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Chapter 1

Introduction

In recent years, supply chain management is increasingly receiving at-

tention as an important performance driver for companies. Companies

have started to realize that their actions also affect other partners in

the supply chain and vice versa. The high focus on shareholder value

has played a decisive role in taking a different view on the supply chain.

For example, it has been found out empirically that supply chain mal-

functions lead to an average stock price loss of 7.5% immediately after

the malfunction and 18.5% after the first year (Neale, 2003). Global

markets also forced companies to face competition from low cost coun-

tries. The resulting cost pressure also led to a higher pressure for low

inventory levels. Therefore, efficient inventory management is critical to

the success of companies. In particular if we consider that the average

cost of holding a dollar of inventory is about 20-40 cents (Neale, 2003).

Yet, low inventory levels cannot be the only objective. In times of

powerful customers, the availability of products and customer service is

equally important because it can seriously affect the company’s bottom

line. For example, about 4% of annual sales of a typical U.S. retailer are

lost due to abandoned purchases (Corsten and Gruen, 2004). Companies

therefore need to provide excellent availability and service to retain cus-
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2 CHAPTER 1. INTRODUCTION

tomers. At the same time, rising volatility in customer demand has led

to more complex planning processes. For example, Cisco had to write-off

$2.69 billion in raw materials (half of its quarterly sales) in 2001 because

subcontractors had stockpiled semi-finished products. The main cause

of the problem was that Cisco rewarded the subcontractors for quickly

fulfilling its orders. Accordingly, the subcontractors chose exceptionally

high inventory levels because Cisco’s rewards could significantly increase

their profits and customer demand always had exceeded expectations in

the preceding quarters in any case. But an unexpected weakening in

customer demand then finally led to the huge write-off (Narayanan and

Raman, 2004).

Clearly, the problem in the Cisco example originated frommisaligned

incentives. Similarly, Lee and Billington (1992) found out that com-

mon pitfalls for good supply chain management is the non-existence of

common supply chain metrics and an inadequate definition of customer

service. Therefore, companies spend a considerable amount of money

and time for the specification of contracts that should align incentives.

Common metrics are needed to specify contracts that are clear and un-

derstandable to both contracting parties. But which metrics should

companies use for their contracts? And for which levels of the metrics

should a company aim? The definition of good performance metrics and

the optimal decisions based on these metrics is the focus of this thesis.

1.1 Motivation

Our research is motivated by a joint study with McKinsey & Co. that

analyzed the European retail industry (Thonemann et al., 2005). We

found out that the most successful companies in this sector have a tight

control over the supplier’s delivery performance, i.e., they control the

supplier service levels (or fill rate) on a regular and short-term basis.

Within this group, a number of retailers use financial penalties to enforce

the suppliers’ performance goals that are fixed in the supply contracts.
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Especially in this sector it is a common practice that powerful down-

stream companies, for example retailers such as Wal-Mart or Carrefour,

often play a dominant role in the supply chain and specify contractual

terms.

Service level contracts are also used between manufacturers and sup-

pliers. Examples from other industries include Fab-tek, a company that

provides titanium products for industrial use, that charges penalty pay-

ments for late deliveries (Shapiro et al., 1992). These penalties depend

on the number of backorders as well as on the time the orders are out-

standing. In the airline industry, penalties are also a common part of

contracts when it comes to the on-time delivery of ordered planes. For

example, Boeing’s late deliveries in 1997 triggered an enormous amount

of late fees, and likewise did Airbus when it came to the delivery of its

A380 jets in 2008.

Service level contracts are a common way to assure supply continu-

ity of finished products, components, and raw materials. The advantage

of service level contracts is the ease of use with respect to performance

measurement and enforceability. The service level is monitored closely

by the manufacturer and whenever the supplier’s delivery performance

falls short, appropriate countermeasures can be taken by the manufac-

turer to ensure future compliance of the supplier. As mentioned above,

an easy yet powerful approach is to enforce a penalty payment when the

target service level cannot be adhered to by the supplier (Metty et al.,

2005). However, in many industries the enforcement of penalties and

the measurement of the supplier’s performance have largely remained

unstructured, i.e., penalty payments are enforced on an irregular basis

or in an unforeseeable amount. This leads to enormous overhead costs

for dispute resolution and to fuzzy incentives and decision-making on

both sides. Taking into account that the total value of shipments in

manufacturing is about $4,265 billion in the U.S. in 2007, it is not sur-

prising that this is a major area for improvement (U.S. Census Bureau,

2008). For example, disputed amounts between suppliers and manufac-
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turers are on average 3-5% of total sales in the U.S. high-tech industry

(Billington, 2005).

Frequently, building trust and forming partnerships between sup-

pliers and manufacturers is seen as a remedy. However, this approach

in itself does not necessarily lead to supply chain coordination, as C.

Gopal, VP of supply chain management at Unisys and former VP at

Dell Inc., suggests:

"Trust can only be engendered by considering the risks

and having joint metrics, with penalties and incentives."

(Beth et al., 2003)

Despite its prevalence in some industries, the application of these

service level contracts has not wide spread to other industries or geo-

graphical regions. However, controlling and enforcing a superior sup-

plier fill rate is a major contributor to an above average competitive

performance according to a benchmark study of the Aberdeen Group

(Aberdeen Group, 2004). Similarly, Lee (2004) states that competitive

advantage can be achieved by a good performance measurement scheme

and that good contracts that are based on these performance measures

will align the supply chain partners by making their relationship ex-

plicit.

1.2 Research Objectives

In this thesis we focus on efficient contracts, i.e., contracts that coordi-

nate the supply chain. In the first part of the thesis, we analyze service

level based contracts. We want to explore the essential characteristics of

efficient and enforceable contracts. More precisely, is a higher contract

service level always good? How high should the penalty payment be?

How responsive to the manufacturer’s orders should the supplier be? To

gain theoretical insights, we address the following research questions:

Firstly, how do different service level contracts influence the supplier’s
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optimal decision with respect to his inventory policy? Secondly, how

do these contracts influence the supply chain partner’s profits? Thirdly,

how can supply chain coordination be ensured?

Next, we analyze if the supplier can show some gaming behavior

when service level based contracts are used and how this behavior influ-

ences the supply chain performance. The analysis of gaming behavior in

supply contracts has been identified as a major area of interest in supply

chain management (Thomas, 2007). For example, a supplier that has

signed a service level contract with two retailers can try to increase the

deliveries to one retailer at the expense of another retailer in order to

offset an inferior performance in an earlier period. In addition, we want

to identify differences to other inventory allocation policies that have

been proposed in literature. We also investigate whether the supplier’s

gaming behavior might lead to incentive conflicts between supplier and

retailers.

Finally, we analyze a supply chain where multiple retailers differ

with respect to their demand variability and cost position. We want

to identify potential incentives for a manufacturer to exclude certain

retailers or distribution channels from the supply chain. If these positive

effects exist, we want to suggest an optimal admission policy and find a

differential pricing scheme that depends on the demand variability the

retailers bring into the supply chain. Further, we want to answer the

question of how to allocate supply chain profits fairly among the supply

chain partners.

Our analysis will help decision makers to design optimal contracts

or to revise existing sourcing and distribution contracts. Additionally,

including a perspective on incentives to current literature on service

levels in supply chains also enables us to highlight differences between

incentive-based and non-incentive-based inventory control policies that

use service levels as primary performance measures.
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1.3 Outline

The first part of the thesis (Chapters 2 and 3) introduces the basic con-

cepts of our work. Firstly, in Chapter 2 we introduce the foundations

of inventory management as far as they are relevant to our work. We

present the different motivations for holding inventory, relevant inven-

tory costs, and basic inventory control models. Secondly, Chapter 3

introduces the basic concepts of supply chain contracting. We motivate

the need for contracts and introduce the solutions to some commonly

used contract types.

In Chapters 4 to 6 we present our main results. The analyses of each

chapter are preceded by a short introduction and followed by a conclu-

sion that summarizes our findings. The corresponding proofs can be

found at the end of each chapter. In the following, we shortly introduce

each chapter in turn:

The analysis in Chapter 4 has been motivated by the observation

that supply contracts are used to coordinate the activities of the supply

chain partners. In many industries, service level based supply contracts

are commonly used. Under such a contract, a company agrees to achieve

a certain service level and to pay a financial penalty if it misses it.

Although service level based contracts are among the most widely used

contracts in practice, they have not been analyzed analytically and we

are filling the gap in this chapter. We analyze two types of service level

based supply contracts that are designed by a manufacturer and offered

to a supplier. The first type of contract is a flat penalty contract under

which the supplier pays a fixed penalty to the manufacturer in each

period in which the contract service level is not achieved. The second

type of contract is a unit penalty contract under which a penalty is

due for each unit delivered fewer than specified by the parameters of

the contract. We show how the supplier responds to the contracts and

how the contract parameters can be chosen such that the supply chain

is coordinated. We also derive structural results about optimal values
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of the contract parameters, provide numerical results, and connect our

service level measures to traditional service level measures.

Chapter 5 builds on the results of the previous chapter and extends

the service level model to a supply chain with multiple retailers. In

practice, optimal inventory allocation policies have a significant impact

on profits in the retail industry. A manufacturer ships products to the

retailers’ stores where the end customer buys the product during the

selling season. It has been put forward that it is beneficial for the

manufacturer to reserve a certain fraction of the inventory for a second

replenishment. Then the manufacturer can replenish the retailers’ in-

ventories optimally and can take advantage of the risk pooling effect. In

practice, retailers require a certain availability of the product through-

out the selling season. Supply contracts are used to coordinate the

delivery of products. Under such a contract, the manufacturer agrees

to achieve a certain service level and to pay a financial penalty if she

misses it. We analyze how a manufacturer responds to a service level

contract if she wants to minimize her expected costs. We develop an

optimal allocation strategy for the multiple retailer case and show that

the traditional inventory balancing approach leads to higher expected

costs than our approach. We also show that a service level contract does

not necessarily guarantee a minimum availability at the retail stores.

After analyzing the question of how to optimally serve multiple re-

tailers, we analyze in Chapter 6 the questions if all of the retailers

should be served. Managing demand variability is a main challenge

that companies face in today’s volatile markets. In this chapter we

analyze how supply chain performance can be optimized by explicitly

taking demand variability into account and making a conscious decision

about admitting it to the supply chain. By observing the impact of

diversified demand patterns on the efficiency of the supply chain, we

derive an optimal distribution channel strategy that trades off benefits

of market size against the cost of demand variability. We derive con-

tracts that coordinate the supply chain and lead to the supply chain
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optimal distribution channel selection.

Chapter 7 concludes the thesis. We summarize the results and point

out the major contributions of our research. In addition, we critically

review our assumptions and suggest areas for future research.



Chapter 2

Foundations of Inventory
Management

In today’s business world, inventories play an important role. Invento-

ries are used to hedge against shortages in raw materials, allow a smooth

production flow within a production line, or ensure the timely delivery

of products to the end customer. But inventories also constitute a li-

ability for a single company and the economy as a whole: Inventories

are costly since they represent bounded capital that has to be managed

continuously. In the worst case, inventories can become obsolete after a

certain time. Considering that the total value of inventories in the U.S.

industry is $1.45 trillion in January 2008 (U.S. Census Bureau, 2008),

it becomes clear that the efficient management of inventories is of para-

mount importance for companies. Especially inventory on the way to

the end customer, i.e., inventory held at retailers and wholesalers, ac-

counts for about two thirds of the total inventory value (U.S. Census

Bureau, 2008). It is therefore not surprising that the optimal manage-

ment of supply chain inventories has received significant attention in

practice and in research likewise.

In this chapter we present the foundations of inventory management.
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In Section 2.1, we first describe the basic concepts of inventory manage-

ment. We introduce different types of inventory, motivations for holding

inventory, and common cost components that are associated with inven-

tories. In Section 2.2 we then present some popular approaches for the

management of inventories in a stochastic demand setting. Clearly, it is

neither possible nor reasonable to summarize all literature and concepts

related to inventory management in this thesis. Therefore, we focus on

introducing concepts and models that are relevant to the purpose of

this thesis. The interested reader is referred to, for example, Silver et

al. (1998), Tempelmeier (2006), or Zipkin (2000) for a more extensive

review of this area of research.

2.1 Basic Concepts of Inventory Manage-

ment

In this section we describe the basic contingencies that influence in-

ventory management decisions. We first introduce the four types of

inventory in Subsection 2.1.1. In Subsection 2.1.2 we show some im-

portant structures of inventory systems. In Subsection 2.1.3 we present

common motives why companies are holding inventory and show in

Subsection 2.1.4 which costs have to be taken into account for holding

this inventory. Finally, we provide in Subsection 2.1.5 a short discus-

sion of different inventory system characteristics that are relevant to

the mathematical modeling of such systems and conclude in Subsection

2.1.6 with the presentation of different approaches to measure the size

of inventories.

2.1.1 Inventory Types

To allow for a better management and control of inventories, inventories

can be categorized into different types for which customized manage-

ment approaches exist. For this purpose, inventory is typically cate-
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gorized into four different types. Nahmias (2005), for example, refers

to them as raw materials, components, work-in-process, and finished

goods.

1. Raw materials are used in the immediate transformation or pro-

duction activity of the company.

2. Components are not ready to be shipped but represent a func-

tional subpart of a product. Nahmias (2005) also refers to them

as subassemblies.

3. Work-in-Process (WIP) is inventory that is in the system and is

ready to be processed by the next production stage. Depending on

the definition, raw materials and components are also sometimes

referred to as work-in-process.

4. Finished goods are goods that do not require any further transfor-

mation step and can therefore be shipped the end customer.

Depending on the application, the same inventory can be categorized

into different types. For example, a chemical company would consider

synthetic granules as finished goods whereas a manufacturer of plastic

conduits would consider the granules as raw material.

In our thesis, we mainly focus on finished goods inventory that is on

the way to the end customer. However, some of our analyses are also

applicable to inventories of the other categories.

2.1.2 Inventory Systems

In this subsection we describe the system where the aforementioned

inventory types are held. In this context, the supply chain is the nat-

ural environment where inventory management takes places. From a

conceptual view, a supply chain consists of all parties that are directly

or indirectly connected in order to fulfill a customer request (Chopra

and Meindl, 2004). The ultimate goal for inventory management in the
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supply chain is the optimal management over all stages of the supply

chain. Unfortunately, this is not feasible for nearly all practical appli-

cations and also the theoretical analysis of such systems becomes too

complex for even easy supply chain structures. Therefore, inventory

management takes places on a higher abstraction level where only spe-

cific parts of the supply chain are considered.

For example, the decision maker can distinguish between a single-

product and a multiple-product analysis, or can consider only one party

in a single-echelon analysis or a subset of stages of the supply chain

in a multi-echelon analysis. In our thesis, we focus on a one product

setup. However, it should be noted that the analysis of multiple product

systems can lead to significant cost savings as it has been shown by

Thonemann et al. (2002).

The structure of the inventory system with respect to the number of

parties considered plays an important role because it drives the complex-

ity of the analysis. While single-stage inventory systems have been ana-

lyzed extensively in literature, recent research focuses more and more on

multi-echelon systems. Figure 2.1 shows different structures for a multi-

echelon inventory system. In a serial inventory system, a product flows

sequentially through N stages to the end customer. We use this supply

chain structure for our analysis in Chapter 4. In a distribution sys-

tem, one product flows through a tree-like distribution structure. This

structure is prevalent in retail systems where one supplier or wholesaler

supplies multiple retailers. We use this structure in Chapters 5 and 6.

Other structures, as for example a network structure or assembly sys-

tem, also frequently appear in literature, but are not relevant for the

purpose of our thesis.

2.1.3 Reasons for Holding Inventory

Companies have different motivations for holding inventory and numer-

ous reasons have been identified in literature. The most cited reasons in

literature are economies of scale, uncertainties, anticipation, transporta-
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Figure 2.1: Distribution System and Serial Supply Chain

tion, speculation, and control costs (for example, in Nahmias (2005) and

Silver et al. (1998)). Next, we shortly introduce each reason in turn.

1. Economies of scale A company has an incentive to hold inventory

if it faces significant setup costs. For example, consider an inven-

tory system where significant cleaning and readjustment tasks at

the machines have to be performed before the production line can

be changed from one product to the other. Then it would be ben-

eficial for the company to produce the products in larger lot sizes

and to stock inventory in the warehouses. Thereby, the costs of

changing from one product to the other can be distributed over a

larger number of units.

2. Uncertainty In most practical applications, uncertainty plays a

significant role when it comes to holding inventory. For example,

a company can be uncertain about the next weeks’ customer de-

mand, the availability of raw materials, the production yield of

their processes, or even the appearance of major problems such as

boycotts or wars. In these cases, the company uses inventory to

hedge against these risks.
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3. Anticipation If a company faces a significant change in its en-

vironment, it can use inventory to manage these changes. For

example, in the toy industry the season with the highest end cus-

tomer demand is the Christmas season. In this industry, 45% of

the annual revenues are earned in November and December (John-

son, 2001). Since production capacities are normally not sufficient

to fill all demands during that time, companies start to produce

the products in advance and stock them in anticipation of the

higher demand at the end of the year.

4. Transportation Goods that are transported between companies,

between stages of the production process, or to the end customer

are not available to fulfill other needs of the company. Therefore,

they are considered as inventory. This inventory, which is often

referred to as pipeline inventory, often plays a significant role in

practical applications. For example, transporting goods with a

container vessel from China to Europe takes about 4-6 weeks.

During these weeks the inventory is already in possession of the

company but cannot be used to fulfill customer demands and is

therefore considered as (forced) inventory.

5. Speculation The speculation motive can be often found when we

consider raw materials that are used in industry as, for example,

oil, gold, or platinum. In this case, the company can buy the raw

material and keep it on stock in anticipation of a price increase.

6. Control Costs If a company holds inventory, the inventory has to

be managed. The management, for example counting inventory

or determining reorder points, sometimes requires significant cap-

ital expenditures. For example, an adequate IT system has to be

put in place or sophisticated inventory control models have to be

developed. Although this might be justifiable for some products,

a sophisticated inventory management is not beneficial for cheap

goods, as for example for screws. Therefore, a company would
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be better off if it would just store more screws instead of incur-

ring high control costs by using advanced inventory management

approaches.

In our research we focus on the uncertainty motive. In our models,

the supply chain partners do not exactly know the customer demand

and therefore seek to minimize the costs that are connected to demand

uncertainty. The types of costs that play an important role in an inven-

tory system are introduced next.

2.1.4 Types of Inventory Costs

In the previous subsection we have discussed the different reasons for

holding inventory. Now we give full particulars to the measurable effects

of holding inventory. In this section we focus on the most common cost

components that exist in inventory systems. The different types of costs

that normally are analyzed in inventory management models are holding

costs, penalty costs, and order costs (Nahmias, 2005). These costs can

be either stable over time or can vary over time depending on the specific

application.

Holding costs are costs that are directly related to the holding of

inventory. Inventory that is held in a warehouse leads to a variety of

costs. Some of the costs are costs for renting the warehouse space, taxes,

insurance, breakage, deterioration, obsolescence, and opportunity costs

(Nahmias, 2005). Out of all of the aforementioned cost components,

opportunity costs often play a major role in practical applications. Op-

portunity costs are determined by multiplying the inventory value with

the company’s interest rate. Normally, the weighted average cost of

capital (WACC) is used to determine the relevant interest rate. In

some industries, as for example the IT industry, obsolescence costs also

represent a major part of the holding costs. Obsolescence and rework

to meet engineering needs fall into this category. These costs can fre-

quently reach up to 40% of the selling price (Lee and Billington, 1992).
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For example, in the personal computer industry the devaluation of com-

ponent inventory equals 1-4% of the purchasing price each week (Lee

and Billington, 1992). If products cannot be sold through the original

distribution channels or only at a significantly lower price, the holding

costs are the difference between the original purchasing price and the

salvage value, i.e., the discounted selling price. In practice, the salvage

value is often difficult to measure because it can depend on the demand

during the selling season as shown in Cachon and Kök (2007).

Penalty costs can appear in different ways. If customer orders arrive

and the inventory is not sufficient to fill all of the orders, the orders

are either backordered, i.e., filled in one of the next periods, or lost.

If orders are backordered, the company has to spend money for order

expediting (leading to higher administrative costs) and also faces a loss-

of-goodwill of the customer (Nahmias, 2005). For the case that the

demand is lost in a stock-out event, the company loses the profit mar-

gin and also incurs an additional loss-of-goodwill cost. For example,

Procter&Gamble estimates that it loses the sale with a probability of

29% if the retailer has a stock-out, i.e., the customer substitutes another

brand (Neale, 2003). However, the sale might be lost for the manufac-

turer but not for the retailer. In another study of the American grocery

manufacturers, it is estimated in Kraiselburd et al. (2004) that about

60% of customers buy a substitute at the same store. An older study

of Emmelhainz et al. (1991) provide even more detailed data: 32% of

customers switched brands in case of a stock-out, 41% buy a different

size or variety, and 14% go to another store. Clearly, estimating the

penalty costs is rather difficult in practice. Therefore it is often sub-

stituted by minimum availability requirements as for example by using

service levels that are introduced later in this chapter.

Order costs are incurred whenever the company orders or produces

new products. They can be differentiated into fixed and variable order

costs (Nahmias, 2005). Variable order costs depend on the order size.

For example, unit purchasing costs or volume dependent transportation
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costs fall into this category. On the other side, fixed order costs do

not depend on the order size. For example, searching a supplier, getting

quotes, placing an order, the controlling and accounting of the incoming

order all lead to fixed order costs.

2.1.5 Inventory System Characteristics

In this subsection we describe some characteristics that distinguish in-

ventory systems from each other. The characteristics we discuss are

demand, lead time, excess demand management, review pattern, and

yield (Nahmias, 2005).

Demand can be either constant or variable. Under constant demand,

the demand the company is facing stays on the same level. Variable

demand on the other side can represent changes in the demand envi-

ronment. For example, it can account for trends and seasonality. In

addition, we can also distinguish different demand characteristics with

respect to uncertainty. Demand can be either known with certainty, i.e.,

it is deterministic, or demand is random. Then in most cases, demand

can be described by a discrete or continuous random variable. In this

thesis we focus on random and constant demand. If the demand dis-

tribution is not know, for example when lost sales cannot be observed,

inventory models tend to become rather complex as for example the

model of Tan and Karabati (2004) shows. Demand can also depend

on stocking quantities as in Balakrishnan et al. (2004b). Stocking more

products at a retailer can increase customer demand because of a higher

visibility that might lead to the customers’ perception of a higher pop-

ularity or better future availability.

Inventory systems can differ with respect to lead times. If products

are ordered from an outside supplier or are produced in a production

line, they are normally not immediately available. If this time delay, also

known as lead time, is taken into account, the analysis of the inventory

system becomes more accurate. Lead times can be either deterministic

or stochastic. Specialized inventory control models exist for both cases
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(Zipkin, 2000).

Furthermore, inventory systems differ with respect to how excess

demand is handled. Demand can be either lost or (partially) backo-

rdered. For example, in the lost sales case, if the customer does not find

the product on the shelf, he just walks out of the shop or purchases a

substitute product as we have shown in the previous subsection. If we

assume a backorder setup, excess demand can be delayed to the next

period. Then customer demand is not lost, but still a certain penalty

cost is incurred as we have seen in the previous subsection.

Review patterns distinguish inventory systems. In literature, there

are two types that are typically referred to, continuous review and pe-

riodic review (Silver et al., 1998). In a continuous review system, the

inventory level, i.e., the number of units on stock, is always known at

every time. This can be ensured by an immediate accounting whenever

inventory is taken out of the warehouse, for example by using POS-data

in a retail environment. In a periodic review system, the inventory lev-

els are only checked after a certain time period, for example, every week

or month.

Not all production processes produce perfect products or the deliv-

eries of the supplier can contain broken components. Then the yield

usually refers to the fraction of usable products with respect to the

total order or production size (Silver et al., 1998). The problem of ob-

solescence also falls into this category. Obsolescence occurs if inventory

cannot be held for more than a certain time. For example, most of

the grocery products fall into this category, but also spare parts for

machines if these machines are not used any more in the field.

2.1.6 Measuring Inventories

In most applications, the quantities on stock drive inventory costs.

Therefore, the correct measurement is important for an efficient in-

ventory management. The most intuitive way of measuring inventory

is counting the inventory on stock. This quantity is named inventory
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on-hand OH. Some inventory can be already committed to a specific

purpose, for example, to fill some outstanding backorders. The back-

order quantity is referred to as BO. Then the net stock or inventory

level IL can be computed as

IL = OH −BO.

Normally, a positive on-hand inventory OH and a positive backorder

level BO cannot occur at the same time and consequently the inventory

level is positive for a positive on-hand inventory, and negative for a

positive backorder level.

The inventory level IL is not a sufficient measure for placing optimal

orders since it neglects orders that did not arrive by now, i.e., orders

in the pipeline. The inventory position IP takes these open orders OO

into account and can be determined by

IP = OH −BO +OO = IL+OO.

For the zero lead time case, the inventory position always coincides with

the inventory level because orders arrive instantaneously.

In a multi-echelon inventory system, we can distinguish between

two inventory measurement approaches: echelon stock and installation

stock. In an installation stock measurement, we only take a single instal-

lation’s stock and pipeline inventory into account as Figure 2.2 shows.

This is a simple extension of the one-echelon model to multiple stages.

When we measure the echelon stock, we do not only take into account

the inventory at the warehouse and in the pipeline to this specific ware-

house, but also all inventories that are downstream of that specific ware-

house. Thereby, the echelon stock measure takes all relevant stock of an

echelon into account. This concept was first introduced by Clark and

Scarf (1960). In practice the echelon stock measurement is problematic

because all downstream parties have to communicate their inventory

positions to the upper echelons. Nonetheless, the echelon-stock concept
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Figure 2.2: Installation and Echelon Stock

has the advantage that it can be used to minimize system-wide costs

for a variety of inventory systems (Zipkin, 2000).

2.2 Stochastic Inventory Theory

If the end customer demand is not known with certainty, complex in-

ventory models are used that trade off the effects of stocking too much

and too few inventory. In this thesis, we analyze inventory systems that

fall into this category, i.e., systems with stationary stochastic demand,

positive lead times, and periodic review. To keep our presentation con-

cise, we focus in this section on models that exhibit these characteristics.

