queue with Poisson Arrival Rate, and Negative Exponential Service Time, With and Without Limitations of Queue Size (M/G/1)		
	□ Single Channel with Poisson Arrival Rate, and General Service Time, PK-Formulae.		
7	 Inventory Models Types of Inventory Situations Fixed Quantity/Fixed Review Period Costs Involved- Deterministic Probability Models - Economic-Order- Quantity (EOQ) and EBQ for Finite Production Rate - Sensitivity Analysis of EOQ-EOQ Under Price Break - Determination of Safety Stock and Reorder Levels - Static Inventory Model - (Insurance Spares). 	Lecture	To understand Inventory Models
8	 Digital Simulation– Concepts- Areas of Application - Random Digits 	Lecture	To understand Digital Simulation

	Dr. V. N. Bedekar Institute of Management, Thane Teaching Plan (MMS) Academic Year (2015-2017)			
	 and Methods of Generating Probability Distributions Application to Problems in Queueing, Inventory, New Product, Profitability, Maintenance etc. 			
9	 Replacement and Maintenance Replacement of Items Subject Deterioration and Items Subject Total Failure Group vs Individual Replacer Policies. 	t to Random	uFs understand Replacement and Maintenance	
			- Concepts - 2 – person nes - Zero - sum and Non-	
10	 Game Theory - Concepts - 2 – person N-person games - Zero - sum and Non-zero-sum games Solution Procedures to 2-person zero sum games Saddle point Mixed Strategy Sub-games Method for m x 2 or 2 x n games - Graphical Methods 	Lecture	To understand Game Theory	
11	 Equivalence of Game Theory and Linear Programming Models Solution of 3x3 Games by LP Simplex including Duality Application for Maximising / Minimising Players' Strategy. 	Lecture and case analysis	To understand equivalence of Game Theory	

Evaluation:

I) Internal:

Component	Details	Marks
Class Test	Multiple choice question test	20
Presentation	Group presentation	10
Case Study	Group Discussion	5
Participation		
Others	Attendance	5

II) <u>External:</u> (Sample questions)

- What is Operation research and its applications?
- What is Operation Research and its features?
- What are the tools of operation research?
- What is model in operation research?

Signature of Faculty

Signature of the Co-ordinator