


Analytical Finance: Volume II



Jan R. M. Röman

Analytical Finance:
Volume II

The Mathematics of Interest Rate Derivatives,
Markets, Risk and Valuation



Jan R. M. Röman
Västerås
Sweden

ISBN 978-3-319-52583-9 ISBN 978-3-319-52584-6 (eBook)
https://doi.org/10.1007/978-3-319-52584-6

Library of Congress Control Number: 2016956452

© The Editor(s) (if applicable) and The Author(s) 2017
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher,
whether the whole or part of the material is concerned, specifically the rights of translation,
reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
physical way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with
regard to jurisdictional claims in published maps and institutional affiliations.

Cover illustration: Tim Gainey / Alamy Stock Photo

Printed on acid-free paper

This Palgrave Macmillan imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-52584-6


To my son and traveling partner –
Erik Håkansson



Acknowledgments

I like to thank all my students for all their comments and questions
during my lectures. A special thanks goes to Mai Xin who asked me
to translate my notes to English many years ago. I also like to thank
Professor Dmitrii Silvestrov, who asked me to teach Analytical Finance
and Professor Anatoly Malyarenko for his assistance and advice.

Finally I will also give a special thanks to Thomas Gustafsson
for all his comments, and great and deep discussion about financial
mathematics.

vii



Preface

This book is based upon my lecture notes for the course Analyt-
ical Finance II at Mälardalen University in Sweden. It’s the second
course in analytical finance in the program Engineering Finance given
by the Mathematics department. The previous book, Analytical Fin-
ance – The Mathematics of Equity Derivatives, Markets, Risk and
Valuation, covers the equity market, including some FX derivatives.

Both books are also a perfect choice for masters and graduate stu-
dents in physics, astronomy, mathematics or engineering, who already
know calculus and want to get into the business of finance. Most fin-
ancial instruments are described succinctly in analytical terms so that
the mathematically trained student can quickly get the expert know-
ledge she or he needs in order to become instantly productive in the
business of derivatives and risk management.

The books are also useful for managers and economists who do not
need to dwell on the mathematical details. All the latest market prac-
tices concerning risk evaluation, hedging and counterparty risks are
described in separate sections.

This second volume covers the most central topics needed for the
valuation of derivatives on interest rates and fixed income instruments.
This also includes the mathematics needed to understand the the-
ory behind the pricing of interest rate instruments, for example basic
stochastic processes and how to bootstrap interest rate yield curves.
The yield curves are used to generate and discount future cash-flows
and value financial instruments. We include pricing with discrete time
models as well as models in continuous time.

ix



x Preface

First we will give a short introduction to financial instruments in the
interest rate markets. We also discuss the parameters needed to classify
the instruments and how to perform day counting according to market
conventions. Day counting is important when dealing with interest
rate instruments since their notional amounts can be huge, millions
or even billions of USD in one trade. One or a few missing days of
discounting will change the total price with thousands of USD. We also
discuss the most common types of interest rate quoting conventions
used in the markets.

In Chapter 2 we present many of the different interest rates used in
the market. We continue with swap interest rates in Chapter 3, where
we also present details for several widely used interest rates such as
LIBOR, EURIBOR and overnight rates in different currencies.

In Chapter 4, many of the common instruments are presented. This
includes the basic instruments, such as bonds, notes and bills of differ-
ent kinds, including some with embedded options. Then we introduce
floating rate notes, forward rate agreements, forwards and futures, in-
cluding cheapest to deliver clauses. We then discuss different kinds
of interest rate swaps and the derivatives related to these swaps, like
swaptions, caps and floors. This also includes some credit derivat-
ives, such as credit default swaps. For swaptions, caps and floors we
explicitly discuss recent changes in these models due to negative nom-
inal interest rates and derive a quasi-analytical relationship between
at-the-money lognormal and normal volatility.

In Chapters 5 and 6 we continue with yield curves and the term
structure of interest rates. We show how to bootstrap interest rate
curves from prices of financial instruments. We also present the
Nelson-Siegel model and the extension by Svensson. A detailed ana-
lysis of interpolation methods follows and the pros and cons of
each method is clearly outlined. Spreads in the interbank market are
discussed in Chapter 7.

In Chapters 8 and 9, risk measures and some crucial features of
modern risk management are discussed.

In Chapter 10, a new method for valuing instruments with an em-
bedded optionality is presented. This method, the option-adjusted
spread (OAS) method, can also be used to value callable and putable
bonds, cancellable swaps etc. The call (put) structure can also be of
Bermudan exercise type.

In Chapter 11 we begin to discuss the pricing theory and models
based on stochastic processes. We continue with this, the continuous



Preface xi

time models through Chapters 12–17. We derive and solve the partial
differential equation for interest rate instruments based on arbitrage
and relative pricing. Several stochastic models are presented. Some
have an affine term structure, such as Vasicek, Ho-Lee, Cox-Ingersoll-
Ross and Hull-White. Some models can be approximated by binomial
or trinomial trees. These are Ho-Lee, Hull-White and Black-Derman-
Toy. We also discuss the Heath-Jarrow-Morton framework and how
to use forward measures in order to derive general option pricing
formulas for interest rate instruments.

After a short presentation on how to handle some exotic instru-
ments in Chapter 18, we discuss in Chapter 19 how to deal with some
standard derivative instruments, such as swaptions, caps and floors.
This also includes the recent case of negative interest rates.

In Chapter 20 is a brief introduction to convertible bonds.
Finally, there are some chapters on modern pricing. These chapters

describes the dramatic changes in the markets after the financial crises
in 2008 – 2009. Before the crises, credit risk was more or less ignored
when valuing financial instruments. But, after the crises, collateral
agreements have become a way to minimize counterparty risk. Also
the funding of the deals were changed as well as the views on risk-
free interest rates. During the crises even LIBOR rated banks did
default. Also the LIBOR rates were manipulated by some of the panel
banks. With collateral agreements in several currencies we need to
use a multi-curve framework and bootstrap several curves to find the
cheapest to deliver curve.

We also discuss credit value adjustment (CVA), debt value adjust-
ment (DVA) and funding value adjustment (FVA). We also present
the widely used LIBOR market model (LMM) and how to calibrate
the LMM. Finally we present methods on how to manage exotic in-
struments by using linear Gaussian models (LGM). We also present
something about the Stochastic Alpha Beta Rho (SABR) volatility
model and how to convert between lognormal and normal distributed
volatilities.



Contents

1 Financial Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Money . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Valuation of Interest Rate Instruments . . . . . . . . . . . . 3

1.1.3 Zero Coupon Pricing . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.4 Day-Count Conventions . . . . . . . . . . . . . . . . . . . . . 10

1.1.5 Quote Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Interest Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Introduction to Interest Rates . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Benchmark Rate, Base Rate (UK), Prime Rate (US) . . . . . 17

2.1.2 Deposit Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.3 Discount Rate, Capitalization Rate . . . . . . . . . . . . . . . 18

2.1.4 Simple Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.5 Effective (Annual) Rate . . . . . . . . . . . . . . . . . . . . . . 19

2.1.6 The Repo Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.7 Interbank Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.8 Coupon Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.9 Zero Coupon Rate . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.10 Real Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.11 Nominal Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.12 Yield – Yield to Maturity (YTM) . . . . . . . . . . . . . . . . 22

2.1.13 Current Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.14 Par Rate and Par Yield . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.15 Prime Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

xiii



xiv Contents

2.1.16 Risk Free Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.17 Spot Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.18 Forward Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.19 Swap Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.20 Term Structure of Interest Rates . . . . . . . . . . . . . . . . 26

2.1.21 Treasury Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.22 Accrued Interest . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.23 Dividend Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.24 Yield to Maturity (YTM) . . . . . . . . . . . . . . . . . . . . . 27

2.1.25 Credit Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.26 Hazard Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.27 Rates and Discounting Summary . . . . . . . . . . . . . . . . 28

2.1.28 Black-Scholes Formula . . . . . . . . . . . . . . . . . . . . . . 29

3 Market Interest Rates and Quotes . . . . . . . . . . . . . . . . . . . . . . 31

3.1 The Complexity of Interest Rates . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 The LIBOR Rates . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 The EURIBOR Rates . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.3 The EONIA Rates . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.4 The Euro Repurchase Agreement Rate – Eurepo . . . . . . 40

3.1.5 Sterling Overnight Index Average (SONIA) . . . . . . . . . 43

3.1.6 Federal Funds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Interest Rate Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Introduction to Interest Rate Instruments . . . . . . . . . . . . . . . . 47

4.1.1 Bonds, Bills and Notes . . . . . . . . . . . . . . . . . . . . . . 47

4.1.2 Bonds, Market Quoting Conventions and Pricing . . . . . 51

4.1.3 Accrued Interest . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.4 Floating Rate Notes . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.5 FRA – Forward Rate Agreements . . . . . . . . . . . . . . . . 65

4.1.6 Interest Rate Futures . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.7 Interest Rate Bond Futures and CTD . . . . . . . . . . . . . 75

4.1.8 Swaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.9 Overnight Index Swaps (OIS) . . . . . . . . . . . . . . . . . . 106

4.1.10 Asset Swap and Asset Swap Spread . . . . . . . . . . . . . . 108

4.1.11 Swaptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.1.12 Credit Default Swaps . . . . . . . . . . . . . . . . . . . . . . . 112

4.1.13 Hazard rate models . . . . . . . . . . . . . . . . . . . . . . . . 124

4.1.14 Total Return Swaps . . . . . . . . . . . . . . . . . . . . . . . . 130



Contents xv

4.1.15 Caps, Floors and Collars . . . . . . . . . . . . . . . . . . . . . 130

4.1.16 Interest Rate Guarantees – IRG . . . . . . . . . . . . . . . . . 154

4.1.17 Repos and Reverses . . . . . . . . . . . . . . . . . . . . . . . 155

4.1.18 Loans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.1.19 CPPI – Constant-Proportions-Portfolio-Insurance . . . . . . 159

5 Yield Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.1 Introduction to Yield Curves . . . . . . . . . . . . . . . . . . . . . . . . 165

5.1.1 Credit Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.2 Zero-coupon Yield Curves . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.2.1 ISMA and Moosmüller . . . . . . . . . . . . . . . . . . . . . . . 173

6 Bootstrapping Yield Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.1 Constructing Zero-Coupon Yield Curves . . . . . . . . . . . . . . . . . 175

6.1.1 The Matching Zero-Coupon Yield Curve . . . . . . . . . . . 176

6.1.2 Implied Forward Rates . . . . . . . . . . . . . . . . . . . . . . 178

6.1.3 Bootstrapping with Government Bonds . . . . . . . . . . . 182

6.1.4 Bootstrapping a Swap Curve . . . . . . . . . . . . . . . . . . 196

6.1.5 A More General Bootstrap . . . . . . . . . . . . . . . . . . . . 205

6.1.6 Nelson-Siegel Parameterization . . . . . . . . . . . . . . . . . 210

6.1.7 Interpolation Methods . . . . . . . . . . . . . . . . . . . . . . 213

6.1.8 Spread and Spread Curves . . . . . . . . . . . . . . . . . . . . 225

7 The Interbank Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7.1 Spreads and the Interbank Market . . . . . . . . . . . . . . . . . . . . . 227

7.1.1 TED-Spread and Other Spreads . . . . . . . . . . . . . . . . 228

7.1.2 Overnight Indexed Swaps (OIS) and Basis Spread . . . . . 228

7.1.3 Some Overnight Indices . . . . . . . . . . . . . . . . . . . . . 232

7.1.4 Basis Swaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

8 Measuring the Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8.1 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8.1.1 Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8.1.2 Duration and Convexity . . . . . . . . . . . . . . . . . . . . . 239

8.1.3 Modified Duration, Dollar Duration and DV01 . . . . . . . 243

8.1.4 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

8.1.5 Gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

8.1.6 Accrued Interest . . . . . . . . . . . . . . . . . . . . . . . . . . 249

8.1.7 Rho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

8.1.8 Theta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

8.1.9 Vega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251



xvi Contents

8.1.10 YTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

8.1.11 Portfolio Immunization Using Duration and Convexity . . 253

8.1.12 The Fisher-Weil Duration and Convexity . . . . . . . . . . . 255

8.1.13 Hedging with Duration . . . . . . . . . . . . . . . . . . . . . . 256

8.1.14 Shifting the Zero-Coupon Yield Curve . . . . . . . . . . . . 257

9 Risk Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

9.1 Introduction to Risk Management . . . . . . . . . . . . . . . . . . . . . 261

9.1.1 Capital Requirement . . . . . . . . . . . . . . . . . . . . . . . 263

9.1.2 Risk Measurement and Risk Limits . . . . . . . . . . . . . . . 266

9.1.3 Risk Control in Treasury Operations . . . . . . . . . . . . . 276

10 Option-Adjusted Spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

10.1 The OAS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

10.1.1 Some Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 280

10.1.2 Building the Binomial Tree . . . . . . . . . . . . . . . . . . . 281

10.1.3 Calibrate the Binomial Tree . . . . . . . . . . . . . . . . . . . 284

10.1.4 Calibrate the Tree With a Spread . . . . . . . . . . . . . . . . 286

10.1.5 Using the OAS Model to Value the Embedded Option . . . 288

10.1.6 Effective Duration and Convexity . . . . . . . . . . . . . . . 289

11 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

11.1 Pricing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

11.1.1 Interest Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

11.1.2 Stochastic Processes for Interest Rates . . . . . . . . . . . . 297

12 Term Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

12.1 The Term Structure of Interest Rates . . . . . . . . . . . . . . . . . . . 307

12.1.1 Yield- and Price Volatility . . . . . . . . . . . . . . . . . . . . 310

12.1.2 The Market Price of Risk . . . . . . . . . . . . . . . . . . . . . 313

12.1.3 Solutions to the TSE . . . . . . . . . . . . . . . . . . . . . . . . 314

12.1.4 Relative Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

13 Martingale Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

13.1 Introduction to Martingale Measures . . . . . . . . . . . . . . . . . . . 319

14 Pricing of Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

14.1 Bond Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

14.1.1 Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

15 Term-Structure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

15.1 Martingale Models for the Short Rate . . . . . . . . . . . . . . . . . . . 333



Contents xvii

15.1.1 The Q-Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 333

15.1.2 Inverting the Yield Curve . . . . . . . . . . . . . . . . . . . . 336

15.1.3 Affine Term Structure . . . . . . . . . . . . . . . . . . . . . . . 338

15.1.4 Yield-Curve Fitting: For and Against . . . . . . . . . . . . . . 400

15.1.5 The BDT Model . . . . . . . . . . . . . . . . . . . . . . . . . . 403

15.1.6 The Black–Karasinski Model . . . . . . . . . . . . . . . . . . . 438

15.1.7 Two-Factor Models . . . . . . . . . . . . . . . . . . . . . . . . 442

15.1.8 Three-Factor Models . . . . . . . . . . . . . . . . . . . . . . . 446

15.1.9 Fitting Yield Curves with Maximum Smoothness . . . . . . 446

16 Heath-Jarrow-Morton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

16.1 The Heath-Jarrow-Morton (HJM) Framework . . . . . . . . . . . . . . 449

16.1.1 The HJM Program . . . . . . . . . . . . . . . . . . . . . . . . . 455

16.1.2 Hull-White Model . . . . . . . . . . . . . . . . . . . . . . . . . 456

16.1.3 A Change of Perspective . . . . . . . . . . . . . . . . . . . . . 459

17 A New Measure – The Forward Measure . . . . . . . . . . . . . . . . . 463

17.1 Forward Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

17.1.1 Forwards and Futures . . . . . . . . . . . . . . . . . . . . . . . 471

17.1.2 A General Option Pricing Formula . . . . . . . . . . . . . . . 474

18 Exotic Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

18.1 Some Exotic Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

18.1.1 Constant Maturity Contracts . . . . . . . . . . . . . . . . . . 491

18.1.2 Compound Options . . . . . . . . . . . . . . . . . . . . . . . . 493

18.1.3 Quanto Contracts . . . . . . . . . . . . . . . . . . . . . . . . . 494

19 The Black Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

19.1 Pricing Interest Rate Options Using Black . . . . . . . . . . . . . . . . 499

19.1.1 Par and Forward Volatilities . . . . . . . . . . . . . . . . . . . 500

19.1.2 Caps and Floors . . . . . . . . . . . . . . . . . . . . . . . . . . 503

19.1.3 Swaps and Swaptions . . . . . . . . . . . . . . . . . . . . . . . 506

19.1.4 Swaps in the Multiple Curve Framework . . . . . . . . . . . 514

19.1.5 Swaptions with Forward Premium . . . . . . . . . . . . . . . 516

19.1.6 The Normal Black Model . . . . . . . . . . . . . . . . . . . . . 517

19.1.7 European Short-Term Bond Options . . . . . . . . . . . . . . 522

19.1.8 The Schaefer and Schwartz Model . . . . . . . . . . . . . . . 523

20 Convertibles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

20.1 Convertible Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

20.1.1 A Model for Convertibles . . . . . . . . . . . . . . . . . . . . . 528



xviii Contents

21 A New Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

21.1 Pricing Before and After the Crisis . . . . . . . . . . . . . . . . . . . . . 529

21.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

21.1.2 After the Crises – How the Market Has Changed . . . . . . 532

21.1.3 A Multi-Curve Framework . . . . . . . . . . . . . . . . . . . . 537

21.1.4 Bootstrapping with Multiple Curves . . . . . . . . . . . . . . 545

21.1.5 Modern Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

21.1.6 Pricing Under Collateralization . . . . . . . . . . . . . . . . . 556

21.1.7 Pricing with Collateral Agreements . . . . . . . . . . . . . . 564

21.1.8 Market Instruments . . . . . . . . . . . . . . . . . . . . . . . . 577

21.1.9 Curve Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 582

21.1.10 The Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

21.1.11 General Pricing in the New Environment with

Funding Value Adjustments . . . . . . . . . . . . . . . . . . . 601

22 CVA and DVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

22.1 Credit Value Adjustments and Funding . . . . . . . . . . . . . . . . . . 607

22.1.1 Definitions of CVA and DVA . . . . . . . . . . . . . . . . . . . 607

22.1.2 Standard Approach . . . . . . . . . . . . . . . . . . . . . . . . 608

22.1.3 Approach Including Liquidity . . . . . . . . . . . . . . . . . . 609

22.1.4 How to Make It Right . . . . . . . . . . . . . . . . . . . . . . . 610

22.1.5 Final Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 619

23 Market Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

23.1 The LIBOR Market Model . . . . . . . . . . . . . . . . . . . . . . . . . . 621

23.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

23.1.2 General LIBOR Market Models . . . . . . . . . . . . . . . . . 623

23.1.3 The Lognormal LIBOR Market Model . . . . . . . . . . . . . 632

23.1.4 Calibrating the LIBOR Market Model . . . . . . . . . . . . . 643

23.1.5 Evolving the Forward Rates . . . . . . . . . . . . . . . . . . . 651

23.1.6 Pricing of Bermudan Swaptions . . . . . . . . . . . . . . . . 651

24 A Model for Exotic Instruments . . . . . . . . . . . . . . . . . . . . . . . 655

24.1 Managing Exotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

24.1.1 At-The-Money Volatility Matrix . . . . . . . . . . . . . . . . . 658

24.1.2 Migration of Risk . . . . . . . . . . . . . . . . . . . . . . . . . . 659

24.1.3 Choosing the Portfolio Weights . . . . . . . . . . . . . . . . . 661

24.1.4 Nothing Is Free . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

24.1.5 The SABR Volatility Model . . . . . . . . . . . . . . . . . . . . 664

24.1.6 Asymptotic Solution . . . . . . . . . . . . . . . . . . . . . . . . 664



Contents xix

24.1.7 Conversion Between Log Normal and Normal Volatility . 666

24.1.8 Conversion Between Normal and CEV Volatility . . . . . . 667

25 Modern Term Structure Theory . . . . . . . . . . . . . . . . . . . . . . . 669

25.1 Term Structure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

25.1.1 The Three Elements . . . . . . . . . . . . . . . . . . . . . . . . 670

25.1.2 The BGM Model (Brace Gatarek Musiela) . . . . . . . . . . 670

25.1.3 A Caplet in the BGM Framework . . . . . . . . . . . . . . . . 672

25.1.4 Short Rate Models . . . . . . . . . . . . . . . . . . . . . . . . . 674

26 Pricing Exotic Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . 677

26.1 Practical Pricing of Exotics . . . . . . . . . . . . . . . . . . . . . . . . . 677

26.1.1 Discount Factors, Zeroes and FRAs . . . . . . . . . . . . . . 677

26.1.2 Swaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

26.1.3 Basis Spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680

26.1.4 Caplets and Floorlets . . . . . . . . . . . . . . . . . . . . . . . 685

26.1.5 Linear Gaussian Models . . . . . . . . . . . . . . . . . . . . . . 686

26.1.6 Hull-White . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

26.1.7 Summary of the LGM Model . . . . . . . . . . . . . . . . . . . 692

26.1.8 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693

26.1.9 Exact Formulas for Swaption and Caplet Pricing . . . . . . 694

26.1.10 Approximation of Vanilla Pricing Formulas for

the One-Factor LGM Model . . . . . . . . . . . . . . . . . . . 697

26.1.11 swaptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

26.1.12 Bermudan Swaption . . . . . . . . . . . . . . . . . . . . . . . . 702

26.1.13 Calibration, Diagonal + Constant κ . . . . . . . . . . . . . . 703

26.1.14 Calibration to the Diagonal with H(T) Specified . . . . . . 706

26.1.15 Calibration, Diagonal + Linear ζ (t) . . . . . . . . . . . . . . . 707

26.1.16 Calibration, Diagonal + Row . . . . . . . . . . . . . . . . . . 710

26.1.17 Calibration, Caplets + Constant κ . . . . . . . . . . . . . . . 710

26.1.18 Calibration to Diagonals with Prescribed ζ (t) . . . . . . . . 711

26.1.19 Calibration to Diagonal Swaptions and Caplets . . . . . . . 711

26.1.20 Calibration to Diagonal Swaptions

and a Column of Swaptions . . . . . . . . . . . . . . . . . . . 712

26.1.21 Other Calibration Strategies . . . . . . . . . . . . . . . . . . . 712

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721



List of Figures

Fig. 1.1 The discount function for a constant interest rate at 2.0% . . . 9

Fig. 2.1 The par rate rpar is the constant rate that equalizes
the value of the floating leg (dotted arrows) to the
fixed leg over the lifetime of the swap . . . . . . . . . . . . . . . . 23

Fig. 2.2 The par yield is the yield that equals the coupon rate
cpar so that the price of the bond is equal to its face
value, nominal amount, here set to 100 . . . . . . . . . . . . . . . 23

Fig. 2.3 Here we use a yield curve to discount a number of
cash-flows PV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Fig. 3.1 EURIBOR rate quotes between 2011-04-01 and
2016-08-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Fig. 3.2 The Over-Night rate EONIA . . . . . . . . . . . . . . . . . . . . . . . 40

Fig. 4.1 The bond cash flows consist of an initial payment ,
the fixed coupon payments and the payback of the
principal (the nominal amount) . . . . . . . . . . . . . . . . . . . . . 49

Fig. 4.2 A 30 year to maturity bond price as function of ytm.
The coupon rate = 3%. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Fig. 4.3 The clean- and dirty price of a bond as function of a
constant yield over time . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Fig. 4.4 The bond dirty price as function of a constant
upward sloping yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Fig. 4.5 The bond dirty price as function of a constant
downward sloping yield . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Fig. 4.6 The cash flows for a floating rate note (FRN). . . . . . . . . . . . 64

Fig. 4.7 An FRA “In 6 for 3 at 7 %”. . . . . . . . . . . . . . . . . . . . . . . . . 66

xxi



xxii List of Figures

Fig. 4.8 An FRA “In 6 for 3 at 7 %”. . . . . . . . . . . . . . . . . . . . . . . . . 66

Fig. 4.9 The FRA contract period definition. . . . . . . . . . . . . . . . . . . 67

Fig. 4.10 An FRA with both cash flows. . . . . . . . . . . . . . . . . . . . . . . 68

Fig. 4.11 An FRA with the maturity cash flow. . . . . . . . . . . . . . . . . . 69

Fig. 4.12 An FRA with the initial cash flow. . . . . . . . . . . . . . . . . . . . 69

Fig. 4.13 An example of interest rate future. . . . . . . . . . . . . . . . . . . . 75

Fig. 4.14 A time view of a spot price based future. . . . . . . . . . . . . . . 77

Fig. 4.15 Profit of the bonds in a CTD contract. . . . . . . . . . . . . . . . . 90

Fig. 4.16 A swap with fixed rate pound sterling against floating
US dollar LIBOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Fig. 4.17 A fix-fix cross currency swap. In most cases there is
also an exchange of notionals when entering the swap. . . . . . 101

Fig. 4.18 Cross currency basis swap quotes against USD . . . . . . . . . . . 102

Fig. 4.19 USD LIBOR 1 month (dashed line) and USD OIS (solid line) . . 107

Fig. 4.20 USD LIBOR 1 month (dashed line) and USD OIS
(solid line) and the spread in bps (dotted line). This
is a zoomed in view from Fig. 4.19 . . . . . . . . . . . . . . . . . . . 108

Fig. 4.21 Illustration of the asset swap spread. . . . . . . . . . . . . . . . . . 111

Fig. 4.22 Cash flows for a CDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Fig. 4.23 Cash flows and default probabilities for a CDS. . . . . . . . . . . 119

Fig. 4.24 The payout from a cap when the floating rate
exceeds the cap-rate (strike level). . . . . . . . . . . . . . . . . . . . 132

Fig. 4.25 The payout from a floor when the floating rate falls
below the floor-rate (strike level). . . . . . . . . . . . . . . . . . . . 139

Fig. 4.26 A step-up cap strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Fig. 4.27 The binominal tree for a floor at time 1.5 year. . . . . . . . . . . . 144

Fig. 4.28 The binominal tree for a floor at time 1 year. . . . . . . . . . . . . 145

Fig. 4.29 The payoff from buying a one-period zero-cost
interest rate collar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Fig. 4.30 The put-call parity between a long cap, a short floor
and a forward rate agreement (FRA). . . . . . . . . . . . . . . . . . 147

Fig. 4.31 The effect of buying an interest rate collar on interest expense. 148

Fig. 4.32 A ratchet cap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Fig. 4.33 Illustration of a repo transaction. . . . . . . . . . . . . . . . . . . . . 155

Fig. 4.34 The cash-flow structure of a repo transaction. . . . . . . . . . . . 156

Fig. 4.35 Illustration of a security loan. . . . . . . . . . . . . . . . . . . . . . . 158

Fig. 5.1 Government bond yields in UK 2016-09-06 . . . . . . . . . . . . . 166



List of Figures xxiii

Fig. 5.2 The Swedish treasury zero-coupon rates per 2016-09-09 . . . . 167

Fig. 6.1 The zero rate and the forward rate from bootstrapping . . . . . 179

Fig. 6.2 The bootstrapped spot rate and forward rate . . . . . . . . . . . . 181

Fig. 6.3 The bootstrapped spot rate and forward rate using
Newton Raphson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Fig. 6.4 The zero-coupon curve as function of days to maturity . . . . . 190

Fig. 6.5 A single floating swap cash flow in relation with
bond cash flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Fig. 6.6 The Nelson-Siegel basis functions . . . . . . . . . . . . . . . . . . . 212

Fig. 6.7 The Extended Nelson-Siegel basis functions . . . . . . . . . . . . . 212

Fig. 6.8 Linear interpolation. Remark the sharp knees in the
forward curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Fig. 6.9 The alculation made in logarithmic interpolation . . . . . . . . . 215

Fig. 6.10 Logarithmic interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 216

Fig. 6.11 Polynomial interpolation. Here the forward rate
might be negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Fig. 6.12 Cubic spline interpolation . . . . . . . . . . . . . . . . . . . . . . . . 219

Fig. 6.13 The discount function . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Fig. 6.14 Spot and orward rate with cubic spline . . . . . . . . . . . . . . . 223

Fig. 7.1 The USD TED-spread during the financial crises. . . . . . . . . . 229

Fig. 7.2 The market rates in SEK 2007-12-28 . . . . . . . . . . . . . . . . . . 231

Fig. 7.3 The spreads in Swedish maket rates 2007-12-28 . . . . . . . . . . 231

Fig. 7.4 The Eonia (EUR OIS) between 1999 and mid Augist 2016 . . . 232

Fig. 8.1 The slope or derivative of the bond price with
respect to the yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Fig. 8.2 A rectangular shift on the yield curve . . . . . . . . . . . . . . . . . 259

Fig. 8.3 A triangular shift on the yield curve . . . . . . . . . . . . . . . . . . 259

Fig. 8.4 A smooth shift on the yield curve . . . . . . . . . . . . . . . . . . . 259

Fig. 9.1 A trade where the risks are hedged in another currency . . . . 277

Fig. 10.1 The forward rates in a OAS tree . . . . . . . . . . . . . . . . . . . . . 283

Fig. 10.2 The uncalibrated tree in the OAS model . . . . . . . . . . . . . . . 284

Fig. 10.3 The calibrated tree in the OAS model . . . . . . . . . . . . . . . . . 286

Fig. 10.4 Explanation of the reason to calibrate the OAS model . . . . . . 286

Fig. 10.5 The values after the calibration in the OAS model . . . . . . . . . 287

Fig. 10.6 The calculation of the final OAS cash flow . . . . . . . . . . . . . . 288

Fig. 10.7 The difference in price of a callable and a non-callable bond . 289

Fig. 11.1 The volatility as function of time-to-maturity . . . . . . . . . . . . 297



xxiv List of Figures

Fig. 11.2 The change in order of integration . . . . . . . . . . . . . . . . . . . 302

Fig. 15.1 The Vasicek probability density function . . . . . . . . . . . . . . . 349

Fig. 15.2 The Vasicek term structure of interest rates . . . . . . . . . . . . . 350

Fig. 15.3 The Vasicek discount function . . . . . . . . . . . . . . . . . . . . . 351

Fig. 15.4 The Ho-Lee binominal tree . . . . . . . . . . . . . . . . . . . . . . . . 365

Fig. 15.5 The Ho-Lee binominal tree with constant volatility . . . . . . . . 366

Fig. 15.6 The HW trinomial tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Fig. 15.7 The transformed HW tree . . . . . . . . . . . . . . . . . . . . . . . . . 387

Fig. 15.8 A HW trinomial tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Fig. 15.9 The rate distribution in the CIR model . . . . . . . . . . . . . . . . 396

Fig. 15.10 The zero-rates in the CIR model . . . . . . . . . . . . . . . . . . . . 396

Fig. 15.11 The discount function in the CIR model . . . . . . . . . . . . . . . 397

Fig. 15.12 The bond prices I BDT . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Fig. 15.13 The interest rate tree in BDT . . . . . . . . . . . . . . . . . . . . . . . 407

Fig. 15.14 A one-period tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

Fig. 15.15 How to find the rates in period one . . . . . . . . . . . . . . . . . . 408

Fig. 15.16 The price-tree in period two . . . . . . . . . . . . . . . . . . . . . . . 409

Fig. 15.17 The interest rate in period two . . . . . . . . . . . . . . . . . . . . . 410

Fig. 15.18 The four-year short-rate tree . . . . . . . . . . . . . . . . . . . . . . . 412

Fig. 15.19 The price tree at five year . . . . . . . . . . . . . . . . . . . . . . . . . 413

Fig. 15.20 The price tree of an American option . . . . . . . . . . . . . . . . . 413

Fig. 15.21 The index notation of the nodes in the BDT model . . . . . . . . 414

Fig. 15.22 The relation of the node index . . . . . . . . . . . . . . . . . . . . . 415

Fig. 15.23 The solution of zero-coupon prices (discount factors) . . . . . . 415

Fig. 15.24 How to build the BDT tree . . . . . . . . . . . . . . . . . . . . . . . . 418

Fig. 15.25 The node indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Fig. 15.26 The BDT tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Fig. 19.1 The initial caplet volatility curve. The dots represent
the cap volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Fig. 19.2 The optimized bootstrapped caplet volatility . . . . . . . . . . . . 502

Fig. 20.1 The price track of a convertible bond . . . . . . . . . . . . . . . . . 527

Fig. 21.1 A typical overnight index swap . . . . . . . . . . . . . . . . . . . . . 532

Fig. 21.2 The 6-month Euribor vs. Eonia overnight indexed
swap rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

Fig. 21.3 The EUR basis preads for market data in June 2011 . . . . . . . . 534



List of Figures xxv

Fig. 21.4 The 5 months Euribir-OIS spread and credit default
spread for some main banks in Euorope during the
financial crisis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534

Fig. 21.5 A bootstrap of SEK swap curve with linear
interpolation. This shows the very bad shape of the
forward curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

Fig. 21.6 A 3-month floating rate (the upper cash flows)
against a 6-month floating rate (the lower cash flows).
The arrow above the upper “wave” represents the
spread over the floating rate . . . . . . . . . . . . . . . . . . . . . . . 558

Fig. 21.7 Historical data for USD 3-month vs. 6-month
TS spread. The curves are given in the same order as
the legends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

Fig. 21.8 A 3-month floating rate in JPY (with a constant
spread) against a 3-month floating rate in USD. The
arrow above the upper “wave” represents the JPY
spread over USD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

Fig. 21.9 Historical data for USD/JPY cross-currency spread.
The curves are given in the reverse order as the legends . . . . 560

Fig. 21.10 Funding via the nterbank market . . . . . . . . . . . . . . . . . . . . 560

Fig. 21.11 Funding via collateral . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Fig. 21.12 A 6-year swap paying fixed rate at 2.5% on 1,000,000
notional. The collateral amount is the difference
between the credit exposure and the swap value . . . . . . . . . 562

Fig. 21.13 A typical overnight index swap . . . . . . . . . . . . . . . . . . . . . 563

Fig. 21.14 A 3-month Libor rate vs. the overnight index swap
spread in USD and JPY . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

Fig. 21.15 The complicated bootstrap process if 6 collateral
currencies are used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Fig. 21.16 A CTD curve for two currencies, GBP (SONIA) and
EUR (EONIA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

Fig. 21.17 A parity relation on cross-currency . . . . . . . . . . . . . . . . . . 591

Fig. 21.18 With two known the third can be solved . . . . . . . . . . . . . . 591

Fig. 21.19 Bootstrap of an implied foreign yield curve . . . . . . . . . . . . . 591

Fig. 21.20 Bootstrap an “implied” foreign basis curve from a set
of cross-currency basis swaps . . . . . . . . . . . . . . . . . . . . . . 592

Fig. 21.21 A foreign basis curve stripped from a combination of
four sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

Fig. 21.22 Foreign or domestic yields we must give the same
result to exclude arbitrage . . . . . . . . . . . . . . . . . . . . . . . . 598



xxvi List of Figures

Fig. 22.1 Break-even premium for L, PL as a function of the
liquidity cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

Fig. 26.1 Cash flows for a swaption . . . . . . . . . . . . . . . . . . . . . . . . . 701



List of Tables

Table 1.1 Instrument types and asset classes . . . . . . . . . . . . . . . 2

Table 1.2 Parameters for different cash flows . . . . . . . . . . . . . . . 5

Table 1.3 Pay types, deliveries and underlying for different
instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Table 3.1 ICE Benchmark Administration panel banks . . . . . . . . . 32

Table 3.2 Euro LIBOR quotes . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 3.3 USD LIBOR quotes . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 3.4 Number of used rates for given numbers of
contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 3.5 The LIBOR panel banks at 2012-09-01 and
2014-09-01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 3.6 A summary of some interest rates . . . . . . . . . . . . . . . . 45

Table 4.1 Coupon frequency and day count for bonds . . . . . . . . . 57

Table 4.2 Bond par versus yield . . . . . . . . . . . . . . . . . . . . . . . . 59

Table 4.3 FRA contract notation . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 4.4 Some of the most common bond future contracts . . . . . 81

Table 4.5 Standard future contracts on Eurex . . . . . . . . . . . . . . . 81

Table 4.6 Quotation of future contracts . . . . . . . . . . . . . . . . . . . 82

Table 4.7 Payments and default probabilities for a CDS . . . . . . . . . 120

Table 4.8 Cash flows in the asset swap approach . . . . . . . . . . . . . 123

Table 5.1 Government bond yields in UK 2016-09-06 . . . . . . . . . 166

Table 5.2 Quotes of Swedish Government securities . . . . . . . . . . 167

Table 5.3 The Transition Matrix in the beginning of 2008 . . . . . . 170

xxvii



xxviii List of Tables

Table 5.4 The cumulative default probability matrix . . . . . . . . . . 171

Table 6.1 The result of bootstrapping with linear interpolation . . . 180

Table 6.2 The result of bootstrapping with Newton Raphson . . . . 183

Table 6.3 Market data from Nasdaq OMX . . . . . . . . . . . . . . . . . 184

Table 6.4 Parameters of fitting the discount function . . . . . . . . . . 223

Table 7.1 Market rates and their spreads in SEK 2007-12-28 . . . . . 230

Table 9.1 An example of a risk matrix . . . . . . . . . . . . . . . . . . . . 267

Table 15.1 Market data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Table 15.2 Data by bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . 408

Table 15.3 Market data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Table 19.1 Option prices from Schaefer and Schwartz and
Black-76 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

Table 21.1 A simplified collateral agreement . . . . . . . . . . . . . . . . 561

Table 21.2 The 3-month tenor in the bootstrap process . . . . . . . . . 577

Table 21.3 Available curves for the most liquid markets . . . . . . . . . 577

Table 21.4 The fed funds basis swap and IRS . . . . . . . . . . . . . . . . 586

Table 21.5 Re-pricing fed fund basis swaps to par with IRS . . . . . . 587

Table 21.6 Vanilla swap HUF3M vs. fixed . . . . . . . . . . . . . . . . . . 596

Table 21.7 Cross-currency basis swap EUR3M vs. HUF3M . . . . . . . . 596

Table 21.8 Pricing in classical theory and collateral . . . . . . . . . . . 599

Table 21.9 Vanilla swap HUF6M vs. fixed . . . . . . . . . . . . . . . . . . 599

Table 21.10 Tenor basis swap HUF6M vs. HUF3M . . . . . . . . . . . . . 599

Table 21.11 Cross-currency basis swap EUR3M vs. HUF3M . . . . . . . 599

Table 24.1 A volatility matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 659

Table 26.1 The Hull-White and the LGM model functions . . . . . . . 690

Table 26.2 ATM swaption volatilities . . . . . . . . . . . . . . . . . . . . . 704

Table 26.3 LGM prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

Table 26.4 Implied ATM Volatilities (from LGM prices) . . . . . . . . . 705

Table 26.5 Error in ATM volatility (diagonal, kappa = 2%) . . . . . . . 705

Table 26.6 Error in ATM volatility (diagonal, constant alpha) . . . . . 709

Table 26.7 Error in ATM volatility (diagonal and row) . . . . . . . . . . 710



Abbreviations

ABCDS Asset-Backed Credit Default Swap
ALM Asset and Liability Management
AML Anti Money Laundering
ARCH AutoRegressive Conditional Heteroskedasticity
ASW Asset Swap
ATM At-The-Money
BBA British Bankers Association
B&S or BS Black and Scholes
BDT Black-Derman-Toy
BGM Brace-Gatarek-Musiela
BIS Bank for International Settlement
c-c continuously compounded
CADF Credit-Adjusted Discount Factor
CBOT Chicago Board of Trade
CCBS Cross-Currency Basis Swap
CCE Current Credit Exposure
CCIRS Cross-Currency Interest Rate Swap
CCS Cross-Currency Swap
CCVN Cross-Currency Variable Notional
CDI Credit Default Index
CDO Collateralised Debt Obligation
CDX American Credit Default Indices
CET Central European Time
CIRS Cross-Currency Interest Rate Swap
CME Chicago Mercantile Exchange

xxix



xxx Abbreviations

CMS Constant Maturity Swap
COBE Chicago Board of Option Exchange
CP Commercial Paper
CPPI Constant Proportion Portfolio Insurance
CSA Credit Support Annex
CTD Cheapest To Deliver
CVA Credit Value Adjustments
C/W Corporate-Week
DF Discount Factor
DP Dirty (purchase) Price
DVA Debt Value Adjustment
ECB European Central Bank
EIB European Investment Bank
EONIA Euro Over-Night Index Average
EVT Extreme Value Theory
FRA Forward Rate Agreement
FRN Floating Rate Note
FSA Financial Supervision Authority
FVA Funding Value Adjustments
FX Foreign Exchange
G-K Garman-Kohlhagen
GARCH Generalised Auto Regressive Conditional Heteroskedasticity
GBP Great British Pound
HJM Heath-Jarrow-Morton
IBOR Inter Bank Offer Rate
IF Implied Forward
IMM International Monetary Market (based in CME)
IRS Interest Rate Swap
ISDA International Swap and Derivatives Association
ISMA International Securities Market Association
ITM Into-The-Money
KVA Capital Value Adjustment (by regulations)
KWF Kalotay-Williams-Fabozzy
LGD Loss Given Default
LF Likelihood Function
LGM Linear Gaussian Models
LIBOR London Inter-Bank Offered Rate
LIFFE London International Financial Futures and Options

Exchange
LMM LIBOR Market Model



Abbreviations xxxi

MC Monte Carlo
NS Nelson Siegel
NSS Nelson Siegel Svensson
OAS Option Adjusted Spread
ODE Ordinary Differential Equation
OIS Overnight Indexed Swap
O/N Overnight
OTC Over The Counter
OTM Out of The Money
PCA Principal Component Analysis
PDE Partial Differential Equation
PDF Probability Density Function
RVA Replacement Value Adjustment.
PIP Percentage In Point, sometimes also called a Price Interest

Point
PRDC Power Reverse Dual-Currency (Swaps)
PV Present Value
PV01 Another name for PVBP
PVBP Present Value of one Basis Point
QDS Quanto Differential Swap
SARON Swiss Average Rate Overnight
SABR Stochastic Alpha Beta Rho (Volatility model)
SEK Swedish Krona
SDE Stochastic Differential Equation
S/N Spot Text
SONIA Sterling Over-Night Index Average
STIBOR Stockholm Interbank Offered Rate
STINA STIBOR T/N Average
STIR Short Term Interest
TED Treasury Euro Dollar
T/N Tomorrow-Next
TRS Total Return Swap
USD United State Dollar
VaR Value-at-Risk
VBA Visual Basic
WB World Bank
YTM Yield To Maturity
ZAR South African Rand
z-c zero coupon



1
Financial Instruments

1.1 Introduction

In the previous book, we studied derivatives in the equity markets and
in this book, we will study the available instruments in the interest rate
markets. First, we will shortly group the various instruments.

In order to group the wide variety of instruments that exist
adequately, it is necessary to break the interest rate asset classes into
two subdivisions: long-term and short-term debts. In addition, it is ne-
cessary to divide the derivatives into two groups: standard derivatives
and over-the-counter (OTC) derivatives.

• Standard derivatives are traded on exchanges. In such trades, a
clearing house act as a counterparty to both buyers and sellers.
These trades have a daily settlement1 to protect the clearing house
for losses, if one of the counterparties cannot fulfil its obliga-
tions. The clearing house guarantees the delivery of payments or
underlying securities to its counterparties.

• OTC derivatives are typically traded over telephone or via a broker
firm. They are known as OTC instruments because each trade is
an individual contract between the two counterparties making the
trade. These contracts are privately negotiated which means that
they are not negotiable, for example, if I lend you some money,
I cannot trade that loan contract to someone else without your prior
consent.

1 Some exchanges use monthly settlement, for example, Nasdaq-OMX in Stockholm.

© The Author(s) 2017 1
J.R.M. Röman, Analytical Finance: Volume II,
https://doi.org/10.1007/978-3-319-52584-6_1

https://doi.org/10.1007/978-3-319-52584-6_1
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Table 1.1 Instrument types and asset classes

Instrument-type
asset class

Cash Standard
derivatives

OTC derivatives

Interest Rate
(Long Term)

Bond, note
Floating rate note

Bond futures
Options
Bond futures

Swaps, swaptions,
caps & floors, IRG,
Cross Currency swaps,
Exotics

Interest Rate
(Short Term)

Deposit/Loan, Bill, CD
(Certificate of
Deposit), CP
(Commercial Paper)

Interest rate
futures

Forward Rate
Agreement FX-swap,
Euro Dollar futures

Equity Stock (Index) Equity Options
Equity futures

Equity Options Exotics

Foreign
Exchange

Spot FX futures Options FX forwards

• The International Swaps and Derivatives Association (ISDA)
provides standard contracts to facilitate the trading of OTC
derivatives.

• Many clearinghouses also clear OTC instruments. In this case
they are said to use central clearing. By using central clearing the
counterparty risk can be minimized. Also the Capital requirements
for buyers and sellers will be minimized by using central clearing

Further subdivisions of the categories give rise to the matrix as shown
in Table 1.1.

1.1.1 Money

Money, in wholesale banking, exists only as an electronic entity in the
banking systems. The reason is that paper money does not earn in-
terest and is therefore not money in a financial view. Therefore, we
consider paper money as an interest free loan to the government. An
analogy is the old type of share certificates that was physical delivered
between the counterparties who have made a deal. Nowadays, share
certificates are no longer used, instead all ownership is registered
electronically.
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Also, dollars only exist in the US banking system, pound sterling
only in the British banking system and Euro in European banks.

Every bank that accepts US dollar has a Nostro account in its cor-
respondent bank in the US. Similar accounts exist in all currencies in
banks in all countries. If for example Sanwa in London transfers 1 USD
to Barclays in London, Sanwa instructs its correspondent bank in US
to transfer the 1 USD to Barclays. The money therefore never leaves
the US.

It is important to notice that payments can only be made or received
when the banking system is up. Therefore, we have to consider when
the banking holidays for all countries exist, because then, no money
transactions can be made in that specific country.

1.1.2 Valuation of Interest Rate Instruments

We will start to study interest rate instruments and how to value them.
The following instruments are examples of cash-flow instruments:

• Bonds, bills and notes

• Floating Rate Notes (FRN)

• Swaps, Currency swaps and FX swaps

• Swaptions

• Caps, floors, collars and Interest Rate Guarantees

• Forward Rate Agreements (FRA)

• Convertibles

• Deposits and Certificates of Deposits (CD)

• Repos and reverses

• Credit Default Swaps/Indices (CDS, CDI, CDX etc.).

Many of these instruments are treated only as cash-flow sequences.
Some of them are treated as derivatives. That is, no assumption is made
on the pattern of how the cash flows looks like in the valuation pro-
cess. In this way, the description of how to value a single cash flow
can be generalized for all cash-flow instruments.

The advantage of such method is its generality. It can be applied
to any kind of cash-flow pattern, whether it is amortized, has non-
consecutive interest rate periods or broken dates.
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There are a number of different cash-flow types as well:

• Fixed amount

• Fixed rates

• Floating rates

• Caplets

• Floorlets

• Total return

• Credit default

• Return

• Redemption amount

• Call fixed rates

• Call float rates

• Zero-coupon fixed rates.

The different cash-flow types are described in terms of various para-
meters as shown in Table 1.2.

1.1.2.1 Parameters

Common parameters for all cash-flow types are the Pay Date – the
calendar date when the cash flow is paid – and the Currency of the
cash flow. All cash flows are discounted using a zero-coupon curve
from the payout date to the valuation date.
The simplest cash-flow type is a single fixed payment, Fixed Amount.
All other cash flows are related to interest rates payments in some way.
They have the common attributes:

• day count – the day-count convention used for a certain period

• start day – the date on which the interest rate period starts

• end day – the date on which the interest rate period ends

The simplest interest payment is the fixed coupon rate, using the
attribute, Fixed Rate – the fixed interest rate that applies for a specific
period.
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The different pay types are:

• Spot An instant pay order (to pay in 2 days, the
spot days)

• Future “Mark to Market”, daily
• Forward Pay on expiration date
• IMM On IMM days (International Monetary

Market days that is the third Wednesday in
March, June, September and December.

• Forward/Periodically Make payments on certain days, for
example, the 3rd Friday on each month

There are two delivery or exercise types for derivatives:

• Physical delivery Typically a stock (equity) option.
• Cash settlement Typically, an option with an index as underlying.

There are three types of option exercise:

• European Exercise only at expiration date
• American Exercise any time
• Bermudan Exercise in pre-defined periods or days

There are two types of option underlying:

• The underlying asset itself

• A future or a forward (on the underlying asset)

We can arrange the types as in Table 1.3.

Table 1.3 Pay types, deliveries and underlying for different instruments

Instrument Pay type Delivery Eur./Am. Underlying

Stocks Spot
Bonds Spot
Index forwards Forward Cash
Index futures Future Cash
Bond futures Future Physical
Commodity Future Future Physical
Stock options Spot Physical/American Stock
Index options 1 Spot Cash/European Index
Index options 2 Future Physical/American Index futures
Bond options Future Physical/American Bond futures
OTC derivatives Spot/forward European . . .
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1.1.2.2 Future Value and Present Value

When we value different financial instruments, we use different
expressions for their rates of return. If we calculate the rate of return
of an equity to find the payoff, we often use a simple period rate r
over the holding period. This rate is the percentage return on annual
basis of the invested amount P. To calculate the present value of this
amount we use

F = P · (1 + r)

where F is the value at the end of the period. It is also common to
annualize the rate using some convention for counting the length of
the holding period, that is, the number of days, as a fraction of a year. In
the money market, we usually use the following measure for the yield

F = P ·
(
1 + r · d

360

)

where d is the number of days to maturity. Since no compounding
was used above the rate is referred as the simple rate. If we use annual
compounding with the same number of days, we can express this as a
fraction of a 360-day year. We then use the compounded annual rate rc

F = P · (1 + rc)
d
360

For money market instruments, such as treasury bills and CD, which
have fixed dates of expiry, the quoting convention relating market
prices to rates typically does not use compounding. Their values upon
expiry equals their nominal amounts so we can solve for their current
price

P =
N

1 + r · d
360

where N is the nominal amount, paid on expiry and r the simple
annualized rate on a yearly basis. The simple rate r can then be
expressed as

r =
N – P

P

360

d
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1.1.3 Zero Coupon Pricing

The concept behind zero-coupon pricing is the evaluation of all
individual cash flows as if they were zero-coupon bonds. The evalu-
ation is made using a yield curve or, alternatively, a discount function,
which accurately describes current market conditions.

The pricing of liquid, standardized instruments are quite simple –
the current market price is used. The zero-coupon pricing method-
ology becomes important when pricing OTC instruments, for which
no market prices are available. It is also needed for pricing standard-
ized instruments, which do not have reliable market prices. In this
case, zero-coupon pricing will be used to price these instruments con-
sistently alongside the liquid instruments. This is a kind of relative
pricing where user preferences only need to be taken account of to
a small extent. Many risk management techniques also require the use
of a yield curve to aggregate correctly the risk over several different
instrument types.

1.1.3.1 The Discount Function

The discount function, p(t0, t), describes the present value at time t0
of a unit cash flow at time t. This is a fundamental function that can
be given, for each time in the future, as individual components, the
discount factors. These factors are non-random and should be equal
for all banks due to arbitrage conditions.2

In most cases, t0 is the current time (equal zero) and is therefore
dropped for notational convenience. The remaining variable t(t – t0)
then refers to the time between t0(= 0) and t. The discount function
is, as we will see, used as the base for all other interest rates. For any
future date t this function also represent the value of a zero-coupon
bond (also called a pure discount bond) at time t0(= 0) with matur-
ity t. At maturity, a zero-coupon bond pays one cash unit (in USD, GBP,
EUR SEK etc.). So therefore p(t, t) = 1. A discount function with rate
r = 2.0% is shown in Fig. 1.1.

2 Since the financial crisis in 2008, this is not really true, since some currencies are more risky
than others. Therefore, we have to add, a so-called cross currency basis spread to the discount
function. This basis spread is set against the most liquid currency in a trade. Only USD will have
a zero basis spread. We will discuss that later. But now we think about the discount function as
generic.



1 Financial Instruments 9

Fig. 1.1 The discount function for a constant interest rate at 2.0%

At t = 0, the discount function always has the value 1 (p(0, 0) = 1).
One unit of cash today must have the value of one unit by definition.
The discount function is monotonically decreasing, which corres-
ponds to the assumption that interest rates are always positive. It never
reaches zero since all cash flows, no matter how far in the future they
are paid, should always be worth something.

The discount function has a mathematical relationship to the spot
yield curve, although the “yield curve” is not a well-defined concept.
The relationship between the discount function and the annually com-
pounded yields of matching maturity, using a day-count convention
that reflects the actual time between time t0 and t measured in years,
can be written as

p (t) ≡ p (0, t) =
1

(1 + r1 (t))t

This formula can be inverted to give

r1 (t) = P (t)–1/t – 1.

Other used yields have a mathematical relationship to the discount
function.
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1.1.4 Day-Count Conventions

When using the discount function to express yield or interest rates,
it is very important to known and consider the day-count convention
used for each instrument and each market. The day-count convention
is a user-defined, instrument-specific parameter and will typically have
a substantial impact on the valuation of particular instruments.

1.1.4.1 Date Arithmetic

Dates are usually integers starting from 1900-01-01. Following the
Excel convention, May 8, 2006 is day 38845, and May 9, 2006 as day
38846, etc. We therefore use an Add-function between different dates

tth = Add
(
t, n,unit,EOMFlag, . . .

)

which adds n units (days, months, years or business days) to date t,
where n can be positive, zero or negative.

We have the following End-Of-Months rules (EOMFlag)

1. If we add months or years and tth ends up beyond the end of a
particular month, we replace this date with the last day of month.
Example:

May 31 + 1 month = June 30
December 31 + 2 month = February 28 (or 29 for a leap year)

2. If date t is the last day of a month, then

If EOMFlag is true: adding months or years always gives the last day
of the month:

February 29 + 1 month = March 31
April 30 – 1 month = March 31

If EOMFlag is false: adding months or years always gives the same
day of the month, provided that it exists:

February 29 + 1 month = March 29
April 30 – 1 month = March 31
May 31 – 1 month = April 30

3. The EOMFlag is irrelevant if t is not the last day in a month.
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We also must have a general add functionality

tact = Add
(
t, n,unit,EOMFlag,BDR,Hol1,Hol 2,Hol 3 . . .

)
where BDR is the Business-Day-Rule. We first compute

tth = Add
(
t, n,unit,EOMFlag, . . .

)
If tth is not a business day, we apply the BDR rule to resolve the date.
tth is a bad day if it is a bad day in any holiday Holx.

We have the five business day rules:

1. none: return tth (banks can go into default also on non-banking
days!)

2. following (succeeding): tact is the first valid business day on or
after tth.

3. proceeding: tact is the first valid business day on or before tth.

4. modified following: tact is the first valid business day on or after tth
if it is the same calendar month as tth. Otherwise tact is the first valid
business day before tth

5. modified proceeding: tact is the first valid business day on or before
tth if it is the same calendar month as tth. Otherwise tact is the first
valid business day after tth

The modified following is the standard rule for payments. Typically,
dates are generated backwards from the theoretical end date. Other-
wise, it is difficult to do a rewind of a trade with a number of cash
flows with another customer.

First, we get the theoretical end date. For an M month leg, starting
at t0 we have

tn
th = Add (t0, M, month, no, none, ccy1, ccy2 . . .)

For a leg with m months per period, we have

tj
th = Add (tn, –m (n – j) , month, no, none, ccy1, ccy2 . . .)

tj
act = Add (tn, –m (n – j) ,month, no, modfol, ccy1, ccy2 . . .)

If an odd period is needed, the default is short first period, other pos-
sibilities are long first, short last and long last. The last two requires
that we generate the dates from t0, which we do not want. The holiday
parameters ccy1 and ccy2 have to be used for the different currencies.
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When dealing with interest rate payments, accrued from tj–1 to tj
and paid at tj, we use the following rule:

1. If the swap leg is adjusted (which is the default situation), interest
accrued from tactj–1 to tactj .

2. If the swap leg is unadjusted, interest accrues from tthj–1 to tthj .

3. Interest payments are αjrN paid at tactj for j = 1, 2, . . . , n where N is
the notional, r the interest rate and αj the day-count fraction.

αj = DayCountFrac(tj–1, tj, basis)

Day-count basis are rules assigning official fractions of a year to any two
dates. Some alternative day-count conventions are (there exist about
80 more day-count bases than those listed below):

• 30/360 corporate bonds, Eurobonds etc.

• 30E/360 money market Switzerland

• Act/360 US T-bills US, Euro and Switzerland money, etc.

• Act/365 US Treasury bonds/notes, UK gilts, German bunds etc.

• NL/365 Actual/365 with no leap year

• Act/Act New Euro bonds, LIFFE UK bond/bund futures etc.

The meaning of the abbreviations used in the naming of the above
conventions is as follows:

• Act: Actual number of calendar days.

• NL: Actual number of calendar days, with no leap year.
- Exception: If the year is a leap year then February is considered
to have 28 days (instead of 29).

• 30: Each month is considered to have 30 days.
- Exception 1: If the later date is the last day of February, that
month is considered to have its actual number of days.

- Exception 2: When the later date of the period is the 31st and the
first day is not the 30th or the 31st, the month that includes the
later date is considered to have its actual number of days.

• 30E: Each month has 30 days.
- Exception: If the later date is the last day of the month of
February, that month is considered to have its actual number
of days.
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Credit cards always use Act/360, which gives them five extra days of
interest per year.

Interest rates are typically expressed for annual periods. The time
period measured in years between two dates, t, is described as the
fraction of the number of days between two dates, td, and the number
of days in a year, ty

t =
td
ty

td and ty are determined according to the specified day-count
convention.

Example 1.1
What is the time period between 11 January and 31 March?

30/360: Number of days in January = 19 + 30 in February + 31 in March = 80:
t = 80/360

30E/360: Number of days in January = 19 + 30 in February + 30 in March = 79:
t = 79/360

NL/365: Number of days in January = 20 + 28 in February + 31 in March = 79:
t = 79/365

Example 1.2
If we let t = (d1,m1, y1) (date, month and year) and T = (d2,m2, y2), then the 30/360
convention can be calculated as

min(d2, 30) + (30 – d1)+

360
+
(m2 – m1 – 1)+

12
+ y2 – y1

where (x)+ = max(x, 0). The time between t = January 4, 2005 and T = July 4 2007
is then

4 + (30 – 4)+

360
+
(7 – 1 – 1)+

12
+ 2007 – 2005 = 2.5.

1.1.4.2 International Monetary Market (IMM) Days

Many Fixed Income instruments have start days and maturities on
International Monetary Market (IMM) days. IMM days are the third
Wednesdays in Mars, June, September and December.
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1.1.5 Quote Types

When pricing interest rate instruments, a number of different quote
types are used. Quotes are the market prices traders do observe on
screen from their trading system or from other price sources. We will
now define some of them.

1.1.5.1 Per Cent of Nominal Amount

Quote is taken as a per cent of the nominal amount (also called the
face value). This is used for bonds and can be given with or without
accrued interests.

1.1.5.2 Clean Price

Quote is taken as a per cent of the nominal amount without the ac-
crued interest. This is the normal quotes of bonds and other similar
instruments.3

1.1.5.3 Price

Quote is taken as a per cent of the nominal amount included the ac-
crued interest. This is also called the dirty price. Therefore the (dirty)
price equals the (clean) price plus the accrued interest rate since the
last coupon payment for a bond.

1.1.5.4 Coupon Rate

Quote given as the coupon rate. This can be used when comparing
different bonds with similar maturities. With known coupon rate, the
price can be calculated by discounting of the cash flows, included the
nominal payout at redemption.

3 Swedish bonds are quoted in yield (to maturity).
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1.1.5.5 Yield/Yield-to-Maturity

Quote is given as a flat yield used to discount all future cash flows.
This is how Swedish bills and bonds are quoted. Yield-to-maturity has
a one-to-one relationship with the dirty price. It’s based on that all the
coupons can be reinvested at the same (flat) yield.

1.1.5.6 Volatility

This quote type is available for Options/Warrants, swaptions and
caps/floors. The quote of an instrument with quote type “Volatility” is
interpreted in terms of the implied volatility structure used for the in-
strument. Normally this is Black (lognormal) or Normal volatility. The
reason for different volatilities like Black volatility and Normal volatil-
ity is that whatever the model used to value an instrument the price
must be the same.



2
Interest Rate

2.1 Introduction to Interest Rates

As we will see, there exists many different definitions of interest rates
in the markets. A repo trader talks about the simple rate, an option
trader of the continuous compounding rate and a bond trader of yield-
to-maturity (YTM). We will briefly 0name some of the rates and give
a short description. Some of these rates will be discussed in detail in
later sections.

2.1.1 Benchmark Rate, Base Rate (UK), Prime Rate (US)

This is the lowest interest rate an investor is willing to take to make
an investment in a risk-less security. These rates are given as a yield
curve of instruments with different maturities. Usually this yield curve
is built from government securities or Over-Night Index Swaps (OIS)
and is used to compare against other (risky) interest rates.

2.1.2 Deposit Rate

A typical deposit contract is a standardized agreement of a loan
between two banks. It is a credit for the party who placed it, and it
may be taken back, transferred to another party, or used for a pur-
chase. Deposits are usually banks main source of funding. The rate for
such loan is called deposit rate.

© The Author(s) 2017 17
J.R.M. Röman, Analytical Finance: Volume II,
https://doi.org/10.1007/978-3-319-52584-6_2

https://doi.org/10.1007/978-3-319-52584-6_2


18 J.R.M. Röman

2.1.3 Discount Rate, Capitalization Rate

This is the rate used to discount a given cash flow in the future to
a present value (PV ). This rate reflects the time-value of money. This
rate is not uniquely defined. For a certain deal it depends on how this
deal is financed and your counterparty. If you have a collateral agree-
ment with the counterparty you should discount with the collateral
rate specified in the collateral agreement. A typical rate would be an
OIS rate. Without a collateral agreement a typical rate would be the
funding rate, like the inter-bank rate.

2.1.4 Simple Rate

The simple rate is the yield, expressed as a percentage per annum of
an invested amount. If we receive all interest rates at the end of an
investment period, we have the following relationship to the annual
compounding rate

(1 + rannual)
t = (1 + rsimple · t)

The relation to the discount function is then given by

p (t) =
1

1 + rsimple (t) · t

The difference between discount rate and simple rate is that the
discount rate is applied to the nominal amount, while the simple rate
is applied to the invested amount of a discount instrument. If we, for
example, pay $900 for a $1,000 nominal amount maturing in 1 year
(day-count Act/Act), the simple rate would be:

(
1000

900
– 1

)
· 100 = 11.11%

and the discount rate would be

(
1 –

900

1000

)
· 100 = 10.00%
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2.1.5 Effective (Annual) Rate

The effective rate is the yield expressed as a percentage of the invested
amount based on a year including the effect of compounding. If we
receive interest, we have to ask us how often we get payments. If
we let f be the period, for example, the number of annual payments
we get

(1 + rannual)
t =

(
1 +

rf
f

)f ·t

(1 + rannual)
t =
(
1 +

rquarterly
4

)4·t

In continuous compounding this is expressed as

(
1 +

rf
f

)f ·t
, f → ∞ ⇒ (1 + rannual)

t = erc·t

The annual rate is related to the discount function as

p (t) =
1

(1 + rannual (t))t

The semi-annual rate is related to the discount function as

p (t) =
1[

1 + r2(t)
2

]2t
and the n-annual rate as

p (t) =
1[

1 + rn(t)
n

]nt
The continuous compounding rate is given as

p (t) = e–rc(t)·t.

Each of these formulae can be inverted in the same way as for the an-
nually compounded interest rate. The formulas also define the implicit
relationship between the different interest rate types. Since there is a
mathematical relationship between the concepts discount function
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and yield curve, both of these will be used in this text when we
describe the information necessary to perform zero-coupon pricing.

When valuing options and other derivatives, like in Black-Scholes
model, we use the continuous compounding. If rc is the continuous
compounded interest rate and rm the same interest rate paid m times
every year we have the relationship

rc = m · ln
(
1 +

rm
m

)

rm = m ·
{
exp

(rc
m

)
– 1
}

In the interest rate markets it is very important how to discount cash
flows, even for a short period as one day. So if you are given an over-
night rate you have to know how this rate is quoted. Is it a simple
rate, an effective annual rate or a continuous compounding rate? It is
also important to know what day-count conversion that is being used.
A one day discount rate can be expressed in many ways, such as

1

(1 + r)1/360
�= 1

(1 + r)1/365
�= 1

1 + r · 1
360

�= 1

1 + r · 1
365

�= e–r/360 �= e–r/365

2.1.6 The Repo Rate

This is the interest rate for a repurchase agreement, that is, the rate
you have to pay by selling a security and at the same time commit to
buying it back after a short period. The period is usually one of

• O/N (Over-Night)

• T/N (Tomorrow-Next)

• C/W (Corporate-Week)

• S/N (Spot-Next)

The O/N rate is the rate for the period between now, sometime today
until the closing time on the next business day. On a Friday, the O/N
rate period will be 3 days (if the following Monday is a business day).
The T/N will start on the next business day and end on the next fol-
lowing business day. All other rates usually begin two business days
from today (if we use a spot lag of 2) and last for a given period time.
We say that we are using two spot days.
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A government repo rate is the rate at which the government buys
their own bills, notes or bonds. Sometime this rate is used to calculate
the carry cost for instruments with underlyings.

2.1.7 Interbank Rate

The interbank rate is the average rate at which XIBOR1 rated banks can
borrow from each other. We will discuss this in detail in a later section.
XIBOR is a general name convention for the different interbank rates.
LIBOR is the London Interbank Offered Rate, STIBOR is the Stockholm
Interbank Offered Rate and EURIBOR is the Euro Interbank Offered
Rate. Before the financial crises in 2008–2009 the interbank rate was
considered as the risk-free interest rate. But at that time XIBOR rated
banks such as the Lehman Brothers made default. After the crises more
and more banks required collateral agreements for interbank loans. We
will discuss this in a later section.

2.1.8 Coupon Rate

The coupon rate is given as the percentage of the nominal amount that
is paid to the holder of a bond. These coupons are received with a cer-
tain frequency, usually one, two or four times per year. The coupons
are paid by the issuer.

2.1.9 Zero Coupon Rate

The zero-coupon rate, or just zero rate, is the YTM on a zero-coupon
bond, that is, a bond that pays no coupon. This rate can be boot-
strapped from coupon bonds. The zero-coupon rates are often used
for the discounting o future payments. Also risk managers use these
rates to calculate the risk by making shifts of the curve.

2.1.10 Real Rate

The real rate is the interest rate adjusted for inflation. This rate can
be found by bootstrapping Inflation linked bonds, sometimes referred
to as Index linked bonds where the index is the Consumer Price
Index, CPI.

1 XIBOR are used in general for Inter Bank Offer Rates in different currencies where X = L for
London, ST for Stockholm EUR for EURO etc.
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2.1.11 Nominal Rate

The interest rate including inflation. This means that the nominal rate
is equal to the real rate plus inflation.

2.1.12 Yield – Yield to Maturity (YTM)

There are such a variety of fixed-income products, with different
coupon structures, amortization, fixed and/or floating rates, that it is
necessary to be able to consistently compare different products. One
way to do this is through measures of how much each contract earns.
There are several measures of this all coming under the same name,
the yield.

2.1.13 Current Yield

The current yield have many other names such as interest yield,
income yield, flat yield, market yield, mark to market yield or run-
ning yield: This yield is a financial term used in reference to bonds and
other fixed-interest securities such as swaps. It is the ratio of the annual
interest payment and the bond’s current clean price of the bond.

The current yield therefor refers to the yield of the bond at the
current moment. It does not reflect the total return over the life of
the bond. In particular, it takes no account of reinvestment risk (the
uncertainty about the rate at which future cashflows can be reinves-
ted) or the fact that bonds usually mature at par value, which can be
an important component of a bond’s return.

For example, consider the 10-year bond that pays 2 cents every 6
months and $1 at maturity. This bond has a total income per year of 4
cents. Suppose that the quoted market price of this bond is 88 cents.
The current yield is simply

0.04/0.88 = 4.5%.

2.1.14 Par Rate and Par Yield

The par rate rpar is the (fixed) rate payments with the same value as
a number of opposite floating rate payments so that their total values
sum up to 0 as in Fig. 2.1. The typical instrument here is a plain vanilla
interest rate swap.
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Fig. 2.1 The par rate rpar is the constant rate that equalizes the value of the
floating leg (dotted arrows) to the fixed leg over the lifetime of the swap

Fig. 2.2 The par yield is the yield that equals the coupon rate cpar so that the price
of the bond is equal to its face value, nominal amount, here set to 100

The par yield is the fixed coupons of an instrument so that the total
(discounted) value, included the nominal value equalize the nominal
value itself as in Fig. 2.2

The par rate for a swap is calculated as

∑
i

(p(0, ti) · rpar) =
∑
i

(p(0, ti) · rti–ti–1forward) ⇒ rpar =

∑
i
(p(0, ti) · rti–ti–1forward)∑

i
p(0, ti)

Where p(0, ti) is the discount factor at time ti, that is, the price of a
zero-coupon bond with maturity at ti. The rate rti–ti–1forward represent the
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floating rate, given by the forward rate (see next) between time ti and
(with maturity) ti–1.

Similarly, the par rate of a bond is calculated as

100 =
n∑
i=1

(
p(0, ti) · cpar

)
+(p(0, tn) · 100) ⇒ cpar =

100 · (1 – p(0, tn))
n∑
i=1

p(0, ti)

2.1.15 Prime Rate

The prime rate or prime lending rate is a term applied in many coun-
tries to reference an interest rate used by banks. The term originally
indicated the interest rate at which banks lent to favoured customers,
that is, those with good credit, but this is no longer always the case.

2.1.16 Risk Free Rate

This is defined as the rate you can earn by taking a risk-less position.
Many time, this rate is based on treasury bonds with the same time to
maturity as the period used (see benchmark rate). If any rate really is
risk-free can be discussed, and is discussed a lot in the literature. Some
uses the swap rate, or the OIS rate as risk free and other says that also
government zero-rate is not risk-free, since also a governments too can
default.

2.1.17 Spot Rate

The spot rate or short rate is defined as the theoretical profit given by
a zero-coupon bond. We use this rate when we calculate the amount
we will get at time t1 (in the future) if we invest X today (i.e. at time t0)

Xt1 =
(
1 + rspot

)t1 Xt0

PV
(
Xt1

)
=

1(
1 + rspot

)t1 Xt1
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where PV (Xt) is the present value of Xt. The relation between the spot
rate and the discount function is

p(t) =
1(

1 + rspot(t)
)t

The spot rate is calculated by bootstrapping, by fitting the yield curve.
We also see that this rate is the same as the annual effective rate.

2.1.18 Forward Rate

From a yield curve describing the interest rates that apply between
the current date and the set of future dates ordered by maturity, it
is possible to calculate an implied forward rate curve, that is, the rate
that “should” apply between two future dates. The formula for implied
forward rates is based on an arbitrage argument, where the rate for a
specific nominal amount between two future dates can be locked in
by borrowing and lending at the current rates to the future dates.

A projection of the future interest rate, from one time to another,
calculated from the spot rate (as shown earlier) or a yield curve is
given by

(1+rspott1 )t1 ·(1+rforwardt2–t1 )t2–t1 = (1+rspott2 )t2 ⇒ rforwardt2–t1 =

(
(1 + rspott2 )t2

(1 + rspott1 )t1

) 1
t2–t1

–1

An easy way to represent the forward rate is via the discount function.
We then have

p(0, t1) · p(t1, t2) = p(0, t2) ⇒ p(t1, t2) =
p(0, t2)

p(0, t1)
≡ p(t2)

p(t1)

In terms of continuous compounding we then have

e–r(t1)·t1 ·e–f (t2,t1)·(t2–t1) = e–r(t2)·t2 ⇒ f (t2, t1)·(t2–t1) = r(t2)·t2–r(t1)·t1

or

ft2,t1 =
r2 · t2 – r1 · t1

t2 – t1
=
r2 · t2 – r2 · t1 + r2 · t1 – r1 · t1

t2 – t1
= r2+(r2–r1)

t1
t2 – t1
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where p(t,T) represent a pure discount bond or zero-coupon bonds at
time t with maturity T. We have the boundary condition p(T ,T) = 1,
that is, the zero-coupon bond pays 1 cash unit (CU) at maturity.

2.1.19 Swap Rate

The fixed rate used to price a swap to zero value. A swap is a con-
tract where the buyer and the seller exchange their cash flows, typical
floating interest rate cash flows against fixed rate cash flows. Some-
times such a rate is used as the risk-free interest rate. We will discuss
swaps in a later section.

2.1.20 Term Structure of Interest Rates

The term structure of interest rates is a set of market interest rates
ordered by maturity, that is, the rates on for example, treasury bonds
with different times to maturity. An instant term structure is shown in
Fig. 2.3. This yield curve is used to discount cash flows to a present
value.

2.1.21 Treasury Rate

Treasury rate is the rate you get if you lend money to a govern-
ment in their own currency. Sometimes, this is used as the risk-free
interest rate.

Fig. 2.3 Here we use a yield curve to discount a number of cash-flows PV
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2.1.22 Accrued Interest

Accrued interest is calculated for the holder of a coupon bond every
day as part of the market convention for the sharing of the annual or
semi-annual coupon payment when the bond is bought and sold. For
example, from a bond since the last coupon payment.

2.1.23 Dividend Rate

Dividend rate is the fixed or floating rate paid by a preferred stock in
Great Britain.

2.1.24 Yield to Maturity (YTM)

The rate an investor will earn if he keeps an interest paying security,
typically a bond, until maturity. This only holds true if the received
cash flows during the lifetime of the security can be reinvested at
the same interest rate. The YTM depends on the coupon rate, time
to maturity and the market price of the instrument. Some instruments
are quoted in yield to maturity since there is a one-to-one relationship
between YTM and the price. This means that you can express the price
in YTM.

2.1.25 Credit Rate

The credit rate is an interest rate depending on the ranking of
a company. This is in many cases defined as a spread on some
benchmark rate.

2.1.26 Hazard Rate

The Hazard rate is the rate based on the risk that the lender might
default. If we model the probability that the counterparty will default
and therefore cannot pay all of the obligations we use

rdiscountt1 =
1(

1 + rspott1

)t1 · [(1 – P(t1)) + R · P(t1)]
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where P(t) is the probability that the counterparty will default
between the time 0 (today) and the time t, and R the amount we
will receive if default occur. R is given in per cent and is called
recovery rate.

2.1.27 Rates and Discounting Summary

We summarize the most important discounting methods as follows:

Simple annualized rate: p (t) = 1
1+rsimple(t)·t

Annual compounding rate: p (t) = 1
(1+rannual(t))t

Periodically compounding rate: p (t) = 1(
1+

rf (t)
f

)f ·t

Continuous compounding rate: p(t) = e–rt

To be able to compare two different yields or interest rates, they have
to be in the same day-count basis and method. The “golden rule” for
converting yields is: The discount factor must be equal before and
after the conversion. This means, that we are able to solve the equa-
tion by setting the discount factors before and after the conversion
equal, and then solve for the unknown yield. For example, to convert
from a simple interest rate, Actual/360 basis to simple interest rate,
Actual/365 basis, we can do it in the following way

1 + r1 · days/360 = 1 + r2 · days/365

After some simple calculations, we find

r2 = r1 · 365/360

Therefore, for example simple interest rate 5% in actual/365 basis is
equivalent to 5% · 365/360 = 5.069444% in actual/365 basis.