For models that differ from ours, we refer the reader to Nahmias (2005),

Silver et al. (1998), or Zipkin (2000).

First, we discuss some commonly used objective functions for sto-

chastic inventory models in Subsection 2.2.1. Then we introduce a ba-

sic inventory model for a single-echelon inventory system in Subsection

2.2.2 and extend the model in Subsection 2.2.3 to a multi-echelon supply

chain.
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2.2.1 Objective Functions

Management can have different goals with respect to inventories. For

example, decision makers want to maximize the availability of a spare

part, to minimize the expected costs of their finished product inven-

tories, or to maximize the return-on-investment (ROI). In this section

we introduce some popular objective functions used for inventory man-

agement. We start with the most prominent one, the expected cost

criterion where the decision maker tries to minimize expected inventory

costs. Then, we introduce the service level metric where the decision

maker tries to achieve a certain availability of the product. Since we ex-

tensively use this metric in this thesis, we will discuss it in more detail.

Finally, we present some alternative objective functions. In particular,

we discuss risk-based objective functions.

2.2.1.1 Expected Cost Criterion

Most inventory models use an expected cost objective function. The

objective is to minimize the average long-run costs per period or time

unit. Relevant costs in a stochastic demand environment are mainly

holding costs, penalty costs, and order costs. The expected cost objec-

tive coincides with the well-researched present value or discounted-cash

flow (DCF) objective if the time horizon is short and/or the interest rate

can be neglected (Zipkin, 2000). From an operational point of view, it is

therefore sufficient to concentrate on minimizing the average inventory

costs for most practical applications (Silver et al., 1998).

One of the major cost drivers in stochastic inventory models is de-

mand variability. Demand variability makes inventory planning more

complex since the exact demand quantities are not known. Within the

inventory management literature that deals with the impact of demand

variability we can find approaches, such as inventory pooling, constraint

ordering, order smoothing, and variability penalties, that try to reduce

demand variability as well as to optimize inventory-related costs in the
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supply chain.

Inventory pooling, introduced in the seminal work of Eppen (1979),

aims to reduce the variance of total order quantities received by an

upstream supply chain member by aggregating incoming orders from

downstream members. Thus, in upstream echelons a reduced variabil-

ity is expected to be realized. Gerchak and Mossman (1992) found

analytically that inventory pooling can reduce expected costs, but does

not necessarily reduce optimal inventory levels under all circumstances.

The order forecast smoothing is the determination of the order quan-

tity for the next period taking into consideration the demand of the cur-

rent period and the past orders. Balakrishnan et al. (2004) state three

approaches to control demand variability by applying order smoothing.

Thus, they set a limit on retailers’ order quantities to prevent variability

among consequent orders. Previously, Cachon (1999) proposed a simi-

lar approach that constrains the timing of an order. In the variability

penalty approach, which is also studied by Porteus (1990), retailers are

charged a penalty if their orders show a deviation from a predefined

order amount set by the upstream echelon.

We would like to acknowledge the considerable amount of research in

multi-channel inventory distribution systems that is related to demand

variability. A part of the existing literature states that new channels

can reach to customer segments that have not been served by existing

channels and expand sales. The other part states that companies must

decide among alternative channels to ensure profitability as it is expen-

sive to serve all customer segments in the market. In addition to the

benefits and opportunities they promise, distribution channels also im-

pose challenges to the supply chain. Carr and Lovejoy (2000) present

a supply chain where a manufacturer has to choose an optimal capac-

ity level and can choose among various demand sources. The authors

show how such an optimal demand source selection can be derived by

using insights from portfolio theory. Frazier (1999) states that it might

be the case that small to moderate-sized customer segments cannot be
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economically served by a traditional channel strategy, which targets all

the customers in the market. The trade-off between market coverage

and risk associated with fixed and variable channel investments raises

the discussion of operating fewer or more channels (Alptekinoglu and

Tang, 2005). In this context, Anderson et al. (1997) claimed in a qual-

itative analysis that high levels of demand volatility might lead to a

large number of channels in operation and on the contrary, low levels

of volatility might lead to a smaller number of channels. In the same

study, it is also discussed that a multi-channel distribution strategy

might reduce involved risk by spreading it among a set of alternative

distribution channels. In Chapter 6 we deviate from these studies by

allowing a manufacturer to explicitly choose the distribution channels

that participate in the supply chain and to derive a pricing scheme such

that the system’s demand variability can be actively influenced.

2.2.1.2 Service Level-Based Models

For most companies, the availability of products is of paramount impor-

tance. In inventory control models, the penalty costs mainly influence

the availability of the product. However, the quantification of those

penalty costs is not straightforward because it is not easy to estimate

the exact loss-of-goodwill costs. Therefore, service levels are used to

circumvent the problem of quantifying the penalty costs. Typically,

companies try to achieve service levels around 95% whereas even levels

below 80% are not uncommon (Neale, 2003). The service level require-

ments differ among products. Fisher (1997), for example, states that

the service level is 98-99% for functional products with predictable de-

mand and can reach 60-90% for innovative products with unpredictable

demand. In general, service levels describe the fraction between fulfilled

orders and total orders and thereby can also be used as a substitute for

measuring customer satisfaction. The definition of fulfilled orders can

vary from case to case. For example, in some applications, only orders

that can be immediately filled from stock are counted as fulfilled orders
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whereas in other applications a certain time window exists for success-

fully fulfilling orders (Silver et al., 1998). In our research we focus on

the first case that measures the immediate availability.

In literature, one can mainly find three definitions of service levels,

the α−, the β−, and the γ−service level (Silver et al., 1998). The

α−service level represents the long-run fraction of periods where no

stock-out occurs, i.e.,

α = 1− # of periods with stock-out
total # of periods

.

Sometimes the α−service level is also referred to as Type I-service level

or in-stock probability. The α−service level is an appropriate measure,

for example, for a grocery store that is focussing on full shelves in the

stores.

In contrast to the α−service level, the β−service level takes the num-

ber of units short into account. This service level measure is calculated

by the fraction of immediately satisfied demands over the total demand,

i.e.,

β = 1− # of units short
total demand

.

The β−service level is popular among practitioners because it indicates

the size of the stock-out problem (Nahmias, 2005). It is often also

referred to as Type II-service or fill rate.

The γ−service level is also known as ready rate (Silver et al., 1998).

It is computed by taking the time that the net stock is positive. This

measure has received little attention in literature because the optimiza-

tion is more complex than in the other cases. However, the γ−service
level is often used for measuring the service in emergency equipment

models (Silver et al., 1998).
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2.2.1.3 Alternative Objective Functions

A variety of alternative objective functions exist in literature. For ex-

ample, risk-aware objective functions are used to optimize inventory

policies. Risk-based metrics originate from the area of finance, where

the decision maker performs a risk-variance trade-off when choosing an

optimal portfolio. Similarly, Chen and Federgruen (2000) analyze dif-

ferent inventory control models with respect to their variance of costs.

Using the variance as a risk measure, the variance of costs is computed

and plotted against the expected costs for each purchasing quantity.

This yields the efficient frontier of possible purchasing quantities. For a

given utility function that represents the decision maker’s preferences,

the utility function is fit to the efficient frontier such that the maximal

expected utility is reached. The point where both curves are tangent

designates the optimal quantity. The Value-at-Risk measure (VaR) is

another popular risk-based approach that measures the risk exposure

of an inventory policy. Although the VaR approach originates from the

area of corporate finance, it has been successfully applied to inventory

problems, for example by Tapiero (2005).

A multitude of other objectives exist, for example, the optimiza-

tion of the return-on-investment. For more details on these objective

functions we refer the reader to the reviews of Beamon (1999) and Gu-

nasekaran et al. (2001) on performance measures in supply chain man-

agement.

2.2.2 Single-Echelon Inventory Control Policies

Inventory control policies allow an efficient management of inventories

by structuring the ordering decision into two basic decisions: (i) when

to order and (ii) how much to order. For deterministic demand, the

timing and quantity is always the same and easily predictable. With

stochastic demand however, timing and sizes can and do vary in time.

For the ordering decision, only the inventory position IP is relevant
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because it includes orders in the pipeline, i.e., units that are already

ordered but did not arrive yet. In the following we use the notation that

is proposed by Silver et al. (1998): s reorder point, Q order quantity, R

review period, and S order-up-to level. Based on this notation, we can

distinguish four different basic inventory policies.

For continuous review inventory systems we have a complete knowl-

edge about the inventory position at all times and we can order accord-

ingly:

• Fixed order quantity A control policy that always orders a fixed

amount is often referred to as a (s,Q) policy. Whenever the in-

ventory position IP is less or equal s, a fixed amount Q is ordered.

s is the reorder point and Q is the batch size. This policy takes

holding, backorder, and setup costs into account. Clearly, if the

setup costs are small, the batch size can also be small.

• Variable order quantity If the order size does not have to be fixed,

a (s, S) policy leads to optimal results for the case with holding,

backorder, and setup costs. Whenever the inventory position IP

reaches the reorder point s, an order is placed such that the in-

ventory position reaches S. If the order size per demand event

equals one, as for example in a spare parts setup with Poisson de-

mand, the order size is fixed and equals S − s. The optimization

of a (s, S) policy is not trivial and requires complex calculations.

If the setup costs are comparably small or the availability of the

product is of high importance, a so called (S−1, S) policy is used.

In this case, a new unit is ordered after every demand event. A

(S − 1, S) policy is also called a base stock policy.

For periodic review models as in our thesis, we can distinguish the

policies with respect to the fixed ordering costs:

• Without fixed ordering costs A (R,S) policy can used when fixed

ordering costs can be neglected. In this policy, R stands for the
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review period. The review period is the length of time between two

reviews of the inventory position. Therefore, only at these times,

the exact quantity is known and orders can be placed. Similar to

the base stock policy in the continuous review case, the order will

bring the inventory position up to the order-up-to level S. This

policy performs well in situations where the order setup costs are

small.

• With fixed ordering costs We can use a (R, s, S) policy if fixed

ordering cost exist. Here we order every R periods and only order

if the inventory position IP is less or equal the reorder level s.

Then we order up to S units. This policy has been proven to be

optimal by Scarf (1959).

In the following we review the basic (R,S) policies for the single-

echelon case. First, we present the optimization for the expected cost

criterion. Second, we show how service level constraints influence the

optimal ordering decision.

2.2.2.1 Cost Objective

The newsvendor model (also known as the newsboy model) is the build-

ing block of a (R,S) policy. The newsvendor model is frequently used

for the management of products that can be only sold during a fixed

selling season as, for example, fashion goods. The decision maker has

to decide on the order quantity before the exact demand for the selling

season is known. No second replenishment opportunity is permitted.

The goal is to determine the optimal order quantity y∗. The demand

D is stochastic and the demand distribution is known and has the p.d.f.

f (·) and the c.d.f. F (·). The product is sold to the end customer for

r per unit. The unit purchasing costs is c and inventory that is left at

the end of the selling season can be sold with a salvage price of v < c

per unit. It follows that inventory that is left at the end of the selling

season incurs an overage cost of co = c−v. If the demand was too high,
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an underage cost cu = (r − c) + g has to be paid. This cost represents

the loss of the profit margin and, if applicable, a loss-of-goodwill cost g.

Then the expected cost function for an order quantity y can be written

as

ECN (y) = coE (y −D)
+
+ cuE (D − y)

+

= co

Z y

ξ=0

(y − ξ) f (ξ) dξ + cu

Z ∞
ξ=y

(ξ − y) f (ξ) dξ.

It can be easily shown that the expected cost function ECN (y) is convex

in y. The minimization of EC (y) by using the first-order criterion shows

that the optimal order size satisfies

F (y∗) =
cu

cu + co
.

The fraction on the right hand side is often called critical ratio (CR).

For normally distributed demand it can be shown that the optimal order

quantity is

y∗ = μ+ zσ

where μ is the mean demand and σ the standard deviation of the de-

mand. The safety factor z can be found with

z = F−101 (CR)

where F−101 (CR) is the CR-quantile of the standard normal distribution

with μ = 0, σ = 1.

The basic newsvendor model can be easily translated into a periodic

review (R,S) policy. For a zero lead time, the inventory position equals

the inventory level and the extension to a multiple period inventory

model is straightforward. In this case, the demand is assumed to be

i.i.d. between periods. Unfilled demand from the previous periods can

be filled in subsequent periods when new inventory is available. These

backorders cost b per unit backordered. Excess inventory at the end of
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a period can be carried forward to the next period and incurs a unit

inventory holding cost of h. The inventory level y in the newsvendor

model becomes the order-up-to level y, i.e., at the beginning of each

period, we order such that the inventory position is always y. Then the

order quantity Qt at the beginning of period t is

y −OHt−1 +BOt−1 = y − ILt−1 = Qt.

At the end of period t the inventory on hand is OHt = (y −Dt)
+, the

number of backorders BOt = (Dt − y)+, and the inventory level ILt.

Since the demand Dt is i.i.d., we can use the expected cost criterion,

i.e.,

ECM (y) = hE (y −D)+ + bE (D − y)+

= h

Z y

ξ=0

(y − ξ) f (ξ) dξ + b

Z ∞
ξ=y

(ξ − y) f (ξ) dξ.

Clearly, the expected cost ECM (y) resembles the newsvendor model

and therefore the optimal order-up-to level is characterized by

F (y∗) =
b

b+ h
.

Since either there can be a positive on-hand inventory or a positive

backorder level, we always order the previous periods demand, i.e., Qt =

Dt−1.
The model can be extended to positive lead times LT . Our objective

is to find the order-up-to level y that minimizes expected costs. But now

we have to take the number of outstanding orders OOt at the end of

period t into account. Then the order quantity Qt in period t is

y −OOt−1 −OHt−1 +BOt−1 = y − IPt−1 = Qt.

Now it can be shown that the inventory on-hand and backorder level in

period t only depends on the demand during the previous LT+1 periods
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(Thonemann, 2005). Therefore the expected costs can be written as

EC (y) = hE (y −DLT+1)
+
+ bE (DLT+1 − y)

+

= h

Z y

ξ=0

(y − ξ) fLT+1 (ξ) dξ + b

Z ∞
ξ=y

(ξ − y) fLT+1 (ξ) dξ

where DLT+1 denotes the demand during the last LT + 1 periods and

fLT+1 is the corresponding p.d.f. Again the optimal order-up-to level

is characterized by

FLT+1 (y
∗) =

b

b+ h

where FLT+1 is the demand c.d.f. during LT + 1 periods.

The solution of the basic (R,S)model stays tractable even if the cost

functions are defined in a slightly different way. Chen and Zheng (1993)

analyze a backorder cost function that consists of a fixed and a propor-

tional component. Similarly, Rosling (2002) analyzes the performance

of inventory systems that are characterized by non-linear shortage costs.

In both papers, the objective functions are quasi-convex which allows for

an efficient optimization of the inventory system by using the first-order

criterion.

2.2.2.2 Service Level Objective

It has been shown before that it is difficult to quantify the backorder

cost b in many practical applications. Instead, service level constraints

are used to avoid the quantification of the backorder cost. We discuss

now how the α− and β−service levels can be used in the (R,S) periodic

review model we have described before.

The α-service level measures the fraction of periods that have no

stock-outs. This occurs with a probability of FLT+1 (y). The optimiza-

tion problem then is

min
y

h (y −DLT+1)
+

s.t. FLT+1 (y) ≥ α.



2.2. STOCHASTIC INVENTORY THEORY 31

The β−service level (or fill rate) measures the fraction of demands

that can be filled immediately from stock, i.e.,

β (y) = 1−
E

µ³
D − (y −DLT )

+
´+

¶
μ

This calculation avoids a double counting of stock-outs if some orders

are backordered for more than one period. Johnson et al. (1995) discuss

the double counting problem and provide easy expressions for the fill

rate formula. However, in practice the probability that orders are back-

ordered for more than one period is normally comparably small and can

be therefore neglected. Then, the approximate measure

β (y) = 1− E (DLT+1 − y)
+

μ

can be used. The optimization problem is then

min
y

h (y −DLT+1)
+

s.t. 1− E (DLT+1 − y)
+

μ
≥ β.

The advantage of the α− and β−service levels is that they can be

easily understood. Also the computation of the optimal order-up-to

level y is straightforward and can be determined by taking the smallest

value that satisfies the service level constraint. However, these service

level measures have a major shortcoming that hinders their direct use in

practice: their calculation is based on an infinite-horizon measurement,

i.e., we have to measure over an infinite time horizon to come up with

a reliable estimation. In practice however, service levels are measured

over shorter (finite) time horizons, for example, weeks or months.

Some recent work has analyzed the distribution of service levels if

the performance is measured over a finite number of periods. Chen et al.

(2003) and Thomas (2005) were one of the first to analyze finite horizon
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service level models. Chen et al. (2003) study the effect of a finite time

horizon on the service level. This approach is of particular interest in

practical applications because infinite horizon service levels are difficult

to control and companies measure performance over finite time horizons.

Chen et al. show that using an infinite horizon to derive optimal base

stock levels in a periodic review system leads to a higher than desired

short-term service level. Subsequently, Thomas (2005) analyzes the

effect of the length of the time horizon on the distribution of service

levels. In this thesis, we extend Thomas’ work by integrating finite

horizon service level measures in the objective function and charging

financial penalties if a contract service level is not achieved.

The β−service level over a finite horizon with T measurement peri-

ods and zero lead time can be written as

βT (y) = 1− (D1 − y)+ + ...+ (DT − y)+

D1 + ...+DT

whereas the standard infinite horizon formulation is

lim
T→∞

βT (y) = 1− E (D − y)+

μ
.

Clearly, measuring over a finite horizon leads to the observation that

the service level becomes a random variable that cannot be known with

certainty for a given base stock level y. The time horizon T has a distinct

effect on the height of the service level as the following proposition

shows:

Proposition 2.1 (from Thomas (2005)) For all measurement hori-

zon lengths T > 1 and base stock levels y > 0, we have E (β1 (y)) ≥
E (βT (y)) ≥ limT→∞E (βT (y)).

Clearly, using an infinite measurement leads to an underestimation

of the service level. In our research, we will make extensive use of the

finite horizon definition since it facilitates the control of contractual

behavior.
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2.2.3 Multi-Echelon Inventory Control Policies

There exists a variety of models that consider multi-echelon inventory

systems. As before, we will focus on periodic review systems with base

stock levels. For a serial supply chain, Clark and Scarf (1960) devel-

oped the first model that optimizes a multi-echelon supply chain for a

finite horizon. Federgruen and Zipkin (1984b) extended the model to

an infinite horizon. In Cachon and Zipkin (1999), we can find a compa-

rably simple presentation of Clark and Scarf’s model for a two-echelon

serial supply chain that we introduce next. Afterwards we shortly dis-

cuss the application of service levels in multi-echelon supply chains and

conclude with an overview of inventory allocation policies that are used

if multiple retailers are served.

2.2.3.1 Serial Supply Chain Model

To keep our presentation concise we restrict our analysis to a two-echelon

serial supply chain where the first echelon faces the end customer de-

mand and the second echelon also holds inventory and replenishes the

first echelon. The lead time to the second echelon is L2 and the lead time

between the second echelon and the first echelon is L1. Unit holding

costs are h1 and h2 ≤ h1 and are charged with respect to the echelon

stock position. Unit backorder costs only appear at the first echelon

with a cost b. The base stock levels y1 and y2 are also based on the

echelon stock measure. The cost function for the first echelon is then

EC1 (y1) = h1E (y1 −DL1+1)
+
+ (b+ h2)E (DL1+1 − y1)

+

= h1

Z y1

ξ=0

(y1 − ξ) fL1+1 (ξ) dξ

+(b+ h2)

Z ∞
ξ=y1

(ξ − y1) fL1+1 (ξ) dξ.
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As in the newsvendor model, the cost minimizing base stock level y1 is

characterized by

FL1+1 (y
∗
1) =

b+ h2

b+ h1 + h2
.

Given the retailer’s optimal base stock level y∗1 , we define the induced

penalty function as

G (x) = EC1 (min{y∗1 ;x})−EC1 (y
∗
1) .

The second echelon expected cost function can then be written as

EC2 (y2) = h2E (y2 −DL2 − μ) +E (G (y2 −DL2)) .

EC2 (y2) can be numerically minimized with respect to y2 and gives the

optimal second echelon base stock level y2.

The echelon inventory base stock levels can be translated to installa-

tion stock inventory levels under the condition that the inventory system

is nested (Axsäter and Rosling, 1993), i.e., y1 = y∗1 and y2 = y∗2 − y∗1 .

2.2.3.2 Allocation Policies for Distribution Systems

If a manufacturer with limited inventory has to serve multiple retail-

ers, the question of how to allocate the inventory among the retailers

becomes important. Initially, Clark and Scarf (1960) had to make an

assumption on the inventory allocation when they extended their serial

supply chain model that we have introduced above to a distribution sys-

tem. In order to optimize their distribution system, retailer inventories

had to be balanced. Subsequently, inventory balancing received some

more attention in inventory allocation studies where a manufacturer

has to supply multiple retailers from a central warehouse. One line of

research focuses on setups where the central warehouse does not hold

any stock. Eppen and Schrage (1981) analyze a model with identical

costs at the retailers and develop a cost optimal policy. Federgruen and

Zipkin (1984) extend their model to non-identical retailers and develop
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an approximation that is based on the assumption that the inventory

imbalance is negligible. Zipkin (1984) analyzes the case if inventory im-

balances are significant and improves the stocking policy for this case.

Verrijdt and de Kok (1996) develop an optimal ordering and allocation

policy if a certain service level should be guaranteed at the retailers.

In the second line of research, inventory is held back at the central

warehouse for a later replenishment of the retailers. Jackson (1988) ex-

tends the model of Eppen and Schrage by allowing the central warehouse

to hold back some inventory. They use a ship-up-to-S policy and show

that the approach leads to high reductions in backorder periods. Jackson

and Muckstadt (1989) analyze the case for two replenishment opportu-

nities with identical retailers. Jönsson and Silver (1987) optimize service

levels. Since their service measure is based on an infinite-horizon, their

analysis results in a backorder minimization. Subsequently, McGavin et

al. (1993) present a model similar to ours. For the infinite retailer case

they show that a 50/25 policy gives good results, i.e., a second replen-

ishment should take place in the middle of the period and 25% of the

inventory should be reserved for this replenishment. van der Heijden

(1999) optimizes the allocation if a service level constraint and a fixed

shipment frequency exists.

2.2.3.3 Service Levels in Multi-Echelon Systems

In multi-echelon inventory systems, service levels are typically specified

at the most downstream echelon and cost minimizing target inventory

levels are computed for each echelon. A review of the relevant service

level models can be found in Diks et al. (1996). Cohen and Lee (1988),

Lee and Billington (1993), and Choi et al. (2004) analyze supply chain

models where service levels between echelons of a supply chain are rel-

evant. Cohen and Lee (1988) analyze a continuous review inventory

system. They use a decomposition approach to model the different sites

of a supply chain network and assume that these local target levels are

exogenously specified. They provide an approach that optimizes order
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points and lot sizes using local service level targets as lower bounds on

the service level for each site. Lee and Billington (1993) analyze a peri-

odic review multi-echelon supply chain model, which was motivated by

an application at Hewlett-Packard where the last echelon must achieve

a given customer service level. They develop a heuristic to determine

local target service levels for each site. Choi et al. (2004) consider a two-

echelon supply chain where the supplier has finite capacity and manages

the inventory of his components at the manufacturer’s site under a VMI

arrangement similar to our model in Chapter 5. The manufacturer uses

the components for assembling the final product with a finite produc-

tion capacity. He faces stochastic end customer demand and requires a

certain customer service level. Choi et al. show that specifying target

service and backorder levels for the supplier leads to optimal inventory

decisions at the supplier echelon.

In this chapter, we have introduced the basic concepts of inventory

management. In the next chapter, we build on these approaches to

design contracts that lead to a good performance of the supply chain.



Chapter 3

Foundations of Supply
Chain Contracts

The inventory models that we have presented in the previous chapter

are based on the assumption that all decisions concerning the inventory

are made by only one central decision maker that wants to maximize

his own profits. In a single-echelon inventory system this clearly does

not lead to any conflicts, but in a multi-echelon system the outcome can

be a highly inefficient supply chain. Whang (1995) rightly states that a

locally optimal solution can be suboptimal from a global point of view

when each party pursues its own goals.

Contracts are needed to align the supply chain partners’ incentives

to a common goal. Normally, this common goal should be the maximiza-

tion of total supply chain profits. Contracting is a tool that is needed

to negotiate the exact terms of this aligned supply chain relationship.

Good contracts then do not only reduce costs for solving disputes, but

also lead to a more stable relationship between the supply chain partners

and reduce transaction costs (Tsay et al., 1999). The following example

shows the importance of having clear and easily enforceable contracts:

In the U.S. information technology sector, disputed amounts between
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supplier and manufacturer are on average 3-5% of total sales in recent

years. This leads to enormous overhead costs for dispute resolution on

both sides and to unclear incentives and decisions of the involved parties

(Billington, 2005).

Research on contract design in inventory management originated in

the seminal work of Spengler (1950) on double marginalization. He

shows that a retailer chooses less than optimal order quantities because

the retailer does not take the manufacturer’s profit margin into account.

Subsequently, the topic of contracting and inventory management has

received significant attention, especially in recent years, as the literature

review of Cachon (2003) shows.

The design of contracts is also strongly influenced by legal issues.

However, we do not consider these issues in detail in our work. We will

focus on the operational details of contracts as far as they are relevant for

inventory management. In Section 3.1 we motivate the use of contracts

in an inventory system setup. In Section 3.2 we classify contracts by

contractual clauses. In Section 3.3 we introduce some basic contract

models in inventory management.

