VPM's
DR VN BRIMS, Thane
Programme: MMS (2018-20) (Operations)
Third Semester Examination October 2019

Subject	Operations Analytics	Marks	60 Marks
Roll No.		Duration	3 Hours
Total No. of Questions	7	Date	$\mathbf{2 3 . 1 0 . 2 0 1 9}$
Total No. of printed pages	2		

		Instructions:- - Q. No 1 is compulsory. - Attempt Any Four from the Remaining Six Questions. - Figures to the right indicate marks in full. - State clearly any assumptions if only required. - Students can use EXCEL software. - Write answers and rough work in the answer-sheet provided. - Your files should be named as Specialization_roll no. and keep it on desktop)	Marks
Q. 1		The following data gives demand distribution with probabilities. (a) Estimate average demand and standard deviation of demand. Construct probability distribution and allocation of random numbers. (b) Assume cost of carrying is 4/unit and cost of lost sales is 5/unit. Estimate total cost of operations if stock level assumed is 35 and 40. (c) If selling price per unit is $25 /$ unit estimate total profits for stock level of 35 and 40. Use following random numbers for demand.	20
Q. 2		Answer Any two from the following.	$5 \times 2=10$
	a.	Single exponential method	
	b.	Double exponential-slope	
	c.	Double exponential-Average	
Q. 3		Answer Any two from the following.	5x2= 10

		Components A, B and C are purchased at unit prices 100/-, $250 /-$ and $300 /-$ per unit. Ordering cost is $1000 /$ per order for A, B and C. Lead time is 1 for each component. Forecast demand for next year using regression adjusted with seasonality. Calculate EOQ for	
	a.	Component A	
	b.	Component B	
	c.	Component C	
Q. 4		Answer Any two from the following.	$5 \times 2=10$
		Prepare MRP based on data in Q 3 for	
	a.	Component A	
	b.	Component B	
	c.	Component C	
Q. 5		Answer Any two from the following.	$5 \times 2=10$
		A company produces single product P which requires $3 \mathrm{hrs} / \mathrm{unit}$. Operating days are $25 /$ month and $8 \mathrm{hrs} /$ day. Demand forecast for next 8 months is as given.	
	a.	Level Strategy	
	b.	Chase Strategy	
	c.	Modified Level Strategy	
Q. 6		Answer Any two from the following.	$5 \times 2=10$
		Explain following with reference to joint cost and production planning with examples of sugar industry:	
	a.	Joint Products	
	b.	Separable Costs	
	c.	Split-off point	
Q. 7		"Super-Stick" Co. produces two types of industrial adhesives - "Regular" and "Extra Strong". A batch of 1000 liters of regular uses 10 production hours, while a batch of 1000 liters of extra strong uses 12 production hours. The company has regular time production capacity of 440 hours per week. Sales forecasts for the next week are: 20,000 liters of regular and 25,000 liters of extra strong. The company has set the following goals in order of priority. P1: Sales forecasts for both the products must be met. P2: Overtime work should be minimized. P3: Under-utilization of capacity should be avoided. P4: Overtime worked, if any, should be limited to 20 hours. Formulate a Goal Programming Model to determine the optimal plan. Find solution.	10