The following equations summarize the conversion formulas
between periodically compounded and simple interest rates. For annu-
ally compounded rates, the f is 1 and the formulas take a simpler form.
The formulas assume that year fractions for original and destination
basis have been calculated.
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From compounding yield basis to simple interest basis and vice
versa

(
1 +

rf
f

)t1f

= 1 + rsimple · t2

giving

rf = f · (1 + rsimple · t2
) 1
t1·f – 1 ⇔ rsimple =

1

t2

((
1 +

rf
f

)t1·f
– 1

)

From compounding yield basis to another compounding yield basis
we have

(
1 +

rf1
f1

)t1·f1
=

(
1 +

rf2
f2

)t2·f2
⇔ rf1 =

⎛
⎝
(
1 +

rf2
f2

) t2·f2
t1·f1

– 1

⎞
⎠ · f1

2.1.28 Black-Scholes Formula

In almost all literature in option theory, Black-Scholes formula (without
dividends) for a call option is given by

C = S · N(d1) – e–rTX · N (d2)

Here r is the risk free interest rate. We can rewrite the Black-Scholes
equation as

C = e–r·T
[
Ser·TN(d1) – X · N (d2)

]
where we have moved the discount factor outside the bracket. The
first term inside the bracket is recognized as the forward price of the
underlying security, times the probability that the option will be at-the-
money at maturity. In practical situations it is favourable to rewrite the
equation as

C = e–rdiscount·T · [S · errepo·T · N(d1) – X · N (d2)
]

As we can see, we use two different interest rates. The discount rate
rdiscount is used for discounting to a PV, and the repo rate rrepo as the
risk-free rate in the valuation of the forward.
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Market Interest Rates and Quotes

3.1 The Complexity of Interest Rates

In many, if not in all discussion about valuing financial instruments,
especially interest rate derivatives, the risk-free interest rate is an im-
portant topic. The risk-free interest rate are used to discount projected
or expected cash-flows to a present value. But, what rate should be
used? A short answer should be that this depends on what instrument
to value, the counterparty and the agreements made. A better answer
might be that the rate should be chosen to reflect the funding cost of
buying the instrument. In this section we will discuss how the market
situations in the near future have changed the view about the risk-free
interest rate.

Before 2007, the London Inter-Bank Offered Rate (LIBOR) rate was
frequently used as the risk-free interest rate. Today, we know that this
is not correct. To understand why, we have to go back to the definition.

3.1.1 The LIBOR Rates

On 1 February 2014 the administration of LIBOR was transferred
from the British Banker’s Association (BBA) to the Intercontinental Ex-
change (ICE), and BBA LIBOR is now known by the name ICE LIBOR.
The need for a new administrator of LIBOR was highlighted in the
Wheatley Review1 due to the findings by various authorities in regard
to the attempted manipulation of LIBOR.

1 https://www.gov.uk/government/uploads/system/uploads/attachment_\penalty\z@data/file/
191762/wheatley_review_libor_finalreport_280912.pdf
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LIBOR reflects the average rate at which banks can obtain unsecured
funding in the London inter-bank market for a particular currency and
a particular time period. It is used globally as a benchmark to calculate
payments made under all manner of finance documents – for example,
derivatives, syndicated and bilateral loan agreements and floating rate
notes.

The appointment of ICE as the new administrator will need to be
reflected in the LIBOR definition in finance documents entered into
after 1 February 2014. With regard to pre 1 February 2014 finance doc-
uments, they will typically define LIBOR by reference to BBA LIBOR.
On the basis that ICE LIBOR retains substantially the same attributes
as BBA LIBOR and the transfer of the administration function does not
involve a fundamental change in the way in which the relevant data is
collected and the calculation made, the widely held view in the market
is that a reference to BBA LIBOR will operate to reference ICE LIBOR.

In 2015, the ICE Benchmark Administration (IBA) has a reference
panel of 11–17 banks, see Table 3.1 for five different currencies,2

which includes CHF (Swiss Franc), EUR (Euro), GBP (Pound Sterling),

Table 3.1 ICE Benchmark Administration panel banks

BANK/CCY USD GBP EUR CHF JPY

Lloyds TSB Bank plc O O O O O
Bank of Tokyo-Mitsubishi UFJ Ltd O O O O O
Barclays Bank plc O O O O O
Mizuho Bank, Ltd. O O O
Citibank N.A. (London Branch) O O O O
Cooperative Rabobank U.A. O O O
Credit Suisse AG (London Branch) O O O
Royal Bank of Canada O O O
HSBC Bank plc O O O O O
Santander UK Plc O O
Bank of America N.A (London Branch) O
BNP Paribas SA, London Branch O
Credit Agricole Corporate & Investment Bank O O O
Deutsche Bank AG (London Branch) O O O O O
JPMorganChase Bank, N.A. (London Branch) O O O O O
Societe Generale (London Branch) O O O O O
Sumitomo Mitsui Banking Corporation
Europe limited

O O

The Norinchukin_Bank O O
The Royal Bank of Scotland plc O O O O O
UBS AG O O O O O

2 Before May 2013 there were 11 currencies. The following currencies have been removed;
NZD, DKK, SEK, AUD and CAD. At the same time the tenors 2W, 4M, 5M, 7M, 8M, 9M, 10M and
11 M were removed for CHF, EUR, GBP, JPY and USD.
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the JPY (Japanese Yen), and USD (US Dollar). It is a polled rate from
the panel of banks.

The LIBOR rate is determined by every contributor bank, which are
determined yearly by the IBA and regulated by the Financial Conduct
Authority. Only banks that have a significant presence in the London
market are considered to be placed on the ICE LIBOR panel. All of
the panel banks are asked the following question: “At what rate could
you borrow funds, were you to do so, by asking for and then accepting
inter-bank offers in a reasonable market size just prior to 11 a.m.?” The
banks are obligated to submit a rate at which they would borrow cash
from another bank.

Once the banks submit their rates in response to the question, ICE
calculates the LIBOR rate using a trimmed mean excluding both the
highest and lowest quartiles of the submissions to exclude outliers,
while the rest are averaged. The average rate is published to the market
daily at approximately 11:45 a.m. Greenwich Mean Time.

ICE are using an ICE LIBOR HOLIDAY CALENDAR that can be found
at https://www.theice.com/publicdocs/Fixing_Calendar_2016.pdf

Quoted LIBOR rates are given as in Table 3.2 and Table 3.3.

3.1.1.1 Calculation

All ICE LIBOR rates are quoted as an annualized interest rate. This is
a market convention. For example, if an overnight Pound Sterling rate
from a contributor bank is given as 2.00000%, this does not indicate
that a contributing bank would expect to pay 2% interest on the value
of an overnight loan. Instead, it means that it would expect to pay 2%
divided by 365.

Every ICE LIBOR rate is calculated using a trimmed arithmetic mean.
Once each submission is received, they are ranked in descending order
and then the highest and lowest 25% of submissions are excluded. This
trimming of the top and bottom quartiles allows for the exclusion of
outliers from the final calculation. The number of rates for different
numbers of contributors are shown in Table 3.4

3.1.2 The EURIBOR Rates

The Euro Interbank Offered Rate (EURIBOR) is a daily reference rate,
published by the European Money Markets Institute (EMMI), based on

https://www.theice.com/publicdocs/Fixing{_}Calendar{_}2016.pdf
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Table 3.2 Euro LIBOR quotes

EUR 08-15-2016 08-12-2016 08-11-2016 08-10-2016 08-9-2016

Euro LIBOR –
overnight

–0.40000% –0.39929% –0.40000% –0.40000% –0.40000%

Euro LIBOR –
1 week

–0.38714% –0.38714% –0.38714% –0.38714% –0.38714%

Euro LIBOR –
2 weeks

–0.34129% – – – –

Euro LIBOR –
1 month

–0.37143% –0.37071% –0.37214% –0.37214% –0.37143%

Euro LIBOR –
2 months

–0.32143% –0.33971% –0.33971% –0.33900% –0.33829%

Euro LIBOR –
3 months

– –0.31929% –0.31929% –0.31857% –0.31857%

Euro LIBOR –
4 months

– – – – –

Euro LIBOR –
5 months

– – – – –

Euro LIBOR –
6 months

–0.20214% –0.20219% –0.19843% –0.19829% –0.19729%

Euro LIBOR –
7 months

– – – – –

Euro LIBOR –
8 months

– – – – –

Euro LIBOR –
9 months

– – – – –

Euro LIBOR –
10 months

– – – – –

Euro LIBOR –
11 months

– – – – –

Euro LIBOR –
12 months

–0.07271% –0.07257% –0.07257% –0.07171% –0.07143%

the averaged interest rates at which Eurozone banks offer to lend and
borrow unsecured funds from each in the euro interbank market. EUR-
IBOR was first published on December 30, 1998. Prior to 2015, the
rate was published by the European Banking Federation and calculated
by Tomson Reuters.

At present there are eight EURIBOR maturities – 1 week, 2 weeks, 1
month, 2 months, 3 months, 6 months, 9 months and 12 months (until
October 2013 there were 15 maturities). The rates are used as a refer-
ence rate for euro-denominated forward rate agreements, short-term
interest rate futures contracts and interest rate swaps. EURIBOR are
used in the same way as LIBOR rates are commonly used for Sterling
and US dollar-denominated instruments.
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Table 3.3 USD LIBOR quotes

USD 08-15-2016 08-12-2016 08-11-2016 08-10-2016 08-09-2016

USD LIBOR –
overnight

0.41889% 0.41910% 0.42020% 0.41970% 0.41880%

USD LIBOR –
1 week

0.44078% 0.44270% 0.44345% 0.44370% 0.44245%

USD LIBOR –
2 weeks

– – – – –

USD LIBOR –
1 month

0.50744% 0.50665% 0.50765% 0.51765% 0.51315%

USD LIBOR –
2 months

0.63206% 0.63255% 0.62880% 0.63280% 0.62955%

USD LIBOR –
3 months

0.80411% 0.81825% 0.81700% 0.81760% 0.81600%

USD LIBOR –
4 months

– – – – –

USD LIBOR –
5 months

– – – – –

USD LIBOR –
6months

1.19744% 1.20670% 1.20395% 1.20370% 1.19620%

USD LIBOR –
7 months

– – – – –

USD LIBOR –
8 months

– – – – –

USD LIBOR –
9 months

– – – – –

USDLIBOR –
10 months

– – – – –

USD LIBOR –
11 months

– – – – –

USD LIBOR –
12 months

1.50661% 1.52570% 1.51950% 1.52450% 1.52250%

Table 3.4 Number of used rates for given numbers of contributors

#CONTRIBUTORS METHODOLOGY #OF RATES

18 Contributors Top 4 highest rates, tail 4 lowest rates 10
17 Contributors Top 4 highest rates, tail 4 lowest rates 9
16 Contributors Top 4 highest rates, tail 4 lowest rates 8
15 Contributors Top 4 highest rates, tail 4 lowest rates 7
14 Contributors Top 3 highest rates, tail 3 lowest rates 8
13 Contributors Top 3 highest rates, tail 3 lowest rates 7
12 Contributors Top 3 highest rates, tail 3 lowest rates 6
11 Contributors Top 3 highest rates, tail 3 lowest rates 5

As at February 2016 the panel of banks contributing to EURIBOR
consists of 24 banks: Whereas in September 2012, the panel of banks
contributing to EURIBOR consisted of 44 banks, see Table 3.5.
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Table 3.5 The LIBOR panel banks at 2012-09-01 and 2014-09-01

Country Banks 2012-09-01 Banks 2014-09-01

Austria Erste Group Bank AG
RZB Raiffeisen Zentralbank
Österreich AG

Belgium Belfius Belfius
KBC

Finland Nordea Nordea
Pohjola Pohjola

France Banque Postale
BNP-Paribas BNP-Paribas
HSBCFrance HSBC France
Société Général Société Général
Natixis Natixis
Credit Agricole s.a. Credit Agricole s.a.
Credit lndustriel et Commercial
CIC

Germany Landesbank Berlin
Bayerische Landesbank
Girozentrale
Deutsche Bank Deutsche Bank
Commerzbank Commerzbank
DZ Bank Deutsche DZ Bank Deutsche
Genossenschaftsbank
Norddeutsche Landesbank
Girozentrale
Landesbank Baden-Wurttemberg
Girozentrale
Landesbank Hessen-Thuringen
Girozentrale

Greece National Bank of Greece National Bank of Greece
Italy Intesa Sanpaolo Intesa Sanpaolo

Banca Monte dei Paschi di Siena Banca Monte dei Paschi di Siena
UniCredit UniCredit
UBI Banca

Ireland Bank of Ireland
AIB

Luxembourg Banque et Caisse d’Epargne de
I’Etat

Banque et Caisse d’Epargne de
I’Etat

Netherlands ING Bank INGBank
Rabobank

Portugal Caixa Geral de Depósitos (CGD Caixa Geral de Depósitos (CGD)
Spain Banco Bilbao Vizcaya Argentaria Banco Bilbao Vizcaya Argentaria

Banco Santander Central Hispano Banco Santander
Confederacion Espaòola de Cajas
de Ahorros

CECABANK

CaixaBank S.A. CaixaBank S.A.
Great Brittain Barclays Barclays
Denmark Den Danske Bank Den Danske Bank
Sweden Svenska Handelsbanken
Non-EU banks UBS (Luxembourg) S.A.

Citibank
J.P.Morgan Chase & Co London Branch of JP Morgan

Chase
The Bank of Tokyo-Mitsubishi UFJ The Bank of Tokyo-Mitsubishi
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The panel of banks provide daily quotes of the rate, rounded to
two decimal places, that each panel bank believes one prime bank is
quoting to another prime bank for interbank term deposits within the
Euro zone. The maturities are ranging from 1 week to 1 year.

Every Panel Bank is required to directly input its data no later than
11:00 a.m. (CET) on each day that the Trans-European Automated Real-
Time Gross-Settlement Express Transfer system (TARGET) is open. At
11:02 a.m. (CET), GRSS (Global Rate Set Systems) will instantaneously
publish the reference rate on Reuters, Bloomberg and a number of
other information providers which will then be made available to all
their subscribers. The published rate is a rounded, truncated mean
of the quoted rates. The highest and lowest 15% of quotes are elim-
inated and the remainder are averaged and the result is rounded to
three decimal places. EURIBOR rates are spot rates, that is, for a start
two working days after measurement day. Like US money-market rates,
they are Actual/360, that is, calculated with an exact day count over a
360-day year. (Fig. 3.1)

3.1.2.1 EURIBOR+

At a SIFMA3 Roundtable on December 2, 2015, representatives of
the European Money Market Institute (EMMI) explained their plan to
change the EURIBOR rate from the current quotation-based system
to a rate based on actual transactions. The new rate will be called
EURIBOR+. According to EMMI, one of the goals is to achieve a “seam-
less transition” in which no current EURIBOR-based contracts would
be disrupted. At the end of the transition, EURIBOR+ will continue
to be published on the same data vendor pages, such as Reuters
page EURIBOR01. EMMI administers the EURIBOR and Euro Overnight
Index Average (EONIA) rates.

Currently, EURIBOR is defined as “the rate at which euro interbank
term deposits are being offered within the EU and EFTA countries by
one Prime Bank to another at 11:00 a.m. Brussels time.” The definition
of EURIBOR+ would be “the rate at which banks of sound financial
standing could borrow funds in the EU and EFTA countries in the
wholesale, unsecured money markets in euro.”

3 Securities Industry and Financial Markets Association
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Fig. 3.1 EURIBOR rate quotes between 2011-04-01 and 2016-08-154

The key difference between current EURIBOR and EURIBO+ is that
EURIBOR relies on quotes and member bank estimates of prime bank
activity, while EURIBOR+ will rely on actual wholesale borrowing
transactions executed by the member bank. EURIBOR’s current estim-
ate of bank funding rates as a point-in-time average will be replaced by
the EURIBOR+ backward- looking period average.

The transition to EURIBOR+ is targeted to take effect on July 4,
2016.

The first element to consider is that the number of entities that
provide data is increased, in addition to changing the methodology,
since it will take into account not only the deposits that banks make
to each other (interbank lending) but also those of big companies
and financial institutions, non-financial small and medium entrepren-
eurs, insurance companies, pension funds, etc. The current EURIBOR
measures the average interest rate at which banks lend money in
Europe and currently only 24 institutions are providing information.
The problem is that banks do not provide accurate information on
operations with real interest but on estimates of the interest that would
be charged between them.

The various manipulations of EURIBOR (also from other indices
such as Libor or Tibor) between 2005 and 2009 made the European
Commission in 2013 to fine several entities. The new EURIBOR Plus

4 Source Swedbank AB (publ)
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calculation would be based on a more realistic rate which would mean
that an application of a rate more realistic, although not until the test
period to see if this is so.

3.1.3 The EONIA Rates

The other widely used reference rate in the euro-zone is EONIA, also
published by the European Banking Federation, which is the daily
weighted average of overnight rates for unsecured interbank lending
in the euro-zone, that is, like the federal funds rate in the US. The banks
contributing to EONIA were the same as the Panel Banks contributing
to EURIBOR. However, “On 1st June 2013 the Eonia® and Euribor® re-
spective panels of contributing banks have been differentiated.”(EMMI
website)

The reference rate referred to as EONIA is computed as a weighted
average of all overnight unsecured lending transactions in the
interbank market, initiated within the euro area by the Panel Banks.
Note that this is an average of actual transactions that has taken place
between banks – not any indicative quote as used in the calculations
of LIBOR or EURIBOR rates. It is reported on an act/360 day count
convention with three decimal places.

“Overnight” means from 1 day to the next business day, until the
interbank payment system TARGET, The Trans-European Automated
Real-time Gross settlement Express Transfer system closes. The panel
of reporting banks is the same as for EURIBOR, so that only the most
active banks located in the euro area are represented on the panel and
the geographical diversity of banks in the panel is maintained.

All specified transactions initiated during the business day shall be
reported by the Panel Banks in aggregate, that is, the sum of all lending
transactions carried out before the closing of real-time gross settle-
ment (RTGS) systems at 6:00 p.m. (London time). Each Panel Bank
shall, on each day that the TARGET system is open and no later than
6:30 p.m., report to the ECB the total volume of unsecured lending
transactions that day and the weighted average lending rate for these
transactions. Thus, the calculation of the weighted average for the
overnight transactions for each bank is made by the respective Panel
bank itself.

The amount of lending transactions shall be reported by Panel Banks
in millions of euro, and the individual average rates shall be reported
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Fig. 3.2 The Over-Night rate EONIA5

with three decimals. Rounding shall be carried out following estab-
lished rounding rules in the market. In Fig. 3.2, the evolution of the
EORNIA rate between 2014-12-01 and 2016-08-01 are shown.

3.1.3.1 Calculation and Publication of EONIA

Based on the reported volumes and average rates from each Panel Bank
the European Central Bank (ECB) calculates EONIA, the weighted av-
erage for all the Panel banks. ECB shall aim to make the computed
rate available for publication as soon as possible so that EONIA can be
published between 6:45 p.m. and 7:00 p.m. on the same evening.

The ECB will undertake control measures to assess the quality of
EONIA and may report to the Steering Committee on the performance
of individual Panel Banks.

3.1.4 The Euro Repurchase Agreement Rate – Eurepo6

For the reference rate Eurepo,7 a representative panel of prime banks
provide daily quotes of the rate, rounded to three decimal places.
Each Panel Bank reports its believes on what one prime bank is
bidding another prime bank (and offering money) for term repo with

5 Source, Swedbank AB (publ)
6 Eurepo was discontinued on 2 January 2015.
7 http://www.emmi-benchmarks.eu/assets/files/Eurepo_tech_features.pdf

http://www.emmi-benchmarks.eu/assets/files/Eurepo{_}tech{_}features.pdf
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generalized collateral (Eurepo GC). Eurepo is quoted for spot delivery
(T +2) using the act/360 day-count convention. Eurepo is quoted for
the following maturities: T/N, 1, 2 and 3 weeks and 1, 2, 3, 6, 9 and
12 months.

Contribution of data

• Every Panel Bank will be required to directly input their data to the
Calculation Agent platform no later than 10:45 a.m. (CET) on each
day that the Trans-European Automated Real-Time Gross-Settlement
Express Transfer system (TARGET) is open.

• Each Panel Bank will be allocated a private page by the Calculation
Agent on which to contribute its data. Each contribution can only
be viewed by the contributing Panel Bank and by the Calculation
Agent staff involved in the calculation process.

• From 10:45 to 11:00 a.m. at the latest, the Panel Banks can correct,
if necessary, their quotations.

3.1.4.1 Calculation

At 11:00 a.m. (CET), the Calculation Agent will process the Eurepo
calculation. The Calculation Agent shall, for each maturity, eliminate
the highest and lowest 15% of all the quotes collected. The remaining
rates will be averaged and the result will be rounded to three decimal
places.

3.1.4.2 Fall-Back Rules

Before calculating at 11:00 a.m. (CET) on each Target Day the Eurepo
for that day, the Calculation Agent shall verify if all the Panel Banks
have made their data available for that day in accordance with the
established procedures.

If one or more Panel Banks have failed to do so, the Calculation
Agent shall use reasonable efforts to remind such Panel Banks by tele-
phone or any other means of communication of their obligation to
provide the data and shall invite them to submit the data immediately.

Should any Panel Bank after such a reminder still not provide its data
until 11:00 a.m. (CET), the Calculation Agent shall calculate the Eurepo
for that day without the missing data and promptly notify EMMI in
writing.
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At 11.00 am:

• if eight or more Panel Banks from three or more countries have
provided data, calculate and display the Eurepo based on this
data; or

• if fewer than eight Panel Banks have provided data or if the
Panel Banks which have provided data are from fewer than three
countries, the Calculation Agent shall delay the calculation of the
Eurepo for that day until eight or more Panel Banks from three or
more countries have provided data. The Calculation Agent shall, at
11:15 a.m. (CET), indicate the delay to all Authorized Vendors and
promptly notify EMMI.

• If fewer than eight Panel Banks have provided data by 12:30 p.m.
(CET), Eurepo rates of the previous business day will be republished
at 12:30 p.m. (CET) and will be used as the Eurepo rates for that
day. Any republished rates from the previous business day will be
identified as such by the Calculation Agent.

In this event, the Eurepo Steering Committee shall be convened in
special session as soon as practicable on notification of a contingency
event, in order to devise a resolution strategy preserving the continuity
of Eurepo. This strategy should be implemented within a period no
longer than three fixing days of the prior fixing established under the
regular process. The prior fixing may be re-published as the fixing for
the days in this period.

3.1.4.3 Publication of Eurepo

After the calculation has been processed at 11:00 a.m. (CET), the
calculation agent will publish the Eurepo reference rate which will
be made available simultaneously to all Authorised Vendors.

At the same time, the underlying Panel Bank rates will be published
on a series of composite pages which will display all the rates by
maturity.

Historical data and individual submissions for Eurepo are also
published on a delayed basis on the EMMI official website.
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3.1.5 Sterling Overnight Index Average (SONIA)

Sterling Overnight Index Average (SONIA) was introduced by the
Wholesale Markets Brokers’ Association (WMBA) in March 1997 as a
benchmark for the cost of overnight funds in sterling. It was London’s
first Overnight Index and it stimulated the development of Overnight
Index Swaps (OIS) in the Sterling Money Market. SONIA provides
a methodology for the fixing of Overnight Indexed Swap rates. Al-
though some central banks calculate and publish daily fixing rates for
overnight funds in their respective currency, the Bank of England did
not. So if no appropriate rate existed in Sterling, the WMBA, with the
BBA’s backing, decided to create the SONIA calculations. Historical
data are available on the WMBA website.

The Bank of England and the WMBA announced in April 13 2016
that the Bank of England will become the administrator of the SONIA
interest rate benchmark on 25 April 2016.8

SONIA tracks actual Sterling overnight funding rates experienced
by market participants during the day. SONIA is the weighted average
rate to four decimal places of all unsecured sterling overnight cash
transactions brokered in London by WMBA member firms between
midnight and 4:15 p.m. with all counterparties in a minimum deal size
of £25 million.

The creation of SONIA led to new derivative products, which
have been used to reduce the risk and increase the transparency for
overnight funding. The foremost example of this is the OIS. In such a
swap a fixed rate interest rate is swapped against a floating rate index,
for example, SONIA or EONIA. OIS contracts replicate a mismatched
interbank deposit position through either:

• a short-term loan funded by an overnight deposit; or

• an overnight loan funded by a short-term deposit.

OISs allow banks to manage their liquidity requirements more effect-
ively although part of the overnight risk still remains.

A typical OIS contract looks like this: Two parties agree to exchange
the difference between the interest accrued at a pre-specified fixed
interest rate on a given notional amount for a fixed period – say 3
months – and the compounded interest obtained from rolling-over the

8 http://www.bankofengland.co.uk/publications/Pages/news/2016/046.\penalty\z@aspx

http://www.bankofengland.co.uk/publications/Pages/news/2016/046.{penalty z@ }aspx
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daily SONIA rates over the term of the swap. At the end of the period
settlement of the contract is made and payments are netted so the
principal never changes hands.

3.1.6 Federal Funds

Federal funds, or fed funds, are unsecured loans of reserve balances
at Federal Reserve Banks that depository institutions make to one an-
other. The rate at which these transactions occur is called the fed
funds rate.

The most common duration or term for fed funds transaction is
overnight, though longer-term deals are arranged. The Federal Open
Market Committee (FOMC) sets a target level for the fed funds rate,
which is its primary tool for implementing monetary policy. Fed Funds
Transactions Redistribute Bank Reserves

Fed funds are unsecured loans of reserve balances at Federal Reserve
Banks between depository institutions. Banks keep reserve balances
at the Federal Reserve Banks to meet their reserve requirements and
to clear financial transactions. Transactions in the fed funds market
enable depository institutions with reserve balances in excess of re-
serve requirements to lend them, or “sell” as it is called by market
participants, to institutions with reserve deficiencies. Fed funds trans-
actions neither increase nor decrease total bank reserves. Instead, they
redistribute bank reserves and enable otherwise idle funds to yield a
return.

3.1.7 Summary

In Table 3.6, we show a summary of the most common interest rates.
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4
Interest Rate Instruments

4.1 Introduction to Interest Rate Instruments

We will now describe some instruments in the interest rate markets,
where there exist a huge number of different instrument types. To
mention all variants is far out of the scope in this book, if possible at
all. Some of these instruments are referred as Fixed Income instru-
ments. The name refer to the fact that all income, that is, all cash
flows, are known prior to the actual trade. Bonds are typical fixed
income instruments since the coupon rate and the nominal amount
are known.

4.1.1 Bonds, Bills and Notes

Bond, bills and notes are the most common debt instruments and
the starting point in most financial theory. In a later section we will
consider the bond prices (zero-coupon bonds) as stochastic processes
related to similar processes of the short rates and forward rates. The
value of such an instrument is found by studying the individual cash
flows and discount them to present values. The total value is then
given as the sum of its components.

4.1.1.1 Bills

Bills are the simplest debt instruments. It is a promissory note with a
fixed time of expiry when it promises to pay a fixed nominal amount.
There are no intermediate payments. Bills are negotiable securities that

© The Author(s) 2017 47
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are issued by central or local governments, private corporations and
banks and can be resold. The lifetime of a bill is normally a year or
less. If the time value of money is positive the bills are traded at a
price that is lower than the nominal amount ahead of expiry. This is
known as a “discount”. The discount is the nominal value of the bill
minus its current price. Before the recent financial crisis and negative
central bank rates bills typically traded at a “discount”.

Bills issued by the central government are known as T-bills (Swedish
SSVX). If issued by local government municipalities or private firms
the bills are known as CDs or Commercial Paper.

4.1.1.2 Bonds and Notes

Bonds too, have a fixed time of expiry but in addition to bills typically
pay interest during their lifetimes. The interest payments are known
as coupons. In addition bonds typically have several years to expiry
upon issue. These are long-term debt instruments that can be resold.
When a bond is issued, the buyers are essentially lending money to
the issuer in return for the promise of regular interest payments and
the promise of repayment of the principal at a future date. Most bonds
also trade in the secondary market, like stocks and other securities.
Understanding the pricing of a bond and, in particular, the relative
valuation of different bond issues is very important for investors and
traders.

A note is similar to a bond, but with a shorter lifetime. Notes have
normally a lifetime between 1 and 10 years, while bonds have a life-
time of more than 10 years. In UK there are bonds, war loans (from
the Second World War) that never expires. In UK bonds are referred
to as gilts.

The main considerations that enter the pricing of a bond are:

• The principal (or notional amount of the bond)

• Time to maturity

• The interest payments (coupons)

• Call provisions and other features such as conversion to shares, etc.

• Credit quality of the issuer.

The first three points define the structure of cash flows that the
investor expects to receive if the bond was held to maturity.
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Fig. 4.1 The bond cash flows consist of an initial payment , the fixed coupon
payments and the payback of the principal (the nominal amount)

Callable bonds are bonds where the issuer has the right, but not the
obligation, to call back/repurchase the bond at one or more specified
points over the bond’s lifetime. If called, the issuer pays the investor
the pre-specified call price, the strike. The call price is usually higher
than the bond’s par value. The difference between the call price and
par value is called the call premium. For the investor, this means that
there is uncertainty as to the true maturity of the bond.

Putable bonds are bonds where the holder has the right, but not the
obligation, to put back the bond to the issuer at one or more specified
points over the bond’s lifetime. If putted, the investor pays the issuer
pre-specified put price. The difference between the put price and the
par value of the bond is called the put premium.

Convertible bonds (usually issued by corporations) can be conver-
ted into stocks at a given price (the “conversion ratio”). Conversion
events complicate the pricing because the investor is uncertain about
what cash flows will be received.

Zero-coupon bonds (also called a “zeroes” or a “pure discount
bonds”) are bonds that have a single payment of the principal at
maturity, without any intermediate interest payments.

A Bullet bond is a conventional bond paying a fixed periodic
coupon and having no embedded optionality. Such bonds are non-
amortizing, that is, the principal remains the same throughout the
lifetime of the bond and is repaid in its entirety at maturity. Bullet
bonds are also called straight bonds. In the United States such bonds
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usually pay semi-annual coupons. The coupon rate (CR) is stated as
a simple annualized rate (usually with semi-annual coupon payments)
and paid on the bond’s par value (par). Thus, a single coupon payment
is equal to 1/2 × CR × Par.

A benchmark bullet bond is a bullet bond issued by a sovereign
government and assumed to have no credit risk. These are also called
Treasury bonds.

A non-benchmark bullet bond is a bullet bond issued by an entity
other than the sovereign and which, therefore, has some credit risk.

Eurobonds are bonds in the Eurobond market. The name can be
confusing because of its name. Although the Euro is the currency used
by participating European Union countries, Eurobonds refer neither
to the European currency nor to some European bond market. A Euro-
bond instead refers to any bond that is denominated in a currency
other than that of the country in which it is issued. Bonds in the Euro-
bond market are categorized according to the currency in which they
are denominated. As an example, a Eurobond denominated in Japanese
yen but issued in the US would be classified as a Euro Yen bond.

Foreign bonds are denominated in the currency of the coun-
try in which a foreign entity issues the bond. One example is the
samurai bond, which is a yen-denominated bond issued in Japan by
an American company. Other popular foreign bonds include Bulldogs
and Yankee bonds.

The credit quality is a very important variable because it represents
our beliefs about the issuer’s capacity to repay the principal and in-
terest. US Federal Government bonds are considered to be the most
creditworthy, since they are backed by the “full faith and power” of
the government.

Bonds issued by corporations have a certain probability of default-
ing in case the corporation can no longer meet its obligations. Thus,
corporate bonds have a lower credit quality. Low-credit bonds have
higher coupons than high-grade bonds trading at the same price. In-
vestors demand a premium for taking on the default risk. In most cases
we will ignore credit quality considerations.

Arbitrage Pricing Theory (APT), as we will see, gives a way of ex-
pressing the value of a zero-coupon bonds in terms of a risk-neutral
measure on the paths of the short-term interest rates. The yield of
the zero-coupon bond is, by definition, the constant interest rate that
would make the bond price equal to the discounted value of the final
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cash flow. In other words, the yield is the continuously compoun-
ded (constant) rate of return that the investor would receive if the
zero-coupon bond was bought and held to maturity. Notice that the
price and the yield varies inversely to each other: an increase in price
corresponds to a decrease in yield and vice-versa. Moreover, the price
is a convex function of yield.

There is an important practical consideration regarding the calcu-
lation of yields. In fact, expressing the time-to-maturity, T – t, as a
fraction of a year, a decimal number, requires using a specific day-
count convention, in order to convert days and months into fractions
of a year.

Most bonds have intermediate interest payments, typically called
coupons, as well as repayment of the principal. The “generic” bond
must therefore specify a maturity date in which the principal payment
is made, as well as a schedule of intermediate interest payments.

• Maturity date

• Principal (notional, nominal amount or the face value)

• Coupon rate

• Frequency of the coupons and payment dates

The coupon rate is the annualized intermediate payment
of the bond. The frequency represents how many payments
are made per year (1, 2, 4 or 12). Most bonds have an-
nual or semi-annual coupon payments. Thus, a 10-year bond
with face value of $1000 and a semi-annual coupon of 6.25
will pay the investor an interest of 0.5 × 0.0625 × 1000
= $31.25 every six months (totally 20 payments) and the principal will
be paid at the 20th payment date.

4.1.2 Bonds, Market Quoting Conventions and Pricing

When a trader buys a bond, the price is normally quoted as the clean
price. The price actually being paid, however, is equal to the clean
price plus the accrued interest since the last coupon. This is known
as the “dirty price”. The price of a bond as function of the yield-to-
maturity (YTM) can be written as

P =
N

(1 + ytm)T
+

n∑
i=1

C

(1 + ytm)ti
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Fig. 4.2 A 30 year to maturity bond price as function of ytm. The coupon
rate = 3%.

Remark! This is the relationship between the quoted yield and the dirty
price is known as the present value formula although in the markets
one does not use it to value the bonds. The price P versus ytm is
shown in Fig. 4.2.

The formula for the price, as a function of the yield can be simpli-
fied as we will show below. Denote T as the time to maturity, N the
nominal amount, C the size of the coupon (C = c · N where c is the
coupon rate) ant ti the times for the individual coupons. If the market
rate is the same as the coupon rate, we say that the bond is traded at
par. For simplicity we denote yield-to-maturity with the single letter y
from now on.

We start by studying the present value formula for only the coupons,
that is,

PVc =
∑
i

C

(1 + y)ti
=

C

(1 + y){T}
·
[T]∑
i=0

1

(1 + y)i

where [T] is the (integer) number of years to maturity and {T} = T–[T]
the time (part of a year) to the next coupon. The last sum is then

x =
[T]∑
i=0

1

(1 + y)i
= 1 +

[T]∑
i=1

1

(1 + y)i
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If we multiply this sum with (1 + y) we get

(1 + y) x = (1 + y) +
[T]–1∑
i=0

1

(1 + y)i

We then have

(1 + y) x – x = x · y = (1 + y) –
1

(1 + y)[T]

Giving

x =
1 + y

y
–

1

(1 + y)[T] · y .
Then

PVc =
C

(1 + y){T}
·
(
1 + y

y
–

1

(1 + y)[T] · y
)
=

C/y

(1 + y){T}
·
(
(1 + y)[T]+1 – 1

(1 + y)[T]

)

And we finally get

PV(y) =
N + C

y · [(1 + y)[T]+1 – 1
]

(1 + y)T

If there are several coupons per year (with the frequency f ) we get

PV(y, f ) =

(
1 +

y

f

)–T·f
·
{
N +

C

y

[(
1 +

y

f

)M

– 1

]}

whereM is the number of the remaining cash flows. In C/C++ or Excel,
M is calculated using the function ceil as ceil (Tf )/f . The formula can
be used to calculate the interest rate risk, where we shift the yield-to-
maturity with one basis point (bp)

R = PV(y) – PV(y + 1 bp)

We can also use this to calculate an implied coupon rate for floating
rate notes (FRNs) if we have the market price and yield-to-maturity

C =
y ·
(
PV ·

(
1 + y

f

)T·f
– N

)
(
1 + y

f

)M
– 1

Using the yield-to-maturity, the price of a bond can be calculated in
C/C++ as
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double Price(double Coupon, double YTM, double T, int f)
{

double price;

price = Coupon*(pow(1.0 + YTM, ceil(T*f)/f) - 1.0)/
(pow(1.0 + YTM, 1.0/f) - 1.0);

price = (100.0 + price)/pow(1.0 + YTM, T);
return price;

}

The present value, that is, the market (dirty) price of a bond, is
given by

P =
N

(1 + r(T))T
+

n∑
i=1

C

(1 + r(ti))ti
.

With a known constant spread above the interest rate we calculate
this as

double BondPrice(double Coupon, double *SpotRate, int N,
int *PayDay, double spread)

{
double Price = 0.0;
int i;
for (i = 0; i < N; i++) {

Price += Coupon/pow(1.0 + (SpotRate[i] + spread),
PayDay[i]/365.0);

}
Price += 100.0/pow(1.0 + (SpotRate[N-1] + spread),

PayDay[N-1]/365.0);
return Price;

}

4.1.3 Accrued Interest

The market prices of bonds, when published in newspapers, are
quoted as clean prices.1 That is, they are quoted without any accrued
interest. The accrued interest is the amount of interest that has built up
since the last coupon payment. In contrast to stock markets, in fixed
income the convention is to share the dividend payments, that is, the
coupon payments, in a special way between buyers and sellers if the
bond is bought at a time between coupon dates.

1 In some countries, such as Sweden, bond prices are quoted as yield (to maturity).
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The accrued interest is equal to the upcoming coupon payment
times the number of days since the last coupon date divided by the
number of days in the period between coupon payments.

The actual payment is called the dirty price and is the sum of the
quoted clean price and the accrued interest.

How the dirty price is related to the clean price is shown in Fig. 4.3.
The owner of the bond wants to get his share of the upcoming coupon
payment if he sells the bond between the cash flows.

The clean price is given as

Clean = P – Coupon · 365 – d
365

where d is the number of days until next coupon payment. The clean
price in the Fig. 4.3 is constant if the market rate and the coupon rate
are the same.

If the market rate is higher than the coupon rate, the clean price
will have a positive slope. This is illustrated in Fig. 4.4.

On the other hand, if the market rate is below the coupon rate, the
clean price will have a negative slope as in Fig. 4.5.

As we have seen, when we calculate the price of a bond and con-
sider the bond as a number of cash flows that we use the present
value formula. In Table 4.1, we show the coupon frequencies and the
day-count convention for typical bonds in some countries.

Bills in US with maturity less than 1 year are called T-bills. They
are usually zero-coupon bonds. Bonds with maturity 1 to 10 years

Fig. 4.3 The clean- and dirty price of a bond as function of a constant yield over
time
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Fig. 4.4 The bond dirty price as function of a constant upward sloping yield

are called T-notes and they with maturity above 10 years are called
T-bonds. They are coupon bearing and quoted in USD and 32nds of a
USD for a USD 100 face value. Thus, a quote of 99–16 means a decimal
price of USD 99.5 for a USD 100 face value.

Bonds traded in the United States foreign bond market, which are
issued by non-US institutions, are called Yankee bonds. Since the be-
ginning of 1997, the US Federal Government has also issued bonds
linked to the rate of inflation.

Bonds issued by the UK Government are called gilts. Some of these
bonds are callable; some are irredeemable, meaning that they are
perpetual bonds (we will discuss such a bond in more detail in a
later section) having a coupon but no repayment of principal. The
government also issues convertible bonds, which may be converted
into another bond issue, typically of longer maturity. Finally, there are
index-linked (inflation-linked) bonds having the amount of the coupon
and principal payments linked to a measure of inflation, the Retail
Price Index (RPI).
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Fig. 4.5 The bond dirty price as function of a constant downward sloping yield

Table 4.1 Coupon frequency and day count for bonds

Treasury bonds Coupon frequency Day-count convention

Sweden Annual 30!360
US Semi annual Actual/Actual
Japan Semi annual Actual/365
UK Semi annual Actual/365,Actual/Actual
Germany Annual 30E/360 or Actual/Actual
Italy Semi annual Actual/Actual
Corporate bonds
US Semi-annual IAnnual 30!360
UK Semi annual Actuall365 or Actual/Actual
Eurobonds Annual (Semi-annual) 30E/360

Japanese government bonds (JGBs) come as short-term, medium-
term, long-term (10 year maturity) and super long-term (20 year
maturity). The long- and super long-term bonds have coupons every
six months. The short-term bonds have no coupons and the medium-
term bonds can be either coupon-bearing or zero-coupon bonds.
Yen-denominated bonds issued by non-Japanese institutions are called
Samurai bonds.
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Example 4.1.3.1
The future value, FV of a quarterly paying bond with 10% coupon rate and a
nominal of 100 is given by:

FV = 100

(
1 +

0.10

4

)4

= 110.38

This corresponds to an effective rate (EAR, Equivalent Annual Rate) of 10.38%.

Example 4.1.3.2
The present value formula for three annual coupons of 5000 with 5% discount rate

P =
5000

1 + 0.05
+

5000

(1 + 0.05)2
+

5000

(1 + 0.05)3

= 4761.90 + 4535.15 + 4319.19

= 13616.24

The discounted present value can be expressed as

P =
C

y

[
1 –

1

(1 + y)n

]

Remark! The bond price is proportional to the inverse of the dis-
count rate.

The Yield-To-Maturity is sometimes called Redemption Yield and
denoted as Red in Financial Times. In Financial Times another rate
is also given, denoted Int which is the coupon divided by the dirty
price. This is the flat yield, sometimes called current-, interest-, run-
ning- or income yield. Yield-to-maturity is interpreted as the yield an
investor gets, by holding a bond to maturity and if he/she can re-invest
all the coupons at the same rate, YTM. When trading bonds, the price,
if quoted in yield-to-maturity, ytm, can be related to the bonds coupon
rate. If the quote is equal to the coupon rate, we say that the bond is
traded at par. If the quote is lower than the coupon rate, we say that
the bond is traded above par. Similarly, if the quote is higher than the
coupon rate, the bond is traded below par, see Table 4.2.

A common way to value risky bonds is via a spread s, over the yield
to maturity y as

P =
N∑
n=1

CFn

(1 + y + s)n
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Table 4.2 Bond par versus yield

If the bond is traded The Yield is

On par Same as coupon rate
Above par Below coupon rate
Below par Above coupon rate

where CFn is the cash flow at time n. This means that due to a higher
risk we want to get a better payoff compared with the less risky bond.
A positive spread gives a lower price of the bond. This spread is called
risk a premium.

Definition 4.1.3.1. Current- and adjusted current yield are defined
as:

Current yield =
Coupon rate

Clean price
· 100

Adjusted current yield =
[Coupon rate+ (100 · Clean price) /n]

Clean price
· 100

where n is the number of years to maturity with use of day-count
convention.

4.1.4 Floating Rate Notes

An FRN is a hybrid between a short- and a long-term debt security

• Its original maturity typically exceeds 12 months (indeed most FRNs
have longer maturities than straight corporate bonds), and its price
is quoted as a percentage of int face value, like a bond.

• Its coupon rate is reset at each coupon date in line with a money
market reference rate such as LIBOR, plus a fixed spread s.

Unlike a straight bond, the price of an FRN is not very sensitive to
changes in market rates, because its coupons are reset periodically in
line with the market. However, its price is sensitive to changes in the
credit quality of the issuer: a note rated single-A paying LIBOR +45
bps and issued at par will trade at a discount to par in the secondary
market if the debt of the issuer wee to be downgraded to BBB/Baa.

The full price of a floating-rate note on a coupon date is given by dis-
counting the implied future coupons using the issuer’s discount curve



60 J.R.M. Röman

as follows

P =
N∑
i=1

[L(i – 1, i) + s] p(0, i) + p(0,N)

where p(0, i) is the discount factor from today to the subsequent
coupon dates i, and L(i–1, i) represents the forward LIBOR rate, which
sets at time i – 1 and pays at time i. For simplicity, we have assumed
that the bond pays coupons annually.

If at time t the issuer has a T -maturity par floater spread of F, then
the discount factors are given by the following iterative scheme

p(0, i) =
p(0, i – 1)

1 + L(i – 1, i) + F

where p(0, 0) = 1. Clearly, Fis a measure of the credit quality of the
issuer since it is the fixed spread to LIBOR used to discount all cash
flows. Note also that F changes over time as the credit quality of the
issuer changes. If we substitute F = S above, then we find that P =
100%; that is, if the par floater spread, F, equals the fixed spread, S,
on a coupon date, the floating rate note prices at par.

Dealers and investors assess the investment value of the FRN by
reference to its discount margin.

Definition 4.1.4.2. Discount Margin

• The risk premium which, when added to the risk-free rate, makes
the PV of the FRN equal to its market price.

• The spread over LIBOR which should be paid on the FRN in order
to make its market price equal to par.

Discount margin is also known as: Effective LIBOR Spread.

The discount margin, M, is defined by the following relationship:

P =

[(
Lnext + s

)
+

N∑
i=1

L+s
(1+L+M)i

+ 1
(1+L+M)N

]

(1 + L∗ +M)
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where for simplicity we have ignored day-count fractions and assumed
that coupon dates are integers. The symbols are:

P = full bond price
L∗ = stub LIBOR coupon to next coupon date
L = current LIBOR fixing
Lnext = the next LIBOR payment (which was fixed on previous

coupon date)
M = discount margin for which we solve
s = quoted margin

This calculation assumes that all future LIBOR cash flows are equal to
the previous fixing. As a result, no account is taken of the shape of the
LIBOR forward curve as in the par floater calculation.

Like a yield to maturity, M is calculated by a process; iteration –
trying different values ofM until you arrive at the one that equates the
note’s PV with its market price.

If the note trades at par: Discount margin = LIBOR spread
If the note trades at a discount to par: Discount margin > LIBOR spread
If the note trades at a premium to par: Discount margin < LIBOR spread

Example 4.1.4.1
What is the discount margin on the following security?

Security: GBP FRN maturing 29 October 2026
Rating: Single A
Coupon rate: 6 month LIBOR + 0.15%
Day count: Actual/365
Settlement: 14-apr-16
Current LIBOR fix: 1.25%
Clean price: 98.75

What is the discount margin on this security?

Analysis:
Using method 1, first we “fix” the coupon rate on the note at the current LIBOR

Coupon = 1.25 + 0.15 = 1.40%

Then, we compute the yield to maturity on this “bond”, given its current market
price.

Calculated yield (semi – annual, actual/365) = 1.558%

Finally, we calculate the discount margin as the difference between this yield and
LIBOR

Discount Margin = 1.558% – 1.250% = 0.308%
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In other words, if the note paid LIBOR + 30.8 bps, instead of LIBOR + 15, then it
would trade at par. An investor expecting to earn LIBOR + 35 on single-A-rated
paper would consider this note to be trading rich.

This approach is very straightforward, but you must be careful to use the appro-
priate day-count conventions when moving between the bond markets and the
money markets. Thus, if the coupons on this note were calculated on an Actual/360
basis, the bond-equivalent coupon rate would be closer to 365/360×1.40% = 1.419%.
The calculated bond yield would be 1.579%, which is a money market equival-
ent yield of 360/365 × 1.579% = 1.557%. The discount margin would then be:
1.557 – 1.250 = 0.307%.

In this example, the difference is very small, but in different conditions, it could
be significant.

If we simplify the general pricing formula for an FRN by setting s =
M = 0, we can discount with the LIBOR forward rate Li with day-count
period �i

PV =
�0 · L0 · N
1 +�0 · L0 +

�1 · L1 · N
(1 +�0 · L0) · (1 +�1 · L1) + . . .

+
�n · Ln · N + N

(1 +�0 · L0) · (1 +�1 · L1) · · · (1 +�n · Ln)

But

�n · Ln · N + N

(1 +�0 · L0) · (1 +�1 · L1) · · · (1 +�n · Ln)
=

(1 +�n · Ln) · N
(1 +�0 · L0) · (1 +�1 · L1) · · · (1 +�n · Ln)

=
N

(1 +�0 · L0) · (1 +�1 · L1) · · · (1 +�n–1 · Ln–1)

which when combined with the previous term can be written as

(1 +�n–1 · Ln–1) · N
(1 + �0 · L0) · (1 +�1 · L1) · · · (1 +�n–1 · Ln–1)

=
N

(1 +�0 · L0) · (1 +�1 · L1) · · · (1 +�n–2 · Ln–2)
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Continuing to combine the last term with the previous one we
finally get

PV =
�0 · L0 · N
1 +�0 · L0 +

�1 · L1 · N + N

(1 +�0 · L0) · (1 +�1 · L1)
=
�0 · L0 · N + N

1 +�0 · L0 =
(1 +�0 · L0)N
1 +�0 · L0 = N

By induction, we have then proved that PV = N at each reset day.
Therefore, we have a market risk with the duration to the next reset

day. The duration of the credit risk (the risk in the change of discount
margin, spread risk or basis risk) will on the other hand persist for
the whole duration of the FRN, that is be similar to that of a bond of
matching maturity.

The value between two resets days is given by:

PV =
1 +� · Llast
1 + L · d

D

· N

where d/D is the time to next reset with day-count, L the next reset, �
the length of the current time period the and Llast the last fixing rate.

A floating rate note (FRN) initiated at time t0 involves:

1. Buying the FRN at time t0 for a fixed price N;

2. a series of floating interest payments: Lt0 at time t1, Lt1 at time
t2, . . . , Ltn–2 at time tn–1, Ltn–1 + N at time tn.

We will consider the most common floating rate note, which is a bullet
note, where the coupon rate effective for the payment at the end of
one period is set at the beginning of the period at the current market
interest rate for that period (Fig. 4.6).

Suppose that the payment dates of the bond are t1 < · · · < tn, where
ti – ti–1 = δ for all i.

In practice, δ will typically equal 0.25, 0.5 or 1 year, corresponding
to quarterly, semi-annual or annual payments. The annualized coupon
rate valid for the period [ti–1, ti] is the δ-period market rate at date ti–1
computed with a compounding frequency of δ. We will denote this
interest rate by l(ti, ti–1), although the rate is not necessarily a LIBOR
rate (plus a number of bps), but can also be a Treasury rate. If the face
value of the bond is N, the payment at time ti equals

Nδl (ti, ti – δ) , for i = 1, 2, . . . , n – 1,
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Fig. 4.6 The cash flows for a floating rate note (FRN).

and the final payment at time tn equals

N (1 + δl (ti, ti – δ))

If we define t0 = t1 – δ, the dates t0, t1, . . . , tn–1 are often referred to as
the reset dates of the note. Let us look at the valuation of a floating rate
note. We will argue that immediately after each reset date, the value of
the bond will equal its face value.

To see this, first note that immediately after the last reset date tn–1,
the bond is equivalent to a zero-coupon bond with a coupon rate equal
to the market interest rate for the last coupon period.

By definition of that market interest rate, the time tn–1 value of the
bond will be exactly equal to the face value N. In mathematical terms,
the market discount factor to apply for the discounting of time tn
payments back to time tn–1 is (1 + δl(tn, tn–1))–1.

The time tn–1 value of a payment N(1 + δl(tn, tn–1)) at time tn is
precisely N.

Immediately after the next-to-last reset date tn–2, we know that we
will receive a payment of Nδl(tn–1, tn–2) at time tn–1 and that the time
tn–1 value of the following payment (received at tn) equals N. We
therefore have to discount the sum

Nδl(tn–1, tn–2) + N = N(1 + δl(tn–1, tn–2))

from tn–1 back to tn–2. The discounted value is exactly N. Continuing
this procedure, we get that immediately after a reset of the coupon
rate, and the floating rate note is valued at par.
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We can also derive the value of the floating rate bond between two
payment dates. Suppose we are interested in the value at some time t
between t0 and tn. Introduce the notation

i (t) = min{i{1, 2, . . . , n} | ti > t},

so that ti(t) is the nearest following payment date after time t. We know
that the following payment at time ti(t) equals Nδl(ti(t), ti(t)–1) and that
the value at time ti(t) of all the remaining payments will equal N. The
value of the bond at time t will then be

Bfl(t) = N
(
1 + δl(ti(t), ti(t)–1

)
p(t, ti(t)), t0 ≤ t < tn

where p(t, ti(t)) is the market price of a zero-coupon bond with nominal
amount N at time t with maturity at time t(i). This expression also
holds at payment dates t = ti, where it results in N, which is the value
excluding the payment at that date.

Inverse floaters pay a variable coupon rate that changes in direc-
tion opposite to that of short-term interest rates. An inverse floater
subtracts the benchmark from a set coupon rate. For example, an in-
verse floater that uses LIBOR as the underlying benchmark might pay
a coupon rate of a certain percentage, say 6%, minus LIBOR.

4.1.5 FRA – Forward Rate Agreements

A forward rate agreement (FRA) is an OTC derivative that trades as
part of the money markets. It is essentially a forward-starting loan, but
with no exchanges of principal, so that only the difference in interest
rates is traded. So FRAs are off-balance sheet instruments. By trading
today at an interest rate that is effective at some point in the future,
FRAs can be used to hedge future interest rate exposure. They may
also be used to speculate on the level of future interest rates.

An FRA is therefore an agreement to borrow or lend a notional
cash sum for a period of time, at a pre-specified fixed rate of in-
terest (the FRA rate). The “buyer” of an FRA is borrowing a notional
sum of money and paying the agreed fixed rate while the “seller” is
lending this cash sum. Note that, in the FRA market, to “buy” is to
“borrow”. The notional sum is the amount on which interest payment
is calculated.

Many banks and large corporations will use FRAs to hedge future in-
terest or exchange rate exposure. The buyer of an FRA (the borrower
of the notional) will be protected (hedged) against rising interest rates
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Fig. 4.7 An FRA “In 6 for 3 at 7 %”.

Fig. 4.8 An FRA “In 6 for 3 at 7 %”.

between the date that the FRA is traded and the date that the FRA
comes into effect. If there is a fall in interest rates, the buyer must
pay the difference between the rate at which the FRA was traded
and the actual rate, as a percentage of the notional. The seller hedges
against the risk of falling interest rates. Other parties that use forward
rate agreements are speculators purely looking to make bets on future
directional changes in interest rates.

Since there isn’t any delivery of the underlying loan amount, the
contract can be considered as a CFD, contract for difference. One may
also say that FRA is an interest rate swap with only one payment at
maturity.

For example Bank A may agree to fix the PIBOR (The Paris Interbank
Offer Rate) “in 6 for 3 at 7 %” for Company Z. This means that, if in
six months’ time the PIBOR exceeds 7%, A will pay Z the difference
(Fig. 4.7).

On the other hand if PIBOR is less than 7% Z will pay A the
difference (Fig. 4.8).

The following standard terms are used in the market.

• Notional: The amount for which the FRA is traded.

• Trade date: The date on which the FRA is dealt.
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Fig. 4.9 The FRA contract period definition.

• Settlement date: The date on which the notional loan or deposit of
funds becomes effective, that is, is said to begin. This is also called
the effective date.

• Fixing date: This is the date on which the reference rate is
determined, that is, the rate to which the FRA dealing rate is
compared.

• Maturity date: The date on which the notional loan or deposit
expires.

• Contract period: The time between the settlement date and
maturity date.

• FRA rate: The pre-specified fixed interest rate at which the FRA is
traded.

• Reference rate: This is the rate used as part of the calculation of
the settlement amount, usually the LIBOR rate on the fixing date for
the contract period in question.

• Settlement sum: The amount calculated as the difference between
the FRA rate and the reference rate as a percentage of the notional
sum, paid by one party to the other on the settlement date (Fig. 4.9).

As we have seen, a forward rate agreement (FRA) is a type of for-
ward contract on short-term deposits, determined on the basis of
a short-term interest rate, referred to as the Reference rate, over a
predetermined time period at a future date. Typical, the reference
is the forward LIBOR rate for the period [T1,T2] contracted time
t,L(t,T1,T2).

The netted payment made at the effective date is

P = N · τ · L(t,T1,T2) – X

1 + τ · L(t,T1,T2)
where X is the pre-specified contracted rate (strike) to be paid at ma-
turity T2, and τ = T2 – T1, (the actual number of days in the interval
divided by 360). In the new Multiple Curve Framework (see below)
the formula is better expressed as
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Fig. 4.10 An FRA with both cash flows.

P = N · τ · [Lτ (t,T1,T2) – X] · pD(t,T2)

Lτ (t,T1,T2) =
1

τ

(
pτ (t,T1)

pτ (t,T2)
– 1

)

so

P = N ·
[
pτ (t,T1)

pτ (t,T2)
– 1 – τ · X

]
· pD(t,T2)

where we discount with another curve, D. In single curve framework,
the last formulae would be expressed as

P = N · [pτ (t,T1) – pτ (t,T2)] · (1 + τ · X)
Standardized (exchange traded) contracts at par (X = L(t,T1, T2))
are quoted in some markets. Typically such contracts are written
as three-month contracts between IMM-days (International Money-
Market days), that is, the third Wednesdays in March, June, September
and December.

As we have seen, an FRA is a contract consisting of a synthetic
forward-starting loan. The cash flows of the loan can be described as
in Fig. 4.10.

Here N is the notional amount, T is the settlement time, S the ma-
turity and X the forward strike rate. Since we only have one payment,
the difference between the forward interest rate F, fixed at time t = T
and the strike rate X, we can illustrate the payment in Fig. 4.11.

However, since the payment is known at t = T it is also paid at this
time, as illustrated in Fig. 4.12.

Here we must discount the cash flowwith the forward rate between
the maturity date and the pay date.
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Fig. 4.11 An FRA with the maturity cash flow.

Fig. 4.12 An FRA with the initial cash flow.

To illustrate that we still have risk at t = S we do the following
calculation. The cash flow at t = T is

CF(T) = N · α ·
(

F – X

1 + α · F
)

where F is the forward rate between T and S observed at time t, that is,

F = F(t,T , S) = –
ln p(t,T , S)

S – T
≡ –

ln
[
p(t, S)/p(t,T)

]
S – T

= {t = 0}

= –
ln
[
e–r(S)·S+r(T)·T

]
S – T

=
1

α
(r(S) · S – r(T) · T)

Here we have used continuous compounding of the interest rate.
p(t,T , S) is the forward discount function between T and S observed
at t. p(t, S) and p(t,T) are the discount factors time t to S and T respect-
ively. r(S) and r(T) represent the zero-coupon rates at time S and T
observed at time t.

Using the forward rate above, the cash flow can be expressed as

CF(T) = N ·
(
r(S) · S – r(T) · T – α · X
1 + r(S) · S – r(T) · T

)

To find the net present value of the cash flow we need to discount the
cash flow as
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Table 4.3 FRA contract notation

Notation Date from now Maturity from now Underlying Rate

1 × 4 1 month 4 months 4-1 = 3months LIBOR
1 × 7 1 month 7 months 7-1 = 6months LIBOR
3 × 6 3 months 6 months 6-3 = 3months LIBOR
3 × 9 3 months 9 months 9-3 = 6months LIBOR
6 × 12 6 months 12 months 12-6 = 6months LIBOR

12 × 18 12 months 18 months 18-12 = 6months LIBOR

PVCF(T) = N · e–r(T)·T ·
(
r(S) · S – r(T) · T – α · X
1 + r(S) · S – r(T) · T

)

Similarly, we can study the equivalent cash flow at time S

CF(S) = N · α · (F – X) = N · (r(S) · S – r(T) · T – α · X)
with the present value (discounted from time S)

PVCF(S) = N · e–r(S)·S (r(S) · S – r(T) · T – α · X)
We can easily see that PVCF(S) ≡ PVCF(T) from

e–r(T)·T =
e–r(S)·S

1 + r(S) · S – r(T) · T =
e–r(S)·S

1 + α · F(T , S)
From this analysis we see that we have zero-coupon risk in two nodes
(t = T and t = S) in an FRA contract until we reach time T.

OTC FRA deposit contracts sometimes use the notation as seen in
Table 4.3.

FRA are also used when bootstrapping the interest rate curve (see
below)

Example 4.1.5.1
Hedging an FRA with a future. Below, we will study a hedging situation where we
will hedge an FRA with a future contract.

An FRA market-maker sells a EUR 100 million 3-v-6 FRA, that is, an agreement
to make a notional deposit (without exchange of principal) for three months in
three months’ time, at a rate of 7.52%. He is exposed to the risk that interest
rates will have risen by the FRA settlement date in three months’ time. He wants
to hedge this with a number of matching futures contracts. The question is, how
many should he buy?
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Date 14 December
3-v-6 FRA rate 7.52%
March futures price 92.50%
Current spot rate 6.85%

Action: The dealer first needs to calculate a precise hedge ratio. This is a three-stage
process:
In the first stage we calculate the nominal value of a bp move in LIBOR on the FRA
settlement payment

BPV = FRAnom · 0.01% · n

360

Therefore: Nbpv = e100, 000, 000 × 0.01% × 90/360 = e2500.
In the next stage we calculate the present value of 1. By discounting it back to

the transaction date using the FRA and spot rates. Present value of a bp move is
given by

PV01 =
Nbpv(

1 + rspot · d

360

)
·
(
1 + rFRA · d

360

)

=
2500(

1 + 0.0685 · 90

360

)
·
(
1 + 0.0752 · 90

360

) = 2412.55

The final stage consist of determine the correct hedge ratio by dividing PV01 by
the futures tick value.

Hedge Ratio = 2413/25 = 96.52.

The appropriate number of contracts for the hedge of a EUR 100,000,000 3-v-6 FRA
would therefore be 97. To hedge the risk of an increase in interest rates, the trader
sells 97 EUR three months’ futures contracts at 92.50. Any increase in rates during
the hedge period should be offset by the gain realized on the futures contracts
through daily variation margin receipts.

Outcome
Date 15 March
Three month LIBOR 7.625%
March EDSP 92.38
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The hedge is lifted upon expiry of the March futures contracts. Three-month LIBOR
on the FRA settlement date has risen to 7.625% so the trader incurs a loss of EUR
25,759 on his FRA position (i.e. EUR 26,250 discounted back over the three month
FRA period at current LIBOR rate), calculated as follows:

N · LIBORFRA · (d/360)
1 + LIBOR · d

360

= 100, 000, 000 · 0.00105 · (90/360)
1 + 0.07625 · 90

360

= 25, 759

Futures P/L: 12 ticks (92.50 – 92.38) × e25 × 97 contracts = EUR29, 100. The EUR 25,759
loss on the FRA position is more than offset by the EUR 29,100 profit on the futures
position when the hedge is lifted. If the dealer has sold 100 contracts his futures
profit would have been EUR 30,000, and, accordingly, a less accurate hedge. The
excess profit in the hedge position can mostly be attributed to the arbitrage profit
realised by the market maker (i.e. the market maker has sold the FRA for 7.52%
and in effect bought it back in the futures market by selling futures at 92.50 or
7.50% for a two tick profit.)

4.1.6 Interest Rate Futures

An interest rate future is a futures contract with an interest-bearing
instrument as the underlying asset. Buying an interest rate futures con-
tract allows the buyer of the contract to lock in a future investment
rate; not a borrowing rate as many believe. Being long an IR future
means you have agreed to receive a rate at a certain period in the
future.

Interest rate futures are based on an underlying security which is
a debt obligation and moves in value as interest rates change. Typical
contracts are EuroDollar futures and Euribor futures.

EuroDollars are USD deposited in banks outside the United States,
and thus are not under the jurisdiction of the Federal Reserve. Futures
on Euribor are similar contracts in Euro.

A single future is similar to a forward rate agreement to borrow
or lend a nominal amount for a time (typical three months) starting
on the contract settlement date. Buying the contract is equivalent to
lending money, and selling equivalent to borrowing money.

The futures contracts are traded with delivery at IMM. The interest
rate underlying the contract is the interest rate typically applicable to a
91-day period. The contracts are settled in cash on the second London
business day before the IMM day.
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The relation between Q, the quoted price, and P, the contract price
(in points of 100%), is given by

P = 100 – α · (100 – Q)
where α is the day-count fraction (Act/360).

As the futures contract refers to cash settled financial futures con-
tract based upon the LIBOR rate on expiry, they can be used to hedge
future interest rate exposures and are quoted in price. A quoted price
of 95.00 implies an interest rate of 100.00–95.00, or 5%. The settle-
ment price of a contract is defined to be 100.00 minus the official
British Bankers Association (BBA) fixing of 3-month LIBOR/Euribor on
the day the contract is settled.

On IMM, the actual interest rate for the period is known and the
contract is settled in cash. The final marking to market sets the futures
price equal to 100 – R, where R is the interest rate expressed with
quarterly compounding and an actual/360 day-count convention.

1. When interest rates move higher, the buyer of the futures contract
will pay the seller an amount equal to that of the benefit received
by investing at a higher rate versus that of the rate specified in
the futures contract. Conversely, when interest rates move lower,
the seller of the futures contract will compensate the buyer for the
lower interest rate at the time of expiration.

2. To accurately determine the gain or loss of an interest rate futures
contract, an interest rate futures price index was created. When
buying, the index can be calculated by subtracting the futures
interest rate from 100, or (100 – futures interest rate). As rates fluc-
tuate, so does this price index. You can see that as rates increase,
the index moves lower and vice versa.

3. Typically, the interest rate futures contract has a base price move
(tick) of 0.01, or 1 bp. However, some contracts have a tick value
of 0.005 or half of 1 bp. For example, for Eurodollar contracts, a
tick is worth $12.50 and a move from 94 to 94.50 would result in a
$1250 gain per contract for someone who is long the futures.

4. Interest rate futures contracts, when used in conjunction with the
duration measure of fixed income instruments, can be used to
hedge a company’s risk exposure to interest rate movements.

Common IR futures contracts include Treasury bond and Eurodollar fu-
tures contracts that trade in the United States. Interest rate futures in
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the US markets are traded on the CME (Chicago Mercantile Exchange).
Euribor futures are typically traded at LIFFE (London International
Financial future and Option Exchange).

The face value of an IR-future is calculated as follows

Face Value = (1 – r.α). Contract Size

where r is the annualized forward interest rate and α the length of the
deposit period in years. The quote converted to a price is given by

Price = 100(1 – r)

For example, if a EuroDollar future is quoted at 94.25, this corresponds
to an interest rate of 5.75%.

Interest rate futures are priced as

PV(t) = N · α ·
(
P(t) – X

100

)
· D(TM)

where

P(t) = 100 · (1 – F(t,TS,TM))
and

• N the notional amount,

• α the tenor (time between the maturity and settlement): TM – TS,

• X the strike rate in the agreed time period,

• D(TM) the discount-factor to maturity TM and

• F(t,TS, TM) the market reference forward rate for the time between
Settlement and Maturity.

IR-futures are quoted in price, based on the expectation in the forward
rate. Hence, the sensitivity in the rate is calculated as an increase in the
zero-rate by one bp. The relationship between the forward rate and the
zero rates (using continuous compounding) is given by

F(t, TS, TM) = r(t, TM) + {r(t, TM) – r(t,TS)} · TS
α

An interest rate future is a contract between a party such as a bank
or investor and an exchange. It is a way to fix an interest rate for a
nominal amount for a period in the future.

In Fig. 4.13, we illustrate an interest future with a fixed rate of 4%
that is agreed for a nominal of $100 on a period starting in six months
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Fig. 4.13 An example of interest rate future.

and ending in nine months. The reference rate that the fixed rate will
be compared against is the LIBOR.

At the start date (six months), the agreed fixed rate (4%) is higher
than the reference rate (3.9%). This means money must be paid to the
exchange. The amount is given by

Interest rate differential × Nominal amount × Time

= (4 – 3.9) × 100 × 3/12 = £10.

As is typical for futures, daily margin payments (marking to the mar-
ket) must be paid to or received from the exchange to effectively close
out the position each day (so that no credit risk arises for either party).

On most exchanges (e.g. Eurex, LIFFE, CBOT) interest rate futures
are quoted using type 100 – Rate. If you trade a future at price 96, you
actually have locked in an interest rate of 4%.

Interest rate futures are traded with standardized expiry dates, the
IMM dates. Expiry is the Monday preceding the third Wednesday
every last month every quarter, that is, March, June, September and
December.

4.1.7 Interest Rate Bond Futures and CTD

As we have seen, financial future contracts are contracts to either sell
or buy a certain underlying financial asset on a specified future date at
a fixed price or rate. Furthermore, they are exchange traded with daily
settlement.

We will here study the so-called bond futures. Usually the un-
derlyings are one (or more) specific government bonds. Usually the
underlying asset is an index calculated from the prices of one (or
more) specific government bonds. Since different futures on the differ-
ent markets have different names (EUR-Bund future, US treasury bond
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future, etc.) we will use bond future as a synonym for a future on a
medium- or a long-term bond.

In a bond futures contract, the underlying asset is a synthetic bond
with a defined term and defined coupon. The advantage of this syn-
thetic bond over an actual bond is that the futures price can be better
compared over time.

Example 4.1.7.1
The underlying asset of a EUR-Bund future is a synthetic bond with a 10-year term
and a 6% coupon. The T-bond (note) futures underlying specifications are 30 and
10 years respectively, both with a 6% coupon.

The buyer of a bond future contract is obliged to buy the underlying
bond at a fixed price on an agreed date. Because the prices of bonds
rise when interest rates fall, a purchased future contract can be used
to speculate on falling interest rates.

The seller of a bond future is obliged to deliver the underlying bond
at a fixed price on an agreed date. Because the prices of bonds fall
when interest rates rise, a sold future can be used to speculate on
rising interest rates or to secure existing short positions against rising
interest rates.

As with Money-Market futures, a tick is the minimum price move-
ment of a futures contract. In contrast to Money-Market futures where
a tick is typically one hundredth of 1%, long-term futures like T-bond
futures, sometimes move in 1/32 of 1% (i.e. 0,0003125 or 3.125 bps)
or 1/64 of 1% (i.e. 0,00015625 or 1.5265 bps). The tick size is typically
defined according to the quoting conventions of the underlying bond.
For example, EUR-Bunds are quoted in decimals on 1 bp, thus the tick
value of the Bund-future is 1 bp. A tick has always an exactly defined
value in relation to the contract; the tick value is the product of the
contract value times the bps of a tick. The tick value of a EUR-Bund
future and a 10-y T-note future respectively are

EUR-Bund future: 100000 × 0.0001 = EUR 10
10-year T-note future: 100000 × 0.00015625 = USD 15.625

Contrary to Money-Market futures, bond futures are delivered physic-
ally if they have not been closed out prior to delivery date. The delivery
of the futures contract must tackle the problem that the underlying
bond is a synthetic instrument. Therefore, the seller can deliver from a
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basket of bonds. The settlement price is determined by means of a con-
version factor (or price factor) that makes the price of the synthetic
bond comparable to the price of the deliverable bond.

Since the deliveries consist of a basket of underlying bonds, it is
important to calculate which of the deliverable bonds is the cheapest
to deliver. This is called Cheapest-To-Deliver (CTD). Bond futures are
quoted as clean prices, exchange traded and any gains or losses dur-
ing the lifetime of the contract are settled daily via each participant’s
variation margin account.

4.1.7.1 Spot Based Forwards

First, we study a traditional spot price based forward. Let us look at a
picture of the cash flow for a couple of transactions (see Fig. 4.14).

tm : Market date for the future/forward, that is, today.
tc : Date of a coupon, if any, before delivery date.
te : Delivery date for the future/forward contract.
tck : The time for the first coupon after the delivery date.
Cme : The coupon, if any that, occurs between tm and te, if no

coupon occurs Cme = 0.
Rkl : The market interest rate for the interval between the time

tk and tl.
�tkl : The time interval between tk and tl expressed in actual

days.
Am : Accrued interest for the bond at time tm.
Pm : Spot bond price expressed as the clean price at

delivery, tm.
Fme : Forward prices contracted at tm and valid on te.

When setting the price of the forward contract, we start by looking at
the cash flows. First, we have the underlying bond, where the value
consists of the clean spot price Pm and the accrued interest rate Am.
The sum Pm +Am is the price. We use the clean price and not the price

Fig. 4.14 A time view of a spot price based future.
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since bonds are quoted as clean. To get the forward value we multiply
with the inverse discount factor:

[Pm + Am] ·
(
1 +

�tme
360

Rme

)

Here we use the money-market discount factor since�tme is less than a
year. The sum of Pm and Am, is exactly the amount needed to purchase
a bond in the spot market and sell a forward position at price Fme in
the future.

Next, we have to consider the coupon, if any. The present value of
a coupon at time tc is

–
Cme(

1 + �tmc
360 Rmc

)

Since this coupon should be returned at tc the value is negative. At the
maturity this corresponds to

–
Cme(

1 + �tmc
360 Rmc

) ·
(
1 +

�tme
360

Rme

)

Finally, we have accrued interest rate at delivery, Ae. Therefore, the
total price of the forward must be

Fme = [Pm + Am] ·
(
1 +

�tme
360

Rme

)
– Cme ·

(
1 +

�tce
360

Rce

)
– Ae

or

Fme =

⎧⎨
⎩Pm + Am –

Cme(
1 + �tmc

360 Rmc

)
⎫⎬
⎭ ·
(
1 +

�tme
360

Rme

)
– Ae

In exchange for this we deliver the bond at maturity.
Above, we have used the fundamental connections between interest

rates

(
1 +

�tmc
360

Rmc

)(
1 +

�tce
360

Rce

)
=

(
1 +

�tme
360

Rme

)

The forward rates above are calculated from the known term structure.
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Example 4.1.7.2
Bond Forward

Future data:
Market date: 2016-01-03
Delivery date: 2016-03-18
Interest rate to delivery: 5.55%
Interest rate of coupon: 5.80%
Bond maturity: 2017-01-21

Bond coupon: 11.0%
Yield-To-Maturity 6.0%
Bond dirty price: 115.380 (Calculated, Pm + Am)
Days to next coupon: 18 (Calculated)
Days to delivery: 75 (Calculated)

The accrued interest at delivery date is:

Ae = 11 · 75 – 18
360

= 1.742.

Then

Fme =

[
Pm + Am – Cme

(
1 +

�tmc
360

Rmc

)–1
]

·
(
1 +

�tme
360

Rme

)
– Ae

=

[
115.380 – 11

(
1 +

18

360
0.0580

)–1
]

·
(
1 +

75

360
0.0555

)
– 1.742

= 103.877

103.877 would be the clean forward price.

4.1.7.2 Implied Repo Rate for Forwards

As a complement to this way of calculating forward price we also want
to calculate the “implied repo rate” for a forward contract. This means
that we already have the forward price and want to know the rate Rme
in an effort to deduce arbitrage opportunities. From above, we have

Fme + Ae –

⎧⎨
⎩Pm + Am –

Cme(
1 + �tmc

360 Rmc

)
⎫⎬
⎭ ·
(
1 +

�tme
360

Rme

)
= 0

or {
Pm + Am – Cme ·

(
1 +

�tmc
360

Rmc

)–1
}

· �tme
360

Rme

= Fme + Ae – Pm – Am + Cme ·
(
1 +

�tmc
360

Rmc

)–1
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so we get the implied repo rate as

Rme =
360

�tme
·
Fme + Ae – Pm – Am + Cme ·

(
1 + �tmc

360 Rmc

)–1

Pm + Am – Cme ·
(
1 + �tmc

360 Rmc

)–1

We can also do the following calculations

Fme – [Pm + Am] ·
(
1 +

�tme
360

Rme

)
+ Cme ·

(
1 +

�tce
360

Rce

)
+ Ae = 0

or

[Pm + Am] · �tme
360

Rme = Fme + Ae + Cme ·
(
1 +

�tce
360

Rce

)
– [Pm + Am]

and express the implied repo rate as

Rme =
360

�tme
·
Fme + Ae – Pm – Am + Cme ·

(
1 + �tce

360 Rce

)
Pm + Am

Observe that the two equations above are equivalent, and the choice
of which one to use is a question about how we easiest handle interest
rates.