3.1 Motivation for Contracts

A contract makes the exact incentives explicit. Each supply chain part-

ner knows what is expected from him and what is important to the

supply chain in total. When we talk about contracts in the area of

inventory management, a simplified model with one manufacturer and

one retailer is used frequently. Before we describe efficient supply chain

contracts in detail, we introduce this basic manufacturer-retailer supply

chain that is presented in Figure 3.1. The retailer orders y units for a

total price of w (y) from the manufacturer who in turn produces the y

units at a cost c (y). After y units have been delivered, the retailer faces

a stochastic customer demand D and sells min(D; y) units to the end

customer and receives the revenue r(min(D; y)).
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min(D;y)

w(y)

c(y)

r(min(D;y))

y

y

y

MTOManufacturer

Retailer

y

y Physical Flow
Financial Flow
Information Flow

Figure 3.1: Supply Chain with Physical, Financial, and Information
Flows

With a centralized decision maker, the expected supply chain profit

can be optimized with respect to y and will lead to the supply chain

optimal expected profit Πc. Πc is often referred to the first-best case

solution (Tsay et al., 1999). In the decentralized case, the retailer only

optimizes his own profits and the supply chain would only realize a

profit of Πd. For this case, Spengler (1950) has shown that for w > c,

we have Πd < Πc, i.e., the supply chain is not coordinated. This is the

so-called double marginalization effect.

In literature, the goal of designing good contracts for inventory man-

agement is that the contracts lead to a coordinated supply chain, i.e., a

supply chain where the supply chain profits equal the profits of the cen-

tralized solution Πd = Πc. Under such contracts, the total supply chain

profit can be improved with respect to the uncoordinated case and the

improvements can be divided up between the manufacturer and retailer

such that a win-win situation results. However, not all contracts divide

up the profits fairly among the supply chain partners. For example, the

retailer can take all gains from the contract and leave the manufacturer

with the same profit level as before. Unfortunately, the definition of
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fairness is hard to quantify in this context. Still, some approaches exist

that take contract fairness into account. For example, Cui et al. (2007)

consider a contract fairness measure that takes profit level inequalities

into account.

3.2 Classification of Contracts

In literature we can find a variety of different contracts that can be used

to manage inventory optimally. These contracts can be classified into

different classes. Tsay et al. (1999) provide a classification that assigns

contracts to different classes based on their contract clauses. They sug-

gest contract clauses that are concerned with decision rights, pricing,

minimum purchasing commitments, quantity flexibility, buyback and

return, allocation, lead time, and quality.

1. Decision rights If the contract specifies decision rights, a manu-

facturer for example can exert direct control over a retailer. For

example, the manufacturer can dictate the retailer’s order size or

the retail price under a Resale Price Maintenance (RPM) agree-

ment. Clearly, this contract clause requires high negotiation power

of one supply chain partner.

2. Pricing The pricing determines how physical transactions be-

tween the two contract parties translate into financial streams. For

example, the wholesale price can be written as w (x) = K+xk0 for
an order quantity x. Then K is the fixed cost and k0 the variable

cost factor. This wholesale price contract is then called a two-

part tariff because it includes both a fixed payment and a variable

payment. In other situations, quantity discounts are possible for

high order quantities or the manufacturer can subsidize the retail-

ers if their inventory loses value. This is frequently used in price

protection agreements (Lee et al., 2000) that are prevalent in the

personal computer industry, as Callioni et al. (2005) show for an
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example at HP. Lariviere and Porteus (2001) also study price-

only contracts in a newsvendor setting. They show that a lower

coefficient of variation (CV) leads to a higher wholesale price.

3. Minimum Purchasing The minimum purchasing clause deter-

mines the minimum quantity a company will buy from a supplier.

Prominent examples can be found in the computer industry where

a manufacturer has to commit to a certain quantity because the

supplier has to build up capacity well in advance (Cachon, 2004).

4. Quantity Flexibility This contract clause allows one of the parties

to deviate from a previously committed quantity. For example,

a manufacturer wants to change his previously committed pur-

chasing quantity of a component because additional knowledge of

the potential customer demand has become available. How much

and at which cost a supply chain partner can deviate from this

quantity is determined by a quantity flexibility contract (Tsay,

1999).

5. Buyback and Return With this contract clause, the retailer can

return unsold products to the manufacturer. For example, Paster-

nack (1985) shows that the supply chain can be coordinated with

a buyback contract if the supplier has infinite capacity.

6. Allocation The allocation clause specifies how the manufacturer’s

inventory is distributed among the retailers if the manufacturer’s

inventory is limited.

7. Lead Time With a lead time clause, the promised lead time can

be specified. For example, Dell requires an immediate availability

of components from their suppliers (Kapuscinski et al., 2004) or a

company can specify a time-window in which deliveries should ar-

rive. This contract clause is often connected with a pricing clause

as for example in Cachon and Zhang (2006) where a manufacturer

has to pay late-fees if the product is not immediately available.
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8. Quality The quality clause determines the characteristics of the

product. Also the functionality or process quality can be specified

with this clause.

The contracts of this thesis fall into the categories pricing, lead time,

and allocation. In the following section we therefore introduce the basic

supply chain contract models that are closely related to our research.

3.3 Contracting Models

In this section we first introduce basic one-period contracting models

and show how the supply chain can be coordinated (Subsection 3.3.1).

Then, we extend the analysis to multiple-period base stock models (Sub-

section 3.3.2).

3.3.1 One-Period Contracting Models

In the most basic case, a manufacturer delivers her product to a retailer.

The manufacturer uses a make-to-order (MTO) strategy and the retailer

determines his optimal inventory level with the newsvendor model. The

manufacturer’s unit production cost is c, the wholesale price is w per

unit, the salvage value is v per unit, and the unit selling price is r per

unit. Demand is stochastic and follows the known p.d.f. f (·). Then

for a given wholesale price w, the retailer’s optimal order quantity yr

satisfies

F (yr) =
r − w

r − v
.

Clearly, we can see from Section 2.2.2 that the first-best solution y∗ that
maximizes the total expected supply chain profit is characterized by

F (y∗) =
r − c

r − v

It follows that the supply chain with a wholesale price contract only

earns an inferior expected profit compared to a centralized supply chain.



3.3. CONTRACTING MODELS 43

Therefore, a simple wholesale price contract only coordinates the supply

chain if the retailer takes all profits, i.e., w = c. In practice, a manufac-

turer would not accept such a contract since it violates his participation

constraint to realize a certain minimal profit. Clearly, the manufacturer

does not have an incentive to participate in such a setup.

In literature, different solutions have been proposed to solve the

double marginalization problem. We will introduce the most important

ones next, the buyback and revenue sharing contract.

A contract type that is widespread in the high-tech and publishing

industry is the buyback contract. In a buyback contract, a manufacturer

buys back excessive inventories from the retailers or gives them a subsidy

that sets off potential losses by discounted selling. With this contract,

the manufacturer pays the retailer b per unit of excess inventory at the

end of the selling season. The supply chain is coordinated if the order

size of the decentralized system equals the order size of the centralized

system, i.e., when the critical ratios are equal. Therefore,

r − c

r − v
=

r − w

r − b

has to hold. In other words, if the buyback price b equals

b = −c− v

r − c
r +

r − v

r − c
w

the supply chain is coordinated (Thonemann, 2005). There exist an in-

finite number of potential buyback contracts that coordinate the supply

chain. The wholesale price can be used to allocate profits between the

manufacturer and the retailer. If w = c the retailer takes all profits

as in the wholesale price contract, whereas the manufacturer takes all

profits if w = r.

Another contract type is the revenue-sharing contract (Cachon and

Lariviere, 2005). This contract type has been successfully applied in

the American video rental business (Cachon and Lariviere, 2001). In

this contract, the retailer pays a fraction (1− u) of the revenue to the
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manufacturer. It follows that the retailer keeps ur per unit sold. The

supply chain is coordinated if

r − c

r − v
=

ur − w

ur − v
.

Therefore, coordinating contracts can be found by using

u = −v (r − c)

r (c− v)
+

r − v

r (c− v)
w

with
r − c

r − v
v ≤ w ≤ c.

Again, there exist an infinite number of coordinating contracts. As

before, the wholesale price can be used to allocate profits between the

supply chain partners.

Other contract types that are based on the previously presented base

model include quantity flexibility, quantity discounts, or sales rebates

clauses. Details about these contracts can be found in Cachon (2003).

3.3.2 Base Stock Contracts

The models of the last subsection were based on a one-period analysis.

In this subsection, we introduce contracting models that deal with a

multiple period setup where the upstream party only has limited ca-

pacity. In this case the upstream party does not follow a make-to-order

strategy as before, but also follows a base stock policy, i.e., make-to-

stock.

This setup is analyzed by Chen (1999), Lee and Whang (1999), Ca-

chon and Zipkin (1999), and Porteus (2000). Chen (1999) analyzes

a decentralized multi-echelon supply chain. He shows that the sup-

ply chain can be coordinated by an inventory accounting scheme where

the accounting inventory level is used instead of the traditional echelon

stock level. The accounting inventory level of the downstream echelon
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includes all orders placed by the downstream echelon with the upstream

echelon, regardless of whether the upstream echelon can deliver the or-

der or backorders it. Lee and Whang (1999) analyze a decentralized

serial supply chain where the upper echelon faces inventory holding

costs, but no backorder penalty costs. Based on the main ideas of Clark

and Scarf (1960), they develop an optimal non-linear incentive scheme

that incentivizes all echelons to choose the supply chain optimal base

stock levels by penalizing certain echelons for shortages and subsidizing

others for holding inventory. Porteus (2000) builds on this approach by

introducing responsibility tokens. These responsibility tokens are given

to the downstream echelon as a replacement for real units whenever the

order cannot be fully filled. The issuer of the responsibility token bears

all the financial consequences of delayed deliveries at lower echelons.

Porteus shows that the supply chain can be coordinated with this ap-

proach. Cachon and Zipkin (1999) show how supply chain coordination

can be achieved in a serial two-echelon supply chain with a payment

scheme that depends linearly on the backorders of the two echelons and

the retailer’s on-hand inventory. They show that there exists a linear

contract that leads to supply chain coordination. This contract is based

on linear transfer payments tI , trB, and tsB where tI is paid by the man-

ufacturer to the retailer for every unit on the retailer’s stock. Therefore

it serves as an inventory subsidy. trB has to be paid by the retailer for

every backorder at the retail store. Thereby, the supplier can ensure

a certain availability of his product. Finally, tsB is paid by the manu-

facturer to the supplier for every backorder at the manufacturer. This

ensures that the manufacturer has sufficient stock to meet the retailer’s

orders. Cachon and Zipkin (1999) demonstrate that the solution is a

Nash equilibrium, which implies that it is optimal for both echelons to

choose the supply chain optimal solution.



Chapter 4

Coordinating Service
Level Contracts for a
Serial Supply Chain

4.1 Introduction

The coordination of the partners of a supply chain is governed by sup-

ply contracts. There are several types of supply contracts that are

commonly used in practice. A particularly popular type of supply con-

tract is the service level contract (Behrenbeck et al., 2007). Under a

service level contract, companies specify a service level that a supplier

must achieve and the consequences of missing it. Since most companies

measure their own service levels and many companies also measure the

service levels of their suppliers, the information required for implement-

ing a service level contract is typically available at both partners of the

supply chain. In the consumer goods industry, for instance, essentially

all manufacturers measure their own service levels and 70% of the re-

tailers measure the service levels of the manufacturers (Thonemann et

47
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al., 2005). In this industry, manufacturers and retailers typically agree

on a service level that a manufacturer is expected to achieve. However,

many of these agreements are informal and the retailers frequently do

not specify the sanctions for missing the contract service level in their

contracts. Those who specify sanctions typically use financial penalty

payments that the manufacturer must pay to the retailer if the contract

service level is not met.

One of the main challenges when negotiating a service level contract

is agreeing on the contract parameters, i.e., the values of the contract

service level and the penalty payment. This issue has not been ad-

dressed in the literature and we are filling the gap in this chapter. We

analyze a supply chain operating under a service level contract and show

how the optimal parameter values of the contract can be determined.

Our interest is in parameter values of the contract that coordinate the

supply chain, i.e., that ensure that under decentralized decision making

the supply chain optimal solution is achieved. We also derive structural

insights about optimal parameter value combinations, such as the con-

vexity of the optimal penalty cost in the contract service level. The

results of our analyses can be used by decision makers to design opti-

mal service level contracts and provide a solid foundation for contract

negotiations.

The remainder of the chapter is organized as follows: In Section 4.2,

we develop a mathematical model of a two-echelon supply chain that is

governed by a service level contract. We analyze two types of service

level contracts, a flat penalty contract and a unit penalty contract.

Under a flat penalty contract, a fixed penalty payment is due in each

period in which the contract service level is not achieved. Under a unit

penalty contract, a penalty payment is due for each unit delivered fewer

than specified by the parameters of the contract. In Section 4.3, we

analyze the optimal response of the supplier to both types of contracts.

In Section 4.4, we build on the optimal response functions and derive

contracts that coordinate the supply chain. We show that the supply
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chain can be coordinated for any value of the contract service level if

the value of the penalty payment and the wholesale price are chosen

properly. However, values of the contract service levels that match

traditional α and β service levels are particularly appealing to decision

makers. In Section 4.5, we therefore analyze contracts with this property

in some detail and prove that they always exist. In Section 4.6, we

conclude. All proofs of this chapter are contained in Section 4.7.

4.2 Model Description

We consider a two-echelon supply chain with one supplier (indexed by s)

and one manufacturer (indexed by m). Both companies operate under

periodic review base stock policies with base stock levels ys and ym,

respectively. Excess demand is backordered. The sequence of events

during a period is the same at both companies: At the beginning of a

period, shipments arrive and orders are placed. Then, backorders are

filled. Finally, demands arrive and are filled.

The unit inventory holding costs of the supplier and manufacturer

are hs and hm and are charged against the inventory left over at the end

of a period. To restrict our model to non-trivial solutions, we require

hs < hm (Zipkin, 2000). The manufacturer receives r for every unit

sold and encounters a backorder penalty cost bm for each unit that is

backordered at the end of a period. This cost is interpreted as usual

and includes losses in customer good-will (Porteus, 1990). In Section

4.6, we discuss how our approach can be used in situations where the

manufacturer uses a service level constraint as opposed to a backorder

penalty cost. The supplier encounters penalty costs if the fraction of

demand that the supplier fills is below the contract service level SL

(0 < SL ≤ 1). The lead time of the supplier is Ls > 0 and the lead

time between the supplier and the manufacturer is Lm > 0.

Demand is stochastic, stationary, continuous, and independent be-

tween periods. Demand can be arbitrarily distributed as long as the
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p.d.f. is strongly unimodal or logconcave. This property holds for most

theoretical distributions that are relevant for modeling demand, such as

the Normal, truncated Normal, Gamma with shape parameter α > 1,

Beta(α, β) with parameters α ≥ 1, β ≥ 1, and the Uniform distribu-

tions. For an in-depth treatment of logconcave distributions and their

application to inventory control we refer the reader to Rosling (2002).

To keep our analyses concise, we will focus on distributions with infinite

non-negative support. Distributions with finite support can be treated

analogously, but they require the definition of feasible regions for the pa-

rameter values of the supply contracts, which makes the analysis much

more complex and adds little value.

We denote the demand over t periods by Dt and the correspond-

ing p.d.f. and c.d.f. by ft(·) and Ft(·), respectively. Note that the

logconcave property is inherited to demand convolutions (Karlin and

Proschan, 1960), i.e., if the demand over a single period is logconcave,

then the demand over the lead time is also logconcave. As usual, the

demand distribution is known to the supplier and the manufacturer (Lee

and Whang, 1999).

We analyze two types of supply contracts, which we refer to as flat

penalty and unit penalty contracts. Under a flat penalty contract, the

supplier pays the manufacturer a fixed amount p for each period in which

the contract service level SL is not met, i.e., for each period in which

the supplier does not fill at least a fraction SL of the manufacturer’s

orders. Let D denote the demand of the current period and let DLs

denote the demand over the previous Ls periods. Then, the inventory

available for filling demand of the current period is ys − DLs and the

flat penalty function can be written as

Pf (ys, p, SL,D,DLs) =

(
p if SL D > ys −DLs

0 if SL D ≤ ys −DLs .

Note that we implicitly require that backorders are filled before the

demand of the current period and that the supplier is charged a penalty
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in each period in which all or some backorders are not filled. This

approach ensures that the supplier does not build up backorders.

Under the unit penalty contract we analyze, the supplier is charged a

penalty of p for each unit she delivers less than SL D if she fills at least

some of the demand of the current period. If she fills no demands of the

current period, she is charged a penalty of p for each unit of demand of

the current period. With this contract structure, we penalize unfilled

demands of periods in which no demands are filled higher than unfilled

demands of periods in which at least some demands are filled. The unit

penalty function can be written as

Pu(ys, p, SL,D,DLs) =

(
pD if DLs ≥ ys

p(ys −DLS − SL D)− if DLs < ys.

The first case holds if no inventory is available at the beginning of

the period. The second case holds if some inventory is available at the

beginning of the period. Alternatively to this penalty function, we could

use a penalty function where we penalize unfilled demands of periods in

which some demands are filled equally to unfilled demands of periods in

which no demands are filled. The disadvantage of this penalty function

is that the resulting expected profit function is neither concave nor

quasi-concave which makes the optimization of the contract parameters

analytically intractable. We note that in most practical situations the

service levels of a supplier are reasonable high. In the consumer goods

industry, for instance, essentially all companies achieve service levels of

greater than 90% (Behrenbeck et al., 2007). Then, some demands can

almost always be filled and the penalty cost of the contract we analyze is

very close to the penalty cost of the contract with the alternative penalty

function, i.e., both contracts are very similar. However, in situations

with very low service levels at the supplier (< 50%), the penalties of the

contracts can differ substantially.

We consider a Stackelberg game in which the manufacturer is the

Stackelberg leader and the supplier is the Stackelberg follower (Tomlin,
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2003; Wang et al., 2004). The objective of both parties is maximizing

their individual expected profits. The manufacturer has information on

the lead time Ls, the inventory holding cost hs, and the unit cost c of

the supplier. He designs a service level contract that he offers to the

supplier. The service level contract specifies the wholesale price w, the

type of penalty function (flat or unit penalties), the penalty cost factor

p, and the contract service level SL. Given this contract, the supplier

decides on the base stock level ys that maximizes her expected profit,

i.e.,

EΠ∗s(w, p, SL) = max
ys

E[(w − c)D − hs(ys −DLs+1)
+

−P (ys, p, SL,D,DLs)],

where P (ys, p, SL,D,DLs) = Pf (ys, p, SL,D,DLs) under a flat penalty

contract and where P (ys, p, SL,D,DLs) = Pu(ys, p, SL,D,DLs) under

a unit penalty contract. The decision variable of the supplier is the

supplier’s base stock level ys.

The manufacturer’s objective is to maximize his expected profit.

The decision variables are the contract type and parameters, and the

manufacturer’s base stock level ym, i.e.,

Π∗m = max
ym,w,p,SL

E [(r − w)D + P (ys, p, SL,D,DLs)]

− hmIm(ym, ys)− bmBm(ym, ys)

s.t. EΠ∗s(w, p, SL) ≥ Π̂s.

The first two terms of the manufacturer’s objective function model the

two streams of income the manufacturer generates. The first income

stream is the contribution generated by selling products to end cus-

tomers. The second income stream is the penalty payment the manu-

facturer receives from the supplier.

The third term of the objective function is the expected inventory

holding cost, where Im(ym, ys) denotes the average inventory level at
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the end of a period. It can be computed as

Im(ym, ys) = FLs+1(ys)im(ym) +

Z ∞
x=ys

im(ym + ys − x)fLs+1(x)dx,

where

im(z) =

Z z

δ=0

(z − δ)fLm+1(δ)dδ

is the manufacturer’s average on-hand inventory and z denotes the man-

ufacturer’s on-hand inventory at the beginning of the period. Cachon

(2003) uses a similar approach.

The fourth term of the objective function is the expected backorder

penalty cost, where Bm(ym, ys)denotes the average backorder level at

the end of the period. It can be computed as

Bm(ym, ys) = FLs+1(ys)bm(ym) +

Z ∞
x=ys

bm(ym + ys − x)fLs+1(x)dx,

where

bm(z) =

Z ∞
δ=z

(δ − z)fLm+1(δ)dδ.

is the manufacturer’s average backorders and z denotes the manufac-

turer’s on-hand inventory at the beginning of the period.

The constraintEΠ∗s(w, p, SL) ≥ Π̂s ensures that the supplier achieves
an expected profit that is greater than or equal to her reservation profit

Π̂s. If the expected profit of the supplier is below the reservation profit,

she will not accept the contract. Therefore, the manufacturer designs

only contracts that guarantee the supplier a minimal expected profit

Π̂s. Corbett et al. (2004) discuss the use of reservation profits in detail.

4.3 Supplier Response

In this section, we analyze how the expected profit functions of the

supplier are affected by the type and parameters of the supply contract

and show that the expected profit functions are quasi-concave in the
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Figure 4.1: Demand Space Partitioning

supplier’s base stock level. We also derive the optimality conditions for

both contract types.

4.3.1 Flat Penalty Contract

Under a flat penalty contract, the supplier incurs a penalty charge of

p in each period in which the contract service level is not met, i.e., in

each period in which SL D > ys −DLs . To determine the probability

of this event, we partition the demand space into the three areas shown

in Figure 4.1. In area 1, the demand over the previous Ls periods was

greater than the base stock level ys. The inventory is insufficient to

fill the backorders of previous periods, the service level is zero, and the

supplier incurs a penalty payment of p. In area 2, all previous backorders

are filled, but the inventory is less than SL D and the supplier incurs a

penalty of p. In area 3, all previous backorders are filled, the inventory is

sufficient to fill at least SL D of the demand, and no penalty is incurred.
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The probability that the supplier incurs no penalty charge is

Pr(SL D ≤ ys −DLs) =

Z ys

x=0

fLs(x)F

µ
ys − x

SL

¶
dx

and the probability that the supplier incurs a penalty charge is

Pr(SL D > ys −DLs) = 1−
Z ys

x=0

fLs(x)F

µ
ys − x

SL

¶
dx.

The expected penalty cost per period is pPr(SL D > ys−DLs) and

the expected profit of the supplier can be computed as

EΠfs (ys) = E[(w − c)D − hs(ys −DLs+1)
+]−

pPr(SL D > ys −DLs)

= (w − c)μ− hs

Z ys

x=0

(ys − x)fLs+1(x)dx−

p

µ
1−

Z ys

x=0

fLs(x)F

µ
ys − x

SL

¶
dx

¶
. (4.1)

Figure 4.2 illustrates the cost terms for truncated normally distributed

demand with μ = 20, σ = 5, Ls = 2, and hs = 1, p = 10, and SL = 0.9.

From Figure 4.2 it can be seen that the expected cost function is not

convex in the base stock level ys. Similarly, it can be demonstrated that

the expected profit function is not concave in ys. However, Proposition

4.1 states that the expected profit function EΠfs (ys) is quasi-concave in

the base stock level ys and states the optimality condition.

Proposition 4.1 Under a flat penalty contract, the supplier’s expected

profit function EΠfs (ys) is quasi-concave in ys. The optimal base stock

level satisfies

−hsFLs+1(ys) +
p

SL

Z ys

x=0

fLs (x) f

µ
ys − x

SL

¶
= 0.
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4.3.2 Unit Penalty Contract

Under a unit penalty contract, the supplier incurs a penalty charge of

p for each unit of demand that is backordered and that exceeds the

number of units required by the service level contract. To determine

the expected penalty per period, we use the demand space partitioning

of Figure 4.3. In area 3, all backorders and demands are filled and it

suffices to analyze areas 1 and 2. In area 1, the demand over the previous

Ls periods was greater than the base stock level ys. The inventory is

insufficient to fill the backorders of the previous periods and the supplier

incurs a penalty payment of pD. In area 2, all previous backorders are

filled, but the inventory is less than SL D and the supplier incurs a

penalty of p(ys −DLS − SL D)−. So, the expected penalty charge per

period is

E [Pu(ys, SL,D,DLs)] =

p

ÃZ ys

x=0

Z ∞
ϕ= ys−x

SL

µ
ϕ− ys − x

SL

¶
f(ϕ)fLs(x)dϕdx +

Z ∞
x=ys

μfLs(x)dx

¶
= p

µZ ys

x=0

bs

µ
ys − x

SL

¶
fLs(x)dx+ (1− FLs(ys))μ

¶
,

where

bs(z) =

Z ∞
δ=z

(δ − z)f(δ)dδ

is the expected backorder level. The expected profit function is

EΠus (y
u
s ) = (w − c)μ− hs

Z ys

x=0

(ys − x)fLs+1(x)dx

− p

µZ ys

x=0

bs

µ
ys − x

SL

¶
fLs(x)dx+ (1− FLs(ys))μ

¶
. (4.2)

Figure 4.4 illustrates the cost terms for truncated normally distributed

demand with μ = 20, σ = 5, Ls = 2, and hs = 1, p = 1, and SL = 0.9.

As before, the expected total cost function is not convex in ys and the
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Figure 4.4: Holding Cost, Penalty Cost, and Total Cost for a Unit
Penalty Contract

expected profit function is not concave in ys. However, Proposition 4.2

states that the expected profit function EΠus (ys) is quasi-concave and

states the optimality condition.

Proposition 4.2 Under a unit penalty contract, the supplier’s expected

profit function EΠus (ys) is quasi-concave in ys. The optimal base stock

level satisfies

−hsFLs+1(ys)− p

Z ys

x=0

¡
F
¡
ys−x
SL

¢− 1
¢

SL
fLs(x)dx = 0.

We have seen how the supplier responds to flat and unit penalty

contracts. Next, we analyze how contract parameters can be determined

that coordinate the supply chain.

4.4 Coordinating Contracts

Our interest is in solutions that coordinate the supply chain, i.e., in

solutions that ensure that the maximum expected supply chain profit
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of a centralized solution is achieved. In the following, we will first char-

acterize the optimal centralized solution and then present coordinating

flat and unit penalty contracts.

4.4.1 Optimal Centralized Solution

Clark and Scarf (1960) and Federgruen and Zipkin (1984) have shown

how the base stock levels of the optimal centralized solution can be

computed. We refer to the optimal base stock levels as ySC
∗

s and

ySC
∗

m and denote the corresponding expected supply chain profit by

EΠ∗SC(y
SC∗
m , ySC

∗
s ). In our setting, the manufacturer’s objective is to

maximize his expected profit subject to a constraint that the supplier’s

expected profit is at least Π̂s. This implies that the maximum expected

profit of the manufacturer is

EΠ∗m(ySC
∗

m , ySC
∗

s ) = EΠ∗SC(y
SC∗
m , ySC

∗
s )− Π̂s.