Example 4.1.7.3
Future data:
Market date: 2016-01-03
Delivery date: 2016-03-18
Interest rate to delivery: 5.55%
Interest rate of coupon: 5.80%
Bond maturity: 2017-01-21

Bond coupon: 11. 0%
Bond dirty price: 115.380
Days to next coupon: 18
Days to delivery: 75
Forward price: 103.877 (calculated in previous example)

Rme =
360

75
·
103.877 + 1.742 – 115.380 + 11 ·

(
1 + 18

360 0.058
)–1

115.380 – 11 ·
(
1 + 18

360 0.058
)–1 = 5.5481
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4.1.7.3 Futures

For the forward case we have a known deliverable bond. In most fu-
tures we have a collection of deliverable bonds in which the seller
is free to pick anyone. Except for this collection we have the daily
mark-to-market that gives us a daily settlement amount that is to be
administrated for each trading day. This administrative task makes Fu-
tures exchange traded instruments. Except for these differences the
actual construction is very similar to that of forwards.

In Table 4.4 we are given the most common bond future contracts

Table 4.4 Some of the most common bond future contracts

Contract UST-Bond B1md UK Gilt Fr Notionel

Delivery
months

Mar (H), Jun (M),
Sep (U), Dec (Z)

Mar (H), Jun (M),
Sep (U), Dec (Z)

Mar (H), Jun (M),
Sep (U), Dec (Z)

Mar (H), Jun (M),
Sep (U), Dec (Z)

Quotation Percentage Percentage Percentage Percentage
Contract size $100000 e 100000 £ 100000 e 100000
Coupon 8% 6% 7% 3.50%
Tick size 1/32 = $31.25 0.01 = e10 0.01 = £10 0.01 = e10
Last trading-
day

7 business day
prior to the
delivery day

2 business day
prior to the
delivery day

2 business day
prior to the
delivery day

2 business day
prior to the
delivery day

Futures on Eurex

On Eurex they use the following contract standards (Table 4.5). They
are short-, medium- or long-term debt instruments issued by the Fed-
eral Republic of Germany, the Republic of Italy, the Republic of France
or the Swiss Confederation.

The Contract Values are EUR 100,000 or CHF 100,000.

Table 4.5 Standard future contracts on Eurex

Contract Product ID Remaining Coupon Currency
Term in Years Percent

Euro-Schatz futures FGBS 1.75 to 2.25 6 EUR
Euro-Bobi futures FGBM 4.5 to 5.5 6 EUR
Euro-Bund futures FGBL 8.5 to 10.5 6 EUR
Euro-Buxl futures FGBX 24.0 to 35.0 4 EUR
Short-Term Euro-BTP futures FBTS 2 to 3.25 6 EUR
Mid-Term Euro-BTP futures FBTM 4.5 to 6 6 EUR
Long-Term Euro-BTP futures FBTP 8.5 to 11 6 EUR
Mid-Term Euro-OAT futures FOAM 4.5 to 5.5 6 EUR
Euro-OAT futures FOAT 8.5 to 10.5 6 EUR
CONF futures CONF 8.0 to 13.0 6 CHF
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On settlement there is a delivery obligation arising out of a short
position that may only be fulfilled by the delivery of certain debt secur-
ities issued by the Federal Republic of Germany, the Republic of Italy,
the Republic of France or the Swiss Confederation with a remaining
term on the Delivery Day within the remaining term of the underlying.
Settlement of debt securities issued by the Republic of France in case
of physical delivery will be done via Clearstream Banking Luxemburg.

Debt securities issued by the Federal Republic of Germany must
have an original term of no longer than 11 years.

Debt securities issued by the Republic of Italy must have an original
term of no longer than 16 years (only for Long-Term Euro-BTP futures).

Debt securities issued by the Republic of France must have an
original term of no longer than 17 years.

In the case of callable bonds issued by the Swiss Confederation, the
first and the last call dates must be between eight and 13 years.

Debt securities must have a minimum issue amount of EUR 5 billion,
such issued by the Republic of Italy no later than 10 exchange days
prior to the Last Trading Day of the current maturity month, other-
wise, they shall not be deliverable until the delivery day of the current
maturity month.

Debt securities issued by the Swiss Confederation must have a
minimum issue amount of CHF 500 million.

The Price Quotation, the Minimum Price Change and The Price
Quotation in percent of the par value are shown in Table 4.6.

Contract Months

Up to 9 months: The three nearest quarterly months of the March,
June, September and December cycle.

Table 4.6 Quotation of future contracts

Minimum Price Change
Contract Percent Value

Euro-Schatz futures 0.005 EUR 5
Euro-Bobl futures 0.01 EUR 10
Euro-Bund futures 0.01 EUR 10
Euro-Buxl®futures 0.02 EUR 20
Short-Term Euro-BTP futures 0.01 EUR 10
Mid-Term Euro-BTP futures 0.01 EUR l0
Long-Term Euro-BTP futures 0.01 EUR 10
Mid-Term Euro-OAT futures 0.01 EUR 10
Euro-OAT futures 0.01 EUR 10
CONF futures 0.01 CHF 10
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Delivery Day

The tenth calendar day of the respective quarterly month, if this
day is an exchange day; otherwise, the exchange day immediately
succeeding that day.

Notification

Clearing members with open short positions must notify Eurex on the
Last Trading Day of the maturing futures which debt instrument they
will deliver. Such notification must be given by the end of the Post-
Trading Full Period.

Last Trading Day

Two exchange days prior to the Delivery Day of the relevant maturity
month. Close of trading in the maturing futures on the Last Trading
Day is at 12:30 CET.

Daily Settlement Price

The Daily Settlement Prices for the current maturity month of CONF
futures are determined during the closing auction of the respective
futures contract.

For all other fixed income futures, the Daily Settlement Price for
the current maturity month is derived from the volume-weighted av-
erage of the prices of all transactions during the minute before 17:15
CET (reference point), provided that more than five trades transacted
within this period.

For the remaining maturity months the Daily Settlement Price for
a contract is determined based on the average bid/ask spread of the
combination order book.

Final Settlement Price

The Final Settlement Price is established by Eurex on the Final Settle-
ment Day at 12:30 CET based on the volume-weighted average price
of all trades during the final minute of trading provided that more than
10 trades occurred during this minute; otherwise the volume-weighted
average price of the last 10 trades of the day, provided that these are
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not older than 30 minutes. If such a price cannot be determined, or
does not reasonably reflect the prevailing market conditions, Eurex
will establish the Final Settlement Price.

Example 4.1.7.4
Bond Future
We follow a case to get the feeling for the calculations. In this set-up we have sold
100 future contracts. We position us at expiration of the future.
Market date: 2016-03-13
Delivery date: 2016-03-18
Contract price: 97.454
Last fix: 97.465
Nominal amount: 1 000 000 SEK

Deliverable bond A
Bond expire date: 2024-10-25
Bond coupon: 6.500%
Days to coupon: 217 (Calculated)
Bond YTM : 6.833%
Clean price: 96.548 (Calculated)
Accrued interest: 2.492 (Calculated)

Deliverable bond B
Bond expire date: 2026-05-05
Bond coupon: 6.500%
Days to coupon: 48 (Calculated)
Bond YTM: 6.352%
Clean price: 96.307 (Calculated)
Accrued interest: 5.525 (Calculated)

Deliverable bond C
Bond expire date: 2027-04-20
Bond coupon: 9.000%
Days to coupon: 34 (Calculated)
Bond YTM: 6.386%
Clean price: 114.843 (Calculated)
Accrued interest: 8.075 (Calculated)

First of all the future should be marked-to-market as usual.

MM = (97.465 – 97.454) × 1 000 × 100 = 1100
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This amount should be exchanged before delivery procedure takes over. After this
point the future price for all positions is 97.465. Assume that we have to deliver a
bond among the deliverable and hand over without adjusting for accrued interest.
Therefore we want to buy a bond at the spot market and deliver. The actual profit
from receiving the futures fix and deliver the newly bought bond is

A : (97.465 – (96.548ă + 2.492ă)) · 1000 · 100 = –157500

B : (97.465 – (96.307 + 5.525)) · 1000 · 100 = –436700

C : (97.465 – (114.843ă + 8.075)) · 1000 · 100 = –2545300

⎫⎪⎬
⎪⎭

Therefore we would buy and deliver bond A. But, if I am a very fast customer I
could have bought that future at the fix price and since we have a net loss for all
the deliverable bonds, I have actually made an arbitrage. This should be impossible
in a developed market! In practical terms this means that the future price should
clearly converge to the dirty spot price for the cheapest deliverable bond. We also
see that since different bonds have their coupon at different times the accrued
interest is a problem. If we were to use the dirty price directly, this would be taken
care of, but since the spot market in most countries is denoted in clean price we
chose to explicitly include the accrued interest.

4.1.7.4 Introducing Price Factors

If we only had one deliverable bond then the buyer of the future would
be forced to buy this bond. This could lead to a situation with acute
shortage of supply and increasing prices. The market solution is to
permit delivery of several bonds.

Therefore we have to find a method to choose the bond to deliver,
that is, a factor that we can multiply with the futures fix price, to nar-
row the profit/loss from delivering different bonds. These factors are
calculated prior to the start of trading the future. If we could multiply
the fix with something that is near the bond price with a nominal
amount of one, we would be quite satisfied.

To calculate the CDT we therefore introduce a conversion factor, on
LIFFE2 also called price factor Pf . This price factor times the price of
the future is equal to the clean price of the bond on the delivery day.

Recall the clean price of a bond with one coupon, C per year with
yield to maturity y and face value 100

PV =
1

(1 + y)d/360
·
{

100

(1 + y)T
+

T∑
t=0

C

(1 + y)t

}

2 The London International Financial futures and Option Exchange.
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Here T is time to maturity in whole years and d is the number of days
until the next coupon. The price factor is then given by Pf = PV/100 –
accrued interest rate.

The formula of the price factor (used in Sweden) can be written as

Pfi =
1

(1 + rc)ni+mi/12

[
Ci

rc

(
(1 + rc)

ni+1 – 1
)
+ 1

]
– Ci

(
1 –

mi

12

)

where
rc = the coupon rate of the constructed bond (usually 6.00%).
Ci = the coupon rate of the deliverable bond.
ni = the number of whole years to maturity of the deliverable

bond measured from the next receivable coupon payment for
bond i.

mi = the number of whole months to the next receivable coupon
payment from the futures delivery date for bond i.

If Ci > rc ⇒ Pfi > 1 the bond is traded to a high price
Ci < rc ⇒ Pfi < 1 the bond is traded at par
Ci = rc ⇒ Pfi = 1 the bond is traded to a low price

As one can see, the price factors are just estimates of the clean price
for individual bonds with the approximation to round time to whole
years and month of expiry. Not being as accurate as possible the for-
mula would lead to a situation where all the deliverable bonds were
equally profitable to deliver from start. We would then have a situ-
ation where CTD could change very rapidly. Since this could inflict
negatively on the trading we use some approximations to widen the
distance between them.

The formula above might be slightly different in different markets,
like on CBoT, EUREX and for Japanese treasury bonds. One of the
bonds will be cheaper than the others since the delivery price is the
clean futures price time the price factor. Therefore, the contract will
be priced upon that bond. The “built in” imperfection in the formula
above is used to give a favour for one of the bonds. The reason for this
is that we do not want any changes of the CTD bond when there are
only small changes in the market rate.

On EUREX the conversion factor is calculated as

Cf =
1

(1 + rc)1+δe/act1

×
[
C

δi

act2
+
C

rc

(
(1 + rc) –

1

(1 + rc)n

)
+

1

(1 + rc)n

]
– C

(
δi

act2
–

δe

act1

)
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where
DD is the Delivery Date
NCD the Next Coupon after the Delivery date
NCD1y 1 year before the NCD
NCD2y 2 years before the NCD
LCD the Last Coupon Date before the delivery date. Start

interest period if the last coupon date is not available.

δe NCD1y – DD
δi NCD1y – LCD
act1 NCD – NCD1y if δe < 0, else NCD – NCD2y
act2 NCD – NCD1y if δi < 0, else NCD – NCD2y
n Integer number of years from the NCD until the maturity

date of the bond.

Using the price factors above and the individual bond data as the
ongoing example give us

PfA = 1.032337

PfB = 1.036880

PfC = 1.237580

With these price factors we are prepared to take a second look at
delivery. (Standard for these factors is to round them to six decimals.)
Let us be a little bit stricter about what we receive from the futures
contract.

(FFix
.Pfi + Ui)

.N .n

where
FFix: The futures fix price
Pfi: The individual price factor for each deliverable bond.
N: Nominal amount
Ui: Accrued interest for each deliverable bond.
n: Number of contracts
Pi: Clean price for each deliverable bond.

The actual profit we get from delivering a special bond is given by

(FFix
.Pfi + Ui – {Pi – Ui})

.N .n
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With this approach we get

A: (97.465·1.032337 + 2.492 – (96.548 + 2.492))·1000·100 = 406872
B: (97.465·1.036880 + 5.525 – (96.307 + 5.525))·1000·100 = 475250
C: (97.465·1.237680 + 8.075 – (114.843 + 8.075))·1000·100 = 578748

⎫⎬
⎭

We see that the differences between the deliverable bonds are much
less now with the price factors than without.

4.1.7.5 Cheapest to Deliver

Now when we know the basic construction of the futures we are
standing with all the deliverable bonds and wondering which one of
them one should buy at the same time as one is selling the future.
The reason for doing this investigation could be to decide whether
to deliver the bond that already is in our possession or do we benefit
from buying new ones and deliver those. The process of selecting the
optimal bond is called determining which one is “cheapest to deliver
(CTD)”.

One thing that we will not discuss in the following sections is the
fact that futures are marked-to-market on a daily basis. This means that
we cannot perform true arbitrages with bonds and futures due to these
daily cash flows. Because of this we cannot, without explanation, use
today’s futures price in equations describing future events. If however
the futures price and the forward price are equal, we can make po-
sitions that momentarily can be regarded as an “arbitrage”. With a
more strict formulation we have that the futures price equals the for-
ward price when we add the expected value of all the mark-to-markets
for the period. For simplicity we assume that the mark-to-market is
”approximately” equal to zero.

To calculate which of the deliverable bonds in the basket that is the
CDT bond, we can calculate the implied repo rate for each of them, or
simpler, the maximum net basis

CTD = maxi{P
·
futureP

i
f – P

i
bond}

On delivery, we calculate the delivery price as

P = Fix · Pf · N · n + U

where Fix is the fixing, N the face value, n number of contracts and U
the accrued interest.
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Example 4.1.7.5
Future data
Coupon: 6.0%
Market date: 2016-01-03
Delivery date: 2016-03-18
Future price: 98.00
Nominal amount: 1 000 000 SEK
Interest rate to delivery: 4.5%
Days to deliver: 75 (Calculated)

Deliverable bond A
Bond maturity: 2024-10-25
Bond coupon: 6.500%
Bond YTM: 6.750%
Days next coupon: 292 (Calculated)
Clean price: 98.343 (Calculated)
Market date accrued interest: 1.2278 (Calculated)
Delivery date accrued interest: 2.5819 (Calculated)
Price factor: 1.0329 (Calculated)
Forward price: 97.926 (Calculated)

Deliverable bond B
Bond maturity: 2026-05-05
Bond coupon: 6.500%
Bond YTM: 6.697%
Days next coupon: 123 (Calculated)
Clean price: 98.548 (Calculated)
Market date accrued interest: 4.2611 (Calculated)
Delivery date accrued interest: 5.6153 (Calculated)
Price factor: 1.0373 (Calculated)
Forward price: 98.1172 (Calculated)

Deliverable bond C
Bond maturity: 2025-04-20
Bond coupon: 9.000%
Bond YTM: 6.632%
Days next coupon: 109 (Calculated)
Clean price: 118.331 (Calculated)
Market date accrued interest: 6.3250 (Calculated)
Delivery date accrued interest: 8.200 (Calculated)
Price factor: 1.2399 (Calculated)
Forward price: 97.926 (Calculated)

Deliverable bond A: FfutPf – Fme: 3.30478
Deliverable bond B: FfutPf – Fme: 3.49555
Deliverable bond C: FfutPf – Fme: 3.88736

From this data we see that the bond C is CTD.
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One common way is to calculate the implied futures price (IFP) for
the deliverable bonds.

Definition 4.1.7.3. The Implied futures price for a bond is the price
that provides zero profit on the purchase, carry and delivery of a
specific bond.

IFP = Fme/Pf

Here one argues that the bond with the smallest IFP will be CTD, for
at that futures price, any other bond will, upon delivery, provide a
negative profit.

Use the same data as before and calculate IFP: s.

Deliverable bond A: IFPA: 94.80
Deliverable bond B: IFPB: 94.63
Deliverable bond C: IFPC: 94.86

This means that bond B should be CTD! Let us plot the individual profit
that these bonds produce against futures price, under the assumption
that forward prices are constant. (Fig. 4.15)

We see that bond C crosses the other two bonds in the plot inter-
val. This means that we have three intervals, which we must inspect
separately:

Fig. 4.15 Profit of the bonds in a CTD contract.
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Ffut ≤ 96.069 CTD = bond B
96.069 < Ffut ≤ 97.246 CTD = bond B
97.246 ≤ Ffut CTD = bond C

We get problems with the last approach if the different IFPs are located
in different intervals. If we are unlucky the calculated CTD could be
the wrong one.

4.1.7.6 Duration

The modified duration for an interest rate bond futures contract is
defined as the duration of the CTD bond divided by the conversion
factor.

4.1.8 Swaps

The swap market are huge and swaps are the most popular fixed-
income derivatives at this writing. The total notional principal amount
is, in US dollars, currently comfortably in 14 digits. The market really
began in 1981 although there were a small number of swap-like
structures arranged in the 1970s. Initially the most popular contracts
were currency swaps, but they were quickly overtaken by interest
rate swaps.

Many different market participants use swaps for several purposes.
One of the most common applications is the hedging of interest-rate
risk by financial institutions, corporations and large institutional in-
vestors. An often-cited motivation for using swaps is the theory of
comparative advantages counterparties often has different abilities for
borrowing in Capital markets. This could be due to differences in
credit rating or tax treatment, or for accounting reasons. Swaps can
serve, for instance, to change the fixed- coupon debt into floating
rate debt and vice-versa. Due to the liquidity of the swap market,
they can be used to hedge the interest rate risk of fixed-income
positions.

A swap is shortly explained as a contractual agreement between
two parties in which they agree to make periodic payments to each
other according to two different indices.
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A plain vanilla interest-rate swap specifies the notional amount
or face value of the swap, the payment frequency (quarterly, semi-
annually, etc.) the tenor, maturity, the coupon, that is the fixed rate,
and the floating rate. One party (Counterparty A) makes fixed rate
payments on the stipulated notional. The other party (Counterparty
B) makes floating rate payments to Counterparty A based on the same
notional. Most swaps are arranged so that their net value is zero at the
starting date.

For US dollar swaps, floating rates are typically the 3-month or 6-month
LIBOR rates prevailing over the period before the interest payment is
made. The interest rates are determined in advance or equivalently,
the payments are made in arrears. In practice, there are many vari-
ants of this basic structure. For instance, swaps can be such that the
notional is different for the two counterparties, or the notional(s)
amortized, or where the floating leg is LIBOR plus or minus a fixed
coupon, etc.

4.1.8.1 Swap Valuation

The present value of a plain vanilla swap can easily be computed using
standard methods for finding the discounted value of the components.

The swap requires from one party a series of payments based on
variable rates, which are determined at the agreed dates of each pay-
ment. At the time the swap is entered into, the actual payment rates
are known only in the future, but the market provides a yield curve
from bonds with various maturity dates stretching from the short term
to the long term. Each variable rate payment is calculated based on the
forward rate for each respective payment date.

Using these interest rates leads to a series of cash flows. Each cash
flow is discounted by the zero-coupon rate for the date of the payment;
this is also sourced from the yield curve data available from the market.
Zero-coupon rates are used because these rates are for bonds, which
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pay only one cash flow. The interest rate swap is therefore treated like
a series of zero-coupon bonds.

This calculation leads to a present value (PV). The fixed rate offered
in the swap is the rate, which values the fixed rate payments to
the same PV as the variable rate payments using today’s forward
rates.

Therefore, at the time the contract is entered into, there is no ad-
vantage to either party, and therefore the swap requires no upfront
payment. During the life of the swap, the same valuation technique
is used, but since, over time, the forward rates change, the PV of
the variable-rate part of the swap will deviate from the unchangeable
fixed-rate side of the swap.

The rates of interest in the fixed leg of a swap are quoted for various
maturities. These rates make up the swap curve.

Single Currency Swap Valuation

Denote by D(T) the discount factor (when using pure discount bonds
we denote discounting by p(t,T)) from the swap curve for a cash flow
at time T. Consider a fixed-floating standard interest rate swap with
reference dates 0 = T0,T1, . . . , Tn on the fixed leg and reference dates
0 = T0, T1, . . . ,Tm for the floating leg. Also let the end dates be the
same. Denote by �i and �i the length (day-count fraction) of the time
periods according to the specified fixed and floating leg day-count
convention. For the period [Ti–1, Ti] the Libor rate Li is set (fixed)
in the market at time Ti–1 and the amount �i · Li is paid at time Ti. The
forward rate Fi for the period [Ti–1, Ti] is defined as

D(Ti) = D(Ti–1)D(Ti–1,Ti) =
D(Ti–1)

1 +�i · Fi

giving

Here D(Ti–1,Ti) is a forward discount factor between Ti–1 and Ti reset-
ted at time Ti–1. One says, the forward rate Fi is projected or forecasted
from the discount curve. The value today of the floating cash flow
�i · Li for period [Ti–1, Ti] is from above equal to its discounted
forward rate

�i · Fi · D(Ti) = �i · D(Ti–1) – D(Ti)
�i · D(Ti) · D(Ti) = D(Ti–1) – D(Ti)
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Therefore, the value of the whole floating leg is simply

m∑
i=1

�i · Fi · D(Ti) =
m∑
i=1

�i · D(Ti–1) – D(Ti)
�iD(Ti)

· D(Ti) =
m∑
i=1

{D(Ti–1) – D(Ti)}

= D(T0) – D(Tm) = 1 – D(Tm) ≡ 1 – D(Tn)

Consequently, the value of a floating rate bond is always at par on reset
days:

m∑
i=1

�i · Fi · D(Ti) + D(Tm) = 1 – D(Tm) + D(Tm) = 1

The value of the fixed leg with rate C can then be solved for as

n∑
i=1

C · �i · D(Ti) = C ·
n∑
i=1

�i · D(Ti)

If Cn is the fair swap rate at maturity, Tn we get the following equation

n∑
i=1

Cn · �i · D(Ti) + D(Tn) = 1

This is the basis for the recursive bootstrapping relationship for the
discount factors

D(Tn) =

1 – Cn ·
n–1∑
i=1

�i · D(Ti)

1 +�n · Cn
, n = 1, . . .

From market quoted fair swap rates Cn.



4 Interest Rate Instruments 95

Example 4.1.8.1
In the examples below, we show a number of exotic swaps.

1. First we start with a plain vanilla swap. Suppose that we want to calculate the
3-year swap rate when the spot rates are as follows:

Maturity (years) Discount factor, D Spot rate r, (%)
0.5 0.9707 6.036
1.0 0.9443 5.809
1.5 0.9175 5.824
2.0 0.8913 5.839
2.5 0.8644 5.914
3.0 0.8378 5.989

The 3-year swap rate is given by:

swap rate = 2 × 1 – D6

D1 + D2 + . . . + D6
× 100 = 5.980%

2. Next, we study a so-called step-up swap with the following data:

Maturity: 2 years
Notional principal: 100
Swap rate: 4% the first year, C% the second
Floating rate leg: 100
Semi-annual payments
Spot rates as above

The value of the fixed rate leg:

(D1 + D2) × 2 + (D3 + D4) × C

2
+ D4 × 100

This gives

100 = (D1 + D2) × 2 + (D3 + D4) × C

2
+ D4 × 100

⇒
C

2
=
100 × (1 – D4) – (D1 + D2) × 2

D3 + D4
= 3.894

That is,
C = 7.778%

3. Next, we look at an amortizing swap with the following data:

Maturity: 2 years
Notional principal: 100 the 1st year, 50 in 2nd year
Swap rate: C%
Semi-annual payments
Spot rates as above

In our valuation, we use a principal of 50 and add another 50 after a year. The
floating rate leg is then a sum of two floating rate notes, each with notional
principal of 50.
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To calculate the floating leg, consider the relation between the discount factor
and the forward rate

D(ti) =
D(ti–1)

1 + τ · Fi
⇒ Fi =

D(ti–1)/D(ti) – 1

τ
=
D(ti–1) – D(ti)

τ · D(ti) , τ = ti – ti–1

giving

τ · Fi · D(ti) = D(ti–1) – D(ti) especially τ · F1 · D(t1) = 1 – D(t1)

Since the notional will change we write the value of the floating leg as

100 · F1

2
· D1 + 100 · F2

2
· D2 + 50 · F3

2
· D3 + 50 · F4

2
· D4

= 100 · (D0 – D1) + 100 · (D1 – D2) + 50 · (D2 – D3) + 50 · (D3 – D4)

= 100 – 100 · D2 + 50 · D2 – 50 · D4

= 100 – 50 · (D2 + D4)

were Di = D(ti). The value of the fixed rate leg (where we amortize 50 at t2) is

100 · (D1 + D2) · C
2
+ 50 · (D3 + D4) · C

2

Since both legs have to be equal we get the swap rate C from

C

2
=

100 – 50 · (D2 + D4)

100 · (D1 + D2) + 50 · (D3 + D4)
= 0.02915

so

C = 5.831%

4. Finally, we study a forward-starting swap with the following data:

Maturity: 2 years, starting in 1 year
Notional principal: 100
Semi-annual coupons (in 18,24,30 and 36 months)
Swap rate is C%
Spot rates as in vanilla swap above.

In our valuation we have a floating rate leg in one year. This will be a floating
rate note ⇒ Value = D2 × 100 = 94.435. The fixed rate leg is given by

(D3 + D4 + D5 + D6) × C

2
+ D6 × 100

Giving the market rate as

D2 × 100 = (D3 + D4 + D5 + D6) × C
2 + D6 × 100

⇒
C

2
=

(D2 – D6) × 100

D3 + D4 + D5 + D6
= 3.036

That is,

C = 6.072%

Such a swap is used as underlying for a swaption (an option on a swap).



4 Interest Rate Instruments 97

Example 4.1.8.2
Comparative advantage
Swaps were first created to exploit comparative advantage. This is when two com-
panies who want to borrow money face different quoted fixed and floating rates
so that by exchanging payments between themselves they benefit, at the same
time benefiting the intermediary who puts the deal together. Here is an example.

Two companies A and B want to borrow $50 Million, to be paid back in 2 years.
They are quoted the interest rates for borrowing at fixed and floating rates as

Borrowing rates for companies A and B

Fixed Floating

A 7% Six month LIBOR + 30 bp
B 8.20% Six-month LIBOR + 100 bps

Note that both must pay a premium over LIBOR to cover the risk of default, which
is perceived to be greater for company B. Ideally, company A wants to borrow at
floating and company B at fixed. If they each borrow directly then they pay the
following

A Six month LIBOR + 30 bp
B 8.2% (fixed)

The total interest they are paying is

six-month LIBOR + 30 bps + 8.2% = six-month LIBOR + 8.5%.

If only they could get together, they would only be paying:

six-month LIBOR + 100 bps + 7% = six-month LIBOR + 8%

That is a saving of 0.5%.

Let us suppose that A borrows fixed and B floating, even though that is not what
they want. Their total interest payments are six-month LIBOR plus 8%. Now let us
see what happens if we throw a swap into the pot.

A is currently paying 7% and B six-month LIBOR plus 1%. They enter into a swap
in which A pays LIBOR to B and B pays 6.95% to A. They have swapped interest
payments.

Looked at from A’s perspective they are paying 7% and LIBOR while receiving
6.95%, a net floating payment of LIBOR plus 5 bps. Not only is this floating, as they
originally wanted, but it is 25 bps better than if they had borrowed directly at the
floating rate. There’s still another 25 bps missing and, of course, B gets this. B pays
LIBOR plus 100 bps and also 6.95% to A while receiving LIBOR from A. This nets out
at 7.95%, which is fixed, as required and 25 bps less than the original deal.

To see that this is a general principle, let us do the same calculations with x
instead of 6.95.

A is currently paying 7% and B six-month LIBOR plus 1%. They enter into a
swap in which A pays LIBOR to B and B pays x% to A. They have swapped interest
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payments. Looked at from A’s perspective they are paying 7% and LIBOR while
receiving x%, a net floating payment of LIBOR plus 7 – x%. Now we want A to
benefit by 25 bps over the original deal, this is half of the 50 bps advantage. If they
decide to divide the advantage equally in this way, with 25 bps each, we can solve
for x from

LIBOR + 7 – x + 0.25 = LIBOR + 0.3,

That is,

x = 6.95%.

Not only does A now get floating, as originally wanted, but it is 25 bps better
than if they had borrowed directly at the floating rate. There’s still another 25 bps
missing and, of course, B gets this. B pays LIBOR plus 100 bps and also 6.95% to A
while receiving LIBOR from A. This nets out at 7.95%, which is fixed, as required
and 25 bps less than the original deal.

In practice, the two counterparties would deal through an intermediary who
would take a piece of the action.

Although comparative advantage was the original reason for the growth of the
swaps market, it is no longer the reason for the popularity of swaps. Swaps are
now very vanilla products existing in many maturities and more liquid than simple
bonds.

Parity Relation

When valuing caps, floors and swaps we can use the following parity
relation

swap = cap – floor.

This relationship can also be used for hedging.

4.1.8.2 Currency Swaps and FX Swaps

Cross currency swaps are powerful instruments which can transfer
assets or liabilities from one currency into another. It is an agreement
to swap a series of specified payments denominated in one currency
for a series of specified payments in a different currency. The market
charges for this a liquidity premium, the cross currency basis spread,
which should be taken into account by the valuation methodology.
The valuation methods for cross currency swaps are based upon using
two different discounting curves.
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Basically, such a swap has the following components: There are two
currencies, say USD ($) and Euro (e). The swap is initiated at time t0
and involves:

1. An exchange of a principal amount N$ against the principal Me.

2. A series of floating interest payments associated with the principals
N$ and Me, respectively. Payments are settled at settlement dates,

{t1, t2, . . . , tn}. One party will pay the floating payments L$tiN
$di and

receive floating payments of size L∈
ti N

∈di where di is the day-count
adjustment

di =
ti – ti–1

D

and D denotes the number of calendar days in the year according
to the current day-count convention. The two Libor rates (L) will
be determined at set dates

{t1, t2, . . . , tn–1}.

A Circus swap is a fixed-rate currency swap against floating US
dollar LIBOR payments (Fig. 4.16).

An FX-swap is made of a money market deposit and a money
market loan in different currencies written on the same “ticket”.

Fig. 4.16 A swap with fixed rate pound sterling against floating US dollar LIBOR.
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An Asset swap is an interest rate swap used to alter the cash flow
characteristics of an institution’s assets in order to provide a better
match with its liabilities.

An Equity swap is a swap in which the cash flows exchanged are
based on the total return on some stock market index and an interest
rate (either a fixed rate or floating rate).

When dealing with FX instruments, it is common to measure the
changes in the price by pips. One pip is the smallest price change
that a given exchange rate can make. Since most major currency pairs
are priced to four decimal places, the smallest change is that of the
last decimal point – for most pairs this is the equivalent of 1/100 of 1
per cent, or one bp. So a pip is actually an acronym for percentage in
point, sometimes also called a price interest point.

Example 4.1.8.3
If you buy the EUR/USD pair at 1.40 and sell it at 1.41 you have gained 100 pips.

Pips are sometimes also used when bootstrapping yield curves in cur-
rencies when you do not have liquid market data. Then you might use
the USD curve as a proxy and then add a spread calculated from FX
prices given in pips.

Cross Currency Basis Swaps

Cross currency swaps differ from single currency swaps by the fact
that the interests rate payments on the two legs are in different cur-
rencies. So on one-leg interest rate payments are in currency 1 on a
notional amount N1 and on the other leg interest rate payments are in
currency 2 calculated on a notional amount N2 in that currency.

At inception of the trade the notional principal amounts in the two
currencies are usually set to be fair given the spot foreign exchange
rate X, that is, N1 = X · N2, that is, the current spot foreign exchange
rate is used for the relationship of the notional amounts for all future
exchanges. Contrary to single currency swaps there is usually an ex-
change of principals at maturity. So a cross currency swap can be
seen as an exchange of payments from two bonds, one in currency
1 with principal N1, and the other in currency 2 with principal N2
(Fig. 4.17).
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Fig. 4.17 A fix-fix cross currency swap. In most cases there is also an exchange of
notionals when entering the swap.

Sometimes an opposite exchange of principals is made when enter-
ing the contract. If a leg is floating the variable reference rate refers to
the payment currency of that leg, otherwise this would be a so-called
quanto swap. From the possible types of cross currency swaps: fixed
versus fixed, fixed versus floating and floating versus floating, the
latter type is particularly important and it is called a basis swap. Com-
bining a basis swap with a single currency swap the other types can
be generated synthetically.

A basis swap is basically an exchange of two floating rate bonds.
Following the arguments of the previous section the price of a floater
is always par (at the beginning of each interest rate period disregarding
credit risks). For a cross currency basis swap this means that the two
legs should have a value of N1 and N2, respectively. Consequently,
if the two principal amounts are linked by today’s foreign exchange
rate X : N1 = X · N2, the basis swap is fair. This is theoretically true,
but in practice the market quotes basis swaps to be fair if there is a
certain spread, called cross currency basis spread, on top of the float-
ing rate of one leg of the basis swap. Theoretically this would imply
an arbitrage opportunity. However, cross currency swaps are power-
ful instruments to transfer assets or liabilities from one currency into
another one and the market is charging a liquidity premium of one cur-
rency over the other. The market usually quotes cross currency basis
spreads usually relative to some liquidity benchmark, for example USD
or EUR Libor.
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Fig. 4.18 Cross currency basis swap quotes against USD

Here is an example of cross currency basis swap quotes against the
liquidity benchmark USD (Fig. 4.18).

For example, a 10-years cross currency basis swap of three-months
USD Libor flat against JPY Libor is fair with a spread of -4.5 bps if USD
Libor is received and with a spread of -7.5 bps if USD Libor is paid.

Evaluating cross currency swaps requires discounting the cash flows
with the discount factors for the respective currency of the flow. But
clearly, a valuation of those instruments would show a profit or loss,
which is not existent. It is therefore necessary to incorporate the cross
currency basis spread into the valuation methodology to be consistent
with the market.

First of all, one has to agree on a liquidity reference currency (bench-
mark) which is usually chosen to be USD or EUR. swap cash flows in
the liquidity reference currency are valued exactly as described above
since there is no need for liquidity adjustments there. For all currencies
different from the liquidity benchmark the idea is to use two differ-
ent discount factor curves depending on whether to forecast or value
variable cash flows or to discount cash flows.

Denote by sm the market quoted fair cross currency basis spread
(usually the mid) for maturity Tm on top of the floating rate for the
given currency relative to the chosen liquidity reference. The fact that
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sm is the fair spread is equivalent to saying that a floating rate bond
with maturity Tm in the given currency which pays Libor plus spread
sm values to par.

We will here show how to value FX Forwards and FX swaps (for
tenors up until 2 years), using discount rates in non-USD. The value is
implied from the FX Spot price (versus USD), the USD discount curve
and FX points. Any legs in USD are discounted using the standard in-
terbank curve for USD. If both legs in a product are non-USD we can
use this methodology with synthetically replications by the two trades
via USD.

First, forward USD rates, rUSD are calculated based on the USD zero-
coupon yield curve. Then we calculate the cash-flow amount in the
non-USD currency as:

af =

(
xs +

p

sf

)
(1 + rUSD)

(dm–dv)/365

where
dm is days to maturity date
dv is days to value date
rUSD is the USD forward interest rate from today until maturity
p is swap points
sf is swap point factor, usually 10000 or 100
xs is the spot exchange rate, expressed as number of units in

foreign currency per 1 USD
xf is the forward exchange rate
af is the cash-flow amount
this gives the implied deposit rate in the non-USD currency as

rf =
365

(dm – dv)

[(
af
xs

)
– 1

]

For maturities of 2 years and above, Currency Basis Spreads are more
actively quoted in the market than FX points. Therefore an implied
swap rates are used for curve building purposes.
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Currency Basis Spreads are quoted in the market as a spread on the
non-USD currency when swapping 3M USD Libor to or from 3M non-
USD XIBOR.3 That gives the implied Currency Basis swap rate in the
non-USD currency for tenor T as

IRSTCIRS = IRST3M + CBST

For most currencies, the standard swap curve is based on 6M fixings,
because an adjustment for the spread between 3M and 6M fixings
has to be made. Such spreads are quoted as a spread on the 3M leg
when swapping 3M XIBOR to or from 6M XIBOR. In case only when
a swap against 6M fixings and tenor basis spreads are available for the
currency in question, the implied Currency Basis swap rate can be
calculated as;

IRSTCIRS = IRST6M – TBST3Mv6M + CBST

Valuation of Cross Currency Basis swaps

A popular methodology among practitioners is to use two discount
factor curves, one for projecting forward rates according and the other
for finally discounting all cash flows. This is unfortunately inconsistent
with the standard single currency swap valuation method. This will
result in arbitrage opportunities between single currency and cross
currency swaps.

Therefore we will make another approach, which is able to handle
both types of swaps consistently in one and the same framework. The
major drawback of this approach is that mark-to-market valuation of
single currency swaps can be slightly different from the results of
the current standard valuation method, in particular, for off market
positions.

We will use two discount factors curves

1. the first one, D(t), will be used to discount all fixed cash flows,

2. the second one, DF∗(t), will be applied to completely value floating
cash flows.

The two conditions on the two discount factor curves are

3 XIBOR is used here to denote a generic Interbank Offering Rate, examples are LIBOR,
EURIBOR or STIBOR.
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• the value of a coupon bond with coupon equal to the swap rate Cn
is identical to the value of a floating rate bond,

• a floating rate bond which pays Libor plus cross currency basis
spread sn values to par.

Combining these conditions a fixed coupon bond paying the coupon
Cn plus the cross currency basis spread sn should have a value of par

n∑
i=1

Cn · �i · D(Ti) +
m∑
j=1

sm · �j · D(Tj) + D(Tn) = 1

From this equation the curve D(t) can be extracted. If in particular, the
floating and fixed legs admit the same frequency (Ti = Ti), then we
have the following simple bootstrapping equation

D(Tn) =

1 –
n–1∑
i=1

(
Cn · �i + sn · �i

) · D(Ti)

1 +�n · Cn + sn · �i
, n = 1, . . .

Now, in order to determine the second curve of discount factors, we
define the value today of the floating interest rate (Libor) cash flow for
period [Ti–1,Ti] as given by

D∗(Ti–1) – D∗(Ti)

This also implies the desirable property that the value of a series of
subsequent floating rate cash flows over the time interval [T0,Tm] is
just D∗(T0)–D∗(Tm) and is thus independent of the payment frequency.
The second condition above now implies the following requirement

D∗(T0) – D∗(Tm) +
m∑
j=1

sm · �j · D(Tj) + D(Tm) = 1

Setting, D∗(T0) = 1, T0 = 0, this gives

D∗(Tm) = sm ·
m∑
j=1

�j · D(Tj) + D(Tm)

This defines the second curve of discount factors D∗(t).
In the current approach also cash flows in standard single currency

swaps are discounted differently compared to the standard approach.



106 J.R.M. Röman

This gets even more pronounced when it comes to mark-to-market
valuation of off market swaps. Consider a 10-year single currency swap
with 200 bps off market with a fixed rate C = 7.9%. In the standard
approach its net present value is 1499.15 bps compared to 1515.32
bps in the current approach. This difference is equivalent to a fixed
rate difference of 2.157 bps. Clearly, for a swap which is not too far
from being fair the differences are much smaller. Obviously this has
consequences, for example, on the fair values for unwinding an off
market swap position with a counterparty.

4.1.9 Overnight Index Swaps (OIS)

Overnight Index Swaps (OIS) are interest rate swaps based on a spe-
cific currency that exchanges fixed rate interest payments for floating
rate payments based on a notional swap principal at regular inter-
vals over the life of the swap contract. The floating rate is based on a
specified published index of the daily overnight rate for the OIS cur-
rency. For swaps based on the US dollar (USD), the referenced floating
rate is the daily effective federal funds rate.

Introduced in 1995, overnight index swaps are used to either hedge
or speculate on changes in the overnight interest rate. As a hedge,
overnight index swaps are used to manage interest rate risk and liquid-
ity. The terms of OISs range from 1 week to 10 years or more, with
spreads typically ranging from 1.5 to 5 bps. At maturity, the parties
determine the net payment by calculating the difference between the
accrued interest of the fixed rate and the geometric averaging of the
floating index rate on the notional swap principal. Because there is no
exchange of principal and only the net difference in interest rates is
paid at maturity, OISs have little credit risk exposure.

The LIBOR-OIS spread is the difference between the LIBOR and
the overnight index swap rate, and it is the measure of the credit risk in
the interbank lending market. Normally, when the central banks lower
their rates of interest, both the LIBOR and the OIS rates decline with
it. However, when banks are unsure of the creditworthiness of other
banks, they charge higher interest rates to compensate them for the
greater credit risk. The LIBOR-OIS spread is a better measure of credit
risk in the interbank deposit market than the LIBOR itself because the
LIBOR is influenced by
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1. the rates set by central banks;

2. the credit risk in lending to other banks.

Because the overnight index swap rate is based on the rates set by
central banks, subtracting it from the LIBOR shows the amount of the
interest rate that is being charged for the credit risk.

In Fig. 4.19 and Fig. 4.20 we illustrate the 1-month US dollar LIBOR
rate and the US dollar OIS rate and the spread between the rates
during the financial crises. The increase in the difference between
the two rates is evident starting at the beginning of the subprime
credit crisis in August, 2007, with a wider spread in September, Oc-
tober and November of 2008 indicating worsening conditions. As you
can see in the graph, prior to August, 2007, both the LIBOR and
the OIS rates were high because the Federal Reserve, which is the
central bank of the United States, raised their target rates. After the
beginning of the credit crisis, the Federal Reserve started lowering
targets, and the OIS rate has declined with it. The LIBOR, however,

Fig. 4.19 USD LIBOR 1 month (dashed line) and USD OIS (solid line)4.

4 Source, FRED, https://fred.stlouisfed.org/ Federal Reserve Economic Data – St. Louis Fed

https://fred.stlouisfed.org/
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Fig. 4.20 USD LIBOR 1 month (dashed line) and USD OIS (solid line) and the spread
in bps (dotted line). This is a zoomed in view from Fig. 4.19

has declined sporadically and not nearly as much as the OIS rate, be-
cause banks couldn’t be sure which banks were creditworthy; hence,
they charged higher interbank lending rates, which is what the LIBOR
measures.

4.1.10 Asset Swap and Asset Swap Spread

A plain vanilla asset swap transaction entails purchasing a fixed rate
asset and simultaneously entering into a swap to convert fixed interest
payments to floating. The incentive for the investor is to earn a credit
spread on a fixed rate security (for example a bond), while minimizing
interest rate or market risk. Asset swaps are closely connected to credit
derivatives.

Through asset swaps, investors can purchase and isolate credit risk
in a wide variety of securities, including domestic and foreign cor-
porate obligations, convertible bonds, and other financial assets. Asset
swaps also have some disadvantages:
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• Many investors cannot enter into derivative transactions due to
regulations.

• Unlike a credit default swap, the asset swap is not coupled with
the credit performance of the underlying bond in the event of de-
fault. This means that if the bond defaults, the investor remains
subject to the swap and must fulfil the obligations to pay the rest
of the payments to the counterpart. However, the asset swap can
be terminated at the current market value.

• The counterpart has a credit exposure to the investor.

An asset swap enables the investor to minimise market risk while still
maintaining exposure to credit risk. It is a method to convert a risky
bond to a synthetic FRN. The market for synthetic securities is largely
driven by the presence of arbitrage. The result of creating a synthetic
structure is a higher yield (LIBOR + spread) than the existing market
security.

Some investors refer to asset swaps as being a “single swap”, while
other asset swap dealers consider asset swaps to be a package con-
sisting of the underlying bond and the swap. Some dealers trade asset
swaps by using their currently held bonds as references while others
buy the whole package. Some investors book the packages in different
trading books and some use the same.

Example 4.1.10.1
Assume an investor owns (or acquires) a bond that pays an annual coupon of 8%.
(The bond is often quoted in terms of asset swap spread bps.) The investor does
not want to (or cannot) sell the security and wants the market risk to be as low
as possible. The investor therefore enters into an asset swap transaction with a
counterpart.
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Example 4.1.10.2

The FX effect (if any) occurs if the bond is denominated in a currency different
from the swap. In that case we have a currency asset swap. The fixed coupons of
the bond are passed through to the bank counterpart and the bank pay floating
coupons, which, for example, could be LIBOR plus spread. The spread is referred to
as the asset swap spread.

4.1.10.1 Asset Swap Spread

The idea behind asset swaps is, as we have seen, to convert bonds into
synthetic FRN’s where we want to a structure that only has credit risk
and no interest rate risk. Normally, a payment, an up-front premium
swap is made in order to bring the structure to par (the initial invest-
ment is 100). The asset swap spread, S, is the spread on the floating
leg of the swap that gives this structure a PV of 0 at inception.

Given a bond price P, we can calculate the corresponding assets
swap spread. If the bond has a market price, for example 95, we have
to pay an initial premium of five (the leftmost arrow downwards in the
Fig. 4.21) to make the FRN price equal to 100.
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Fig. 4.21 Illustration of the asset swap spread.

If we identify the cash flows (see Fig. 4.21) on the receiving side we
see that the floating cash flows plus the redemption amount is simply
a risk free FRN pricing to par. The present value (PV ) of the asset swap
spread payments (the small upward arrows) is

PV = S ·
∑
i

pidi

where pi is the length of period i and di the discount factors. In the pay
side we have (all cash flows except the initial payment) the coupons
from the bond plus the redemption amount. The initial swap premium
payment is 100.0 – the market price of the bond.
We then have the following values:

• Floating cash flows + redemption: 100.0

• Asset swap spread: S �pidi
• Theoretical price of the bond: Pbond

• Initial premium: 100 – Pswap

Totally this should sum up to zero, that is,

100 + S ·
∑
i

pidi – Pbond – (100.0 – Pswap) = 0

Giving the spread as

S =
Pbond – Pswap∑

i
pi · di

We can also use the formula above to price a bond with a given asset
swap spread.
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4.1.11 Swaptions

As their name indicates, swaptions are options to enter into swaps. In
a payer swaption, the investor has the option to enter into a swap
with given date, paying the fixed rate (strike) and receiving floating. A
receiver swaption gives the right to enter into a swap receiving fixed
and paying floating. swaptions can be both European and American.
In the latter case, the option can be exercised usually on cash-flow
dates, rather than “continuously” like American stock options. Amer-
ican swaptions that can be exercised only at reset dates are often called
“mid-Atlantic” or “Bermudan” because they are somewhere between
American and European. The parameters that define a swaption are
therefore

• Notional

• Maturity of the option

• Payer or receiver

• Type: American or European

• Maturity of the swap

• Cash-flow dates of the swap

• Floating rate.

For instance, a European in-5-for-l0 LIBOR payer swaption with strike
6.50% is an option to enter into a 10-year swap paying a fixed rate of
6.50% 5 years from now.

4.1.12 Credit Default Swaps

Credit derivatives include a range of instruments designed to trans-
fer credit risk without requiring the sale or purchase of bonds
and/or loans. They were originally designed by JP Morgan in 1994
so that banks could manage credit risk in their loan portfolios while
preserving important customer relationships.

In the group of instrument known as credit derivatives the most
commonly traded are:

• Credit Default swaps

• Credit Default Indices

• Total Return swaps
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• Credit Default swaptions

• Credit Spread Options (Eurobond Options).

A credit default swap (CDS) is a financial swap where the seller of
the CDS will compensate the buyer in the event of a default or other
credit event. The buyer of the CDS makes a series of payments, the
CDS “fee” or “spread”, to the seller and, in exchange, receives a payoff
on defaults.

The “spread” of a CDS is the annual amount the protection buyer
must pay the protection seller over the length of the contract, ex-
pressed as a percentage of the notional amount. For example, if the
CDS spread of Risky Corporation is 50 bps, or 0.5% (1 bp = 0.01%),
then an investor buying $10 million worth of protection from AAA-
Bank must pay the bank $50,000. Payments are usually made on a
quarterly basis, in arrears. These payments continue until either the
CDS contract expires or a credit event occurs.

A CDS on one single Risky Corporation is sometimes called Single
Name CDS. Other CDS contracts are constructed on a market index,
such as the North American CDX index or the European iTraxx index.
Such CDS are usually called a Credit Default Index (CDI).

Many investors buy a CDS protect themselves against a default if
they own an Corporate bond. But, anyone can purchase a CDS, even
buyers who do not hold the bond or a loan in the company (these
are called “naked” CDSs). If there are more CDS contracts outstanding
than bonds in existence, a protocol exists to hold a credit event auc-
tion where the payment received will usually be significantly less than
the face value of the loan.

The evolution of credit derivatives was prompted by the increased
demand for asset-backed deals backed by credit instruments. The
credit derivatives market had been growing rapidly since the early
1990s. By the end of 2007, the outstanding CDS amount was $62.2
trillion, but this increase stopped during the financial crisis and in early
2012 the amount had fallen to $25.5 trillion.

The evolution of credit derivatives allows domestic banks to provide
the following benefits to their clients:

• Customized exposure to credit risk.

• Enable users to take short positions in credits previously not
possible in the underlying securities.
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• Provide institutional investors access to the interbank market,
generally on a leveraged basis.

• Increase diversification in concentrated credit portfolios.

• Extract and hedge specific sections of credit risk.

In essence a default swap is a bilateral OTC agreement, which transfers
a defined credit risk from one party to another. Contracts are typ-
ically standardized as documented by the International swap and
Derivatives Association (ISDA).

4.1.12.1 Cash flows

Under a typical CDS the buyer of protection pays to the seller a regular
premium (usually quarterly), which is specified at the beginning of the
transaction. If no credit event, such as default, occurs during the life
of the swap, these premium payments are the only cash flows.

Just like in many other swaps there is no exchange of the underlying
principal. Following a credit event the protection seller makes a pay-
ment to the protection buyer. The protection buyer stops paying the
regular premium following the credit event.

The cash-flow representation of a CDS are sown in Fig. 4.22.
The first leg is the credit default leg. The cash flow will only take place
in the case of default of the credit reference. The value of this cash
flow will be calculated using the yield curve for the credit reference,
and the yield curve for the currency. In the case of default, the pay-
ment will be settled on a settlement date not known in advance. This

Fig. 4.22 Cash flows for a CDS.
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settlement date does not have anything to do with the end date of the
contract as is depicted in the figure.

The second leg is a normal Fixed Leg. The valuation of this leg is
done using the yield curve for the credit reference. This incorporates
the fact that these fixed payments will only be paid if no credit default
has taken place.

Just because a credit event has occurred it does not necessarily
mean that the claim on the Reference Entity will be worthless. Credit
default contracts are structured to replicate the experience of a cash
market holder of an obligation of the Reference Entity. The recovery
values (or the market value of debt following default) are typically at a
deep discount to par, for example 10 cents on the dollar.

4.1.12.2 Settlement of a CDS Contract

As described in an earlier section, if a credit event occurs then CDS
contracts can either be physically settled or cash settled.

• Physical settlement: The protection seller pays the buyer par value,
and in return takes delivery of a debt obligation of the reference
entity.

• Cash settlement: The protection seller pays the buyer the difference
between par value and the market price of the debt obligation of the
reference entity.

The development and growth of the CDS market has meant that on
many companies there now is a much larger outstanding sum of CDS
contracts than the outstanding notional value of its debt obligations.
This is due to speculations. For example, at the time of bankruptcy
on September 14, 2008, Lehman Brothers had approximately $155 bil-
lion of outstanding debt but around $400 billion notional value of CDS
contracts. Clearly not all of these contracts could be physically settled,
since there was not enough outstanding Lehman Brothers debt to fulfil
all of the contracts, demonstrating the necessity for cash settled CDS
trades.
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4.1.12.3 Auctions

When a credit event occurs for a major company on which a lot of CDS
contracts are written, an auction (also known as a credit-fixing event)
may be held to facilitate the settlement of a large number of contracts
at once, at a fixed cash settlement price.

There are two consecutive parts to the auction process. The first
stage involves requests for physical settlement and the dealer market
process sets the inside market midpoint (IMM). Dealers place orders
for the debt of the company that has undergone a credit event. The
range of prices received is used to calculate the IMM. The IMM is
published for viewing and then used in the second stage of the auction.

After the IMM is published, participants can decide if they would
like to submit limit orders for the auction. Limit orders submitted are
then matched to open interest orders.

The Lehman Brothers Auction

The Lehman Brothers failure in September 2008 provided a true test of
the procedures and systems developed to settle credit derivatives. The
auction, which occurred on October 10, 2008, set a price of 8.625
cents on the dollar for Lehman Brothers debt. It was estimated that
between $6 billion and $8 billion changed hands during the cash set-
tlement of the CDS auction. Recoveries for Fannie Mae and Freddie
Mac were much higher 91.51 and 94.00, respectively.

The price of 8.625 means that the sellers of protection on Lehman
CDS will have to pay 91.375 cents on the dollar to buyers of protection
to settle and terminate the contracts via the Lehman Protocol auc-
tion process. In other words, if you had held Lehman Brothers bonds
and had bought protection via a CDS contract, you would have re-
ceived 91.375 cents on the dollar. This would offset your losses on
the cash bonds you held. You would have expected to receive par, or
100, when they matured, but would have only received their recov-
ery value after the bankruptcy process concluded. Instead, since you
bought protection with a CDS contract, you receive 91.375.

4.1.12.4 Risk

When entering into a CDS, both the buyer and the seller of credit
protection takes a counterparty risk
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• The buyer takes the risk that the seller may default. If the seller
of the CDS and the Risky Corporation default simultaneously (a
“double default”), the buyer loses the protection against default by
the reference entity. If the seller defaults but not the Risky Corpora-
tion, the buyer might need to replace the defaulted CDS at a higher
cost.

• The seller takes the risk that the buyer may default so that the
seller don’t get the expected revenue stream. More important, a
seller normally limits its risk by buying offsetting protection from
another party – that is, it hedges its exposure. If the original
buyer drops out, the seller squares its position by either unwind-
ing the hedge transaction or by selling a new CDS to a third party.
Depending on market conditions, that may be at a lower price
than the original CDS and may therefore involve a loss to the
seller.

• As with other kinds of over-the-counter derivative, CDS might in-
volve liquidity risk. If one or both parties to a CDS contract must
post collateral (which is common), there can be margin calls requir-
ing the posting of additional collateral. Many CDS contracts even
require payment of an upfront fee composed of “reset to par” and
an “initial coupon.”.

• Another kind of risk for the seller of CDS is the default risk. A
CDS seller could be collecting monthly premiums with little ex-
pectation that the reference entity may default. A default creates
a sudden obligation to pay millions, if not billions, of dollars to pro-
tection buyers. This risk is not present in other over-the-counter
derivatives

4.1.12.5 Pricing and valuation

There are two competing theories for the pricing of CDS. The first,
is a probability model, which takes the present value of a series of
cashflows weighted by their probability of non-default. This method
suggests that CDS should trade at a considerably lower spread than
corporate bonds.
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The second model, proposed by Darrell Duffie, but also by John
Hull and Alan White, uses a no-arbitrage approach.

The CDS consists of two legs, a Premium leg and a protection leg.
They are calculated as

PV(premium_leg) = –
n∑
i=1

Di (1 – x)
i s

10000
· Ti

and

PV(protection_leg) = N ·
n∑
i=1

Di–1 + Di

2
(1 – x)i–1 · x · (1 – R)

Here R is the recovery rate (= 0.40 as market praxis), x the default
probability, N the notional amount and Di the discount factors. The
spread s is given in basis points. If a trade is made at a certain price,
given at the percentage of the notional, the default probability can be
calculated by solving

PV(premium_leg) + PV(protection_leg) + (100 – price) · N/100 = 0

With a known default probability the spread might be calculated as
the par value

PV(premium_leg) + PV(protection_leg) = 0

The Probability Model

In the probability model, a CDS is priced using a model that takes four
inputs:

• the issue premium,

• the recovery rate (percentage of notional repaid in event of default),

• a credit curve for the reference entity and

• the XIBOR interest rate curve.

If default events never occurred the price of a CDS would simply be
the sum of the discounted premium payments. So the CDS pricing
models have to take into account the possibility of a default at some
time between the effective date and the maturity date of the contract.
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We can imagine the case of a 1-year CDS with effective date t0 with
four quarterly premium payments occurring at times t1, t2, t3, and t4.
If the nominal of the CDS is N and the issue premium is c, then the size
of the quarterly premium payments is Nc/4. If we assume for simplicity
that defaults can only occur on one of the payment dates then there
are five ways the contract could end.

• either there is no default, so the four premium payments are made
and the contract survives until maturity, or

• a default occurs on the first, second, third or fourth payment date.

To price the CDS we now need to assign probabilities to the five pos-
sible outcomes and calculate the present value of each outcome. The
present value of the CDS is then simply the present value of the five
payoffs multiplied by their probability of occurring.

This is illustrated in the tree diagram Fig. 4.23, where at each pay-
ment date, either the contract has a default event, with a payment of
N(1 – R) where R is the recovery rate, or it survives without a default,
in which case a premium payment of is made. At either side of the
diagram are the cashflows up to that point in time.

The probability of surviving over the interval ti–1 to ti without a
default payment is pi and the probability of a default being triggered is
(1 – pi). The calculation of present value, given discount factor of D1
to D4 is shown in Table 4.7.

The probabilities above can be calculated using the credit spread
curve. The probability of no default occurring over a time period from
t to t+�t decays exponentially with a time-constant determined by the

Fig. 4.23 Cash flows and default probabilities for a CDS.
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Table 4.7 Payments and default probabilities for a CDS

Defaul Time Premium Paymen PV Default Payment PV Probability

t1 0 D1(1 – R)N 1 – p1

t2 –D1
Nc

4
D2(1 – R)N P1(1 – p2)

t3 –(D1+D2)
Nc

4
D3(1 – R)N p1p2(1 – p3)

t4 –(D1+D2+D3)
Nc

4
D4(1 – R)N p1p2p3(1 – p4)

- –(D1+D2 + D3 + D4)
Nc

4
0 p1p2p3p4

credit spread, or mathematically

p(t) = exp

{
–
s(t) · �t

1 – R

}

where s(t) is the credit spread zero curve at time t. The riskier the ref-
erence entity the greater the spread and the more rapidly the survival
probability decays with time.

To get the total present value of the CDS we multiply the probability
of each outcome by its present value to give

PV = D1 (1 – p1)N (1 – R)

+ p1 (1 – p2)

[
D2N (1 – R) – D1

Nc

4

]

+ p1p2 (1 – p3)

[
D3N (1 – R) – (D1 + D2)

Nc

4

]

+ p1p2p3 (1 – p4)

[
D4N (1 – R) – (D1 + D2 + D3)

Nc

4

]

– p1p2p3p4 (D1 + D2 + D3 + D4)
Nc

4

The No-Arbitrage Model

In the no-arbitrage model proposed by both Duffie and Hull-White,
it is assumed that there is no risk free arbitrage. Duffie uses the LIBOR
as the risk free rate, whereas Hull and White use US Treasuries as the
risk free rate. Both analyses make simplifying assumptions (such as
the assumption that there is zero cost of unwinding the fixed leg of
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the swap on default), which may invalidate the no-arbitrage assump-
tion. However the Duffie approach is frequently used by the market to
determine theoretical prices.

Under the Duffie construct, the price of a CDS can also be derived
by calculating the asset swap spread of a bond. If a bond has a spread of
100, and the swap spread is 70 bps, then a CDS contract should trade at
30. However, there are sometimes technical reasons why this will not
be the case, and this may or may not present an arbitrage opportunity
for the canny investor. The difference between the theoretical model
and the actual price of a CDS is known as the basis.

In terms of cash-flow profile, a CDS is most readily comparable with
a par floating rate note funded at LIBOR or an asset swapped fixed-rate
bond financed in the repo market.

Though default protection should logically trade at a spread relative
to a risk-free asset, in practice it trades at a level that is benchmarked to
the asset swap market. Most banks look at their funding costs relative
to LIBOR and calculate the net spread they can earn on an asset relative
to their funding costs. LIBOR represents the rate at which AA-rated
banks fund each other in the interbank market for a period of three to
six months. Although this is a useful pricing benchmark it is not a risk
free rate.

Intuitively, the price of a CDS will reflect several factors. The key
inputs would include the following:

• probability of default of the reference entity and protection seller

• correlation between the reference entity and protection seller

• joint probability of default of the reference entity and protection
seller

• maturity of the swap and

• expected recovery value of the reference asset.

Though several sophisticated pricing models exist in the market, de-
fault swaps are primarily valued relative to asset swap levels. This
assumes that an investor would be satisfied with the same spread on a
CDS as the spread earned by investing the cash in the asset.

The Asset Swap Approach

Default swap pricing can be based on arbitrage relationships between
the derivative and cash instruments. Rather than using complicated
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pricing models to estimate default probabilities, we can use a simpler
pricing mechanism which assumes that the expected value of credit
risk is already Captured by the cash market credit spreads.

A CDS is equivalent to a fully funded purchase of a bond with an
interest rate hedge.

CDS is an unfunded transaction requiring no initial cash outlay. As a
result, the relative value of a CDS is compared to an asset swap rather
than a bond’s underlying spread over treasuries. An unfunded position
in the bond would have to be financed in the repo market.

In a simplified model, the default swap should trade at the same level
as an asset swap on the same bond. The asset swap provides a context
for relative value because reference assets have transparent prices.

CDS exposure on the LIBOR market can be replicated in the
following ways:

• Purchase a cash bond with a spread of T + SC for par.

• Pay fixed on an interest rate swap (T + SS) with the maturity of the
cash bond and receive Libor (L).

• Finance the bond purchase in the repo market. The repo rate is
quoted at a spread to Libor (L – x).

• Pledge bond as collateral and be charged a haircut by the repo
counterparty.

The interest rate swap component eliminates the duration and convex-
ity exposure of the cash bond.

Without this hedge, the trade would be equivalent to a leveraged
long position in the fixed rate corporate asset (T + SC – (L – x)). Since
a CDS is an unfunded transaction, the bond purchase needs to be fully
financed. This financing is achieved with the bond repo. In a repo,
collateral is traded for cash. The collateral “seller” borrows cash and
lends collateral (a repo)

The collateral “buyer” borrows the collateral and lends cash (a re-
verse repo). The repo bid/offer refers to the rate at which the collateral
can be bought. The bid is higher than the offer since it is the cost of
buying cash and selling collateral.
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Two important components of a repo trade are:

• Haircut: This is defined as the difference between the securities
purchased and the money borrowed. The lender of cash charges
a haircut for the loan in order to compensate for market risk of
collateral as well as counterparty risk.

• Repo rate: This is the financing cost for the collateral. It varies ac-
cording to the demand to borrow (or lend) the security. This rate
has been denoted as L – x, since several liquid credits have repo
rates that are usually, but not always, less than Libor.

The haircut represents the Capital in the trade. As a result, institu-
tions with the cheapest cost of Capital will be able to assume this
credit exposure for the lowest net cost. If we assume a haircut of 0 for
simplicity, then Table 4.8 shows that the net cash flow is

(SC – SS) + x

If the repo rate for the bond was LIBOR flat (x = 0) the exposure would
simply be the asset’s swap spread (SC – SS).

This cash flow is similar to that received by a protection seller on a
CDS, that is, a simple annuity stream expressed in basis points for the
life of the trade.

If the bond defaulted, the repo would terminate and the investor
would lose the difference between the purchase price and recovery
price of the bond. In efficient markets, arbitrage relationships should
drive default swap levels towards the asset swap level. Any mispricing
between the markets would be arbitraged away by market makers. For
example, if the default premium is greater that the asset swap level,
protection sellers would enter the market and drive the default swap
premium down towards the asset swap level.

Table 4.8 Cash flows in the asset swap approach

Investor Trade Receive Pay

Buy Cash bond T + Sc 100
Swap Hedge L T + SS

Repo 100 L–X

Total Cash Flows T + SC + L + 100 100 + T + S–XS
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4.1.13 Hazard rate models

Hazard rate model has become increasingly important when it comes
to the pricing of CDS. The primary reason is the enhanced possibility
to model the recovery rate associated with the reference entity and the
probability of defaults in an explicit way. The financial mathematics
behind the hazard rate models will be described here.

The following assumptions are necessary for this model to be
applied:

• No counterparty default risk

• No dependence between interest rates, default probabilities and
recovery rates.

With a hazard rate model, it is possible to strip out the recovery
rate and trade it separately. It is also possible to price more exotic
CDS, such as digital CDS, where a hazard rate model is superior to a
replication-based model.

In the event of default, it is important to understand the value of the
settlement amount. That is, the amount the reference entity owner
will receive at default. This amount is calculated by multiplying recov-
ery rate times the claim value. When the recovery rates are non-zero,
one must make an assumption about the claim value bondholders will
claim in the event of default.

The recovery rate is the percentage rate of the outstanding credit
that will be recovered in the event of default. The claim is defined as
the outstanding credit.

Normally in the market, the claim is always the same as the face
value of the reference obligation. Using this definition, the claim will
remain constant over time. It is important that the recovery rate and
the claim value uses the same underlying assumption. That is, the re-
covery rate should be perceived as the percentage rate of the claim
value and therefore, as the percentage rate of the face value.

A Basket Credit Default Swap is a derived from a credit default
swap. The difference between these instrument types is the underly-
ing instrument. Instead of a bond as the underlying instrument as in
the case with CDS, the basket credit default swap has a basket of bonds
as the underlying.
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4.1.13.1 Hazard Rate and Credit Spreads

Let τ denote the uncertain time of default of a firm having issued debt:
this can be modelled as a random variable, for which we are interested
in finding its probability distribution. The main variable in reduced-
form models is the risk-neutral rate of default per unit time, also called
the hazard rate. This is defined as the probability per unit time of
a default occurring, given the knowledge that the firm has not yet
defaulted. If τ > t, then the probability that a default occurs during
the time interval [t, t +Δt] is given by

λ (t)�t + o(�t)

where o(�t) denotes a term negligible with respect to Δt. Typically, if
time is measured in annual units, λ is a small number: default rates λ(t)
are between 0.1% and, say, 3%.
The probability of survival, that is, the absence of default between t
and t +�t, is therefore

1 – [λ (t)�t + o(�t)]

Assume now that, conditionally on no default before t, the event of
default during [t, t +Δt] is independent of the past. Dividing [0, t] into
n periods of length�t, we obtain the probability of no default between
0 and t as follows

n
�
k=1

(1 – λ(tk)�t) , with tk = k�t

Taking logarithms and using the fact that log(1+ x) = x+o(x) for x close
to zero, we obtain

log
n
�
k=1

(1 – λ(tk)�t) =
n∑

k=1

log (1 – λ(tk)�t) = –
n∑

k=1

λ(tk)�t + o(�t) –→

–

t∫
0

λ(s)ds as �t → 0
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So, as Δt → 0, the expression for the probability of survival up to t
becomes

n
�
k=1

(1 – λ(tk)�t) → P(τ > t) = exp

⎡
⎣–

t∫
0

λ(s)ds

⎤
⎦

⇒

P(τ > T |τ > t) = exp

⎡
⎣–

T∫
t

λ(s)ds

⎤
⎦

Let us now introduce the benchmark discount rate r(t) relative to
which credit spreads will be computed: typically this will be Libor
or the risk-free Treasury rate. The value of a default-free zero-coupon
bond is given by

B(t,T) = exp

⎡
⎣–

T∫
t

r(s)ds

⎤
⎦

Denote by D(t,T) the value at time t of a corporate bond with nominal
$1 and maturity T. Denoting by R the recovery rate at default, the
corporate bond will pay $1 at maturity (T) in the absence of default
between 0 and T, and 0 otherwise (adjusted for R). The value of this
bond is given by the discounted risk-neutral expectation of its terminal
payoff

D(t,T) = exp

⎡
⎣–

T∫
t

r(s)ds

⎤
⎦E

[
1 · I{τ>t} + R · I{τ�T}|τ > t

]

= exp

⎡
⎣–

T∫
t

r(s)ds

⎤
⎦E

[
I{τ>t} + R

(
1 – I{τ>T}

)
|τ > t

]

= exp

⎡
⎣–

T∫
t

r(s)ds

⎤
⎦[(1 – R)E [I{τ>t}|τ > t

]
+ R
]

= (1 – R) · exp
⎡
⎣–

T∫
t

(r(s) + λ(s)) ds

⎤
⎦ + R · exp

⎡
⎣–

T∫
t

r(s)ds

⎤
⎦
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Comparing this expression with the value of a default-free bond, we
observe that the principal effect of default risk is to modify the dis-
count factor by adding a spread to the short rate: this spread is none
other than the hazard rate λ(t). This is one of the principal results of
reduced-form models. The hazard rate can be identified from the term
structure of credit spreads, a quantity that is observable in the mar-
ket. Please note, however, that the above relation requires knowledge
of the recovery rate, which is typically quite uncertain. In the case of
zero recovery

D(t, T) = exp

⎡
⎣–

T∫
t

(r(s) + λ(s)) ds

⎤
⎦ = exp

⎡
⎣–

T∫
t

r(s)ds + (T – t)s(t,T)

⎤
⎦

so the term structure s(t,T) of credit spreads is simply given by

s(t,T) =
1

T – t
exp

⎡
⎣–

T∫
t

λ(s)ds

⎤
⎦

The hazard rate λ(t) can thus be chosen to reproduce an arbitrary term
structure of credit spreads. This is an important advantage of reduced-
form models when compared to structural models, where the form of
the credit spread term structure is imposed. In particular, it is possible
to obtain arbitrary credit spreads for short maturities, which was not
possible in the Merton or Black–Cox models.5

As noted above, retrieving hazard rates from credit spreads re-
quires knowledge of the recovery rates. Since these are unknown
in practice, the market standard is to use data collected by rating
agencies for estimates of the average recovery rate by seniority and
instrument type.

4.1.13.2 Pricing and Hedging of Credit Derivatives
in Reduced-Form Models

To illustrate how the above concepts can be used to price credit deriv-
atives, let us apply them to the pricing of CDSs. As discussed above, the

5 http://www.larrylisblog.net/WebContents/Financial%20Models/BlackCoxModel.pdf

http://www.larrylisblog.net/WebContents/Financial{%}20Models/BlackCoxModel.pdf
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breakeven spread in a CDS should be the spread at which the present
values of premium payments and the probability-weighted payoff of
the protection legs are equal. Assume for simplicity that the hazard
rate λ and the discount rate r are constant. The premium leg pays
continuously a spread S and its present value is given by

S ·
T∫

0

exp {–(r + λ)t} dt = S · 1 – exp {–(r + λ)T}

r + λ

The protection leg pays (1–R) in case of default: this occurs with prob-
ability λ(t)dt during [t, t+dt]. So the discounted value of the protection
leg is

(1 – R) ·
T∫

0

λ · exp {–(r + λ)t} dt = (1 – R) · λ · 1 – exp {–(r + λ)T}

r + λ

Equalizing the two expressions yields the following expression for the
fair value of the CDS spread

S = λ (1 – R)

The spread risk can then be calculated as

CV01 =
∂

∂S

(
S · 1 – exp {–(r + λ)T}

r + λ

)
=
1 – exp {–(r + λ)T}

r + λ

=
1 – exp

{
–
(
r(T) + S

1–R

)
T
}

r(T) + S
1–R

The relation S = λ (1 – R) states that the credit spread compensates the
investor for the risk of default per unit time. Note that in this simple
case where the term structure of interest rates is flat, the interest rate
does not appear in the relation between the CDS spread and the de-
fault parameters. This corresponds to the idea that a position in CDS
is a pure “credit exposure” and, at least at first order, does not in-
corporate interest rate risk. When the term structure is not flat, the
above computations can be carried out similarly but the interest rate
dependency does not simplify the CDS spread which is then exposed
to movements in the yield curve.



4 Interest Rate Instruments 129

Themain idea of the above-mentioned relation between hazard rates
and CDS spreads is that once the CDS-spreads are known, it is pos-
sible to deduce the hazard rate using the relation above and to price
any credit derivative. Note that this hazard rate is a risk-neutral rate
of default, implied by market-quoted CDS spreads. In principle, and
also in practice, it can be quite different from historically estimated
default rates or from those implied by transition rates of credit ratings.
In the language of arbitrage pricing theory, the hazard rate represents
the risk-neutral probabilities of default while historical studies estim-
ate “objective” default probabilities. Once the (risk neutral) hazard rate
has been calibrated to spreads on credit-sensitive bonds or CDSs, it can
be used to value a credit-sensitive payoff H, by taking the discounted
risk-neutral expectation of H

Vt(H) = exp

⎡
⎣–

T∫
t

r(s)ds

⎤
⎦E

[
H|Ft

]

Denoting by H0 the payoff in case of default and H1 the payoff in case
of survival, we obtain

Vt(H) = exp

⎡
⎣–

T∫
t

r(s)ds

⎤
⎦
⎛
⎝1 – exp

⎡
⎣–

T∫
t

λ(s)ds

⎤
⎦
⎞
⎠E

[
H0|Ft

]

+ exp

⎡
⎣–

T∫
t

(r(s) + λ(s)) ds

⎤
⎦E

[
H1|Ft

]

This pricing approach guarantees the absence of arbitrage opportunit-
ies between, on the one hand, the instruments priced in this manner
and, on the other hand, liquid instruments to which the models are cal-
ibrated (CDSs, corporate bonds, etc.). However, it cannot give us an
indication of the “fair value” of a credit spread in absolute terms. Also,
while it is still possible to compute “sensitivities” of the model price
of a credit derivative with respect to, for instance, CDS spreads on the
underlying credits, there is no element in the model that allows us to
interpret such sensitivities as hedge. In fact, as opposed to structural
models, which typically lead to complete markets, hedging in reduced-
form models cannot be done by simple delta hedging. Delta hedging
will only neutralize a derivative with respect to small movements in
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an underlying spread but not to losses incurred in case of jump-to-
default (which is actually the main concern!) or unknown recovery
rates. These need to be measured independently, typically through
stress-test scenarios. Arrangers are then led to calculate reserves on
their initial profit and loss, which are released over time, in order to
account for these risks.

4.1.14 Total Return Swaps

Total return swaps are bilateral financial transactions (OTC) where the
total return (which equals the coupon plus price change) on a fixed in-
come security is exchanged for a funding cash flow, usually LIBOR plus
a basis spread. Total return swaps are the historic precursors to CDSs.
Investors in risky assets started swapping their risky returns for safe
returns to others which in case of a default also offered to compensate
the investor for any loss of principal. Note that this meant swapping
the total returns which explains the name TRS. The problem with this
was that besides the credit risk both parties also were subject to in-
terest rate risk. This led to the creation of a cleaner instrument which
only hade credit risk. Hence the CDS was born. In a CDS the investors
only pay a premium to the party that is accepting the risk. This is like
an insurance policy. And just like in insurance the counterparty of the
CDS only pays out if a “credit event” occurs. Exactly what is meant by
a credit event is specified in the CDS contract. Unlike CDS, in a TRS
payments to balance the underlying credit’s price depreciation or ap-
preciation are always exchanged without requiring the occurrence of
a specific credit event. Total Return swaps are beneficial to investors
as it involves a leveraged participation in a fixed income instrument
without the origination cost. Total Return swaps are particularly at-
tractive to investment firms that want to diversify their portfolio credit
exposure.

4.1.15 Caps, Floors and Collars

Interest rate caps and floors are basic products for hedging floating
rate risk. A cap is a call option on the future realisation of a given
underlying LIBOR rate. More specifically, it is a collection (or strip) of
caplets, each of which is a call option on the LIBOR level at a specified
date in the future. Similarly, a floor is a strip of floorlets, each of which
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is a put option on the LIBOR level at a given future date. caps and
floors are widely traded OTC instruments. As explained below, they
provide protection against widely fluctuating interest rates – a cap, for
instance, is insurance against rising interest rates. caps and floors also
reflect market views on the future volatility of LIBOR rates. caps and
floors can be compared to Call and Put options in the equity markets.

The parameters of caps and floors are:

• Notional

• Cash-flow dates

• Floating rate

• Strike rate.

4.1.15.1 Caps and Caplets

A plain vanilla (interest rate) Cap is, as mentioned above, a series of
European interest rate call options (called Caplets), with a particular
interest rate strike, each of which expire on the date when a floating
loan/swap rate will be reset.

For concreteness, suppose the underlying interest rate is the τ – ma-
turity LIBOR. Let L(t,T , τ ) denote6 the forward LIBOR at time t for the
accrual period [T ,T + τ ]. The spot LIBOR at time T is then, by defin-
ition, L(T ,T , τ ). This rate fixes at time T, and one cash unit invested
at this rate which pays 1 + τ .L(T ,T , τ ) at time T + τ . The maturity τ is
expressed in terms of fractions of a year – for example, τ = 0.25 for a
3-month LIBOR.

At each interest payment date the holder of a cap will exercise the
current caplet if the strike rate is below the LIBOR swap rate. The
seller have the obligation to compensate the buyer for the differences
between the strike and the swap rate. Therefore, caps are often used
by borrowers in order to hedge a floating interest rate.

Banks and financial institutions will use caps to limit their risk ex-
posure to upward movements in the floating interest rate. caps are
equally attractive to speculators which can get a profit due to the
volatility in market interest rates (Fig. 4.24).

6 In L(t,T , τ ), the first argument is current time, the second argument is the start date for the
accrual period, and the third argument is the length of the accrual period.
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Fig. 4.24 The payout from a cap when the floating rate exceeds the cap-rate
(strike level).

The price of a cap is the sum of its constituent caplet prices, and
so we focus on these first. A caplet is a call option on L. Specifically, a
caplet with maturity date T and strike rate K has the following payoff:
at time T + τ , the holder of the caplet receives at T + τ

�T = (L(T , T , τ ) – K)+

Note that the caplet expires at time T, but the payoff is received at the
end of the accrual period, that is, at time T +τ . The payoff is day-count
adjusted. The liabilities of the holder of this caplet are always bounded
above by the strike rate K, and clearly if interest rates increase, the
value of the caplet increases, so that the holder benefits from rising
interest rates.

By the usual arguments, the price of this caplet is given by the dis-
counted risk-adjusted expected payoff. If {p(t, T) : T � t} represents
the observed term structure of zero-coupon bond prices at time t, then
the price of the caplet is given by

�t = τ · p(t,T + τ )EQ [(L(T ,T , τ ) – K)+]

In this equation, the only random term is the future spot LIBOR,
L(T ,T , τ ). The price of the caplet therefore depends on the distribu-
tional assumptions made on L(T ,T , τ ). One of the standard models for
this is the Black model, described in a later section. According to this
model, for each maturity T, the risk-adjusted relative changes in the for-
ward LIBOR L(t,T , τ ) are normally distributed with specified constant
volatility σT , that is,

dL(t,T , τ )

L(t,T , τ )
= σTdW(t)
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This implies a lognormal distribution for L(t,T , τ ), and under this
modelling assumption the price of the T – maturity caplet is given by

C(t) = τ · p(t,T + τ )
[
L(t,T , τ ) · N(dT1 ) – K · N (dT2 )]

where

dT1,2 =
ln
{
L(t,T ,τ )

K

}
± 1

2σ
2
T (T – t)

σT
√
T – t

For low interest rates, the Black model above can’t be used. With really
low or negative rates, the logarithm above is not defined. Even for
small positive rates, regulators want banks to stress a decrease of the
rate, so that the stressed rate might be negative. At the writing moment
(February 2015) the interest rates are negative for short maturities in
many currencies. The solution is to use a normally distributed rate
with the following process under the risk neutral measure

dL(t,T , τ ) = σN
T dW(t)

Under this modelling assumption the price of the T – maturity caplet
is given by

C(t) = τ · p(t,T + τ )

[
(L(t,T , τ ) – K) · N(d) + σN

T

√
T – t√
2π

e–d
2/2

]

where

d =
L(t,T , τ ) – K

σN
T

√
T – t

As we can see, this model, called Normal Black or the Bachelier’s
model are valid also for negative rates (or strikes).

4.1.15.2 Normal Volatility to Black Volatility

When using different models, Black or Normal Black, it is possible to
convert from one volatility type to another. In particular this is easy
when you have an at-the-money (ATM) caplet. A formula also valid for
strikes not given ATM is presented in a section below. This is important
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when rates are low (near zero or negative) and when the market praxis
moves to normally distributed models. The reason is, as seen above,
that the Black model cannot be used. If the strike or the forward rate
is zero or below, the variable d1 (and d2) are not defined due to the
logarithm (ln(L/K), where L here is the (forward) LIBOR rate and K the
strike rate). The market will then quote the prices in normal volatility.

We will now show how we can translate between the normal and
log-normal volatilities for ATM prices, that is, where the strike and
forward rate are equal.

The normal model is, as we have seen above, derived from the risk-
neutral stochastic process for the forward rate F

dF = σ .
NdWt

giving a price function for a call option (i.e. a Caplet) as

CN = e–rT
[
(F – K) · N(d) + σN

√
T√

2π
e–d

2/2

]

where

d =
F – K

σN
√
T

If K = F, d = 0 giving

CN = e–rT
σN

√
T√

2π

Similarly, the Black model is derived from the process:

dF = σ .
BFdVt

giving a price function for a call option as

CB = e–rT · {F · N(d1) – K · N(d2)}
where

d1 =
ln(F/K) + 1

2σ
2
B · T

σB
√
T

, d2 = d1 – σB
√
T
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If K = F, we get

CB = e–rT ·
{
F · N

(
1

2
σB

√
T

)
– F · N

(
–
1

2
σB

√
T

)}

= e–rTF ·
{
2 · N

(
1

2
σB

√
T

)
– 1

}

Since the prices must be the same (independent of the model), that is,
CN = CB we must have

σN

√
T

2π
= F

{
2 · N

(
1

2
σB

√
T

)
– 1

}

or

σN = F ·
√
2π

T
·
{
2 · N

(
1

2
σB

√
T

)
– 1

}

This can be inverted to find the Black (log-normal) volatility from the
corresponding normal volatility as

σB =
2√
T
N–1

(
σN

2F

√
T

2π
+
1

2

)

where we have to invert the normal distribution. The argument in this
function must be a probability, so the normal volatility must satisfy the
following condition

σN � F

√
2π

T

4.1.15.3 Caps as a Strip of Caplets

Let’s go back to caplets and look at some details.
Suppose we have a loan with the face value of N and payment dates

t1 < t2 < · · · < tn, where ti+1 – ti = τ for all i. In practice, there
will not be exactly the same number of days between successive reset
dates, and the calculations belowmust be slightly adjusted by using the
relevant day-count convention. The interest rate to be paid at time ti
is determined by the τ -period money market interest rate prevailing at
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time ti – τ , that is, the payment at time ti is equal to NτL(ti, tiδ). Note
that the interest rate is set at the beginning of the period, but paid at
the end. Define t0 = t1 – τ . The date’s t0, t1, . . . , tn–1 where the rate
for the coming period is determined are called the reset dates of the
loan or swap.

A cap with a face value of N, payment dates ti(i = 1, . . . , n) as above
and a so-called cap rate K yields a time ti payoff of Nτ max{L(ti, ti –
τ ) – K, 0}, for i = 1, 2, . . . , n. If a borrower buys such a cap, the total
payment at time ti cannot exceed NτK. The period length τ is often
referred to as the frequency or the tenor of the cap. In practice, the
frequency is typically either 3, 6 or 12 months. Note that the time
distance between payment dates coincides with the “maturity” of the
floating interest rate. Also, note that while a cap is tailored for interest
rate hedging, it can also be used for interest rate speculation.

A caplet can be characterized as a put option on a zero-coupon
bond. The payoff at time ti is equivalent to

Nτ

1 + τL(ti, ti – τ )
max(L(ti, ti – τ ) – K, 0)

or

max

(
N –

N(1 + τK)

1 + τL(ti, ti – τ )
, 0

)

The expression N (1 + τK)
/
(1 + τL(ti, ti – τ )) is the value of a zero-

coupon bond that pays N(1 + τK) at time ti. The expression above is
therefore the payoff from a put option, with maturity ti, on a zero-
coupon bond with maturity ti when the face value of the bond is
N(1 + τK) and the strike price is K. It follows that an interest rate cap
can be regarded as a portfolio of European put options on zero-coupon
bonds.

In the following, we will find the value of the i’th caplet before time
ti. Since the payoff becomes known at time ti – τ , we can obtain its
value in the interval between ti – τ and ti by a simple discounting of
the payoff, that is,

Ci
t = p(t, ti)Nτ max {L(ti, ti – τ ) – K, 0} , ti – τ � t � ti
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In particular,

Ci
ti–τ = p(ti, ti – τ )Nτ max {L(ti, ti – τ ) – K, 0} .

The relation between the price of a zero-coupon bond at time t with
maturity at T and the forward rate L(t,T) is

p(t,T) =
1

1 + L(t,T) · (T – t)

or

L(t,T) =
1

T – t

(
1

p(t,T)
– 1

)

We then have

Ci
ti–τ = p(ti, ti – τ )Nmax {1 + τL(ti, ti – τ ) – (1 + τK) , 0}

= p(ti, ti – τ )Nmax

{
1

p(ti, ti – τ )
– (1 + τK) , 0

}

= N (1 + τK)max

{
1

1 + τK
– p(ti, ti – τ ), 0

}

We can now see that the value at time ti – τ is identical to the payoff
of a European put option expiring at time ti – τ that has an exercise
price of 1/(1 + τK) and is written on a zero-coupon bond maturing at
time ti. Accordingly, the value of the i’th caplet at an earlier point in
time t � ti – τ must equal the value of that put option. If we denote
the price of a call option on a zero-coupon bond at time t, with the
strike price K, expiry T and where the bond expires at time S with
π(t,K, S,T), that is,

π(t,K, S,T) = max {p(T , S) – K, 0}

We can write

Ci
t = N (1 + τK)π

(
t,

1

1 + τK
, ti – τ , ti

)
.

To find the value of the entire cap contract we simply have to add
up the values of all the caplets corresponding to the remaining pay-
ment dates of the cap. Before the first reset date, t0, none of the cap
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payments are known, so the value of the cap is given by

Ct =
n∑
i=1

Ci
t = N (1 + τK)

n∑
i=1

π

(
t,

1

1 + τK
, ti – τ , ti

)
, t < t0.

At all dates after the first reset date, the next payment of the cap will
already be known. If we again use the notation ti(t) for the nearest
following payment date after time t, the value of the cap at any time t
in [t0, tn] (exclusive of any payment received exactly at time t) can be
written as

Ct = Np(t, ti(t))τ max
{
L(ti(t), ti(t) – τ ) – K, 0

}

+ N (1 + τK)
n∑

i=i(t)+1

π

(
t,

1

1 + τK
, ti – τ , ti

)
, t0 � t � tn

If tn–1 < t < tn, we have i(t) = n, and there will be no terms in the sum,
which is then considered to be equal to zero. In later sections, we
will discuss models for pricing bond options. From the results above,
cap prices will follow from prices of European puts on zero-coupon
bonds.

Note that the interest rates and the discount factors appearing in
the expressions above are taken from the money market, not from the
government bond market. Also note that since caps and most other
contracts related to money market rates trade OTC, one should take
the default risk of the two parties into account when valuing the cap.
Here, default simply means that the party cannot pay the amounts
promised in the contract. Official money market rates and the as-
sociated discount function apply to loan and deposit arrangements
between large financial institutions, and thus they reflect the default
risk of these corporations. If the parties in an OTC transaction have a
default risk significantly different from that, the discount rates in the
formulas should be adjusted accordingly. However, it is quite complic-
ated to do that in a theoretically correct manner, so we will not discuss
this issue any further.
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4.1.15.4 Floors and Floorlets

A plain vanilla (interest rate) floor (as opposite to a cap) is represen-
ted as a series of European interest rate options (called floorlets), with
a particular interest rate strike, each of which expire on the date the
floating loan/swap rate will be reset.

At each interest payment date the seller of a floor agrees to com-
pensate the buyer for a rate falling below the specified rate during the
contract period. The difference occurs in that on each date the writer
pays the holder if the reference rate drops below the floor. Lenders of-
ten use this method to hedge against falling interest rates. The step up
cap counteracts this by raising the strike of the later caplets to reflect
the higher forward rates (see Fig. 4.25).

The Buyer of a floor receives pay-outs when the floating rate falls
below the floor-rate.

Therefore, a floor is designed to protect an investor who has lent
funds on a floating rate basis against receiving very low interest rates.
It is similar to a cap except that it is structured to hedge against de-
creasing interest rates (or downside risk). Interest rate floors can be
purchased OTC from a bank. As a contract, when a chosen reference
rate falling below the floor’s interest rate level (the floor rate), the in-
terest floor seller agrees to reimburse the buyer for the difference,
calculated on a notional principal amount and for a certain period.
Therefore, the chosen reference rate must drop below the floor rate
before any cash payment takes place between the two parties.

An interest rate floor closely resembles a portfolio of put option
contracts. The key elements of a floor are maturity, floor rate, reference
floating rate, reset period and the notional principal amount.

A typical interest rate floor can be considered as a portfolio of in-
terest rate floorlets, which only yield payment on one period of time.
We can consider floorlets as a European put on the chosen reference
rate with delayed payment of the payoff.

Fig. 4.25 The payout from a floor when the floating rate falls below the floor-rate
(strike level).
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The contract is constructed just as a cap except that the payoff at
time ti(i = 1, . . . , n) is given by

Fi
ti–τ = Nτ max {K – L(ti, ti – τ ), 0} .

where K is called the floor rate. Buying an appropriate floor, an in-
vestor who has provided another investor with a floating rate loan will
in total at least receive the floor rate. Of course, an investor can also
speculate in low future interest rates by buying a floor.

The (hypothetical) contracts that only yield one of the payments
above are called floorlets. Analogously to the analysis for caps, we
consider each floorlet as a European call on a zero-coupon bond, and
hence a floor is equivalent to a portfolio of European calls on zero-
coupon bonds. More precisely, the value of the i’th floorlet at time
ti – τ is

Fi
ti–τ = N (1 + τK)max

{
p(ti, ti – τ ) –

1

1 + τK
, 0

}
.

The total value of the floor contract at any time t < t0 is therefore given
by

Ft = N (1 + τK)
n∑
i=1

π

(
t,

1

1 + τK
, ti – τ , ti

)
, t < t0.

and later the value is

Ft = Np(t, ti(t))τ max
{
K – L(ti(t), ti(t) – τ ), 0

}

+ N (1 + τK)
n∑

i=i(t)+1

π

(
t,

1

1 + τK
, ti – τ , ti

)
, t0 � t � tn

4.1.15.5 Pros and Cons

The major advantages of caps are that the buyer limits his potential loss
to the premium paid, while retaining the right to benefit from favour-
able rate movements. The borrower buying a cap limits his exposure
to rising interest rates, while retaining the potential to benefit from
falling rates. An upper limit is therefore placed on borrowing costs.
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Interest rate options like caps and floors are highly geared instru-
ments and, for a relatively small outlay of Capital, purchasers can make
considerable profits. At the same time, a seller with a decay strategy
in mind (i.e. where he would like the option’s value to decay over
time so that it can be bought back cheaper at a later stage or even ex-
pire worthless) can make a profit amounting to the option premium,
without having to make a Capital outlay.

The disadvantages of caps are that the premium is a non-refundable
cost, which is paid upfront by the buyer, and the negative impact of
an immediate cash outflow. Caps can theoretically lose all their value
(i.e. the premium paid) if they expire as out-the-money or start to ap-
proach their expiry dates. In addition, there are high potential losses
for writers (sellers) of option-type interest rate derivatives if market
movements are contrary to market expectations. Also, one needs to
keep in mind that the bid/offer spreads on most option-type interest
rate derivative products are quite wide.

4.1.15.6 Strategies

The cap is a guarantee of a future rate. The implied forward rate will
change over time as the market changes its view of future rates. The
price of the cap will therefore depend on the likelihood that the mar-
ket will change its view. This likelihood of change is measured by
volatility. An instrument expected to be volatile between entry and
maturity will have a higher price than a low volatility instrument. The
volatility used in calculating the price should be the expected future
volatility. This is based on the historic volatility.

As time goes by, the volatility will have less and less impact on
the price, as there is less time for the market to change its view.
Therefore, in a stable market, the passing of time will lead to the
cap falling in value. This phenomenon is known as Time Decay. This
increases in severity, as we get closer to maturity. The higher the
strike compared to prevailing interest rates the lower the price of the
cap. High strike (“out-of-the-money”) caps will be cheaper than “at-
the-money” or low strike (“in-the-money”) because of the reduced
probability of the caplets being in the money during the life of the
option. The price of the cap will increase with the length of the tenor,
as it will include more caplets to maturity. The further the strike is set
out-of-the-money, the cheaper the cap, as the probability of payout is
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less, therefore the cap is considered to be more leveraged. As rates
rise, the cap will increase in value as it becomes closer to the money.

It is therefore an interesting strategy to buy out-of-the-money caps
for a small premium, which will increase in value dramatically (due to
the leverage) if rates rise. This is a trading strategy rather than a buy-
and-hold strategy. Sophisticated Investors or Borrowers may like to sell
caps to benefit from time decay. This is also known as writing caps. In
this case, the seller is providing the guarantee and therefore has an
unlimited loss potential. The profit from this strategy is limited to the
premium earned and will occur only when there are no claims against
the cap.

In the market, traders will use volatility to quantify the probability
of changes around interest rate trends. Higher volatility will increase
the probability of a Caplet being in the money and therefore the price
of the cap.

Corridor

This is a strategy where the cost of purchasing a cap is offset by the
simultaneous sale of another cap with a higher strike. It is possible to
offset the entire cost of the cap purchase by increasing the notional
amount on the cap sold to match the purchase price. The inherent
risk in this strategy is that if short-term rates rise through the higher
strike the purchaser is no longer protected above this level and will
incur considerable risk if the amount of the cap sold is proportionately
larger.

Step up Cap

In steep yield curve environments the implied forward rates will be
much higher than spot rates and the strike for caplets later in the tenor
may be deep in the money. The price of a cap, being the sum of the
caplets, may prove prohibitively expensive. The step up cap counter-
acts this by raising the strike of the later caplets to reflect the higher
forward rates. This may provide a more attractive combination of risk
hedge at a lower price. The payoff diagram is shown as in the Fig. 4.26.

After purchasing the cap, the buyer can make “claims” under the
guarantee should Libor be above the level agreed on the cap on the
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Fig. 4.26 A step-up cap strategy.

settlement dates. A cap is NOT a continuous guarantee; claims can only
be made on specified settlement dates. The purchaser selects these
dates.

4.1.15.7 Numerical Example using a Binomial Tree

We will consider a binomial tree for a 2-year semi-annual floor on $100
notional amount with strike rate K = 4.5 %, indexed to the 6-month
rate. At time 0, the 6-month rate is 5.54 % so the floor is out-of-the-
money, and pays $0 at time 0.5. The later payments of the floor depend
on the path of interest rates. Suppose rates follow the path in the tree
below. The value of the floor is the sum of the values of the 4 puts on
the six-months rates at times 0, 0.5, 1, and 1.5. We begin the evaluation
at time 1.5 (Fig. 4.27).

As in binomial valuation of put options, we calculate backwards
from time 1.5. At time 1.5, the only possible floating interest rate
below the floor rate of 4.5 per cent is 3.823 per cent. And, only when
the floating interest rate falls to this level, will the buyer of the floor be
compensated with the cash of $33.85 at time 2. For the calculation,

$0.3385 = $100 × (4.5% – 3.823%)/2
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Fig. 4.27 The binominal tree for a floor at time 1.5 year.

For the value of $33.85, at time 1.5, its present values is,

$0.3322 = $0.3385/ (1 + 3.823%/2)

For time 1, 0.5 and 0, assume that in this example, the probabilities to
raise and fall are both 50 per cent. The calculations for the values at
these time spots will be

$0.1626 = 0.5 × (0 + $0.3322) / (1 + 4.275%/2)

$0.0794 = 0.5 × (0 + $0.1626) / (1 + 4.721%/2)

$0.0386 = 0.5 × (0 + $0.0794) / (1 + 5.54%/2)

Then, we calculate the floorlet due at Time 1 as below (Fig. 4.28).
Base on the same calculation method, we simply provide here the

calculation for each node as

$0.1125 = $100 × (4.5% – 4.275%) /2

$0.1101 = $0.1125/ (1 + 4.275%/2)

$0.0538 = 0.5 × (0 + $0.1101) / (1 + 4.721%/2)

$0.0262 = 0.5 × (0 + $0.0538) / (1 + 5.54%/2)

At time 0.5 and 0, the floorlets never get in the money, so the value of
the floor will be $ 0.0648 = $0.0386 + $0.0262.
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Fig. 4.28 The binominal tree for a floor at time 1 year.

4.1.15.8 Collars

Combining a cap and a floor into one product creates a “collar”. A col-
lar is a contract designed to ensure that the interest rate payments on a
floating rate borrowing arrangement stays between two pre-specified
levels. Collars can benefit both borrowers and investors. In the case
of a borrower, the collar protects against rising rates but limits the
benefits of falling rates. In the case of an investor, the collar protects
against falling rates but limits the benefits from rising rates. Similar to
caps and floors the customer selects the index, the length of time, and
strike rates for both the cap and the floor. However, unlike a single cap
and a floor, an up-front premium may or may not be required, depend-
ing upon where the strikes are set. In either scenario, the customer is
a buyer of one product, and a seller of the other.

The buyer and the seller agree upon the term (tenor), the cap and
floor strike rates, the notional amount, the amortization, the start date
and the settlement frequency. If at any time during the tenor of the col-
lar, the index moves above the cap strike rate or below the floor strike
rate, one party will owe the other a payment. The payment is calcu-
lated as the difference between the strike rate and the index times the
notional amount outstanding times the day’s basis for the settlement
period.
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A typical collar can be seen as a portfolio of a long position in a cap
with a cap rate Kc and a short position in a floor with a floor rate of
Kf < Kc (and the same payment dates and underlying floating rate).
The payoff of a collar at time ti, i = 1, 2, . . . , n, is thus

Pi
ti = Nτ

[
max

{
L(ti(t), ti(t) – τ ) – Kc, 0

}
– max

{
Kf – L(ti(t), ti(t) – τ ), 0

}]

=

⎧⎪⎨
⎪⎩
Nτ
[
Kf – L(ti(t), ti(t) – τ )

]
, if L(ti(t), ti(t) – τ ) � Kf

0, if Kf � L(ti(t), ti(t) – τ ) � Kc

Nτ
[
L(ti(t), ti(t) – τ ) – Kc

]
if Kc � L(ti(t), ti(t) – τ )

.

The value of a collar with cap rate Kc and floor rate Kf is of course
given by

Lt
(
Kc,Kf

)
= Ct (Kc) – Ft

(
Kf
)
,

where the expressions for the values of caps and floors derived earlier
can be substituted in. An investor who has borrowed funds on a float-
ing rate basis will by buying a collar ensure that the paid interest rate
always lies in the interval between Kf and Kc. Clearly, a collar gives
cheaper protection against high interest rates than a cap (with the
same cap rate Kc), but on the other hand the full benefits of very low
interest rates are sacrificed. In practice, Kf and Kc are often set such
that the value of the collar is zero at the inception of the contract.

Fig. 4.29 illustrates the payoff from buying a one-period zero-cost
interest rate collar. If the index interest rate r is less than the floor
rate rf on the interest rate reset date, the floor is in-the-money and the
collar buyer (who has sold a floor) must pay the collar counterparty an
amount equal to. When r is greater than rf but less than the cap rate
rc, both the floor and the cap are out-of-the-money and no payments
are exchanged. Finally, when the index is above the cap rate the cap is
in-the-money and the buyer receives N × (r – rc) × dt ÷ 360.

Fig. 4.30 illustrates a special case of a zero-cost collar that results
from the simultaneous purchasing of a one-period cap and sale of a
one-period floor when the cap and floor rates are equal. In this case,
the combined transaction replicates the payoff of an FRA (Forward
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Fig. 4.29 The payoff from buying a one-period zero-cost interest rate collar.

Fig. 4.30 The put-call parity between a long cap, a short floor and a forward rate
agreement (FRA).

Rate Agreement) with a forward interest rate equal to the Cap/floor
rate. This result is a consequence of a property of option prices known
as put-call parity.

More generally, the purchase of a cap and sale of a floor with
the same notional principle, index rate, strike price and reset dates
produces the same payout stream as an interest rate swap with an
All-In-Cost equal to the cap or floor rate.
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Example 4.1.15.1
If a manufacturing firm wanted to “swap out” its floating rate debt, its all-in-cost
of fixed rate debt would be quoted at 7.50% assuming the following information.

Term of floating debt 5 years
5-year Treasury yield 5.70 %
Loan spread 150 bps
3-month Libor 3.50 %
Swap spread 30 bps

All in cost then approximately = 5.70 + 0.30 + 1.50 = 7.50%
The manufacturing firm will now pay 7.50% over the next 5 years and receive a

floating three-months Libor over the same term.

Since caps and floors can be viewed as a sequence of European call
and put options on FRAs, buying a cap and selling a floor with the
same strike price and interest rate reset and payment dates effectively
creates a sequence of FRAs, all with the same forward rate. But note
that an interest rate swap can be viewed as a sequence of FRAs, each
with a forward rate equal to the All-In-Cost of the swap. Therefore, put-
call parity implies that buying a cap and selling a floor with the same
contract specifications results in the same payment stream that would
be obtained from buying an interest rate swap. That is,

Cap – floor = Payers swap

Fig. 4.31 The effect of buying an interest rate collar on interest expense.
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Finally, in this section, we will show how interest rate collars can
be used for hedging. Fig. 4.31 illustrates the effect that buying a one-
period, zero-cost collar has on the exposure to changes in market
interest rates faced by a firm with outstanding variable-rate debt. Panel
(a) depicts the firm’s inherent or unhedged interest exposure, while
the panel (b) illustrates the effect that buying a collar has on interest
expense. Finally, panel (c) combines the borrower’s inherent exposure
with the payoff to buying a collar to display the effect of a change in
market interest rates on a hedged borrower’s interest expense. Note
that changes in market interest rates can only affect the hedged bor-
rower’s interest expense when the index rate varies between the floor
and cap rates. Outside this range, the borrower’s interest expense is
completely hedged.

Pros and Cons

Pros

1. Collars provide you with protection against unfavourable interest
rate movements above the Cap Rate while allowing you to particip-
ate in some interest rate decreases.

2. Collars can be structured so that there is no up-front premium pay-
able. While you can also set your own cap rate and floor rate, a
premium may be payable in these circumstances.

3. The term of a collar is flexible and does not have to match the term
of the underlying bill facility. A collar may be used as a form of
short-term interest rate protection in times of uncertainty.

4. Collars can be cancelled (however there may be a cost in doing so
– see the Early termination section for further details.

Cons

1. While a collar provides you with some ability to participate in in-
terest rate decreases, your interest rate cannot fall to less than the
floor Rate.

2. To provide a zero cost structure or a reasonable reduction in
premium payable under the cap, the floor rate may need to be
set at a high level. This negates the potential to take advantage of
favourable market rate movements.
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4.1.15.9 Hedging Caps

A cap is a basket of options on a strip of forward LIBORs, and so is
sensitive to changes in these. By the nature of the payoff of each caplet,
this sensitivity is similar to that of call options on the underlying stock.
A long cap position benefits from rising interest rates, and so a hedging
instrument must lose value if interest rates rise. Appropriate hedging
instruments include FRAs (receive fixed pay floating), futures strips
(long) and swaps (receive fixed). The amount of hedge depends on
the delta or hedge ratio. The broad strategy is to allocate more money
to the hedge if interest rates rise and unwind the hedge if interest
rates fall.

To illustrate the basic concept of delta-hedging, consider hedging
with a futures strip. We shall focus on hedging an individual caplet.
The payoff from the caplet is determined by

V (T , LT ) = (L(T , T , τ ) – K)+ = (LT – K)+

By no-arbitrage, the present value of the caplet is V(t,Lt), where we
have adopted the shorthand notation Lt = L(T ,T , τ ). By the Black
model assumption,

dLt = σLtdW

The terminal value of a futures contract is FT = 1 – LT . One of the con-
sequences of the Black modelling assumptions is that we approximate
the present value of the futures contract with

Ft = 1 – Lt

Consider a portfolio consisting of one caplet and long � units of the
T–maturity futures contract. The value of this portfolio is

�t = V (t, Lt) +�(1 – Lt)

By Ito’s lemma,

d�t =

(
∂V

∂t
+
1

2
σ 2L2t

∂2V

∂L2

)
dt + σLt

(
∂V

∂L
–�

)
dW.

By choosing

� =
∂V

∂L
.



4 Interest Rate Instruments 151

we can net out the randomness in the value of the portfolio. This is the
delta-hedge. Additionally, since we are hedging two sets of cashflows
which are initialized to be equal, we must have d�t = 0, and solving
the resultant PDE (which is just a Kolmogorov backward equation)
gives another equivalent way of calculating the price of a caplet.

The owner of a cap is always short the market, that is, as bond prices
rally (increase), the price of the cap decreases, as does its delta, and
caplets become more out-of-the-money (OTM).

A cap is, however, long Vega – its value increases with volatility. The
value of a cap also increases with increasing maturity, as the holder
now owns a basket containing more caplets, and hence has more
options.

4.1.15.10 Exotic Caps and Floors

Above we have considered standard, plain vanilla caps, floors and
collars. In addition to these instruments, several contracts trade on
the international OTC markets with cash flows that are similar to plain
vanilla contracts, but differ in one or more aspects. These deviations
complicate the pricing methods considerably. Let us briefly look at a
few of these exotic instruments.

• A bounded cap is like an ordinary cap except that the cap owner
will only receive the scheduled payoff if the sum of the payments
received so far due to the contract does not exceed a certain pre-
specified level. Consequently, the ordinary cap payments Ci

ti are to
be multiplied with an indicator function. The payoff at the end of a
given period will depend not only on the interest rate in the begin-
ning of the period but also on previous interest rates. As many other
exotic instruments, a bounded cap is therefore a path-dependent
asset.

• A dual strike cap is similar to a cap with a cap rate of K1 in periods
when the underlying floating rate l(t+δ, t) stays below a pre-specified
level l, and similar to a cap with a cap rate of K2, where K2 > K1, in
periods when the floating rate is above l.

• A cumulative cap ensures that the accumulated interest rate
payments do not exceed a given level.
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• A digital cap is a strip of digital caplets, each of which is a digital
call on the underlying LIBOR rate. Consider a digital caplet maturing
at time T. The payoff from this caplet, received at the end of the
accrual period T + τ , is

DC(T) = τ .θ(L(T , T , τ ) – K)

where θ is the Heaviside function, that is, θ(x) = 0 if x < 0 and 1
else. The price of the digital cap is therefore given by

DC(t) =
n–1∑
i=0

p(t,Ti+1) · N(dTi2 )

• A knock-out cap will at any time ti give the standard payoff Ci
ti

unless the floating rate l(t + δ, t) during the period [ti – δ, ti] has
exceeded a certain level. In that case, the payoff is zero. Similarly,
there are knock-in caps. They are named as: down and out, down
and in, up and out, and up and in.

Other exotic caps and floors are:

• Ratchet Cap
A ratchet cap is like a plain vanilla cap except that the strike is
given by:

Ki =

{
min [K,m] i = 1
min [Ki–1 + X,m] i > 1

where K and Ki are the strikes and m a given limit. In a ratchet cap
there are rules for determining the cap rate for each caplet. The cap
rate equals the LIBOR rate at the previous reset date plus a spread
see Fig. 4.32. A limit, m is set on the strike level, above which a
strike cannot be set.

• Sticky Cap
A sticky cap is like a plain vanilla cap except that the strike is
given by

Ki =

{
min [K,m] i = 1
min [min {Ki–1, Li–1} + X,m] i > 1
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Fig. 4.32 A ratchet cap.

The sticky cap rate equals the previous capped rate plus a spread.
A limit is set on the strike level, above which a strike cannot be set.

• Flexi Cap or Auto Cap
An auto cap or a flexi cap has the same structure as a vanilla cap,
that is, it consists of n appropriately constructed caplets, except
that the holder only receives payoff from m < n of these. The cap
disappears once the specified number of exercises is reached. Ex-
ercises are mandatory. These caps are cheaper than regular caps
with n caplets and more expensive than regular caps withm caplets.
Markov functional models, which we do not discuss here, are used
to price these heavily path-dependent instruments.

• Chooser Cap
Chooser caps have the same structure as auto caps, except that the
holder has the right to choose which caplets to exercise. The added
optionality makes them more expensive than auto caps. Once the
reset of a Caplet has taken place, it can no longer be chosen.

• Momentum Cap
A Momentum Cap is like a plain vanilla Cap except that the strike is
given by

Ki =

⎧⎨
⎩
min [K,m] i = 1
min [Ki–1 + X,m] i > 1,Li – b > Li–1
min [Ki–1,m] i > 1,Li – b > Li–1

The sticky cap rate equals the previous capped rate plus a spread.
A limit is set on the strike level, above which a strike cannot be set.

4.1.15.11 Options on Caps and Floors

Options on caps and floors are also traded. Since caps and floors them-
selves are (portfolios of) options, the options on caps and floors are



154 J.R.M. Röman

so-called compound options. An option on a cap is called a Caption
and provides the holder with the right at a future point in time, t0,
to enter into a cap starting at time t0 (with payment dates t1, . . . , tn)
against paying a given exercise price.

4.1.16 Interest Rate Guarantees – IRG

An interest rate guarantee (IRG) is an option on a forward rate
agreement (FRA), sometimes called a Fraption, that is traded over-the-
counter (OTC). The holder of an IRG has the right to enter into an
FRA at a specific strike rate during a predetermined amount of time. A
buyer of an IRG is therefore protected against a falls in the interest
rates for which he pays a premium. An IRG can also be seen as a
single-period interest rate cap, that is, a caplet. Historically IRGs are
the precursors to both caps and floors.

There are two types of IRGs, a call-on-IRG also called a borrower’s
IRG and a put-on-IRG called a lender’s IRG. When exercising a call-on
IRG, the holder has the right (but not the obligation) to take a loan
with a predetermined amount at a predetermined interest rate (the
strike rate) during the predetermined time period. When exercising a
put-on IRG, the holder has the right (but not the obligation) to make
a loan with a predetermined amount at a predetermined interest rate
(the strike rate) during the predetermined time period. Of course, the
seller has always the obligation to fulfil his obligations if the holder
exercises his option.

Consider the pricing model of a call-on-IRG whose strike rate is
LIRG. The holder of the IRG receive at time t an amount equal to
N·max {Li–1(Ti–1) – LIRG, 0}. The present value of this payment at Ti–1 is

N

1 + (Ti – Ti–1) Li–1(Ti–1)
max {Li–1(Ti–1) – LIRG, 0}

= N · max

{
1 –

1 + α · LIRG
1 + α · Li–1(Ti–1) , 0

}

Here α = Ti – Ti–1 is the time period for the IRG (Caplet) and Li–1
the forward rate settled at the beginning of the period. Remember the
value of a pure discount bond

p (Ti–1,Ti) =
1

1 + α · Li–1(Ti–1)
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Therefore, we get the same simple formula for the IRG as for
a Caplet

C(t) =
N · α

1 + Li–1 · α e
–r(T–t) [Li–1 · N(d1) – LIRG · N(d2)]

where

d=
1

ln
{
Li–1(t)
LIRG

}
– 1

2 (σ )
2 α

σ
√
α

and

d2 = d1 – σ
√
α

Here α is the tenor and N the face value of the fictive loan.

4.1.17 Repos and Reverses

A Repo/Reverse (repurchase agreement) involves the sale of assets
and a simultaneous agreement to repurchase the same or similar
equivalent assets at a future date (Fig. 4.33).

• A Repo involves lending securities with a simultaneous agreement
to repurchase at some time in the future.

• A Reverse involves borrowing securities with a simultaneous agree-
ment to sell them back at some time in the future.

Fig. 4.33 Illustration of a repo transaction.
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Other key features of a Repo/Reverse deal:

• Provides a legal sale of collateral, meaning that the legal title is trans-
ferred to the buyer. This provides protection against default for the
buyer. Other implications of this characteristic are that the buyer
has the right to sell the collateral short, and that the voting rights
(on equity collateral) are transferred by the Repo/Reverse deal.
◦ Provides an economic loan of cash and collateral, meaning that

the risk and return is retained by the seller because sale and
repurchase are for the same value.

◦ Coupons that are paid out during the life of the loan should be
transferred to the original owner of the underlying instrument.
The present value of a repo trade is the present value of all future
cash flows included in the repo transaction. The cash flows are
the initial and final payments.

The general cash-flow structure of Repo/Reverse instruments de-
pend on the following factors (Fig. 4.34):
◦ Is the deal a Repo or Reverse transaction?

◦ Is the required rate of return fixed, or based on a floating
reference rate?

When you are entering into a typical fixed rate “reverse”, you face the
following cash-flow structure:

You pay a premium on the start day and receive (borrow) securities
as collateral. After the term, you return the securities and receive a
cash amount equal to your initial premium plus interest earned during
the repo term.

Fig. 4.34 The cash-flow structure of a repo transaction.
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4.1.17.1 Special’s and GC’s

There are two types of assurance in repo transactions, Specials and
GCs. In a Special, a specific security is used as assurance in the deal.
The seller needs a cheap financing, a low rate with the use of the de-
mand for a specific instrument (bond, bill or note). The buyer is short
in the same instrument and is not that sensitive in the change in repo
rate. If many actors on the market are short in the same instrument,
the repo rate will decrease.

A GC (general collateral) is a basket of securities (e.g. bonds) used
in the repo contract. The seller chooses the securities to deliver with
the purpose to get a low cost for the loan.

In a pure repo, the seller keeps the coupon pay-outs during the
lifetime of the contract. If instead the buyer gets the coupons, this has
to be considered in the repurchase of the securities.

4.1.17.2 Other repos

An open-date repo is a contract that can be closed at any time by any
of the parties. The repo rate is negotiated on daily basis. The advantage
is that the collateral security does not have to be sent back and forth.

A cross-currency repo involves two different currencies, one for
the collateral security and another one for the loan. The advantage is
that you can avoid exchange rates.

Two variants that reduce the transaction costs are:

• Holdin-costody: Here, the issuer (the bank) keeps the collateral se-
curity in a separate account for the buyer. Therefore, the costs for
deliveries are eliminated.

• Tri-party-repo: Here, a third party (security bank) handles the
transactions and the margin requirements.

Four variants are used to increase the income yield:

• High-yield repo: Here, the buyer is given collateral security with
low credit ranking.

• Multi-collateral repo: A repo with many bonds with small prin-
cipals.

• Floating-rate repo: A repo rate based on a certain formula or some
index.
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• Options involving repos: This can be caps or floors on the repo rate
or a freedom to choose a fixed repo rate.

Also, central banks use repos. These are used in the money markets
to control liquidity and short rates. If a central bank is borrowing
securities, it is said to do a reverse repo.

There are a number of named repos. Some of them are:

• O/N (Over-Night): The overnight repo is a loan from today until the
close of the next banking day. On a Friday, the next banking day will
be on next Monday if this is not a holiday.

• T/N (Tomorrow-Next or just TomNext): The amount of money is
paid out tomorrow §(or if this is not a banking day the day after
tomorrow etc.) and paid back one banking day§thereafter.

• C/W (Corporate-Week): This is a loan for a week starting two bank
days from today.

• S/N (Spot-Next): The amount of money is paid two bank days from
today and paid back one bank day thereafter.

4.1.18 Loans

A security loan is a contract where a security is temporarily lent to
a party. A lending fee is paid to the party that originally owned the
security (Fig. 4.35).

The lending fee payment is based on the lending rate, the day-count
method and the time period. Coupons paid out during the life of the
loan should be transferred to the original owner of the security.

A Promissory Loan has the property that the coupon is split
between the historical owners of the security.

Fig. 4.35 Illustration of a security loan.
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For example, assume yearly coupons and that Party A owns the se-
curity for the first nine months of the current cash-flow period and
then Party B buys the security and keeps it at least three months. 75%
of the coupon will be paid out to Party A and 25% of the coupon will
be paid out to Party B. Obviously, the size of the next coupon depends
on the acquire day of the trade. The coupon cash flows for trades are
presented exactly as they will be, taking the acquire day into account.

4.1.19 CPPI – Constant-Proportions-Portfolio-Insurance

4.1.19.1 Introduction – Funds

Mutual funds, hedge funds and funds of funds have a number of fea-
tures that are markedly different from funds holding regular equities.

1. They can only be traded at discrete times. For example, mutual
funds are often only tradable once a day. Some hedge funds or funds
of funds can only be traded on a weekly or monthly basis.

2. Frequently notice has to be given before one intends to trade. For
example, 5 days’ notice has to be given before purchasing, while
30 days’ notice has to be given before selling the fund.

3. One might agree on a value to trade, rather than a number of fund
units to trade.

4. When using the cash in the fund for purchasing the cash might have
to be delivered several days before trading, while on redeeming a
part of the investment in the fund, it might take several days or
weeks for delivery of the proceeds.

5. One might be limited in the volume that can be traded on a
given day.

For pricing and risk management, the first feature is typically the most
significant. A frequently used structure to reduce the risks of a fund is
a CPPI. Only being able to trade at specific times makes the fund more
vulnerable to sharp market moves. Consequently, we have to extend
the models for the evolution of stock prices and include additional
random jumps.
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4.1.19.2 Hedging of funds

In a continuously tradable Black-Scholes world, the fair price and the
cost of a delta hedge are equal. In the case of discrete hedging, this
is no longer the case. It is simple to show that the discrete delta
hedge might cost more than the equivalent continuous hedge. Con-
sider the hedging of a call option over a month where the price of the
underlying rises steadily:

1. In the case of continuous hedging, one steadily buys more delta.

2. In the case of discrete monthly hedging, one can only increase delta
at the end of the month, which means that one must buy the addi-
tional delta at the highest price over the month, rather than on the
way up.

In the case of the price dropping continuously over a month the
discrete delta also costs more as one is forced to sell at the lowest
point.

So when does the discrete case cost less than the continuous hedge?
Consider the above case, with the modification that the underlying
goes up and then returns to its original level by the end of the month.
If one compares monthly hedging with bimonthly hedging, we know
that bimonthly hedging will cost something on the way up, and then
something on the way down. In contrast, monthly hedging will be
approximately free.

Considering all the possible paths, one ends up with a distribution
for the costs of the delta hedge. The average of this distribution is the
continuous Black-Scholes fair price. The more frequent the re-hedging
times, the narrower the distribution of delta hedging costs.

It is important to realize that this risk cannot be hedged. One can
be lucky and make a profit, or unlucky and make a loss with respect to
the Black-Scholes “fair” price. Of course, by taking sensible provisions
with respect to the Black-Scholes “fair” price, the risk of loss for the
fund can be significantly reduced.

4.1.19.3 CPPI Structures

A CPPI (Constant Proportions Portfolio Insurance) is a so-called
structured product and we will now discuss CPPI structures as an
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alternative investment strategy. Such an investment strategy will pro-
tect against large losses. The CPPI can, as we will see, use any kind
of underlying structure. The CPPI contract that we will study has a
number of parameters, such as:

• a kernel

• a satellite

• a floor

• a multiplier and

• a pillow.

The kernel and satellite will consist of two different assets with differ-
ent risks. The kernel consist of an asset with relatively low risk, while
the satellite holds the risky assets that hopefully will give better profit
than the kernel. The kernel is considered to be a passive component,
typically a bond (or a zero-coupon bond) and the satellite is the act-
ive part of the portfolio. The reason for the kernel-satellite parts is to
control the risk of the CPPI portfolio.

The strategy is to rebalance between the kernel and the satellite
over time, due to changes in the value of the satellite. The floor is
used as a protection (or a trigger level) of the CPPI. If the value of our
portfolio will hit the floor, all investments are placed in the kernel, for
the rest of the CPPI lifetime. The pillow is defined as the total portfolio
value minus the floor; P = V – F.

The multiplier m is used to give the portfolio manager the possibility
to invest more in the satellite if this will give a better profit than the
kernel. The multiplier times the pillow gives the amount of the port-
folio value that will be invested in the satellite. The invested amount
in the satellite is S = m x P. The remaining amount is invested in the
kernel;

K = V – m × P.

The value of the floor F and the multiplier m is decided by the investor
due to the current market condition and the investors view of the risk.
A low value of the floor gives high risk and a positive view of the
satellite. In some contracts, the floor and multiplier can vary over time.
The difference between the floor and the initial invested amount gives
the maximum loss.

To get a perfect protection against losses, one needs continuously
rebalance between the kernel and the satellite. This would give high
transaction costs and therefore the CPPI is rebalanced only at discrete
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times. If the performance of the satellite is better than the kernel, the
multiplier and the pillow will act to increase the investments in the
satellite. We will show this in a simple example:

A CPPI with multiplier. Suppose we have the following initial data

Initial market index, I 100
Initial portfolio value, V 100
Initial satellite, S 40
Initial kernel, K 60
Floor, F 90
Initial pillow, P 10

Now, suppose we have the following relative changes of the market
index, as function of time: [+10%, -9,09%, +12%, +8%, -7%, +10%, -5%,
7%, -3%]. Assuming no transaction costs, we then get the following
values:

Two other scenarios are shown below, one with a decreasing index
and one with an increasing market index.
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As we can see, the result is a high profit in a bullish and a god pro-
tection on a bearish market. We also see that in a bullish market we
can go short in the low-risk security, that is, the kernel and use the
money to buy more of the risky asset, that is, invest in the satellite.

The values are calculated as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I(ti) = I(ti–1) · (1 +�I(ti – ti–1))
V(ti) = max {V(ti–1) + S(ti–1) · �I(ti – ti–1); F}
P(ti) = V(ti) – F
S(ti) = m · P(ti)
K(ti) = V(ti) – S(ti)

From the example above, we realize that Monte-Carlo simulations must
be used to value a CPPI.

Example 4.1.19.1
A 6-year Capital Protected CPPI Note linked to a Basket of assets. (The Lehman
Brothers International issued the specific CPPI structure discussed below in April
2006.)

A CPPI consist of a nominal amount in a European Quality Fund and a risk-free
asset in cash. The final payment to the investor (buyer) of the CPPI is given by the
following formula

P = SD ·
[
100% · max

{
100%,

CPPIFinal
CPPIInitial

}]

where

SD = Value per Bond (SEK 500 000)

CPPIInitial = The value of the CPPI in April 2006

CPPIFinal = The value of the CPPI in April 2012

A yearly fee of 0.75% is subtracted in the calculation of the final CPPI value. This is
the same to say that the financial cost is 75 bp. The initial allocation of the CPPI is
100% in the Fund and 0% in the risk-free asset (cash). The target exposure in the
Fund is

TEt = min

[
max

{
CPPIt – BFt

CPPIt
× m,Emin

}
,Emax

]

where

CPPIt is the value of the CPPI at time t.

BFt is the interest rate floor at the potential rebalancing date t. This value starts
at 80% of the nominal amount and increases linearly with 2.66667% per annum
to 100% of the nominal amount on the final potential rebalancing date.
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m = 5 is the multiplier

Emin = minimum exposure of the fund = 0%

Emax = maximum exposure of the fund = 150%

Remark! The maximum exposure of the fund > 100%. The reason for this is that an
investment bank can add from their own Capital to the CPPI in order to increase
the leverage.
Here are two numerical scenarios:

1.) Assets down by 10%
Initial CPPI Value: 100 SEK (Notional invested)
Distance =

CPPI value – Bond floor (80%): 20%
Target Exposure = Distance × m (= 5): 100% in Premium and 0% in

Riskless Asset
Fall in Premium Asset: –10% × 100 % –10%
New Notional Value: 100% – 10% = 90% → 90 SEK
New Distance: 90% – 80% = 10%
New Target Exposure: 10% × 5 = 50% → 50 SEK
New Risk-less Asset Allocation: 90 SEK - 50 SEK = 40 SEK

2.) Assets up by 10%
Initial CPPI Value: 100 SEK (Notional invested)
Distance =

CPPI value – Bond floor (80%): 20%
Target Exposure = Distance × m (= 5): 100% in Premium and 0% in

Riskless Asset
Increase in Premium Asset10% × 100 % 10 %
New Notional Value: 100% + 10% = 110% → 110 SEK
New Distance: 110% – 80% = 30%
New Target Exposure: 30% × 5 = 150% → 150 SEK
Risk-less Asset Allocation: 0%
Leverage: 150 SEK - 110 SEK = 40 SEK
We find that, thanks to the multiplier we earned 50 % on an increase of 10%

An important CPPI Parameter is the Target Exposure. It denotes
the maximum sustainable proportion of the CPPI Balanced Account,
which can be invested in the Premium Asset without jeopardizing the
Capital protection at maturity. It is calculated on daily basis, based
on the multiplier/Crash Size, the bond floor and the Balanced Ac-
count Value. Crash Size denotes the maximum loss of the underlying
Premium Asset between two potential rebalancing dates. The Distance
denotes the Capital, which can be put at risk without jeopardizing the
Capital protection at maturity.
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Yield Curves

5.1 Introduction to Yield Curves

Ordering the current spot yields to maturities for any group of bonds.
By maturity we get a so-called yield curve. This curve is often rep-
resented as a graph with time to maturity on the horizontal axis and
yields on the vertical axis. The group is usually defined as bonds by
the same issuer and/or the same credit rating. Thus, we speak of yield
curves for government bonds, for mortgage bonds or for corporate
bonds of the same credit rating. The word bond here is used in the
academic sense which means bills, notes and bonds. Interest rates in
international or domestic time deposit markets too can be ordered by
maturity and credit class. Thus, we get London inter-bank offered rate
(LIBOR) or XIBOR yield curves or yield curves for domestic depos-
its in any currency. There are many different yield curves. In general,
yield curves may slope upwards or downwards, their shapes can be
concave, convex or have humps.

In Table 5.1 and Fig. 5.1, we show the yield curve for UK govern-
ment bonds. This data was taken from The Financial Times September
6, 2016.

Today, many countries have negative interest rates. A few years ago,
many actors (if not all) thought that negative interest rates could not
exist. But things have changed and nowadays it is a fact. In Table 5.2
we have market prices for the Swedish government securities1 (bills
and bonds) at 2016-09-09.

1 https://www.riksgalden.se/sv/For-investerare/Statspapper/Utestaende-statspapper/
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Table 5.1 Government bond yields in UK 2016-09-06

Maturity Yield Today’schange 1 week ago 1 month ago

1 Month 0.18% 0 0.18% 0.20%
3 Month 0.23% > –0.01 0.22% 0.27%
6 Month 0.31% 0.05 0.31% 0.28%
1 Year 0.15% 0.06 0.17% 0.16%
2 Year 0.10% < 0.01 0.16% 0.14%
3 Year 0.09% 0 0.14% 0.13%
4 Year 0.16% > –0.01 0.19% 0.17%
5 Year 0.19% > –0.01 0.22% 0.21%
7 Year 0.36% 0 0.36% 0.43%
8 Year 0.46% > –0.01 0.44% 0.57%
9 Year 0.56% –0.06 0.54% 0.59%

10 Year 0.66% > –0.01 0.64% 0.67%
15 Year 1.03% > –0.01 0.96% 1.14%
20 Year 1.18% > –0.01 1.11% 1.32%
30 Year 1.30% > –0.01 1.24% 1.49%

Fig. 5.1 Government bond yields in UK 2016-09-06

The bootstrapped zero-coupon rates from Table 5.2 are shown in
Fig. 5.2. As we can see, the zero rate is negative up to nine years.

Term structure models are based on the assumption that the whole
term structure of interest rates can be derived from the stochastic be-
haviour of one or many variables. The reason for modelling the entire
term structure is to make all model prices internally consistent.
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Table 5.2 Quotes of Swedish Government securities2

Securities Issue date Maturity Coupon Price

STB 21 Sep 16 2016-03-11 2016-09-21 0 100.02
STB 19 Oct 16 2016-07-01 2016-10-19 0 100.09
STB 16 Nov 16 2016-08-05 2016-11-16 0 100.15
STB 21 Dec 16 2016-06-03 2016-12-21 0 100.23
STB 15 Mar 17 2016-09-02 2017-03-15 0 100.42
SGB 1051 3.75% 12 Aug 17 2006-09-15 2017-08-12 3.75 104.45
SGB 1052 4.25% 12 Mar 19 2007-11-21 2019-03-12 4.25 114.47
SGB 1047 5% 1 Dec 20 2004-01-28 2020-12-01 5.00 127.47
SGB 1054 3.5% 1 Jun 22 2011-02-09 2022-06-01 3.50 123.18
SGB 1057 1.5% 13 Nov 23 2012-10-22 2023-11-13 1.50 113.68
SGB 1058 2.5% 12 May 25 2014-02-03 2025-05-12 2.50 123.27
SGB 1059 1.0% 12 Nov 26 2015-05-22 2026-11-12 1.00 109.57
SGB 1056 2.25% 1 Jun 32 2012-03-20 2032-06-01 2.25 124.84
SGB 1053 3.5% 30 Mar 39 2009-03-30 2039-03-30 3.50 153.64

Fig. 5.2 The Swedish treasury zero-coupon rates per 2016-09-09

In categorising these models, two properties are significant:

• Number of state variables
◦ Most models lack analytical solutions and have to be solved using

numerical methods. The computing time increases dramatically
for each new state variable.

• External consistency.
◦ By external consistency, we mean coherence between the model

term structure and the observed term structure. When the model

2 Source, https://www.riksgalden.se/sv/For-investerare/Statspapper/Utestaende-statspapper/

https://www.riksgalden.se/sv/For-investerare/Statspapper/Utestaende-statspapper/
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is used to price derivative instruments, it is essential that the
underlying instrument is priced in accordance with observed
market prices.

Although this yield curve obviously includes T-bills, T-notes and
T-bonds, we refer to these collectively as “bonds” in the usual aca-
demic sense. In parallel to the US government yield curve, there are
yield curves for domestic time deposits between banks, for the in-
ternational deposit market (LIBOR), for interest rate swaps, and for
municipal and corporate bonds. Closest to the US government yield
curve are curves for instruments with the highest credit rankings.

As an example consider the yield curve on the same day for USD
interest rate swaps. The yields are given in buckets as seen next:

2010-05-10 1 0.5069
2010-05-11 2 0.5323
2010-05-12 3 0.5235
2010-05-16 7 0.4882
2010-06-08 30 0.3082
2010-08-07 90 0.2225
2010-11-05 180 0.2944
2011-02-03 270 0.4067
2011-05-09 365 0.5564
2012-05-08 730 1.1271
2013-05-08 1095 1.6642
2014-05-08 1460 2.0844
2015-05-08 1825 2.4084
2017-05-07 2555 2.8126
2019-05-07 3285 3.1287
2020-05-06 3650 3.2642
2025-05-05 5475 3.4964
2030-05-04 7300 3.4964
2040-05-01 10950 3.4964

This data uses a day count conversion 30/360.
To find the yield to maturity (ytm) for intermediate maturities, in-

terpolation is used. In C/C++ the following function can be used to
interpolate the y-values and return y for a given term/maturity x (pX
and pY are arrays of length N),

double IPOL(double x, double, *pX, Double *pY, int N)
{

if (x <= pX[0]) return pY[0];
if (x >= pX[N-1]) return pY[N-1];
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for (int i = 1; i < N; i++) {
if (x == pX[i-1]) return pY[i-1];
if (x == pX[i]) return pY[i];

If (x > pX[i-1] && x < pX[i])
return pY[i-1] + (x - pX[i-1])*(pY[i] - pY[i-1])/

(pX[i] - pX[i-1]);
}

}

When you have the interpolated values, forward rates between two
arbitrary future dates can be calculated.

double forwardRate(int Days1, double r_t1, int Days2, double r_t2)
{

return pow((pow(1.0 + r_t2, Days2/365.0))/
(pow(1.0 + r_t1, Days1/365.0)), 365.0/
(Days2 - Days1)) - 1.0;

}

Both these examples show yield curves that are upwards sloping.
This is the typical case. Why is this so? Why do ytms for instruments
of the same credit rating differ because of maturity? The traditional
explanations are:

• Expectations theory

• Liquidity preference theory

• Market segmentation theory

Briefly, the expectations theory argues that the slope of the yield curve
(or equivalently the term premium) reflects the market’s average ex-
pectations about future interest rates/yields. Lending short term while
borrowing long term you can lock in yields on any forward starting
loan today. This approach was used to evaluate interest rate swaps in
the preceding chapter. In particular, it was argued that implied forward
rates calculated from the current yield curve were unbiased forecasts
of future spot rates, while the liquidity preference theory argues that
forward rates are always biased high because investors prefer liquidity.
Market segmentation based on credit ratings is clearly an empirical fact
but it has also been used to explain why yield curves typically should
slope upwards. The reason is that there was a chronic shortage of long-
term investors in relation to the supply. Typically insurance companies
prefer to invest their cash long term while banks rely more heavily on
short-term funding.
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5.1.1 Credit Ratings

Next, we see the notation used for credit ratingMoody’s and Standard
and Poor’s:

Standard and Poor’s Moody’s
AAA Aaa
AA Aa
A Investment grade A
BBB Baa
BB Ba
B Speculative grade B
CCC “Junk” Caa
CC Ca
C C
D Default D

A few years ago, government bonds issued by the government of
Argentina was classed as D.

Some models use a transition matrix to describe the probabilities
for transitions between the different credit ratings. For the financial
crises in 2008, see Table 5.3. The transition matrix is an implied mat-
rix sampled from bond prices in emerging markets. It describes the
transition probabilities between different credit ratings. By the same
method, it is also possible to calculate a cumulative default probability
matrix, which is illustrated in Table 5.4.

Table 5.3 The Transition Matrix in the beginning of 2008

1-Year Transition Matrix

From To Rating

Rating AAA AA A BBB BB B CCC D

AAA 88,658% 10,294% 1,017% 0,000% 0,031% 0,000% 0,000% 0,000%
AA 1,079% 88,705% 9,553% 0,342% 0,145% 0,145% 0,000% 0,031%
A 0,063% 2,876% 90,205% 5,919% 0,740% 0,177% 0,010% 0,010%
BBB 0,053% 0,339% 7,069% 85,238% 6,053% 1,005% 0,085% 0,159%
BB 0,033% 0,077% 0,557% 5,680% 83,572% 8,083% 0,535% 1,464%
B 0,011% 0,044% 0,174% 0,652% 6,595% 82,703% 2,760% 7,062%
CCC 0,000% 0,000% 0,660% 1,050% 3,050% 6,110% 62,970% 26,160%
D 0,000% 0,000% 0,000% 0,000% 0,000% 0,000% 0,000% 100,000%
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Table 5.4 The cumulative default probability matrix

Cumulative Default Probability Matrix

AAA AA A BBB BB B CCC

1 Year 0,00% 0,31% 0,1% 0,159% 1,464 % 7,062% 26160%
2 Years 0,004% 0,073% 0,056% 0,477% 347% 13722% 43111%
3 Years 0,12% 0,127% 0,145% 0,950% 5678% 19828% 54255%
4 Years 0,027% 0,198% 0,284% 1,568% 8,157% 25,339% 6172%
5 Years 0,050% 0,289% 0,477% 2,317% 10,750% 30270% 66,840%

5.2 Zero-coupon Yield Curves

An important subclass among the yield curves are so-called zero-
coupon yield curves. These can be derived almost directly frommoney
market instruments or calculated from interest rate swaps or groups
of coupon paying bonds using special bootstrapping techniques. A
zero-coupon yield curve defines a set of discount factors that can be
used for the discounting of future cash flows. An older name for this
construct was the term structure of interest rates.

While the previous examples showed ytms for each bond individu-
ally, the zero-coupon yield curve shows a curve that when used for the
discounting of the future cash flows of all the bonds in the curve rep-
licate their market prices. Note that the yield curves in the examples
were obtained by applying the present value (PV ) formula to each in-
dividual bond in order to translate from price to ytm. Thus, different
ytms were being used for “discounting” cash flows at future dates de-
pending on the bond. This is inconsistent. The proper way to discount
future cash payments is to apply the same ytm to all the bonds which
pay cash on the same future date. All the underlying cash flows from
the whole set of bonds should be discounted with a unique yield that
only depends on the future date of the cash flow. There should only be
one yield per future date. Otherwise portfolios of bonds could be con-
structed that exploits any mispriced cash flow. This is a no arbitrage
requirement.

So when the quoted ytms are given for a subset of bonds, we need
to use a method called bootstrapping to calculate a matching zero-
coupon yield curve. With this technique, we strip the bonds to create
virtual zero-coupon bonds from the coupons and the principal. This
is not a trivial exercise and the results will be different depending on
the method used. One method is used by the US Treasury Department
and the results are published as Separate Trading of Registered Interest
and Principal of Securities (STRIPS).
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The coupons and principal of normal bonds are split up, creating
artificial zero-coupon bonds of longer maturity than would otherwise
be available.

Example 5.2.0.1
Let us study the price of a bond maturing in exactly one year with semi-annual
coupons of 10 % and a quoted ytm of 5.951%. Using the PV formula to derive the
cash price, we get

5

1 + 0.05951
2

+
105(

1 + 0.05951
2

)2 = 103.874

This is not necessarily the one-year, zero-coupon yield. Suppose the six-months
zero-coupon yield is 4%. Then the matching zero-coupon yield for one year, say
s, must be given by

5

1 + 0.04
2

+
105(

1 + s
2

)2 = 103.874

Solving the equation we get s = 6.0% which is close but not exactly equal to the
given 12m yield on the coupon bond.

We know that the quoted ytm on a bond y can be used in the PV
formula to calculate its market price. Vice versa, given the price P, we
can find the ytm by solving the following equation

P =
∑
i

ci
(1 + ytm)ti

+
100

(1 + ytm)tn

where ci is the coupons of the bond, ti the time for the payouts and
P the market price of the bond. For continuously compounded ytms,
the formula is

P =
∑
i

ci · e–ti·ytm + 100 · e–tn·ytm

Remember that the ytm on a bond is only an adequate measure of the
rate of return on this investment if all coupons can be reinvested at
the same yield.
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5.2.1 ISMA and Moosmüller

There exist a number of different methods to calculate the ytm and
we will give two of them, International Securities Market Association
(ISMA) and Moosmüller. ISMA is given by

P = νf ·
[
C

H
·

n∑
i=1

νi+1 +

(
Nom + g · C

H

)
· νn–1+g

]

= νf ·
[
C

H
· 1 – ν

n

1 – ν
+

(
Nom + g · C

H

)
· νn–1+g

]

where

ν =
1

1 + ytmh
H

ytmh is the given H coupons per year. A common formula in Germany
is the Moosmüller method that can also handle parts of coupons. The
Moosmüller formula is given by

P =
1

1 + f ·ytmh
H

·
[
C

H
· 1 – ν

n

1 – ν
+
Nom + g · C

H

1 + g·ytmh
H

· νn–1+g
]

In the next section we’ll show how zero-coupon yield curves can be
derived from any given set of quoted market yields.



6
Bootstrapping Yield Curves

6.1 Constructing Zero-Coupon Yield Curves

We will now explain how to obtain zero-coupon yield curves from
market data for coupon bonds or interest rate swaps. To do so, we
begin with some simple examples and show how to use linear boot-
strapping to find the spot rates and forward rates from a number
of benchmark instruments. Also we will show how to use the de-
rived zero-coupon yields to discount future cash flows. Finally, we
will use some real market data, such as bonds, deposits, forward rate
agreements (FRAs) and swaps in the bootstrap procedure.

As a first example suppose we have the following benchmark bond
quotes

T Yield Coupon Price

0.5 2.15 % – 98.94
1.0 2.50 % 5.0 % 102.45
1.5 2.90 % 6.5 % 105.24
2.0 3.20 % 9.0 % 111.14

where T is time to maturity. This data can be given by a Government
bill (T = 0.5) and three Government bonds. In some countries (like
Sweden), both bills and bonds are quoted as yields-to-maturity (ytms).
Therefore, we can calculate the prices as

P =
100

1 + ytm · d
360

© The Author(s) 2017 175
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for instruments with no coupons and by

P =
N

(1 + ytm)T
+

n∑
i=1

C

(1 + ytm)ti

for bonds paying coupons, where C is the coupon (i.e. 2.5, 3.25
and 4.5 in the previous example). We use the day-count conven-
tion act/360 and we suppose the bonds are paying the coupons
semi-annually (i.e. with frequency f = 2).

6.1.1 The Matching Zero-Coupon Yield Curve

We start by stripping the instruments to find the corresponding zero-
coupon rates. The zero-coupon yield curve will then be used to
discount the future cash flows for all the given instruments which here
have maturities from zero to 2 years. Since the 0.5-year bond does not
pay any coupon (it is actually a T-bill), it can directly be considered to
be a zero-coupon bond. From the aforementioned data we immediately
find the first zero-coupon rate for borrowing today with a payback in
six months. It is

s1 = 2.15%

For times to maturity less than six months the rates have to be
calculated by extrapolation.

The next bond will pay a coupon of 2.50 after six months (5 % on a
nominal amount of $100). Using the zero-coupon rate for discounting
the present value of this payout must be

PV =
2.5

1 + 0.0215
2

= 2.47

After a year, the same bond will pay $102.5 and we can solve for the
second 1-year zero-coupon rate s2. The following must hold

2.5

1 + 0.0215
2

+
102.5(
1 + s2

2

)2 = 102.45

where $102.45 is the given (quoted) market bond price from the
market data. Solving for s2 we get

s2 = 2.504%.
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Plugging in the calculated values for the zero-coupon yields for matur-
ities 0.5 and 1 year we can solve for the 1.5-year zero-coupon yield s3
from the future cash flow for the 1.5-year bond in the market data. Its
coupon rate is 6.5% per year which means $3.25 every six months. So

3.25

1 + 0.0215
2

+
3.25(

1 + 0.02504
2

)2 +
103.25(
1 + s3

2

)3 = 105.24

Solving this equation we get: s3 = 2.923%.
In the same way, we can calculate s4:s4 = 3.244 %.

Another way to look at the previous formula is

103.25(
1 + s3

2

)3 = 105.24 – 3.22 – 3.17 = 98.85

As we can see, we subtract the discounted values of the coupons from
the current market price of the bond. What we have left is a zero-
coupon bond with the face value (nominal amount) of $103.25 with a
value of $98.85. This gives a discount factor of 98.85/103.25 = 0.9574
or, equivalently, a zero-coupon yield of 2.923%.

We then have derived the following zero-coupon yield curve

T Yield Coupon Price Spot rate

0.5 2.15 % – 98.94 2.150 %
1.0 2.50 % 5.0 % 102.45 2.504 %
1.5 2.90 % 6.5 % 105.24 2.923 %
2.0 3.20 % 9.0 % 111.14 3.244 %

As we can see this yield curve is slightly above the given quoted ytm
curve which included three coupon bonds.

Once we have calculated the implied zero-coupon yield curve we
also have the prices of the corresponding zero-coupon bonds (the dis-
count function), and we can find the prices of all other bonds. If they
are more risky than the treasury bonds given here, we can apply a
spread-over-yield as was done in Chapter 3.

In order to get a smooth and nice curve from these four calculated
points, we have to use some kind of interpolation method in the boot-
strap model. The reason is that we need derivatives (the slope) of the
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yield curve for some calculations. This leads to a system of equations
which will be described next.

6.1.2 Implied Forward Rates

From the derived zero-coupon curve, which consists of zero-coupon
ytms, we can calculate implied forward rates as

rforwardt2–t1 =

(
(1 + rspott2 )t2

(1 + rspott1 )t1

) 1
t2–t1

– 1

or

rforwardt2–t1 =
1

t2 – t1
·
(
(1 + rspott2 )t2

(1 + rspott1 )t1
– 1

)

depending on the discounting method for the forward rates. We get
the following values using the aforementioned “first” formula

T Yield Coupon Price Spot rate Forward rate

0.5 2.15 % – 98.94 2.150 % 2.150 %
1.0 2.50 % 5.0 % 102.45 2.504 % 2.860 %
1.5 2.90 % 6.5 % 105.24 2.923 % 3.766 %
2.0 3.20 % 9.0 % 111.14 3.244 % 4.214%

In Fig. 6.1, the zero-coupon spot-and-implied forward rates are plotted.
The previous example of bootstrapping was really simple because

all cash flow payouts happened at the same date. We will therefore
consider four bonds where the cash flows do not coincide. Suppose
then, we have the following benchmark data

T Yield Coupon Price

0.5 2.15 % – 98.94
1.0 2.50 % 5.0 % 102.45
2.0 2.90 % 6.5 % 106.94
4.0 3.20 % 9.0 % 121.60
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Fig. 6.1 The zero rate and the forward rate from bootstrapping

We start by stripping the instruments to find the corresponding zero-
coupon spot rates. This yield curve can then be used as the risk-free
yield for instruments with maturities from zero to 4 years. As before,
we start with the six-month zero rate: s1 = 2.15%. On time less than
six months the rate has to be calculated by extrapolation. The next
bond is the same as in the previous example, so: s2 = 2.504%

To calculate s3 we have to extrapolate. The reason is that we have
one coupon at t = 1.5 and the nominal plus a coupon at t = 2. There-
fore we cannot subtract all the coupons to find the zero bond price at
t = 2. When we extrapolate we use the known points at t = 0.5 and
t = 1.0. That is,

s′3 =
s2 – s1
t2 – t1

· t3 + s2 –
s2 – s1
t2 – t1

· t2 = s2 +
s2 – s1
t2 – t1

· (t3 – t2)

= 2.504 +
2.504 – 2.150

1.0 – 0.5
· (1.5 – 1.0) = 2.859

With s3 known, we can calculate s4 from:

3.25

1 + 0.0215
2

+
3.25(

1 + 0.02504
2

)2 +
3.25(

1 + 0.02859
2

)3 +
103.25(
1 + s3

2

)4 = 106.94

giving s4 = 2.918. Next, we have to perform a new extrapolation and
finally get the result shown in Table 6.1.

In the leftmost columns (T, Coupon, Yield and Price) we have the
given bond data. Then, in the rows for each bond we see the projected
cash flow and its present value. That is, in the square with 103.25 and
97.44 we have the projected cash flow of 103.25 and PV(103.25) =
97.44. In the row Time we have the time for each cash flow and in
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Spot the calculated zero-coupon spot rate. The values at times 1.5,
2.5, 3.0 and 3.5 are calculated with extrapolation. The values dY/dT
and m is the coefficients of the line used for extrapolation. That is,

dY

dT
=
2.504 – 2.150

1.0 – 0.5
= 0.708

m = 2.504 –
2.504 – 2.150

1.0 – 0.5
· 1.0 = 1.796

giving

r(1.5) = 1.796 + 0.708 · 1.5 = 2.858

We have also calculated the implied forward rates from the arbitrage
condition between the zero-coupon spot rates. These are listed in the
last row in Table 6.1. We then have the zero-coupon spot-and-implied
forward curves as shown in Fig. 6.2.

As we can see, these curves have “knees”. We can get better res-
ults using a Newton-Raphson method. If we use the fact that the yield
between times 1 and 2 should be connected with a line, then we can
solve the following equation

103.25(
1 + s4

2

)2·2 +
3.25(

1 + 0.02504
2 + 1

2 ·
(
s4–0.02504

2–1

)
· (1.5 – 1)

)1.5·2
+ 3.17 + 3.22 – 106.94 = 0

Fig. 6.2 The bootstrapped spot rate and forward rate
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where

s3 = 0.02504 +

(
S4 – 0.02504

2 – 1

)
· (1.5 – 1)

is given by interpolation. Solving s4, we can use Newton-Raphson to
solve the other rates as well. The final result is given in Table 6.2.

Finally, we can draw the graph in Fig. 6.3 which should be compared
with Fig. 6.2.

Instead of straight lines, other functions can be used to connect
the nodes, such as different kinds of polynomials, in order to get a
smoother result. The Newton Raphson method can be derived as

df =
∂f

∂x
dx ⇒ f (xn+1) – f (xn) = f ′(xn)(xn+1 – xn)

f (xn+1) = 0 ⇒
xn+1 = xn –

f (xn)

f ′(xn)

6.1.3 Bootstrapping with Government Bonds

The data in Error! Reference source not found. is taken from
NasdaqOMX at January 12, 2010 (Table 6.3)

We will use bootstrapping to find the zero-coupon curve. Swedish
bonds are quoted in ytm with day-count conversion: 30/360. The
coupon frequency is 1 (i.e. there is one coupon per year for bonds).

We start with the bills and immediately have the zero-coupon yields

r (1m) = r (30d) = 1.25 %
r (2m) = r (60d) = 1.22 %
r (3m) = r (90d) = 1.30 %
r (4m) = r (120d) = 1.31 %
r (6m) = r (180d) = 1.49 %

If we ignore business days (weekends and holidays), from RGKB 1045
we also have the rate at

t = 360 · (Yt – Yt–1) + 30 · (Mt –Mt–1) + Dt – Dt–1
= 360 · (2011 – 2011) + 30 · (3 – 1) + 15 – 12
= 63 days
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Fig. 6.3 The bootstrapped spot rate and forward rate using Newton Raphson

Table 6.3 Market data from Nasdaq OMX

Bonds Coupon YTM Maturity

RGKB 1041 6.75 2.415 2014-05-05
RGKB1045 5.25 1.24 2011-03-15
RGKB1046 5.5 1.79 2012-10-18
RGKB1047 5 3.219 2020-12-01
Bills YTM Maturity
RGKT 1101 1.25 1 month
RGKT1102 1.22 2 month
RGKT1103 1.3 3month
RGKT1104 1.31 4month
RGKT1106 1.49 6 month

as

r (2011 – 03 – 15) = r (63d) = 1.25 %

We now start the bootstrap with the bond RGKB 1046. This bond
has a coupon rate c = 5.5%, ytm = 1.79% and maturity at T = 2012-
10-18. That is, time to maturity = 1y9m6d = 360 + 270 + 6 = 636 days.
Therefore, we also have a coupon payment of 5.5 at 276 days from
now. We start by calculating the present value of this coupon. We do
this by extrapolation using 180 and 120 days

r(276d) = 1.49 +
1.49 – 1.31

180 – 120
(276 – 180) = 1.778 %

The present value of the coupon is therefore:

PV =
5.5

(1 + 0.01778)276/360
= 5.4262
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The price of the bond is given by the quoted yield:

P =
5.5

(1 + 0.0179)276/360
+

105.5

(1 + 0.0179)1+276/360

= 5.4257 + 102.2445 = 107.6702

This means that a zero-coupon bond with maturity T = 636 days from
now, has the price P = 107.6702 – 5.4262 = 102.2440. This gives the
zero-coupon rate at time t = 636 days:

102.2440 =
105.5

(1 + r)1+276/360

r(636d) =

(
105.5

102.2440

)1/(1+276/360)

– 1 = 1.7903 %

This is close to the ytm (ytm = 1.79) which shows that the result is
correct.