To achieve this profit, the manufacturer must use a base stock level

ym = ySC
∗

m and must design a contract that (i) incentivizes the supplier

to choose a base stock level of ys = ySC
∗

s and (ii) results in an expected

profit of Π̂s at the supplier, i.e., the manufacturer is only interested in

contracts with

EΠs(y
SC∗
s ) = (w − c)μ− hs

Z ySC
∗

s

x=0

(ySC
∗

s − x)fLs+1(x)dx

−E[P (ySC
∗

s , SL, p,D,DLs)]

= Π̂S .

Solving the equation for the wholesale price w, we obtain the optimal
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wholesale price of the coordinated supply chain:

w∗(ySC
∗

s , SL, p) = c+
hs
μ

Z ySC
∗

s

x=0

(ySC
∗

s − x)fLs+1(x)dx

+
E[P (ySC

∗
s , SL, p,D,DLs)]

μ
+
Π̂S
μ
.

The last equation shows us that the supply chain optimal wholesale price

w∗(ySC
∗

s , SL, p) is equal to the sum of unit cost, expected unit inventory

holding cost at the supplier, expected unit penalty cost, plus the unit

reservation profit Π̂S/μ. To compute the optimal wholesale price, the

manufacturer must compute the optimal ySC
∗

s using the Clark and Scarf

model and must specify SL and p such that the supplier uses a base stock

level that is equal to the base stock level of the coordinating solution,

i.e., such that ys = ySC
∗

s . We will show next how the manufacturer can

specify SL and p for our two contract types such that the supply chain

is coordinated.

4.4.2 Coordinating Flat Penalty Contract

For a flat penalty contract, Proposition 4.3 states for which combina-

tions of SL and p the supplier chooses the supply chain optimal base

stock level.

Proposition 4.3 Under a flat penalty contract the supplier’s optimal

base stock level is equal to ySC
∗

s if

p(SL) =
hsFLs+1(y

SC∗
s )

1
SL

R ySC∗s

x=0
fLs (x) f

³
ySC∗s −x

SL

´
dx

, 0 < SL ≤ 1. (4.3)

For a given contract service level SL, we can compute the coordinat-

ing penalty cost p(SL) using Equation (4.3). Figure 4.5 shows numerical

results for three examples with truncated normally distributed demand

with μ = 20, σ = 5, hs = 1, Ls = 2, and Lm = 4. To analyze a variety
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of situations, we used inventory holding cost and backorder penalty cost

combinations of (hm, bm) = {(1.7, 1.5), (55, 55), (1500, 1500)}, resulting
in optimal centralized solutions of (ySC∗s , ySC∗m ) = {(30, 109), (50, 100),
(60, 100)}.

Figure 4.5 illustrates that the coordinating penalty cost p(SL) is

increasing in the contract service level SL if the base stock level at

the supplier is low (ySC∗s = 30). Similarly, p(SL) is decreasing in the

contract service level SL if the base stock level ySC∗s is high (ySC∗s = 60).

For an intermediate base stock level (ySC∗s = 50), the coordinating

penalty cost p(SL) is decreasing-increasing in the contract service level

SL. Proposition 4.4 states general results on the effect of the contract

service level SL on the coordinating penalty cost p(SL).

Proposition 4.4 Under a flat penalty contract the penalty cost factor

p is quasi-convex in the contract service level SL.

To understand the rationale behind the impact of the contract ser-

vice level SL on the coordinating penalty cost p(SL), recall that the

supplier trades off marginal savings in expected inventory holding cost

against marginal increases in expected penalty payments when deciding

on the base stock level ys. From Equation (4.1), it can be seen that in

a coordinated supply chain

hs
d

dys
E(ys −DLs+1)

+

¯̄̄̄
ys=ySC∗s

= −p d

dys
Pr(SL D > ys −DLs)

¯̄̄̄
ys=ySC∗s

.

Note that the marginal expected inventory holding cost (left hand

side) does not depend on the contract service level SL, but that the

marginal expected penalty cost (right hand side) does. Now consider

a situation where the marginal penalty payment probability, i.e., d/dys
Pr(SL D > ys−DLs) ≤ 0 is increasing in SL, such as for ySC∗s = 30 in

our numerical example. To keep the marginal expected penalty payment

constant in such a setting, we must increase the penalty cost p if we

increase the contract service level SL. In other words, in situations in
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Figure 4.5: Coordinating Flat Penalty Contracts
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Figure 4.6: Penalty Payment Probabilities for Different Service
Levels

which the marginal penalty payment probability is increasing in SL,

the coordinating penalty cost p(SL) is increasing in the contract service

level SL. Similarly, in situations in which the marginal penalty payment

probability is decreasing in SL, the coordinating penalty cost p(SL) is

decreasing in contract service level SL.

The question remaining is when the marginal penalty payment prob-

ability decreases in SL and when it increases in SL? To answer this

question, we re-write the penalty payment probability as

Pr(SL D > ys −DLs) = Pr(DLs + SL D > ys),

which shows that the payment probability is a complementary cumu-

lative distribution function (ccdf.). For our numerical example, this

ccdf. is shown in Figure 4.6 for various contract service levels SL. Since

demand is logconcave distributed, the marginal penalty payment prob-

ability, i.e., the derivative of the ccdf., is increasing for small base stock

levels ys and is decreasing for large ys, which explains why the coor-

dinating penalty cost p(SL) is increasing for small base stock levels ys
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and decreasing for large base stock levels ys.

4.4.3 Coordinating Unit Penalty Contract

Analogously to Proposition 4.3, Proposition 4.5 states for which combi-

nations of SL and p the supplier chooses the supply chain optimal base

stock level under a unit penalty contract.

Proposition 4.5 Under a unit penalty contract the supplier’s optimal

base stock level is equal to ySC
∗

s if

p(SL) =
hsFLs+1(y

SC∗
s )R ySC∗s

x=0

1−F ySC∗s −x
SL

SL fLs(x)dx

, 0 < SL ≤ 1. (4.4)

For a given contract service level SL, we can compute the coordinat-

ing penalty cost p(SL) using Equation (4.4). Figure 4.7 shows numerical

results for our three numerical examples that are similar to the results

of the flat penalty contract. For a low base stock level (ySC∗s = 30)

the coordinating penalty cost p(SL) is increasing in the contract service

level SL, for a medium base stock level (ySC∗s = 50) it is decreasing-

increasing, and for a large base stock level (ySC∗s = 60) it is decreasing.

As for the flat penalty contracts, we can state general results on the

effect of the contract service level SL on the coordinating penalty cost

p(SL) in Proposition 4.6.

Proposition 4.6 Under a unit penalty contract the penalty cost factor

p is convex in the contract service level SL.

As before, we can explain the effect of the contract service level SL

on the coordinating penalty cost p(SL) by recalling that the supplier

trades off marginal savings in expected inventory holding cost against

marginal increases in expected penalty payments when deciding on the

base stock level ys. From Equation (4.2), it can be seen that in a
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Figure 4.7: Coordinating Unit Penalty Contracts
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Figure 4.8: Expected Number of Units Short for Different Service
Levels

coordinated supply chain

hs
d

dys
E(ys −DLs+1)

+

¯̄̄̄
ys=ySC∗s

=

− p
d

dys

µZ ys

x=0

bs

µ
ys − x

SL

¶
fLs(x)dx+ (1− FLs(ys))μ

¶¯̄̄̄
ys=ySC∗s

.

Using the same arguments as in Subsection 4.4.2, we see that in

situations in which the marginal expected number of units short , i.e.,

d/dys
¡R ys

x=0
bs

¡
ys−x
SL

¢
fLs(x)dx+ (1− FLs(ys))μ

¢
, is increasing in the

contract service level SL, the coordinating penalty cost p(SL) is in-

creasing in SL. In situations in which the marginal expected number of

units short is decreasing in SL, the coordinating penalty cost p(SL) is

decreasing in the contract service level SL. Figure 4.8 shows that the

marginal expected number of units short is increasing in the contract

service level SL for small base stock levels ys and is decreasing for large

ys. As before, this observation explains the effect that for a unit penalty

contract the coordinating penalty cost p(SL) is increasing for small base
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stock levels ys and decreasing for large base stock levels ys.

The manufacturer must decide which combination of SL and p to

specify in the contract. Since any point on the curves of Figures 4.5

and 4.7 coordinates the supply chain, the manufacturer has infinitely

many combinations to choose from. However, there exists one point on

each curve that is particularly attractive. We refer to these points as

contract consistent points, because at these points the contract service

level is equal to the traditional α or β service levels. We discuss this

issue next.

4.5 Contract Consistent Service Levels

In inventory theory and in practice, two commonly used service levels

are the α and β service levels. The α service level specifies the frac-

tion of periods in which demand is completely filled. The β service

level specifies the expected fraction of demand that is filled in a pe-

riod. These measures are based on an infinite horizon analysis of the

inventory systems, i.e., an infinite number of periods is used for mea-

suring the service level, whereas we measure the service level in each

period. The lengths of the time horizons over which the service levels

are measured matter. Thomas (2005) shows that service level measures

with long and short time horizons might differ significantly and that the

expected finite horizon service level is always greater than the infinite

horizon service level.

We use a time horizon of one period in this chapter, i.e., we evaluate

the service level each period. The corresponding infinite horizon service

level measures are the α and β service levels: The traditional α service

level measure is closely related to the contract service level SL of a flat

penalty contract. The traditional β service level is closely related to the

contract service level SL of a unit penalty contract.

In a coordinated supply chain, the supplier chooses a base stock level

ySC
∗

s and we can compute the corresponding infinite horizon α and β
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Figure 4.9: Consistent Contracts with α = 50% and β = 82.75%

service levels as (Sobel, 2004)

α = FLs+1

³
ySC

∗
s

´
(4.5)

and

β = 1−
E

µh
D − ¡

ySC
∗

s −DLs

¢+i+¶
μ

=

R ySC∗s

x=0
[FLs(x)− FLs+1(x)] dx

μ
. (4.6)

From a managerial perspective, it would be attractive to use supply

contracts where the contract service level SL is equal to the traditional

α or β service level, because the supplier can then focus on achieving the

service level by using well-known methods from inventory management,

i.e., by using Equations (4.5) and (4.6).

Figure 4.9 shows how we can design such contracts for our example

with ySC∗s = 60 and α = 50% and β = 82.75%. If we choose SL = α =

50% and p = 22.86 for a flat penalty contract or SL = β = 82.75% and

p = 1.24 for a unit penalty contract, the supply chain is coordinated.

Proposition 4.7 states that such service level consistent contracts always



4.6. CONCLUSION 69

exist.

Proposition 4.7 For all contract service levels 0 < SL ≤ 1, there

exists a flat penalty contract and a unit penalty contract that coordinate

the supply chain.

4.6 Conclusion

Service levels are commonly used in theory and practice for evaluating

supplier performance. In many supply contracts, service levels are spec-

ified as well as the consequences of not achieving them. In this chapter,

we have analyzed two types of such service level based supply contracts,

flat penalty and unit penalty contracts. We have shown that for any

service level 0 < SL ≤ 1, there exists a coordinating penalty cost p(SL)

and a wholesale price w such that the supply chain is coordinated, i.e.,

the supply chain optimal solutions are chosen by the supplier and the

manufacturer. The supplier achieves an expected profit that is equal

to her reservation profit and the manufacturer maximizes his expected

profit. We have also derived some structural properties about coor-

dinating contracts, such as the (quasi-)convexity of the coordinating

penalty cost p(SL) in the contract service level SL, and have provided

numerical results. Finally, we have compared our service level measures

with the traditional service level measures. The results of our analyses

can support decision makers in specifying the parameters of service level

based supply contracts.

Our model can be easily modified to a setting where the manu-

facturer uses a minimal customer service level instead of a backorder

penalty cost. Then, the expected profit function at the manufacturer

changes and therefore our centralized solution has to be modified ac-

cordingly. Van Houtum et al. (1996) show how the supply chain optimal

base stock levels for this setup can be determined. We can use their ap-

proach for determining the supply chain optimal base stock levels, from

which everything follows.
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In the literature, service level based supply contracts have not been

analyzed analytically, although these contracts are very popular in prac-

tice. With this chapter, we take a first step towards filling this gap. The

results of our analyses allow for a better understanding of the effect

of service level based supply contracts on supplier, manufacturer, and

supply chain performance. In our models, the objective is maximizing

expected profits and we have shown that the supply chain is coordinated

for any combination (SL, p(SL)), assuming that the optimal wholesale

price is chosen. We have not analyzed the effect of these combinations

on the variability of profits for each company. Taking the variability

of profits into account, we can select a combination (SL, p(SL)) that

coordinates the supply chain at a minimal variability of profits of the

supplier or the manufacturer. We have analyzed this issue numerically,

but have so far not been able to derive structural results and therefore

leave the analysis for future research.

4.7 Proofs

Proof of Proposition 4.1. We want to show that EΠfs (ys) is quasi-

concave in ys and a unique maximum yfs exists. Consider the derivative

dEΠfs (ys)

dys
= −hsFLs+1(ys) +

p

SL

Z ys

x=0

fLs (x) f

µ
ys − x

SL

¶
dx.

Assume that the derivative dEΠfs (ys)
dys

is non-negative for 0 ≤ ys ≤ yfs .

Then

−hsFLs+1(ys) +
p

SL

Z ys

x=0

fLs (x) f

µ
ys − x

SL

¶
dx ≥ 0

⇔ FLs+1(ys)
1
SL

R ys
x=0

fLs (x) f
¡
ys−x
SL

¢
dx

≤ p

hs
.
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We can rewrite the last line as

FLs+1(ys)
1
SL

R ys
x=0

fLs (x) f
¡
ys−x
SL

¢
dx

=
FLs+1(ys)

1
SL

R ys
x=0

fLs (x) f
¡
ys−x
SL

¢
dx

· (4.7)

fLs+1(ys)

fLs+1(ys)

=
FLs+1(ys)

fLs+1(ys)
·

fLs+1(ys)
1
SL

R ys
x=0

fLs (x) f
¡
ys−x
SL

¢
dx

≤ p

hs
.

For logconcave frequency functions f(x), the fraction FLs+1(ys)
fLs+1(ys)

is non-

decreasing in ys (Rosling, 2002).

For the second term fLs+1(ys)
1
SL

ys
x=0

fLs (x)f(
ys−x
SL )dx

, we find that it is non-

decreasing in ys since the logconcavity of f(x) implies monotone convo-

lution ratios (Rosling, 2002), i.e., fn(ys)
fm(ys)

is non-decreasing in ys for n ≥
m with fn(ys) = fLs+1(ys) and with fm(ys) =

1
SL

R ys
x=0

fLs (x) f
¡
ys−x
SL

¢
dx

being the frequency function of the partial convolution DLs + SL ·D.

From (g(x)h(x))
0
= g(x)h0(x)+g0(x)h(x) the LHS of Equation (4.7)

is non-decreasing in ys. It follows that there exists only one positive area

of dEΠfs (ys)
dys

in at most one subset of ys and the sign of dEΠfs (ys)
dys

changes

at most once from + to − and thus the objective function EΠfs (ys) is

quasi-concave in ys. Then, an optimal base stock level yfs is unique.

Hence it is sufficient to set the first derivative to zero.

We also see that a higher penalty cost p leads to a higher base stock

level ys because the positive area is increasing due to a higher p/hs.

Proof of Proposition 4.2. We want to show that EΠus (ys) is quasi-

concave in ys and a unique maximum yus exists. Consider the derivative

dEΠus (ys)

dys
= −hsFLs+1(ys)− p

Z ys

x=0

¡
F
¡
ys−x
SL

¢− 1
¢

SL
fLs(x)dx.
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Assume that the derivative dEΠfs (ys)
dys

is non-negative for 0 ≤ ys ≤ yus .

Then

−hsFLs+1(ys)− p

Z ys

x=0

¡
F
¡
ys−x
SL

¢− 1
¢

SL
fLs(x)dx ≥ 0

⇔
R ys
x=0

(1−F( ys−xSL ))
SL fLs(x)dx

FLs+1(ys)
≥ hs

p
.

In the following we will analyze the term
ys
x=0(1−F( ys−xSL ))fLs (x)dx

FLs+1(ys)
. Re-

organizing the term results inR ys
x=0

¡
1− F

¡
ys−x
SL

¢¢
fLs(x)dx

FLs+1(ys)
=

FLs(ys)−
R ys
x=0

F
¡
ys−x
SL

¢
fLs(x)dx

FLs+1(ys)

=
FLs(ys)

FLs+1(ys)
·Ã

1−
R ys
x=0

F
¡
ys−x
SL

¢
fLs(x)dx

FLs(ys)

!
.

We know that FLs (ys)
FLs+1(ys)

is non-increasing in ys and ≥ 0. Also the

term
µ
1−

ys
x=0

F( ys−xSL )fLs (x)dx
FLs (ys)

¶
is non-increasing in ys and we see that

ys
x=0

F( ys−xSL )fLs (x)dx
FLs (ys)

≤ 1 (Rosling, 2002).

From (g(x)h(x))0 = g(x)h0(x) + g0(x)h(x) we can see that the term
FLs (ys)
FLs+1(ys)

µ
1−

ys
x=0

F( ys−xSL )fLs (x)dx
FLs (ys)

¶
is also non-increasing in ys and

d
dys

ys
x=0(1−F( ys−xSL ))fLs (x)dx

FLs+1(ys)
≤ 0. It follows that

ys
x=0

(1−F( ys−xSL ))
SL fLs (x)dx

FLs+1(ys)

is non-increasing in ys. Then the derivative is positive in at most one

subset of ys and the sign of dEΠus (ys)
dys

changes at most once from + to

− and hence the objective function is quasi-concave in ys. Thus, an

optimal base stock level yus is unique and it is sufficient to set the first

derivative to zero.

We also see that a higher penalty cost p leads to a higher base stock

level ys because the positive area increases due to a lower hs/p.
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Proof of Proposition 4.3. The supplier solves

EΠ∗s(ys) = max
ys

(w∗(ySC
∗

s , SL, p)− c)μ

−hs
Z ys

x=0

(ys − x)fLs+1(x)dx

−E[Pf (ys, SL, p,D,DLs)].

Differentiation of the expected profit function with respect to ys yields

d

dys
EΠs(ys) = −hsFLs+1(ys) +

p

SL

Z ys

x=0

fLs (x) f

µ
ys − x

SL

¶
dx. (4.8)

With Equation (4.3) in Equation (4.8) we see that d/dysEΠs(ys) = 0

for ys = ySC
∗

s . Since the expected profit function is quasi-concave, this

corresponds to the optimal solution.

Proof of Proposition 4.4. The proof follows by the unimodal prop-

erty of the demand distribution. Consider the derivative

d

dSL
p(SL) = −

hsFLs+1(ys)
d

dSL

³
1
SL

R ySC∗s

x=0
fLs (x) f

³
ySC∗s −x

SL

´
dx

´
³

1
SL

R ySC∗s

x=0
fLs (x) f

³
ySC∗s −x

SL

´
dx

´2 .

The term d
dSL

³
1
SL

R ySC∗s

x=0
fLs (x) f

³
ySC∗s −x

SL

´
dx

´
is the derivation of the

frequency function of the convolutionDLs+SL·D. From Fn(x) ≤ Fm(x)

with n ≥ m and n = m + ε we can see that fn(x) ≤ fm(x) for x ≤ ȳ

with ȳ being the modal value of the convolution DLs + SL · D with

m = Ls+SL, and fn(x) ≥ fm(x) for x ≥ ȳ. Thus, for a given ySC
∗

s the

sign of d
dSL

³
1
SL

R ySC∗s

x=0
fLs (x) f

³
ySC∗s −x

SL

´
dx

´
can change at most one

time from + to − and it follows immediately that the sign of dp(SL)
dSL can

only change at most once from − to +. This concludes our proof.
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Proof of Proposition 4.5. The supplier solves

EΠ∗s(ys) = max
ys

(w∗(ySC
∗

s , SL, p)− c)μ

−hs
Z ys

x=0

(ys − x)fLs+1(x)dx

−E[Pu(ys, SL, p,D,DLs)].

Differentiation of the expected profit function with respect to ys yields

d

dys
EΠs(ys) = −hsFLs+1(ys)− p

Z ys

x=0

¡
F
¡
ys−x
SL

¢− 1
¢

SL
fLs(x)dx. (4.9)

With Equation (4.4) in Equation (4.9) we see that d/dysEΠs(ys) = 0

for ys = ySC
∗

s . Since the expected profit function is quasi-concave, this

corresponds to the optimal solution.

Proof of Proposition 4.6. In the coordinated solution the penalty

cost factor equals

p(SL) = − hsFLs+1(y
SC∗
s )R ySC∗s

x=0

F
ySC∗s −x

SL −1
SL fLs(x)dx

, 0 < SL ≤ 1.

First, we will analyze the denominator

−
Z ySC∗s

x=0

³
F
³
ySC∗s −x

SL

´
− 1

´
SL

fLs(x)dx.

By substitution with z =
ySC∗s −x

SL we get

Z 0

z=
ySC∗s
SL

(F (z)− 1) fLs(y
SC∗
s − zSL)dz

=

Z ySC∗s
SL

z=0

(1− F (z)) fLs(y
SC∗
s − zSL)dz = F̂

µ
ySC∗s

SL

¶
.

From Rosling (2002) we know that 1− F (z) is logconcave if f(z) is
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logconcave, and that logconcavity of 1− F (z) is closed under convolu-

tion. Thus, F̂
³
ySC∗s

SL

´
is logconcave in ySC∗s

SL and consequently

F̄

µ
ySC∗s

SL

¶
=

1

F̂
³
ySC∗s

SL

´
is logconvex in ySC∗s

SL . Now, let t(SL) be the transformation function

t(SL) =
ySC∗s

SL . Clearly, t(SL) is convex in the contract service level SL

(0 < SL ≤ 1). Then

F̄

µ
ySC∗s

SL

¶
= F̄ (t(SL)) .

From Bagnoli and Bergstrom (2005), Theorem 7, we know that if F̄

is logconvex and t is a convex function, the composition F̄ (t(x)) is

logconvex.

From Boyd and Vandenberghe (2004), we see that logconvexity im-

plies convexity. Scaling with a constant factor preserves convexity.

Thus, p(SL) is convex in the contract service level SL.

Proof of Proposition 4.7. For all ys and 0 < SL ≤ 1, there always

exists a penalty factor p(SL) that leads to the optimal base stock level

if the support of the underlying distribution function has infinite non-

negative support. Then, there always exists a flat penalty and a unit

penalty contract that achieves the centralized solution. Note that for

demand distributions that have a finite support, for instance, the Beta

or Uniform distribution, we may not always find such a contract.



Chapter 5

Optimal Inventory
Allocation for Multiple
Retailers under Service
Level Contracts

5.1 Introduction

The decision on how to allocate inventory among multiple retailers dur-

ing a selling season can have a significant impact on the costs of a

manufacturer. The manufacturer faces two decisions: First, she has to

decide if she wants to distribute all inventory at the beginning of the

selling season, i.e., to follow a ship-all policy, or if she rather reserves a

certain fraction of the inventory for a second delivery later in the season.

Second, she has to decide on an optimal allocation of inventory among

the retailers. It has been shown in literature that it is beneficial for the

manufacturer to reserve a certain fraction for a second delivery. The

second delivery then should try to balance the retailers’ inventories as

77

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2008
M. Sieke, Supply Chain Contract Management, Edition KWV,
https://doi.org/10.1007/978-3-658-24382-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-24382-1_5&domain=pdf


78 CHAPTER 5. OPTIMAL INVENTORY ALLOCATION

much as possible. This approach is widely accepted in practice. For ex-

ample, an international sports equipment manufacturer ships only 70%

of the initial inventory to the stores at the beginning of the selling sea-

son. The other 30% is distributed later on during the selling season

depending on the real demands that have been observed at the stores.

In practice, the retailers have a natural interest in a certain availabil-

ity of the manufacturer’s product throughout the selling season. There-

fore, the manufacturer’s performance is controlled by supply contracts

with specific financial consequences (Fry et al., 2001). There are several

types of supply contracts that are commonly used. A particularly pop-

ular type of supply contract in literature and practice is the service level

contract. Under a service level contract, retailers specify a service level

that the manufacturer must achieve and the financial consequences of

missing it. Since most companies measure their own service levels and

many companies also measure the service levels of their suppliers, the

information required for implementing a service level contract is typi-

cally available at both partners of the supply chain. In the consumer

goods industry, for instance, essentially all manufacturers measure their

own service levels and 70% of the retailers measure the service levels of

the manufacturers. In this industry, manufacturers and retailers typi-

cally agree on a service level that a manufacturer is expected to achieve

(Behrenbeck et al., 2007).

One of the main challenges for the manufacturer is the optimal ful-

fillment of multiple service level contracts. This issue has not been

analyzed in literature and we are filling the gap in this chapter. We

analyze a supply chain with one manufacturer and multiple retailers.

The manufacturer has signed a service level contract with each retailer.

Our interest is in optimal allocation policies for a given set of service

level contracts. We analyze how a manufacturer responds to multiple

service level contracts optimally. We derive decision rules that allow the

manufacturer to trade off between different contracts and show that the

traditional inventory balancing approach leads to suboptimal cost lev-
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els. The results of our analyses provide a foundation for decision makers

when they have to allocate scarce inventory among multiple retailers.

The remainder of the chapter is structured as follows: In Section 5.2,

we present a mathematical model of a two-echelon supply chain that is

governed by service level contracts. In Section 5.3, we analyze the one-

retailer case. We derive the probability that a penalty has to be paid

and show that a ship-all policy is optimal. We extend the analysis to

multiple retailers in Section 5.4 where we trade off among multiple con-

tracts. We show how the manufacturer can make an optimal allocation

at the second replenishment and compare our approach to an inventory

balancing policy. In Section 5.5 we analyze how the manufacturer’s op-

timal policy affects the retailers’ performance. We conclude in Section

5.6. All proofs of this chapter are contained in Section 5.7.

5.2 Supply Chain Model

We consider a two-echelon supply chain as in Figure 5.1 with one man-

ufacturer that produces one product. The manufacturer’s objective is

to minimize expected costs. The product can only be sold during one

selling season and it is delivered to N identical retailers (indexed by

i = 1, . . . , N). Our setup is similar to a VMI system where the manu-

facturer is responsible for the management of her products at the retail-

ers’ sites. Under such an agreement, the manufacturer decides on the

shipment quantities and bears all inventory-related costs of her replen-

ishment decisions.