We then continue with the next bond, RGKB 1041 with coupon
rate c = 6.75%, ytm = 2.415% and maturity at T = 2014-05-05. That
is, time to maturity = 3y3m23d = 1193 days from today. We also have
coupon payments of 6.75 at 833, 473 and 113 days from now. We
start by calculate the present values of the coupons using inter- and
extrapolation:

r(113d) = 1.30 +
1.31 – 1.30

120 – 90
(113 – 90) = 1.3077 %

r(473d) = 1.49 +
1.7903 – 1.49

636 – 180
(473 – 180) = 1.6830 %

r(833d) = 1.49 +
1.7903 – 1.49

636 – 180
(833 – 180) = 1.9200 %

Remark

r(833d) = 1.7903 +
1.7903 – 1.49

636 – 180
(833 – 636) = 1.9200 %
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The present value of the coupons is therefore:

PV =
6.75

(1 + 0.013077)113/360
+

6.75

(1 + 0.01683)1+113/360

+
6.75

(1 + 0.0192)2+113/360

= 6.7225 + 6.6045 + 6.4594 = 19.7864

The price of the bond is

P =
6.75

(1 + 0.02415)113/360
+

6.75

(1 + 0.02415)1+113/360

+
6.75

(1 + 0.02415)2+113/360
+

106.75

(1 + 0.02415)3+113/360

=
1

(1 + 0.02415)1193/360

{
100 + 6.75

(1 + 0.02415)4 – 1

0.02415

}
= 118.2621

Where we have used the formula

PV(ytm) =
1

(1 + ytm)T

{
N + C

(1 + ytm)M – 1

(1 + ytm)1/f – 1

}

We now have that a zero-coupon bond with maturity at T = 1193 days
have the present value P = 118.2621-19.7864 = 98.4757. This gives the
zero-coupon rate at t = 1193 days

98.4757 =
106.75

(1 + r)1193/360

r(1193d) =

(
106.75

98.4757

)360/1193

– 1 = 2.4645 %
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This is close to the ytm (ytm = 2.451) which shows that the result is
correct.

We now have the following zero-coupon yields:

r(30d) = 1.25%

r(60d) = 1.22%

r(90d) = 1.30%

r(120d) = 1.31%

r(180d) = 1.49%

r(276d) = 1.778%

r(636d) = 1.7903%

r(1193d) = 2.4645%

The last bond has maturity 2020-12-01. This is in 9y10m19d. That is, in
3559 days with coupons at 3199, 2839, 2479, 2119, 1759, 1399, 1039,
679 and 319 days from today.

We start by calculating the present value of the interpolated
coupons (319, 679, 1039 days from today)

r(319d) = 1.778 +
1.7903 – 1.778

636 – 276
(319 – 276) = 1.7795 %

r(679d) = 1.7903 +
2.4645 – 1.7903

1193 – 636
(679 – 636) = 1.8423 %

r(1039d) = 1.7903 +
2.4645 – 1.7903

1193 – 636
(1039 – 636) = 2.2781 %

We continue by calculating the present value of the extrapolated
coupons (3199, 2839, 2479, 2119, 1759, 1399 days from today)

r(1399d) = 1.7903 + 0.0012104 · (1399 – 636) = 2.7138 %

r(1759d) = 1.7903 + 0.0012104 · (1759 – 636) = 3.1496 %

r(2119d) = 1.7903 + 0.0012104 · (2119 – 636) = 3.5853 %

r(2479d) = 1.7903 + 0.0012104 · (2479 – 636) = 4.0211 %

r(2839d) = 1.7903 + 0.0012104 · (2839 – 636) = 4.4568 %

r(3199d) = 1.7903 + 0.0012104 · (3199 – 636) = 4.8926 %
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The present value of the coupons is therefore

PV =
5

(1 + 0.017795)319/360
+

5

(1 + 0.018423)679/360

+
5

(1 + 0.022781)1039/360
+

5

(1 + 0.027138)1399/360

+
5

(1 + 0.031496)1759/360
+

5

(1 + 0.035853)2119/360

+
5

(1 + 0.040211)2479/360
+

5

(1 + 0.44568)2839/360

+
5

(1 + 0.048926)3199/360

= 4.9225 + 4.8308 + 4.6853 + 4.5059 + 4.2970 + 4.0637 + 3.8113

+ 3.5451 + 3.2706

= 37.9321

The present value if the bond is

P =
1

(1 + 0.03219)3559/360

{
100 + 5.0

(1 + 0.03219)10 – 1

0.03219

}
= 115.4397

Therefore, a zero-coupon bond with maturity at T = 3559 days from
today have the present value of P = 115.4397–37.9321 = 77.5076. This
gives the zero-coupon rate at t = 3559 days as

77.5075 =
105.0

(1 + r)3559/360

r(3559d) =

(
105.0

77.5075

)360/3559

– 1 = 3.1185 %

The resulting zero-coupon yield curve will have a knee, since we
overestimated the interest rates with extrapolations with many cash
flows.

To calculate the zero-coupon yield beyond the last maturity, we
need to make an assumption. Here, the assumption is made that the im-
plied forward rate remains constant. This is a reasonable assumption,
because the forward rate is actually a kind of prediction about the fu-
ture spot rate. We then use the following formula for the zero-coupon
rates/yields for times > 14.6 years

sn+1 = (1 + sn)
tn/tn+1 (1 + F)(tn+1–tn)/tn – 1
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The upper limit of the zero-coupon rates is given by s∞ = F where F
is the constant forward rate.

If we do this for 10, 11, 12, 13, 14 and 15 years from today on the
previous curve, we can calculate the forward rate between the last
two points in the curve:

r(1193d) = 2.4645%

r(3559d) = 3.1185%

This is given by

rforwardt2–t1 =

(
(1 + rspott2 )t2

(1 + rspott1 )t1

) 1
t2–t1

– 1

=

(
(1 + 0.031185)3559/360

(1 + 0.024645)1193 / 360

) 360
3559–1193

– 1 = 3.4500 %

Then, using

(1 + rspott2 )t2 = (1 + rspott1 )t1 · (1 + rforwardt2–t1 )t2–t1

we get the 10 year rate as

(1 + r10y)
3600/360 = (1 + 0.031185)3559/360 · (1.0345)(3600–3559)/360

= 1.35996

r10y = 1.359961/10 – 1 = 3.1223 %

and

(1 + r11y)
11 = (1 + 0.031223)10 · 1.0345 = 1.35996

r11y = 3.1520 %

(1 + r12y)
12 = 1.35996 · 1.0345 = 1.45541

r12y = 3.1768 %

(1 + r13y)
13 = 1.45541 · 1.0345 = 1.50562

r13y = 3.1978 %

(1 + r14y)
14 = 1.50562 · 1.0345 = 1.55756

r14y = 3.2158 %

(1 + r15y)
15 = 1.55756 · 1.0345 = 1.56113

r15y = 3.2314 %
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Fig. 6.4 The zero-coupon curve as function of days to maturity

Finally, we get the zero-coupon rate curve as in Fig. 6.4.
We can summarize the previous bootstrap method in the following

schema:

1) Calculate the zero-coupon rates for all instruments, which have
only one cash flow until maturity.

2) Take the bond with the least number of coupons.

3) Interpolate/extrapolate (or better, use a solver instead of an extra-
polation) to calculate the yields between known zero-coupon rates
at times when we have coupon payouts.

4) Calculate the present value, PV(coupons) for all coupons with
payout before the maturity of the bond in step 2.

5) Calculate the zero-coupon price: ZCP =
[
P – PV(coupons)

] · 100
100+C .

6) Calculate the yield of a zero-coupon bond with the face value of
100 and price ZCP.

7) Add this yield to the known zero-coupon rates.

8) If there are more bonds, go to step 2, if not, go to 9.

9) Create a zero-coupon yield curve.

6.1.3.1 The Swap Curve

There are far more swaps of different maturities than there are bonds,
so that in practice, swaps are used to build up the forward rates by
bootstrapping. Fortunately, there is a simple decomposition of swaps
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prices into the prices of zero-coupon bonds so that bootstrapping is
still relatively straightforward.

When the swap is first entered into, it is usual for the deal to have
no value to either party. This is done by a careful choice of the fixed
rate of interest. In other words, the present value, let us say, of the
fixed side and the floating side both have the same value, netting out
to zero.

Why should both parties agree that the deal is valueless?

There are two ways to look at this. One way is to observe that a
swap can be decomposed into a portfolio of bonds and so its value
is not open to question if we are given the yield curve. However, in
practice the calculation goes the other way. The swap market is so
liquid, at so many maturities, that it is the prices of swaps that drive
the prices of bonds. The fixed leg of a par swap (the one having no
value) is determined by the market. The rates of interest in the fixed
leg of a swap are quoted at various maturities. These rates make up the
swap curve.

6.1.3.2 The Relationship Between Swaps and Bonds

There are two sides to a swap, the fixed-rate side and the floating-rate
side. The fixed interest payments, since they are all known in terms of
actual dollar amount, can be seen as a sum of zero-coupon bonds. If
the fixed rate of interest is rs then the fixed payments add up to

rs

N∑
i=1

p (t,Ti)

This is the discounted value today, at time t, of all the future fixed-rate
payments. Here there are N payments, one at each Ti. Of course, this
is multiplied by the notional principal, but assume that we have scaled
this to one. To see the simple relationship between the floating leg and
zero-coupon bonds we draw some schematic diagrams and compare
the cash flows. A single floating leg payment is shown in Fig. 6.5.

At time Ti there is payment of rτ of the notional principal, where rτ
is the period τ rate of LIBOR, set at time Ti – τ . We add and subtract
$1 at time Ti to get the second diagram. The first and the second dia-
grams obviously have the same present value. Now recall the precise
definition of LIBOR. It is the interest rate paid on a fixed-term time
deposit in the interbank market. Thus, the $1 + rτ – at time Ti is the
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Fig. 6.5 A single floating swap cash flow in relation with bond cash flows

same as $1 at time Ti – τ . This gives the third diagram. It follows that
the single floating rate payment is equivalent to two zero-coupon bond
cash flows. A single floating leg of a swap at time Ti is exactly equal to
a deposit of $1 at time Ti – τ and a withdrawal of $1 at timeτ .

Now adding up all the floating legs all $1 cash flows cancel out
except for the first and last one. Thus, the floating side of the swap has
the current or discounted value

1 – p (t,TN)

Bringing the fixed and floating sides together we find that the value of
the swap, for the receiver of the fixed side, is

rs

N∑
i=1

p (t, Ti) – 1 + p (t,TN)

This result is model-independent, that is, relationship is independent
of any mathematical model for bonds or swaps. At the start of the swap
contract the rate rs is usually chosen to give the contract par value (i.e.
zero value initially). Thus the quoted swap rate is

rs =
1 – p (t,TN)
N∑
i=1

p (t,Ti)

We will discuss this in more detail later.
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6.1.3.3 Bootstrapping with Swaps

Swaps are very liquid and there exists a wide range of maturities so
that their prices determine the yield curve and not vice versa. In prac-
tice, the swap rates rs(Ti) are given in the market for many maturities
Ti and 1 uses the aforementioned formula to calculate the prices of
zero-coupon bonds and thus the yield curve. For the first point on the
discount-factor curve we must solve

rs(T1) =
1 – p (t,T1)

p (t, T1)

That is,

p (t,T1) =
1

1 + rs(T1)

After finding the first j discount factors the j + 1st is then found from

p
(
t, Tj
)
= 1 – rs (Ti)

j∑
i=1

p (t,Ti)

=>

p
(
t, Tj+1

)
=

1 – rs
(
Tj+1

) j∑
i=1

p (t,Ti)

1 + rs
(
Tj+1

)

We will now show in practice how we can calculate a zero-rate yield
curve using swaps. A typical data source for the underlying construc-
tion of the nominal interest rate term structure can be the European
swap rates for 1–10-years maturities (yearly intervals) and 12-, 15-,
20-, 25-, 30-, 40- and 50-years maturities as they are listed on a daily
basis by Bloomberg. In such interest rate swaps, 6-month EURIBOR is
exchanged for a fixed interest rate.
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Methodology
The rates quoted in the market are par yields and the interest day-
count convention of the fixed-rate side of an ordinary swap is 30/360,
meaning that a month is set at 30 days and a year at 360 days. We
define the following (annually accrued) interest rates

rt = the (par) swap rate at maturity t,

zt = the zero-coupon swap rate at maturity t.

ft1,t2 = the forward rate between t1 and t2.

The cash flows of the underlying fixed-rate bond included in a t-year
swap are as follows

date (years) 1 2 . . . t – 1 t

cash flows rt rt . . . rt 1 + rt

The value at the time the swap is made equals 1 (= 100%).
The zero-coupon rate is derived from the par swap rate by means

of bootstrapping, starting with the 1-year swap rate. Since (1 + r1)/(1 +
z1) = 1, it follows that z1 = r1. The 2-years zero-coupon interest is
determined by calculating the present value, at the 1-and 2-years zero
rate, of the cash flows from (the fixed-rate side of) the 2-years swap,
and equating this present value to 1. The 1-year zero-rate is already
known, so that this leaves an equation with a single unknown (the
2-years zero-coupon rate z2):

r2
1 + z1

+
1 + r2

(1 + z2)2
= 1

which may be rewritten as

z2 =

√
1 + r2
1 – r2

1+z1

– 1

z3 through z10 are derived analogously. By way of explanation, we also
derive the 1-year forward over 1 year (i.e. the forward interest rate
accruing between t = 1 and t = 2) via:

(1 + z2)
2 = (1 + z1)

(
1 + f1,2

)
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and hence

f1,2 =
(1 + z2)2

(1 + z1)
– 1

From maturities of 10 years onwards, not all Bloomberg swap rates
are used. Intervening rates are derived from the 12-, 15-, 20-, 25-, 30-,
40- and 50-years maturity points. To calculate, for instance, the 21-
years zero-coupon rate, we need to make an assumption. Here, the
assumption is made that the 1-year forward remains constant between
20 and 25 years. This is a reasonable assumption, because the forward
rate can be seen as a kind of forecast for the 1-year rate that will be
realized 20, 21 etc. years from now. And the market is not very likely to
take substantially different views on 1-year interest rates 20 or 21 years
forward. Now, based on the assumption that f20,21 = f21,22 = f22,23 =
f23,24 = f24,25 = f20,25, we may write the 21-, 22-, 23-, 24- and 25-year
zero rates, respectively,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1 + z21)21 = (1 + z20)20
(
1 + f20,21

)
= (1 + z20)20

(
1 + f20,25

)
(1 + z22)22 = (1 + z21)21

(
1 + f21,22

)
= (1 + z20)20

(
1 + f20,25

)2
(1 + z23)23 = (1 + z22)22

(
1 + f22,23

)
= (1 + z20)20

(
1 + f20,25

)3
(1 + z24)24 = (1 + z23)23

(
1 + f23,24

)
= (1 + z20)20

(
1 + f20,25

)4
(1 + z25)25 = (1 + z24)24

(
1 + f24,25

)
= (1 + z20)20

(
1 + f20,25

)5

Consequently, we may formulate the present value of the 25-year
swap as

r25
1 + z1

+
r25

(1 + z2)2
+ . . . .

r25
(1 + z24)24

+
1 + r25

(1 + z25)25

= r25

[
20∑
t=1

1

(1 + zt)t
+

1

(1 + z20)20

5∑
t=1

1(
1 + f20,25

)t
]

+
1

(1 + z20)20
(
1 + f20,25

)5 = 1

A numerical procedure is needed to solve for f20, 25. Substitution of the
result in the earlier equations will yield z21 through z25.
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For other maturities, the calculation is analogous. For points beyond
30 years, the 1-year forward is assumed to remain constant. The as-
sumption of a constant forward rate may also be used in extrapolating
beyond 50 years. Based on this latter forward rate, we may calculate
spot rates for very long maturities. This method can also be used when
bootstrapping bonds.

6.1.4 Bootstrapping a Swap Curve

When bootstrapping a zero-coupon curve it is very important to use
liquid instruments. In the Swedish market these are typically: an over-
night rate (O/N), a tomorrow-next rate (T/N), and interbank time
deposit rates for one week, one month, two and three month ma-
turities. For additional maturities we use some representative quotes
for interbank Forward Rate Agreements (FRA) and finally, interest rate
swap rates from 3 years up to 30 years. We do not use shorter swaps
since the FRAs are more liquid. We also show the Swedish market due
to the special handling of IMM FRA’s and the negative interest rates. In
the Euro and US market the FRA are note quoted at the IMM days and
this simplify the bootstrap calculations.

6.1.4.1 Market Data

The bootstrap process will be demonstrated here with market data
from 2017-07-17. Starting with the STIBOR fixings (also known as cash
deposits) with maturities O/N, T/N, 1W, 1M,. . . 3M we have:

STIBOR Fixing
Maturity STIBOR

T/N –0.518
1W –0.526
1M –0.523
2M –0.503
3M –0.474

We also, for simplicity, suppose that the (O/N) is the same as the (T/N).
We continue with the short-term FRA’s, FRA 3M, with maturities on

IMM days.
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FRA 3M Rate
Maturity Bid Ask Mid

2017/sep/20 –0.469 –0.449 –0.459
2017/dec/20 –0.539 –0.519 –0.529
2018/mar/21 –0.359 –0.339 –0.349
2018/jun/20 –0.264 –0.244 –0.254
2018/sep/19 –0.154 –0.124 –0.139
2018/dec/19 –0.049 –0.019 –0.034
2019/mar/20 0.081 0.111 0.096
2019/jun/19 0.196 0.226 0.211
2019/sep/18 0.310 0.350 0.330
2019/dec/18 0.430 0.470 0.450

Finally, we have the swap rates from SEK STIBOR A 3M.

Swap
Maturity Bid Ask Mid

3Y –0.0375 0.0125 –0.0125
4Y 0.1975 0.2475 0.2225
5Y 0.4325 0.4825 0.4575
6Y 0.6450 0.6950 0.6700
7Y 0.8325 0.8825 0.8575
8Y 0.9975 1.0475 1.0225
9Y 1.1400 1.1900 1.1650
10Y 1.2625 1.3125 1.2875
12Y 1.4550 1.5150 1.4850
15Y 1.6775 1.7375 1.7075
20Y 1.8775 1.9575 1.9175
25Y 1.9575 2.0375 1.9975
30Y 1.9775 2.0775 2.0275

In the SEK market, rates and market quotes are the same since all
instruments are quoted as yields to maturity. In most other markets,
FRA contracts are quoted in clean price. In that case, we first have to
calculate the yield to get the table above. We can also use the price to
find the discount factors.
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The data above results in the following table, where we will
bootstrap only the mid curve.

Tenor Start date Maturity Period days d(t) Quote rate q(t)

O/N 2017-07-17 2017-07-18 1 –0.518
T/N 2017-07-18 2017-07-19 1 –0.518
1W 2017-07-19 2017-07-26 7 –0.526
1M 2017-07-19 2017-08-21 33 –0.523
2M 2017-07-19 2017-09-19 62 –0.503
3M 2017-07-19 2017-10-19 92 –0.474
sep_17 2017-09-20 2017-12-20 91 –0.459
dec_17 2017-12-20 2018-03-21 91 –0.529
mar_18 2018-03-21 2018-06-20 91 –0.349
jun_18 2018-06-20 2018-09-19 91 –0.254
sep_18 2018-09-19 2018-12-19 91 –0.139
dec_18 2018-12-19 2019-03-20 91 –0.034
mar_19 2019-03-20 2019-06-19 91 0.096
jun_19 2019-06-19 2019-09-18 91 0.211
sep_19 2019-09-18 2019-12-18 91 0.330
dec_19 2019-12-18 2020-03-18 91 0.450
3Y 2017-07-19 2020-07-20 1097 –0.0125
4Y 2017-07-19 2021-07-19 1461 0.2225
5Y 2017-07-19 2021-07-19 1826 0.4575
6Y 2017-07-19 2021-07-19 2191 0.6700
7Y 2017-07-19 2021-07-19 2557 0.8575
8Y 2017-07-19 2025-07-21 2924 1.0225
9Y 2017-07-19 2026-07-20 3288 1.1650
10Y 2017-07-19 2027-07-19 3652 1.2875
12Y 2017-07-19 2027-07-19 4383 1.4850
15Y 2017-07-19 2027-07-19 5479 1.7075
20Y 2017-07-19 2037-07-20 7306 1.9175
25Y 2017-07-19 2042-07-21 9133 1.9975
30Y 2017-07-19 2047-07-19 10957 2.0275
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6.1.4.2 Cash Deposits

We start by calculating the discount factor and from here the zero rate.
By using O/N, we get

DO/N =
1

1 + qO/N .
dO/N
360

=
1

1 +
–0.518

100
.
1

360

= 1.000014389

From here, we get the zero rate as

ZO/N = –100.
ln(DO/N)
dO/N
365

= –100.
ln(1.000014389)

1

365

= –0.525198223

Zero rates are commonly given as continuously compounded rates,
Act/365. If the day today is a Friday, dO/N = 3 instead of 1 as above.
Next, we use the T/N

DT/N =
DO/N

1 + qT/N .
dT/N
360

=
1.000014389

1 +
–0.518

100
.
1

360

= 1.000028778

From here, we get the zero rate as

ZT/N = –100 · ln(DT/N)
dT/N
365

= –100 · ln(1.000028778)
1

365

= –0.525198223

Discount rates greater than 1.0 give, as we can see, negative zero-
coupon rates. Sometimes also the spot next (S/N) is used. Now we
have the beginning of the curve. The above calculations must be done
because of different “Start Dates”. We continue with the money-market
instruments (1W, 1M, 2M and 3M), i.e. deposits. All of them have the
same Start date: 2017-07-19 (two days from today because of the two
settlement days)
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Di =
DT/N

1 + qi.
di
365

; i = {1W, 1M, 2M, 3M}

From here, we get the Zero rate as

Zi = –100.
ln(Di)
di
365

; i = {1W, 1M, 2M, 3M}

As seen above we use DT/N as the numerator. However, we have
here three choices dependent on the spot lag value. The spot lag is
defined as the number of business days between the trade date and the
value date. For most currencies the spot lag is two days. The choices
are:

1) Spot lag = 0 => The numerator = 1

2) Spot lag = 1 => The numerator = DFO/N

3) Spot lag > 1 => The numerator = DFT/N

6.1.4.3 Forward Rate Agreements – FRA

Next, we are ready to handle the FRA rates. Since these are forward
contracts (with netted principal cash payments), the corresponding
quoted rates are forward rates. Therefore, we need a so-called stub
rate. The stub rate shall have its maturity on the same date as the start
date of the first FRA contract. This stub has to be calculated only if
we have IMM FRA contracts. We can calculate that rate using (linear)
interpolation on the discount factors

Dstub(t) = D(t0) +
D(T) – D(t0)

T – t0
(t – t0)
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In our example, we get:

Dstub = D(2017 – 09 – 20)

= D(2017 – 09 – 19) + (D(2017 – 10 – 19) – D(2017 – 09 – 19))

· (T2017–09–20) – (T2017–09–19)
(T2017–10–19) – (T2017–09–19)

= 1.000907358

The stub rate is then given by

zstub = –
100 · ln(DStub)

65/365
= –0.509285585

where 65 is the number of days between today (2017-07-17) and the
stub maturity. Now, we can handle the FRA rates as given below:

Di
FRA =

Di–1
FRA

1 + qiFRA · d
i
FRA

360

; i = {sep_17, dec_17, . . . , dec_19}

where D0
FRA = DStub From here we get the zero rate as

Zi
FRA(T) = –100 · lnD

i
FRA

diFRA
365

; i = {sep/11, dec/11, . . . , dec/14}

If the FRA contracts are quoted in price, the first FRA discount factor
is calculated as

DFRA(t) =
DStub(t)

1 +

(
100 – PFRA

100

)
· 91

360

where PFRA is the quoted price of the FRA contract and 91, the days
between the two IMM dates. The implied par rates are calculated as

rimplisedpar (tFRA) = 100 ·
(
DT/N

DFRA
– 1

)
· 1

tFRA – tTN
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6.1.4.4 Swaps

Now, that the zero-rates up to 2014-09-17 have been calculated we can
continue with the rest of the curve which is given by swap rates. Since
they start at 3Y, we first calculate approximate swap rates for 1Y and
2Y by (linear) interpolation

Year Start date Maturity DF Zero rate

1 2017-07-19 2018-07-19 1.004503375 –0.446877879
2 2017-07-19 2019-07-19 1.004962055 –0.246813006

We now recall how to calculate the par swap rates rparT :

rparT =
DT/N – DT

T∑
t=1

Yt · Dt

=
DT/N – DT

T–1∑
t=1

Yt · Dt + YT .DT

We then have

DT =

DT/N – rparT

T–1∑
t=1

Yt · Dt

1 + Yt.r
par
T

where Yt is the year fraction at time t, given by:

Yt =
360 · (yt–)yt–1 + 30 · (mt – mt – 1) + dt – dt–1

360

where yt–1 is the previous year where a rate exist, mt the month for the
rate and dt the days. For the years where swap rates are not quoted in
the market (11Y, 13Y, 14Y, 16YĚ., 29Y) we use (linear) extrapolation
to find the zero rate when calculating the discount factors. Suppose
all tenor spreads are zero, then the swap rates can be considered as
maturing once a year. This gives Yt = 1 for all t. We then have

DT =

DT/N – rparT

T–1∑
t=1

DT

1 + rparT
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Finally, we get the result

Quote
Tenor Start date Maturity rate Discount Zero rate

O/N 2017-07-17 2017-07-18 –0.518 1.00001439 –0.52519822
T/N 2017-07-18 2017-07-19 –0.518 1.00002878 –0.52519822
1W 2017-07-19 2017-07-26 –0.526 1.00013107 –0.53152514
1M 2017-07-19 2017-08-21 –0.523 1.00050844 –0.53009431
2M 2017-07-19 2017-09-19 –0.503 1.00089583 –0.51067561
3M 2017-07-19 2017-10-19 –0.474 1.00124162 –0.48181770
sep_17 2017-09-20 2017-12-20 –0.459 1.00207001 –0.48382869
dec_17 2017-12-20 2018-03-21 –0.529 1.00341177 –0.50330985
mar_18 2018-03-21 2018-06-20 –0.349 1.00429775 –0.46311196
jun_18 2018-06-20 2018-09-19 –0.254 1.00494298 –0.41952074
sep_18 2018-09-19 2018-12-19 –0.139 1.00529620 –0.37077179
dec_18 2018-12-19 2019-03-20 –0.034 1.00538261 –0.32068484
mar_19 2019-03-20 2019-06-19 0.096 1.00513870 –0.26649883
jun_19 2019-06-19 2019-09-18 0.211 1.00460288 –0.21137413
sep_19 2019-09-18 2019-12-18 0.33 1.00376557 –0.15518699
dec_19 2019-12-18 2020-03-18 0.45 1.00262509 –0.09814374
3Y 2017-07-19 2020-07-20 –0.0125 1.00040546 –0.01346347
4Y 2017-07-19 2021-07-19 0.2225 0.99111701 0.22260951
5Y 2017-07-19 2021-07-19 0.4575 0.97721010 0.46031544
6Y 2017-07-19 2021-07-19 0.67 0.96013564 0.67708428
7Y 2017-07-19 2021-07-19 0.8575 0.94084199 0.86978222
8Y 2017-07-19 2025-07-21 1.0225 0.91991457 1.04129128
9Y 2017-07-19 2026-07-20 1.165 0.89822023 1.19085400
10Y 2017-07-19 2027-07-19 1.2875 0.87616010 1.32061722
12Y 2017-07-19 2027-07-19 1.485 0.83187817 1.53216160
15Y 2017-07-19 2027-07-19 1.7075 0.76590232 1.77605784
20Y 2017-07-19 2037-07-20 1.9175 0.66854155 2.01107974
25Y 2017-07-19 2042-07-21 1.9975 0.59192602 2.09519836
30Y 2017-07-19 2047-07-19 2.0275 0.52919479 2.11958684

To get high accuracy in the calculated values where we have to use ex-
trapolation, we also use a Newton-Raphson method. This is applied for
the discount factors. The Newton-Raphson method calculates the dis-
count factors so that we can reprice the swaps and find their quotes,
i.e., the interest rates for the fixed legs.
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If we have semi-annual data, the above formula is replaced by

DT =

DT/N – rparT

T–0.5∑
t=0.5

Yt · Dt

1 + YY · rparT

From here, we get the zero rate as usual

ZT = –100 · ln(DT ) · 365
dT

If the zero-coupon rates are expressed as annual bond equivalent yields
we have

DT =
1

(1 + ZT /100)days/365

Solving the previous equation, the zero coupon rate is

ZT =

{(
1

DT

)365/days

– 1

}

If you want continuously compounded zero rates, the discount factor
will be calculated as

DT = exp

{
–
ZT
100

· days
365

}

From the latter equation, the zero- coupon rate becomes a function of
the discount factor, as follows

ZT = –

(
ln(DT ).

365

days

)
· 100

If you prefer to represent zero coupon rates as simple annualized
rates, the discount factor should be written as

DT =
1

1 + ZT /100
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6.1.5 A More General Bootstrap

In the risk system of a bank the bootstrap procedure is slightly
more complicated than described earlier. Generally, in such a risk
system there are many different currencies and therefore many dif-
ferent curves. Each curve will be bootstrapped from many different
instruments with different maturities. Therefore it can be difficult to
compare and aggregate the risk for a complex portfolio. Because of
this added complexity, many risk systems use only specific nodes in
time, where they specify the zero-coupon rates. These nodes can be
something like

[1d, 2d, 3d, 1w, 1m, 2m, 3m, 6m, 9m, 1y, 2y,
3y, 4y, 5y, 7y, 10y, 12y, 15y, 20y, 25y, 30y]

Here d denotes days, wweeks, mmonths and y years. Now, these dates
will naturally not be the same as the quoted instruments that is used to
bootstrap the curve. Especially, since the same nodes are used for all
currencies. Also in the same currency, you might have multiple curves,
like a Swap curve for the Interbank market, a Government curve from
treasury bonds and a Mortgage curve for the valuation of real estate
loans.

The risk system will also use the zero-coupon yield curves for risk
calculations and shift the aforementioned nodes. This is usually made
by triangular shifts to calculate the risk in each time bucket. Here the
1y bucket is the interval [9m, 1y]. By using specific nodes the risk can
be aggregated to a total risk in each bucket. Also the sum of this risk
will correspond to a parallel shift of the entire curve.

Banks also use to sets risk limits for each such buckets. This risk
can be interest rate risk (Delta and Gamma), Vega risk (by shifting
the volatility) etc. Different limits can be used for different size of the
shifts. Usually interest rate shifts are calculated for 1 bp, +100 bp and
-100 bp. Here 1 bp (one basis point) represent 1/100 of a %.

A problem by using “fixed” nodes (as shown earlier) is that you need
an interpolation method between the nodes. Then, when you reprice
the instruments used to bootstrap the curve, you will not replicate the
input market quotes exactly. Therefore, when you bootstrap the curve,
you must minimize the repricing error in order to find a “best fit”. Also,
with different interpolation methods, you will get different curves. It
is important to understand that there are no “true interest rate curves”
since they always depend on what method is used to create the curve.
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Also note that the Risk group in the bank shifts zero-coupon yield
curves while the traders, on the other hand, typically shift market
quotes. The reason is that the trades want to hedge their position.
For the hedging purpose, they can only use instruments that exist and
are quoted in the market.

Therefore the risk in the trading system and in the risk system
(which can be the same, with different setups) may often differ. Sub-
sequently we will describe a typical problem when the risk manager
discusses the risk with a trader. This is taken from a real-life situation.

6.1.5.1 An Example of Risk Calculations of an FRA

Consider an FRA contract between 2016-03-16 and 2016-06-15. The
today’s date is 2015-05-05. The notional amount of the FRA is 1 500
000 000 SEK and day count method Act/360.

The trading desk calls the Group Risk and says that something is
wrong! They see all the risk at 2016-03-16 when the FRA expires and
the payments are made. They refer to their approximation of the risk.

Risk = Notional∗Time∗1 bp = 1 500 000 000∗0.25∗0.0001 = 37 500 SEK

Here the time is a quarter of a year. They complain and say that the
risk system gives a risk of – 70 000 in the 9m bucket and + 88 000 in
the 1y bucket.

When Group Risk investigates their modelling system, they find the
following.

The used nodes are:

{1d, 2d, 3d, 1w, 1m, 3m, 6m, 9m, 1y, 2y, 3y, . . . }.

In term of days, this corresponds to

{1, 2, 3, 7, 30, 90, 180, 270, 365, 730, 1095, . . . }.

Since the FRA days will be (in days) 316d and 407d, the risk manager
will find risk when nodes {270d, 365d and 730d} are shifted.

• With a triangular shift in the node 270d we will change the rates in
the interval [180d, 365d].

• With a triangular shift in the node 365d we will change the rates in
the interval [270d, 730d].
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• With a triangular shift in the node 730d we will change the rates in
the interval [365d, 1095d].

Suppose we make these shifts and use continuously compounded zero
rates in the discount function

D(T) = exp{ – rT}.

The Group Risk are satisfied if they can explain their calculations and
find an approximation of the risk. So they just “guess” some zero rates
at each node and calculate the values.

r(T) T D(T)

0.25000% 270 0.998152394
0.27000% 316 0.997665196
0.28000% 365 0.997203916
0.30000% 407 0.996660383
0.40000% 730 0.992031915

The forward rate (for the FRN) is then given by

–365 · ln(0.996660383/0.997665196)/(407 – 316) = 0.4042%

and the value of the FRN by

0.997665196 · 1 500 000 000 · 0.004043 · 0.25 = 1 512 121

Now, we make a shift of 1bp on node 730d. The result is

r(T) T D(T)

0.25000% 270 0.998152394
0.27000% 316 0.997665196
0.28000% 365 0.997203916
0.30115% 407 0.996647595
0.41000% 730 0.991833528

The forward rate (for the FRN) is then given by: 0.4093% giving a new
price = 1 531 375.
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The risk on this node is therefore 1 531 375–1 512 121 = 19 254
SEK. A check in the Risk systems (with correct interest rates) shows
19 138 SEK.

Next, we make a shift of 1bp on node 635d. We then get

r(T) T D(T)

0.25000% 270 0.998152394
0.27484% 316 0.997623374
0.29000% 365 0.997104201
0.30885% 407 0.996562042
0.41000% 730 0.991833528

The forward rate (for the FRN) is now given by: 0.4269% giving a
new price = 1 597 221.

The risk on this node is therefore 1 597 221–1 512 121 = 85 100
SEK. A check in the Risk systems shows 89 329 SEK. (The trader said
88 000 SEK). Finally, we make a shift of 1bp on node 270d. We then get

r(T) T D(T)

0.26000% 270 0.998078561
0.27516% 316 0.997620646
0.28000% 365 0.997203916
0.30000% 407 0.996660383
0.41000% 730 0.991833528

The forward rate (for the FRN) is then given by: 0.3863% giving a new
price = 1 445 047.

The risk on this node is therefore 1 445 047–1 512 121 = -67 074
SEK. A check in the Risk systems shows 71 393 SEK. (The trader said
-70 000 SEK).

The total risk is now summed up to give 37 281 SEK (without dis-
counting 37 500 SEK). The risk system gives 37 307 SEK and the
traders said 37 500 SEK. As we can see, the error we made on a
notional of 1 500 000 000 SEK by guessing the rates is only -26 SEK!

With this simple analysis we can explain for the trader how the risk
is calculated in the risk system.
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What is important here is that management have to understand that
the risk in buckets can be quite high, but that the sum of the risk is
still OK. It is therefore important to set the limits so that the traders
can hedge their positions without breaching the limits.

6.1.5.2 Repricing the Instruments

When repricing the aforementioned instruments, we can just invert
the formulas. Instead, we will now proceed to use the zero rates and
the matching discount factors resulting from the bootstrap. We also
use interpolation between the calculated values. How close does such
a valuation come to the initially given/quoted market prices? Clearly
some of the repricing results should be the same as the used quotes,
especially for Deposits and FRAs.

When we invert the PV formula for the O/N and T/N Deposits,
we get

rparO/N =

(
1

DO/N
– 1

)
· 360

dO/N

rparT/N =

(
DT/N

DO/N
– 1

)
· 360

dT/N

The rest of the Deposits are given by

rpari =

(
DT/N

Di
– 1

)
· 360
di

All of the FRAs are given by the same formula. This is

riFRA =

(
Di–1
FRA

Di
FRA

– 1

)
· 360

diFRA

Note that now we don’t have to use the calculation of the stub rate. If
the FRA contracts are quoted in price, we instead use the formula

PFRA = 100 –

(
Dstub(t)

DFRA(t)
– 1

)
· 36000

91

The prices of the swaps are repriced as

rparT =
DT/N – DT

T∑
t=1

Yt · Dt

=
DT/N – DT

T–1∑
t=1

Yt · Dt + YT · DT
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Here, remember to use the year fraction at time t, given by

Yt =
360 · (yt – yt–1) + 30 · (mt – mt–1) + dt – dt–1

360

where yt–1 is the previous year where a rate exists, mt the month for
the rate and dt the days.

6.1.6 Nelson-Siegel Parameterization

Nelson and Siegel (1987) proposed a mathematical model for the
forward curve

f (t, s) = β0 + β1 · exp
{
–
s

τ1

}
+ β2 · s

τ1
· exp

{
–
s

τ1

}

Integrating this we can derive the corresponding zero-coupon yield
curve/zero rates.

r(t) =
1

t

t∫
0

[
β0 + β1 · exp

{
–
s

τ1

}
+ β2 · s

τ1
· exp

{
–
s

τ1

}]
ds

Making a change in variables: x = s/τ 1, ds = τ 1dx we get

r(t) = β0 +
β1τ1

t

t/τ1∫
0

e–xdx +
β2τ1

t

t/τ1∫
0

x · e–xdx

= β0 + β1
τ1

t

[
–e–x

]t/τ1
0 + β2

τ1

t

⎧⎨
⎩
[
–xe–x

]t/τ1
0 –

t/τ1∫
0

e–xdx

⎫⎬
⎭

= β0 + β1

[
1 – et/τ1

t/τ1

]
+ β2

[
1 – et/τ1

t/τ1
– et/τ1

]

This implies the following (spot) zero-coupon yield curve

rNS
(
t,�NS

)
= β0 + β1

(
1 – exp {–t/τ1}

t/τ1

)

+ β2

(
1 – exp {–t/τ1}

t/τ1
– exp {–t/τ1}

)
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6.1.6.1 The Svensson Extension

The Nelson-Siegel model was extended by Svensson (1994) in order
to take into account a second possible hump in the zero-coupon yield
curve. He added an extra term to the polynomial

f (t, s) = β0 + β1 · exp
{
–
s

τ1

}
+ β2 · s

τ1
· exp

{
–
s

τ1

}
+ β3 · s

τ2
· exp

{
–
s

τ2

}

This model is called the Nelson-Siegel-Svensson (NSS) model or the
Extended Nelson-Siegel model.

rENS
(
t,�ENS

)
= β0 + β1

(
1 – exp {–t/τ1}

t/τ1

)

+ β2

(
1 – exp {–t/τ1}

t/τ1
– exp {–t/τ1}

)

+ β3

(
1 – exp {–t/τ2}

t/ – exp {–t/τ2}

)

where�NS = (β0,β1,β2, τ1) and �ENS = (β0,β1,β2,β3, τ1, τ2) are con-
stants to be estimated, used to fit the models to the bond university.
This can be done with some kind of least-squares method, or with the
solver in Excel. The same constants are assumed to apply for all matur-
ities, so no splines are involved. The simple functional form ensures a
smooth and yet quite flexible curve.

The advantage with the Nelson-Siegel models are

1. It can easily be fitted to empirical data.

2. The fitted yield curve converge to a constant value: lim
t→∞ r(t) = β0.

3. The basis functions, given by:

ϕ1 = 1

ϕ2 =
1 – e–λ1t

λ1t

ϕ3 =
1 – e–λ1t

λ1t
– e–λ1t

can be interpreted as a parallel shift (ϕ1), tilting (ϕ2) and flexing (ϕ3).
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Fig. 6.6 The Nelson-Siegel basis functions

Fig. 6.7 The Extended Nelson-Siegel basis functions

This is illustrated in Fig. 6.6 and Fig. 6.7, which shows the basis
functions for the two models when fitted to Swedish Government
bonds.

A drawback with the extended (Svensson) model is that there are
so many parameters that they cannot always be uniquely identified.
Similar numerical problems do not exist in the Nelson-Siegel four para-
meter model. On the other hand, the extended model can be fitted to
a yield curve with two maxima.

The parameters (in the extended model) β0,β1,β2,β3, τ1 and τ2 have
here been estimated by minimizing the sum of the squared bond price



6 Bootstrapping Yield Curves 213

errors weighted by (1/�j):

Min
β0,β1,β2, τ1, τ2

∑{[
Pj – P

ENS
j (β0,β1,β2, τ1, τ2)

]
/�j

}2
where � equals the duration * price/(1 + yield to maturity) of the
bond. The minimizing problem can easily be solved by using the solver
in Excel. Alternatively, the sum of the mean absolute deviations can be
minimized.

6.1.7 Interpolation Methods

Several methods for interpolation are available. Here we will discuss

• Linear interpolation

• Logarithmic interpolation

• Polynomial interpolation

• Cubic spline interpolation

• Hermite interpolation

6.1.7.1 Linear Interpolation

A linearly interpolated curve of ytms from the following market data
consist of tree linear equations Yi(t), where each of them start at Ti and
end at Ti+1.

Yi (t) = Yi +
Yi+1 – Yi
Ti+1 – Ti

· (t – Ti)

Years YTM

0.0 4.00%
2.0 5.00%
4.0 6.50%

10.0 6.75%

If we use this market data to calculate the ytm for an instrument with
maturity in 6 years from now we obtain

Y2 (6) = 6.50 +
6.75 – 6.50

10 – 4
· (6 – 4) = 6.5833%
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Fig. 6.8 Linear interpolation. Remark the sharp knees in the forward curve

A problemwith linear interpolation is that the resulting yield curve can
get sharp angles at the intersection points, which gives jumps when
we calculate the forward rates, as shown in Fig. 6.8.

For an implementation in C/C++, see the function
double IPOL(double x, double, *pX, Double *pY, int N) above.

6.1.7.2 Logarithmic Interpolation

In logarithmic interpolation we use the following expression based on
the discount function

D (t) = D (Ti)
Ti+1–t
Ti+1–Ti · D (Ti+1)

t–Ti
Ti+1–Ti

Taking the logarithm of both sides, we get

ln {D (t)} = ln {D (Ti)} +
ln {D (Ti+1)} – ln {D (Ti)}

Ti+1 – Ti
· [t – Ti]
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Fig. 6.9 The alculation made in logarithmic interpolation

Using the same market data as before to calculate ytm for an in-
strument with maturity in 6 years we now perform the following
steps

1. Calculate the discount factors for the years 4 and 10.

2. Take the logarithm of the values.

3. Make a linear interpolation between the values.

4. Calculate the discount factor for the 6 years interest rate.

5. Translate that into a zero-coupon yield.

This is illustrated in Fig. 6.9.
There are a number of disadvantages with logarithmic interpol-

ation. The calculated interest rate will be higher than with linear
interpolation. There will be jumps in the forward curve. The zero-
coupon yield/zero rate will become piecewise linear between the
interpolated points (see Fig. 6.10). This is however, what we want
when we use hazard rates.

6.1.7.3 Polynomial Interpolation

With polynomial fitting the sharp edges are smeared out and we get a
smooth/differentiable curve. If we have n + 1 given discrete points we
can fit the data to a polynomial of degree n through all the points:

Yn(t) = a0 + a1 · t + a2 · t2 + a3 · t3 + . . . + +an · tn
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Fig. 6.10 Logarithmic interpolation

using the method of Lagrange

Yn(t) =
(t – T1)(t – T2)(t – T3) . . . (t – Tn)

(T0 – T1)(T0 – T2)(T0 – T3) . . . (T0 – Tn)
· Y0

+
(t – T0)(t – T2)(t – T3) . . . (t – Tn)

(T1 – T0)(T1 – T2)(T1 – T3) . . . (T1 – Tn)
· Y1

+
(t – T0)(t – T1)(t – T3) . . . (t – Tn)

(T2 – T0)(T2 – T1)(T2 – T3) . . . (T2 – Tn)
· Y2

+ . . .

+
(t – T0)(t – T1)(t – T2) . . . (t – Tn–1)

(Tn – T0)(Tn – T2)(Tn – T3) . . . (Tn – Tn–1)
· Yn

With numbers from our example, we get

Y3(t) =
(t – 2)(t – 4)(t – 10)

(0 – 2)(0 – 4)(0 – 10)
· 4.00 + (t – 0)(t – 4)(t – 10)

(2 – 0)(2 – 4)(2 – 10)
· 5.00

+
(t – 0)(t – 2)(t – 10)

(4 – 0)(4 – 2)(4 – 10)
· 6.50 + (t – 0)(t – 2)(t – 4)

(10 – 0)(10 – 2)(10 – 4)
· 6.75

= –0.0151 · t3 + 0.15313 · t2 + 0.25417 · t + 4.0
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Fig. 6.11 Polynomial interpolation. Here the forward rate might be negative

When t = 6 we get Y3(6) = 7.775%.
A disadvantage with this method can be seen in the Fig. 6.11. When

a point gets the polynomial slope to change the sign, we can get
negative forward rates.

6.1.7.4 Cubic Spline

In this technique, we add certain stiffness to the yield curve. At the
same time, the curve will be continuous and differentiable. We fit a
third-order polynomial between the points

Y0(t) = a0 + b0 · t + c0 · t2 + d0 · t3 between T0 and T1

Y1(t) = a1 + b1 · t + c1 · t2 + d1 · t3 between T1 and T2

Y2(t) = a2 + b2 · t + c2 · t2 + d2 · t3 between T2 and T3
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Each equation has four unknown (the coefficients a – d). With tree
equations, we get the following system with 12 unknowns to solve:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 T0 T2
0 T3

0 0 0 0 0 0 0 0 0
1 T1 T2

1 T3
1 0 0 0 0 0 0 0 0

0 0 0 0 1 T1 T2
1 T3

1 0 0 0 0
0 0 0 0 1 T2 T2

2 T3
2 0 0 0 0

0 0 0 0 0 0 0 0 1 T2 T2
2 T3

2
0 0 0 0 0 0 0 0 1 T3 T2

3 T3
3

0 1 2T1 3T2
1 0 –1 –2T1 –3T2

1 0 0 0 0
0 0 0 0 0 1 2T3 3T2

3 0 –1 –2T4 –3T2
4

0 0 2 6T1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 6T4

0 2 6T2 0 0 –2 –6T2 0 0 0 0
0 0 0 0 0 0 2 6T3 0 0 –2 –6T3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
b0
c0
d0
a1
b1
c1
d1
a2
b2
c2
d2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.00
5.00
5.00
6.50
6.50
6.75
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where we have used that, the first and second derivatives in the con-
nections are equal. The second derivatives at T0 and T3 are zero. In our
example the coefficients is calculated as

{0.022, 0.000, 0.413, 4.000, 0.047, 0.411, –0.410,

4.548, 0.008, –0.249, 2.230, 1.029}

The 6-year interest rate is then given as

Y2(6) = 0.008 · 63 – 0.249 · 62 + 2.230 · 6 + 1.029 = 7.173%

The curve is shown in Fig. 6.12.
However, there also exist some disadvantages in this model. When

we are studying risk measures by shifting a part of the yield curve, the
entire curve will get affected. This effect is small but not desirable.

Bootstrap and Cubic Splines

Bootstrapping can only provide knowledge of the discount factors for
(some of) the payment dates of the traded bonds. In many situations,
information about market discount factors for other future dates will
be valuable. In this section and the next, we will consider methods to
estimate the entire discount function P(t, T) (at least up to some large
maturity T). To simplify the notation in what follows, let P(τ ) denote
the discount factor for the next τ periods (i.e. P(τ ) = P(t, t+τ )). Hence,
the function P(τ ) for τ ∈ [0,∞) represents the time t market discount
function. In particular, P(0) = 1.
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Fig. 6.12 Cubic spline interpolation

We will use a similar notation for zero-coupon rates and forward
rates: y(τ ) = y(t, t + τ ) and f (τ ) = f (t, t + τ ). The methods studied in
this section are both based on the assumption that the discount func-
tion P(τ ) can be described by some functional form involving some
unknown parameters. The parameter values are chosen to get a close
match between the observed bond prices and the theoretical bond
prices computed using the assumed discount function.

The approach studied in this section is a version of the cubic
splines approach introduced by McCulloch (1971) and later modified
by McCulloch (1975) and Litzenberger and Rolfo (1984).

The word spline indicates that the maturity axis is divided into
subintervals and that the separate functions (of the same type) are
used to describe the discount function in the different subintervals.
The reasoning for doing this is that it can be quite hard to fit a relat-
ively simple functional form to prices of a large number of bonds with
very different maturities. To ensure a continuous and smooth term
structure of interest rates, one must impose certain conditions for the
maturities separating the subintervals.
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Given prices for M bonds with time-to-maturities of
T1 ≤ T2 ≤ · · · ≤ TM. Divide the maturity axis into subintervals defined
by the “knot points” 0 = τ0 < τ1 < · · · < τk = TM. A spline approxim-
ation of the discount function P(τ ) is based on an expression like

P(τ ) =
k–1∑
j=0

Gj(τ )Ij(τ ),

where the Gj’s are basis functions, and the Ij’s are the step functions

Ij(τ ) =

{
1, if τ � τj,
0, otherwise.

Hence, P(τ ) = G0(τ ) for τ ∈ [τ0, τ1), P(τ ) = G0(τ ) + G1(τ ) for
τ ∈ [τ1, τ2), etc. We demand that the Gj’s are continuous and
differentiable and ensure a smooth transition in the knot point’s
τj. A polynomial spline is a spline where the basis functions are
polynomials. Let us consider a cubic spline, where

Gj(τ ) = αj + βj(τ – τj) + γj(τ – τj)
2 + δj(τ – τj)

3,

and αj, βj, γj, and δj are constants. For τ ∈ [0, τ1), we have

P(τ ) = α0 + β0τ + γ0τ
2 + δ0τ

3.

Since P(0) = 1, we must have α0 = 1. For τ ∈ [τ1, τ2), we have

P(τ ) =
(
α0 + β0τ + γ0τ

2 + δ0τ
3
)

+
(
α1 + β1(τ – τ1) + γ1(τ – τ1)

2 + δ1(τ – τ1)
3
)

To get a smooth transition between in the point τ = τ1, we
demand that ⎧⎨

⎩
P(τ1 + δ) = P(τ1 – δ),
P′(τ1 + δ) = P′(τ1 – δ),
P′′(τ1 + δ) = P′′(τ1 – δ)

The conditions ensure that the discount function is continuous and
twice differentiable. The first condition implies α1 = 0. Differentiating
the two connected polynomials, we find

P′(τ ) = β0 + 2γ0τ + 3δ0τ
2 0 ≤ τ < τ1

and

P ′(τ ) = β0 + 2γ0τ + 3δ0τ
2 + β1 + 2γ1(τ – τ1) + 3δ1(τ – τ1)

2τ1 ≤ τ < τ2
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The second condition now implies β1 = 0. Differentiating again, we get

P ′′(τ ) = 2γ0 + 6δ0τ 0 ≤ τ < τ1

and

P ′′(τ ) = 2γ0 + 6δ0τ + 2γ1 + 6δ1(τ – τ1)τ1 ≤ τ < τ2

Consequently, the third condition implies γ1 = 0. Similarly, it can be
shown that αj = βj = γj = 0 for all j = 1, . . . , k – 1. The cubic spline is
therefore reduced to

P(τ ) = 1 + β0τ + γ0τ
2 + δ0τ

3 +
k–1∑
j=1

δj(τ – τj)
3Ij(τ )

Let t1, t2, . . . , tN denote the time distance from today (date t) to the
each of the payment dates in the set of all payment dates of the
bonds in the data set. Let Yin denote the payment of bond i in tn
periods. From the no-arbitrage pricing relation (the present value of
the coupon paying bond is equal to the sum of the present value of
each cash flow), we should have that

PVi =
N∑
n=1

YinP(tn)

where PV i is the current market price of bond i. Since not all the
zero-coupon bonds involved in this equation are traded, we will allow
for a deviation εi so that

PVi =
N∑
n=1

YinP(tn) + εi

We assume that εi is normally distributed with mean zero and variance
σ 2 (assumed to be the same for all bonds) and that the deviations for
different bonds are mutually independent. We want to pick parameter
values that minimize the sum of squared deviations

M∑
i=1

εi
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Substituting the polynomial expression with these yields

PVi =
N∑
n=1

Yin

⎧⎨
⎩1 + β0tn + γ0t

2
n + δ0t

3
n +

k–1∑
j=1

δj(tn – τj)
3Ij(tn)

⎫⎬
⎭ + εi

which implies that

PVi –
N∑
n=1

Yin = β0

N∑
n=1

Yintn + γ0

N∑
n=1

Yint
2
n + δ0

N∑
n=1

Yint
3
n

+
k–1∑
j=1

δj

N∑
n=1

Yin(tn – τj)
3Ij(tn) + εi

Given the prices and payment schemes of the M bonds, the k + 2
parameters β0, γ0, δ0, δ1, . . . , δk–1 can now be estimated using ordin-
ary least squares. Substituting the estimated parameters, we get an
estimated discount function; from which estimated zero-coupon yield
curves and forward rate curves can be derived as explained earlier.

It remains to describe how the number of subintervals k and the
knot point’s τj are to be chosen. McCulloch suggested to let k be the
nearest integer to

√
M and to define the knot points by

τj = Thj + θj
(
Thj+1 – Thj

)
where hj = [j · M/k] (here the square brackets mean the integer part)
and θj = j ·M/k –hj. In particular, τk = TM. Alternatively, the knot points
can be placed at for example 1 year, 5 years and 10 years, so that the
intervals broadly correspond to the short-term, intermediate-term and
long-term segments of the market.

The Fig. 6.13 shows the discount function on the Swedish govern-
ment bond markets on April 24, 2006 (the same data as in the previous
bootstrap) estimated using cubic splines and data with maturities up
to 15 years.

The nodes and values are given in Table 6.4.(Fig. 6.14)

Discount functions estimated using cubic splines would usually
have a credible form for maturities less than the longest maturity in the
data set. Although there is nothing in the approach that ensures that
the resulting discount function is positive and decreasing, as it should
be, this will usually be the case. As the maturity approaches infinity,
the cubic spline discount function will approach either plus or minus
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Fig. 6.13 The discount function

Table 6.4 Parameters of fitting the discount
function

Parameter Value Time

β –2,27E-02
γ –2,64E-04
δ0 –1,30E-03
δ1 1,84E-03 1,00
δ2 5,21E-04 2,00
δ3 –1,08E-03 3,00
δ4 4,09E-05 5,00
δ5 –5,17E-05 10,00
δ6 5,94E-05 14,00

Fig. 6.14 Spot and orward rate with cubic spline

infinity depending on the sign of the coefficient of the third-order
term. Of course, both properties are unacceptable, and the method
cannot be expected to provide reasonable values beyond the longest
maturity TM, since none of the bonds are affected by that very long
end of the term structure.
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Two other properties of the cubic splines approach are more dis-
turbing. First, the derived zero-coupon rates will often increase or
decrease significantly for maturities approaching TM,. Second, the de-
rived forward rate curve will typically be quite rugged especially near
the knot points, and the curve tends to be very sensitive to the bond
prices and the precise location of the knot points. Therefore, forward
rate curves estimated using cubic splines should only be applied with
great caution.

6.1.7.5 Hermite Interpolation

With this technique, sometimes called clamped cubic spline, this
effect is eliminated. When a shift is made, only the closest part of the
curve will affect. Let r be a vector Y ′ = {y1, y2, . . . yn} and

Y(t) = Yi + mi(t) · (Yi+1 – Yi) + mi(t) · (1 – mi(t)) · gi + m2
i (t) · (1 – mi(t)) · ci

where

mi(t) =
t – Ti

Ti+1 – Ti
gi = (Ti+1 – Ti) · yi – (Yi+1 – Yi)
ci = 2 (Yi+1 – Yi) – (Ti+1 – Ti) · (yi+1 + yi)

The vector Y ′ is calculated as

yi =
1

Ti+1 – Ti–1

[
(Yi – Yi–1) · (Ti+1 – Ti)

Ti – Ti–1
+
(Yi+1 – Yi) · (Ti – Ti–1)

Ti+1 – Ti

]

With the boundary

y1 =
1

T3 – T1

[
(Y2 – Y1) · (T3 + T2 – 2 · T1)

T2 – T1
+
(Y3 – Y2) · (T2 – T1)

T3 – T2

]

yn =
1

Tn–1 – Tn–2

×
[
(Yn–1 – Yn–2) · (Tn – Tn–1)

Tn–1 – Tn–2
+
(Yn – Yn–1) · (2 · Tn – Tn–1 – Tn–2)

Tn – Tn–1

]
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A variant of the Hermite interpolation is a method called Hermite RT.
In this method, we interpolate with Hermite as shown previously but
via the logarithm of the discount rates given as

D(t) = e–r·t

where r is the continuous interest rate at time t. ln[D(t)] = –rt which
has named the method. For the spot rate, we then have

(1 + Y)t = e–r·t

This curve is nicer than the ordinary Hermite curve. Especially when
the liquidity is low and the number of instruments are limited. In many
advanced risk software, there is a possibility to combine the earlier
methods with different magnitudes.

6.1.8 Spread and Spread Curves

Spreads are used to value securities with certain properties, such as

• The credit ranking of the issuer

• Liquidity

• Ranking due to a default

• Embedded options

A spread is defined as a number of bps above an underlying yield
curve, the base curve. The value of the instruments decreases due to
the spread.

Example 6.1.8.1
A spread above the spot rate gives a discount rate as:

rdiscountt1 =
1(

1 + rspott1 + s
)t1



7
The Interbank Market

7.1 Spreads and the Interbank Market

We will now take a look at the Interbank market and different kind
of spreads. We explain some of the details using the Swedish market
(as Riksbanken, the Central bank in Sweden1).

Banks can borrow under the marginal lending facility (Swedish:
utlåningsfaciliteten) (if they made adequate security) in the National
Bank at an interest rate, lending rate, which is a bit above (typically
0.75 %) the repo rate.2 Banks with a surplus can use the National Bank
deposit facility (Swedish: inlåningsfaciliteten) that provides a deposit
rate a bit (typically 0.75 %) lower than the repo rate.

Since there is a quite large gap between deposit rate and lending
rate, this gives a strong incitement for banks, to instead, settle directly
with each other to get a better interest rate. This rate is called the
overnight rate (O/N). The central bank tries to control this rate, via
the repo rate. With this rate, the central bank signals where they want
the O/N will be a week ahead.

If the banking system as a whole have a deficit or a surplus, the cent-
ral bank implements a reverse every week. Imbalances may still occur
day by day. To create balance and gain greater control over the O/N,
the central bank also try on a daily basis, get the banks’ total deficit is
the same as the total surplus. This is done by fine-tuning operations,
which lend money at the repo rate +0.10 % and lend at the repo rate
–0.10 % to create a balance.

1 The Swedish central bank is the first central bank in the world.
2 The Swedish Repo Rate is the reference (policy) rate decided by the Central bank in Sweden.
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Overall, the central bank therefore ensures that balance exists in
the single payment system (in Sweden called RIX). Surplus and deficit
held by individual banks, can however, been managed by the banks
themselves. At the end of each day, banks that need to borrow use a
bank with a surplus.

TheO/N for today runs from today until tomorrow. Tomorrow
next (tom next or T/N) runs from tomorrow until the next day. Next
maturity of fixed income market is called the S/N (spot/next) which
runs from the day after tomorrow and one business ahead, 1W runs
from the day after tomorrow for a week. All days above are bank days.

7.1.1 TED-Spread and Other Spreads

XIBOR (the general Interbank Offer Rate) is the rate that banks can
borrow from each other’s. To assess how the market views the risk of
lending to another bank, we put the XIBOR rate in relation to any other
interest. The safest player on the market is the government because
they can always pay debts by printing new money (debt monetiza-
tion). Therefore, we compare the XIBOR rates by the interest rate
on government securities with the same maturity, to see which risk
premium imposed on bank loans. The difference in yield between
2 securities with similar characteristics is called a spread. The dif-
ference between a 3-month interbank rate and the rate on 3-month
government securities is known as the Treasury-Euro-Dollar (TED)
spread. TED denotes the spread between the Treasury bill yield and
the Libor rate for the same maturity (usually 3 months). In Fig. 7.1 we
show the TED spread in USD3 from the beginning of 2007 to the end
of 2009. We observe the very high spread during the period of the
financial crisis.

7.1.2 Overnight Indexed Swaps (OIS) and Basis Spread

A 12-month XIBOR rate reflects not only the expectations of the O/N
that will prevail in the average for the next 12 months, but also a risk
premium, which raises the rate of long-term loans. Therefore, it is easy
to understand that the market is interested in interest-rate instruments

3 Source, FRED, https://fred.stlouisfed.org/ Federal Reserve Economic Data – St. Louis Fed

https://fred.stlouisfed.org/


7 The Interbank Market 229

Fig. 7.1 The USD TED-spread during the financial crises.

for a period longer than O/N, but that keeps the same rate as the aver-
age for the O/N during the period. Such instruments are called as the
overnight indexed swaps (OIS).

With an OIS, 2 parties may agree that party 1 receives a fixed rate
from party 2 (the fixed leg of the swap) and party 2, a rate equal to
the average of the O/N from party 1 (the floating leg of the swap).

In several areas, currency swaps are based on the central bank
policy rate. In Sweden, this rate is the repo rate, but unfortunately,
Sweden does not have an OIS based on the repo rate. The closest we
have is the STIBOR T/N Average (STINA) swaps. STINA is the average
rate for the minimum rate on the STIBOR market. A STINA swap gives
the holder of the floating leg the average rate of STIBOR T/N over the
period of the swap.

Example 7.1.2.1
Given a 4-year to maturity bond with a principal 1000 and an annual coupon Party
1 signs a 3-month STINA swap with party 2 and receives a 4.6 % rate from party 2.
Party 2 receives STIBOR T/N from party 1. No payments are made during the term,
but instead, after3 months, the average interest rate for STIBOR T/N, is calculated
and the difference against the swap are paid to the party who should have paid
the lowest rate over the period. In that way, the contract is pretty riskless, since the
maximum loss is the profit from the swap itself.

STIBOR T/N is closer related to the repo rate than the government
securities. Therefore the STINA swaps better reflects the expectations
of the repo rate than, for example, a Swedish 3-month Treasury bill.
It is therefore interesting to complement the comparison between
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STIBOR-interest and the interest rate on government securities (TED
spread, and so on), with a spread calculation that sets STIBOR
rate in relation to the STINA rate. This spread is “cleaner” in the
sense of risk premium than the expected average of the repo
rate. This spread is sometimes called Basis spread. The spread
between STINA swap and government bond rate is called the swap
spreads.

Unfortunately, this Basis spread is not “clean” in the sense that it
would consist only of interbank risk premium. Remember that we
have seen previously, that there is a risk premium built in STIBOR T/N.
Basis spread contains thus the risk premium in the interbank market
for the period you study, minus the expectations on the risk premium
in STIBOR T/N compared to the repo rate. As long as we in Sweden
have no repo-rate swap, we will get to live with this problem. Let us
look at the numbers and calculate the Basis spread and TED spread at
2007-12-28. This is shown in Table 7.1.

In Fig.7.2 and Fig.7.3 we show the market interest rates and the
spreads in SEK 2007-12-28.

We see in Fig.7.3 that the Basis spread indicates a great concern
that the market does not believe the financial turmoil is heading off in
the near future. The risk premium on interbank loans against STIBOR
T/N market is much higher for longer maturities. This is what we saw
from the spread between STIBOR and government securities (the TED
spread and the TED spread curve).

In general, basis swap spreads reflect the underlying funding needs
of the general banking community. Thus for basis swaps within a
single currency the spread reflects the need for banks to preserve their
liquidity (i.e. funding for long periods). This results in the fact that
6-month money is generally more expensive than rolled up 3-month
money. This spread between swaps with different tenors is called a
Tenor spread.

Table 7.1 Market rates and their spreads in SEK 2007-12-28

Term STINA STIBOR Treasury-bill Basis-spread TED-spread (SEK) Swap-spread

1M 4.64 4.7 4.22 0.06 0.48 0.42
2M 4.65 4.808 0.16
3M 4.73 5.103 4.345 0.37 0.758 0.39
6M 4.85 5.42 4.406 057 1.014 0.44
9M 4.885 5.603 0.72

12M 4.92 5.725 4.561 0.81 1.164 0.36
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Fig. 7.2 The market rates in SEK 2007-12-28

Fig. 7.3 The spreads in Swedish maket rates 2007-12-28

For cross currency basis spreads it’s similar. There is more
demand for funding in one currency and more supply in another
currency. For instance many Japanese banks have funding sources in
Japanese Yen (JPY) but have commitments in USD. They therefore will
swap their JPY for USD. The basis swap spread reflects this supply
and demand situation. The same effect is seen in the FX swap market
which is the other means of exchanging the funds.
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7.1.3 Some Overnight Indices

EONIA (Euro Overnight Index Average) is an effective O/N interest
rate calculated by the European Central Bank as a weighted average
of all overnight unsecured lending transactions in the interbank
market. It has been initiated within the euro area by the contribut-
ing Panel Banks. It is one of the 2 benchmarks for the money and
capital markets in the euro zone (the other one being Euribor). The
banks contributing to Eonia are the same as the Panel Banks quoting
for Euribor. In Fig. 7.4 we show the Eonia rates between 1999-01-04 to
2016-08-12.
SONIA is the acronym for Sterling Overnight Index Average. It
is the reference rate for O/N unsecured transactions in the Sterling
market. Each London business day the Sonia fixing is calculated as
the weighted average rate of all unsecured O/N sterling transactions
brokered in London by WMBA members. The rate conventions are
annualised rate, act/360, and 4 decimal places.

Fig. 7.4 The Eonia (EUR OIS) between 1999 and mid Augist 20164

4 Source, FRED, https://fred.stlouisfed.org/ Federal Reserve Economic Data - St. Louis Fed

https://fred.stlouisfed.org/
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CHOIS (based on SARON, Swiss Average Rate Overnight) is an
O/N interest rates average referencing the Swiss Franc interbank repo
market. It was launched by the Swiss National Bank (SNB) in co-
operation with 6 Swiss Exchange. Since August 25 2009, SARON
has replaced the previously used repo O/N index. The reference
rate is based on CHF repo interbank market data provided by Eurex
Zurich Ltd.
TONAR is the acronym for Tokyo Overnight Index Average. It is
the reference rate for O/N unsecured transactions in the Japanese Yen.

7.1.4 Basis Swaps

Strictly speaking, a basis swap or a floating/floating cross currency
basis swap, is a swap in which 2 streams of money market floating
rates of 2 different currencies are exchanged.
In contrast to a standard interest rate swap fixed for floating, notional
are exchanged at the starting of the swap and exchanged back at ter-
mination. Typical example of a basis swap is swapping dollar Libor
versus Yen Libor.

By extension, basis swap refers to floating/floating (cross currency
or not) swap in which 2 streams of floating rates are exchanged, regard-
less if these floating rates are in the same currency. Typical example of
basis swap in the same currency are swapping dollar Libor for floating
commercial paper, Prime Treasure bills or Constant Maturity Treasury
rates or even 90 days Dollar Libor for 180 days Dollar Libor. In the case
of a swap in the same currency, notional do not change hands as there
is no currency exposure.

As far as the cross currency swap market is concerned, basis swap
enables traders and investor to swap their interest rate risk exposure
in another currency. Basis swap market reflects the global demand for
swapping from one currency into another as well as the credit quality
of the central bank. This is a huge market with billions of notional
transaction every day. One of the most active markets is the Yen–Dollar
market.

When an investor wants to swap his currency exposure into another
one, he may go to the forward foreign exchange markets. However,
this market is only liquid up to 2 to 3 years, after which the basis swap
market is taking over. Basis swap market is an important component
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to build a cross currency swap market used for cross currency swap
pricing as well as other cross currency type transaction.

Basis swap should not be confused with:

• General cross currency swaps: the intersection between basis swap
and cross currency swap lies in the floating for floating cross cur-
rency swap. However, a basis swap is not necessarily based on 2
currencies, while a cross currency swap is not necessarily floating
for floating but can be fixed for floating, floating for fixed or fixed
for fixed.

• Quanto- or differential-swap, which implies to pay in 2 currencies
but with the same notional and no exchange of notional.

Like any standard swap, a basis swap can have tailor made notional
such as amortising, accreting, or roller coaster notional. A rollercoaster
swap is a swap with a notional principal that differs during various
payment periods. In other words, it is a swap agreement in which
counterparties agree to flexibility of payments.

7.1.4.1 Pricing Methodology

The basis is more pronounced on the USD/JPY market, hence we will
examine the case of the 10 year basis swap paying US Dollar 3-month
Libor Flat versus receiving JPY 3-month Libor plus a spread. The mar-
ket quotes this spreads as being 15 basis points (bps) running. This
means that to enter into a swap where one would pay US Dollar 3-
month Flat Libor, one would require receiving JPY 3-month Libor plus
15 bps.

At first sight, this may look strange to someone accustomed to plain
vanilla interest rates as she has been always taught that a floating leg
should always be at par. Hence the 2 legs, USD 3-month Libor and JPY
3-month Libor should be equal. However, one has to bear in mind that
interest rate swap Libor are approximate averages of offer rates from
different banking institution. Libor rates bare credit and liquidity risk.
Hence a USD Libor rate may have a better credit and liquidity quality
as the JPY Libor fixing, hence the spread required by USD investors
to receive a worst currency. In addition, the basis swap market is very
much driven by supply and demand for issuance. A spread of 15 bps
means that there is little demand to receive JPY Libor, hence one has
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to pay a premium to convince investors to swap. To build a consistent
methodology for pricing, one can take 2 approaches

• Single interest rate curve method: Build an interest curve that
uses all the constraint of the forward foreign exchange market and
the basis swap market to price consistently basis swaps. Although
simple, this method has the disadvantage to oblige the trader to
change curve when pricing a JPY leg in the JPY market as opposed
to pricing a JPY versus USD swap. Interestingly, one can look at the
discount factor difference between the JPY normal bootstrapped
interest rate curve and the basis swap interest rate curve to quantify
the basis swap market effect.

• JPY Libor curve and spread curve used to account for the
basis swap market: One has first to create the normal interest
rate swap curve by bootstrapping the domestic market. Then using
this curve, one can bootstrap another curve called the basis swap
spread curve that adjusts for credit quality to get the JPY basis swap
leg (JPY plus 15 bps) to be at par. Basically this spread curve says
that a 3-month JPY Libor leg is not at par and one need 15 bps to
bring it at par. When pricing in the JPY domestic market, one only
uses the standard interest swap curve. In this market, a leg paying
JPY 3-month Libor is at par. When pricing a cross currency swap
JPY versus USD, one has to apply to the JPY curve the basis swap
spread curve to price correctly the JPY leg. More generally, one can
build an interest rate infrastructure that uses standard Libor curve
plus a funding curve or spread curve to account for various market
effects like credit and counterparty risk, basis swap market, CMS
and CMT adjustment and etc.

The existence of this basis swap curve implies the same swap could
be at par for a JPY investor while not at par for a USD investor as they
have a different view on credit quality of the Bank of Japan.



8
Measuring the Risk

8.1 Risk Measures

In this section we present some traditional risk measures based on the
present value formula used in the markets for the quoting of prices and
yields to maturity (ytms). These measures are calculated by trading
software in order to at least partially manage the risk in instruments
and portfolios.

8.1.1 Delta

The delta value of an instrument shows the sensitivity of the price1

to changes in the main source of risk of an underlying instrument.
Examples of sources of risk are yield curves changes and the price of
underlying asset and the delta is calculated separately for these.

8.1.1.1 Delta Price

The price delta calculations are only applicable for derivative instru-
ments with an underlying instrument (that have a price2), valued
on the basis of a non-term structure model. It shows the change in
theoretical price given a unit change in the price of the underlying.

1 With price, we here refer to the present value sometimes called the fair value of a financial
instrument.
2 Interest rate is not a tradeble instrument. But a bond option have an underlying instrument,
the bond.
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The general Delta Price formula is

�price =
∂ (PV)

∂U
=
PV (U + h) – PV (U)

h
× scale

where U is the current value of the main source of risk and h is the
differentiation step. When the market price of the underlying is used,
the price shift is a relative shift, that is,

h = 0.0001 × U

When a theoretical underlying price is used, the price shift is an
absolute shift, that is,

h = 0.01

Sometime this value is called delta explicit.

Example 8.1.1.1
We want to calculate the Delta Price for a bond using

a) the market price of the underlying, and

b) the theoretical price of the underlying.

First, assume that the current market price of the underlying asset is U = 100.17.
The present value will now be calculated twice, the first time using the current
price of the underlying and the second time after applying a shift to the price of
the underlying with the shift size expressed as h = Ux 0.0001 = 0.010017.

We obtain

�price =
PV(U + h) – PV(U)

h
· 100

Nom

where Nom is the nominal amount, typically one million.
Next, assume that the theoretical price of the underlying asset is U = 100.15. The

shift size is now h = 0.01 and U + h = 100.16. The present value is calculated twice,
using these two different prices for the underlying, which gives the result with the
previous formula.

8.1.1.2 Delta Yield

The yield curve delta shows the change in the present value, given a
shift of 1 basis point (bp) in all yield curves used. The shift is applied
to the annually compounded zero coupon curve, using the day count
fraction Act/365.

The yield delta can either refer to an upward or a downward shift
of yields. The general Delta Yield formula is

�yield =
[
PV
(
r + h

)
– PV

(
r
)] ∗ scale
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where

h = ±0.00001 and scale = 1000.

Sometimes, but not always, the shift step used in the calculations is
thus actually 1/1000 of a bp to get high accuracy of the slope, but
the result is scaled to a 1 bp shift. The delta can also be broken down
according to different time buckets, to illustrate the sensitivity to a par-
ticular shift in a given time bucket. These time buckets can be defined
in the software used to calculate the risk. This can be 1, 2, 3, 7 days
followed by 2 and 4 weeks, then 3, 6, 9 and 12 months and 2, 3, 4, 5,
7, 10, 12, 15, 20, 25 and 30 years. In such a way that the time buckets
are well defined between the given terms.

Example 8.1.1.2
We will calculate the Delta Yield of a bond using the theoretical price of the
underlying interest rate, the yield y.

The calculations are based on the present value using the current yield curves
and the present value using yield curves that are shifted with a shift size of 1×10–5.
The result is then scaled so that the shift represents a size of one bp. We have

�yield =
[
PV(y + 0.00001) – PV(y)

]
· 1000

8.1.2 Duration and Convexity

The Macaulay duration (or just duration) is a measure of the price sens-
itivity of an interest rate instrument with the respect to an absolute
change in the ytm. This measure can be interpreted as the average
life of the bond, when a bond is the financial instrument. It is easy to
show that the duration for a zero-coupon bond is the same as its time
to maturity.

Themodified durationmeasures the percentage bond price change
for an absolute yield change. It can also be interpreted as the negative
slope of the price-yield relation. In a similar way convexity can be
interpreted as the curvature of the relation between the price and ytm.

We use the following 4 risk measures

• Macaulay’s duration

• Modified duration

• Dollar duration

• Convexity
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They will depend on

• Time to maturity

• The coupon rate

• The coupon frequency

• The market rate

For a bond, the duration measure of the weighted average of the times
until the fixed cash flows are received and is given in year. Therefore,
the duration of a zero-coupon bond is the same as its time to matur-
ity. A coupon-paying bond has duration less than its time to maturity
because part of the cash flows, the coupons, are paid before maturity.
This will be illustrated later.

Suppose we have n cash flows ci, i = 1, 2, . . . , n at times ti. Then, the
quoted bond price, P is given by (using continuous compounding):

P =
n∑
i=1

cie
–yti

where y is the ytm. The duration is defined as:

D =
1

P

n∑
i=1

ticie
–yti =

n∑
i=1

ti

[
cie–yti

P

]

where the factor in [.] is the present value of each cash flow using the
continuously compounded ytm for discounting of the cash flows. This
can also be expressed as

D = –
1 + y

P

∂P

∂y
=

1

P

[
n∑
i=1

ti · Ci

(1 + y)ti
+

tm · N
(1 + y)tm

]
.

where for simplicity we assume there is 1 coupon per year and

P = the present value (which is the quoted price, if this exist),
y = the bond ytm,
C = coupon size (the coupon rate times the nominal amount, N)
N = the nominal amount (or the principal)
n = number of years to maturity (if we have 1 coupon per year).

P is given by

P =
N

(1 + y)n
+

n∑
i=1

C

(1 + y)i

The factor (1 + y) comes from the fact that duration is defined as the
derivative with respect to the ytm in the market quoting formula. For
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continuously compounded ytm we get

D = –
1

P

∂P

∂y
= –

1

P

∂P

∂y

[
n∑
i=1

Ci · e–y·ti + N · e–y·tm
]

=
1

P

[
n∑
i=1

Ci · ti · e–y·ti + N · tm · e–y·tm
]
.

If the coupon frequency is m times per year, the formulas has to be
slightly modified.

Example 8.1.2.3
Given a 4-year maturity bond with a principal 1000 and an annual coupon rate of
7.5%. This bond will have the following projected3 cash flows.

Suppose we have a constant (flat) market rate of 8%. Then the present value
of the cash flows will be

We then get duration of 3.6 year.

8.1.2.1 Swap Duration

Duration, as we have seen for aforementioned bonds, can also be
defined for other kinds of interest rate instruments. Portfolio managers
like to find the duration for their entire portfolio. Therefore we also

3 Projected cashflows are the coupons payes or received in the future given by the coupon rate.
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need also to define a duration for other instruments. One problem is
that no ytm is defined for other instruments.

Some managers use an approximation for swaps by calculating the
duration of the fixed leg as 0.75 times the time to maturity. Similarly,
one may calculate the duration of the floating leg as 0.5 times the tenor.
This means that for a floating leg with 3-month tenor, the duration
should be 0.25 ∗ 0.5 = 0.125 years, for a 6-month tenor 0.5 ∗ 0.5 = 0.25
and for a 1-year tenor it will be 0.5.

Example 8.1.2.4
A 10-year receiver swap with a 3-month tenor will have a duration of 7.5 – 0.125 =
7.375 year. Similarly, the payer swap has –7.375 year. Portfolio managers used payer
swaptions to hedge duration from bonds.

A better calculation of the Swap duration would be to use the
interest rate sensitivity and use the following formula

Durswap =
MV0 –MV1

N +MV0
× 10000

HereMV0 is the market value of the swap andMV1 the market value we
get if we shift the market swap curve 1 bp (up) and N is the nominal
amount.

Example 8.1.2.5
In the following table, we show how the duration varies for a semi-annual coupon-
paying bond when the ytm is 5% and the coupon rate is 1, 2, 5 and 10%,
respectively.

Coupon Rate

Years to maturity 1% 2% 5% 10%
1 0.997 0,995 0.988 0.977
2 1.984 1.969 1.928 1.868
5 4.875 4.763 4.485 4.156

10 9.416 8.950 7.989 7.107
25 20.164 17.715 14.536 12.754
50 26,666 22.284 18.765 17.384

100 22.572 21.200 20.363 20.067
Infinity 20.500 20.500 20.500 20.500

When time to maturity increases to the limit, we find the value

D –––––––→
T→∞

1 + y/f

y

Where y is the ytm per annum.
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Example 8.1.2.6
A 3-year bond with principal 1000 paying an annual coupon of 10%. If the market
price of this bond is 951.97 with a yield of 12%, the duration is given by

D =
0.10 · 1000/(1 + 0.12) + 2 · 0.10 · 1000/(1 + 0.12)2 + 3 · (1 + 0.10) · 1000/(1 + 0.12)3

951.97
= 2.73 years

If we have a portfolio of interest rate instruments, the portfolio
duration is defined by

Dportfolio =
1

PVportfolio
·
∑
i

PVi · Di

8.1.3 Modified Duration, Dollar Duration and DV01

In contrast to the Macaulay duration, modified duration (MD) is a
price sensitivity measure, defined as the percentage derivative of price
with respect to yield. MD applies when a bond or other asset price is
considered as a function of yield. In this case one can measure the log-
arithmic derivative with respect to yield. The MD shows the change
in price in percentage terms, resulting from a change in the ytm. It is
defined by

MD = –
1

P

∂P

∂y
= {using the simple formula} =

D

1 + y/n

where n is the number of cash flows per year and D is the Macaulay
Duration:

D =
1

P

{
n∑
i=1

ti · Ci

(1 + y)ti
+

tn · N
(1 + y)tn

}
.

The duration gives a value of the risk. Long duration ⇔ high risk.

Definition 8.1.3.1. Dollar duration (DV01) measures the change
in price (in money, £, $, SEK) if the market interest rate increases
with 1%.

DD = MD · N
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The DV01 is defined as the derivative of the value with respect to
yield.

D$ = DV01 = –
∂PV(y)

∂y

DV01 is analogous to the delta in derivative pricing since it is the ratio
of a price change in output (dollars) to a unit change in input (1 bp
of yield). DV01 is called Dollar duration because it is the change in
price in dollars, not in percentages. It gives the dollar variation in a
bond’s value per unit change in the yield. It is often measured per 1
bp – DV01 is short for “dollar value of a 01” (or 1 bp).

DV01 can be used for instruments with zero upfront value such as
interest rate swaps where percentage changes and MD are less useful.

For a par bond and a flat yield curve, the DV01 is the derivative of
the price with respect to the yield, and PV01, the value of a one-dollar
annuity will actually have the same value.

8.1.3.1 PV01 – Val01 – BPV

The names PV01 (or Val01, present value of a bp) refers to the change
in the present value on a shift of 1 bp (1/100 of a %) on the yield curve.
Often, this is also referred as a BPV (the bp value). PV01 also refers to
the value of a 1 dollar or 1 bp annuity.

Definition 8.1.3.2. The Base Point Value measures the change in
price if the market rate increases by 1 bp (1bp = 0.01%).

BPV =
Dmodified(%)

100
· DirtyPrice

100

Val01 is calculated as

Val01 = P(YTM – 0.5bp) – P(YTM+ 0.5bp)

where P represents the dirty price and bp 1 bp. The shifts are added
to the yield compounded according to the period of the bond.

In the BPV formula we first divide the MD by 100 to convert it from
a percentage into a decimal (i.e. 5% is 0.05). The second divisor of 100
reduces the scale of risk from a 100 bp change in yield (MD) to just
1 bp.
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Example 8.1.3.7
Calculation of a Base-Point Value (BPV) – its price sensitivity to a 1 bp change in
yield?

Security: 5% US Treasury note
Type: Semi-annual, actual/actual
Price 99.48
Accued interest: 0.84
MD: 1.50 %

BPV =
1.50

100
· 99.48 + 0.84

100
= 0.015048

Thus, a 1 bp rise in the bond’s yield will result in:

• A fall in the price from 95.4800 to 95.4654

• A loss of USD 1.46 cents per USD 100 nominal

• A loss of USD 145.98 on a USD 1 million position

BPVs tend to come out as very small figures with many decimal places.
For convenience, many bond analysis systems scale the BPV figure by
a factor of 100, so in our example the reported Risk Factor would be
1.4598. Thus, a 100-point change in the bond’s yield would result in:

• A fall in the price from 95.48 to 94.02 (minus 1.46)

• A loss of USD 1.46 per 100 nominal

• A loss of USD 14,598 on a USD 1 million position

8.1.3.2 CV01

CV01 is the sensitivity to a 1bp shift in credit spreads.

8.1.4 Convexity

Convexity measures the percental change in the MD if the market
rate increases with 1 bp. This can also be defined as the change in
BPV for a change in the yield. The convexity can be calculated as the
derivative of the duration with respect to the yield or as the second
order derivative of the bond price with respect to time. This is the
corresponding measure to gamma in option theory.



246 J.R.M. Röman

Fig. 8.1 The slope or derivative of the bond price with respect to the yield

The convexity is a nonlinear function, which can be compared by
gamma in the option analysis. In Fig. 8.1, we show the error in the
theoretical price if we do not consider the convexity on a change in
yield.

If we take the derivative of the bond price with respect to the yield
(continuously compounded) we get

∂P

∂y
= –

n∑
i=1

ticie
–yti = –PD

That is,

�P

P
= –D�y

This can be applied to a portfolio as well. If we express y in terms of
annual profit we get

�P = –
P · D · �y

1 + y/m
= –P · MD · �y

where m is the number of annual coupons. The convexity can be
written as

Cnvx =
1

2P

n∑
i=1

t2i cie
–yti
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or

Cnvx =
(1 + y)2

P

∂2P

∂y2
=

1

2P

[
n∑
i=1

ti · (ti + 1) · Ci

(1 + y)ti
+
tm · (tm + 1) · N

(1 + y)tm

]

Example 8.1.4.8
Consider a 7% bond with semi-annual coupons 3 years to maturity. Assume that
the bond is selling at a yield of 8%. We then have

Year Cashflow Discounting PV PV/Price Yeai*pv/Price

0.5 3.5 0.962 3.365 0.035 0.017
1.0 3.5 0.925 3.236 0.033 0.033
1.5 3.5 0.889 3.111 0.032 0.048
2.0 3.5 0.855 2.992 0.031 0.061
2.5 3.5 0.822 2.877 0.030 0.074
3.0 103.5 0.790 81.798 0.840 2.520

The price is the sum of individual PV, giving 97.379. The duration is 2.753. Suppose
the yield changes to 8.2%, then the change in bond price is approximated by:

1

P

�P

�y
≈ –

Dur

1 + y
⇒ �P = –

97.379 · 0.2% · 2.753
1 + 0.04

= –0.5156

Using the convexity the change in the bond price on a change in yield
is given by:

�P

P
∼= –

Dur

1 + y
�y +

1

2
Cnvx · (�y)2

So, if X and Y are 2 different portfolios with the same duration, the
difference in convexity can become large for changes in the yield. The
convexity, C has its maximum close to a coupon payment day.

8.1.5 Gamma

The gamma value shows the extent of the change in the delta value
when the same shift is applied to the delta as was used when the delta
was first calculated.
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8.1.5.1 Gamma Price

The Gamma price differentiation formula is

�price =
∂ (U + h) – ∂ (U)

h
=
PV (U + 2h) – 2PV (U + h) + PV (U)

h2
∗ scale.

The Gamma price calculates the change in Delta Price, given a unit
change in the underlying asset price. This value is sometimes called
gamma explicit.

Example 8.1.5.9
We are going to calculate the Gamma Price of a bond call option where the price
of the underlying asset is U = 100.17, the shift step h = U ∗ 0.0001 = 0.010017 and the
present values are PV(U) = 6, 419.56,PV(U + h) = 6, 434, 49 and PV(U + 2h) = 6, 449.46.
The Gamma Price is then given by:

�price =
6, 449.46 – 2 ∗ 6, 434, 49 + 6, 419.56

0.0100172
· 100

1, 000, 000
= 0.0399.

8.1.5.2 Gamma Yield

The Gamma yield formula can be represented as

�yield =
[
∂
(
y + h

)
– ∂
(
y
)]

=
[
PV
(
y + 2h

)
– 2PV

(
y + h

)
+ PV

(
y
)] ∗ scale

The yield curve gamma can, like the delta, be broken down into differ-
ent time buckets. If this is the case, the gamma value shows the change
in delta for the corresponding time bucket given a 1 bp change in the
yield curve as a whole and not just in the individual bucket.

Example 8.1.5.10
Calculate the Gamma yield of a call option on a bond where the shift size is 0.00001
and the present values are PV(y) = 7, 377.6943211,PV(y + h) = 7, 377.69432195 and
PV(y + 2h) = 7, 377.6943231:

�yield =
[
PV(y + 2h) – 2PV(y + h) + PV(y)

] ∗ scale

= [7, 377.6943231 – 2 ∗ 7, 377.69432195 + 7, 377.6943211] · 1, 0002 = 0.3.
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8.1.6 Accrued Interest

Accrued interest is defined and calculated as the upcoming coupon
payment times the number of days after the previous coupon was
paid using the relevant day-count convention. When expressed in per-
centage points of the nominal amount of the bond it is equal to the
difference between the dirty price and the (quoted) clean price.

8.1.7 Rho

Rho represents the change in the present value, given a shift of 1 bp
in the repo curve. In the calculations, the yield is normally shifted by
1/1000 of a bp. The result is then scaled to a 1 bp shift by multiplying
it by 1000.

Example 8.1.7.11
To calculate the Rho value of a put option on a bond we base the calculations on
the present value of the option with unchanged conditions and the present value
calculated using a repo curve that is shifted 1 bp

ρ =
[
PV(rrepo + 0.00001) – PV(rrepo)

] · 1000

8.1.8 Theta

The Theta value shows the change in present value (PV ) from the
valuation date until the next calendar date, given unchanged market
conditions.

Unchanged market conditions here imply that the yield curve will
stay the same on both dates. For generic periods, the zero coupon
rates are the same on both days, while all rates for fixed dates will be
rolled down the curve by 1 day. Forward rates for fixed periods will
also be affected when shifting the zero coupon yield curve.

Volatility values used for option pricing are also affected by a shift in
the valuation date. This is only significant when a volatility landscape
with a slope in the option expiry dimension is used. When shifting
the valuation date, the time to expiration of the option will be 1 day
shorter and another volatility will be fetched. When the underlying
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market price is used in the calculations, the underlying price is not
affected by the 1-day forward shift.

Example 8.1.8.12
Consider a bond position in a 5-year government bond.

� = PV(2004 – 11 – 05) – PV(2004 – 11 – 06)

where PV(2004-11-05) and PV(2004-11-06) are calculated after moving the valu-
ation date and the yield curve rates one day forward. In a positive interest rate
environment, the Theta of a bond position is normally positive.

The theta value has 2 components

• The first is due to the decrease in time to maturity. When valuing
the bond 1 day later, the value of the bond will be higher because
of the shorter time used when discounting the cash flows.

• The second component is due to the shape of the yield curve. If the
yield curve is upwards sloping, each cash flow will be discounted
with a slightly lower yield when valued as of tomorrow.

This is often referred to as “rolling down the curve”. The exact slope
of the curve will decide the size and sign of the contribution to the
theta value. If the yield curve has a negative slope, this contribution
can make the theta value negative for a bond.

8.1.8.1 Theta Classic

The Theta Classic value shows the change in PV from the valuation
date until the next calendar date, given unchanged market conditions.

Here, an unchanged market condition means that the yield curve
for tomorrow will be the one implied by today’s forwards. There is no
“rolling-down-the-curve” effect.

Volatility values, repo rates and underlying prices used for option
valuation are kept constant for the 2 days in the calculations. The un-
derlying price is kept constant, even if the theoretical price of the
underlying is used.

For options priced with the Black-Scholes formula, the Theta Classic
value represents the time value derived from that formula.
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8.1.9 Vega

The Vega value shows the change in the PV from an upward shift in
volatility of 1 %. The calculations are normally performed using a shift
size of 0.01% and then scaling the result to a 1% shift:

ν = [PV(σ + 0.01) – PV(σ )] · 100

8.1.10 YTM

As we have seen, for bond price quoting, several ytm calculation
methods are available.

As the ISMA and the Moosmüller methods were presented earlier,
we will not repeat the formulas here. When calculating ytm, bond
coupons are treated as follows

• Coupons are estimated to be the full yearly coupon dividend divided
by the number of coupons.

• The time factor used when discounting each cash flow is:

• Time to next coupon according to instruments day count conven-
tion + (number of Coupon x number of coupons per year)

A simple version of the ytm formula looks like this

P =
∑
i

ci
(1 + ytm)ti

+
100

(1 + ytm)tn

where ci are the coupons of the bond, ti the time for the payouts and P
the market price of the bond. With continuously compounding ytms,
we can write this formula as

P =
∑
i

ci · e–ti·ytm + 100 · e–tn·ytm

In the case of promissory loans, a minor correction has to be made
because the accrued interest is not paid on the value date, but
deducted from the next coupon. However, this simple pricing formula
is not used very frequently in practice, because it is a cumbersome
process to incorporate the exact time elements of the coupons. If the
adjustment to the coupon payment dates, to account for non-banking
days are ignored, the formula can be simplified. Since all bonds
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pay coupons periodically, time can be measured in coupon periods
defined previously.

The main problem with the use of ytm as a measure of interest rates
is that it is not consistent across instruments. One 5-year bond will
typically have a different ytm compared with another 5-year bond if
they have different coupons. It is therefore impossible to associate a
single interest rate with each maturity. One way of overcoming this
problem is to use forward-rates.

Forward-rates are interest rates that are assumed to apply over a
given periods between 2 future times. This contrasts with yields that
are assumed to apply up to maturity, with a different yield for each
bond. This is why the forward rate can be calculated by an arbitrage
condition and the spot rate. The forward rate will also depend on the
method used for the rate, if using continuously compounding rate or
using a certain day-count method.

8.1.10.1 Simple Yield Formula

Another formula used for transformations between price and ytm in
fixed income markets is the Simple yield-to-maturity formula, also
known as Japanese yield. It takes into account the effect of the Capital
gain or loss on maturity of the bond, as well as the current yield. Any
Capital appreciation/depreciation is assumed to occur uniformly over
the bond’s life

ytm =
c + Nom–Pclean

L

Pclean
,

where c is the annual coupon rate in % and L the life to maturity in
years. A special day count fraction is used: L = the number of days to
maturity, excluding February 29 in any year divided by 365.

8.1.10.2 The Money Market Formula

The money market formula is given by

Pdirty =
Nom + c

1 + ytm · T
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where c is the annual coupon rate in % and T the time from spot to
maturity in years, using the day count method of the instrument.

This method is relevant for instruments with one remaining coupon
and for non-coupon instruments (zero bonds and bills). For the latter
the ytm reduces to the simple annualized rate of interest.

8.1.11 Portfolio Immunization Using Duration
and Convexity

Let PVL(y) denote the present value of some liability for a given yield
y and PVj(y) the present value of some bonds, j in a bond portfolio
given the yield y. We suppose in the following example that we have 3
bonds (i.e. j = 1, 2, 3). The present value of the bond portfolio is then
given by:

PVp(y) = PV1(y) + PV2(y) + PV3(y)

Furthermore let DL(y) denote the MD of the liability, Dj(y) the MD of
bond j,CL(y) the convexity of the liability and Cj(y) the convexity of
bond j.

The derivative is then given by

d

dy
PVL(y) = –DL(y) · PVL(y)

d

dy
PVp(y) = –

[
D1(y) · PV1(y) + D2(y) · PV2(y) + D3(y) · PV3(y)

]

and

d2

dy2
PVp(y) =

[
C1(y) · PV1(y) + C2(y) · PV2(y) + C3(y) · PV3(y)

]

for all y. Ideally, we would like to have PVp(y) = PVL(y) for all y,
since that would immunize the liability using the bond portfolio. If
y changes, the portfolio can still be used to meet the liability.

Say that y1 is the present yield value. Certainly we want PVp(y1) =
PVL(y1). We can conclude that PVp is a better approximation to PVL
at y1 if also PV ′

p(y1) = PV ′
L(y1) and PV ′′

p (y1) = PV ′′
L (y1).
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Thus, we want to achieve

⎧⎪⎪⎨
⎪⎪⎩

PVp(y1) = PVL(y1)

PV
′
p
(y1) = PV

′
L
(y1)

PV
′′
p
(y1) = PV

′′
L
(y1)

If we use a Taylor series expansion

PVL(y) = PVL(y1) + PV
′
L
(y1)(y – y1) +

1

2
PV

′′
L
(y1)(y – y1)

2

+ higher order terms

where the right hand side converges and represents the function
PVL(y) for those values of y for which all the derivatives exist and for
which the higher order terms go to zero. Note that

PVL(y) – PVL(y1) = PV
′
L
(y1)(y – y1) +

1

2
PV

′′
L
(y1)(y – y1)

2

+ higher order terms

If we let �y = y – y1, we get

PVL(y) – PVL(y1) ≈ PV
′
L
(y1) · �y +

1

2
PV

′′
L
(y1)�y2

when we drop the higher order terms.
If we have PV ′

p(y1 = PV ′
L(y1) and PV ′′

p (y1) = PV ′′
L (y1), we can con-

clude that PVL(y) – PVL(y1) ≈ PVp(y) – PVp(y1). Thus, a change in
the value of the portfolio would track the change in the value of the
liability if there were a change in the yield.

We are essentially trying to construct PVp(y) to make it a good
approximation to PVL(y). We can make the approximation perfect
for y = y1, and “good” for y “near” y1. The higher order terms
we consider the better the approximation we get. To have PVp(y1)
= PVL(y1),PV ′

p(y1) = PV ′
L(y1) and PV ′′

p (y1) = PV ′′
L (y1) we need

⎧⎪⎨
⎪⎩
PV1(y1) + PV2(y1) + PV3(y1) = PVL(y1)

PV1(y1) · D1(y1) + PV2(y1) · D2(y1) + PV3(y1) · D3(y1) = PVL(y1) · DL(y1)

PV1(y1) · C1(y1) + PV2(y1) · C2(y1) + PV3(y1) · C3(y1) = PVL(y1) · CL(y1)
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If these three equations hold then PVp is a good approximation to PVL
up to second order.

Because PVj(y1) is the present value of bond j in the portfolio at y1
we can choose it. It is just the amount of bond j we purchase. Fur-
ther, the duration values and convexity values do not depend upon
the amounts of the bonds that we purchase; they just depend on the
yield. Hence, we have a system of three equations in three unknowns
to solve. The unknowns are the PVj(y1).

Note we can use durations instead of MDs because all the durations
have the same modifier and it cancels out.

8.1.12 The Fisher-Weil Duration and Convexity

The Macaulay duration measures do not provide any information for
how the price of a bond is affected by a change in the zero-coupon
yield curve. Therefore, they are not useful for comparing the interest
rate risk of different bonds. The problem is that the Macaulay measures
are defined in terms of the bond’s own ytm, and a given change in the
zero-coupon yield curve will generally result in different changes in
the yields of different bonds. It is easy to show that the changes in
the yields of all bonds will be the same if and only if the zero-coupon
yield curve is always flat. In particular, the yield curve is only allowed
to move in parallel shifts. Such an assumption is not only unrealistic, it
also conflicts with the no-arbitrage principle.

In 1938 Macaulay defined an alternative duration measure based on
the zero-coupon yield curve rather than the bond’s own yield. After
decades of neglect this duration measure, it was revived by Fisher and
Weil in 1971. They demonstrated the relevance of the measure for
constructing immunization strategies. We will refer to this duration
measure as the Fisher-Weil duration. The precise definition is

DFW =
1

P

n∑
i=1

ticie
–yiti =

n∑
i=1

ti

[
cie–yiti

P

]

or

DFW =
1

P
·
[

N · tn
(1 + yn)n

+
n∑
i=1

C · ti
(1 + yi)i

]
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where yi is the zero-coupon yield prevailing at time 0 for the period
up to time ti. If the changes in all the zero-coupon yields are identical,
the relative price change is proportional to the Fisher-Weil duration.
Consequently, the Fisher-Weil duration represents the price sensitiv-
ity towards infinitesimal parallel shifts of the zero-coupon yield curve.
Note that an infinitesimal parallel shift of the curve of continuously
compounded yields corresponds to an infinitesimal proportional shift
in the curve of yearly compounded yields. We can also define the
Fisher-Weil convexity as

CnvxFW =
1

2P

n∑
i=1

t2i cie
–yiti

or

CnvxFW =
1

2P
·
[

N · t2n
(1 + yn)n

+
n∑
i=1

C · t2i
(1 + yi)i

]

8.1.13 Hedging with Duration

Suppose we want to use a futures contract to hedge a position in an
interest rate instrument. Let Fc be price of a futures contract, DF the
duration of the underlying instrument, P the future value of the port-
folio we want to hedge and DP the duration on the portfolio at the end
day of the contract. We then have

�P = –P · DP · �y

�Fc ≈ –Fc · DF · �y

The duration based hedge factor expressed in the number of futures
contracts is given by

N =
P · DP

Fc · DF

This approach is subject to the following complications

• We have to guess which instrument that is cheapest to deliver
(CTD) at expiration.

• The CTD instrument may change in time.
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• The convexity.

• We can have non-parallel shifts on the yield curve.

8.1.14 Shifting the Zero-Coupon Yield Curve

The delta and gamma yield values are calculated by shifting the seg-
ment of the zero coupon yield curve that corresponds to the time
bucket. The bucket shifts are constructed so that their sum always
represents a single bp shift in the whole curve.

The calculations used when shifting the yield curve are actually per-
formed using a differentiation step of 1/1000 bps and then scaling to
1 bp by multiplying by 1000. The reason for this is that changes in
implied forward rate calculations can be quite substantial when shift-
ing a segment of the curve in which only one of the forward points is
located. These substantial changes can then suddenly make out-of-the
money options, caps and floors, for example, in the money. This kind
of non-linear effect should be avoided in a first order measure such as
delta.

The choice of yield shift method affects the distribution of risk fig-
ures (such as delta and gamma) between time buckets. Their sum, that
is, the total risk figure, is however not affected.

8.1.14.1 Rectangle Shift

The yield curve is shifted 1 bp between the end of the previous
bucket specification (exclusive) and the end of the current bucket
specification (inclusive) (Fig. 8.2).

8.1.14.2 Triangle Shift

The shift in the yield curve takes the form of a triangle with its apex
at the bucket date and ending at the boundaries of the two adjacent
buckets. In the first and last bucket, the two triangles are extended
indefinitely to ensure that the sum of all the shifts corresponds to a
total parallel shift of 1 bp (Fig. 8.3).
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Example 8.1.14.13
Suppose there are only four time buckets: 3y, 5y, 10y and the rest bucket. The 5y
bucket has its maximum shift (1 bp) at 5y, and linearly decreasing to 0 at 3y and to
10y. The shift at 7y is 0.6 bp.

The 10y bucket has its maximum shift at 10y and decrease linearly to 5 years. The
shift at 7y is 0.4 bp. It also has a linearly decreasing shift towards higher maturities;
with 0 shifts at 15y (a date determined using the step between 5y and 10y). The
shift at 12y is 0.6 bp.

Therefore, the Rest Bucket has a 1 bp shift starting at 15y, running parallel to
the end of time. It is linearly decreasing from 15y back to 10y. With this definition,
the total of all buckets will add up to a parallel shift of 1 bp, which is important.

It may be argued that a rest bucket should not be used at all in the application,
since it introduces the seemingly strange 15y time point. The reason is that if we
use rectangular shifts, the rest bucket is needed for including all sensitivities above
10y. The 10y bucket includes every maturity between 5y and 10 y (including 10y).

8.1.14.3 Smooth Shift

The shift in the yield curve takes the form of a smooth shape with its
highest point at the bucket date and ending at the boundaries of the
two adjacent buckets.

The smooth yield shift method is recommended for contracts that
are valued according to finite difference methods. The smooth shape
implies a continuous shape of the yield curve, which is essential when
using the finite difference solver.

The smooth shift has a cubic formula, where the first half represent-
ing the upward slope is defined by

3 · t2 – 2 · t3

where t is the time factor of the bucket (0 < t < 1). The second half
of the shift is symmetrical to the first half.(Fig. 8.4)
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Fig. 8.2 A rectangular shift on the yield curve

Fig. 8.3 A triangular shift on the yield curve

Fig. 8.4 A smooth shift on the yield curve
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Risk Management

9.1 Introduction to Risk Management

Wewill now give a short introduction of how to measure risk and how
to define limits on risks for a portfolio with many different instruments.
Such limits are used by financial institutions to control and minim-
ize risks. There have been more and more focus on risk management,
especially after the financial crises in 2007–2008.

Financial risk management is the practice of creating economic
value in a firm by using financial instruments to manage exposure to
risk, particularly Counterparty Credit risk and Market risk. Here
we will focus on market risk. Market risks includes:

• Equity risk, the risk that stock or stock indices prices and/or their
implied volatility will change.

• Interest rate risk, the risk that interest rates and/or their implied
volatility will change.

• Currency risk, the risk that foreign exchange rates and/or their
implied volatility will change.

• Commodity risk, the risk that commodity prices and/or their
implied volatility will change.

Some other sources of risk have been discussed in other sections of
these lecture notes. Such risks include foreign exchange risk, liquid-
ity risk, inflation risk, model risk, settlement risk, correlation risk,
operational risk etc.

In order to ensure the survival of the financial firm and to comply
with the provisions of the regulators, firms must have methods in place
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to regularly measure and maintain sufficient Capital to cover the nature
and level of the risks to which the firm is or may be exposed to. The
firm has both an obligation and an opportunity to design appropriate
risk management systems that are tailored to their unique business
requirements. Financial risk management can be both qualitative and
quantitative.

In the banking sector, worldwide regulations are developed, such
as the Basel Accords which are generally adopted by internationally
active banks for tracking, reporting and exposing operational, credit
and market risks.

The companies’ systems for managing market risks should fulfil two
general purposes. First, from a general risk management perspective,
the systems should sufficiently provide the companies with a good
understanding of the size of the market risk. Secondly, the systems
should allow the companies to take risk mitigation measures that
will ensure that their balance sheets are not exhausted. These sys-
tems can also form the basis for the companies’ Capital requirement
calculations.

The recent financial crisis has demonstrated numerous weaknesses
in the global regulatory framework and in banks’ risk management
practices. In response, regulatory authorities have considered various
measures to increase the stability of the financial markets and to pre-
vent future negative impact on the economy. One major focus is on
strengthening global Capital and liquidity rules.

Perhaps, the most important risk to measure is the potential loss
due to the market and credit risk. As with all forms of risk, the loss
amount may be measured in a number of ways or conventions. Tradi-
tionally, one convention is to use Value-at-Risk (VaR). The use of VaR
is well established and accepted in the short-term risk management
practice.

However, traditional VaR contains a number of limiting assumptions
that constrain its accuracy. The first assumption is that the composi-
tion of the measured portfolio remains unchanged over the specified
period in time. Over a short time horizon, this limiting assumption
is often reasonable. However, over longer time horizons, many of the
positions in the portfolio may have been changed and the VaR of the
initially measured portfolio is no longer relevant. Another assumption
is that changes are normally distributed which excludes fat tails and
black swans. This has caused extensions of traditional CaR such as
stressed VaR or credit VaR.
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The Variance-Covariance and Historical Simulation approach to
calculating VaR also assumes that historical correlations are stable and
will not change in the future or breakdown under times of market
stress.

In addition, care has to be taken regarding the intervening cash
flows, embedded options, changes in floating interest rates etc. in the
portfolio. These features cannot be ignored since their impact might
be large.

9.1.1 Capital Requirement

One critical question is how much, and what type of, Capital a bank
needs to hold so that it has adequate protection from losses due to
future events.

In its simplest form, Capital represents the portion of the bank’s
liabilities, which does not have to be repaid, and therefore is available
as a buffer in case the value of the bank’s assets decline. If banks always
made profits, there would be no need for Capital.

Unfortunately, such an ideal world does not exist, so Capital is ne-
cessary to act as a cushion when banks are impacted by large losses.
In the event that the bank’s asset value is lower than its total liabilities,
the bank becomes insolvent and equity holders are likely to choose to
default on the bank’s obligations.

Naturally, regulators would hold the view that banks should hold as
much Capital as possible, in order to ensure that insolvency risk and
the consequent system disruptions are minimised. On the other hand,
banks would wish to hold the minimum level of Capital that supplies
adequate protection, since Capital is an expensive form of funding,
and it dilutes earnings.

There are three views on what a bank’s minimum Capital require-
ment should be.

First, in the regulatory view, the minimum Capital requirement
as demanded by the regulators; it is the amount a bank must hold
in order to operate. A regulator’s primary concern is to ensure that
there is sufficient Capital in order to buffer a bank against large losses.
Regulatory Capital could be seen as the minimum Capital requirement
in a “liquidation” view, whereby all liabilities can be paid. Recently
regulators have introduced the concept of survival horizon for banks
whereby its capital should be enough to sustain its business during a
time period of 30 days in case markets break down.
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Regulatory Capital is a standardised calculation for all banks,
although, there are differences to various regulatory regimes and
countries.

Second, in the economic view there is a theoretical view on min-
imum Capital requirement based on the underlying risks of the bank’s
assets and operations. Economic Capital could be seen as the min-
imum Capital requirement so that the bank is in continual operation.
Here we are only concerned to hold enough Capital to survive.

Economic Capital was originally developed by banks as a tool for
Capital allocation and performance assessment. For these purposes, it
did not need to measure risk in an absolute, but only in the relative
sense.

Over time, with advances in risk quantification methodologies, the
concept of economic Capital has been extended to applications that
require accuracy in the measurement of risk. This is evident in the
ICAAP, whereby banks are required to quantify the absolute level of
internal Capital.

Finally, in the rating agency view the minimum Capital a bank
needs to hold is the amount it needs in order to meet a certain credit
rating. The amount and type of Capital a bank holds in relation to
its total risk weighted assets (RWA) is a crucial input to the review-
ing mechanisms used to determine its credit rating. In addition, since
credit ratings provide important signals to the market about the finan-
cial strength of the bank, they can have significant downstream impact
on a bank’s ability to raise funds, and the cost at which the funds
can be raised. Therefore, having sufficient Capital to meet the require-
ments of the rating agencies becomes an important consideration for
senior management.

A key part of bank regulations is to make sure that firms operating in
the industry are prudently managed. The aim is to protect the firms
themselves, their customers and the economy, by establishing rules to
make sure that these institutions hold enough Capital to ensure con-
tinuation of a safe and efficient market and that the banks are able to
withstand any foreseeable problems.

The main international effort to establish rules around Capital re-
quirements has been the Basel Accords, published by the Basel
Committee on Banking Supervision housed at the Bank for
International Settlements. This sets a framework for how banks
and depository institutions must calculate their Capital. In 1988, the
Committee decided to introduce a Capital measurement system com-
monly referred to as Basel I. This framework has been replaced by
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a significantly more complex Capital adequacy framework commonly
known as Basel II. This is currently being replaced by Basel III.

The Capital ratio, the percentage of a bank’s Capital to its risk-
weighted assets is dictated under the relevant Accord, Basel II. It
requires that the total Capital ratio must be no lower than 8 per cent.

Each national regulator normally has a slightly different way of cal-
culating bank Capital, designed to meet the common requirements
within their individual national legal framework.

In the European Union, member states have enacted Capital require-
ments based on the Capital Adequacy Directive CAD1 issued in 1993
and CAD2 issued in 1998. In the United States, depository institu-
tions are subject to risk-based Capital guidelines issued by the Board
of Governors of the Federal Reserve System (FRB).

9.1.1.1 Regulatory Capital

According to Basel II, the bank Capital was divided into two “tiers”,
each with some subdivisions.

Tier 1 Capital

Tier 1 Capital, the more important of the two, consists largely of share-
holders’ equity and disclosed reserves. This is the amount paid up to
originally purchase the stock (or shares) of the Bank, retained profits
subtracting accumulated losses, and other qualifiable Tier 1 Capital se-
curities. In simple terms, if the original stockholders contributed $100
to buy their stock and the Bank has made $10 in retained earnings each
year since, paid out no dividends, had no other forms of Capital and
made no losses, after 10 years the Bank’s Tier 1 Capital would be $200.
Shareholders equity and retained earnings are now commonly referred
to as “Core” Tier 1 Capital, whereas Tier 1 is core Tier 1 together with
other qualifying Tier 1 Capital securities.

Tier 2 (Supplementary) Capital

Tier 2 Capital, or supplementary Capital, comprises undisclosed re-
serves, revaluation reserves, general provisions, hybrid debt capital
instruments and subordinated term debt. Undisclosed reserves are not
common, but are accepted by some regulators where a Bank has made
a profit but this has not appeared in normal retained profits or in
general reserves.
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A revaluation reserve is a reserve created when a company has
an asset revalued and an increase in value is brought to account. A
simple example may be where a bank owns the land and building of
its headquarters and bought them for $100 a century ago. A current
revaluation is very likely to show a large increase in value. The increase
would be added to a revaluation reserve.

A general provision is created when a company is aware that a loss
has occurred, but is not certain of the exact nature of that loss. Under
pre-IFRS accounting standards, general provisions were commonly cre-
ated to provide for losses that were expected in the future. As these
did not represent incurred losses, regulators tended to allow them to
be counted as Capital.

Hybrid debt Capital instruments consist of instruments, which
combine certain characteristics of equity as well as debt. They can be
included in supplementary Capital if they are able to support losses on
an ongoing basis without triggering liquidation. Sometimes, it includes
instruments, which were initially issued with interest obligation (e.g.
debentures), but the same can later be converted into Capital.

Subordinated debt is classed as Lower Tier 2 debt, it usually has
a maturity of at least 10 years and ranks senior to Tier 1 debt, but is
subordinate to senior debt.

9.1.2 Risk Measurement and Risk Limits

To measure and control the risk, financial institutions in general use
risk matrices, VaR calculations and other methods. The risk calculated
using such models is then analysed each day and compared with the
limits. The management and the board of directors decide these limits.
We will next give a description of the most common models.

9.1.2.1 Risk Matrices

Risk matrices are used to measure, control and report risks. A risk
matrix is an outcome analysis of a scenario in which two risk factors
are stressed at different intensities. The factors that are altered are
usually the price of the underlying asset (delta and gamma risk) and
expected volatilities (Vega risk). An example of a risk matrix is
presented in Table 9.1.

The aforementioned matrix shows gains or losses for different pre-
specified scenarios in which volatilities and underlying prices fluctuate
within an interval of +/–30 per cent and +/–20 per cent, respectively.
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Many companies use risk matrices to set limits for the level of the
largest acceptable loss. Another alternative is to define a subsection
within the matrix and set the limit where the greatest loss may occur
within this subsection.

Risk matrices have both strengths and weaknesses due to their
simplicity. A strong point is that they offer an extremely clear and com-
prehensible method in which to place potential outcomes in direct
relation to changes in relevant market variables, which is attractive for
traders as well as risk functions and senior management.

Their weaknesses are that they do not Capture basis risks, (see
next) between different maturities, exercise prices and underlying
assets and they completely ignore risk factors other than price and
volatility. Many times, the degree of stress that is tested, in particu-
lar with regard to volatilities, is not high enough. We will show an
example of this subsequently (see the HQ Bank section).

Basis Risk

Risk matrices ignore basis risks between different underlying assets,
maturities and the exercise prices of options. This basis risk is the risk
that opposite positions in a hedging strategy do not move as expec-
ted in relation to one another. This risk does not appear in the risk
matrix because the risk matrix calculations simply adds all positions
in the trading portfolio without any regard for correlation of prices
or volatilities. Note here, exercise prices refer exclusively to option
exercise prices.

Many financial firms and fund managers are not sufficiently aware
of the consequences of this weakness. By calculating the sum of their
positions, two strong assumptions are implicitly made:

• The market prices of all assets and liabilities in the portfolio are
assumed to be perfectly correlated. In other words, for example,
it is assumed that if the price of an asset increases 1 per cent, all
other underlying assets in the portfolio will also increase by 1 per
cent. This means that a negative position and a positive position in
two assets would cancel one another out and as a result the risk
(expressed as delta and gamma) can appear to be very small or non-
existent.

• With regard to options, it is assumed that implied volatilities for
different maturities and different exercise prices are perfectly cor-
related. For example, if the volatility of an option maturing in three
months increases by 5 per cent, it is assumed that volatilities of all
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other options in the portfolio with different maturities and exercise
prices will also rise by 5 per cent. This implies that negative and
positive positions in different maturities could completely cancel
out one another in which case the risk (expressed as Vega) could
appear to be small or non-existent in the risk matrix.

It is worth noting that it was this exclusion of basis risks between
both different underlying assets and different maturities that to a large
extent contributed to the failure of the Swedish HQ Bank. It did not
identify the enormous risks in its trading portfolio. The HQ Bank case
therefore represents a good example of the danger of risk matrices.1

Example 9.1.2.1
HQ Bank in Sweden

HQ Bank’s main market risk measure for its trading portfolio was a risk matrix as
described earlier. The bank simulated a worst-case scenario within the matrix and
set its limits based on this measure.

The absolute largest exposures in HQ Bank’s trading portfolio were index linked
options on the German DAX index and the Swedish OMX index. The following
table shows the exposures expressed as delta and Vega at 18 May 2010. The table
also shows the exposures broken down by underlying asset and maturity (which
the risk matrix calculations do not include).

Position date 2010-05-18

Data

Underlying Exp.date Sum of Vega Sum of Delta

ODAX 2010-05-21 –259 069 –4 317 526
2010-06-18 11 136 970 –37 881 767
2010-12-17 51 855 354 82 996 030
2010-12-17 –53 655 171 –67 476 377

ODAX Total 9 078 084 –26 679 640

OMXS30 2010-05-21 742 152 15 725 210
2010-06-18 –581 817 –3 214 468
2010-07-16 –3 272 317 –10 597 947
2010-10-15 –4 174 850 –1 880 670
2011-01-21 –6 019 420 133 047

OMXS30 Total –13 306 252 –165 172

Total –4 228 168 –26 514 468

1 See the report by the Swedish FSA (Finansinspektionen).
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Vega in the table is expressed as the change given an increase in implicit volatilities
of one percentage point.

Delta is expressed as the change given an increase in the underlying asset price
of one percent.

Several important events are evident from the previous table.
The bank had a negative Vega exposure in OMX and DAX for long maturities

(primarily December 2010) and an opposite exposure for short maturities (primarily
June and September 2010).

The total exposure in DAX was positive in terms of Vega and negative in terms
of delta, while the total exposure in OMX had the opposite signs. The aggregate
exposure (Swedish Krona (SEK) -4.2 million in Vega and SEK -26.5 million in delta)
appears to be relatively small compared to the sub exposures per maturity and
underlying asset.

When the risk in these exposures is transferred to a risk matrix, the implicit as-
sumption is made, as mentioned before, that all maturities and underlying assets
are perfectly correlated. Given this assumption, the exposures in HQ Bank, at least
in terms of Vega, undeniably appeared to be relatively small. In Vega, the Decem-
ber outcome in DAX seemed to eliminate the September outcome and the total
exposures in both Vega and delta in OMX seemed to compensate for the opposite
exposures in DAX. As a result, only the total exposure of SEK -4.2 million in Vega
and SEK -26.5 million in delta were visible in the matrix. This was naturally a gross
simplification of the risk profile.

The table shows that if all underlying prices would remain unchanged and if the
volatility would increase by 1 percentage point in the DAX December outcome at
the same time as the volatility would remain unchanged for all other maturities
and underlying prices (which was not an improbable scenario), HQ Bank would
have lost SEK 53.6 million at the same time as the risk matrix would have indicated
a loss of SEK 4.2 million.

This example illustrates how the risk matrix’s underlying simplified
assumptions regarding basis risks can lead to a gross underestimation
of risks.

One conclusion that can be drawn from the HQ example is that if
a portfolio contains significant positions which cannot be assumed to
have a particularly strong correlation and/or significant option posi-
tions with different maturities and exercise prices that are not proven
to be strongly correlated, the basis risks are likely to be significant t.
These risks, therefore, must be measured and controlled, which an
aggregate risk matrix does not do.

There are several ways to improve risk matrices so that they Capture
basis risks:

1. Lower aggregate levels: For example, it is conceivable that the
correlation between two shares in one country is greater than
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the correlation between two shares in different countries. It is
therefore possible to form several groups, one for each country,
and then construct a risk matrix for each of these groups. This will
ensure that correlation within the groups is actually high in order
to ensure that significant basis risks are not underestimated.

2. Other correlation assumptions: The basic (implicit) assumption in
the risk matrix is that there is perfect correlation between underly-
ing assets, maturities and exercise prices, which may be viewed as
an extreme assumption. In order to examine what would happen
in the presence of imperfect correlation, it is helpful to simulate
the matrix under other assumptions. The most common alternat-
ive is to test the opposite extreme scenario – the total absence of
any correlation – but other correlation assumptions may also need
to be tested. Simulating two extreme cases can be a good exercise
since the results provide an interval of outcomes for comparison.
This type of simulation also illustrates what could happen if cor-
relations drastically change, which is important information since
correlation patterns are not constant over time.

3. Combinations with other risk measures: This is the absolute most
common and the most robust way to manage basis risks. For ma-
turities, it is common to measure Vega in time buckets, which are
often also subject to limits. For basis risks between underlying as-
sets, scenario analyses in which the largest positions in individual
assets are stressed under an assumption that the correlation is zero
are often used. For financial firms that use VaR models, these mod-
els usually function as a good complement, provided that the same
correlation assumptions are not made between the risk factors in
the VaR model as in the risk matrix.

Exclusion of Risks

As described previously, risk matrices measure the exposure to two
types of risk:

• Change in price of underlying assets (delta and gamma risks).

• Change in expected volatility in underlying assets (Vega).

These two definitely qualify as significant risks for, for example,
an equity portfolio with optionality. However, the portfolio may be
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exposed to other significant risks which might need to be analysed
and measured outside of the matrices like:

• Sensitivity to changes in maturity (theta) is one factor that is of-
ten excluded from risk measurements. One possible explanation for
why theta is often excluded is that it is questionable if it is a “risk”
in the true meaning of the word since it is not directly affected by
market risk factors. Because theta is the gain/loss arising due to the
additional passage of time, it is relatively predictable. Theta may still
need to be measured in order to be able to derive the origin of the
results.

• If the portfolio contains optionality, the interest rate sensitivity (rho)
can be a significant risk factor.

• For some asset classes there are also other types of risks that are
difficult to measure with risk matrices, for example credit spread
risks and twist risks in bond portfolios or dividend risks for equity
derivatives.

Volatility Stress in the Risk Matrices

Asset prices and volatility might be stressed differently. For share port-
folios, the price dimension is stressed by +/–10 – 15 per cent while
the volatility dimension is stressed by +/–20 – 30 per cent. A 10 – 15
per cent fluctuation in a share portfolio is an extreme stress scenario
over a short period of time, particularly since the stress is often ap-
plied to a diversified portfolio and not to individual share. However, it
is not particularly unusual for implicit volatilities to fluctuate in con-
siderable excess of 20 – 30 per cent. In other words, the model to a
stress scenarios can be too weak. For example, the VIX index rose by
more than 50 per cent in one day during the Lehman crash in 2008. In
2011 alone there were two trading days during which the volatility in
VIX fluctuated by more than 30 per cent in just one day. The stress on
volatility is therefore not proportionate to the stress on price for many
companies. Similar differences can also be observed for asset classes
other than equities.

9.1.2.2 VaR Models

VaR in general is a probability-based risk measure that is statistically
created by a model. The measure should be interpreted as a loss that
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with a specified probability is not expected to be exceeded during a
certain period of time. Companies normally use a VaR with a prob-
ability of 99 per cent or 95 per cent and a 10-day time horizon. For
example, a VaR measure of -200 million, 99 per cent and 10 days would
mean that, at the date of measurement, a company could expect with
99 per cent probability not to exceed losses of more than 200 million
over a period of 10 days. However, VaR does not say anything about
what the losses could be in extreme cases. VaR is also almost always
based on historic market fluctuations, and forward-looking hypothet-
ical market fluctuations and correlation patterns are not captured in
the model.

VaR models are a globally accepted method for measuring and con-
trolling risk. This method is primarily used by the larger companies,
but also by some of the smaller companies. VaR models are good
supplements to risk matrices and other sensitivity measures since
they contain a probability aspect that is not found in these methods.
The VaR measure is also more comprehensive than, for example, risk
matrices since it takes into account many more risk factors than only
price and volatility. A VaR model is relatively intuitive and easy to un-
derstand as a concept and it also enables comparisons of risk-taking
between different parts of a company’s business.

It is important to understand the function of the VaR model in order
to be able to understand its limitations. A VaR model rapidly becomes
more complex as more asset classes and types of instruments are in-
cluded. A number of assumptions and simplifications must be made in
the model to simulate the risk of loss. The most important, is to en-
sure that these simplifications are not so significant as to render the
VaR measure unrealistic. Therefore back-testing of the VaR model on
historic data is important in order to verify that losses are neither over-
nor underestimated.

There exist a number of common methods for simulating a distri-
bution of losses. These methods can be divided into three groups,
Parametric VaR, Monte-Carlo Simulated VaR and Historically
Simulated VaR.

Parametric VaR – This method is the least robust of the three. The
reason for this is that an assumption is made about the underlying
probability distribution and a full revaluation of the financial instru-
ments is not carried out. This type of model can be used for areas
with low complexity (e.g. isolated parts of an organization that handle
simpler instruments). If this model is to be used for risk control with
well-defined limits, it should be supplemented with additional limits
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on well-planned and robust risk measurement methodologies, such as
stress tests and scenario analyses that reflect extreme fluctuations in
risk factors.

According to this method, an assumption is made about the probab-
ility distribution of the daily returns. Input data required by the model
includes standard deviations, means and correlations between the vari-
ous risk factors. Instruments are not fully revalued individually, rather
the model’s calculations are based on sensitivity measures. The most
common assumption is normal distribution, even if other distribution
assumptions could be possible.

For linear instruments (i.e. instruments where the prices do not de-
pend non-linear on another underlying instrument), a method based
on delta should be sufficient but if optionality or convexity is present
in the portfolio, a delta/gamma method should be used. The obvious
disadvantage of this type of VaR model is the distribution assumption.
After a number of financial crises, it has become generally accepted
that few financial markets are characterised by normally distributed
prices. Extreme fluctuations are much more common than what is in-
dicated by a normal distribution. The true probability of observing
a loss greater than the one predicted by the VaR model is therefore
greater than the chosen degree of confidence.

Monte-Carlo Simulated VaR – Provided that a full revaluation of
financial instruments is carried out, this model is better suited for
complex, non-linear instruments than parametric VaR. Therefore, this
model can be used for risk control and risk measurement when such
instruments are included. However, since a distribution assumption is
made in the simulation of risk factors (often normal distribution), ex-
treme fluctuations, just like for parametric VaR, should be taken into
account separately via scenario analyses and stress tests.

This method simulates time series for various risk factors via a
stochastic process. The “Geometric Brownian Motion” or a similar pro-
cess is often used in the simulation. For each simulated outcome, every
instrument in the portfolio is fully revaluated in order to identify ef-
fects on profit. The advantage of this method is that its simulation of
exotic financial instruments is more accurate and therefore also more
appropriate for portfolios containing many complex instruments. The
disadvantage of this model is that it also makes an assumption about
distribution since the stochastic process must follow a probability
distribution.

Historically Simulated VaR – The advantage of this VaR model is
that it does not require any explicit distribution assumption while, at
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the same time, a full revaluation of the instruments is carried out. The
disadvantage of this model is that the simulation is strongly dependent
on the model being based on a “representative” historical period of
time (more on this later).

This method uses actual historical time series to identify changes
in risk factors to which the portfolio is sensitive. The exposures
are simulated by actual historical scenarios, which occurred within
the historical period. A result is simulated for each day during the
historical period and thus builds the distribution. The loss amount
that corresponds to the degree of confidence chosen by the company
is then sorted out and represents the VaR measure. This method does
not require any explicit assumptions about the distribution, which
is a clear advantage. Full revaluation means that the model can also
be used to simulate very complex instruments. The disadvantages are
that this method requires considerable computer power to simulate
large portfolios with complex instruments and it can be difficult or
impossible to obtain sufficient historical data for certain instruments.
This method is also particularly sensitive to the span of the historical
period. The most common period of time consists of the most recent
one-year period. Some banks uses a two-year period and other shorter
periods was 17 days.

Irrespective of the analytical structure, a number of assumptions
must be made to estimate the parameters used to construct the prob-
ability distribution. The parameters are usually estimated using actual
data from a past period in time. The VaR models have proved to be
extremely sensitive to the period that was chosen, which in particular
applies to historically simulated models. For example, a company’s VaR
value more than doubled if the historical period included the financial
crisis in 2008.

Companies using VaR models to calculate Capital requirements for
market risks need historical data for a period of at least one year. A
shorter historical period of data makes the VaR value more sensitive to
new data, while a longer historical period of data makes the value less
sensitive.

Choice of Risk Factors for the VaR Model

A VaR model selected as a risk measurement method for specific op-
erations should include all significant risk factors associated with such
operations. However, if the firm’s operations in a specific market are
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very small, or if the risks are negligible, some risk factors may be
estimated or even completely excluded from the model.

It is relatively common for risk factors to be excluded or for risk
factors that cannot be assumed to have a reasonable correlation with
the actual risk to be included in the estimations. Many companies do
not have any ongoing validation of this process in order to regularly
monitor how accurate the estimates are.

9.1.3 Risk Control in Treasury Operations

The main responsibility of treasury operations is to manage the
company’s borrowing and lending transactions and to identify any
differences in maturity and currency between cash flows. Also the
treasury operations usually include management of the financial firm’s
liquidity reserves. In general, the treasury operations often represent a
significant portion of the firms’ total market risk, primarily in the form
of interest rate risks, credit spread risks and cross currency basis swap
spread risks.

In general, the treasury operations are separate from other areas
of the company that generate market risk. This is evident in that
both methods for and of reporting market risk often differ signific-
antly from other areas of the company. Treasury operations can have
a considerable less transparency in terms of risk than other areas of
the companies. Less sophisticated methods and fewer risk measures
are used, and as a result, several significant risks are generally not
identified.

9.1.3.1 Cross Currency Basis Swap Risk

These risks arise in companies, which borrow funds in a different cur-
rency than they lend funds. The interest rate risk that arises is normally
hedged with an interest rate swap and the currency risk with a cross
currency basis swap. The Fig. 9.1 shows such a typical arrangement

Explanation of the model

• Bank A issues a five-year fixed interest rate bond in EUR. However,
the bank’s lending is primarily in SEK with three-month maturities.

• To neutralise this discrepancy in maturity between borrowing and
lending, Bank A enters into an interest rate swap in EUR where the
fixed interest rate for the issued bond is transformed to a variable
EURIBOR-based interest rate.
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Fig. 9.1 A trade where the risks are hedged in another currency

• The currency discrepancy is neutralised via a cross currency basis
swap where Bank A pays STIBOR and receives EURIBOR. In the
previous example, Bank A pays a spread in addition to STIBOR in
the basis swap (encircled in previous instance).

In the example, all transactions are made to maturity (i.e. to five
years). From a risk perspective, it therefore appears that borrowing
and lending are fully hedged. At maturity, Bank A will receive the in-
terest rate margin it locked in via swaps related to its borrowing and
lending. However, changes in basis swap spreads result in gain/loss
effects during the term of the hedge. According to applicable account-
ing rules, changes in market value attributable to changes in basis swap
spreads have a direct effect on Bank A’s profit/loss and often on its Cap-
ital adequacy as well. The investigation demonstrated that the incurred
profit/loss risk is often significant.

9.1.3.2 Credit Spread Risk

Credit spread from a specific bond is defined as the difference between
the bond’s market rate and the rate of a risk-free bond with the
same maturity. Credit spread risk is the risk of loss in the form of
a change in value of the bond when the credit spread changes. The
credit spread is, as implied by its name, primarily attributable to the
creditworthiness of the issuer. Credit spread risks are not unique to
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treasury operations; they are also found in many other areas of the
companies. However, they are often of considerable size in the treas-
ury operations, particularly in liquidity portfolios which often hold
large amounts of bonds, notes and bills.

A normal procedure within treasury operations is to use interest
rate swaps for liquidity portfolios in order to lower the maturity of
the portfolio (often under three months) and thereby decrease the
sensitivity to changes in interest rates. Credit spread risk, however,
remains unchanged after such a procedure. The treasury operations
focus in most cases specifically on the interest rate risk in the portfolio,
which is often sharply reduced after hedging with swaps. Companies
might place considerably less importance on the credit risk spreads,
which in some cases actually are larger than the interest rate risks.



10
Option-Adjusted Spread

10.1 The OAS Model

A common method to value bonds, zero bonds and promissory loans
with embedded options (that is, callable and putable instruments) is
the use of option-adjusted spread (OAS). This model will use a spread
on a benchmark curve to calculate bond prices for risky bonds, due to
embedded options and since they are so called corporate bonds.

The model we will use is based on a Black-Derman-Toy (BDT) (see
next) interest rate binomial tree approach and adjusts for the cost of
the embedded option and the difference between model price and
market price due to other risks, for example credit and liquidity risks.

The BDT model is a single-factor short-rate model matching the ob-
served term structure of forward rate volatilities, as well as the term
structure of the interest rate. A binomial tree is constructed for the
short rate in such a way that the tree automatically returns the ob-
served yield function and the volatility of different yields. The model
is described by a SDE where the rates are log-normally distributed.
Therefore, the interest rates cannot be negative.

To adjust the theoretical price on the binomial tree to the actual
price, a spread (called option-adjusted spread since the context of OAS
started with trying to correct for miss-pricing in option embedded se-
curities) is added to all short rates on the binomial tree such that
the new model price after adding this spread makes the model
price equal the market price (this is the defining purpose of OAS).
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The value of OAS is that it enables investors to directly compare
fixed income instruments, which have similar characteristics, but
traded at significantly different yields because of embedded options.

The OAS model has three dependent variables:

• Option-adjusted spread

• Underlying price

• Volatility

The model can calculate the following model specific risk measures
(except for the risk measures discussed earlier):

• Effective duration

• Effective modified duration

• Effective convexity

• Option-adjusted spread

10.1.1 Some Definitions

As we will see, the bullet bond can be used to find the “value” of
the embedded option. For example, a callable bond of the option
value is given by the price difference between the bullet bond and
the callable bond.

There are six steps associated with the OAS analysis. The following
assumption is that the method is being applied to a callable bond:

1. A binomial tree is built on dates where we have cash flows. Also
create nodes in the tree where the instrument is callable or putable.
Therefore extra nodes are added at the beginning and/or the ends
of call periods (if they not coincide with cash flows).

2. Build a binomial tree using these rates, with equal probabilities
(= 1/2).

3. Calibrate the tree to market data by adjusting the nodes until the
tree can replicate any cash flow as the discount function given by
the benchmark yield curve.

4. Calibrate the model by adding the same number of basis points (the
spread factor) to all rates in the tree until the model replicate the
actual market price (if this price is known) of the callable bond.
The result is the bond’s OAS.
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5. Apply the same OAS to value a bullet bond with terms identical to
the callable/putable bond.

6. Take the difference between the value obtained for the callable
bond and the value obtained for the bullet bond. This difference
is the value of the embedded option.

The model creates nodes in the binomial tree on the following events:

1. Cash flows

2. Single call or put events

3. Start or end of call or put periods

No intermediate nodes are created, since there are no dynamical
changes between the nodes. (For better accuracy in the interval where
the bond can be called (or putted) back we can build intermediate
nodes in other (all) parts of the tree.)

10.1.2 Building the Binomial Tree

The stochastic process for the short rate in the BDT model is given by

dr = a(t) · r · dt + σ (t) · r · dz
where z(t) is a Brownian motion. In some literature this SDE is
written as:

d ln (r) = {θ(t) + ρ(t) ln (r)} dt + σ (t)dz

where θ(t) will be shown to be the drift of the short-term rate and
ρ(t) the mean reversing term to an equilibrium short-term rate that
depends on the interest rate local volatility as follows

ρ(t) =
d

dt
ln [σ (t)] =

σ̇ (t)

σ (t)
.

That is,

d ln (r) =

{
θ(t) +

σ̇ (t)

σ (t)
ln (r)

}
dt + σ (t)dz

Since the volatility is time dependent, there are two independent func-
tions of time, θ(t) and σ (t), chosen so that the model fits the term
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structure of spot interest rates and the structure of the spot rate
volatilities.

Jamshidan (1991) shows that the level of the short rate at time t in
the BDT model is given by

r(t) = U(t) exp {σ (t)z(t)}

where U(t) is the median of the lognormal distribution of r at time
t, σ (t) the level of the short rate volatility and z(t) the level of the
Brownian motion, a normal distributed Wiener process that Captures
the randomness of future changes in the short-term rate. One of the
main advantages of the BDT model is that it is a lognormal model that
is able to Capture a realistic term structure of the interest rate volatilit-
ies. To accomplish this feature, the short-term rate volatility is allowed
to vary over time, and the drift in interest rate movements depends on
the level of rates. Due to the property of Brownian motions, we have

z(t) = ε · √
t

where the values

ε =

{
+1 or
–1

is used to build the tree. From the previous discussion, a fixed spacing,
Zi between the nodes in the binomial tree is defined as (εmax–εmin = 2):

Zi = e2σi·
√
ti–ti–1 (10.1)

where σi is the volatility at time t. The risk-neutral probabilities of the
binomial branches of this model are assumed equal to 1/2. (It by no
means implies that the actual probability for an interest rate increase
or decrease is equal to 1/2.) The tree uses the short-rate annual volatility,
σ , of the benchmark rates which should be given in the Black-Scholes
framework. The process can be illustrated using the following four
short rates (all expressed with semi-annual compounding):

f1 = 6.000%

f2 = 7.200%

f3 = 8.150%

f4 = 8.836%
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Fig. 10.1 The forward rates in a OAS tree

Assume for simplicity that annual volatility of the short rates is con-
stant, and given by 15%. When the tree is built, the volatility spread
factors, Zi are kept constant and the tree is built with the following
relation between the nodes:

fi,j = Zj–1
i · fi,1 (10.2)

where f1,1 = f1. This results in the tree in Fig. 10.1
where the rates is given by

⎧⎪⎨
⎪⎩
f2,2 = Z2 · f2,1
1

2
f2,1 +

1

2
f2,2 = f2

⇒ f2,1 =
2 · f2
1 + Z2

⇒ f2,2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f3,3 = Z2
3 · f3,1

f3,2 = Z3 · f3,1
1

4
f3,1 +

1

2
f3,2 +

1

4
f3,3 = f3

⇒ f3,1 =
4 · f3

1 + 2 · Z3 + Z2
3

⇒ f3,2 ⇒ f3,3
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Fig. 10.2 The uncalibrated tree in the OAS model

and so on. This results in a tree with the following values
Time
Generally the rates are expressed as:

fn,1 ·
n–1∑
i=0

(
n – 1
i

)
· Zi

n = 2n–1 · fn ⇒ fn,1 ⇒ fn,2, . . . , fn,n

In this example the volatility is constant for simplicity. Generally, the
volatility will change by time.

10.1.3 Calibrate the Binomial Tree

Before the tree is used it will be calibrated with the market data. This
calibration process involves raising (or lowering) the estimates of the
rates in the tree by an amount just sufficient so that the value for the
cash flows given by the tree exactly equals the values given by the
discount function. As this is done, the relationship (equation 10.2)
between the different nodes must be simultaneously preserved. First,
the nodes are calibrated at time 1. Once this is finished, the nodes at
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time 2 are calibrated, and so on. At time 1 the following must hold
(

1/2

1 + f2,1 · (t2 – t1) +
1/2

1 + Z2 · f2,1 · (t2 – t1)
)

· 1

1 + f1,1 · (t1 – t0) = P(t0, t2)

The left side of this equation is the price of a cash flow equal 1 (with
equal probabilities 1/2 given by the tree, and the right side is the
price of the same cash flow given by the discount function P(t,T).
The discount function discount any value from t = t2 to t = t0,
where t0 = valuation time. This equation is solved numerically by a
Van Winjgaarden-Decker-Brent method. In the previous equation, the
following relationship is used:

f2,2 = Z2 · f2,1
Therefore f2,2 can be calculated as soon as f2,1 is known.

At the next level, the following equation needs to be solved (note,
it is not necessary to know the size of the cash flow).

1

2

{(
1/2

1 + Z2
3 · f3,1 · (t3 – t2)

+
1/2

1 + Z3 · f3,1 · (t3 – t2)
)

· 1

1 + f2,2 · (t2 – t1)

+

(
1/2

1 + Z3 · f3,1 · (t3 – t2) +
1/2

1 + f3,1 · (t3 – t2)
)

· 1

1 + f1,2 · (t2 – t1)
}

· 1

1 + f1,1 (t1 – t0)

= P(t0, t3)

Solving this equation for f3,1 also gives f3,2 and f3,3 from the relations
f3,2 = Z3 · f3,1 and f3,3 = Z3 · f3,2. Using the same method for cash flows,
at all times in the tree, the tree will be fully calibrated to produce the
same value as the forward rates. The new calibrated tree is now given
in Fig. 10.3.

The rates in the calibrated tree are compared with the rates from
the un-calibrated. The reason for the previous calibration is shown in
Fig. 10.4, where the error is caused by the bond’s convexity.

Notice that the present value curve is not linear. The curvature rep-
resents convexity. The value of the cash flow, labelled the “calculated
value” as mentioned earlier, is an average of the two values V1 and
V2. Note that this average is higher than the actual value. After the
calibration, the situation is described in Fig. 10.5.
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Fig. 10.3 The calibrated tree in the OAS model

Fig. 10.4 Explanation of the reason to calibrate the OAS model

10.1.4 Calibrate the Tree With a Spread

The calibrated binomial tree just derived is applicable to valuing a
benchmark bullet instrument. Now, consider how the same, calibrated
tree could be adapted to value a non-benchmark (corporate) callable
bond. To simplify the analysis, it is assumed that a corporation incurs
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Fig. 10.5 The values after the calibration in the OAS model

no transaction costs either when it calls a bond or when it issues a
new bond, and that it will always call a bond if it is rational to do so.

A general pricing formula at zero spread paying cash flows C1,
C2, . . .Cn at time T1, T2, . . .Tn is given by

�(0, 0) =
n∑
i=1

Ci

⎧⎨
⎩

i∏
j=1

1(
1 + fj

)Tj–Tj–1
⎫⎬
⎭

With a shift s(s �= 0) in the rate fj, the price is given as:

�(s, 0) =
n∑
i=1

Ci

⎧⎨
⎩

i∏
j=1

1(
1 + fj + s

)Tj–Tj–1
⎫⎬
⎭

If the market price � is given, the aforementioned formula can be
applied with different spreads s, until the spread that equals the market
price is found. This spread is called the implied spread. When using
tree models, the same spread is applied at all nodes.

Consider a 24-month corporate bond paying an annual coupon
of 10.50% in two semi-annual instalments (each coupon is therefore
$5.25). The bond is callable in 18 months (period 3) at $101.00. Sup-
pose that the bond’s offer price is $103.75 –this is the price at which
you could buy this bond. The goal is to derive this same value with the
model. To get this value, a constant spread is added to all of the rates
in the tree until the value of the bond cash flows equal the price of the
callable corporate bond. In the calibration procedure we replace the
values of the bond with the call value if the bond can be called back
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Fig. 10.6 The calculation of the final OAS cash flow

at this time, and the value at this point exceeds the call value – this is
shown for the final cash flow in Fig. 10.6.

The same is done for all cash flows, and the sum of these is taken.
Then the tree is adjusted to find a new shifted tree. The correct value
for the callable corporate bond gives a spread of 90.465 basis points.
This spread is called the bond’s option-adjusted spread (OAS). Essen-
tially, interpret the OAS is interpreted as the number of basis points
that must be added to each and every rate in the calibrated binomial
tree of risk-free short rates to obtain a model predicted price that pre-
cisely equals the observed market value of the bond. These basis points
represent the risk premium for bearing the credit risk associated with
the bond. The same sort of analysis could have been performed if the
bond had contained an embedded put option.

If the market price is unknown, but the size of the spread is known,
this spread can be used to find a reasonable price of the callable bond.
It is also possible to simulate a price to find the corresponding OAS.

10.1.5 Using the OAS Model to Value
the Embedded Option

Now, the OAS can be used to determine the value of the option that
is embedded in a callable bond. To accomplish this task we ask, “what
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Fig. 10.7 The difference in price of a callable and a non-callable bond

would the value of the bond be at the same OAS if the bond had not
been callable”. In this case, the answer is $103.8143.

A callable bond may be viewed as a portfolio consisting of a long
position in a bullet bond and a short position in a call option on a
bullet bond that begins on the option’s call date. Therefore,

Bcallable = Bbullet – Cbullet

103.7500 = 103.8143 – Cbullet

This implies that Cbullet = 0.0643
Therefore, the option is worth $0.0643 for every $100 of par. Be-

cause of the embedded option in a callable bond, the curve, bond
price as function of YTM, will differ from the curve for a non-callable
(bullet) bond. This is shown in Fig. 10.7.

10.1.6 Effective Duration and Convexity

Modified duration measures the percentage bond price change for an
absolute yield change. It can also be interpreted as the negative slope
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of the price-yield relationship. The convexity can similarly be inter-
preted as the curvature of the price-yield relationship. Since duration
and convexity do not consider that cash flows of an interest rate se-
curity with embedded option may change due to the exercise events,
they do not provide satisfactory results for instruments with embed-
ded options. Since a callable (or putable) instrument has cash flows
that differ under different interest rate scenarios, it follows that the
duration is a poor measure for these instruments. The OAS approach
makes it possible to get a better measure of interest rate risk. These
measures are called the bond’s effective duration or option-adjusted
duration and the bond’s effective convexity.

The most intuitive way to calculate an effective duration is to first
calculate the callable bond’s fair value using the OAS approach (as
done previously). Next, it is assumed that the benchmark yield curve
shifts upward by exactly one basis point. The benchmark forward rates
are then re-derived, as is the calibrated binomial tree of interest rates.
With the new binomial tree the upward shifted value of the callable
bond is calculated. Similarly, it is then assumed that the benchmark
yield curve shifts downward by exactly one basis point, and the same
values are recalculated as shown before. With this tree we calculate
the downward shifted value of the bond.

The effective Macaulay duration and convexity is then given by

EffectiveDuration =
P– – P+

2P0 (�y)
and

Effective Convexity =
P+ + P– – 2P0

P0 (�y)2

where

P– is the down shifted price
P+ the up shifted price
P0 the un-shifted price and
�y the shift in the yield curve

If this technique is used for the corporate bond for which we calcu-
lated an OAS of 90.465 basis points, the effective duration will be 1.745
and the effective convexity 4.045. Without the embedded option the
values are 1.782 and 4.166 respectively. In this case the differences
are small, but for bonds with long maturity the difference between
Modified and Effective Duration can be significant. (Fig. 10.2)
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Stochastic Processes

11.1 Pricing Theory

Modern pricing models generally use one of two powerful approaches;
equilibrium pricing or relative pricing. In an equilibrium framework,
certain market characteristics, such as a price risk, are estimated and
the model can be used to predict prices for securities in the market.
There is no guarantee that the model will price any security at its ob-
served market price. In the relative pricing framework, some observed
market prices are used as a starting point, and then other securities are
priced relative these.

We will now start to consider the particular problems that ap-
pear when we try to apply arbitrage theory to the bond market. The
primary objects of investigation are zero coupon bonds, also known
as pure discount bonds, with various maturities. All payments are as-
sumed to be made in a fixed currency (e.g. US dollars). Previously the
short interest rates have been considered to be deterministic. In reality
the interest rates are stochastic. This makes the theory of interest rate
difficult and interesting.

We will begin with some definitions and then discuss the stochastic
processes concerning the theory of interest rates.

Definition 11.1.0.1. A zero coupon bond with maturity date T, also
called a T-bond, is a contract which guarantees the holder 1 (dollar,
sterling, kronor . . . ) to be paid on the date T. The price at time t of a
bond with maturity date T is denoted by p(t, T) or pT(t).

The convention that the payment at the time of maturity, known as
the principal value, face value or nominal amount, equals one,
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is made for computational convenience. Coupon bonds, which give
the owner a payment stream during the interval [0,T] are treated sub-
sequently. These instruments have the common property that they
provide the owner with a deterministic cash flow, and for this reason
they are also known as fixed income instruments. The graph of
p(t,T) is called the term structure of bond prices at time t.

We assume the following:

• There exists a fix income market of T -bonds for all T > 0.

• p(t, t) = 1 for all times t.

• For a given t, p(t,T) is differentiable with respect to T.

• At the bond market, p(t,T) there exist an infinite number of
securities.

We also define the derivative of the bond price p(t,T) with respect to
T as

pT (t,T) =
∂p(t,T)

∂T

A typical problem
We want to write a contract at time t that gives a deterministic

interest rate in the interval [S,T]. We do this as:

1. At time t we sell one S-bond. This will give us p(t, S) dollars.

2. We use this income to buy exactly p(t, S)/p(t,T)T -bonds. Thus
our net

3. investment at time t equals zero.

4. At time S the S-bond matures, so we are obliged to pay out one
dollar.

5. At time T the T -bonds mature at one dollar a piece, so we will
receive the amount p(t, S)/p(t,T) dollars.

6. The net effect of all this is that, based on a contract at t, an in-
vestment of one dollar at time S has yielded p(t, S)/p(t,T) dollars at
time T.

7. Thus, at time t, we have made a contract guaranteeing a risk-less
rate of interest over the future interval [S,T]. Such an interest rate
is called a forward rate.
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11.1.1 Interest Rates

We will calculate relevant interest rates on the construction as shown
earlier. We will use the simple forward rate L and the continuous
forward rate R that solves:

1 + L (T – S) =
p(t, S)

p(t,T)

and

eR(T–S) =
e–RS

e–RT
=

p(t, S)

p(t,T)

Definition 11.1.1.2. The simple forward rate for the period [S,T]
contracted at time t is defined by

L(t, S,T) = –
p(t, T) – p(t, S)
(T – S) p(t, T)

Definition 11.1.1.3. The simple spot rate for [S,T] is defined by:

L(S,T) = –
p(S,T) – p(S, S)
(T – S) p(S,T)

= –
p(S,T) – 1

(T – S) p(S,T)

Definition 11.1.1.4. For t � S � T we define the continuously
compounded forward rate for [S,T] contracted at time t as

R(t, S,T) = –
ln [p(t, T)] – ln [p(t, S)]

T – S

Definition 11.1.1.5. We define the continuously compounded spot
rate for the period [S,T] as

R(S,T) = –
ln [p(S,T)] – ln [p(S, S)]

T – S
= –

ln [p(S,T)]
T – S

Definition 11.1.1.6. Especial we define the forward rate for the
period [t, T] as

R(t,T) = R(t, t, T) = –
ln[p(t, T)]

T – t
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Definition 11.1.1.7. The instantaneous forward ratewith maturity
at T contracted at t is defined as

fT(t) = f(t, T) = lim
S→T

R(t, S,T) = –
∂ [ln p(t, T)]

∂T

giving

p(t, T) = exp

⎧⎨
⎩–

T∫
t

f(t, u)du

⎫⎬
⎭

This is equivalent as, at time contracted at time t as agree to pay $1
at time T and then receive ef (t,T) · �T. In terms of FRA, this is at time t
agree to pay $1 at time T0 and then at time T receive

exp

⎧⎪⎨
⎪⎩

T∫
T0

f (t, u)du

⎫⎪⎬
⎪⎭

or to pay

exp

⎧⎪⎨
⎪⎩–

T∫
T0

f (t, u)du

⎫⎪⎬
⎪⎭

at time T0 and then receive $1 at time T.