The retailers face stochastic, continuous, and stationary end cus-

tomer demand that is assumed to be independent between periods and

retailers. Demand can be arbitrarily distributed as long as the p.d.f. is

strongly unimodal with a non-negative skewness. We have already seen

before that this property holds for most theoretical distributions that

are relevant for modeling demand, such as the Normal, truncated Nor-

mal, Gamma with shape parameter α > 1, Beta(α, β) with parameters
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Manufacturer
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Retailer N

......

Retailer 2

Figure 5.1: Supply Chain Setup

α ≥ β ≥ 1, and the Uniform distributions. For an in-depth treatment

of logconcave distributions and their application to inventory control

we refer the reader to Rosling (2002). Again, we focus on distributions

with infinite non-negative support in order to keep our analysis concise.

Distributions with finite support can be treated analogously, but they

require the definition of feasible regions for the parameter values of the

supply contracts, which makes the analysis much more complex and

adds little value.

The manufacturer produces R units of the product in t = 0, i.e., at

the beginning of the selling season, without knowing the exact customer

demand. She has two replenishment opportunities, t = 1 and t = 2, to

ship the product to the retailers’ stores. In literature, the assumption

of only two replenishment opportunities is widely used because it offers

a good trade-off between the additional fixed delivery costs and the

potential savings due to the risk pooling effect (Güllü and Erkip, 1996).

We also assume that the replenishments of the manufacturer arrive at

the retail stores instantaneously, i.e., with zero lead time.

The sequence of events during the selling season is as follows: First,

the manufacturer produces the product and allocates the initial inven-
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tory to the retailers at the beginning of the first period t = 1. The

retailers then receive the customer orders and start shipping them. If

the inventory is not sufficient to fill all customer orders, the retailer

backorders and fills the orders after new inventory has arrived at t = 2.

The backorder assumption is reasonable in cases where the customers do

not have an immediate substitute for the product or where the retailer

can quote different lead times to the customer. The latter case is widely

used at online retailers. For example, Amazon.com can backorder cus-

tomer orders into the next replenishment period by quoting longer lead

times on their web page.

In t = 2, the supplier can replenish the inventories at the retail

stores. The retailers fill open backorders first and start fulfilling new

orders if inventory is still available. Demand in t = 2 that cannot be

filled is partially backordered. At the end of t = 2, excess inventory

at the retailer is either transshipped to a retailer in order to fill open

backorders or otherwise is salvaged or carried forward to another selling

season. In the latter case the manufacturer has to pay an overage cost h

per unit of excess inventory (after transshipments) in the supply chain.

To ensure an adequate performance, the retailers require that the

manufacturer guarantees a certain service level for the product. This is

a common approach in VMI systems as it has been suggested by Choi

et al. (2004) or Fry et al. (2001). Choi et al. (2004), for example, use as

β-service level (also Type-II service) the infinite-horizon measure

1− β = 1− expected unsatisfied demand per unit time
expected demand per unit time

.

Clearly, a retailer would not wait for an infinite (or large) number of

periods to measure the service level and to enforce a penalty payment. In

contrast, we focus on contracts that have a finite measurement horizon.

The retailers measure the service level only during the two replenishment

periods t = 1, 2. In this case, the service level is stochastic. That means

that it is not known with certainty which service level can be achieved
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during a selling season for given replenishments in t = 1, 2.

Under such a penalty contract, the manufacturer pays the retailer a

fixed amount p for a selling season in which the contract service level

0 < SL ≤ 1 is not met, i.e., for a season in which the manufacturer’s

replenishments do not allow the retailer to fill at least a fraction SL of

the customer demand immediately from stock. In t = 1, the number of

units short is (ξi1 − Si1)
+ where Sit denotes the shipment quantity from

the manufacturer to retailer i in period t and ξit is the stochastic end

customer demand in period t at retailer i. In t = 2, only the additional

units short are counted in order to avoid a double-counting of backorders

that were already accounted for in t = 1. The additional units short in

the second period are
³
ξi2 − (Si1 + Si2 − ξi1)

+
´+

. Then, the penalty

cost function can be written as

Pi (Si1, Si2, ξi1, ξi2) =

⎧⎨⎩ p if
(ξi1−Si1)++(ξi2−(Si1+Si2−ξi1)+)

+

ξi1+ξi2
> 1− SL

0 otherwise.
(5.1)

In the following we denote the corresponding demand p.d.f. and c.d.f.

by ft(·) and Ft (·), respectively. To keep our analysis concise, we as-

sume that the replenishment periods t have equal lengths and that the

demand distributions have a non-negative support, i.e., demand will al-

ways be non-negative. Replenishment periods with different lengths can

be treated analogously, but would only complicate the notation without

adding value to our analysis.

The cost function of the manufacturer equals

C
¡
S̄1, S̄2, ξ̄1, ξ̄2

¢
=

NX
i=1

Pi (Si1, Si2, ξi1, ξi2) (5.2)

+h

Ã
NX
i=1

(Si1 + Si2 − ξi1 − ξi2)

!+

with |S̄1|+ |S̄2| = R
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where S̄t = (S1t, . . . , SNt) and ξ̄t = (ξ1t, . . . , ξNt) denote the shipment

and demand vectors in periods t = 1, 2. The operator | . . . | sums the

components of a vector, for instance, |S̄1| =
PN

i=1 Si1.

The manufacturer’s main concern is to avoid penalty payments by

fulfilling the service level contracts and to keep inventories at a low

level at the same time. At the beginning of the selling season, the

manufacturer is the most unsure about the service level performance

that she will finally achieve during that season. At the end of the

first replenishment period t = 1, the manufacturer already has better

knowledge of her performance with respect to the service level contracts.

Therefore, she can adjust her allocation decision in t = 2. For example,

she could deliver more products to a retailer where the performance was

suboptimal at the expense of another retailer where the performance in

t = 1 was superior. Thereby, the manufacturer can actively influence

the penalty probabilities for each contract.

In the following section, we gain some important insights on the

behavior of a service level contract by analyzing the single-retailer case.

5.3 Single-Contract Allocation

In the single contract case, the manufacturer only serves one retailer i.

The manufacturer wants to minimize expected costs, i.e.,

min
R,Si

EC (Si1, Si2, ξi1, ξi2) = Pi (Si1, Si2, ξi1, ξi2)

+h (Si1 + Si2 − ξi1 − ξi2)
+

with Si1 + Si2 = R.

Her decision consists of the production quantity R and the initial al-

location quantity Si1. The overage costs, i.e., costs driven by the net

inventory left at the end of the selling season, only depend on R because

(Si1 + Si2 − ξi1 − ξi2)
+
= (R− ξi1 − ξi2)

+. The penalty costs however

have a more complex behavior that depends on the production quantity



84 CHAPTER 5. OPTIMAL INVENTORY ALLOCATION

R and the allocation quantities Si1 and Si2 = R − Si1. Therefore, we

will analyze them next.

Equation (5.1) shows that a penalty p has to be paid by the manu-

facturer if the service level cannot be met, i.e., if

(ξi1 − Si1)
+ +

³
ξi2 − (Si1 + Si2 − ξi1)

+
´+

ξi1 + ξi2
> 1− SL

or

(ξi1 − S11)
+ +

³
ξi2 − (Si1 + Si2 − ξi1)

+
´+

− (1− SL) (ξi1 + ξi2) > 0.

Since we are interested in the expected penalty costs, we need to derive

the probability of a penalty event.

We can derive necessary conditions for a penalty event by partition-

ing the demand space (ξi1, ξi2). The demand partitions correspond to

certain stock-out events during the selling season. The following propo-

sition summarizes the conditions for a penalty payment:

Proposition 5.1 A penalty payment p has to be paid to the retailer if

• ξi2 > R+Si1
SL − ¡

1
SL + 1

¢
ξi1 for R > ξi1 > Si1 and ξi1 + ξi2 > R,

or

• ξi2 >
Si1
SL − ξi1 for ξi1 > R ≥ Si1 and ξi1 + ξi2 > R, or

• ξi2 >
R
SL − ξi1 for ξi1 ≤ Si1 and ξi1 + ξi2 > R, or

• ξi2 < − Si1
(1−SL) +

SL
1−SLξi1 for ξi1 > Si1 and ξi1 + ξi2 ≤ R.

Clearly, the manufacturer will never have to pay a penalty if ξi1 ≤
Si1 and ξi1 + ξi2 ≤ R because customer demand could always be met.

Figure 5.2 shows the demand space for a service level 0 < SL < 1

and a low initial allocation Si1 ¿ R. The grey Areas 1—3 indicate the

demand space where a penalty payment has to be paid. In Area 1, the

initial allocation Si1 was sufficient to fill all demands in the first period,
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Figure 5.2: Demand Partitions for SL < 1 and Si1 ¿ R

but the second period demand was too high to achieve the contract ser-

vice level. In Area 2, not all customer demands could be filled in the first

period and also at the end of the second period some customer orders

are still outstanding. In Area 3, the initial inventory Si1 was not suffi-

cient to fill all customer orders in t = 1. However, the inventory level

at the beginning of the second period was high enough to fill all back-

orders from the first period and a sufficient number of demands in the

second period. Interestingly, for a given first period demand ξi1, a high

second period demand ξi2 would lead to no penalty payment whereas

a low demand ξi2 would lead to a penalty. This is due to the fact that

a perfect fulfillment cannot offset the inferior performance in the first

period if the second period demand is too low because the service level

is a weighted average of both periods’ stock-outs. An exceptional case

can appear when the first period demand cannot be fulfilled although

the retailer received a high initial allocation Si1 ≤ R. Then Figure 5.3

shows that the slope at the bottom left of Area 4 equals the slope of

Area 1. In this case the demand in t = 1 was higher than the total
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Figure 5.3: Demand Partition for SL < 1 and Si1 ≤ R

available inventory R and not a single second period demand could be

filled.

By integrating the demand probabilities over the demand partitions

where a penalty is due, we can derive the probability of a penalty event.

Proposition 5.2 The manufacturer has to pay a penalty p with proba-

bility

Pr(Pi > 0) =

Z Si1

ξi1=0

µ
1− F

µ
R

SL
− ξi1

¶¶
f (ξi1) dξi1

+

Z min(Si1+(1−SL)R,R)

ξi1=Si1

µ
1− F

µ
R+ Si1
SL

−
µ

1

SL
+ 1

¶
ξi1

¶¶
f (ξi1) dξi1

+

Z min(Si1+(1−SL)R,R)

ξi1=Si1/SL

F

µ
− Si1
(1− SL)

+
SL

(1− SL)
ξi1

¶
f (ξi1) dξi1

+1− F (min (Si1 + (1− SL)R,R))

−
Z Si1/SL

ξi1=R

F

µ
Si1
SL
− ξi1

¶
f (ξi1) dξi1.
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Figure 5.4: Demand Partition for SL = 1

For a contract service level SL = 1 we get a simple stock-out contract

where a penalty is due if in any of the two periods at least one stock-out

occurred. Figure 5.4 shows the case for a service level of SL = 1. In

this special case the probability of a penalty simplifies to

Pr(Pi > 0) =

Z Si1

ξi1=0

(1− F (R− ξi1)) f (ξi1) dξi1 + 1− F (Si1) .

Based on the penalty probability from Proposition 5.2, we can iden-

tify the optimal inventory reservation policy that is summarized in the

following proposition.

Proposition 5.3 For the single-contract case, Si1 = R, i.e., a ship-all

policy is optimal.

A ship-all policy is optimal for one retailer because the manufacturer

does not have an incentive to hold back inventory because she cannot

realize any risk pooling effects. Neither are there any additional overage

costs because the overage costs do not differ between manufacturer and
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retailers in our model. However, it would be beneficial for the manufac-

turer to hold back some inventory for a second replenishment if holding

costs were significantly higher at the retailers’ warehouses than at the

manufacturer’s site.

Now we can derive the manufacturer’s optimal production quantity

Rs under a ship-all policy that minimizes her expected costs

min
R

EC (R) = h

Z R

x=0

(R− x) (f1 ∗ f2) (x) dx+ pPr(Pi > 0)

where f1 ∗ f2 denotes the demand convolution over the periods t = 1, 2.

Proposition 5.4 The unique cost-minimizing production quantity Rs

satisfies

− p

SL

d (F1 ∗ F2)

dx

µ
Rs

SL

¶
+ h (F1 ∗ F2) (R

s)
!
= 0.

In this section, we have shown how the penalty probability can be

derived for the one-retailer case and how the optimal production quan-

tity can be determined. One result was that a ship-all policy is optimal

because there are no positive effects of holding back inventory at the

manufacturer. In a multiple retailer case, these effects do exist and they

can be significant. Therefore, we show in the next section how the man-

ufacturer can take advantage of the risk pooling effect by holding back

inventory and allocating it optimally among the retailers.

5.4 Multiple-Contract Allocation

In the multiple-contract case, the supplier is managing multiple retailer

accounts. That means that the manufacturer has signed a service level

contract with each of the retailers and wants to minimize his expected
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costs

min
S̄1,S̄2

EC
¡
S̄1, S̄2, ξ̄1, ξ̄2

¢
=

NX
i=1

EPi (Si1, Si2, ξi1, ξi2) (5.3)

+hE

Ã
NX
i=1

(Si1 + Si2 − ξi1 − ξi2)

!+

with |S̄1|+ |S̄2| = R.

As in the single-retailer model, the allocation policy does not influence

the overage costs. The supplier faces two decisions: (i) How much in-

ventory to reserve for the second replenishment and (ii) how to allocate

the inventory among the retailers in each replenishment period.

The inventory reservation decision allows the supplier to hold back a

fraction ω = |S̄2|
R for a second replenishment. This inventory can be used

to replenish the retailers’ inventory optimally. Holding back inventory

leads to positive risk pooling effects because it gives the manufacturer

a higher degree of freedom to equalize different demand realizations at

the retailers.

The allocation decision, i.e., the quantity each retailer receives at

each replenishment, takes the retailers characteristics into account. In

the first replenishment, retailers are identical and receive the same quan-

tities. In the second period, the retailers normally differ with respect

to their first period performance. Therefore, a manufacturer would pre-

fer to stock more inventory at a retailer where the improvement in the

expected penalty costs is the highest.

In literature, several approaches for an optimal solution of the two

decisions exist. A common approach that is frequently used is inventory

balancing that we will shortly introduce next.

5.4.1 Inventory Balancing

Inventory balancing is used to minimize expected backorder costs. The

manufacturer has to balance the inventories after observing the first
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period’s demand. For identical retailers this is done by simply equalizing

the inventory levels at the retailers (McGavin et al., 1993). For non-

identical manufacturers, Zipkin (1984) proposed an equal-fractile rule.

Note that it is not always possible to rebalance retailer inventories if

excess stock at the retailer cannot be transshipped or returned to the

manufacturer.

The inventory balancing decision is based on two state variables: the

available inventory ωR for the second replenishment, and the vector of

inventory levels ILt=2 at the retailers at the beginning of t = 2. Based

on this information, the inventory balancing is minimizing expected

backorders of the last period.

The inventory balancing decision rule only looks into the future be-

cause the backorder cost function for the last period does not depend on

the performance in t = 1. In contrast, the penalty function of a service

level contract includes past performance in period 1 and the uncertainty

about the future performance in period 2. Therefore, a simple inventory

balancing approach does not necessarily lead to optimal results. In the

next section we will therefore show, how an optimal inventory allocation

can be found.

5.4.2 Contract Balancing

With a contract balancing approach, we minimize the manufacturer’s

expected costs from Equation (5.3). Our focus will be the compari-

son of the inventory balancing and the contract balancing approach.

In order to focus on the allocation decision and to keep our analysis

tractable we will make two assumptions: First, the manufacturer’s pro-

duction quantity R is determined by a single-retailer ship-all policy, i.e.,

R = N · Rs with N being the number of retailers and Rs being deter-

mined from Proposition 5.4. As other authors already have stated, the

optimization of R is not straightforward, but we will show later how

it can be optimized numerically where R = N · Rs serves as an upper

bound. Second, we assume the reservation factor ω is determined in
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a second step or is given by a heuristic. For example, McGavin et al.

(1993) have derived an optimization approach for the infinite-retailer

case and found out that the 50/25-heuristic leads to good results in the

finite-retailer model for a variety of parameter sets.

The discussion in Section 5.3 has shown that the probability for a

penalty event depends on the demands in period t = 1 and t = 2.

Therefore, we cannot base our allocation decision in t = 2 solely on

the current inventory levels at the retailers, but we also have to take

the first period performance into account, i.e., the demand ξi1 and the

number of customer backorders (ξi1 − Si1)
+.

Since the retailers are identical, the first replenishment is Si1 =
(1−ω)R

N for retailer i. Now the first period demand ξi1 is observed and

the retailers use their initial inventory Si1. The manufacturer then has

to decide on the optimal replenishment at the second replenishment op-

portunity. Some retailers can already be excluded from a replenishment

decision if there is no possibility of avoiding a penalty payment any

more:

Proposition 5.5 A penalty is always due at retailer i if the first period

demand

ξi1 >
Si1 + ωR

SL
.

For a given first period demand ξi1, the manufacturer can deter-

mine the probability of a penalty event for each service level contract.

These penalty probabilities can be influenced by the second replenish-

ment Si2. To simplify the solution of our model, we exclude the prob-

abilities F
³
− Si1

(1−SL) +
SL

(1−SL)ξi1
´
and F

¡
Si1
SL − ξi1

¢
from our analysis

because they do not depend on the second replenishment Si2. These

probabilities are small and only relevant if some retailers have negative

inventory levels after the first period (see Proposition 5.1). This leads

to a small overestimation of the improvement of penalty probabilities

in some cases. However, a stock-out after the first period is not highly

probable in practical applications (for example, if the 50/25-heuristic
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is used). Therefore, we suggest that the error from our approximation

is small. Then the total available inventory after the replenishment for

retailer i is Ri = Si1 + Si2 and the corresponding penalty probabilities

are

Pr (Pi > 0 | ξi1, Si2)

=

(
1− F

¡
Ri
SL − ξi1

¢
for ξi1 ≤ Si1

1− F
¡
Ri+Si1
SL − ¡

1
SL + 1

¢
ξi1

¢
for ξi1 > Si1

=

(
1− F

¡
Si1+Si2

SL − ξi1
¢

for ξi1 ≤ Si1

1− F
¡
2Si1+Si2

SL − ¡
1
SL + 1

¢
ξi1

¢
for ξi1 > Si1.

Next, we define the contract inventory level as

Ici (Si1, Si2, ξi1) =

(
Si1+Si2

SL − ξi1 for ξi1 ≤ Si1
2Si1+Si2

SL − ¡
1
SL + 1

¢
ξi1 for ξi1 > Si1.

(5.4)

The contract inventory level is used as a substitute for the inven-

tory level Si1 − ξi1 because only the contract inventory level drives the

probability of penalty events. The marginal penalty probability then

reduces to

dPr (Pi > 0 | ξi1, Si2)
dIci (Si1, Si2, ξi1)

=

(
− 1

SLf
¡
Si1+Si2

SL − ξi1
¢

for ξi1 ≤ Si1

− 1
SLf

¡
2Si1+Si2

SL − ¡
1
SL + 1

¢
ξi1

¢
for ξi1 > Si1

= −f (Ici (Si1, Si2, ξi1)) .

It follows that all contracts lie on the same marginal trade-off curve

−f (·). Figure 5.5 shows an example before the second replenishment

(i.e., with Si2 = 0) for eight retailers with truncated-normally distrib-

uted demand.

Even before the optimization of the second period replenishment, we

can identify the retailers where a replenishment will have the greatest
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Figure 5.5: Contract Inventory Level

impact on the reduction of expected penalty costs:

Proposition 5.6 Replenishing the retailers with the smallest absolute

differences |Ici (Si1, 0, ξi1)−ν| leads to the highest marginal penalty prob-

ability where ν denotes the modal value of f .

The following proposition allows us to characterize the optimal so-

lution:

Proposition 5.7 In the optimal second period allocation solution, the

marginal penalty probability and contract inventory level is equal for all

i and j with Si2, Sj2 > 0, i.e.,

dPr (Pi > 0 | ξi1, Si2)
dIci (Si1, Si2, ξi1)

=
dPr

¡
Pj > 0 | ξj1, Sj2

¢
dIcj

¡
Sj1, Sj2, ξj1

¢ ,

Ici (Si1, Si2, ξi1) = Icj
¡
Sj1, Sj2, ξj1

¢
.

For the optimization of the second period allocation decision, we

have to adapt the steepest-descent approach. The steepest-descent ap-
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proach would lead to the optimal solution if all contracts would lie on

the convex part of the demand c.d.f. Unfortunately, retailers can also

lie in the concave part of the demand c.d.f. as Figure 5.5 shows. The

following algorithm extends the steepest-descent approach and finds the

optimal solution:

Solution-Algorithm:

1. Sort the retailers in ascending order o : i → k indexed by k with

respect to Ici (Si1, 0, ξi1)

2. M = L = argmink I
c
k (Sk1, 0, ξk1)− ν with Ick (Sk1, 0, ξk1)− ν ≥ 0

where ν is the modal value of the distribution function f

3. τ = 0,∆ = 0, A = ωR, S = ∅, Ic∗ = IcL (SL1, 0, ξL1)

4. While A ≥ 0 Then

(a) M = M + 1; τ = τ + 1

(b) U = min(τSL·³
IcM (SM1, 0, ξM1)− IcM−1

³
S(M−1)1, 0, ξ(M−1)1

´´
, A)

(c) A = A− U ; Ic∗ = Ic∗ + U
τSL

(d) ∆ = ∆+τ
¡
F
¡
IcM

¡
SM1,

U
τSL , ξM1

¢¢− F (IcM (SM1, 0, ξM1))
¢

5. S = S ∪ (L, Ic∗,∆)

6. If (L > 1) Then M = L = L − 1, τ = 0,∆ = 0, A = ωR, Ic∗ =

IcL (SL1, 0, ξL1) and go back to Step 4.

7. Ic∗ = (0, 1, 0)T {(L, Ic∗,∆)|(L, Ic∗,∆) ∈ S,∆ = ∆∗}, L∗ =
IcL (SL1, 0, ξL1)with L = (1, 0, 0)T {(L, Ic∗,∆)|(L, Ic∗,∆) ∈ S,∆ =

∆∗} where ∆∗ = argmin∆{∆|(L, Ic∗,∆) ∈ S}.

The optimal replenishments Si2 can be computed from the contract
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Figure 5.6: Contract Sets for Optimization

inventory levels Ic∗ and L∗. From Equation (5.4), we get

S∗i2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

SL (Ic∗ + ξi1)− Si1 for
ξi1 ≤ Si1,

Ic∗ ≥ Ici (Si1, 0, ξi1) ≥ L∗,

SL · Ic∗ − 2Si1 + (1 + SL) ξi1 for
ξi1 > Si1,

Ic∗ ≥ Ici (Si1, 0, ξi1) ≥ L∗,
0 otherwise.

Proposition 5.8 The Solution-Algorithm minimizes the manufacturer’s

expected penalty costs for a given first period demand ξi1.

The intuition behind the algorithm is to increase the convex contract

set by sequentially adding contracts from the concave part. The contract

sets have been highlighted in Figure 5.6. Since the solutions for the

contract sets are also locally optimal, we get several local optima under

which we find the optimal solution.

Figure 5.7 shows the difference between contract balancing and in-

ventory balancing for retailers that are sorted with respect to their in-
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Figure 5.7: Contract Balancing vs. Inventory Balancing

ventory levels. In our contract balancing approach, we replenish retailers

that have a contract inventory level above a certain threshold until the

available inventory ωR is depleted. A retailer with a lower contract in-

ventory level does not receive a replenishment because a penalty cannot

be avoided with a high probability. Therefore, only retailers with a high

reduction potential receive a replenishment in the second period. As we

could see from Proposition 5.6, the contract inventory levels of these

contracts are close the modal value of f . In contrast, the traditional in-

ventory balancing approach starts with the retailer that has the lowest

inventory level and fills up the retailers’ inventories until the centrally

held stock is depleted.

Figure 5.8 shows an example for different R and ω with four retailers

and truncated-normal demand. Demand is characterized by μ = 10 and

σ = 4. The contract service level SL is 0.9 and p = 20, h = 1. The

optimal production quantity R∗ = 94 for this example can be found

numerically. This quantity then leads to an optimal reservation level

of ω = 0.25. Setting R < 94 leads to higher costs and tends to have
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Figure 5.8: Expected Costs for Different ω and R

a slightly higher reservation level ω. Since R is low, the manufacturer

ships less inventory in t = 1 and instead ships more in the second period

to the retailers in order to prevent penalty payments. A R > 94 also

leads to higher expected costs, but the optimal ω is slightly lower in

our example. Since the production size can fulfill nearly all demands in

the second period, we only need to care about the first period and ship

enough inventory to the retailers. In the example, we can also see that

the optimal R∗ can be found by optimizing the R for ω = 0, i.e., by

assuming a ship-all policy. Therefore, our assumption of using the sum

of the individual solution would lead to good results. The example also

shows that the cost savings can be significant. Reserving 25% of R∗ for
later delivery lowers the manufacturer’s expected costs by 18%.

We have seen that contract balancing minimizes the manufacturer’s

expected costs. How the manufacturer’s cost-minimizing gaming be-

havior affects the retailers’ performance will be analyzed in the next

section.
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5.5 Retailer Performance Analysis

In the contract balancing approach, the manufacturer minimizes her

expected costs by allocating the inventory optimally among the retailers.

Until now we have not analyzed how the optimal policy influences the

retailers.

For the retailers, backorder levels or number of stock-outs are an

important performance measure because they immediately drive the

retailer’s costs: A backorder in the first replenishment period leads to

backorder costs, for instance, due to order expediting or loss-of-goodwill.