Definition 11.1.1.8. The instantaneous short rate at time t is then
defined by

r(t) = f(t, t)

We then have

p(t, T) = exp {–R(t, T) · (T – t)}

Before, we defined the money account by the process

{
dB(t) = r(t)B(t)dt
B(0) = 1
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giving

B(t) = exp

⎧⎨
⎩

t∫
0

r(u)du

⎫⎬
⎭

Lemma 11.1.9. The following holds for t � s � T :

p(t,T) = p(t, s) exp

⎧⎨
⎩–

T∫
s

f (t, u)du

⎫⎬
⎭ = exp

⎧⎨
⎩–

T∫
t

f (t, u)du

⎫⎬
⎭

When we study the interest rate market we have to start with some-
thing we know and depending on what choice we make, calculate
what is unknown. Therefore we formulate the following questions:

1. If we let the dynamic of the short rate be given. Which bond prices
p(t,T) is consistent with the choice of r? Will the bond prices be
uniquely given by r? Will these be free of arbitrage?

2. Which internal conditions do the bond prices {pT ;T � 0} have to
satisfy to have an arbitrage free money market?

3. Which internal conditions do the family of forward rates
{f T ;T � 0} have to satisfy to have an arbitrage free money market?

4. What can we say about the prices of different derivatives on an
arbitrage-free money market?

To summarize what we have defined before, if we plot the interest
rates, they form the term structure of interest rates or yield curve. We
can represent the yield curve in three different but equivalent ways.

1. The first representation is by the prices of pure discount bonds
(sometimes called zero-coupon bonds) that give the holder a single
unit cash flow (e.g. one dollar) at maturity with no intermediate
cash flows. We defined previously the function p(t,T) to be the
price, at time t, of a discount bond which matures at time T, with
t � T , (p(T ,T) = 1). Remark! This is equivalent to the discount
function defined earlier.

2. We can also represent the term structure by associating the continu-
ously compounded spot rate R(t,T) (sometimes called par yield)
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with the pure discount bond price p(t,T):

p(t,T) = e–R(t,T)(T–t)

Inverting this equation we obtain

R(t,T) = –
ln[p(t,T)]

T – t

3. The third formulation is in terms of the forward rate curve, f (t,T).
This function represents at time t, the instantaneously maturing in-
terest rate at time T and is derived from the discount bond function
by applying the following transformation:

f (t,T) = –
∂
[
ln p(t,T)

]
∂T

Combining the aforementioned equations, we can write the price
of a pure discount bond as the final cash flow discounted by the
instantaneous forward rates

p(t,T) = exp

⎧⎨
⎩–

T∫
t

f (t, u)du

⎫⎬
⎭

and the spot rate as the continuous average of forward rates:

R(t,T) =
1

T – t

⎛
⎝

T∫
t

f (t, u)du

⎞
⎠

For each of these rates, or prices, we associate a volatility. The function
that describes these volatilities we call the term structure of interest
rate volatilities. In terms of spot rates, a typical volatility structure
exhibits short-term interest rates that are more volatile than longer-
term interest rates an empirical feature of most markets. The effect is
illustrated in Fig. 11.1.

The discount function is related to the bond prices asD(T) = p(0,T),
which is the value of $1 paid at time T.
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Fig. 11.1 The volatility as function of time-to-maturity

11.1.2 Stochastic Processes for Interest Rates

From now on, we will think of a Wiener processW on a filtrated prob-
ability space (�,F ,P,F ,) to generate the uncertainty. It will then be
naturally to specify objects via Itô equations. F is the natural filtration
generated by the Wiener process and F the σ -algebra containing all the
information on the sample space �.

We want to consider the stochastic processes for the short rate, the
forward rate and the bond prices as follows

dr(t) = μ(t)dt + σ (t)dW(t),

df (t,T) = α(t,T)dt + σ (t,T)dW(t) and

dp(t,T) = m(t,T)p(t,T)dt + ν(t, T)p(t,T)dW(t)

Here, μ and σ are adapted processes, defined for all times t � 0. For
each fixed T ,m(t,T), ν(t, T),α(t,T) and σ (t,T) are adapted processes
for 0 � t � T. We will also suppose that all the previous processes
are continuous in t and two times differentiable. Further, we suppose
that ν(T , T) = 0 for all T. This seems to be OK since p(T ,T) = 1 by
definition.
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We then have three choices. We can start with

• the dynamics of the short rate dr,

• the dynamics of the forward rates df T or by

• the dynamics of the bond prices dpT

We are now ready to study how these are related to each other.

11.1.2.1 The Relation from Bond Prices (dpT ) to Forward
Rates (df T )

We will start with the dynamics of the bond prices to see how this
process is related to the process of the forward rates.

Therefore we start with

dp(t,T) = m(t,T)p(t,T)dt + ν(t, T)p(t,T)dW(t)

If we integrate this process we get

p(t,T) = p(0,T) +

t∫
0

p(u,T)m(u,T)du +

t∫
0

p(u,T)ν(u,T)dW(u)

Now, we take the derivative of this, and believe we can take the
derivatives inside both of the integrals.

pT (t,T) = pT (0,T) +

t∫
0

{pT (u,T)m(u,T) + p(u,T)mT (u,T)} du

+

t∫
0

{pT (u,T)ν(u,T) + p(u,T)νT (u,T)} dW(u)

We then see that the stochastic differential of pT (t,T) is given by:

dpTT (t) =
{
pTT (t)m

T (t) + pT (t)mT
T (t)
}
dt +

{
pTT (t)ν

T (t) + pT (t)νTT (t)
}
dW(t)

We now use the definition of the instantaneous forward rate with
maturity at T:

f T (t) = –
∂
[
ln p(t,T)

]
∂T

≡ –
pT (t, T)

p(t,T)
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Set pT = p and so on, and use the Itô formula on f = f T , we then get

df =
∂f

∂pT
dpT +

∂f

∂p
dp +

1

2

∂2f

∂p2T
(dpT )

2 +
1

2

∂2f

∂p2
(dp)2 +

∂2f

∂p∂pT
dpdpT

The derivatives are given as

∂f

∂pT
= –

1

p
,

∂2f

∂p2T
= 0,

∂f

∂p
=
pT
p2

,
∂2f

∂p2
= –2

pT
p3

and
∂2f

∂p∂pT
=

1

p2

That is,

df = –
1

p
dpT +

pT
p2

dp –
1

2
2
pT
p3

(dp)2 +
1

p2
dpdpT

= –
1

p
dpT +

pT
p2

dp – ν2p2
pT
p3

dt +
1

p2

{
pTpν

2 + p2νTν
}
dt

= νTνdt –
1

p
dpT +

pT
p2

dp

where we have used

(dp)2 = ν2p2dt.

Since we just calculated dpT and we know dp, we can just multiply the
two expressions. To the lowest order we get:

dpTdp = νp {pTν + pνT} dt =
{
pTpν

2 + p2νTν
}
dt

By putting these into the expression of df we find

df = νTνdt –
1

p
{{pTm + pmT} dt + {pTν + pνT} dW} +

pT
p2

{mpdt + νpdW}

=

{
νTν –

pT
p
m – mT +

pT
p
m

}
dt +

{
–
pT
p
ν – νT +

pT
p
ν

}
dW

= {νTν – mT} dt – νTdW = αdt + σdW

where

α(t,T) = νT (t,T)ν(t,T) – mT (t,T)
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and

σ (t, T) = –νT (t, T)

To summarize with a known stochastic process for the bond prices:

dp(t,T) = m(t,T)p(t,T)dt + ν(t, T)p(t,T)dW(t)

We can find the stochastic process for the forward prices df (t,T):

df (t,T) = α(t,T)dt + σ (t, T)rdW(t)

where

α(t,T) = νT (t,T)ν(t,T) – mT (t,T)

σ (t, T) = –νT (t,T)

11.1.2.2 The Relation from Forward Rates (df T ) to Short
Rates (dr)

We will now start with the dynamics of the forward rates to see how
this process is related to the process of the short rates.

Therefore we start with the stochastic process

df (t,T) = α(t,T)dt + σ (t, T)dW(t)

If we integrate this process we get

f (t,T) = f (u,T) +

t∫
u

α(s,T)ds +

t∫
u

σ (s, T)dW(s)

By using the definition r(t) = f (t, t) and set T = t and u = 0 we get:

r(t) = f (0, t) +

t∫
0

α(s, t)ds +

t∫
0

σ (s, t)dW(s)

But, remember that this is not a standard form of a stochastic differen-
tial since the processes depends on the integration limits. To overcome
this difficulty, we write

α(s, t) = α(s, s) +

t∫
s

αT (s, u)du
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and

σ (s, t) = σ (s, s) +

t∫
s

σT (s, u)du

To see this, imagine the integral

t∫
s

αT (s, u)du = α(s, t) – α(s, s)

Put these expressions into the integral for r(t)

r(t) = r(0) +

t∫
0

fT (0, s)ds +

t∫
0

α(s, s)ds

+

t∫
0

t∫
s

αT (s, u)duds +

t∫
0

σ (s, s)dW(s) +

t∫
0

t∫
s

σT (s, u)dudW(s)

Change the order of integration

r(t) = r(0) +

t∫
0

fT (0, s)ds +

t∫
0

α(s, s)ds +

t∫
0

u∫
0

αT (s, u)dsdu+

+

t∫
0

σ (s, s)dW(s) +

t∫
0

u∫
0

σT (s, u)dW(s)du

We can illustrate the change in the order of integration in Fig. 11.2.
This explains the change in the integration limits. Before we change
the order, u goes from 0 to t. Then s starts at u on the line u = s. In the
next graph we have changed the order and then, when s goes from 0
to t, u does the same (i.e. from 0 to t).

At last, we use the process of the short rate

dr(t) = μ(t)dt + σ (t)dW(t)

and integrate to find

r(t) = r(0) +

t∫
0

μ(u)du +

t∫
0

σ (u)dW(u)
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Fig. 11.2 The change in order of integration

Comparing with the previous expression we see that⎧⎨
⎩
μ(t) = fT (0, t) + α(t, t) +

t∫
0
αT (s, t)ds +

t∫
0
σT (s, t)dW(s)

σ (t) = σ (t, t)

If we use:

f (t,T) = f (0,T) +

t∫
0

α(s,T)ds +

t∫
0

σ (s, T)dW(s)

⇒
fT (t,T) = fT (0,T) +

t∫
0

αT (s, T)ds +

t∫
0

σT (s,T)dW(s)

this can be simplified to{
μ(t) = fT (t, t) + α(t, t)
σ (t) = σ (t, t)

11.1.2.3 The Relation From Forward Rates (df T ) to Bond
Prices (dpT )

We will start with the dynamics of the forward rates to see how this
process is related to the process of the bond prices.

df (t,T) = α(t,T)dt + σ (t, T)dW(t)
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If we use the definition of the instantaneous forward rate with maturity
at T

f T (t) = –
∂
[
ln p(t,T)

]
∂T

and write the bond prices as

p (t, T) = exp {Z (t, T)}

where

Z(t,T) = –

T∫
t

f (t, s)ds

Compare with the definition of the aforementioned bond price! We
also know that

f (t, s) = f (0, s) +

t∫
0

α(u, s)du +

t∫
0

σ (u, s)dW(u)

We start by calculating dZ(t,T)

dZ(t,T) = f (t, t)dt –

T∫
t

df (t, u)du = r(t)dt –

T∫
t

[α(t, u)dt + σ (t, u)dW(t)] du

= r(t)dt –

T∫
t

α(t, u)dudt –

T∫
t

σ (t, u)dudW(t)

=

⎧⎨
⎩r(t) –

T∫
t

α(t, u)du

⎫⎬
⎭ dt –

⎧⎨
⎩

T∫
t

σ (t, u)du

⎫⎬
⎭ dW(t)

where we have used

dZ(t,T)

dt
= –

∂

∂t

T∫
t

f (τ , u)du |τ=t –
T∫
t

∂

∂t
f (t, u)du = f (t, t) –

T∫
t

df (t, u)
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and

df (t,T) =
∂f (t,T)

∂t
dt +

∂f (t,T)

∂T
dT =

∂f (t,T)

∂t
dt

since we are studying one family of forward rates with maturity T. By
using the Itô formula on p(t,T) = exp{Z(t,T)} we get:

dp(t,T) =
∂p

∂Z
dZ(t,T) +

1

2

∂2p

∂Z2
(dZ(t,T))2

= p(t,T)dZ(t,T) +
1

2
p(t,T) (dZ(t,T))2

= p(t,T)

⎧⎪⎨
⎪⎩
⎡
⎣r(t) –

T∫
t

α(t, u)du

⎤
⎦ +

1

2

⎛
⎝

T∫
t

σ (t, u)du

⎞
⎠

2
⎫⎪⎬
⎪⎭ dt

– p(t,T)

⎧⎨
⎩

T∫
t

σ (t, u)du

⎫⎬
⎭ dW(t)

This can be rewritten as

dp(t,T) = p(t,T) {r(t) + b(t,T)} dt + p(t,T)a(t,T)dW(t)

where we can identify a(t,T) and b(t,T)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a(t,T) = –

T∫
t
σ (t, u)du

b(t,T) = –
T∫
t
α(t, u)du + 1

2a(t,T)
2

At last we have: {
m(t,T) = r(t) + b(t,T)
ν(t,T) = a(t,T)

To summarize, we have that

• The forward rate R(t, S, T) gives the average yield in the interval
[S,T] contracted at time t.

• The forward rate f (t,T) gives the instantaneous yield at T contracted
at time t.
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• The short rate r(t) gives the instantaneous yield of a T–bond con-
tracted at time t. This is the yield of a portfolio strategy where we
at each time t invest all of our Capital in the bond with immediately
expiration.

The last strategy is called a rollover-strategy and its value process is
given by:

dV(t) = V(t)u(t)
dp(t, t)

p(t, t)

where u(t) is the Capital at time t invested in the bond pt. Per definition
we have u(t) = 1 for all t and:

dp(t, t)

p(t, t)
= {r(t) + b(t, t)} dt + a(t, t)dW(t)

But, since a(t, t) = b(t, t) = 0 we get

dV(t) = r(t)V(t)dt

The possibility to make a rollover-strategy on the bond market implies
the existence of a local risk-free security with the stochastic yield given
by r(t)



12
Term Structures

12.1 The Term Structure of Interest Rates

We will now consider the problem where we will model price pro-
cesses on an arbitrage-free market of zero coupon bonds. On this
market we will model the short rate, r(t) under the real probability
measure P. The process of the short rate will be given as

dr(t) = μ(t, r(t))dt + σ (t, r(t))dW(t)

The only possibility to invest Capital is via roll-over:

dB(t) = r(t)B(t)dt

Therefore we can say that, to make rollover on the bank is equivalent
by holding the security for which the price process is given by dB.
We now make the following assumptions:

• The interest rate r(t) is a stochastic process.

• There exists only one security B with the aforementioned dynamic.

• All other securities are considered as derivatives of this (r(t)).

This means that we will consider a bond as an interest derivative
where the value of the bond depends on the expectation of the future
development of the short interest rate r(t). We want to use arbitrage
arguments to say something about the bond prices. It will be more dif-
ficult to analyse the market of interest rate derivatives than the simple
Black-Scholes market we have been studying so far.
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Remark! According to the Meta Theorem, we have only one
known security, B and one random source. Therefore the market of
interest rates is free of arbitrage but not complete.

When we were studying the Black-Scholes market we did also know
the price of the underlying stock. Therefore we can guess that, as soon
we know the price of at least one bond, then we can price all other
bonds relative this one, and the known security B. This is also true
according to the Meta theorem.
We now suppose that we have one T -bond with a price given at t as:

p (t,T) = F (r (t) , t,T) = FT (r (t) , t)

where F is a real function with tree real variables. Sometimes we will
consider T as a parameter. We ask ourselves about the properties of
the function F so that the Capital market is free of arbitrage. As we
can see, we have a simple boundary condition

F (r, T ,T) = 1 for all r.

We will now create portfolios of bonds with different time to maturity
T. Therefore we need the dynamics of the function F. By using the Itô
formula we get

dFT =
∂FT

∂t
dt +

∂FT

∂r
dr +

1

2

∂2FT

∂r2
(dr)2

= FT
t dt + FT

r {μdt + σdW} +
1

2
σ 2FT

rrdt

=

{
FT
t + μFT

r +
1

2
σ 2FT

rr

}
dt + σFT

r dW = FTαTdt + FTσTdW

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
αT =

FT
t + μFT

r +
1

2
σ 2FT

rr

FT
,

σT =
σFT

r

FT

Let us now fix two times S and T and study self-financing portfolios
based on bonds with maturities S and T. As usually the Capital of such
a portfolio will be described by a value process given by

V = hTFT + hSFS
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To become self-financing, we must have

dV = hT · dFT + hS · dFS

If we use relative portfolios we have

dV = V

{
uT

dFT

FT
+ uS

dFS

FS

}
= V

{
uTαT + uSαS

}
dt + V

{
uTσT + uSσS

}
dW

where

uT + uS = 1

Since we only have one random source (one Wiener process), we can
make the following choice to eliminate the last bracket in dV in the
previous equation, that is, we have{

uTσT + uSσS = 0

uT + uS = 1

then, after some algebra we get

dV = V

{
αSσT – αTσS

σT – σS

}
dt

In a market free of arbitrage, we must have

dV = rVdt

That is,

αSσT – αTσS
σT – σS

= r

With some algebra

αSσT – αTσS = r (σT – σS)
αSσT – rσT = αTσS – rσS
σT (αS – r) = σS (αT – r)

We can also write this as

(∗) αS(t) – r(t)

σS(t)
=
αT (t) – r(t)

σT (t)
= λ(t, r)
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so, we do not have any dependencies between S and T. The function
λ(t) is called the market price of risk. We can see this from

dFT = FTαTdt + FTσTdW = FT {r + λσT} dt + FTσTdW

So, λ(t, r) is a risk premium per unit of volatility. We measure the risk
in volatility. If we insert the definitions of αT and σT in (∗) we get

αT (t) – r(t) – λ(t, r)σT (t) =
FT
t + μFT

r + 1
2σ

2FT
rr

FT
– r(t) – λ(t, r)

σFT
r

FT
= 0

⇒

FT
t + μFT

r +
1

2
σ 2FT

rr – F
Tr(t) – λ(t, r)σFT

r = 0

So, we get the partial differential equation

⎧⎨
⎩
∂FT

∂t
+ {μ(t, r) – λ(t, r)σ (t)}

∂FT

∂r
+
1

2
σ 2 ∂

2FT

∂r2
– r(t)FT = 0

F(r, T ,T) = 1

This equation is, in the literature called the equation of the term
structure1 or the term structure equation (TSE). Remark! This is
a Black-Scholes equation where we replaced μ with μ – λσ . How-
ever, this PDE is more complex since λ is a unknown function:
λ = λ(r(t), t).

12.1.1 Yield- and Price Volatility

In fixed income it is very important to distinguish between yield-
volatility and price volatility. In the process for the short rate we have
the volatility for the yield, and the process for the bond prices we have
the volatility for the prices.
As we saw earlier, if we did start with a process for the rate as

dr(t) = μdt + σrdW(t)

1 A better name is the Bond Pricing PDE, since the “Term” T is a fixed time and not a variable.
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and let the zero coupon price be given by F = F(t,T , r) and use Itô on
F we get

dF =
∂F

∂t
dt +

∂F

∂r
dr +

1

2

∂2F

∂r2
(dr)2 = Ftdt + Fr {μdt + σrdW} +

1

2
σ 2
r Frrdt

=

{
Ft + μFr +

1

2
σ 2Frr

}
dt + σrFrdW = Fαdt + FσpdW

We saw before that the relationship between these volatilities follows

σp =
σrFr

F
≡ σr

p(t,T)

∂p(t,T)

∂r
≡ σr · D mod

where Dmod is the modified duration. If the interest short rate is log-
normal distributed, that is,

dr(t) = μ · r · dt + σr · r · dW(t)

we would be given the following relationship

σp = r · σrFr

F
≡ r · σr

p(t,T)

∂p(t,T)

∂r
≡ r · σr · D mod

This formula is often used by traders. The true relationship seems to
be somewhere in between these results and depends on the time to
maturity for the zero coupon bond.

12.1.1.1 Measuring Historical Yield Volatility

We know that volatility is measured in terms of the standard deviation
or variance. To find the historical yield volatility we start with the daily
data on yields. This can be from bonds quoted in ytm or other data of
similar kind. We denote an interest rate on day t as yt. It is important
to choose the right number of days T that the volatility measure is
going to be based on. Different number of observations would result
in a different volatility estimate. Typically, portfolio managers with the
longer investment horizon use a greater number of observations when
calculating the volatility of interest rates.
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We start by computing the daily relative yield change, Xt, assuming
continuous compounding

Xt = 100 · ln yt
yt–1

Then we compute the daily standard deviation of yields

σday =
√
Var (Xt) =

√√√√∑
t

(
Xt – X̄

)2
T – 1

where X̄ is the mean value of Xt and T the number of measurements
(maturity). Some market practitioners argue that in forecasting volatil-
ity the expected value or mean that should be used in the formula for
variance is zero.
Next, we annualize the standard deviation of yields

σannual = σday · √
D

where D is the number of trading-days per year. Analysts can use dif-
ferent number of days in a year in this step, but the usual practice is
to exclude holidays (∼10 days a year) from calculations, so that the
number of trading days is 5 × 52 – 10 holidays = 250 trading days.
How do we interpret yield volatility? Let us assume, for example, that
the annualized interest rate volatility of a 5-year note is 10%. Further,
let us assume that currently the yield on this note is 2%. The standard
deviation of interest rates on this bond would then equal 10% x 2% =
0.2% (20 basis points). Having calculated this standard deviation, an
analyst would be able to estimate the confidence interval for interest
rates. For example, a 95% confidence interval can be estimated as 2%+
–1.96 × 0.2%.

12.1.1.2 Historical Versus Implied Yield Volatility

The procedure for calculation of yield volatility described previously is
based on historical yield data. Another approach is to derive volatility
from the valuation of options, in which case it is called the implied
volatility. We assume that the options are currently trading near their
fair value and derive the yield volatility estimate from the option pri-
cing model. Swaptions are usually quoted on the market as Black
volatility.
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There are several problems with using implied volatility.

• It is based on the assumption that the option pricing model is
correct.

• Models make the simplifying assumption that volatility is constant.

• Options may not be fairly priced by the market, which results in a
misleading estimate of implied volatility.

12.1.1.3 Forecasting Yield Volatility

There are three different approaches to forecasting the volatility of
interest rates

• Yield volatility forecast equals the variance based on the last T days
with the mean yield change assumed to be zero.

• Similar to the first approach, but the formula gives more weight to
the more recent interest rate changes. More specifically, observa-
tions further in the past should be given less weight.

• Statistical models of time series, such as autoregressive conditional
heteroskedasticity (ARCH) model, may also be employed to forecast
yield volatility. The ARCH model can incorporate trends in volatility,
such as the observation that periods of low volatility are followed
by periods of high volatility and vice versa.

12.1.2 The Market Price of Risk

The TSE contains references to the functions μ–λσ and σ . The former
is the coefficient of the first-order derivative with respect to the spot
rate, and the latter appears in the coefficient of the diffusive, second-
order derivative. The four terms in the equation represent, in order
as written, time decay, drift, diffusion and discounting. The equation
is similar to the backward equation for a probability density function,
except for the final discounting term. As such we can interpret the
solution of the bond pricing equation as the expected present value
of all cash flows. As with equity options, this expectation is not with
respect to the real random variable, but instead with respect to the
risk-neutral variable. There is this difference because the drift term
in the equation is not the drift of the real spot rate μ, but the drift
of another rate, called the risk-neutral spot rate. This rate has a drift of
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μ–λσ . When pricing interest rate derivatives (including bonds of finite
maturity) it is important to model, and price, using the risk-neutral
rate. This rate satisfies

dr = (μ – λσ )dt + σdW.

We need the new market-price-of-risk term because our modelled vari-
able, r, is not traded. If we set λ to zero then any results we find are
applicable to the real world. If, for example, if we want to find the
distribution of the spot interest rate at some time in the future then
we would solve a Fokker-Planck equation with the real, and not the
risk-neutral, drift. Because, we cannot observe the function λ, except
possibly via the whole yield curve.

12.1.3 Solutions to the TSE

The solution to a SDE as the TSE can be represented in an integral form
in terms of the underlying stochastic process.

F(t, s) = Et

⎡
⎣exp

⎛
⎝–

s∫
t

r(u)du –
1

2

s∫
t

λ2(u, r(u))du –

s∫
t

λ(u, r(u))dW(u)

⎞
⎠
⎤
⎦

To prove this, we define

V(s) = exp

⎛
⎝–

s∫
t

r(u)du –
1

2

s∫
t

λ2(u, r(u))du –

s∫
t

λ(u, r(u))dW(u)

⎞
⎠

Now, let us differentiate the process F(t, s)V(t). Let f = FV and then
df = d(FV)

d(FV) =
∂(FV)

∂F
dF +

∂(FV)

∂V
dV +

∂2(FV)

∂V∂F
dVdF = VdF + FdV + dFdV

= V (F {r + λσT} dt + FσTdW) + FdV

+ (F {r + λσT} dt + FσTdW) dV
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with

dV =
∂V

∂t
dt +

∂V

∂W
dW +

1

2

∂2V

∂W2
(dW)2

= V

(
–r –

1

2
λ2
)
dt – VλdW +

1

2
λ2Vdt

= –rVdt – λVdW

we get

d(FV) = FV ({r + λσT} dt + σTdW) + FdV

– FV ({r + λσT} dt + σTdW) (rdt + λdW)

= FV ({r + λσT} dt + σTdW) – FV (rdt + λdW) – FVσTλdt

= FV (σT – λ) dW

By integrating from t to s and taking expectation value2 yields (the
term dW will be zero)

Et [F(s, s)V(s) – F(t, s)V(t)] = 0

Since F(s, s) = 1, V(t) = 1 Et [V(s) – F(t, s)] = 0 and F(t, s) = E[V(s)].
TSE can also be solved using standard numerical methods such as fi-
nite difference methods. In several cases, analytical solutions also exist
for the discount functions and European options. The only distinction
between instruments is the boundary conditions. The equation is lin-
ear, so the superposition principle holds, that is, when all instruments
in a portfolio fulfil the equation, the value of the portfolio also fulfils
the equation.

In the first term structure models, the form of the functions μ(r, t)
and σ (r, t) was specified, containing several parameters that had to be
estimated from historical data, or implied frommarket prices. Also, the
market risk price parameter λ(r, t) was specified as a single number.

This is a preference-dependent parameter, that is, it may be different
from trader to trader. This means that there is no guarantee that the
model generates a term structure that agrees with the observed term
structure. This is a serious limitation for pricing option elements, since

2 With expectation value, we always refer to the conditional expectation value, the conditional
information known up to a certain time. This time is usual today, since we donot know anything
about the future!
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any small mispricing of the underlying instruments could mean major
mispricing of the options.

Some authors still proposed trading strategies where all model para-
meters were derived from statistical analysis of historical prices. The
strategy tries to find mispriced bonds, where the mispricing is likely
to disappear.

12.1.4 Relative Pricing

To overcome these serious limitations of the early pricing models, Ho
& Lee (1987) took a new approach. Their model assumed that the
whole term structure followed a random evolution.

The model is still one-dimensional, since there is only one stochastic
influence. They developed their model in a discrete time, binomial
framework. A few years ago many said that this model had a serious
disadvantage, since the Ho & Lee model are based on a stochastic evol-
ution of the term structure that generate negative interest rates with
positive probability. Now days we know that negative interest rates
can occur.

Two papers, Jamshidan (1990) and Hull & White (1990) describe
how to adjust the market price of the risk parameter λ(r, t) in order
to obtain consistency between model prices and the observed term
structure of interest rates.

Their approach makes it possible to use the flexibility of the equilib-
riummodels to specify stochastic processes together with the adjusted
risk parameters, which generates a term structure consistent with
what is observed.

The models resulted in a PDE, which can be solved by standard
numerical techniques such as finite differences. Some of the mod-
els considered use normally distributed interest rates. In many cases,
these models have analytical solutions for the discount function and
for European options.

As usual, we can use the Feynman-Kač representation on
the TSE:

(∗) F(r, t,T) = EQ
t,r

⎡
⎣exp

⎧⎨
⎩–

T∫
t

r(s)ds

⎫⎬
⎭
⎤
⎦
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where the Q-dynamics of r is given by

{
dr(s) = {μ(s) – λ(s)σ (s)} ds + σ (s)dV(s)
r(t) = r

Conclusions: The equation (∗) is incredible simple. If we write it as

F(r, t,T) = EQ
t,r

⎡
⎣exp

⎧⎨
⎩–

T∫
t

r(s)ds

⎫⎬
⎭× 1

⎤
⎦

we see that the bond price is given as the expectation value of $1 (£1,
1 Kr. . . ) paid at maturity T, discounted to a per cent value. The expect-
ation value is calculated, not with respect to the objective probability
measure P, but using the risk adjusted martingale measure Q that de-
pends on λ(t). That is, we get a new martingale measure for each λ(t),
so that the measure Q is not unique. This is because the model is not
complete. In Black-Scholes world on the other hand, the martingale
measure is unique and the model is complete. The interest market is
not complete because we only have one given security.

The reason of having different martingale measures for different
market prices of risk, λ(t) is because of the reason that we can have
many different markets, free of arbitrage and consistent with the short
rate r. The bond prices on each market will depend on the liquidity
and the traders will to enter risky positions. When we have a given
market price of one bond, we know the market price of risk. Then we
also know the prices of all other bonds.

The bond prices are therefore determined, partly of the P-dynamics
of the short interest rate r and partly by the market. A general
contingent claim X = Φ(r(t)) is priced as

� (t,X) = F (t, r (t) , T)

where

F(t, r, T) = EQ
t,r

⎡
⎣exp

⎧⎨
⎩–

T∫
t

r(s)ds

⎫⎬
⎭�(r(T))

⎤
⎦
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Martingale Measures

13.1 Introduction to Martingale Measures

From now on, we will consider the filtrated probability space (�, F ,
P, F) as given whereW is a F -Wiener process on [0,T]. The interpret-
ation is that we consider an economy on [0,T] where all randomness
is generated by W. The time horizon is needed to perform a number
of Girsanov transformations in the interval [0,T]
We start with the following assumptions:

1. For each T ≥ 0 there exist an adapted price process p(t,T) for
T -bonds.

2. There exists a local risk-free security with the price process B given
by:

dB(t) = r(t)B(t)dtB(0) = 1

where the short rate is given by

dr(t) = μ(t, r(t))dt + σ (t, r(t))dW(t)

3. There exist a probability measure Q ∼ P such as each ZT -process
is a Q-martingale on [0,T], where the discounted bond prices ZT is
defined as

ZT (t) =
p(t,T)

B(t)
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With the aforementioned assumptions, it easy to show that the
bond prices have stochastic differentials. It is also possible to find
the relations between the bond price and the short rate. First we
notice that:

B(t) = exp

⎧⎨
⎩

t∫
0

r(u)du

⎫⎬
⎭

Theorem 13.1.1. With the previous assumption, we have for each
fixed T:

(i) The bond prices for t ≤ s ≤ T is given by:

p(t,T) = EQ

⎡
⎣p(s,T) exp

⎧⎨
⎩–

s∫
t

r(u)du

⎫⎬
⎭ |Ft

⎤
⎦

Especial, with s = T, by

p(t,T) = EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
t

r(u)du

⎫⎬
⎭ |Ft

⎤
⎦

(ii) There exist adapted processes m(t, T) and ν(t, T) such as:

dp(t,T) = m(t, T)p(t,T)dt + ν(t,T)p(t,T)dW(t)

(iii) The Q-dynamics of p(t, T) is given by:

dp(t,T) = r(t)p(t,T)dt + ν(t, T)p(t,T)dV(t)

where V is a Q-Wiener process.

(iv) The Q-dynamics of the forward rates f(t, T) is given by:

df (t,T) = ν(t, T)νT (t,T)dt – νT (t, T)dV(t)

Proof (i): Since ZT is a Q-martingale, we have:

p(t,T)

B(t)
= ZT (t) = EQ [ZT (s) |Ft

]
= EQ

[
p(s,T)

B(s)
|Ft

]
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so

p(t,T) = EQ
[
p(s,T)

B(t)

B(s)
|Ft

]
= EQ

⎡
⎣p(s,T) exp

⎧⎨
⎩–

s∫
t

r(u)du

⎫⎬
⎭ |Ft

⎤
⎦

Proof (iii): To prove this we will use the reverse of the Girsanov
theorem, which says that Q has arised from P via a Girsanov trans-
formation:

dQ = L(T∗)dP on FT∗

where
{
dL(t) = φ(t)L(t)dW(t)

L(0) = 1

for some process φ(t). From Girsanov theorem we get

dW(t) = φ(t)dt + dV(t)

where V is a Q-Wiener process. By taking Itô on ZT we get

dZT (t) =
∂ZT (t)

∂p(t,T)
dp +

∂ZT (t)

∂B(t)
dB

=
1

B(t)
{p(t,T)m(t,T)dt + p(t,T)ν(t, T)dW(t)}

–
1

B2(t)
p(t,T)B(t)r(r)dt

= ZT (t) {m(t,T) – r(t)}dt + ZT (t)ν(t,T)dW(t)

= ZT (t) {m(t,T) – r(t)}dt + ZT (t)ν(t,T) {φ(t)dt + dV(t)}

= ZT (t) {m(t,T) – r(t) + ν(t,T)φ(t)}dt + ZT (t)ν(t,T)dV(t)

With a choice of φ(t) = (r(t) – m(t, T))/ν(t,T) we have the Q-dynamics

dZT (t) = νT (t)ZT (t)dV(t)

By definition, we have

p(t,T) = B(t)Z(t,T)
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where B(t) and Z(t,T) have stochastic differentials under Q. Therefore
we use Itô on the previous expression, and get (since the second order
derivatives are zero)

dp(t,T) =
∂p(t,T)

∂ZT (t)
dZT (t) +

∂p(t,T)

∂B(t)
dB(t)

= B(t)dZT (t) + ZT (t)dB(t)

= B(t)νT (t)ZT (t)dV(t) + ZT (t)r(t)B(t)dt

= r(t)p(t,T)dt + νT (t)p(t,T)dV(t)

This proves (iii). If we insert dV(t) we get

dp(t,T) = r(t)p(t,T)dt + νT (t)p(t,T) {dW(t) – φ(t)dt}

=
{
r(t) – φ(t)νT (t)

}
p(t,T)dt + νT (t)p(t,T)dW(t)

Therefore, under P, we have mP(t,T) = r(t) – φ(t)ν(t,T).

To prove (iv) we use (iii) which say that under Q : m(t,T) = r(t). This
gives

∂m(t,T)

∂T
=
∂r(t)

∂T
= 0

The relation between dpT and df T was given via

dp(t,T) = m(t, T)p(t,T)dt + ν(t, T)p(t,T)dW(t)

df (t,T) = α(t,T)dt + σ (t, T)dW(t)

where

α(t,T) = νT (t,T)ν(t,T) – mT (t, T)

σ (t, T) = –νT (t, T)

which gives

df (t,T) = {νT (t,T)ν(t,T) – mT (t,T)}dt – νT (t,T)dW(t)

⇒
df (t,T) = ν(t,T)νT (t,T)dt – νT (t,T)dV(t)
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Here we have also used that m(t, T) = r(t) ⇒ φ(t) = 0 ⇒ dW(t) = dV(t)
Therefore we have proved (iv).

The results (i) – (iii) are pretty expected. But (iv) is a little bit of sur-
prise since this shows that under Q there must exist a relationship
between the drift and diffusion for the forward rates. In other word:
The dynamic of the forward rates under Q is uniquely determined by
the diffusion coefficient. This will be essential in a later section where
we will study the Heath-Jarrow-Morton framework.

Since we have

dFT (t) = {r(t) – λ(t)σT (t)}F
T (t)dt + σT (t)F

T (t)dW(t)

where FT = p(t,T), we have that φ(t) = –λ(t).
Before we will show that the model is free of arbitrage, we will give

some definitions.

Definition 13.1.0.2. A portfolio strategy is a finite adapted process
h:

h(t) =
{
h0(t), h(t, T1), . . . , h(t, Tn)

}

where by definition h(t, Tk) = 0 for t > Tk. Furthermore:

T∗∫
0

∣∣∣h0(t)∣∣∣dt < ∞ P a.s.

EQ

[∫ T∗

0
{h(t, Tk)Z(t, Tk)}

2 dt

]
< ∞ k = 1, . . .n

Definition 13.1.0.3. Given a portfolio strategy h, the value process
V(h) is defined by:

Vt(h) = h0(t)B(t) +
n∑

k=1

h(t, Tk)p(t, Tk)

Definition 13.1.0.4. A portfolio h is said to be self-financing if

dVt(h) = h0(t)dB(t) +
n∑

k=1

h(t, Tk)dp(t, Tk)
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Definition 13.1.0.5. The class of self-financing portfolios is denoted
by H . A contingent claim is a stochastic variable X such as

X is FT∗–measurable.

EQ[X2] < ∞
The class of contingent claims is denoted by K. With K+ we refer to
those X ∈ K such as

P(X ≥ 0) = 1, and P(X > 0) > 0

Definition 13.1.0.6. A contingent claim is said to be reachable on
[0, T] if there exist a self-financing strategy h such as

VT(h) = X, P–a.s.

Definition 13.1.0.7. A self-financing strategy h is said to be an
arbitrage strategy if there exist a time T such as

VT(h) ∈ K+, and V0(h) = 0

With the earlier definitions, the number of T-bonds in the portfolio
at the time t is given by h(t, T) and h0(t) the number of the risk-free
security. Due to our definition, we have at t = 0 decide the number of
possible bonds in our portfolio. The rollover strategy discussed in an
earlier section is not allowed in the previous portfolio strategy. But we
will still consider the short rate r in terms of the rollover. As before we
can move to the discounted Z-economy to show that the model is free
of arbitrage.

Lemma 13.1.8. For a given portfolio strategy h, we define VZ(h) as

VZ
t (h) = h0(t) +

n∑
k=1

h(t,Tk)Z(t,Tk)

Then

Vt(h) = B(t)Vz
t (h)

The strategy is self-financed if and only if

dVZ
t (h) =

n∑
k=1

h(t,Tk)dZ(t,Tk)

If h is self-financed, then VZ becomes a Q-martingale.
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Theorem 13.1.9. With the assumptions 1, 2 and 3, the model is free
of arbitrage.

Theorem 13.1.10. With the assumptions 1, 2 and 3, v(t, T) �= 0 for
all (t, T) with 0 ≤ t ≤ T . Then:

(i) The money market is complete, that is, each contingent claim is
reachable via an self-financing portfolio. More precise, if X is a
contingent claim X ∈ FT , then it is possible to replicate X with
a portfolio of T-bonds only and the risk-free security.

(ii) For X as given earlier, the arbitrage free price is given by:

πt [X] = EQ

⎡
⎣X · exp

⎧⎨
⎩–

T∫
t

r(u)du

⎫⎬
⎭ |Ft

⎤
⎦

Proof: If X is reachable via a portfolio h we know that VT is a Q-
martingale. Then:

VZ
t (h) = EQ [VZ

T (h) |Ft
]
= EQ

[
VT (h)

B(T)
|Ft

]
= EQ

[
X

B(T)
|Ft

]

so

Vt(h) = B(t)VZ
t (h) = B(t)EQ

[
X

B(T)
|Ft

]

= EQ
[
X
B(t)

B(T)
|Ft

]
= EQ

⎡
⎣X · exp

⎧⎨
⎩–

T∫
t

r(u)du

⎫⎬
⎭ |Ft

⎤
⎦

Theorem 13.1.11. Suppose r given on (�,F ,P,F ). Then, there ex-
ist an infinite number of arbitrage-free term structures for this r.
More precisely, for each Girsanov kernel φ, the bond prices can be
defined by:

p(t,T) = EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
t

r(u)du

⎫⎬
⎭ |Ft

⎤
⎦

where Q is defined by

df (t,T) = ν(t, T)νT (t,T)dt – νT (t,T)dV(t)
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and {
dL(t) = φ(t)L(t)dW(t)
L(0) = 1

The term structure is then free of arbitrage. Furthermore, the
Girsanov kernel φ is related to the market price of risk, λ such as
λ = –φ. That is, λ is the Girsanov kernel for the transformation from
Q to P.

Theorem 13.1.12. Suppose the short rate r on the martingale
measure Q solves the SDE

dr(t) = μ(t, r(t))dt + σ (t, r(t))dV(t)

and let X be a contingent claim: X = �[r(T)]. Then, the price of X on
Q is

πt[X] = F[t, r(t)]

where F is a solution to the PDE
⎧⎨
⎩
∂F(t, x)

∂t
+ μ(t, x)

∂F(t, x)

∂x
+
1

2
σ 2(t, x)

∂2F(t, x)

∂x2
– xF(t, x) = 0

F(T , x) = �(x)

To calculate arbitrage prices via a PDE, r has to be a Markov pro-
cess on the martingale measure Q. r is a Markov process from the
suggestions:

(i) We supposed that r on P was a solution to a SDE.

(ii) We supposed that the market price of risk was a function of time
and interest rate.



14
Pricing of Bonds

14.1 Bond Pricing

As we have seen the price of a zero coupon bond at t = 0 and time to
maturity T is given by

p(0,T) = EQ
t,r

⎡
⎣exp

⎧⎨
⎩–

T∫
0

r(s)ds

⎫⎬
⎭
⎤
⎦

Therefore we can write the price of a coupon-bearing bond as

B(0,T) =
M∑

n:tn�0

C · N
ω

EQ
t,r

⎡
⎣exp

⎧⎨
⎩–

tn∫
0

r(s)ds

⎫⎬
⎭
⎤
⎦

+ N · EQ
t,r

⎡
⎣exp

⎧⎨
⎩–

T∫
0

r(s)ds

⎫⎬
⎭
⎤
⎦

=
C · N
ω

M∑
n:tn�0

p(0, tn) + N · p(0,T)

where N is the nominal amount, C the coupon rate, ω the coupon
frequency, M the number of coupons and tn the cash-flow dates. We
use p(0, tn) as discount factors so the value of a bond on a particular
date is completely determined by the discount curve at that date. We
notice that at each time tn, the bond price has a jump of size CN/ω.

© The Author(s) 2017 327
J.R.M. Röman, Analytical Finance: Volume II,
https://doi.org/10.1007/978-3-319-52584-6_14

https://doi.org/10.1007/978-3-319-52584-6_14


328 J.R.M. Röman

Thus, the value of the bond changes discontinuously. We can make
the “price” continuous if we subtract the accrued interest rate AI. The
usual convention is to let the coupon accrues linearly between the pay-
outs. This accrued interest rate is the earned rate by the bondholder.

AI(t, tn) =
C · N
ω

t – tn
tn+1 – tn

By definition, the clean price of a bond corresponds to the price at
which the transaction takes place without including accrued interest.
The dirty price is the price including accrued interest, that is, how
much money trades hands (so to speak). Hence,

Dirty price = Clean price + AI (t, tn) .

In an arbitrage-free economy, the dirty price should be equal to the
theoretical value. In particular, the theoretical clean price can be
expressed in terms of the term structure of interest rates as

B(0,T) =
C · N
ω

M∑
n:tn�0

p(0, tn) + N · p(0,T) – AI(0, tn)

The clean and dirty prices coincide on the coupon date after the
coupon is paid (since AI(tn, tn) = 0. Bond quotes in the US Treas-
ury, international and corporate markets are usually in terms of clean
prices.

The yield of a bond (or ytm) is the effective constant interest rate
that makes the bond price equal to the future cash flows discounted
at this rate. The ytm is usually computed using the same frequency
as the bond’s interest payments (e.g. semi-annual), rather than the
continuously compounded yield used for zeros.

Assume that the current date coincides with a coupon payment
date, so that t = tm. In this case, we define the ytm of the bond (after
the coupon was paid) to be the value of Y such that

B(0,T) =
C · N
ω

M∑
n=m+1

(
1

1 + Y/ω

)n–m

+ N ·
(

1

1 + Y/ω

)N–m

If the current date does not coincide with a coupon date, we should
take into account the fraction of year corresponding to the period
between now and the next coupon date.
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Accordingly, assume that tm < t < tm+1 and that f represents the
ratio of the number of days in remaining until the next coupon date
and the number of days in the coupon period, using the appropriate
day count convention. (Hence, 0 < f < 1). The bond yield Y is defined
by the relation

B(0,T) =
C · N
ω

M∑
n=m+1

(
1

1 + Y/ω

)f+n–m–1

+ N ·
(

1

1 + Y/ω

)f+N–m–1

The previous equations define Y implicitly in terms of the bond value.
It is easy to see that B is a decreasing function of Y. Moreover, B is
convex in Y. To obtain the yield from the bond value, the equations
must be solved numerically. Nevertheless, the yield of a bond is a well-
defined function of its theoretical value B (the dirty price) and thus of
the discount factors.

Notice that if t = tm we can use the summation formula for a
geometric series to obtain

B(0,T) =
C · N
ω

(
1 –

(
1

1 + Y/ω

)N–m
)
+ N ·

(
1

1 + Y/ω

)N–m

This formula shows that if the yield is equal to the coupon rate, the
value of the bond is equal to its face value. From this fact and the mono-
tonicity of the price/yield relationship, we can derive some elementary
relationships between price, yield and coupon.

If, immediately after a coupon payment, a bond trades at 100% of
the principal, we say that the bond trades at par. In this case, its yield
is exactly equal to the coupon rate. If the bond price is less than 100%
of face value, we say that the bond trades at a discount. In this case,
its yield is higher than the coupon rate. If the bond trades above 100%
of face value, we say that bond trades at a premium. In this case, the
yield is lower than the coupon rate.

In an arbitrage-free market, two bonds with same price and same
cash-flow dates cannot have different coupons (otherwise, we can
short the one with the smaller coupon and buy the one with the larger
one). Similarly, two bonds with the same price and payment dates can-
not have different yields. The notion of par yield – the yield of a par
bond –is sometimes used to represent the term structure of interest
rates implied by the bond market. In this case, one speaks of the par
yield curve.
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14.1.1 Duration

The price-yield relation gives rise to several quantities that are
commonly used in bond risk-management. The first notion is that
of duration (or average duration, or McCauley duration) which is
defined as

D =
1

B

⎛
⎝C · N

ω

M∑
n:tn�0

tn · p(0, tn) + N · T · p(0,T)
⎞
⎠

=

C·N
ω

M∑
n:tn�0

tn · p(0, tn) + N · T · p(0,T)

C·N
ω

M∑
n:tn�0

p(0, tn) + N · p(0,T)

Thus, the duration represents a weighted average of the cash-flow
dates, weighted by the cash flows measured in constant dollars.
Mathematically, it is the “barycentre” of the cash-flow dates.

A closely related quantity is obtained by differentiating the bond
price with respect to the ytm

∂B

∂Y
= –

C · N
ω

M∑
n=m+1

(
f + n – m – 1

ω

)(
1

1 + Y/ω

)f+n–m

– N ·
(
f + N – m – 1

ω

)(
1

1 + Y/ω

)f+N–m

It follows from the definition of f , that (f +n–m–1) represents the time
between t and tn measured in coupon periods (1/ω years). Therefore,
the number (f + n –m – 1)/ω represents the time interval between t and
the nth coupon date measured in years. We conclude that

1

B

∂B

∂Y
= –

D

1 + Y/ω

Thus, the per cent sensitivity of the bond (dirty) price with respect to
yield is of opposite sign and proportional to the average duration. The
quantity

D mod =
D

1 + Y/ω
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which represents the exact magnitude of the percentage change
which is known as modified duration. These equations express the
fact that the longer the duration, the greater the sensitivity of a bond
to a change in yield, in percentage terms.

Clearly, a zero-coupon bond has duration equal to the time to matur-
ity. The duration of a coupon-bearing bond trading at par (face value)
immediately after the coupon date is

D =
1

ω

M–1∑
n=0

1

(1 + Y/ω)n
=

1

Y
· (1 + Y/ω) ·

(
1 –

1

(1 + Y/ω)N

)

(The derivation of this formula is left as an exercise to the reader.) The
formula shows that duration decreases with frequency. In fact, if the
bond matures in T years and makes only a single payment, we have
N = 1,ω = 1/T. Substituting these values into the previous equation,
we findD = T, the result for zeros. In the limit ω >> 1, setting N = ωT,
we have D = (1 – e–YT )/Y.

The duration of a coupon-bearing bond is always smaller than
the time-to-maturity, because far-away cash-flow dates are “discoun-
ted” more than nearby dates. We also get a formula for the modified
duration of a par bond, which gives the price-yield sensitivity as

D mod =
1

Y
·
(
1 –

1

(1 + Y/ω)N

)

These formulas are useful for estimating the price-yield sensitivity of
bonds. For example, if N >> 1 we can make the approximation
Dmod ≈ 1/Y . This approximation is exact for perpetual or console
bonds, which are fixed income securities that pay a fixed coupon and
have no redemption date. Because the maturity is infinite, the afore-
mentioned formulas apply even if the console bond is not trading at
par, by simply scaling the coupon. The modified duration of a console
is exactly equal to 1/Y. Moreover, it is easy to see that Y = CN/B.

Treasury bond prices are usually quoted in clean price or yield and
bonds usually trade close to par (this is true for recently issued bonds).
Historically, duration was introduced as a measure of the risk-exposure
of a bond portfolio and hence as a hedging tool. The rationale for this
is that if we assume that bond yields vary in the same direction and by
the same amount, that is, if the yield curve shifts in parallel, we can
measure the total exposure of a portfolio to a shift in the yield curve.
In fact, a portfolio consisting of M bonds with n1 dollars invested in
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bond, n2 dollars invested in bond 2, etc., has, under the parallel shift
assumption, a first-order variation with respect to yield of

∑
j

nj
dBj

Bj
=

⎛
⎝∑

j

njD mod j

⎞
⎠ dY

Thus, the sensitivity to a parallel shift in yields is equal to the dollar-
weighted modified duration of the portfolio. A portfolio with van-
ishing dollar-weighted modified duration has no exposure to parallel
shifts in the yield curve.

It has been recognized now for quite some time that duration-based
hedging (under the explicit assumption of parallel shifts of the yield
curve) is not precise enough to immunize a fixed income portfolio
against interest rate risk. The reason is that yields of deferent maturities
generally do not move together and by the same amount. Appropriate
modelling of yield correlations is needed to produce efficient portfolio
hedges and to correctly price fixed-income derivatives that are contin-
gent on more than one yield. The modelling of yield correlations is an
interesting subject.



15
Term-Structure Models

15.1 Martingale Models for the Short Rate

15.1.1 The Q-Dynamics

Let us again study an interest rate model where the P-dynamics of the
short rate of interest are given by

dr(t) = μ(t, r(t))dt + σ (t, r(t))dW(t)

As we saw in the previous section, the term structure (i.e. the family
of bond price processes) will, together with all other derivatives, be
completely determined by the general term-structure equation

⎧⎨
⎩
∂FT

∂t
+ {μ(t) – λ(t)σ (t)}

∂FT

∂r
+
1

2
σ 2 ∂

2FT

∂r2
– r(t)FT = 0

F(r, T ,T) = �(r)

as soon as we have specified the following objects.

• The drift term μ.

• The diffusion term σ .

• The market price of risk λ.

Consider for a moment σ to be given a priori. Then it is clear from the
term-structure equation that it is irrelevant exactly how we specify
μ, and λ. The object, apart from σ , that really determines the term
structure (and all other derivatives) is the term μ – λσ . Now, we recall
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that the term μ – λσ . is precisely the drift term of the short rate of
interest under the martingale measure Q. This fact is so important that
we stress it again.

The term structures, as well as the prices of all other interest rate
derivatives, are completely determined by specifying the r-dynamics
under the martingale measure Q.

Instead of specifying μ, and λ under the objective probability meas-
ure P we will henceforth specify the dynamics of the short-rate r
directly under the martingale measure Q. This procedure is known
as martingale modelling, and the typical assumption will thus be that
r under Q has dynamics given by

dr(t) = μ(t, r(t))dt + σ (t, r(t))dV(t)

where μ, and σ are given functions. From now on the letter μ will
thus always denote the drift term of the short rate of interest under
the martingale measure. In the literature there are a large number of
proposals on how to specify the Q-dynamics for r. We present a (far
from complete) list of the most popular models. If a parameter is time
dependent, this is written out explicitly. Otherwise all parameters are
constant.

Vasicek

dr = (b – ar) dt + σdV

Cox-Ingersoll-Ross (CIR)

dr = a (b – r) dt + σ
√
rdV

Dothan

dr = ardt + σ rdV

Black-Derman-Toy (BDT)

dr = a(t)rdt + σ (t)rdV

In some literature this SDE is written as:

d ln (r) = {θ(t) + ρ(t) ln (r)} dt + σ (t)dV

where θ(t) will be shown to be the drift of the short-term rate
and ρ(t) the mean reversing term to an equilibrium short-term rate
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which depends on the interest rate local volatility as follows:

ρ(t) =
d

dt
ln [σ (t)] =

σ̇ (t)

σ (t)
.

That is,

d ln (r) =

{
θ(t) +

σ̇ (t)

σ (t)
ln (r)

}
dt + σ (t)dV

Since the volatility is time dependent, there are two independent
functions of time, θ(t) and σ (t), chosen so that the model fits the
term structure of spot interest rates and the structure of the spot
rate volatilities.

Ho-Lee (HL)

dr = a(t)dt + σ (t)dV

Since dV is normally distributed Wiener process, this is a normal
process for the short-term rate.

HuIl-White (extended Vasicek) (HW)

dr = (b(t) – a(t)r) dt + σ (t)dV

In this model, where there is an extra term giving an additional de-
gree of freedom. For that reason a trinomial tree can be used to
model the stochastic process.

Hull-White (extended CIR)

dr = (b(t) – a(t)r) dt + σ (t)
√
rdV

The Kalotay-Williams-Fabozzy model (KWF), the short-rate dy-
namics is given by:

d ln r = a(t)dt + σ (t)dV

This is a log normal process interest rate model, similar to the BDT.
The Black-Karasinski model (BK) the short-rate dynamics is

given by:

d ln r = (a – θ ln r) dt + σdV

This is logarithmic analogue to the HW model. So for the same
reason a tree model is used to model BK.
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When we choose a short-rate model, we then have to consider the
following questions:

1. What do the dynamics of the model imply for the short rate, r?

2. Is r positive at each time, t?

3. Are you dealing with a fat-tailed distribution?

4. Can the bond prices, p(t,T) and the bond option prices be calcu-
lated explicitly?

5. Does the short rate tend towards a long-term mean?

6. How suited is the model for recombining lattices and Monte Carlo
simulation?

7. Can historical estimation methods be used for parameter estima-
tion?

15.1.2 Inverting the Yield Curve

Let us now address the question of how we will estimate the various
model parameters in the previous martingale models. To take a specific
case, assume that we have decided to use the Vasicek model. Then we
have to get values for a, b and σ in some way, and a natural procedure
would be to use SDE theory. This procedure, however, is unfortunately
completely non-sensical and the reason is as follows.

We have chosen to model our r-process by giving the Q-dynamics,
which means that a, b and σ are the parameters which hold under the
martingale measure Q. When we observe in the real world we are not
observing r under the martingale measure Q, but under the objective
measure P. This means that if we apply standard statistical procedures
to our observed data we will not get our Q-parameters. What we get
instead is pure nonsense.

This looks extremely disturbing but the situation is not hopeless. It
is in fact possible to show that the diffusion term is the same under P
and under Q, so “in principle” it may be possible to estimate diffusion
parameters using P-data. Since we are familiar with martingale theory,
we will at this point recall that a Girsanov transformation will only
affect the drift term of a diffusion process but not the diffusion term.
When it comes to the estimation of parameters affecting the drift term
of r we have to use completely different methods.
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Therefore we ask us the following question

Who chooses the martingale measure?

The answer to this question is

The market!

At the same time two parties agree on a price and make a deal on
which the (their) risk neutral probability is fixed. This is equivalent to
say that when we know the risk neutral probability we also know the
market price of the deal price.

Thus, in order to obtain information about the Q-drift parameters
we have to collect price information from the market, and the typical
approach is that of inverting the yield curve that works as follows

1. Choose a particular model involving one or several parameters. Let
us denote the entire parameter vector by α. Thus we write the
r-dynamics (under Q) as:

dr(t) = μ(t, r(t);α)dt + σ (t, r(t);α)dV(t)

2. Solve, for every conceivable time of maturity T, the term-structure
equation

⎧⎨
⎩
∂FT

∂t
+ μ

∂FT

∂r
+
1

2
σ 2 ∂2FT

∂r2
– rFT = 0

FT (r,T) = 1
.

In this way we have computed the theoretical term structure as

p(t,T;α) = FT (r, t;α)

Note that the form of the term structure will depend upon our
choice of parameter vector. We have not made this choice yet.

3. Collect price data from the bond market. In particular, we may
today (i.e. at t = 0) observe p(0,T) for all values of T. Denote this
empirical term structure by {p*(0, T); T ≥ 0}.

4. Now choose the parameter vector α in such a way that the
theoretical curve
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{p(0, T; α); T ≥ 0} fits the empirical curve {p*(0, T); T ≥ 0} as well
as possible (according to some objective function). This gives us
our estimated parameter vector α*

5. Insert α* into μ and σ . Now we have pinned down exactly which
martingale measure we are working with. Let us denote the result
of inserting α* into μ and σ by μ* and σ *, respectively.

6. We have now fixed our martingale measure Q, and we can go on to
compute prices of interest rate derivatives, like, say, X = �(r(T)).
The price process is then given by �(t;Λ) = G(t, r(t)) where G
solves the term-structure equation

⎧⎨
⎩
∂G

∂t
+ μ∗ ∂G

∂r
+ 1

2 (σ
∗)2 ∂

2G

∂r2
– rG = 0

G(r, T) = �(r)

If the program is to be carried out within reasonable time limits,
it is of course of great importance that the PDEs involved are easy
to solve. It turns out that some of the previous models are much
easier to deal with analytically than the others, and this leads us to
the subject of so-called affine term structures that we will discuss
in detail.

15.1.3 Affine Term Structure

Definition 15.1.0.1. If the term structure {p(t, T); 0 ≤ t ≤ T, T > 0}
has the form

p(t,T) = F(r(t), t,T)

where

F(r, t,T) = eA(t,T)–B(t,T)r

and A and B are deterministic functions, then the model is said to
possess an affine term structure (ATS).

In some literature, the affine bond prices are written as:

p(t,T) = A(t,T)e–B(t,T)r.
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We can also use the following definition:

Definition 15.1.0.2. A model is said to have the ATS if the continuo-
usly compounded short-rate R(t,T) is an affine structure of the short-
rate r(t)

R(t,T) = α(t,T) + β(t,T) · r(t)
where α and β are deterministic function of time, were we set

α(t,T) =
A(t,T)

T – t

β(t,T) =
B(t,T)

T – t

The previous functions A and B are functions of the two real variables
t and T, but conceptually it is easier to think of A and B as being func-
tions of t, while T serves as a parameter. It turns out that the existence
of an ATS is extremely pleasing from an analytical and a computational
point of view, so it is of considerable interest to understand when
such a structure appears. In particular we would like to answer the
following question:

For which choices of μ, and σ in the Q-dynamics for r do we get
an ATS?

We will try to give at least a partial answer to this question, and we
start by investigating some of the implications of an ATS. Assume then
that we have the Q-dynamics

dr(t) = μ(t, r(t))dt + σ (t, r(t))dV(t)

and assume that this model actually possesses an ATS. In other words
we assume that the bond prices have the form of F(r, t,T) in the
previous equation. Then we may easily compute the various partial
derivatives of F, and since F must solve the term-structure equation,
we thus obtain

∂A(t,T)

∂t
–

{
1 +

∂B(t,T)

∂t

}
r(t) – μ(t, r(t))B(t,T) +

1

2
σ 2(t, r(t))B2(t,T) = 0

The boundary value F(r, T ,T) = 1 implies

A(T ,T) = B(T ,T) = 0
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The aforementioned equation gives us the relations that must hold
between A, B, μ. and σ in order for an ATS to exist. For a certain choice
of μ and σ there may or may not exist functions A and B such that the
equation is satisfied. Our immediate task is thus to give conditions on
μ and σ which guarantee the existence of functions A and B.

We observe that if μ and σ 2 are both affine (i.e. linear plus a con-
stant) functions of r, with possibly time-dependent coefficients, then
the previous equation becomes a separable differential equation for
the unknown functions A and B. Therefore, we assume that

{
μ(t, r) = a(t) · r + b(t)

σ 2(t, r) = c(t) · r + d(t)

Then, we get the following equation:

∂A

∂t
(t,T) –

{
1 +

∂B

∂t
(t,T)

}
r(t) – {a(t)r + b(t)}B(t,T)

+
1

2
{c(t)r(t) + d(t)}B2(t, T) = 0

which can be separated into two equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂A(t,T)

∂t
– b(t)B(t,T) +

1

2
d(t)B2(t,T) = 0

∂B(t,T)

∂t
+ a(t)B(t,T) –

1

2
c(t)B2(t,T) = –1

A(T ,T) = B(T ,T) = 0

The last equation is a Ricatti equation in B. If we solve this, we can
insert this in the first equation in order determine A. When we are
studying different models they will in general be on the form

dr(t) = {a(t)r(t) + b(t)} dt +
√
c(t)r(t) + d(t)dV(t)

Therefore we will use the functions (a, b, c and d) in the equations of
A and B previously to find the bond prices
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To see that our choice of μ and σ 2 is a good one, we take the
derivative of the affine TSE

∂A(t,T)

∂t
–

{
1 +

∂B(t,T)

∂t

}
r(t) – μ(t, r(t))B(t,T) +

1

2
σ 2(t, r(t))B2(t,T) = 0

with respect to r. We then get

–

{
1 +

∂B(t,T)

∂t

}
–
∂

∂r
(μ(t, r(t)))B(t,T) +

1

2

∂

∂r

(
σ 2(t, r(t))

)
B2(t,T) = 0

A second differentiation with respect to r gives:

–B(t,T)
∂2

∂r2
(μ(t, r(t))) +

1

2
B2(t,T)

∂2

∂r2

(
σ 2(t, r(t))

)
= 0

We must then have

∂2

∂r2
(μ(t, r(t))) = 0

and

∂2

∂r2

(
σ 2(t, r(t))

)
= 0

which gives us

{
μ(t, r) = a(t) · r + b(t)

σ 2(t, r) = c(t) · r + d(t)

Lemma 15.1.2. If μ and σ 2 are both affine (i.e. linear plus a
constant) functions of r, then the term structure is affine.

Theorem 15.1.3. Suppose that the model is affine. We have, underQ:

dp(t,T) = r(t)p(t,T)dt – σ (t, r(t))B(t,T)p(t,T)dV(t)

and

df (t,T) = σ 2(t, r(t))B(t,T)
∂B(t,T)

∂T
dt + σ (t, r(t))

∂B(t,T)

∂T
dV(t)
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Proof: We use Itô on p(t,T) = exp {A(t,T) – B(t,T)r(t)}:

dp(t,T) =
∂p

∂A

∂A

∂t
dt +

∂p

∂B

∂B

∂t
dt +

∂p

∂r
dr +

1

2

∂2p

∂r2
(dr)2

= p
∂A

∂t
dt – rp

∂B

∂t
dt +

∂p

∂r
(μdt + σdV) +

1

2
σ 2 ∂

2p

∂r2
dt

= p
∂A

∂t
dt – rp

∂B

∂t
dt – Bp (μdt + σdV) +

1

2
σ 2B2pdt

= p

{
∂A

∂t
– r

∂B

∂t
– Bμ +

1

2
σ 2B2

}
dt – σBpdV

= r(t)p(t,T)dt – σ (t, r)B(t, T)p(t,T)dV(t)

where we used the equation

∂A(t,T)

∂t
–

{
1 +

∂B(t,T)

∂t

}
r(t) – μ(t, r(t))B(t,T) +

1

2
σ 2(t, r(t))B2(t,T) = 0

from the previous equation. Furthermore, from

dp(t,T) = r(t)p(t,T)dt + ν(t,T)p(t,T)dV(t)

and

df (t,T) = ν(t, T)νT (t,T)dt – νT (t,T)dV(t)

we see that

ν(t, T) = –σ (t, r)B(t, T)

so, we must have

df (t,T) = σ 2(t, r(t))B(t,T)
∂B(t,T)

∂T
dt + σ (t, r(t))

∂B(t,T)

∂T
dV(t)

From the ATS we also get

f (t,T) = –
∂

∂T

{
ln
[
p(t,T)

]}

= –
∂

∂T
{A(t,T) – r(t)B(t,T)} = r(t)BT (t,T) – AT (t,T)
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Especially, we will use the following expression in calibration of the at
time t = 0 observed forward prices:

f ∗(0,T) = r(0)BT (0,T) – AT (0,T)

15.1.3.1 The Vasicek Model

The model proposed by Vasicek in 1977 is a yield-based one-factor
equilibrium model given by the dynamic

dr = (b – ar) dt + σdV

or sometimes

dr = κ (θ – r) dt + σdV

This model assumes that the short rate is normally distributed (such
models are called Gaussian) and has a so-called “mean reverting pro-
cess” (under Q). If we put r = θ = b/a, the drift in interest rate will
disappear. So this value represents the mean value of the short rate.
So a is a measure of how fast the short rate will reach the long-term
mean value. The model is popular in the academic community (mainly
due to its analytic tractability). Because the model is not necessarily
arbitrage-free with respect to the actual underlying securities in the
marketplace, the model is not used much. With a(t) = –a, b(t) = b,
c(t) = 0 and d(t) = σ 2 (as shown earlier) the equation of B is given by⎧⎨

⎩
∂B

∂t
(t,T) – aB(t,T) = –1

B(T ,T) = 0

This can easily be solved:

Ḃ(t, T) – a · B(t,T) = –1

e–atḂ(t,T) – a · e–atB(t,T) = –e–at

d

dt

{
e–atB(t,T)

}
= –e–at

e–at
T∫
t

dB(u,T) = –

T∫
t

e–audu

B(t,T) =
1

a

{
1 – e–a(T–t)

}
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Inserting this in the equation of A, we obtain

⎧⎨
⎩
∂A(t,T)

∂t
– bB(t,T) + σ 2

2 B
2(t,T) = 0

A(T ,T) = 0

A(t,T) = –b

T∫
t

B(s,T)ds +
σ 2

2

T∫
t

B2(s, T)ds

= –
b

a

T∫
t

{
1 – e–a(T–s)

}
ds +

σ 2

2a2

T∫
t

{
1 – e–a(T–s)

}2
ds

⇒ = –
b

a

[
s –

1

a
e–a(T–s)

]T
t
+

σ 2

2a2

[
s –

2

a
e–a(T–s) +

1

2a
e–2a(T–s)

]T
t

= –
b

a

{
T – t –

1

a

(
1 – e–a(T–t)

)}

+
σ 2

2a2

{
(T – t) –

2

a

(
1 – e–a(T–t)

)
+

1

2a

(
1 – e–2a(T–t)

)}

We then have the solution to the term-structure equation. We only
have to calibrate the model parameters so that the model will replicate
the observed market prices of some instruments.

There are good probabilistic reasons why some of the models in our
list are easier to handle than others. We see that the models of Vasicek,
Ho-Lee and HW (extended Vasicek) all describe the short rate using a
linear SDE. Such models are easy to solve and the r-processes can be
shown to be normally distributed.

We can also solve the Vasicek model like

d(eatr) = eatdr+aeatrdt = eat (b – ar) dt+eatσdV+areatdt = eatbdt+eatσdV

giving

eatr(t) = r(0) + b

t∫
0

eaudu + σ

t∫
0

eaudVu
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which simplifies to

r(t) = r(0)e–at +
b

a

(
1 – e–at

)
+ σ

t∫
0

e–a(t–u)dVu

The calculation should have started at any time, thus

r(t) = r(s)e–a(t–s) +
b

a

(
1 – e–a(t–s)

)
+ σ

t∫
s

e–a(t–u)dVu

The mean value in this model is given by

E [r(t)] = r(0)e–at +
b

a

(
1 – e–at

)
and the variance by

Var [r(t)] = σ 2E

⎡
⎢⎣
⎛
⎝

t∫
0

e–a(t–u)dVu

⎞
⎠

2
⎤
⎥⎦ = σ 2

t∫
0

e–2a(t–u)du =
σ 2

2a

(
1 – e–2at

)

We can see this if we write the short rate as

r(t) = h(t, r) + σ

t∫
s

g(u)dVu

and calculate

Var [r(t)] = E
[
r(t)2

]
– (E [r(t)])2

= E

⎡
⎢⎣[h(t, r)]2 + 2σh(t, r)

t∫
s

g(u)dVu +

⎛
⎝σ

t∫
s

g(u)dVu

⎞
⎠

2
⎤
⎥⎦

– h(t, r)2

= σ 2E

⎡
⎢⎣
⎛
⎝

t∫
0

g(u)dVu

⎞
⎠

2
⎤
⎥⎦

since the midterm in E[. . .] will vanish. We learn from this calculation
that only the stochastic part contribute to the variance. This will be



346 J.R.M. Röman

used next. The bond prices are then given by

p(t,T) = EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
t

r(u)du

⎫⎬
⎭ |Ft

⎤
⎦

It is little tricky to calculate the bond prices with this expression. To
do so, we can use the following theorem:

Theorem 15.1.4. For X ∼ N(m, σ 2) and γ ∈ R we have

E
[
e–γX

]
= exp

{
–γm +

1

2
γ 2σ 2

}

For a proof, see Analytical Finance Vol. 1, for γ = 1 we have

E
[
e–X
]
= exp

{
–m +

1

2
σ 2
}
= exp

{
–E [X] +

1

2
Var [X]

}

If we let

X =

T∫
t

r(u)du

We can write the bond prices p(0,T) as

p(0,T) = exp

⎧⎨
⎩–EQ

⎡
⎣

T∫
0

r(u)du

⎤
⎦ +

1

2
Var

⎡
⎣

T∫
0

r(u)du

⎤
⎦
⎫⎬
⎭

Taking part by part we obtain

E

⎡
⎣

T∫
0

r(u)du

⎤
⎦ =

T∫
0

{
r(0)e–au +

b

a

(
1 – e–au

)}
du

=
r(0)

a

(
1 – e–aT

)
+
b

a
T +

b

a2
(
1 – e–aT

)

=
1

a2
(ar(0) – b)

(
1 – e–aT

)
+
b

a
T

Instead, integrating from t to T gives:

E

⎡
⎣

T∫
t

r(u)du

⎤
⎦ =

1

a2
(b – ar(0)) e–a(T–t) +

b

a
(T – t)
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In order to calculate

Var

⎡
⎣

T∫
0

r(u)du

⎤
⎦

we need the following two results from stochastic calculus:

Result 1: If W(t) is a Brownian Motion and g(t) a non-random func-
tion, then:

X(t) =

t∫
0

g(u)dW(u)

is a Gaussian Process with E[X(t)] = 0 and Var[X(t)] =
t∫
0
g2(u)du.

Result 2: If W(t) is a Brownian Motion and g(t) and h(t) non-random
functions defined as ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X(t) =

t∫
0

g(u)dW(u)

Y(t) =

t∫
0

h(u)X(u)du

Then Y(t) is a Gaussian Process with E[Y(t)] = 0 and

Var[Y(t)] =

t∫
0

g2(u)

⎛
⎝

t∫
u

h(y)dy

⎞
⎠

2

du

We will now use what we learned before; only the stochastic part
contribute to the variance. Therefore we have

Var

⎡
⎣

T∫
0

r(u)du

⎤
⎦ =

T∫
0

⎡
⎣

T∫
u

σe–a(y–u)dy

⎤
⎦
2

du

= σ 2

T∫
0

(
eau
)2
⎡
⎣

T∫
u

e–aydy

⎤
⎦
2

du
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=
σ 2

a2

T∫
0

(
eau
)2 [

e–au – e–aT
]2
du

=
(σ
a

)2 T∫
0

(
1 – ea(u–T)

)2
du

=
(σ
a

)2 T∫
0

(
1 – 2ea(u–T) + e2a(u–T)

)
du

=
σ 2

a3

{
aT – 2

(
1 – e–aT

)
+
1

2

(
1 – e–2aT

)}

If we put all together we find

P(0,T) = exp

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

a

[
1 – e–aT

] (b
a
–
1

2

(σ
a

)2
– r(0)

)

–T

[
b

a
–
1

2

(σ
a

)2]
–
σ 2

4a3
[
1 – e–aT

]2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Remark! This is the same result obtained earlier where we solved
the equations for A(t,T) and B(t,T).

If we use the result when we derived the TSE we find:

σp =
σrFr(r(t), t,T)

F(r(t), t,T)
≡ σr

p(t,T)

∂p(t,T)

∂r
= –σrB(t,T)

The bond price volatility in the Vasicek model is then given by1:

σp =
σr

a

(
1 – e–a(T–t)

)

This model allows that the short rates have a positive probability to
become negative. A few years ago, such models was said to have a

1 We have changed the sign so that the volatility becomes positive. The reason for being neg-
ative is that an increase in rate gives a decrease in price. The volatility on the other hand only
reflects changes in price or rates.
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Fig. 15.1 The Vasicek probability density function

disadvantage because it allows for negative interest rates. But now, we
all know that negative interest rates may accrue in reality. A simulation
of the distribution of the short rates with a = 0.15, b/a = 4.5 % and
σ = 1.5 % is shown in the Fig. 15.1.

The probability distribution of the spot rate is normally distributed
with mean and variance given by

E [r(t)] = r(0)e–at +
b

a

(
1 – e–at

)
=
b

a
+

(
r(0) –

b

a

)
e–at

Var [r(t)] =
σ 2

2a

(
1 – e–2at

)

The probability density function is then given by

φ(r) =
1√

2π · Var [r(t)] exp
{
–
(r – E [r(t)])2

2 · Var [r(t)]

}
= N

(
r – E [r(t)]√
Var [r(t)]

)

That is,

P∞ =

√
a

π

1

σ 2
e
– a(r–b/a)2

σ2

If r(0) is 2.0 % the simulated term structure of interest rates is shown
in Fig. 15.2.
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Fig. 15.2 The Vasicek term structure of interest rates

This gives a discount function as (Fig. 15.3)
We will in a subsequent section show the same simulation for the

CIR model where the short rate always is positive.
Option Pricing
In many term-structure models, it is possible to find analytical solu-
tions for European options on discount bonds. In a paper by Jamshidan
(1989), a method for pricing options on coupon bonds is developed.
These options are in fact options on a portfolio of discount bonds. Jam-
shidan shows how the valuation procedure can be changed so that the
option can be calculated as a portfolio of options on discount bonds
with appropriate strike prices.

The method works for one-parameter models, since all bond prices
are decreasing functions of the interest rate used as the state variable.

Consider a European option on a coupon bond (or a general fixed
cash flow pattern) with strike price X expiring at time τ . The value of
the bond at any time t can be written

B(r, t) =
n∑
i=1

ci · p(r, t, Ti)
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Fig. 15.3 The Vasicek discount function

where ci is the coupons. The payoff from the option at maturity, τ is:
max(0,B(r, τ ) – X). The value of r when the option is exactly at-the-
money is called r∗ and defined by: B(r∗, τ ) = X. The option will be
exercised when r(τ ) < r∗. It can be shown that

max

{
0,

n∑
i=1

ci · p(r, τ ,Ti) – X
}
=

n∑
i=1

ci · max
{
0, p(r, τ , Ti) – p(r

∗, τ ,Ti)
}

The second summation is the exact payoffs of a portfolio of options
on discount bonds.