A second period backorder can also lead to lost sales if the backorders

cannot be filled by transshipped units from other retailers. Therefore,

it is important to analyze the expected backorders at the retailers.

The first period expected backorder level at retailer i is

B1 (Si1) =

Z ∞
ξi1=Si1

(ξi1 − Si1) f (ξi1) dξi1

and the second period expected backorder level given the first period

demand is

B2 (Si2|ξi1) =
Z ∞
ξi2=(Si1+Si2−ξi1)+

(ξi2 − Si1 − Si2 + ξi1) f (ξi2) dξi2.

In the first period, all retailers have the same inventory level and the

performance does not differ among the retailers. In the second period

however, some retailers receive a replenishment and some not. Retailers

with a low first period demand do not receive a replenishment because

the availability is still guaranteed by the excess stock from the first

period. Retailers with a very high first period demand do not receive a

replenishment because additional stock would not reduce the probability

of a penalty significantly as shown in Proposition 5.8.
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In the system optimal solution

min
S̄1,S̄2

EC
¡
S̄1, S̄2, ξ̄1, ξ̄2

¢
= b

NX
i=1

(B1 (Si1) +B2 (Si2)) (5.5)

+hE

Ã
NX
i=1

(Si1 + Si2 − ξi1 − ξi2)

!+

with |S̄1|+ |S̄2| = R

a service level contract is only a transfer pricing scheme and can there-

fore be neglected. The manufacturer would try to minimize the ex-

pected backorders in the retailer echelon. Since it is well-known that

B2 (Si2|ξi1) is decreasing and convex in Si2, the manufacturer would fol-

low an inventory balancing approach where she replenishes the retailers

with the lowest inventory levels first. The retailer with the lowest in-

ventory level would benefit the most of a replenishment. We can see

that there exists a conflict of interest between the manufacturer’s and

the retailers’ goals because inventory balancing and contract balancing

lead to different inventory allocations in t = 2.

Figure 5.9 shows the expected backorders for the retailer echelon and

the manufacturer’s expected cost levels for different contract service lev-

els SL for an example with four retailers and truncated-normal demand

with μ = 10, σ = 4. The manufacturer produces R∗ = 94, and the

supply chain cost factors are p = 20, h = 1. As expected, the inventory

balancing approach leads to less backorders than contract balancing.

The difference is the highest, when the contract service level SL is high

because then the manufacturer is most focused on the penalty payments

whereas a low contract service level SL leads to more balanced inven-

tories. On the other hand, the contract balancing approach leads to

lower expected costs for the manufacturer than the inventory balancing

because the manufacturer minimizes expected penalty payments by the

contract balancing approach. In our example, the contract balancing

approach can reduce expected costs by about 14% compared to the in-
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Figure 5.9: Expected Backorders and Expected Costs

ventory balancing approach for a contract service level SL = 1. But this

contract also leads to the highest differences in the expected backorders.

An important insight for practitioners is that a service level con-

tract alone does not guarantee a good performance for the retailers if

the manufacturer serves multiple retailers. Our results extend the ob-

servation of Choi et al. (2004) who analyzed the one retailer case. They

found out that a minimum service level constraint on the manufacturer

does not always lead to a minimum retailer service level and that an

additional backorder contract parameter is needed to ensure a minimum

retailer performance.

5.6 Conclusion

Service level contracts are commonly used in theory and practice for

evaluating supplier performance. In many supply contracts, service lev-

els are specified as well as the consequences of not achieving them. In
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this chapter, we have analyzed a two-echelon supply chain with mul-

tiple retailers. We have shown that if the manufacturer manages each

retailer individually then a ship-all policy is optimal and the optimal

production size can be determined easily. We have also derived results

for the case that the retailers are managed jointly. Then the manufac-

turer can realize risk pooling effects and can reduce her expected costs

by reserving inventory for a second replenishment. We have shown that

the traditional inventory balancing approach leads to suboptimal results

for the manufacturer. The contract balancing approach minimizes the

manufacturer’s expected costs by taking the contract specification into

account. We have seen that the solution is not trivial and we had to rely

on an optimal solution algorithm. Finally, we have analyzed the impact

of the manufacturer’s fulfillment policy on the retailers and have shown

that it might not guarantee a good performance for the retailers. The

results of our analyses can support decision makers in fulfilling service

level based supply contracts. Our model can be modified to a setting

with non-identical retailers. Unfortunately, the solution of this prob-

lem is more complex than in our model and we had to rely on a pure

numerical solution. Therefore, we leave this setting for future research.

In literature, service level based supply contracts in inventory al-

location decisions have not been analyzed analytically, although these

contracts are very popular in practice. With this chapter, we take a

first step towards filling this gap. The results of our analyses allow for a

better understanding of the effect of service level based supply contracts

on manufacturers and retailers.

5.7 Proofs

Proof of Proposition 5.1. We partition the demand space (ξi1, ξi2)

with respect to two different cases: (i) a stock-out in period t = 1 and

(ii) a stock-out at the end of period t = 2. That corresponds to the

cases ξi1 > (≤)Si1 for (i) and ξi1 + ξi2 > (≤)R for (ii). For all four
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combinations of (i) and (ii) the reformulation of the penalty condition

(ξi1 − S11)
+
+

³
ξi2 − (Si1 + Si2 − ξi1)

+
´+

− (1− SL) (ξi1 + ξi2) > 0

then leads to the following conditions:

For R > ξi1 > Si1 and ξi1 + ξi2 > R,

ξi1 − Si1 + ξi2 − Si1 − Si2 − ξi1 − (1− SL) (ξi1 + ξi2) > 0

(1 + SL) ξi1 + SLξi2 − Si1 −R > 0

R+ Si1
SL

−
µ
1 +

1

SL

¶
ξi1 < ξi2.

For ξi1 > R > Si1 and ξi1 + ξi2 > R,

ξi1 − Si1 + ξi2 − (1− SL) (ξi1 + ξi2) > 0

SLξi1 + SLξi2 − Si1 > 0

ξi2 >
Si1
SL
− ξi1.

For ξi1 ≤ Si1 and ξi1 + ξi2 > R,

ξi2 − Si1 + Si2 − ξi1 − (1− SL) (ξi1 + ξi2) > 0

ξi2 >
R

SL
− ξi1.

For ξi1 > Si1 and ξi1 + ξi2 ≤ R,

ξi1 − S11 − (1− SL) (ξi1 + ξi2) > 0

ξi2 < − Si1
1− SL

+
SL

1− SL
ξi1.

For ξi1 ≤ Si1 and ξi1 + ξi2 ≤ R no penalty has to be paid because all

demands can be satisfied.

Proof of Proposition 5.2. The penalty probability can be computed

by adding the demand partition probabilities for which a penalty occurs.
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For ξi1 ≤ Si1 and ξi1+ ξi2 > R (Area 1), the penalty probability equalsZ Si1

ξi1=0

µ
1− F

µ
R

SL
− ξi1

¶¶
f (ξi1) dξi1.

For min (Si1 + (1− SL)R,R) ≥ ξi1 > Si1 and ξi1 + ξi2 > R (Area 2),

the penalty probability equalsZ Si1+(1−SL)R

ξi1=Si1

µ
1− F

µ
R+ Si1
SL

−
µ

1

SL
+ 1

¶
ξi1

¶¶
f (ξi1) dξi1.

For ξi1 > min (Si1 + (1− SL)R,R) a penalty is always due and occurs

with probability 1− F (min (Si1 + (1− SL)R,R)).

For min (Si1 + (1− SL)R,R) ≥ ξi1 > Si1/SL and ξi1 + ξi2 ≤ R

(Area 3), the penalty probability isZ Si1+(1−SL)R

ξi1=Si1/SL

F

µ
− Si1
(1− SL)

+
SL

(1− SL)
ξi1

¶
f (ξi1) dξi1.

For R ≤ ξi1 ≤ Si1/SL (Area 4) we have to subtract the probability

Z Si1/SL

ξi1=R

F

µ
Si1
SL
− ξi1

¶
f (ξi1) dξi1.

Note that ξi1 has to be greater than Si1/SL because demand is non-

negative. We also make use of the fact that F (0) = 0 for demand

distributions with non-negative support.
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Adding the probabilities yields the penalty probability

Pr(Pi > 0) =

Z Si1

ξi1=0

µ
1− F

µ
R

SL
− ξi1

¶¶
f (ξi1) dξi1

+

Z min(Si1+(1−SL)R,R)

ξi1=Si1

µ
1− F

µ
R+ Si1
SL

−
µ

1

SL
+ 1

¶
ξi1

¶¶
f (ξi1) dξi1

+

Z min(Si1+(1−SL)R,R)

ξi1=Si1/SL

F

µ
− Si1
(1− SL)

+
SL

(1− SL)
ξi1

¶
f (ξi1) dξi1

+1− F (min (Si1 + (1− SL)R,R))

−
Z Si1/SL

ξi1=R

F

µ
Si1
SL
− ξi1

¶
f (ξi1) dξi1.

Proof of Proposition 5.3. A ship-all policy with R = Si1 is optimal

if it leads to dPr(Pi)
dSi1

< 0 for all Si1 ≤ R. Since the holding costs only

depend on R, the lowest penalty costs also minimize the expected costs

of the manufacturer. To see that dPr(Pi)
dSi1

< 0 consider the demand

partitioning from Proposition 5.1. Increasing Si1 then leads to a larger

non-penalty area. It follows that dPr(Pi)
dSi1

< 0.

Proof of Proposition 5.4. We assume a ship-all policy, i.e., R = Si1.

The no-penalty probability then equalsZ R/SL

ξi1=0

F

µ
R

SL
− ξi1

¶
f (ξi1) dξi1.

Then

dPr (Pi > 0)

dR
= −

Z R/SL

ξi1=0

f
¡
R
SL − ξi1

¢
SL

f (ξi1) dξ ≤ 0.

The term corresponds to the probability that R < SL (ξi1 + ξi2) or
R
SLi

< ξi1 + ξi2. Then the probability of a penalty equals

Pr(Pi > 0) = 1− (F1 ∗ F2)

µ
R

SL

¶
.
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The expected holding costs are convex and increasing in R. The optimal

solution then satisfies

− p

SL
(F1 ∗ F2)

0
µ

R

SL

¶
+ h (F1 ∗ F2) (R)

!
= 0

with (..)
0 being the derivative. By using log-concave properties, it easy

to show that the cost function is quasi-convex in R and a unique mini-

mum must exist:

− p

SL
(F1 ∗ F2)

0
µ

R

SL

¶
+ h (F1 ∗ F2) (R) < 0

h (F1 ∗ F2) (R) < − p

SL
(F1 ∗ F2)

0
µ

R

SL

¶
(F1 ∗ F2) (R)

1
SL (F1 ∗ F2)

0 ¡ R
SL

¢ < − p

h

(F1 ∗ F2) (R)

(F1 ∗ F2)
0
(R)

(F1 ∗ F2)
0
(R)

1
SL (F1 ∗ F2)

0 ¡ R
SL

¢ < − p

h

(F1 ∗ F2) (R)

(F1 ∗ F2)
0 (R)

(F1 ∗ F2)
0 (R)

(F1 ∗SL F2)
0 (R)

< − p

h
(5.6)

with ∗SL denoting the partial convolution SLξi1+SLξi2. For logconcave

frequency functions f(x), the fraction (F1∗F2)(R)
(F1∗F2)

0(R)
is non-decreasing in

R (Rosling, 2002). For the second term (F1∗F2)
0(R)

(F1∗SLF2)
0(R)

, we find that it

is non-decreasing in R since the logconcavity of f(x) implies monotone

convolution ratios (Rosling, 2002), i.e., fn(R)
fm(R) is non-decreasing in R for

n ≥ m with fn(R) = (F1 ∗ F2)
0
(R) and with fm(R) = (F1 ∗SL F2)

0
(R)

being the frequency function of the partial convolution SLξi1 + SLξi2.

From (g(x)h(x))0 = g(x)h0(x)+g0(x)h(x) the LHS of Equation (5.6)

is non-decreasing in R. It follows that there exists only one negative area

of dEC(R)
dR in at most one subset of R and the sign of dEC(R)

dR changes

at most once from − to + and thus the objective function EC (R) is

quasi-convex in R. Then, an optimal Rs is unique. Hence it is sufficient

to set the first derivative to zero.
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Proof of Proposition 5.5. The proof follows by the non-negativity of

demands. It follows that a penalty is incurred if the first period demand

is outside the maximum no-penalty area if the retailer is replenished

with the maximum available stock Si1 + ωR, i.e.,

ξi1 >
Si1 + ωR

SL
.

Proof of Proposition 5.6. By considering the derivative

dPr (Pi > 0 | ξi1, Si2)
dIci (Si1, Si2, ξi1)

it is easy to see that the marginal value dPr(Pi>0|ξi1,Si2)
dSi2

of increasing

Si2 is the greatest around the modal value of the distribution function

f . Therefore, the potential for improvement
P

i
dPr(Pi>0|ξi1,Si2)

dSi2
for all

retailers is the greatest around the modal value ν of f .

Proof of Proposition 5.7. In an optimal solution, the marginal

values of all contracts have to be equal, i.e.,

dPr (Pi > 0 | ξi1, Si2)
dIci (Si1, Si2, ξi1)

=
dPr

¡
Pj > 0 | ξj1, Sj2

¢
dIcj

¡
Sj1, Sj2, ξj1

¢ .

Otherwise for dPr(Pi>0|ξi1,Si2)
dIci (Si1,Si2,ξi1)

>
dPr(Pj>0|ξj1,Sj2)
dIci (Sj1,Sj2,ξj1)

a reallocation of in-

ventory with Si2+ε and Sj2−ε or with dPr(Pi>0|ξi1,Si2)
dIci (Si1,Si2,ξi1)

>
dPr(Pj>0|ξj1,Sj2)
dIcj (Sj1,Sj2,ξj1)

Si2−ε and Sj2+ε would lead to a better solution. Since the demand dis-

tribution is unimodal, these marginal improvement values dPr(Pi>0|ξi1,Si2)
dIci (Si1,Si2,ξi1)

can be reached left of the distribution’s modal value ν and right of

it likewise. To show that in an optimal solution the Ici (Si1, Si2, ξi1)-

values have to be equal, we show that a solution with equal mar-

ginal values dPr(Pi>0|ξi1,Si2)
dIci (Si1,Si2,ξi1)

=
dPr(Pj>0|ξj1,Sj2)
dIcj (Sj1,Sj2,ξj1)

but Ici (Si1, Si2, ξi1) 6=
Icj

¡
Sj1, Sj2, ξj1

¢
and Si2, Sj2 > 0 can never be optimal. Consider the
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two contracts i and j with dPr(Pi>0|ξi1,Si2)
dIci (Si1,Si2,ξi1)

=
dPr(Pj>0|ξj1,Sj2)
dIcj (Sj1,Sj2,ξj1)

where i

is left and j is right of the modal value ν. For a non-negative skewed

distribution functions as in our model, Si2 + ε and Sj2 − ε would

lead to a at least as good solution as before because the first order

differences dPr(Pi>0|ξi1,Si2)
dIci (Si1,Si2,ξi1)

in Si2 are greater for retailer i. There-

fore, in the optimal solution dPr(Pi>0|ξi1,Si2)
dIci (Si1,Si2,ξi1)

=
dPr(Pj>0|ξj1,Sj2)
dIcj (Sj1,Sj2,ξj1)

and

Ici (Si1, Si2, ξi1) = Icj
¡
Sj1, Sj2, ξj1

¢
.

Proof of Proposition 5.8. From Proposition 5.7 we have seen that

dPr (Pi > 0 | ξi1, Si2)
dIci (Si1, Si2, ξi1)

=
dPr

¡
Pj > 0 | ξj1, Sj2

¢
dIcj

¡
Sj1, Sj2, ξj1

¢
Ici (Si1, Si2, ξi1) = Icj

¡
Sj1, Sj2, ξj1

¢
has to hold in the optimal solution and the optimal solution is char-

acterized by Ic∗. If only contracts from the convex part of F with

Ici (Si1, Si2, ξi1) ≥ ν with ν being the modal value of f are taken, the so-

lution immediately follows by the steepest-descent argument. However,

contracts from the concave area with Ici (Si1, Si2, ξi1) < ν can also lead

to an optimal solution. Therefore, increasing the contract solution set

S sequentially into the concave contract set leads to a number of locally

optimal solution Ic∗ that satisfy the optimality criteria from Proposi-

tion 5.7. From Proposition 5.7 also follows that other optimal solution

cannot exist. From these local solutions, the optimal solution can be

found by taking the maximal value of the expected penalty reduction

∆. The first contract to be replenished has a contract inventory level

Ici (Si1, Si2, ξi1) of at least L∗. All contracts with Ici (Si1, 0, ξi1) > Ic∗

do not receive a replenishment, i.e., Si2 = 0.



Chapter 6

Optimal Channel
Selection and Efficient
Contracts

6.1 Introduction

Across industry, customer heterogeneity and product variety are pro-

liferating rapidly (Fisher, 1997). Volkswagen AG, the leading German

automotive company, reported that the number of product segments

in the automotive industry quadrupled from 9 in 1985 to 40 in 2005

in parallel with increased diversity in the market (Volkswagen, 2005).

Market diversity and its inherent demand variability make it difficult

and expensive to match demand with supply. Back in the early 90s, as

an example, the personal computer market experienced rapid growth.

Companies like IBM Corporation and Apple Computer went through

deep shortages and extensive overstocks in their different product lines.

As a result, they experienced costly write-offs and their market shares

deteriorated due to the mismatch between inventory levels and actual

109
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customer demand patterns (cf. Fisher et al. (1997) or Schweitzer and

Cachon (2000)).

Nevertheless, many companies have started to seek for approaches

in order to better match supply with diversified and volatile demand

arising in the market. Prominent examples of the approaches that

have been implemented by the companies are Hewlett-Packard’s mass-

customization approach, Campbell Soup’s continuous replenishment ap-

proach, Sports Obermeyer’s quick response approach, and Zara’s rapid

order fulfillment approach. Through these, companies achieved reduced

inventory levels, increased sales, and improved customer satisfaction

levels.

In theory as well as in practice, the approach of addressing diver-

sified customers and fulfilling their needs efficiently by a multi-channel

distribution strategy has been put forward (Kotler, 1980). In practice,

companies appear to pursue a strategy to launch as many distribution

channels as possible in order to distribute market risk as far as possible

(Anderson et al., 1997). However, this might not be favorable particu-

larly for distribution channels that induce high levels of volatility. High

demand volatility deteriorates the accuracy of forecasts which, in turn,

gives rise to high supply chain costs. Moreover, setting up a new dis-

tribution channel requires considerable capital investment and a long-

term adaptability to the market. Likewise, multi-channel distribution

systems experience conflicts among alternative channels and difficulties

for the determination of pricing and channel specific strategies. Fra-

zier (1999) states that firms need an optimal multi-channel distribution

strategy which will enable them to coordinate their distribution efforts

in an improved way.

Yet quantitative research on this topic has been limited, providing

insufficient guidance to firms to support decision making in a multi-

channel context in response to diversified and volatile demand patterns.

To fill this gap, this chapter will show that the supply chain earns inferior

profits if a manufacturer optimizes her own profits by selecting retail



6.2. SUPPLY CHAIN MODEL 111

channels. To remedy this situation, we propose different contracts that

lead to a supply chain optimal retail channel selection. These contracts

differ with respect to the profit allocation among the retailers and the

manufacturer. With an equal share contract, which is based on the

expected profit margin, a retailer receives a certain share of the supply

chain profit whereas a fair share contract also takes the retailer’s demand

variability into account. Subsequently, we show for our model that an

optimal retail channel selection leads to higher supply chain profits than

an unselective strategy where all possible channels are served by the

manufacturer.

The remainder of this chapter is organized as follows. In Section 6.2,

we develop a mathematical model of a two-echelon supply chain that we

use in the subsequent analyses. In Section 6.3, we show how a manu-

facturer optimizes her own profits by choosing an optimal retail channel

configuration. In Section 6.4, we derive the supply chain optimal solu-

tion and show that the manufacturer’s retail channel configuration does

not necessarily lead to supply chain coordination. In Section 6.5, we

build on the centralized solution to derive different contracts that lead

to supply chain coordination. In Section 6.6, we analyze the impact

of loss-of-goodwill costs on supply chain performance. In Section 6.7,

we combine our approach with traditional contracts that lead to supply

chain coordination with respect to stocking levels. In Section 6.8, we

conclude. All proofs of this chapter are contained in Section 6.9.

6.2 Supply Chain Model

We consider a two-echelon supply chain as in Figure 6.1 with one man-

ufacturer (indexed by M) and N ≥ 1 retailers that are indexed by

i = 1, ...,N. The manufacturer produces a single product and sells it to

the retailers. The retailers then sell the product to the end customers.

The manufacturer’s and the retailers’ objective is to maximize expected

profits.
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Manufacturer

Retailer 1

Retailer N

......

Retailer 2

Figure 6.1: Supply Chain Setup

End customer demand is stochastic, continuous, and independent

between periods. The demand Di at retail store i follows the p.d.f.

fi(·) and the c.d.f. Fi(·). We assume that the demand is identically

distributed among the retailers and is parameterized by the mean de-

mand μi and the standard deviation σi for retailer i. Demand is not

correlated between retailers. Transshipments between retailers are not

considered in our model.

The manufacturer decides which retailers she serves and which she

excludes from the supply chain. To describe the specific supply chain

configuration, we use the binary vector x = (x1, ..., xN ) with xi ∈ {0, 1}
where xi = 1 means that the retailer i is served by the manufacturer

and xi = 0 that retailer i is excluded from the supply chain. For a

supply chain configuration x, the manufacturer faces stochastic retailer

orders with mean demand μSC (x) =
PN

i=1 xiμi and variance σ2
SC (x) =PN

i=1 xiσ
2
i . We assume that there is no loss-of-goodwill for not serving

a specific retailer. We will show later in this chapter how such a loss-

of-goodwill cost could be included into our model.

Inventory at a retail store is managed according to a infinite horizon

periodic review base stock policy with a base stock level yi. Retailer
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i receives ri for every unit sold to the end customer. Unmet demand

is backordered and incurs a backorder cost bi and excess stock results

in a physical holding cost hi. The retailer will order exactly the pre-

vious period’s demand from the manufacturer in order to replenish his

inventory and to fill outstanding backorders.

The manufacturer applies a make-to-order policy, i.e., she exactly

produces the retailers’ orders. There is no immediate limitation in the

quantity the manufacturer can produce every period. However, we as-

sume that the production cost depends on the total demand and demand

variability generated by the retailers. In our model the manufacturer’s

total cost function is

C
¡
μSC , σ

2
SC

¢
= K + cμSC + u(σ2

SC)

where the manufacturer faces a fixed cost K per period, a variable

production cost c per unit, and a variability cost u that depends on

the retailers’ aggregate demand variability. The fixed cost K does not

have an immediate impact on the optimization problem because it is

independent of the supply chain configuration, but it is important for

deriving optimal contracts as it will be shown later. The variability

cost is increasing in the total variability of the retailers’ orders, i.e., we

use u
¡
σ2
SC

¢
with du(σ2

SC)
dσ2

SC
≥ 0. We also assume that u(σ2

SC) is con-

cave in σ2
SC . Using this assumption, our model can account for two

important aspects: Firstly, a higher variability makes production and

capacity planning more difficult for the manufacturer and therefore leads

to higher costs. For example, planning the manufacturer’s production

capacity with a newsvendor-type model leads to planning costs that are

increasing in the variability of the retailers’ orders. We will use this

specific setup in our numerical examples. Secondly, the procurement

process of the manufacturer becomes more variable if the retailers’ or-

ders are more volatile. This then leads to the well-known bullwhip effect

at more upstream stages of the supply chain. Thereby, purchasing costs
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tend to be higher for the manufacturer.

After producing the units, the manufacturer can satisfy the retailers’

orders and receives the wholesale price wi for every unit sold to retailer

i. In our supply chain, the manufacturer has sufficient bargaining power

to set the wholesale price. Therefore, she is the Stackelberg leader and

offers the retailers a take-or-leave contract. A retailer will only accept

a contract if he can realize a non-negative expected profit.

Then the expected profit for retailer i is equal to

EΠi(yi) = (ri − w)μi − hi

Z yi

ξ=0

(yi− ξ)fi(ξ)dξ− bi

Z ∞
ξ=yi

(ξ− yi)fi(ξ)dξ.

Optimization of EΠi(yi) with respect to yi leads to the well-known

newsvendor solution y∗i = F−1i

³
bi

bi+hi

´
. Total expected profits for the

entire retailer echelon are

EΠR(x, y
∗) =

NX
i=1

xiEΠi(y
∗
i )

where y∗ denotes the optimal base stock vector y∗ =
¡
y∗1,..., y∗N

¢
and x

the retail channel configuration x = (x1, ..., xN ).

The expected profit of the manufacturer is

EΠM (x) =

Ã
NX
i=1

xiμiwi

!
− C

¡
μSC (x) , σ2

SC (x)
¢
.

for a supply chain configuration x, and total expected supply chain

profits equals EΠSC(x, y) = EΠM (x)+EΠR(x, y). In the following, we

characterize the manufacturer’s optimal solution if she maximizes her

individual expected profit.
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6.3 Manufacturer Solution

The manufacturer chooses the optimal wholesale price w∗ and retail

channel configuration x∗ to maximize her expected profits. In this setup,

the wholesale price is identical for all retailers. By choosing retail chan-

nels, the manufacturer has to trade off between the additional expected

revenue from serving a retailer, i.e., wμi, and the cost effect of a different

manufacturer production cost C
¡
μSC (x) , σ2

SC (x)
¢
. To set an optimal

wholesale price w∗, the manufacturer also has to take the retailers’ par-

ticipation constraint into account, i.e., a non-negative expected profit.

The optimization of x∗ and w∗ cannot be done independently. In-

creasing w∗ for a given x∗ could eliminate some retail channels because

they might have negative expected profits. It follows that x∗ cannot be
optimal any more. On the other hand, a higher wholesale price would

make some profitable retail channels more attractive for the manufac-

turer because the higher wholesale price could outweigh higher produc-

tion costs. Then, the optimal configuration x∗ would also include these

channels.

To find the optimal solution (x∗, w∗) we will first show how a man-

ufacturer determines the optimal configuration x∗ for a given wholesale

price w. Then we will show how the manufacturer will choose the opti-

mal contract (x∗, w∗) that maximizes her expected profits.

For a given wholesale price w, the manufacturer’s objective is

max
x

EΠM (x) =

Ã
NX
i=1

xiμiw

!
− C

¡
μSC (x) , σ2

SC (x)
¢
.

To compute the optimal x∗, the retailers have to be ordered with respect

to their revenue contribution in relation to their order variability. Since

the manufacturer charges the retailers an identical wholesale price w, it

is sufficient to order the retailers with respect to their mean-to-variance

ratio, i.e.,
μ1

σ2
1

≥ μ2

σ2
2

≥ . . . ≥ μpm
σ2
pm

≥ . . . ≥ μN
σ2
N
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where pm ∈ {1, . . . , N} indexes the retailers in the new order. For this

ordering, we can make an important observation for the optimal solution

x∗: If retailer l is included in the supply chain, all retailers that have

a mean-to-variance ration that is higher than l are also included. The

following proposition summarizes this observation:

Proposition 6.1 In the optimal solution x∗, if x∗k = 1 also x∗l = 1 for

l ∈ {1, 2, . . . , k − 1}.

We can compute the optimal solution by increasing the retail channel

set sequentially and choosing the retailer p that maximizes expected

manufacturer profits. Then all other retailers that have a higher mean-

to-variance ratio than retailer p are also served by the manufacturer.

The following proposition states the optimality condition.

Proposition 6.2 For the ordered retailer set, the optimal supply chain

configuration x∗ for a given wholesale price w satisfies

⎛⎝X
l≤p∗

xlwμl

⎞⎠− C
¡
μSC (x(l)) , σ2

SC (x(l))
¢ ≥

⎛⎝X
l≤p

xlw

⎞⎠− C
¡
μSC (x(l)) , σ2

SC (x(l))
¢ ∀p\p∗

where xi (l) = 1 if l ≤ p and xi (l) = 0 otherwise.

Now we show how to optimize (x∗, w∗) simultaneously. First note

that for each retailer there exists a maximal wholesale price ŵi that

gives him a non-negative expected profit, i.e.,

EΠi(y
∗
i ) = (ri − ŵi)μi − hi

Z y∗i

ξ=0

(y∗i − ξ)fi(ξ)dξ

−bi
Z ∞
ξ=y∗i

(ξ − y∗i )fi(ξ)dξ

= 0
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Increasing the wholesale price beyond ŵi would exclude retailer i be-

cause he would not accept the contract. In consequence, the set of

retailers the manufacturer can choose from would be reduced. Ordering

the retailers with respect to their maximum ŵi gives us retailer sets

that are decreasing in the wholesale price w. The following proposition

states the optimal solution.

Proposition 6.3 The optimal wholesale price w∗ has to be from the

wholesale price set (ŵ1, ŵ2, . . . , ŵN ). The optimal contract (x∗, w∗) sat-
isfies

EΠMM = EΠM (x∗ (ŵ∗i ) , ŵ
∗
i ) ≥ EΠM (x (ŵi) , ŵi) ∀ŵi.

The expected supply chain profit equals

EΠMSC(x
∗, y∗, w∗) = EΠMM (x∗, w∗) +EΠR(x

∗, y∗, w∗)

In the next section we show how the supply chain optimal solution can

be determined.

6.4 Centralized Solution

In the centralized solution, we consider an integrated supply chain. That

means that we optimize the total supply chain profits. As before, our

decision is based on two aspects: Adding a retailer (i) generates more

revenue by enlarging the served market, and (ii) increases costs by higher

production costs and higher demand variability. We do not have to

specify a wholesale price in the centralized case and can add retailers as

long as they contribute positively to the expected supply chain profits.
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The centralized expected profit function is

EΠSC(x, y) =ÃX
i

xi

µ
riμi − hi

Z yi

ξ=0

(yi − ξ)fi(ξ)dξ − bi

Z ∞
ξ=yi

(ξ − yi)fi(ξ)dξ

¶!
−C ¡

μSC (x) , σ2
SC (x)

¢
=

ÃX
i

xi (riμi − di (yi))

!
− C

¡
μSC (x) , σ2

SC (x)
¢

where

di (yi) = hi

Z yi

ξ=0

(yi − ξ)fi(ξ)dξ + bi

Z ∞
ξ=yi

(ξ − yi)fi(ξ)dξ

denotes the expected distribution costs, i.e., the sum of inventory hold-

ing and backorder costs.

Including a retailer has three distinct effects: Firstly, it increases rev-

enue. Secondly, distribution costs are incurred at the retailer. Thirdly,

the production costs at the manufacturer are increasing. To solve this

optimization problem we order the retailers with respect to their revenue

contribution compared to their variance, i.e.,

μ1 (r1 − c)− d1 (y1)

σ2
1

≥ μ2 (r2 − c)− d2 (y2)

σ2
2

≥ . . .

≥ μN (rN − c)− dN (yN )

σ2
N

where pm ∈ {1, . . . , N} indexes the retailers in the new order. Again,

we can make an important observation for the optimal solution x∗: If

retailer l is included in the supply chain, all retailers that have a revenue-

contribution-to-variance ratio that is higher than l are also included.

The following proposition summarizes this observation.

Proposition 6.4 In the optimal solution x∗, if x∗k = 1 also x∗l = 1 for

l ∈ {1, 2, . . . , k − 1}.
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We can compute the optimal solution by increasing the retail chan-

nel set sequentially and choosing the retailer p that maximizes expected

supply chain profits. Then all other retailers that have a higher revenue-

contribution-per-variance ratio than retailer p are served in the coordi-

nated supply chain. The following proposition states the optimality

condition.

Proposition 6.5 For the ordered retailer set, the optimal coordinating

supply chain configuration x∗ satisfies

EΠCESC =

⎛⎝X
l≤p∗

xl (rlμl − dl (yl))

⎞⎠− C
¡
μSC (x(l)) , σ2

SC (x(l))
¢ ≥

⎛⎝X
l≤p

xl (rlμl − dl (yl))

⎞⎠− C
¡
μSC (x(l)) , σ2

SC (x(l))
¢ ∀p\p∗

where xi (l) = 1 if l ≤ p and xi (l) = 0 otherwise.

The optimal solution in the centralized case is different from the

manufacturer solution because the manufacturer takes only her profit

from the wholesale price contract into account whereas we consider the

total supply chain profit in the centralized case. This effect resembles

the well-known double marginalization effect that is frequently discussed

in the contracting literature.

In the following we analyze the magnitude of the double marginal-

ization effect in the context of choosing retail channels. We compute

the differences between the manufacturer solution and the centralized

solution as the benchmark. The efficiency of the supply chain is defined

as the ratio of the manufacturer solution and the coordinated solution,

i.e., EΠMSC/EΠ
CE
SC .

In our numerical example, the manufacturer can serve up to four

retailers. Demand at the retailers is truncated normal distributed with

different mean and standard deviations. The unit revenue ri differs

between retailers and holding and backorder costs at the retailers are
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identical with hi = 2 and bi = 3.25. Under the assumption of trun-

cated normally distributed demand this approximately leads to dis-

tribution costs of di (yi) = σi, i.e., they solely depend on the stan-

dard deviation the retailers faces. Since we want to focus on the ef-

fect of demand variability on supply chain performance, we assume

that the manufacturer only has to plan the production capacity in

advance and uses a newsvendor trade-off. Thus, the production cost

function depends on the standard deviation of retailer orders the man-

ufacturer sees. In our case we use the unit production cost function

C
¡
μSC (x) , σ2

SC (x)
¢
= u

¡
σ2
SC (x)

¢
= 150

p
(σ2

SC (x)).

Table 6.1 shows that in many cases the manufacturer would choose

the supply chain optimal solution. Then the total supply chain profits

equal the centralized solution and the total profits are divided among

manufacturer and retailers. However, the table also shows that in some

examples, the manufacturer would choose another configuration than

in the centralized case. Then the supply chain efficiency, i.e., the ratio

EΠMSC/EΠ
CE
SC , can be significantly lower, even below 25%.

In conclusion, a wholesale price contract that the manufacturer de-

rives by optimizing her own expected profits has two main drawbacks:

Firstly, the wholesale price treats every retailer similarly. That leads

to situations where a highly profitable retail channel is hurt because

another channel with high variability significantly hurts supply chain

performance but does not bring in additional revenue. Secondly, retail

channels are excluded arbitrarily because they have negative profits due

to the wholesale price setting. However, in the centralized solution they

would have been profitable.

To maximize supply chain profits, the manufacturer should take the

end customer prices and the retailers’ demand characteristics into ac-

count when she makes a decision for or against a retailer. Next we

discuss how we can incentivize the manufacturer to choose the supply

chain optimal retailer configuration and how to increase her own ex-

pected profits at the same time.
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r1 r2 r3 r4 μ1 μ2 μ3 μ4 σ1 σ2 σ3 σ4 EΠMSC EΠCESC EΠMSC/EΠ
CE
SC

22 21 19 18 21 23 27 29 2 2.5 3.5 4 460.27 1037.27 44.37%
22 21 19 18 23 24 26 27 2 2.5 3.5 4 1047.27 1047.27 100.00%
22 21 19 18 25 25 25 25 2 2.5 3.5 4 1057.27 1057.27 100.00%
22 21 19 18 27 26 24 23 2 2.5 3.5 4 1067.27 1067.27 100.00%
22 21 19 18 29 27 23 21 2 2.5 3.5 4 922.49 1077.27 85.63%
22 21 19 18 21 23 27 29 3 3 3 3 1068.00 1068.00 100.00%
22 21 19 18 23 24 26 27 3 3 3 3 1078.00 1078.00 100.00%
22 21 19 18 25 25 25 25 3 3 3 3 1088.00 1088.00 100.00%
22 21 19 18 27 26 24 23 3 3 3 3 675.58 1098.00 61.53%
22 21 19 18 29 27 23 21 3 3 3 3 562.60 1108.00 50.78%
22 21 19 18 21 23 27 29 4 3.5 2.5 2 1037.27 1037.27 100.00%
22 21 19 18 23 24 26 27 4 3.5 2.5 2 1047.27 1047.27 100.00%
22 21 19 18 25 25 25 25 4 3.5 2.5 2 1057.27 1057.27 100.00%
22 21 19 18 27 26 24 23 4 3.5 2.5 2 1067.27 1067.27 100.00%
22 21 19 18 29 27 23 21 4 3.5 2.5 2 1077.27 1077.27 100.00%
24 22 18 16 21 23 27 29 2 2.5 3.5 4 1017.27 1017.27 100.00%
24 22 18 16 23 24 26 27 2 2.5 3.5 4 828.49 1037.27 79.87%
24 22 18 16 25 25 25 25 2 2.5 3.5 4 1057.27 1057.27 100.00%
24 22 18 16 27 26 24 23 2 2.5 3.5 4 735.27 1077.27 68.25%
24 22 18 16 29 27 23 21 2 2.5 3.5 4 805.27 1097.27 73.39%
24 22 18 16 21 23 27 29 3 3 3 3 1048.00 1048.00 100.00%
24 22 18 16 23 24 26 27 3 3 3 3 759.58 1068.00 71.12%
24 22 18 16 25 25 25 25 3 3 3 3 1088.00 1088.00 100.00%
24 22 18 16 27 26 24 23 3 3 3 3 577.60 1108.00 52.13%
24 22 18 16 29 27 23 21 3 3 3 3 647.60 1128.00 57.41%
24 22 18 16 21 23 27 29 4 3.5 2.5 2 1017.27 1017.27 100.00%
24 22 18 16 23 24 26 27 4 3.5 2.5 2 1037.27 1037.27 100.00%
24 22 18 16 25 25 25 25 4 3.5 2.5 2 1057.27 1057.27 100.00%
24 22 18 16 27 26 24 23 4 3.5 2.5 2 1077.27 1077.27 100.00%
24 22 18 16 29 27 23 21 4 3.5 2.5 2 812.95 1097.27 74.09%
27 24 17 13 21 23 27 29 2 2.5 3.5 4 622.77 987.27 63.08%
27 24 17 13 23 24 26 27 2 2.5 3.5 4 700.27 1022.27 68.50%
27 24 17 13 25 25 25 25 2 2.5 3.5 4 777.77 1057.27 73.56%
27 24 17 13 27 26 24 23 2 2.5 3.5 4 855.27 1092.27 78.30%
27 24 17 13 29 27 23 21 2 2.5 3.5 4 932.77 1127.27 82.75%
27 24 17 13 21 23 27 29 3 3 3 3 465.10 1018.00 45.69%
27 24 17 13 23 24 26 27 3 3 3 3 542.60 1053.00 51.53%
27 24 17 13 25 25 25 25 3 3 3 3 620.10 1088.00 56.99%
27 24 17 13 27 26 24 23 3 3 3 3 697.60 1123.00 62.12%
27 24 17 13 29 27 23 21 3 3 3 3 775.10 1158.00 66.93%
27 24 17 13 21 23 27 29 4 3.5 2.5 2 987.27 987.27 100.00%
27 24 17 13 23 24 26 27 4 3.5 2.5 2 335.95 1022.27 32.86%
27 24 17 13 25 25 25 25 4 3.5 2.5 2 252.77 1057.27 23.91%
27 24 17 13 27 26 24 23 4 3.5 2.5 2 535.24 1092.27 49.00%
27 24 17 13 29 27 23 21 4 3.5 2.5 2 612.74 1127.27 54.36%

Table 6.1: Supply Chain Efficiency
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6.5 Supply Chain Optimal Contracts

In this section we discuss how optimal contracts can be designed such

that the supply chain is optimized. We have seen that the manufac-

turer’s retail channel optimization leads to another retail channel selec-

tion than in the centralized case. Next, we derive a contracting scheme

that leads to the supply chain optimal solution. Firstly, we show how the

supply chain can be coordinated with a wholesale price contract. Sec-

ondly, we derive a contract that distributes the expected supply chain

profits fairly among the retailers.

6.5.1 Wholesale Price Contract

The manufacturer will only choose the supply chain optimal solution if

she can optimize her own expected profits. Therefore, a wholesale price

contract has to ensure that this optimal configuration is chosen.

Proposition 6.6 The supply chain is coordinated for a wholesale price

wsimple
i =

(
ri − di(y

∗
i )

μi
if x∗i = 1,

0 otherwise.

The manufacturer will choose the centralized solution x∗. Then the

retailers have a zero profit and the supplier takes the whole supply chain

profit.

We can see that the wholesale price contracts behave similarly to the

wholesale price contract in the traditional contracting literature. There

the retailer also realizes the entire supply chain profits and the manu-

facturer only realizes a zero profit. Similarly, in our contract, no profit

is left to the retailer and all gains from supply chain coordination go

the manufacturer. We can derive an incentive compatible scheme that

can arbitrarily distribute the gains from coordination to the retailers

such that the optimal distribution channel selection is preserved. There
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are two different types of contract that allocate a certain fraction to the

retailer echelon that we will introduce in the following. They differ in

the way the individual retailers are treated, either equally or fairly with

respect to their expected revenue and demand variability.

6.5.2 Equal Share Contract

To model different profit allocations in the supply chain, we use δ to

denote the share of expected supply chain profits that go to the manu-

facturer.

Proposition 6.7 The wholesale price contract

wequal
i (δ) =

⎧⎨⎩ δ
³
ri − di(yi)

μi

´
+ (1− δ)

C(μSC(x∗),σ2
SC(x∗))

μSC(x∗) if x∗i = 1,

0 otherwise

coordinates the supply chain and gives the manufacturer the expected

profit EΠequalM = δEΠCESC and the retailer echelon the expected profit

EΠequalR = (1− δ)EΠCESC .

We see that the manufacturer can give the retailers a discount but

charges them for some part of the variability costs. For δ = 1 we get

the traditional wholesale price contract that allocates all profits to the

supplier. For δ = 0, all profits are allocated to the retailer echelon.

The retailers then only bear the manufacturer’s unit production costs.

In some cases, the participation constraint of the retailers can restrict

the range of feasible values of δ because some retailers would earn a

negative profit if a high wholesale price would be chosen by the man-

ufacturer. Clearly, this should not happen because also these retailers

are important for the total supply chain.

Channels with high variability might therefore profit from sharing

the risk with all other channels. It might be interesting to modify the

wholesale price scheme such that it takes the retailer’s variability and
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their revenue contribution to the expected supply chain profit into ac-

count. We present this approach next.

6.5.3 Fair Share Contract

In this section we develop an incentive scheme where every retailer re-

ceives a fair share of the total supply chain profits. In the preceding

wholesale price model we have seen that all retail channels influence

the manufacturer’s production costs. Then retailers with high rev-

enues that only contribute little variability to the supply chain may

suffer from other retailers that induce a high variability into the sup-

ply chain. Therefore we will fairly allocate the expected retail channel

profits (1− δ)EΠCESC among the retailers.

The basic idea of the fair share contract is as follows: We try to

find a fair profit reallocation among the retailers by choosing an indi-

vidual wholesale price for each retailer. This can be also interpreted

as a discount for good demand sources. The manufacturer will finally

effectuate the reallocation by choosing the optimal wholesale prices. It

is important that we achieve the fair reallocation and do not change

the manufacturer’s optimal retailer choice, i.e., with the new wholesale

prices the manufacturer still has to choose the optimal supply chain

solution. We achieve this solution by reallocating the retailer share

efficiently such that the expected manufacturer profit stays constant.

In cooperative game theory we find similar problems in coalition

games. There, the game setup is as follows: a coalition of players co-

operates, and realizes a certain overall value from that coalition (Mey-

erson, 2000). This overall value has to be fairly distributed among the

players with respect to their individual contribution to the overall value.

Thereby, the distribution of value depends on the individual importance

of each player to the overall performance of the coalition. Clearly, this

setting resembles our profit allocation problem.

For our analysis, we use the Shapley value that assigns individual

utilities π to the participants in a coalition with n players. It is based
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on a value function v(C) that depends on the coalition C (Meyerson,

2000). To determine the contribution of each player in the optimal

supply chain, the Shapley value equals

πi =
X

i/∈V⊆N

|V |!(n− |V |− 1)!

n!
(v (V ∪ {i})− v (V ))

where the summation includes all subsets V of all possible coalition N

not containing player i. This allocation can be explained by noting that

including the player i into the coalition contributes the value v(V ∪
{i}) − v(V ) to the coalition, i.e., a fair compensation. Averaging over

all possible permutations in which the coalition can be formed yields

the players individual contribution to the coalition.

The Shapley value has the property of being a fair distribution in

the sense that it is the only distribution with the following properties

that are highly relevant for our supply chain problem: (i) πi ≥ v({i})
for every player i in N , i.e., every player receives at least as much as he

would have received without collaboration, and (ii)
P

i∈N πi = v(N),

i.e., all profit is distributed among the retailers (Meyerson, 2000).

For our model the following proposition states the supply chain opti-

mal wholesale price contract that allocates expected profits fairly among

the retailers.

Proposition 6.8 The wholesale price contract with

wfair
i (δ) =

⎧⎨⎩ ri − i/∈V⊆N
|V |!(n−|V |−1)!

n! (v(V ∪{i})−v(V ))+di(y
∗
i )

μi
if x∗i = 1,

0 otherwise

where

v (V ) = (1− δ)EΠSC(x = V, y∗)

= (1− δ)

ÃÃX
i

x∗i (riμi − di (y
∗
i ))

!
− C

¡
μSC (x∗) , σ2

SC (x∗)
¢!
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δ wequal
1 wequal

2 wequal
3 wequal

4

0.00 9.31 9.31 9.31 9.31
0.10 10.77 10.57 10.16 9.96
0.20 12.23 11.82 11.02 10.62
0.30 13.69 13.08 11.87 11.27
0.40 15.15 14.34 12.73 11.93
0.50 16.61 15.60 13.59 12.58
0.60 18.07 16.86 14.44 13.23
0.70 19.53 18.12 15.30 13.89
0.80 20.99 19.38 16.15 14.54
0.90 22.45 20.64 17.01 15.20
1.00 23.91 21.90 17.87 15.85

Table 6.2: Coordinating Equal Share Contracts

coordinates the supply chain and leads to a fair allocation of expected

profits. The manufacturer receives EΠfairM = δEΠCESC and the retailer

echelon EΠfairR = (1− δ)EΠCESC .

The following example illustrates how this fair allocation can be

achieved. We use the same data as before. The unit revenue is r =

{24, 22, 18, 16}, the mean retailer demands are μ = {23, 24, 26, 27},
and the standard deviations are σ = {2, 2.5, 3.5, 4}. In Table 6.1 we

have seen that the supply chain profits in the manufacturer solution are

828.49 with x = {1, 1, 1, 0}. In the centralized case the optimal solution

is x = {1, 1, 1, 1} with an expected supply chain profit of 1037.27.

For this example, Table 6.2 shows the wholesale prices of a coordi-

nating equal share contract. For δ = 0 all profits go to the retailers.

Then the wholesale price equals the production costs of the manufac-

turer. For δ = 1 the manufacturer receives all supply chain profits.

Then the wholesale price extracts all retailer profits as can be seen in

Table 6.3.

From Table 6.3 we can also see that the manufacturer is able to

increase her expected profits compared to the manufacturer solution of

828.49. However, we can also identify the shortcomings of an equal share

contract. For example, Retailer 1 only receives 32.38% of retailer profits
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δ EΠCESC EΠM EΠequal1 EΠequal2 EΠequal3 EΠequal4 EΠequalR

0.00 1037.27 0.00 335.93 302.13 222.51 176.70 1037.27
0.10 1037.27 103.73 302.34 271.91 200.26 159.03 933.55
0.20 1037.27 207.45 268.75 241.70 178.01 141.36 829.82
0.30 1037.27 311.18 235.15 211.49 155.76 123.69 726.09
0.40 1037.27 414.91 201.56 181.28 133.51 106.02 622.36
0.50 1037.27 518.64 167.97 151.06 111.26 88.35 518.64
0.60 1037.27 622.36 134.37 120.85 89.00 70.68 414.91
0.70 1037.27 726.09 100.78 90.64 66.75 53.01 311.18
0.80 1037.27 829.82 67.19 60.43 44.50 35.34 207.45
0.90 1037.27 933.55 33.59 30.21 22.25 17.67 103.73
1.00 1037.27 1037.27 0.00 0.00 0.00 0.00 0.00

Table 6.3: Expected Profits of Coordinating Equal Share Contracts

although he contributes 27.88% of customer revenues with a very low

variability, whereas Retailer 4 still receives 17.04% of the total retailers’

profits although he only contributes 21.82% of revenues with a high

variability. Coordinating fair share contracts address this issue and

allocate the retailer profits fairly by also taking the demand variability

into account. In Table 6.4 the wholesale prices of fair share contracts

are shown.

Then, for example, Retailer 1 pays a lower wholesale price and conse-

quently receives a higher share of expected supply chain profits. Under

this fair share contract, Retailer 1 receives 41.08% of the total expected

retailer profit. On the other hand, Table 6.5 shows that Retailer 4 now

pays a higher wholesale price and thus has a lower expected profit due

to his higher demand variability.

To summarize, both contract types can coordinate the supply chain.

The equal share contract however, only assigns the wholesale prices

with respect to the revenue potential to the supply chain, but does not

take the variability-induced costs for the total supply chain into account.

The fair share contract remedies this shortcoming by assigning wholesale

prices by basing them on the profit potential of a specific retailer.

In many practical applications the manufacturer cannot select the



128 CHAPTER 6. OPTIMAL CHANNEL SELECTION

δ wfair
1 wfair

2 wfair
3 wfair

4

0.00 5.39 7.15 10.96 12.98
0.10 7.24 8.62 11.65 13.26
0.20 9.09 10.10 12.34 13.55
0.30 10.94 11.57 13.03 13.84
0.40 12.80 13.05 13.72 14.13
0.50 14.65 14.52 14.41 14.41
0.60 16.50 16.00 15.10 14.70
0.70 18.36 17.47 15.79 14.99
0.80 20.21 18.95 16.48 15.28
0.90 22.06 20.42 17.17 15.56
1.00 23.91 21.90 17.87 15.85

Table 6.4: Coordinating Fair Share Contracts

δ EΠCESC EΠM EΠfair1 EΠfair2 EΠfair3 EΠfair4 EΠfairR

0.00 1037.27 0.00 426.11 354.00 179.54 77.62 1037.27
0.10 1037.27 103.73 383.50 318.60 161.59 69.86 933.55
0.20 1037.27 207.45 340.89 283.20 143.63 62.09 829.82
0.30 1037.27 311.18 298.28 247.80 125.68 54.33 726.09
0.40 1037.27 414.91 255.67 212.40 107.72 46.57 622.36
0.50 1037.27 518.64 213.06 177.00 89.77 38.81 518.64
0.60 1037.27 622.36 170.45 141.60 71.82 31.05 414.91
0.70 1037.27 726.09 127.83 106.20 53.86 23.29 311.18
0.80 1037.27 829.82 85.22 70.80 35.91 15.52 207.45
0.90 1037.27 933.55 42.61 35.40 17.95 7.76 103.73
1.00 1037.27 1037.27 0.00 0.00 0.00 0.00 0.00

Table 6.5: Expected Profits of Coordinating Fair Share Contracts
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supply chain optimal solution because eliminating some channels might

incur significant losses-of-goodwill. We discuss this case next.

6.6 Channel Opportunity Costs

In practice, the decision for or against serving some retailers is con-

strained by other important factors. Firstly, serving a large number of

retail channels might increase profits due to risk pooling effects. Sec-

ondly, manufacturers fear that not serving certain channels might incur

a loss-of-goodwill from the customer or the retailer side if they have

sufficient negotiating power. To address this issue, we next compare

our selective model to an unselective supply chain, and refine our model

in order to include a loss-of-goodwill cost for certain retailers into our

model.

First, we compare our centralized solution x∗ with an unselective so-

lution xu = {1, . . . , 1}, i.e., when the manufacturer serves all retailers.

In Table 6.6 we have used the same data set as before. Table 6.6 shows

that the difference between our selective and an unselective supply chain

strategy has a significant impact on expected supply chain profits. Es-

pecially in supply chains where retailers have different unit revenues ri,

we can observe significant differences between selective and unselective

strategies. On the other hand, in supply chains with identical retailers

both strategies lead to the same results.

Various authors argue that increasing the number of retailers in-

creases supply chain profits due to risk pooling effects (Anderson et al.,

1997). However, traditional risk pooling compares a situation before

and after integration, but where all retailers are present in both situa-

tion. In contrast, in our selection model, we can select certain retailers

in order to maximize supply chain profits.

The difference EΠSC (x∗) − EΠSC (xu) can be understood as the

opportunity cost of including all retailers, i.e., if the loss of goodwill is

greater than the difference, we would include all retailers. But what
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r1 r2 r3 r4 μ1 μ2 μ3 μ4 σ1 σ2 σ3 σ4 EΠSC (xu) EΠSC (x∗) Difference

20 20 20 20 23 24 26 27 1 2 4 5 292.42 377.98 29.26%

20 20 20 20 25 25 25 25 1 2 4 5 292.42 437.98 49.78%

20 20 20 20 27 26 24 23 1 2 4 5 292.42 497.98 70.30%

20 20 20 20 23 24 26 27 3 3 3 3 488.00 488.00 0.00%

20 20 20 20 25 25 25 25 3 3 3 3 488.00 488.00 0.00%

20 20 20 20 27 26 24 23 3 3 3 3 488.00 488.00 0.00%

20 20 20 20 23 24 26 27 5 4 2 1 292.42 497.98 70.30%

20 20 20 20 25 25 25 25 5 4 2 1 292.42 437.98 49.78%

20 20 20 20 27 26 24 23 5 4 2 1 292.42 377.98 29.26%

22 21 19 18 23 24 26 27 1 2 4 5 282.42 447.98 58.62%

22 21 19 18 25 25 25 25 1 2 4 5 292.42 512.98 75.43%

22 21 19 18 27 26 24 23 1 2 4 5 302.42 577.98 91.12%

22 21 19 18 23 24 26 27 3 3 3 3 478.00 478.00 0.00%

22 21 19 18 25 25 25 25 3 3 3 3 488.00 488.00 0.00%

22 21 19 18 27 26 24 23 3 3 3 3 498.00 498.00 0.00%

22 21 19 18 23 24 26 27 5 4 2 1 282.42 417.98 48.00%

22 21 19 18 25 25 25 25 5 4 2 1 292.42 362.98 24.13%

22 21 19 18 27 26 24 23 5 4 2 1 302.42 307.98 1.84%

24 22 18 16 23 24 26 27 1 2 4 5 272.42 517.98 90.14%

24 22 18 16 25 25 25 25 1 2 4 5 292.42 587.98 101.08%

24 22 18 16 27 26 24 23 1 2 4 5 312.42 657.98 110.61%

24 22 18 16 23 24 26 27 3 3 3 3 468.00 468.00 0.00%

24 22 18 16 25 25 25 25 3 3 3 3 488.00 488.00 0.00%

24 22 18 16 27 26 24 23 3 3 3 3 508.00 508.00 0.00%

24 22 18 16 23 24 26 27 5 4 2 1 272.42 337.98 24.07%

24 22 18 16 25 25 25 25 5 4 2 1 292.42 292.42 0.00%

24 22 18 16 27 26 24 23 5 4 2 1 312.42 312.42 0.00%

27 24 17 13 23 24 26 27 1 2 4 5 257.42 622.98 142.01%

27 24 17 13 25 25 25 25 1 2 4 5 292.42 700.48 139.55%

27 24 17 13 27 26 24 23 1 2 4 5 327.42 777.98 137.61%

27 24 17 13 23 24 26 27 3 3 3 3 453.00 453.00 0.00%

27 24 17 13 25 25 25 25 3 3 3 3 488.00 488.00 0.00%

27 24 17 13 27 26 24 23 3 3 3 3 523.00 523.00 0.00%

27 24 17 13 23 24 26 27 5 4 2 1 257.42 257.42 0.00%

27 24 17 13 25 25 25 25 5 4 2 1 292.42 292.42 0.00%

27 24 17 13 27 26 24 23 5 4 2 1 327.42 327.42 0.00%

Table 6.6: Unselective vs. Selective Supply Chain
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happens if only some retailers have an opportunity cost? We discuss

this issue next.

To account for loss-of-goodwill in certain retail channels, we intro-

duce a loss-of-goodwill cost into our model. The term Oi is the loss-of-

goodwill cost of not serving a channel and is constant for a retailer i.

The manufacturer’s expected profit function changes to

EΠOM (x) =

Ã
NX
i=1

(xi (riμi − di (yi)) + (xi − 1)Oi)

!
−C ¡

μSC (x) , σ2
SC (x)

¢
=

NX
i=1

µ
xi

µ
ri +

Oi

μi

¶
μi − di (yi)

¶
−

NX
i=1

Oi

−C ¡
μSC (x) , σ2

SC (x)
¢
.

Only the first term depends on the supply chain configuration x. The

loss-of-goodwill cost artificially increases the retailer’s revenue potential

to r̃i = ri +
Oi
μi
and thus makes it more attractive for inclusion into

the supply chain. Clearly, if the loss-of-goodwill cost Oi becomes large

enough, the manufacturer clearly has an incentive to include the retailer

into the supply chain. The maximization of EΠOM (x) works as before.

First we derive the new ordering

μ1 (r̃1 − c)− d1 (y1)

σ2
1

≥ μ2 (r̃2 − c)− d2 (y2)

σ2
2

≥ . . .

≥ μN (r̃N − c)− dN (yN )

σ2
N

.

The optimal solution is then given by the following proposition.

Proposition 6.9 In the optimal solution x∗, if x∗k = 1 also x∗l = 1 for

l ∈ {1, 2, . . . , k − 1}.

We can compute the optimal solution by increasing the retail channel

set sequentially and choosing the retailer p that maximizes expected
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supply chain profits. Then all other retailers that have a higher revenue

contribution than retailer p are served in the coordinated supply chain.

The following proposition states the optimality condition.

Proposition 6.10 For the ordered retailer set, the optimal coordinating

supply chain configuration x∗ satisfies

EΠOSC =

⎛⎝X
l≤p∗

xl (r̃lμl − dl (yl))

⎞⎠− C
¡
μSC (x(l)) , σ2

SC (x(l))
¢ ≥

⎛⎝X
l≤p

xl (rlμ̃l − dl (yl))

⎞⎠− C
¡
μSC (x(l)) , σ2

SC (x(l))
¢ ∀p\p∗

where xi (l) = 1 if l ≤ p and xi (l) = 0 otherwise.

In the optimal solution, we can see that EΠOM (x∗O) ≤ EΠM (x∗).
Loss-of-goodwill costs that depend on the mean demand in the retail

channel where the dependency is identical between retail channels lead

to the same solution. However, if some channels are more important

than others the optimal configuration might change. We will next an-

alyze the effect on total supply chain profits if we increase the loss-

of-goodwill cost of retailer j. Assume that retailer j was not in the

optimal configuration x∗ before (otherwise the solution clearly does not

change). Then there are three effects if we include retailer j: (i) the ex-

pected profit of the other retailers is decreasing since the total demand

variability is increasing. (ii) other retailers might be excluded from the

supply chain.

To ensure coordination in the decentralized setting, we have to adjust

the wholesale prices accordingly. This is a problem in the equal share

contracts because all other retailers have to bear the higher supply chain

costs due to this inclusion although the loss-of-goodwill cost only affects

the manufacturer. Therefore an adjusted fair share contract can ensure

participation of all other retailers. In this contract, the existing retailers
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receive the same expected profit as without the new retailer. On the

other hand, the new retailer will bear all additional costs.

Proposition 6.11 The wholesale price contract with

wi (δ) =

⎧⎨⎩ ri − i/∈V⊆N
|V |!(n−|V |−1)!

n! (v(V ∪{i})−v(V ))+di(yi)

μi
if x∗i = 1,

0 otherwise

where

v (V ) = EΠSC(x ∈ V, y) = (1− δ)

Ã
NX
i=1

µ
xi

µ
ri +

Oi

μi

¶
μi − di (yi)

¶

−
NX
i=1

Oi − C
¡
μSC (x) , σ2

SC (x)
¢!

coordinates the supply chain with loss-of-goodwill costs and leads to a

fair allocation of expected profits. The manufacturer receives EΠoppM =

δEΠSC and the retailer echelon EΠoppR = (1− δ)EΠSC .

Until now, we have assumed that the retailers’ holding costs do not

depend on the wholesale price. In the next section we analyze the case

where they depend directly on the manufacturer’s pricing decision.

6.7 Alternative Holding Costs

In this section we assume that the wholesale price affects the holding

costs of the retailer. In literature the holding costs are based on the

physical inventory holding cost hi and the discount rate 0 ≤ α ≤ 1.

Then we get the modified holding cost factor

hi = h0
i + (1− α)wi.
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Substitution into the expected profit function yields

EΠi(yi) = (ri − w)μi − (h0
i + (1− α)wi)

Z yi

ξ=0

(yi − ξ)fi(ξ)dξ

− (bi − (1− α)wi)

Z ∞
ξ=yi

(ξ − yi)fi(ξ)dξ.

The critical ratio changes to

y∗i = F−1i

µ
bi − (1− α)wi

bi + hi

¶
.

Clearly, the optimal base stock level does not necessarily equal the crit-

ical ratio of the centralized solution

y∗i (x) = F−1i

⎛⎝bi − (1− α)
C(μSC(x),σ2

SC(x))
μSC(x)

bi + hi

⎞⎠ .

To solve this model, we cannot use our previous approach any more

since the problem structure has changed. Therefore, we have to rely on

numerical optimization to solve the optimization problem

max
x

X
i

xi
¡¡
ri − c

¡
σ2
SC (x)

¢¢
μi − di (yi)

¢
.

In the next step, the manufacturer has to offer the retailers a contract

that will lead to the profit allocation that we have developed in the

previous section and incentivizes the retailer to choose the supply chain

optimal base stock level at the same time. In literature, several con-

tracts have been proposed that lead to supply chain coordination. We

follow the idea of Cachon and Zipkin (1999) and use transfer payments

for inventory on stock at the retailer, that is charged th per unit on

stock, and for backorders that lead to a payment of tb. Then the fol-

lowing proposition shows coordinating contracts that lead to the same

supply chain solution and the same base stock levels as in the centralized
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solution.

Proposition 6.12 For our supply chain a three parameter contract

with

wi = (1− λi) ri − λi
C
¡
μSC (x∗) , σ2

SC (x∗)
¢

μSC(x
∗)

,

thi = (1− α) (λi − 1)
C
¡
μSC (x∗) , σ2

SC (x∗)
¢

μSC(x
∗)

tbi = (λi − 1) (bi + hi) + (1− α) (1− λi)
C
¡
μSC (x∗) , σ2

SC (x∗)
¢

μSC(x
∗)

and

λi =
EΠfairi (x∗, y∗)
EΠCESC (x∗, y∗)

coordinates the supply chain and leads to the supply chain optimal re-

tailer selection and base stock levels.

We can see that th is negative and therefore the manufacturer sub-

sidizes inventory on stock. On the other hand the backorder penalty tb

can be positive or negative depending on the specific situation.

6.8 Conclusion

We have analyzed how supply chain performance can be improved by

managing demand variability optimally. We have shown that the well-

known double marginalization effect also exists in supply chains where

a manufacturer can choose among multiple retailers. Our analyses have

shown that the effect of this double marginalization can be quite sub-

stantial as it is in the traditional contracting literature. To remedy this

effect, we have developed contracts that coordinate the supply chain.

We have also shown that the approach of launching as many dis-

tribution channels as possible is often sub-optimal. We have presented

cases where it might be even favorable to exclude a profitable channel if
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the total supply chain suffers from the high variability that this channel

would import into the total supply chain.

In this chapter, we have not analyzed correlated retailer demands.

Since these demand behavior can be encountered frequently in the con-

text of fashion goods and high-tech articles, an analysis of this problem

would improve the applicability of our model. Unfortunately, the ana-

lytical structure of our model does not hold any more in this context.

Therefore, we leave this area for future research.

6.9 Proofs

Proof of Proposition 6.1. The proof follows the lines of Shen et al.

(2003). Assume for contradiction that x∗l = 0 for some l ∈ {1, 2, . . . , k−
1}. Define

x0i =

(
1, if i = l

x∗i , otherwise,

and

x00i =

(
0, if i = k

x∗i , otherwise,

for each i. Let z∗, z0, and z00 be the objective values of x∗, x0, and x00.
From optimality we know that z∗ − z00 ≥ 0. Then

z0 − z∗ = (w − c)μl −
¡
u
¡
σ̄2 + σ2

k + σ2
l

¢− u
¡
σ̄2 + σ2

k

¢¢
and

z∗ − z00 = (w − c)μk −
¡
u
¡
σ̄2 + σ2

k

¢− u
¡
σ̄2

¢¢
.

By concavity of

u
¡
σ̄2 + σ2

k + σ2
l

¢− u
¡
σ̄2 + σ2

k

¢
σ2
l

≤ u
¡
σ̄2 + σ2

k

¢− u
¡
σ̄2

¢
σ2
k
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we see that

z0 − z∗

σ2
l

= (w − c)
μl
σ2
l

− u
¡
σ̄2 + σ2

k + σ2
l

¢− u
¡
σ̄2 + σ2

k

¢
σ2
l

≥ (w − c)
μk
σ2
k

− u
¡
σ̄2 + σ2

k

¢− u
¡
σ̄2

¢
σ2
k

=
z∗ − z00

σ2
k

.

It follows by z0 − z∗ ≥ 0 that y0 is also an optimal solution.

Proof of Proposition 6.2. From Proposition 6.1 we can see that we

only have to search sequentially over p and no other combinations can

be optimal. Therefore, it suffices to search over p and choose the cut-off

level p∗ that maximizes the manufacturer’s expected profits.

Proof of Proposition 6.3. For every region of ŵi, the maximal ŵi

is relevant for the computation of x because the expected manufacturer

profits are increasing in w. This follows from the optimality condition.

Clearly, only the maximal ŵi are relevant.

Proof of Proposition 6.4. The proof follows the lines of Shen et al.

(2003). Assume for contradiction that x∗l = 0 for some l ∈ {1, 2, . . . , k−
1}. Define

x0i =

(
1, if i = l

x∗i , otherwise,

and

x00i =

(
0, if i = k

x∗i , otherwise,

for each i. Let z∗, z0, and z00 be the objective values of x∗, x0, and x00.
From optimality we know that z∗ − z00 ≥ 0 Then

z0 − z∗ = μl (rl − c)− dl (yl)−
¡
u
¡
σ̄2 + σ2

k + σ2
l

¢− u
¡
σ̄2 + σ2

k

¢¢
and

z∗ − z00 = μk (rk − c)− dk (yk)−
¡
u
¡
σ̄2 + σ2

k

¢− u
¡
σ̄2

¢¢
.
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By concavity of

u
¡
σ̄2 + σ2

k + σ2
l

¢− u
¡
σ̄2 + σ2

k

¢
σ2
l

≤ u
¡
σ̄2 + σ2

k

¢− u
¡
σ̄2

¢
σ2
k

we see that

z0 − z∗

σ2
l

=
μl (rl − c)− dl (yl)

σ2
l

− u
¡
σ̄2 + σ2

k + σ2
l

¢− u
¡
σ̄2 + σ2

k

¢
σ2
l

≥ μk (rk − c)− dk (yk)

σ2
k

− u
¡
σ̄2 + σ2

k

¢− u
¡
σ̄2

¢
σ2
k

=
z∗ − z00

σ2
k

.

It follows by z0 − z∗ ≥ 0 that y0 is also an optimal solution.

Proof of Proposition 6.5. From the preceding Propositions we

can see that we only have to search sequentially over p and no other

combinations can be optimal. Therefore, it suffices to search over p and

choose the cut-off level p∗ that maximizes the manufacturer’s expected

profits.

Proof of Proposition 6.6. The profit function is

EΠCSC =

⎛⎝X
l≤p∗

xl (rlμl − dl (yl))

⎞⎠− C
¡
μSC (x(l)) , σ2

SC (x(l))
¢ ≥

⎛⎝X
l≤p

xl (rlμl − dl (yl))

⎞⎠− C
¡
μSC (x(l)) , σ2

SC (x(l))
¢ ∀p\p∗.

and the ordering is

μ1 (r1 − c)− d1 (y1)

σ2
1

≥ μ2 (r2 − c)− d2 (y2)

σ2
2

≥ . . .

≥ μN (rN − c)− dN (yN )

σ2
N

The profit margin for all retailers is then zero and the manufacturer

takes all supply chain profits.

Proof of Proposition 6.7.
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The wholesale price is increasing in δ because

dwi (δ)

dδ
=

µ
ri − di (yi)

μi

¶
− c

¡
σ2
SC (x)

¢ ≥ 0

by optimality of the centralized solution. It is still rational for the

supplier to choose the retailers because

EΠCSC =
X
l≤p∗

xlδ
¡¡
rl − c

¡
σ2
SC (x)

¢¢
μl − dl (yl)

¢
≥

X
l≤p

xlδ
¡¡
rl − c

¡
σ2
SC (x)

¢¢
μl − dl (yl)

¢ ∀p\p∗
and

δ
μ1r1 − d1 (y1)

σ2
1

≥ δ
μ2r2 − d2 (y2)

σ2
2

≥ . . . ≥ δ
μNrN − dN (yN )

σ2
N

for 0 ≤ δ ≤ 1.

Proof of Proposition 6.8.
The value function for the retailer echelon expected profits equals

v = (1− δ)

⎛⎝⎛⎝X
l≤p∗

xl (rlμl − dl (yl))

⎞⎠− C
¡
μSC (x(l)) , σ2

SC (x(l))
¢⎞⎠

from the optimal centralized solution. The basic axioms for the Shapley

value are (i) v(∅) = 0 (ii) superadditivity v(S∪T ) ≥ v(S)+v(T ) with S

and T disjoint subset (cooperation can only help and not hurt). Clearly,

(i) holds since an empty supply chain does not produce any profits or

costs. For (ii), the superadditivity follows from the optimality condition

of the supply chain and the concave variability cost function u
¡
σ2
SC (x)

¢
.
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Then the expected profit for retailer i equals

EΠi(yi) = (ri − w)μi − di (yi)

= (1− δ)πi

= (1− δ)
X

i/∈V⊆N

|V |!(n− |V |− 1)!

n!
(v (V ∪ {i})− v (V ))

It follows the optimal wholesale price wi for retailer i.

Proof of Proposition 6.9. The proof is analogous the Proof of

Proposition 6.4.

Proof of Proposition 6.10. The proof is analogous the Proof of

Proposition 6.5.

Proof of Proposition 6.11. The proof is analogous the Proof of

Proposition 6.8.

Proof of Proposition 6.12. The retailer generates a fraction λi =
EΠfairi (x∗,y∗)
EΠCESC (x∗,y∗) of the centralized supply chain profits. Then we can set

λi

ÃÃ
ri −

C
¡
μSC (x∗) , σ2

SC (x∗)
¢

μSC(x
∗)

!

−
Ã
hi + (1− α)

C
¡
μSC (x∗) , σ2

SC (x∗)
¢

μSC(x
∗)

!Z yi

ξ=0

(yi − ξ)fi(ξ)dξ

−
Ã
bi − (1− α)

C
¡
μSC (x∗) , σ2

SC (x∗)
¢

μSC(x
∗)

!Z ∞
ξ=yi

(ξ − yi)fi(ξ)dξ

!

= (ri − wi)−
Ã
hi + (1− α)

C
¡
μSC (x∗) , σ2

SC (x∗)
¢

μSC(x
∗)

+ th

!
·Z yi

ξ=0

(yi − ξ)fi(ξ)dξ

−
Ã
bi − (1− α)

C
¡
μSC (x∗) , σ2

SC (x∗)
¢

μSC(x
∗)

+ tb

!Z ∞
ξ=yi

(ξ − yi)fi(ξ)dξ.
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It follows that

wi = (1− λi) ri − λi
C
¡
μSC (x∗) , σ2

SC (x∗)
¢

μSC(x
∗)

,

thi = (1− α) (λi − 1)
C
¡
μSC (x∗) , σ2

SC (x∗)
¢

μSC(x
∗)

tbi = (λi − 1) (bi + hi) + (1− α) (1− λi)
C
¡
μSC (x∗) , σ2

SC (x∗)
¢

μSC(x
∗)

by solving for the contract parameters and substitution. Clearly the

critical ratio equals the centralized solution because

bi + tb − (1− α)wi

hi + bi + tb + th
=

λi

µ
bi − (1− α)

C(μSC(x∗),σ2
SC(x∗))

μSC(x∗)

¶
λi (hi + bi)

=
bi − (1− α)

C(μSC(x∗),σ2
SC(x∗))

μSC(x∗)

hi + bi



Chapter 7

Conclusion and Critical
Review

In this thesis, we have presented approaches for designing efficient sup-

ply chain contracts. We used an alternative formulation of the service

level metric that allowed us to design contracts that are enforceable and

easy to understand. Furthermore, we analyzed how demand variability

can be consciously admitted to the supply chain and how this admission

policy affects the pricing policy.

In this chapter, we conclude the thesis and summarize our main find-

ings. More precisely, we highlight our contributions to current research

and we critically review our models. Last, we provide an outlook into

further research possibilities on the proposed contracts.

7.1 Contributions

In Chapter 4, we used a finite-horizon service level measure that was

proposed by Thomas (2005). We developed two different service level

contracts, a flat penalty and a unit penalty contract. We used these

contracts to develop a supply chain model that is similar to Cachon and
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Zipkin (1999). Thereby, we could identify optimal contract values for

these service level contracts and could compare these values with the

traditional service level measures. This issue has not been analyzed in

literature yet. Our analysis is based on the log-concave property of the

demand distribution. We derived contract parameter values for both

contract types that are able to coordinate the supply chain. We also

found out that it is not always optimal for the manufacturer to offer the

supplier a contract with a high service level and a high penalty payment

at the same time. Rather, the manufacturer has to take the supplier’s

response into account when deciding on optimal contract parameters.

In Chapter 5, we extended current research on inventory allocation

models, as for example proposed by McGavin et al. (1993) and van der

Heijden (1999). We have shown that a manufacturer can realize sig-

nificant cost savings from the risk pooling effect among the retailers

and that an optimal allocation strategy can further enhance a manu-

facturer’s profit. We developed the contract balancing approach that

excludes retailers whose last period demand was exceptionally high or

low from subsequent replenishments. Our analyses also show that the

contract balancing approach deviates significantly from the traditional

inventory balancing approach that replenishes the retailer with the low-

est inventory level first and that this deviation can lead to incentive

conflicts between manufacturer and retailers.

In Chapter 6, we proposed a model that selectively admits variability

to the supply chain. This issue has not been analyzed in literature

until now. We have shown that it is beneficial for a manufacturer to

exclude some retailers or distribution channels. We derived an efficient

optimization approach to find the profit maximizing channel selection

and developed a wholesale pricing scheme that leads to a coordinated

supply chain. We also extended our model to situations where channel

opportunity costs are relevant. In addition, we use a game theoretic

model - the Shapley value - to allocate profits fairly among the retailers.
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7.2 Critical Review

Our thesis contributes to the existing literature on inventory manage-

ment and contracting. Unavoidably, we had to make simplifying as-

sumptions to come up with tractable models, solution approaches, and

analytical results. In this section we want to review some of these crit-

ical and limiting assumptions.

Some of our assumptions are in line with current research, but

nonetheless limit the practical applicability of our models. For example,

we assume in Chapters 5 and 6 that retailer demands are not correlated.

Clearly, this is nearly never the case in practical applications. Since this

demand characteristic can be encountered frequently in the context of

fashion goods and high-tech articles, an analysis that incorporates cor-

related customer demands would improve the applicability of our model.

Relaxing this assumption would significantly complicate our models and

would prevent an analytical analysis of the results. Nonetheless, our

channel selection model in Chapter 6 could be extended to correlated

demands, but we would have to rely on numerical approaches for the

optimization and analytical insights would be hard to derive.

In addition, the full backorder assumption limits the applicability of

our model. In practice, customers do not always wait for a later delivery

of a product if this product is not on stock in the store. Some customers

substitute with another product or go to another store. This leads to

more complex models that need to include these lost sales and demand

spill-over effects. Still we feel that the backorder assumption allows us

to identify the important aspects of our models.

On a final note, the distribution channel and retailer selection prob-

lem in Chapter 6 might not be applicable to all situations and is worth

a short discussion. Clearly, our suggestion of consciously forgoing some

demand sources and consequently some revenue crosses common intu-

ition. Nonetheless, for companies with limited resources for serving dif-

ferent markets, the optimal market selection approach might be worth a
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thought. Especially small and medium enterprises (SME) should be ac-

tively choosing their markets instead of using an unfocused distribution

strategy.

7.3 Future Research

Our work offers researchers a number of potential areas for future re-

search. It might be worth studying the impact of different coordinating

contract parameter combinations on the variability of profits in Chap-

ter 4. Until now, we have analyzed this issue numerically and found

that there exist variability minimizing parameter combinations. Unfor-

tunately, we have not been able to derive structural results.

Another interesting aspect for extending our model from Chapter 4

is to measure the service level over more than one period. Then the

supplier has an additional degree of freedom on how to fill the manu-

facturer’s orders. Furthermore, the aspect of information asymmetries

could be included into the model. In the existing model, the manu-

facturer has full information about the supplier’s cost and reservation

profit. Relaxing this assumption would lead to a higher acceptance of

the model and its recommendations.

For the inventory allocation problem in Chapter 5, one can think

of extending our model to a setting where the manufacturer faces a

unit penalty contract where the magnitude of a stock-out influences the

penalty payment. Unfortunately, the unit penalty function cannot be

determined as easily as the penalty function in our model. Therefore,

we leave the unit penalty contracts for future research.

We have already suggested in the last section that the channel se-

lection model from Chapter 6 would benefit from an extension to a

correlated demand environment. Unfortunately, our analytical results

and solution approach cannot be easily modified to handle this case.

Initial thoughts however lead to the interesting conclusion that posi-

tively correlated demand might lead to an even more restrictive channel
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selection because the cost-driving demand variability is even amplified

compared to the uncorrelated setup. Nonetheless, analytical results are

needed to support this hypothesis.
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