Jamshidan has also shown that options on zero-coupon bonds can
be valued using Vasicek’s model. A European call option is given by

� = L · p(0, S)N(h) – K · p(0,T)N(h – σp)

where L is the face value of the bond, S the bond maturity, K the
option strike and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h =
1

σp
ln

(
L · p(0, S)
K · p(0,T)

)
+
σp

2

σp =
σ

a

(
1 – e–a(S–T)

)√1 – e–2aT

2a
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Similarly, a European put option is given by

� = K · p(0,T)N(–h + σp) – L · p(0, S)N(–h)

The volatility given will be interpreted as the volatility of proportional
changes in the short rate, in order to obtain values in the same units
as in the Black-Scholes model. If the volatility is given in yield it has to
be converted to price volatility:

σp = σy
y

p
· dp
dy

= σy · y · ModDur

where T is the option maturity and τ the maturity of the bond. For op-
tions on cash flows with floating rates, an additional procedure must
be used. It can be shown that the present value and interest rate sens-
itivity of a cash flow depending on the implied forward rate can be
made identical to two fixed cash flows. For Swaptions, this proced-
ure is used to first convert all floating cash flows and then apply the
method described previously.

Example 15.1.5
Consider a European call option on a zero-coupon bond. Time to expiration is two
years, the strike price is 92, the volatility is 3%, the mean-reverting level is 9%,
and the mean reverting rate is 5%. The face value of the bond is 100 with time to
maturity three years, and initial risk-free rate of 8%.

L = 100,K = 92,T = 2, S = 3, b = 0.0045, a = 0.05, r = 0.08, σ = 0.03.

c = 100 · p(0, 3) · N(h) – 92 · p(0, 2) · N(h – σp)

σp = σ · B(T , S) ·
√
1 – e–2aT

2a

B(t,T) = B(0, 2) =
1 – e–0.05·(2–0)

0.05
= 1.9032
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B(T , S) = B(2, 3) =
1 – e–0.05·(3–2)

0.05
= 0.9754

B(t, S) = B(0, 3) =
1 – e–0.05·(3–0)

0.05
= 2.7858

A(t,T) = A(0, 2) =
{B(0, 2) – 2 + 0}

{
0.0045 · 0.05 – 0.032

2

}
0.052

–
0.032

4 · 0.05B
2(0, 2)

= –0.00763

A(t, S) = A(0, 3) =
{B(0, 2) – 3 + 0}

{
0.0045 · 0.05 – 0.032

2

}
0.052

–
0.032

4 · 0.05B
2(0, 3)

= –0.01562

p(t,T) = p(0, 2) = exp {A(0, 2) – 0.08 · B(0, 2)} = 0.8523

p(t, S) = p(0, 3) = exp {A(0, 3) – 0.08 · B(0, 3)} = 0.7878

σp = 0.03 · B(2, 3)
√
1 – e–2(2–0)·0.05

2 · 0.05 = 0.0394

h =
1

σp
ln

(
100 · p(0, 3)
92 · p(0, 2)

)
+
σp

2
= 0.1394

The call value for one USD in face value is

c = L · p(0, S)N(h) – K · p(0,T)N(h – σp)
= 100 · p(0, 3) · N(h) – 92 · p(0, 2) · N(h – σp)
= 100 · 0.7878 · N(0.1394) – 92 · 0.8523 · N(0.1394 – 0.0394)
= 0.0143

With a face value of 100 the call value is 1.43 USD (100 × 0.0143).

Example 15.1.6
Consider a European call option on a coupon bond. Time to expiration is four years,
the strike price 99.5, the volatility is 3.0%, the mean-reverting level is 1.0%, and the
mean-reverting rate is 5.0%. The face value of the bond is 100, and it pays a semi-
annual coupon of four. Time to maturity is seven years, and the risk-free rate is
initially 9.0%.

First find the rate r that makes the value of the coupon bond equal to the strike
price at the options expiry. Trial and error gives r = 8.0050%. To find the value of
the option, we have to determine the value of six different options:

1. A four-year option with strike price 3.8427 on a 4.5-year zero-coupon bond with
a face value of four.
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2. A four-year option with strike price 3.6910 on a five-year zero-coupon bond
with a face value of four.

3. A four-year option with strike price 3.5452 on a 5.5-year zero-coupon bond with
a face value of four.

4. A four-year option with strike price 3.4055 on a six-year zero-coupon bond with
a face value of four.

5. A four-year option with strike price 3.2717 on a 6.5-year zero-coupon bond with
a face value of four.

6. A four-year option with strike price 81.7440 on a seven-year zero-coupon bond
with a face value of 104.

The values of the six options are, respectively, 0.0256, 0.0493, 0.0713, 0.0917, 0.1105
and 3.3219. This gives a total value of 3.6703.

15.1.3.2 The Ho-Lee Model

Ho and Lee (1986) published the first arbitrage-free yield-based model.
It assumes a normally distributed short-term rate. This enables ana-
lytical solutions for European bond options. The short rate’s drift
depends on time, thus making the model arbitrage-free with respect
to observed prices (the input to the model). The model does not in-
corporate mean reversion. In the Ho and Lee model, the short-rate
dynamics are represented by

dr = θ(t) · dt + σ · dV
In this model, where the risk neutral process θ(t) includes the market
price of risk is of interest since it is easy to calibrate with real mar-
ket data since the volatility is the same for Q as for P. But the model
is not very realistic since the drift in the model does not follow mar-
ket prices. The calibration to analytical solutions on bonds and bond
option can be done without numerical calculations.

The model has an ATS

p(t,T) = F(r(t), t,T) = eA(t,T)–B(t,T)r

where ⎧⎨
⎩
∂B

∂t
(t,T) = –1

B(T ,T) = 0
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gives

B(t,T) = T – t

and ⎧⎨
⎩
∂A(t,T)

∂t
= θ(t)B(t,T) –

σ 2

2
B2(t,T)

A(T ,T) = 0

Inserting B(t,T) = T – t into this in the equation, we obtain

A(t,T) =

T∫
t

θ(s)(T – s)ds –
σ 2

2

(T – t)3

3

We then only have to calibrate the model to the observed initial yield
curve, that is, the observed bond prices at t = 0: p∗(0,T) and to the
historical volatility σ . From p∗(0,T) we can also get the forward rates
f ∗ (0, T). The initial forward rates are given by

f ∗(0,T) = BT (0,T) · r(0) – AT (0,T) = r(0) +

T∫
t

θ(s)ds –
σ 2

2
T2

Taking derivative with respect to T gives

f ∗T (0,T) = θ(T) – σ 2T

Theorem 15.1.7. For each observed yield-curve {p∗(0, T): T ≥ 0}
there exists a unique function θ(t) that fit the theoretical bond prices
at t = 0, where

θ(t) = f ∗T (0, t) + σ 2t

Given p ∗ (0,T) and θ(t) we have decided which martingale measure
we are working with. The next step is to calculate the theoretical term
structure under this martingale measure. Therefore we will use θ(t) to
calculate A and B to get

p (t, T) = F (r (t) , t, T) = eA(t,T) ––B(t,T)r.

This is quite comprehensive calculations. A better method is to
calculate the forward prices given by

df (t,T) = σ 2(t, r(t))B(t,T)
∂B(t,T)

∂T
dt + σ (t, r(t))

∂B(t,T)

∂T
dV(t)



356 J.R.M. Röman

With the simple expression for B we get

f (t,T) = f (0,T)+σ 2

t∫
0

(T – s)ds+σ

t∫
0

dV(t) = f (0,T)+σ 2t(T –
t

2
)+σV(t)

To get the bond prices we use

p(t,T) = exp

⎧⎨
⎩–

T∫
t

f (t, u)du

⎫⎬
⎭

= exp

⎧⎨
⎩–

T∫
t

f (0, u)du + σ 2

T∫
t

t(
t

2
– u)du – σ

T∫
t

V(u)du

⎫⎬
⎭

= exp

⎧⎨
⎩–

T∫
t

f (0, u)du –
σ 2Tt

2
(T – t) – σ (T – t)V(t)

⎫⎬
⎭

That is,

p(t,T) =
p(0,T)

p(0, t)
exp

{
–
σ 2Tt

2
(T – t) – σ (T – t)V(t)

}

Before we use this in a real situation we would like to remove the
Wiener process. This is done by using

f (t,T) = f (0,T) + σ 2t(T –
t

2
) + σV(t)

for T = t. That is,

r(t) = f (t, t) = f (0, t) +
σ 2t2

2
+ σV(t)

We finally get, by eliminating V(t):

p(t,T) =
p∗(0,T)
p∗(0, t)

exp

{
(T – t)f ∗(0, t) – σ 2

2
t · (T – t)2 – (T – t)r(t)

}

As there is no dependence of the drift on the level of the short rate, the
volatility structure for the bond prices is determined by the constant σ .

σp(t,T) = σr(T – t)
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Calibration of Volatility Data

The simple structure of this model allows us to illustrate how models
with closed form solutions can be calibrated to interest rate options
data.

The HL model involves only one volatility parameter and, like Black-
Scholes, it can be inferred from the market prices of actively traded
interest rate options. Suppose, for example, that we have a set of m
pure discount bond put options, the market price of which we denote
bymarketi (i = 1, . . .m). One way to calibrate the model is to minimize
the following function with respect to the parameter σ :

min
σ

√√√√ m∑
i=1

(
modeli(σ) – marketi

marketi

)2

A problem with calibrating term-structure consistent models with mar-
ket caps data is that the quotes obtainable from brokers are not cash
prices, but instead are Black volatilities. The first step in the calibra-
tion procedure, therefore, is to obtain cash prices from the quoted
volatilities via the pricing formula.

Option Pricing

To price a European call option with maturity T and strike price K on
an S-bond, we get the arbitrage-free price as

π0 [X] = EQ

⎡
⎣max {L · p(S,T) – K, 0} · exp

⎧⎨
⎩–

T∫
0

r(s)ds

⎫⎬
⎭
⎤
⎦

It is possible to get an analytical result from this, but the calculations
are quite complex. We will in a later section learn about forward meas-
ure, and then it will be easier to calculate such prices. The result
for a European call option with strike price K and maturity T on a
zero-coupon bond with a face value L and maturity S is given by

C(t,T ,K, S) = L · p(t, S) · N(d) – K · p(t,T) · N(d – σp)
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where

d =
ln
{
L·p(t,S)
K·p(t,T)

}
+

σ 2
p
2

σp

σp = σ (S – T) · √
T

Binomial Tree

To build a binomial tree using the Ho-Lee model, we use the general
dynamic

dr = μ(t) · dt + σ (t) · dz(t)
where dz(t) ∼ N(0, 1) to write the discrete dynamics as

�r(t) = μ(t) · �t + σ (t) · �z(t)

for the time period [t, t +�t] and where �z(t) is a normally distributed
random variable. r(t) and σ (t) are the short rate and the volatility of
the short rate at time t for the interval from t to t +�t. Without loss of
generality, let �t = 1 and let t = 0. We can write the evolution of the
short rate as

�r(t) = μ(t) · �t + σ (t) · �z(t)

With constant time steps, we can expand the dynamics as:

�r(0) ≡ r(1) – r(0) = μ(0) + σ (0) · �z(0)

This yields, for example

r(1) = r(0) + μ(0) + σ (0) · �z(0),

r(2) = r(1) + μ(1) + σ (1) · �z(1) = r(0) + μ(0) + σ (0) · �z(0)

+ μ(1) + σ (1) · �z(1)

= r(0) + {μ(0) + μ(1)} + {σ (0) · �z(0) + σ (1) · �z(1)}

and

r(3) = r(0) + {μ(0) + μ(1) + μ(2)}

+ {σ (0) · �z(0) + σ (1) · �z(1) + σ (2) · �z(2)}
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In general then

r(t) = r(t – 1) + μ(t – 1) + σ (t – 1) · �z(1)

= r(0) +
t–1∑
i=1

μ(i – 1) +
t–1∑
i=1

σ (i – 1)�z(i – 1)

This expression shows that the short rate is the sum of a set of non-
stochastic drift terms and a set of stochastic terms; all of the latter are
normally distributed. Consequently, all short interest rates are normally
distributed (albeit with changing parametric values). For example,

r(1) ∼ N
(
r(0) + μ(0), σ 2(r(1))

)
,

r(2) ∼ N
(
r(0) + μ(0) + μ(1), σ 2(r(1) + r(2))

)
,

r(3) ∼ N
(
r(0) + μ(0) + μ(1) + μ(2), σ 2(r(1) + r(2) + r(3))

)
,

and general

r(t) ∼ N

(
r(0) +

t–1∑
i=1

μ(i – 1), σ 2

(
t∑

i=1

r(i)

))

The inputs for a Ho and Lee no-arbitrage interest rate model in dis-
crete time are (1) a set of known (pure) discount bond prices, {p(0, 1),
p(0, 2), p(0, 3), . . . ,p(0, n)},2 and (2) the volatility (standard deviation)
of future one-period short rates, {σ (0), σ (1), . . . , σ (n-1)}.

An evolution of the short rate that precludes arbitrage must satisfy
the local expectation conditions that bonds of any maturity offer the
same expected rate of return in a given period. This is equivalent to the
expectation of the discounted value of each bond’s terminal payment
being equal to its given market value. Let the present values, at date 0,
of a bond’s terminal payments be given by

b(0, n) = exp

(
–

n–1∑
i=0

r(i)

)

Therefore, the no-arbitrage conditions will be stated as

p(0, 1) = e–f (0,0) ≡ EQ [b(1)|F0
]
= EQ

[
e–r(0)|F0

]
= e–r(0)

p(0, 2) = e–{f (0,0)+f (0,1)} ≡ EQ [b(2)|F0
]
= EQ

[
e–{r(0)+r(1)}|F0

]

p(0, 3) = e–{f (0,0)+f (0,1)+f (1,2)} ≡ EQ [b(3)|F0
]
= EQ

[
e–{r(0)+r(1)+r(2)}|F0

]
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and in general

p(0, n) = exp

(
–

n–1∑
i=0

f (i – 1, i)

)
≡ EQ [b(n)] = EQ

[
exp

(
–

n–1∑
i=0

r(j)

)]

where f (i – 1, i) is the one period forward rate observed at time i. We
know that if X ∼ N(μ, σ 2), then

E
[
e–X
]
= e–μ+

1
2σ

2

The zero-coupon bond price at t = 2 is then given by:

p(0, 2) = EQ
[
e–(r(0)+r(1))|F0

]
= e–r(0)EQ

[
e–r(1)|F0

]

= e–r(0)e–E
Q[r(1)]+ 1

2σ
2(r(1))

That is,

ln p(0, 2) = –r(0) – EQ [r(1)] +
1

2
σ 2(r(1))

or

EQ [r(1)] = – ln p(0, 2) – r(0) +
1

2
σ 2(r(1))

We know that

lnP(0, 2) = –f (0, 0) – f (0, 1) = –r(0) – f (0, 1)

Therefore we can write

EQ [r(1)] = –f (0, 1) +
1

2
σ 2(r(1))

Thus, the expectation at date 0 of the short rate at date 1 is the for-
ward rate plus a term determined by the variance, 1/2 σ

2(r(1)). Further,
applying the expectations operator to r(t), we get a second expression
for the expectation of the short rate,

EQ [r(1)] = r(0) + μ(0)

Thus

μ(0) = f (0, 1) – r(0) +
1

2
σ 2(r(1))
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This expression tells us that the drift term, μ(0) is given by the com-
bination of two effects: (1) f (0, 1) –r(0) is the difference between the
forward rate and the short rate (i.e. the short rate drifts up or down
towards the forward rate). (2) 1/2 σ

2(r(1)) is a positive drift adjustment
term that is required to preclude arbitrage.

Let δ(t) denote the drift adjustment term for date t. Then, δ(0) =
1/2 σ

2(r(1)). We can then work out the details in step 3

p(0, 3) = EQ
[
e–{r(0)+r(1)+r(2)}|F0

]
= e–r(0)EQ

[
e–{r(1)+r(2)}|F0

]

= e–r(0)e–E
Q[r(1)+r(2)]+ 1

2σ
2(r(1)+r(2))

Further

ln p(0, 3) = –r(0) – EQ [r(1)] – EQ [r(2)] +
1

2
σ 2(r(1) + r(2))

= –r(0) – f (0, 1) –
1

2
σ 2(r(1)) – EQ [r(2)] +

1

2
σ 2(r(1) + r(2))

or

EQ [r(2)] = – ln p(0, 3) – r(0) – f (0, 1) +
1

2
σ 2(r(1) + r(2)) –

1

2
σ 2(r(1))

We know that ln p(0, 3) = –f (0, 0)–f (0, 1)–f (1, 2) = –r(0)–f (0, 1)–f (1, 2).
Therefore, upon substitution,

EQ [r(2)] = f (1, 2) +
1

2
σ 2(r(1) + r(2)) –

1

2
σ 2(r(1))

Thus, the expectation at date 0 of the short rate at date 2 is the forward
rate plus a term determined by the variance,

1

2
σ 2(r(1) + r(2)) –

1

2
σ 2(r(1))

Further, applying the expectations operator, we get a second expres-
sion for the expectation of the short rate,

EQ [r(2)] = r(0) + μ(0) + μ(1)

That is,

μ(1) = f (1, 2) – r(0) – μ(0) +
1

2
σ 2(r(1) + r(2)) – σ 2(r(1))

= f (1, 2) – f (0, 1) +
1

2
σ 2(r(1) + r(2)) – σ 2(r(1))
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This expression tells us that the drift term, μ(1), is given by the com-
bination of two effects: (1) f (2) – f (1) is the difference between the
forward rate at date 2 and the forward rate at date 1, that is, the nearby
forward short rate drifts up or down towards the distant forward rate.
(2) δ(1) = 1

2σ
2(r(1) + r(2)) – σ 2(r(1)) is a positive drift adjustment term

at time 1 that is required to preclude arbitrage.
Then, if we add δ(0) and δ(1) we get

1∑
t=0

δ(t) =
1

2
σ 2(r(1) + r(2)) –

1

2
σ 2(r(1))

Similarly, if we add μ(0) and μ(1) we get

μ(0) + μ(1) = f (0, 1) – r(0) +
1

2
σ 2(r(1)) + f (1, 2) +

1

2
σ 2(r(1) + r(2))

– σ 2(r(1))

= f (1, 2) – r(0) +
1

2
σ 2(r(1) + r(2)) –

1

2
σ 2(r(1))

which can be simplified to

1∑
t=0

μ(t) = f (1, 2) – r(0) +
1∑
t=0

δ(t)

If we continue with the same process as earlier to t = 4 we will
find that:

2∑
t=0

μ(t) = f (2, 3) – r(0) +
2∑
t=0

δ(t)

etc. If we generalize this we will have the following result:

EQ [r(t)|F0
]
= f (t – 1, t) +

1

2
σ 2

⎛
⎝ t∑

j=1

r(j)

⎞
⎠ –

1

2
σ 2

⎛
⎝ t–1∑

j=1

r(j)

⎞
⎠

∀ 1 < t ≤ T – 1

μ(0) = f (0, 1) – r(0) +
1

2
σ 2(r(1))

μ(1) = f (1, 2) – f (0, 1) +
1

2
σ 2

⎛
⎝ 2∑

j=1

r(j)

⎞
⎠ – σ 2(r(1))
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μ(t – 1) = f (t – 1, t) – f (t – 2, t – 1)

+
1

2
σ 2

⎛
⎝ t∑

j=1

r(j)

⎞
⎠ – σ 2

⎛
⎝ t–1∑

j=1

r(j)

⎞
⎠ +

1

2

t–2∑
n=1

σ 2

⎛
⎝ n∑

j=1

r(j)

⎞
⎠

∀ t ≥ 3

t∑
n=0

δ(n) =
1

2
σ 2

⎛
⎝ t+1∑

j=1

r(j)

⎞
⎠ –

1

2
σ 2

⎛
⎝ t∑

j=1

r(j)

⎞
⎠ ∀ t ≥ 1

and

t∑
n=0

μ(n) = f (t, t + 1) – r(0) +
t∑

n=0

δ(n) ∀ t ≥ 1

These equations give the necessary recursive relations to evolve the
Ho-Lee no-arbitrage model of short interest rate. The inputs are the set
of market prices of (pure) discount bonds and a structure of volatilities
for the short rates.

The aforementioned discussion is general in the sense that it ap-
plies equally well to implementation based on the binomial models
and Monte Carlo simulation. If we adopt the tree approach to depict
the evolution, we would write the evolutionary equation as

r(t) =

{
r(t –�t) + μ(t –�t)�t + σ (t –�t)

√
�t

r(t –�t) + μ(t –�t)�t – σ (t –�t)
√
�t

where we use equal probabilities = 1/2. If �t = 1 we then have

For t = 1 {
r0(1) = r(0) + μ(0) – σ (0)

r1(1) = r(0) + μ(0) + σ (0)

For t = 2 ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r0(2) = r(0) + {μ(0) + μ(1)} – {σ (0) + σ (1)}

r1(2) = r(0) + {μ(0) + μ(1)} – {σ (0) – σ (1)}

r2(2) = r(0) + {μ(0) + μ(1)} + {σ (0) – σ (1)}

r3(2) = r(0) + {μ(0) + μ(1)} + {σ (0) + σ (1)}
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An alternative is to express the tree using the positive drift adjustment
term. Then we have

For t = 1 {
r0(1) = f (0, 1) + δ(0) – σ (0)

r1(1) = f (0, 1) + δ(0) + σ (0)

For t = 2 ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r0(2) = f (1, 2) + {δ(0) + δ(1)} – {σ (0) + σ (1)}

r1(2) = f (1, 2) + {δ(0) + δ(1)} – {σ (0) – σ (1)}

r2(2) = f (1, 2) + {δ(0) + δ(1)} + {σ (0) – σ (1)}

r3(2) = f (1, 2) + {δ(0) + δ(1)} + {σ (0) + σ (1)}

Here rn(t) denotes the nth node at date t. If the evolution can be de-
picted as a lattice, then the nth node means nup-moves. On the other
hand, if the evolution is depicted as a tree, then the nth node is an
ordinal rank, starting with n = 0 at the bottom of the tree and end-
ing with n = t2 at the top of the tree at date t. Depending upon the
context, one must infer whether the n th node shows n up-moves or
shows the ordinal rank.

The binomial tree is built as in Fig. 15.5.
Using constant volatilities σc the binomial tree is simplified to the

tree in Fig. 15.5
Under both approaches, however, we recognize that we need the

variances of the sums of short rates. Remember

r(t) = r(0) +
t–1∑
i=1

μ(i – 1) +
t–1∑
i=1

σ (i – 1)�z(i – 1)

For the ease of exposition, let the (time) indexes in the parentheses
be designated as a subscript. Then,

σ 2(r1) = σ 2(r0 + μ0 + σ0�z0) = σ 2(σ0�z0) = σ 2
0

σ 2(r1 + r2) = σ 2 (r0 + μ0 + σ0�z0 + r0 + μ0 + μ1 + σ0�z0 + σ1�z1)

= σ 2 (2σ0�z0 + σ1�z1)

= σ 2 (2σ0�z0) + σ 2 (σ1�z1) + 2Cov (2σ0�z0, σ1�z1)

= 4σ 2
0 + σ 2

1
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Fig. 15.4 The Ho-Lee binominal tree

σ 2(r1 + r2 + r3) = σ 2 (σ0�z0 + σ0�z0 + σ1�z1 + σ0�z0 + σ1�z1 + σ2�z2)

= σ 2 (3σ0�z0 + 2σ1�z1 + σ2�z2)

= σ 2 (3σ0�z0) + σ 2 (2σ1�z1) + σ 2 (2σ1�z1)

+ 2Cov (3σ0�z0, 2σ1�z1)

+ 2Cov (3σ0�z0, 2σ2�z2) + 2Cov (2σ1�z1, σ1�z2)

= 9σ 2
0 + 4σ 2

1 + σ 2
2
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Fig. 15.5 The Ho-Lee binominal tree with constant volatility

Therefore, in general,

σ 2

⎛
⎝ t∑

j=1

r(j)

⎞
⎠ = σ 2

(
t∑

k=1

(t – k + 1)σk–1�zk–1

)
=

t∑
k=1

(t – k + 1)2σ 2
k–1

For example,

σ 2(r1 + r2 + r3 + r4) = 16σ 2
0 + 9σ 2

1 + 4σ 2
2 + σ 2

3

The implementation of can be made easier if we use matrix notation.
Let Dt denote a diagonal t x t matrix whose elements are dii = σ 2

i–1.
Let wt denote a t-dimensional column vector whose elements are the
integer values of the index t in reverse order. Then, the previous
expression can be written as

σ 2

⎛
⎝ t∑

j=1

r(j)

⎞
⎠ = wT

t Dtwt ∀t

where T denotes transposition.
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For example, for t = 4

σ 2

⎛
⎝ 4∑

j=1

r(j)

⎞
⎠ = wT

t Dtwt =
[
4 3 2 1

]
⎡
⎢⎢⎣
σ 2
0 0 0 0
0 σ 2

1 0 0
0 0 σ 2

2 0
0 0 0 σ 2

3

⎤
⎥⎥⎦
⎡
⎢⎢⎣
4
3
2
1

⎤
⎥⎥⎦

= 16σ 2
0 + 9σ 2

1 + 4σ 2
2 + σ 2

3

Implementation of the Model

The model can be implemented in some different ways, depending on
the volatility structure.

First the volatility of the short rate is not constant (i.e. it differs as
time changes). For example, the volatility of the short rate at any given
time can be {σ (0), σ (1), . . . , σ (T – 1)}where T denotes the horizon of
the analysis. When we compute the evolution of the short interest rate
as a binomial model, this example produces a short-rate tree.

Secondly the short rate is constant at all times, this is the canon-
ical Ho and Lee model. When we compute the evolution of the
short interest rate as a binomial model, the canonical model pro-
duces a short-rate lattice. This model requires a numerical solution for
the short interest rate one period ahead and forward induction (see
previous BDT trees).

Note that the assumption of constant volatility is not necessary for
producing a lattice. The volatility structure allows the volatility of the
short rate to vary across short rates but to be constant for each short
rate as time elapses. For example, the volatility of the short rate from
date 3 to date 4 can differ from the volatility of the short rate from
date 4 to date 5 but those two different volatilities do not change as
time elapses. The effect of this non-constant volatility structure is quite
different from that of the first model.

The third kind of model are quite dissimilar. The tree is built from
the evolution of the short interest rate as well as the satisfaction of
no-arbitrage conditions. These conditions are that the bond prices are
recovered at date 0 and that volatility of interest rates obtains at every
date. In addition, the equality of one-period rates of returns is thereby
satisfying the interpretation of no-arbitrage as equality of local expect-
ations. In other words, at any vertex (except those on the last date),
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we can calculate the expectation of the rate of return on a bond. This
expectation of the rate of return should equal the short rate evolved
at that vertex. If this equality is not obtained arbitrage profits are
possible.

15.1.3.3 HW Models

If the parameters are dependent of time, the possibility to calibrate
them is much better. The HW model (1990) is a generalization of the
Vasicek model with time-dependent parameters

dr = (θ(t) – a(t)r) dt + σ (t)dV(t)

where θ(t) is a deterministic function of time. Typically, the paramet-
ers a and σ is calibrated against the volatility and thereafter θ(t) is
calibrated against the theoretical bond prices, {p(0,T): T ≥ 0} to the
observed curve {p∗(0,T): T ≥ 0}. To see why both a and σ is calibrated
against the volatility we recall the term-structure equation:⎧⎨

⎩
∂FT

∂t
+ {μ(t, r) – λ(t, r)σ (t)}

∂FT

∂r
+
1

2
σ 2 ∂

2FT

∂r2
– r(t)FT = 0

F(r, T ,T) = 1

The drift is given by: μ(t, r) – λ(t, r)σ (t). If we compare the drift terms
we see that the parameters in the HWmodels include the market price
of risk and the volatility.

μ(t, r) – λ(t, r)σ (t) = θ(t) – a(t)r(t).

A breakthrough with this model is that it is possible to use trinomial
trees. Also HW (and the Ho-Lee model) allows negative interest rates.
Note that the HW model with a(t) = 0 is equivalent to the Ho-Lee
model.

The model has an ATS

p(t,T) = F(r(t), t,T) = eA(t,T)–B(t,T)r

and can be simplified if we let a to be a constant. We then get the
following equation for B(t,T)⎧⎨

⎩
∂B

∂t
(t,T) – aB(t,T) = –1

B(T ,T) = 0
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This can easily be solved, and the answer is (as we have seen earlier)

B(t,T) =
1

a

{
1 – e–a(T–t)

}

Inserting this in the equation of A, we obtain the equation⎧⎨
⎩
∂A(t,T)

∂t
– θ(t) · B(t,T) + σ 2

2
B2(t,T) = 0

A(T ,T) = 0

If we integrate this, we get

A(t,T) =

T∫
t

{
σ 2

2
B2(s,T) – θ(s) · B(s, T)

}
ds

=
σ 2

2

T∫
t

B2(s, T)ds –

T∫
t

θ(s) · B(s,T)ds

We will now calibrate the model to the observed initial yield curve,
using

f (t,T) = –
∂
[
ln p(t,T)

]
∂T

and

p(t,T) = exp {A(t,T) – rB(t,T)} .

Since

BT (t,T) =
∂

∂T

(
1

a

{
1 – e–a(T–t)

})
= e–a(T–t)

and

∂

∂τ

T∫
t

θ(s) · B(s, τ )ds =
T∫
t

θ(s) · ∂

∂τ
B(s, τ )ds =

T∫
t

θ(s)e–a(T–s)ds

the initial forward rates are given by

f ∗(0,T) = BT (0,T) · r(0) – AT (0,T)

= r(0)e–aT +

T∫
0

θ(s)e–a(T–s)ds –
σ 2

2a2
(
1 – e–aT

)2
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We recognize the first two terms as the solution to an ordinary differ-
ential equation (ODE) of the first order. So, the simplest way to solve
this is to do the following trick and write this as

f ∗(t,T) = x(T) – g(T)

where {
ẋ(T) = –ax(T) + θ(T)

x(0) = r(0)e–aT

and2

x(T) = r(0)e–aT +

T∫
0

θ(s)e–a(T–s)ds

g(T) =
σ 2

2a2
(
1 – e–aT

)2
=
σ 2

2
B2(0,T)

gT (T) =
σ 2

2

∂

∂T
B2(0,T) = σ 2B(0,T)

d

dT
B(0,T) = σ 2B(0,T)e–aT

We then get

θ(T) = ẋ(T) + a · x(T) = {x(T) = f ∗(0,T) + g(T)
}

= f ∗T (0,T) + gT (T) + a
{
f ∗(0,T) + g(T)

}

= f ∗T (0,T) + a · f ∗(0,T) + σ 2 · B(0,T) · e–aT + a · σ
2

2
· B2(0,T)

= f ∗T (0,T) + a · f ∗(0,T) + σ 2 · B(0,T)
(
e–aT +

1

2

(
1 – e–aT

))

= f ∗T (0,T) + a · f ∗(0,T) + σ 2

2a

(
1 – e–aT

) (
1 + e–aT

)

= f ∗T (0,T) + a · f ∗(0,T) + σ 2

2a

(
1 – e–2aT

)

2 ẋ – ax = θ ⇒ e–atẋ – e–atax = e–atθ ⇒ d

dt

(
e–atx

)
= e–atθ ⇒ d

(
e–atx

)
= e–atθdt

x(T)∫
x(0)

d

dx
e–atxdx =

T∫
0

e–atθdt ⇒ x(T) = e–aTx(0) + e–aT
T∫

0

e–asθ(s)ds
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With this function θ(T) we have fixed the values of a and σ and
decided the martingale measure to use. Remember that

A(t,T) =
σ 2

2

T∫
t

B2(s,T)ds–

T∫
t

θ(s)B(s,T)ds

We start to calculate the integral

σ 2

2

T∫
t

B2(s, T)ds =
σ 2

2a2

T∫
t

(
e–a(T–s) – 1

)2
ds

=
σ 2

2a2

[
1

2a

(
1 – e–2a(T–t)

)
+ (T – t) –

2

a

(
1 – e–a(T–t)

)]

Next we compute the integral

T∫
t

θ(s)B(s,T)ds =
1

a

T∫
t

θ(s)
(
1 – e–a(T–s)

)
ds

= –
1

a

T∫
t

θ(s)e–a(T–s)ds +
1

a

T∫
t

θ(s)ds

= –
1

a

T∫
t

e–a(T–s)
(
f ∗s (0, s) + a · f ∗(0, s)) ds

+
1

a

T∫
t

(
f ∗s (0, s) + a · f ∗(0, s)) ds

+
σ 2

2a

T∫
t

(
1 – e–a(T–s)

) (
1 – e–2as

)
ds

The last integral is

σ 2

2a

T∫
t

(
1 – e–a(T–s)

) (
1 – e–2as

)
ds

= –
σ 2

2a3

[
1 – e–a(T–t) +

1

2
e–2aT – e–a(T+t) +

1

2
e–2at

]
+

σ 2

2a2
(T – t)
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We now have
T∫
t

θ(s)B(s, T)ds = –
1

a

T∫
t

e–a(T–s)f ∗s (0, s)ds –
T∫
t

e–a(T–s)f ∗(0, s)ds

+
1

a

[
f ∗(0, s)

]T
t +

T∫
t

f ∗(0, s)ds

–
σ 2

2a3

[
1 – e–a(T–t) +

1

2
e–2aT – e–a(T+t) +

1

2
e–2at

]

+
σ 2

2a2
(T – t)

Next, we compute

1

a

T∫
t

e–a(T–s)f ∗s (0, s)ds =
1

a

[
e–a(T–s)f ∗(0, s)

]T
t
–

T∫
t

e–a(T–s)f ∗(0, s)ds

to get

T∫
t

θ(s)B(s, T)ds

= –
1

a

[
e–a(T–s)f ∗(0, s)

]T
t
+

T∫
t

e–a(T–s)f ∗(0, s)ds

–

T∫
t

e–a(T–s)f ∗(0, s)ds + 1

a

(
f ∗(0,T) – f ∗(0, t)

)
+

T∫
t

f ∗(0, s)ds

–
σ 2

2a3

[
1 – e–a(T–t) +

1

2
e–2aT – e–a(T+t) +

1

2
e–2at

]
+

σ 2

2a2
(T – t)

Now, simplification gives

T∫
t

θ(s)B(s, T)ds = f ∗(0, t)B(t,T) +
T∫
t

f ∗(0, s)ds

–
σ 2

2a3

[
1 – e–a(T–t) +

1

2
e–2aT – e–a(T+t)+

1

2
e–2at

]
+

σ 2

2a2
(T – t)



15 Term-Structure Models 373

Combining the two integrals we get

A(t,T) =
σ 2

2

T∫
t

B2(s,T)ds–

T∫
t

θ(s)B(s,T)ds

=
σ 2

2a2

[
1

2a

(
1 – e–2a(T–t)

)
+ (T – t) –

2

a

(
1 – e–a(T–t)

)]

+ f ∗(0, t)B(t,T) –
T∫
t

f ∗(0, s)ds

–
σ 2

2a3

[
1 – e–a(T–t) +

1

2
e–2aT – e–a(T+t) +

1

2
e–2at

]
+

σ 2

2a2
(T – t)

= f ∗(0, t)B(t,T) –
T∫
t

f ∗(0, s)ds + σ 2

4a
B2(t,T)

(
e–2at – 1

)

If we use

T∫
t

f (0, s)ds = – ln

(
p(0,T)

p(0, t)

)

we finally have

A(t,T) = f ∗(0, t)B(t,T) + ln

(
p(0,T)

p(0, t)

)
+
σ 2

4a
B2(t,T)

(
e–2at – 1

)

Thus, the bond prices are given by

p(t,T) = exp {A(t,T) – rB(t,T)}

= exp

{
f ∗(0, t)B(t,T) + ln

(
p(0,T)

p(0, t)

)
+
σ 2

4a
B2(t,T)

(
e–2at – 1

)
– rB(t, T)

}

=
p∗(0,T)
p∗(0, t)

exp

{
1

a

(
1 – e–a(T–t)

)(
f ∗(0, t) – r

)
–
σ 2

4a3
(
1 – e–a(T–t)

)2(1 – e–2at)
}

The price volatility is the same as in the Vasicek model:

σp =
σr

a

(
1 – e–a(T–t)

)
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We now return to the HW stochastic process:

dr = (θ(t) – a(t)r) dt + σ (t)dV(t)

We can also solve this like

d(eatr) = eatdr + aeatr(t)dt = eat (θ(t) – ar(t)) dt + eatσ (t)dV + ar(t)eatdt

= eatθ(t)dt + eatσ (t)dV

Integration gives

eatr(t) = easr(0) +

t∫
s

θ(u)eaudu +

t∫
s

σ (u)eaudVu

which simplifies to

r(t) = r(s)e–a(t–s) +

t∫
s

e–a(t–u)θ(u)du + σ

t∫
s

e–a(t–u)dVu

This gives the short rate at time t conditional on the information given
at time s.

Since EQ

[
σ

T∫
t
e–a(T–u)dVu|Ft

]
= 0 we have

EQ [r(T)] = r(t)e–a(T–t) +

T∫
t

e–a(T–u)θ(u)du

Var [r(T)] = σ 2E

⎡
⎢⎣
⎛
⎝

T∫
t

e–a(T–u)dVu

⎞
⎠

2
⎤
⎥⎦

= σ 2

T∫
t

e–2a(T–u)du =
σ 2

2a

(
1 – e–2a(T–t)

)

Notice that

T∫
t

e–a(T–u)θ(u)du =

T∫
t

∂

∂T
B(u,T)θ(u)du =

∂

∂T

T∫
t

B(u,T)θ(u)du
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where we used that B(T ,T) = 0 in the last part. From the previous
equation, we do know that

T∫
t

θ(u)B(u,T)du = f ∗(0, t)B(t,T) +
T∫
t

f ∗(0, u)du

–
σ 2

2a3

[
1 – e–a(T–t) +

1

2
e–2aT – e–a(T+t) +

1

2
e–2at

]
+

σ 2

2a2
(T – t)

so

T∫
t

e–a(T–u)θ(u)du = f ∗(0, t) ∂
∂T

B(t,T) +
∂

∂T

T∫
t

f ∗(0, s)ds

–
σ 2

2a2

[
e–a(T–t) + e–2aT – e–a(T+t) – 1

]

= f ∗(0, t)e–a(T–t) + f ∗(0,T)

–
σ 2

2a2

[
e–a(T–t) + e–2aT – e–a(T+t) – 1

]

This can be written as

T∫
t

e–a(T–u)θ(u)du = γ (T) – γ (t)e–a(T–t)

where

γ (t) = f ∗(0, t) + σ 2

2a2
(
1 – e–at

)2
Thus

EQ [r(T)] = r(t)e–a(T–t) + γ (T) – γ (t)e–a(T–t)

Var [r(T)] =
σ 2

2a

(
1 – e–2a(T–t)

)

We also have that the price at time t of a bond paying 1 (cash unit)
at time T (maturity) is given as the solution to the aforementioned
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term-structure equation with following Feynmann-Kac formula

p(t,T) = EQ

⎡
⎣exp

⎧⎨
⎩

T∫
t

r(u)du

⎫⎬
⎭× 1 |Ft

⎤
⎦

= exp

⎧⎨
⎩–EQ

⎡
⎣

T∫
t

r(u)du

⎤
⎦ +

1

2
Var

⎡
⎣

T∫
t

r(u)du

⎤
⎦
⎫⎬
⎭

The mean (expectation value) and variance can be calculated
analytically.

A general pricing formula for a payoff function ϕ(X(T)) is given as:

p(t,T) = EQ

⎡
⎣exp

⎧⎨
⎩

T∫
t

r(u)du

⎫⎬
⎭× ϕ (X(T)) |Ft

⎤
⎦

Option Pricing

To price a European call option with maturity T and strike price K on
an S-bond, we get the arbitrage-free price as

π0 [X] = EQ

⎡
⎣max {L · p(S,T) – K, 0} · exp

⎧⎨
⎩–

T∫
0

r(s)ds

⎫⎬
⎭
⎤
⎦

It is possible to get an analytical result from this, but again the calcu-
lations are quite complex. We therefore wait until we learned about
forward measure. The result for a European call option is given by

C(t,T ,K, S) = L · p(t, S) · N(d) – K · p(t,T) · N(d – σp)
and a European put option by

P(t,T ,K, S) = K · p(t,T) · N(–d + σp) – p(t, S) · N(–d)
where

d =
ln
{
L·p(t,S)
K·p(t,T)

}
+

σ 2
p
2

σp

σp =
1

a

(
1 – e–a(S–T)

)√σ 2

2a

(
1 – e2a·(T–t)

)·
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Calibration of Volatility Data

In contrast to the Ho-Lee model, the HW spot rate volatility equation
involves two parameters, a and σ : σ determines the overall the volatil-
ity of the short rate and a the relative volatility of long and short rates.
In order to calibrate the model to the market prices we can follow
the procedures outlined earlier for the Ho-Lee model, but now best
fit both a and σ simultaneously to market data. If we assume that we
have the prices of m individual European put options on pure discount
bonds we now minimize the following function

min
a,σ

√√√√ m∑
i=1

(
modeli(a, σ ) – marketi

marketi

)2

where modeli(a, σ ) is the option value derived from the equation for
put options previously with the parameter values a and σ .

Cap/Floor Evaluation

The price of a cap is the sum of the prices of all its caplets. Therefore,
knowing how to give a price of any caplet with the HW model is suf-
ficient to compute the price of any cap. The price of a caplet can be
expressed as the prices of a put on a zero-coupon bond, whose price
is analytically computable with this model. More explicitly, if the rate
convention is linear, the price of a caplet with strike X and nominal
N is linked with the price of an option on a zero-coupon bond whose
strike is

X′ = 1

1 + τ · X ,

where τ is the day-count fraction, whose nominal equals
N′ = N(1 + τX).

The volatilities of the zero-coupon bond at S with maturity at T
is given in the following formula for constant volatilities and mean
reversion case

σ =
p

1√
S

1

a

(
1 – e–a(T–S)

)√σ 2

2a

(
1 – e2aS

)·
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When model volatilities as a piecewise constant function as in the case
for bootstrapping, the variance of the bond is given in the following
formula:

σ 2
p =

1

S

(
e–a(T–S) – 1

)
a2

e–2aSI(S)

where

I(S) =
n–1∑
i=1

σ 2
i
e2ati – e2ati–1

2a

where t0 = 0 and tn–1 = S

Swaption Evaluation

A European swaption with strike rate X, maturity T, nominal N and
payments dates T1, . . . ,Tn can be viewed as an option on a bond paying
ci = Xτi for i = 1, . . . , n and ci = 1 + Xτi with a strike price of N.

Applying Jamshidians decomposition, N is written as a sum of dis-
counted flows ci for a certain short-rate r∗ at time T which is evaluated
using Newton-Raphsons algorithm.

N =
n∑
i=1

ci�(T ,Ti, r
∗)

The payoff is then rewritten as
[
N

n∑
i=1

ci�(T ,Ti, r
∗) –�(T ,Ti, r(T))

]+

and since �(T , S, r) is a monotonic function of r for all S,T, the
positive part of the sum can be converted as the sum of positive parts

N
n∑
i=1

[
ci�(T ,Ti, r

∗) –�(T ,Ti, r(T))
]+

Therefore, pricing a swaption becomes equivalent to pricing a port-
folio of options on zero-coupon bonds. As there exist some analytical
formulas for such options, a swaption is analytically valuable with this
model. During the calibration, the target price to match is the one
giving by pricing a European swaption with a Black swap yield model.
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Numerical Solution of the PDE

The term-structure equation for the HW model is given by:
⎧⎨
⎩
∂U(r, t)

∂t
+
1

2
σ 2 ∂2U(r,t)

∂r2
+ {θ(t) – a · r} ∂U(r, t)

∂r
– r · U(r, t) = 0

U(r, T) = 1

where

θ(t) =
df (t,T)

dt
+ a · f (t,T) +

(
1 – e–2at

)
σ 2

2a

This can be solved with Crank-Nicholson where

uij = u(ri, tj)
du(ri, tj)

dt
=
uij+1 – uij

k
∂u(ri, tj)

∂r
=
ui+1j – ui–1j

2h
∂2u(ri, tj)

∂r2
=
ui+1j – 2uij + ui–1j

h2

We then have

duij
dt

= r · uij –
{
θ(tj) – a · ri

} ui+1j – ui–1j
2h

–
1

2
σ 2ui+1j – 2uij + ui–1j

h2

This can be rewritten as

duij
dt

=

(
–
σ 2

2h2
+

{
θ(tj) – a · ri

}
2h

)
· ui–1j

+

(
σ 2

h2
+ ri

)
· uij –

(
σ 2

2h2
+

{
θ(tj) – a · ri

}
2h

)
· ui+1j

or

duij
dt

= x(ri, tj) · ui–1j + y(ri) · uij – z(ri, tj) · ui+1j
For a solution we need the initial condition u(ri,T) and the boundary
conditions u(r0, tj) and u(rN , tj), where tj = jk, j = 0, 1, 2, . . . ,T and
ri = ih, i = 0, 1, 2, . . . ,N.
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On matrix form, we can express this as

dA

dt
= A(t)u(t)

where

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

xB0(r0, t) yB0(r0) zB0(r0, t) 0 0 . . . . 0
0 x(r1, t) y(r1) z(r1, t) 0 . . . . :
0 0 x y z : :
: : 0 : : : :
: : : : : : :
: : : : : : 0
0 0 0 . . . . xBN(rN , t) yBN(rN) zBN(rN , t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Crank-Nicholson gives

uj+1 – uj
k

=
A(tj)uj + A(tj+1)uj+1

2

which is solved as

uj =

(
I +

k

2
A(tj)

)–1 (
I –

k

2
A(tj+1)

)
uj+1

We use this equation of N + 1 unknown backward in time. When
we solve this we use the previously mentioned forward rate f (t,T)
given by

f (t,T) = R(t,T) + t · dR(t,T)
dt

where R(t,T) is the continuously compounded interest rate given by
the yield curve. Taking the derivative of f (t,T) with respect to the
time t, we have

df (t,T)

dt
= 2 · dR(t,T)

dt
+ t · d

2R(t,T)

dt2

Since we are used this derivative previously, which includes a second
derivative of R (the yield curve) with respect to time, we get problems
with piecewise linear yield curves. The solution to this problem is
described by Antoon Pelsser in the book Efficient Methods for Valuing
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Interest Rate Derivatives (Springer, 2000). We start by defining

α(t) = f (t,T) +

(
1 – e–at

)2
σ 2

2a2

and the transformation

y = r – α(t) ⇔ r = y + α(t)

We then get the following PDE:

∂V(r, t)

∂t
+
1

2
σ 2 ∂

2V(r, t)

∂y2
– a · y∂V(r, t)

∂y
– y · V(t, y) = 0

where the option value U is calculated as:

U = V · e–k

where

k = τ · R(τ ,T) – t · R(t,T)
+

[
a · (τ – t) – 2

(
e–at – e–aτ

)
+
1

2

(
e–2at – e–2aτ

)] σ 2

2a3

and τ any non-negative time. If τ = 0 we then have.

k = –t · R(t,T) +
[
–at – 2

(
e–at – 1

)
+
1

2

(
e–2at – 1

)] σ 2

2a3

There are a couple of major advantages with this transformation:

• The “implied transition probability distribution” (i.e. the process x)
in the PDE grid is independent of the yield curve, making the bucket
Greeks more stable.

• Only f is needed (i.e. no derivative of f ). Therefore the yield curve
only needs to be differentiated once, so we do not have any problem
with piecewise linear yield curves.

Note that the short-rate r must be calculated for every state x for every
“exercise event”, since it’s used to calculate the state-dependent yield
curve.
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Trinomial Trees

Instead of solving the PDE as earlier, we can also build a trinomial tree
for the HW model. As usually, we start with the stochastic process

dr = [θ (t) – ar] dt + σdz

where r is the instantaneous short rate and θ(t) a function of time t.
a and σ are supposed to be constants. This shows that, at any given
time, r reverts towards θ(t)/a. If we replace r with ln(r) the model be-
comes BK and with a(t) = –σ ′(t)/σ (t), and σ ′(t) = ∂σ /∂t, the model
becomes the BDT model. As the BDT model the tree is built with
forward inductions.

We assume that the �t and the interest rate R, follows the same
process as r, where

dR = [θ (t) – ar] dt + σdz

We can then construct a tree for R∗ that is initially zero and follows the
process

dR∗ = –aR∗dt + σdz

The reason is that The interest rate r(t) can be decomposed into a sum
of R∗(t) and α(t): r(t) = R∗(t) + α(t) where

{
dR∗(t) = –αx(t)dt + σ (t)dW(t)

R∗(0) = 0{
dα(t) = (θ(t) – a · α(t)) dt
α(0) = r(0)

Proof: Integration gives

R∗(t) = –a

t∫
0

R∗(s)ds +
t∫

0

σ (s)dW(s)

α(t) – r(0) =

t∫
0

(θ(s) – a · α(s)) ds
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giving

R∗(t) + α(t) = r(0) – a

t∫
0

R∗(s)ds +
t∫

0

σ (s)dW(s) +

t∫
0

(θ(s) – a · α(s)) ds

= r(0) +

t∫
0

(
θ(s) – a · {α(s) + R∗(s)

})
ds +

t∫
0

σ (s)dW(s)

= r(0) +

t∫
0

(θ(s) – a · r(s)) ds +
t∫

0

σ (s)dW(s)

We also see that we now have

r(t) = r(0) +

t∫
0

(θ(s) – a · r(s)) ds +
t∫

0

σ (s)dW(s) = α(t) +

t∫
0

σ (s)dW(s)

Integration of dr from s to t (using integration factor) gives for constant
volatility:

r(t) = r(s) · e–a(t–s) +
t∫

s

θ(u) · e–a(t–u)du + σ

t∫
s

e–a(t–u)dW(u)

= α(t) + (r(s) – α(s)) · e–a(t–s) + σ

t∫
s

e–a(t–u)dW(u)

where

α(t) = f (0, t) +
σ 2

2a

(
1 – e–at

)2
Therefore, r(t) with the information known at time s is normally
distributed with mean and variance given by

E
[
r(t) |Fs

]
= α(t) + (r(s) – α(s)) · e–a(t–s)

Var
[
r(t) |Fs

]
=
σ 2

2a

(
1 – e–2a(t–s)

)

Since HW have an ATS with zero-coupon prices given by

p(t,T) = eA(t,T)–B(t,T)r
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where

B(t,T) =
1

a

{
1 – e–a(T–t)

}

and

A(t,T) =
σ 2

2

T∫
t

B2(s, T)ds –

T∫
t

θ(s)B(s,T)ds

giving

p(t,T) =
p∗(0,T)
p∗(0, t)

exp

{
B(t,T)f ∗(0, t) – σ 2

4a
B2(t,T)

(
1 – e–2at

)
– B(t,T)r(t)

}

Here p∗(0, t) and p∗(0,T) are zero-coupon bonds with maturity at t and
T respectively.

By using r(t) = R∗(t) + α(t) as shown earlier, we have

C(t,T) =
p∗(0,T)
p∗(0, t)

· exp
{
1

2
[V(t,T) – V(0,T) + V(0, t)]

}

where

V(t,T) =

T∫
t

[σ (s)B(s, T)]2 ds

For constant volatility we can integrate this

V(t,T) = σ 2

T∫
t

[B(s,T)]2 ds =
σ 2

a2

T∫
t

[
1 – e–a(T–s)

]2
ds

=
σ 2

a2

T∫
t

[
1 – 2 · e–a(T–s) + e–2a(T–s)

]
ds

=
σ 2

a2

[
T – t +

2

a
· e–a(T–t) – 1

2a
e–2a(T–t) –

3

2a

]

The process is symmetrical around R∗ = 0 and R∗(t + �t) – R∗(t)
is normally distributed. If higher order terms than �t are ignored
we have

E
[
R∗ (t +�t) – R∗ (t)

]
= –aR∗ (t)�t
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and

Var
[
R∗ (t +�t) – R∗ (t)

]
= σ 2�t

We define�R as the spacing between interest rates on the tree and set

�R = σ
√
3�t

Remark! This is the same condition used to get good convergence
when solving PDE’s.

We are now going to build a tree as shown in Fig. 15.6.
We then face the three branching situations as
In order to calculate these three kinds of nodes, we need some formu-
las. First, we define (i, j) as the node where t = i�t and R∗ = j�R. HW
showed that the probabilities are always positive if we set jmax equal

Fig. 15.6 The HW trinomial tree
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to the smallest integer greater than 0.184/(a�t). We then define the
transition probabilities, pu, pm and pd which are used to match the ex-
pected value and variance of R∗(t +�t) – R∗(t) over a time interval �t.
At the node (i, j) the standard branching must satisfy

pu�R – pd�R = –aj�R�t

pu�R2 + pd�R2 = σ 2�t + a2j2�R2�t2

pu + pm + pd = 1

Using �R = σ
√
3�t to solve this equation system, we get the up-,

middle- and down-branching probabilities:

Pu = 1/6 +
a2j2�t2 – aj�t

2
Pm = 2/3 – a2j2�t2

Pd = 1/6 +
a2j2�t2 + aj�t

2

As we can see in the aforementioned tree, we cope with mean rever-
sion by allowing the branching to be non-standard at the edge of the
tree. At the top edge of the tree where the branching is non-standard
the modified probabilities become

Pu = 7/6 +
a2j2�t2 – 3aj�t

2
Pm = –1/3 – a2j2�t2 + 2aj�t

Pd = 1/6 +
a2j2�t2 – aj�t

2

and at the bottom edge of the tree where the branching is non-standard
the modified probabilities become:

Pu = 1/6 +
a2j2�t2 + aj�t

2
Pm = –1/3 – a2j2�t2 – 2aj�t

Pd = 7/6 +
a2j2�t2 + 3aj�t

2
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Fig. 15.7 The transformed HW tree

Fitting the Tree

We will now transform the tree of R∗ into a free for R (Fig. 15.7)
We start by defining

α (t) = R (t) – R∗ (t)

giving

dα = [θ (t) – aα (t)] dt

where

α (t) = f (0, t) +
σ 2

2a2
(
1 – e–at

)2

This equation can be used to create a tree for R from the correspond-
ing tree ofR∗ . The approach is to set the interest rate on the R-tree
at time i�t to be equal the corresponding interest rates in the R∗-tree
plus the value of α at time i�t, to keep the probabilities the same. This
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is not exactly consistent with the initial term structure, so we have to
calculate α iteratively to match the initial term structure.

To illustrate this approach, we define αi as R(i�t) – R∗(i�t), α0 as
the price of a zero-coupon bond maturing at time �t (which is equal
to the initial �t-period interest rate) and Qi,j as the present value of a
security with payoff one cash unit if the node (i, j) is reached and zero
otherwise.

Suppose that Qi,j have been determined for i ≤ m(m ≥ 0). We now
have to determine αm so that the tree correctly replicate the prices of
zero-coupon bonds with maturity (m + 1)�t. The interest rate at node
(m, j) is αm + j�R, so that the price of a zero-coupon bond maturing at
(m + 1)�t is given by

pm+1 =
nm∑

j=–nm

Qm,j exp
[
– (αm + j�R)�t

]

Where nm is the number of nodes on each side of the central node at
time m�t. The solution to this equation is given by

αm =
ln
∑nm

j=–nm Qm,je–j�R�t – lnPm+1

�t

Once we know αm, we can determine Qi,j. For i = m + 1 we have

Qm+1,j =
∑
k

Qm,kq (k, j) exp [– (αm + k�R)�t]

where q(k, j) is interpreted as the probability of moving from node
(m, k) to (m + 1, j). The summation made over all values of k for this is
non-zero.

The bond price at node (i, j), for each branch is calculated as:

vi,j =
(
puvi+1,j+1 + pmvi+1,j + pdvi+1,j–1

)
exp

(
–Ri,j�t

)
vi,j =

(
puvi+1,j+2 + pmvi+1,j+1 + pdvi+1,

)
exp

(
–Ri,j�t

)
vi,j =

(
puvi+1,j+1 + pmvi+1,j–1 + pdvi+1,j–2

)
exp

(
–Ri,j�t

)
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Example 15.1.8
Consider the following tree in Fig. 15.8

Fig. 15.8 A HW trinomial tree

Table with zero rate

Maturity Rate %
0.5 3.43
1 3.824
1.5 4.183
2 4.512
2.5 4.812
3 5.086

Specify �t as one year and the initial rate as 3.824%. Then R0 = 3.824%, Q0,0 = 1 and
�R = σ

√
3�t = 0.01 · √

3 = 0.01732. Calculate Q on node B, C and D
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Node A B C D E F G H I
R 3.82%
Pu 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
Pm 0.6666 0.6566 0.6666 0.6566 0.0266 0.0266 0.6666 0.6566 0.0266
Pd 0.1667 0.2217 0.1667 0.1217 0.0867 0.0867 0.1667 0.1217 0.8867

QA = Q0,0 = 1

QB = Q1,1 = pAue
–RA�t = 0.1667e–0.03824·1 = 0.1604

QC = Q1,0 = pAme
–RA�t = 0.6666e–0.03824·1 = 0.6417

QD = Q1,–1 = pAde
–RA�t = 0.1667e–0.03824·1 = 0.1604

We calculate α1 which is chosen to replicate the price of a zero-coupon bond
maturing at time 2�t. Fitting Q to P

PB = P1,1 = QBe
–(α1+�R) = 0.1604e–(α1+0.01732)

PC = P1,0 = QBe
–α1 = 0.6417e–α1

PD = P1,–1 = QBe
–(α1–�R) = 0.1604e–(α1–0.01732)

For the initial term structure, the bond price should be e–0.0452·2 = 0.9137 giving

PB + PC + PD = 0.9137

0.1604e–(α1+0.01732) + 0.6417e–α1 + 0.1604e–(α1–0.01732) = 0.9137

We then get

α1 = ln

(
0.1604e–0.01732 + 0.6417 + 0.1604e0.01732

0.9137

)
= 0.05205

And the rates in the nodes B, C and D

Rc = α1 = 0.05205

RB = α1 + 1 · �R = 0.05205 + 0.01732 = 0.06937

RD = α1 + 1 · �R = 0.05205 – 0.01732 = 0.03473

We can then fill in the rates in the previous table. The new table is

Node A B C D E F G H I
R 3.82% 6.94% 5.03% 3.47%
Pu 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
Pm 0.6666 0.6566 0.6666 0.6566 0.0266 0.0266 0.6666 0.6566 0.0266
Pd 0.1667 0.2217 0.1667 0.1217 0.0867 0.0867 0.1667 0.1217 0.8867

Next, we calculate the rates in the nodes E, F, G, H and I. F can only be reached from
node B and C, then

QF = Q2,1 = pBme
–RBQB + pCue

–RCQC

= 0.6566e–0.06937 · 0.1604 + 0.1667e–0.005205 · 0.6407
= 0.1998
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G can only be reached from B, C and D:

QG = Q2,0 = pBde
–RBQB + pCme

–RCQC + pDue
–RDQD

= 0.2217e–0.06937 · 0.1604 + 0.6666e–0.05205 · 0.6417 + 0.2217e–0.03473 · 0.1604
= 0.4736

other nodes can be calculated in a similar way. We finally get:

QE = 0.0182

QH = 0.2033

QI = 0.0189

Fitting P and calculate α2 = 0.06522

PE = QEe
–(α2+2�R)

PF = QFe
–(α2+�R)

PG = QGe
–α2

RH = QFe
–(α2–�R)

PI = QIe
–(α2–2�R)

PE + PF + PG + RH + PI = e–5.086·3

Solve these in order to get α2, the rate in the nodes E and F will be

RE = α2 + 2�R

RF = α2 +�R

RG = α2

RI = α2 –�R

RH = α2 – 2�R

If we continue the calculation to find the prices and rates for each node we can
calculate the bond price for each node for three kinds of branching:

vi,j =
(
puvi+1,j+1 + pmvi+1,j + pdvi+1,j–1

)
exp

(
–Ri,j�t

)
vi,j =

(
puvi+1,j+2 + pmvi+1,j+1 + pdvi+1,

)
exp

(
–Ri,j�t

)
vi,j =

(
puvi+1,j+1 + pmvi+1,j–1 + pdvi+1,j–2

)
exp

(
–Ri,j�t

)

Other Issues

There are a number of other practical issues to consider when im-
plementing HW trees for valuing interest rate derivatives. In our
description we assumed that the length of the time step is constant.
In practice, it is sometimes desirable to change the length of the
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time step. Consider for example the situation where the model is
used to value a European six-month option on a five-year bond. It
might be appropriate to use a longer �t between six months and
five years than during the first six months. This is because the part
of the tree between six months and five years is used only to value the
underlying bond.

Barrier options present a further problem in the use of the tree be-
cause convergence tends to be slow when nodes do not lie exactly on
barriers. In the case of an interest rate option the barrier is typically
expressed in terms of a bond price or a particular rate. Analytic results
can be used to express the barrier as a function of the �t-period rate.
Non-standard branching can then be used to ensure that nodes always
lie on the barrier. Ritchken (JOD Winter 1995) describes such an ap-
proach, and shows that a substantial improvement in performance is
possible with it.

A final problem in the use of interest rate trees is path depend-
ence. This can sometimes be handled in the way described by Hull
and White [1993]. The requirements for the HW method to work are:

1. The value of the derivative at each node must depend on just
one function of the path for the short-rate r (e.g. the maximum,
minimum or average value);

2. In order to update the path function as we move forward through
the tree we need to know only the previous value of the function
and the new value of r.

Hull and White show how their approach can be used for index
amortizing Swaps and mortgage-backed securities. The relevant path
function in each case is the remaining principal.

15.1.3.4 The Cox-Ingersoll-Ross Model (CIR)

As we know, the previously mentioned models also generate negative
interest rates. A model to prevent this is the CIR model3:

dr(t) = (θ – a · r(t))dt + σ
√
r(t)dV(t)

3 Be aware about the t negative interest rates that has become a fact in several countries in
2014 and 2015 (Sweden, Denmark, EURO etc).
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Since the volatility is a function of the interest rate, this cannot be neg-
ative. If this happens the stochastic part will become weaker and the
drift will take over and force the rate to increase. The term-structure
equation for CIR is given by⎧⎨

⎩
∂p

∂t
+ {θ – a · r} ∂p

∂r
+
1

2
σ 2r

∂2p

∂r2
– rp = 0

p(r, T ,T) = 1

This equation has a closed form solution. We will look for a solution of
the form

p (t, T) = F (r (t) , t, T) = eA(t, T)–B(t,T)r

where A(T ,T) = B(T ,T) = 0. Differentiating p with respect to r and t
and differentiating pr with respect to r we get the following:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂p(t,T)

∂r
= –B(t,T)eA(t,T)–B(t,T)r = –B(t,T)p(t,T)

∂2p(t,T)

∂r2
= B2(t, T)eA(t,T)–B(t,T)r = B2(t,T)p(t,T)

∂p(t,T)

∂t
= p(t,T)

(
∂A(t,T)

∂t – r ∂B(t,T)
∂t

)

Substituting these expressions in the previous term-structure equa-
tion, the PDE becomes

0 = p (At – rBt) – {θ – ar}Bp +
1

2
σ 2rB2p – rp

= rp

{
–1 – Bt + aB +

1

2
σ 2B2

}
+ p {At – θB}

A careful inspection of the previous equation reveals that the expres-
sion in the first bracket is the well-known Ricatti equation. We will
now solve this equation. After solving this equation we need to set

A(t,T) = –θ

T∫
t

B(u,T)du

Since A(T ,T) = 0 we have At(t,T) = θB(t, T): Although the time starts
at t and ends at T we will consider it to start at 0 for the purposes of
derivation and end at t.

Hence, when we refer to t from this point onwards it is the amount
of time that has elapsed. The Ricatti equation can be rewritten as
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Bt = –1 + aB +
1

2
σ 2B2

We introduce another dependent variable u such that

B = –
2ut
σ 2u

Differentiating the previous expression with respect to t we get

Bt = –
2utt
σ 2u

+ ut · 2ut
σ 2u2

= –
2utt
σ 2u

+ 2
( ut
σu

)2

We then get

–
2utt
σ 2u

+ 2
( ut
σu

)2
= –1 – a

2ut
σ 2u

+
1

2
σ 2
(
2ut
σ 2u

)2

–
2utt
σ 2u

= –1 – a
2ut
σ 2u

Multiplying both sides of the aforementioned expression by σ 2uwe get

2utt – 2aut – uσ
2 = 0

This is a second-order, ODE with constant coefficients. We solve this
with a characteristic polynomial

2λ2 – 2aλ – σ 2 = 0

with roots

λ1,2 =
a

2
± 1

2

√
a2 + 2σ 2

The solution to the differential equation is therefore given by

u(t) = C1e
λ1(T–t) + C2e

λ2(T–t) = C1e
1
2

(
a–

√
a2+2σ 2

)
(T–t)

+ C2e
1
2

(
a+

√
a2+2σ 2

)
(T–t)

= C1e
1
2 (a–γ )(T–t) + C2e

1
2 (a+γ )(T–t)

= C1e
a(T–t)/2e–γ (T–t)/2 + C2e

a(T–t)/2eγ (T–t)/2

du(t)

dt
= –

1

2
C1(a – γ ) · ea(T–t)/2e–γ (T–t)/2 – 1

2
C2(a + γ ) · ea(T–t)/2eγ (T–t)/2

where we defined γ by

γ =
√
a2 + 2σ 2
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The boundary condition; B(T ,T) = 0 gives ut(T ,T) = 0 and therefore

C1 = –C2
a + γ

a – γ
= C2

γ + a

γ – a

Inserting this and making some algebra we will finally get

B = –
2ut
σ 2u

=
1

σ 2

C1(a – γ ) · ea(T–t)/2e–γ (T–t)/2 + C2(a + γ ) · ea(T–t)/2eγ (T–t)/2
C1ea(T–t)/2e–γ (T–t)/2 + C2ea(T–t)/2eγ (T–t)/2

=
1

σ 2

–C1(γ – a) · e–γ (T–t)/2 + C2(γ + a) · eγ (T–t)/2
C1e–γ (T–t)/2 + C2eγ (T–t)/2

=
1

σ 2

–γ+a
γ –a (γ – a) · e–γ (T–t)/2 + (γ + a) · eγ (T–t)/2

γ+a
γ –a e

–γ (T–t)/2 + eγ (T–t)/2

=
1

σ 2

eγ (T–t)/2 – e–γ (T–t)/2

(γ + a)eγ (T–t)/2 + (γ – a)e–γ (T–t)/2

Then we can calculate A:

A(t,T) = –θ

T∫
t

B(u,T)du

We get

A(t,T) =
2θ

σ 2
ln

[
γ eγ (T–t)/2

(γ + a) eγ (T–t)/2 + (γ – a) e–γ (T–t)/2

]

In other words, we have explicitly calculated the bond prices.
A simulation of the short rate with the same parameters (a = 0.15

and σ = 4.5 %, i.e. θ /a = 4, 5 %) as in the previous Vasicek model is
shown in Fig. 15.9. As we can see, the probability of negative interest
rates is zero.

If r(0) is 2.0 % the simulated term structure of interest rates is shown
in Fig. 15.10.

This give a discount function as in Fig. 15.11.
A square root process, like CIR can only take on non-negative values.

To see this, note that if the value should become zero, then the drift is
positive and the volatility zero, and therefore the value of the process
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Fig. 15.9 The rate distribution in the CIR model

Fig. 15.10 The zero-rates in the CIR model

will with certainty become positive immediately after (zero is a so-
called reflecting barrier). It can be shown that if 2θ ≥ σ 2, the positive
drift at low values of the process is so big relative to the volatility that
the process cannot even reach zero, but stays strictly positive.
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Fig. 15.11 The discount function in the CIR model

Paths for the square root process can be simulated by successively
calculating

rn+1 = rn + (θ – a · rn)�t + σ · √
rn · ε · √

�t

Variations in the different parameters will have similar effects as for
the Ornstein-Uhlenbeck process. Since a square root process cannot
become negative, the future values of the process cannot be normally
distributed. In order to find the actual distribution, let us try the same
trick. Look at y = eatr. By Itô’s lemma,

dy = aeatrdt + eat (θ – ar) dt + eatσ
√
rdV = θeatdt + eatσ

√
rdV

so that

y(T) = y(t) +

T∫
t

θeaudu +

T∫
t

σeau
√
r(u)dV(u)

Computing the ordinary integral and substituting the definition of y,
we get

r(T) = r(t)e–a(T–t) +
θ

a

(
1 – e–a(T–t)

)
+ σ

T∫
t

e–a(T–u)
√
r(u)dV(u)
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Since r enters the stochastic integral we cannot immediately determ-
ine the distribution of r(T) given r(t) from this equation. We can,
however, use it to obtain the mean and variance of r(T). Due to the
fact that the stochastic integral has mean zero we easily get

E [r(T)] = r(t)e–a(T–t) +
θ

a

(
1 – e–a(T–t)

)
=
θ

a
+

(
r(t) –

θ

a

)
e–a(T–t)

We then have to calculate the variance:

Var [r(T)] = Var

⎡
⎣σ

T∫
t

e–a(T–u)
√
r(u)dV(u)

⎤
⎦ = σ 2

T∫
t

e–2a(T–u)E [r(u)] du

= σ 2

T∫
t

e–2a(T–u)
(
θ

a
+

(
r(t) –

θ

a

)
e–a(T–u)

)
du

=
σ 2θ

a

T∫
t

e–2a(T–u)du + σ 2
(
r(t) –

θ

a

)
e–2aT+at

T∫
t

eaudu

=
σ 2θ

2a2

(
1 – e–2a(T–t)

)
+
σ 2

a

(
r(t) –

θ

a

)(
e–a(T–t) – e–2a(T–t)

)

=
σ 2θ

2a2

(
1 – e–a(T–t)

)2
+
σ 2r(t)

a

(
e–a(T–t) – e–2a(T–t)

)

For T → ∞, the mean approaches θ /a and the variance approaches
σ 2θ

2a2
. For a → ∞, the variance approaches 0. For a → 0, the

mean approaches the current value r(t), and the variance approaches
σ2r(t)(T – t). It can be shown that, given the value r(t), the value r(T)
with T > t is given by the non-central χ2-distribution. A non-central
χ2-distribution is characterized by a number x of degrees of freedom
and a non-centrality parameter y and is denoted by χ2(x, y). More pre-
cisely, the distribution of r(T) given r(t) is identical to the distribution
of the random variable Y/c(T – t) where c is the deterministic function

c(τ ) =
4a

σ 2 (1 – e–aτ )

and Y is a χ2(x, y(T – t))-distribution random variable with

x =
4a

σ 2
, y(T – t) = r(t)c(T – t)e–b(T–t)
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The density function for a χ2(x, y)-distributed random variable is

fχ2(x,y)(z) =
∞∑
i=0

e–y/2(y/2)i

i!

(1/2)i+x/2

�(i + x/2)
zi–1+x/2e–z/2

Here � denotes the so-called gamma-function defined as

�(m) =

∞∫
0

xm–1e–xdx

The mean and variance of a χ2(x, y)-distributed random variable are
x+ y and 2(x+2y), respectively. This opens another way of deriving the
mean and variance of r(T) given r(t). We leave it for the reader to verify
that this procedure will yield the same results as given earlier. A fre-
quently applied dynamic model of the term structure of interest rates
is based on the assumption that the short-term interest rate follows
a square root process. Since interest rates are positive and empiric-
ally seem to have a variance rate which is positively correlated to the
interest rate level, the square root process gives realistic description
of interest rates. On the other hand, models based on square root
processes are complicated to analyse.

Option Pricing

We have seen that the CIR stochastic process can be written as

dr(t) = (θ – a · r)dt + σ
√
rdV

or equivalently as

dr(t) = a(μ – r)dt + σ
√
rdV

To price a European call option with maturity T and strike price K on
an S-bond, we get the arbitrage-free price as

C(t,T ,K, S) = L · p(t, S) · χ2
n (x1, ν1, ν2) – K · p(t,T) · χ2

n (x2, ν1, ν3)

where

x1 = 2 · A(S,T) – ln(K)
B(S,T)

·
{

2 · γ
σ 2
(
eγ (T–t) – 1

) + a + γ

σ 2
+ B(S,T)

}

x2 = x1 – 2 · (A(S,T) – ln(K))
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and

ν1 = 4 · θ /σ 2

ν2 =

8·γ 2·r·eγ (T–t)
σ 4(eγ (T–t)–1)2

2·γ
σ 2(eγ (T–t)–1) +

a+γ
σ 2 + B(S,T)

ν3 =

8·γ 2·r·eγ (T–t)
σ 4(eγ (T–t)–1)2

2·γ
σ 2(eγ (T–t)–1) +

a+γ
σ 2

The put price for this (and most of the other models) can be obtained
from put-call parity using the value p(t, S) as the value of the underlying
and p(t,T) as the discount function on the exercise price.

CIR also gives the price of a future contract expiring at T where the
underlying pure discount bond expires at S with S > T as

F(t, S,T) =
ρ

B(S,T) – ρ
· exp

{
A(S,T) – r · ρ · B(S,T)ea(T–t)

ρ + B(S,T)

}

ρ =
2a

σ 2
(
1 – ea(T–t)

)

15.1.4 Yield-Curve Fitting: For and Against

15.1.4.1 For

The building blocks of the bond pricing equation are delta hedging
and no-arbitrage. If we are to use a one-factor model correctly then we
must abide by the delta hedging assumptions. We must buy and sell
instruments to remain delta neutral. The buying and selling of instru-
ments must be done at the market prices. We cannot buy and sell at
a theoretical price. But we are not modelling the bond prices directly,
we model the spot rate and bond prices are then derivatives of the
spot rate. This means that there is a real likelihood that our output
bond prices will differ markedly from the market prices. This is use-
less if we are to hedge with these bonds. The model thus collapses
and cannot be used for pricing other instruments, unless we can find
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a way to generate the correct prices for our hedging instruments from
the model: this is yield-curve fitting.

15.1.4.2 Against

If the market prices of simple bonds were correctly given by a model,
such as Ho and Lee or Hull and White, fitted at time t∗ then, when we
come back a week later, t∗ + one week, say, to refit the function θ(t*),
we would find that this function had not changed in the meantime.
This never happens in practice. We find that the function θ(t*) has
changed out of all recognition. What does this mean? Clearly the model
is wrong.

By simply looking for a Taylor series solution of the bond-pricing
equation for short times to expiry, we can relate the value of the risk-
adjusted drift rate at the short end to the slope and curvature of the
market yield curve. This is done as follows. Look for a solution in the
TSE form

F (r, t, T) ∼ 1 + a (r) (T – t) + b (r) (T – t)2 + c (r) (T – t)3 + . . . .

Substitute this into the TSE equation

– a – 2b(T – t) – 3c(T – t)2

+
1

2

(
σ 2 – 2(T – t)σ

∂σ

∂t

)(
(T – t)

d2a

dr2
+ (T – t)2

d2b

dr2

)

+

(
μ – (T – t)

∂μ

∂t

)
(T – t)

(
da

dr
+ (T – t)2

db

dr

)

– r
(
1 + a(T – t) + c(T – t)2

)
+ . . . = 0

Note how the drift and volatility terms are expanded around t = T;
in the aforementioned expression these are evaluated at r and T. By
equating powers of (T – t) we find that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(r) = –r

b(r) =
1

2

(
r2 – μ2

)

c(r) =
1

12
σ 2 ∂2

∂r2
(
r2 – rμ

)
–
1

6
μ ∂
∂r

(
r2 – rμ

)
–
1

3

dμ

dt
+
r2

6
(r – μ)

In all of these μ and σ are evaluated at r and T.
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From the Taylor series expression for F we find that the ytm for
short times to maturity is given by

–
ln (F(r, t,T))

T – t
∼ –a +

(
1

2
a2 – b

)
(T – t) +

(
ab – c –

1

3
a3
)
(T – t)2 + . . .

The yield curve takes the value –a(r) = r at maturity, obviously. The
slope of the yield curve is

1/2 a
2 – –b = 1/2μ,

That is, one half of the risk-neutral drift. The curvature of the yield
curve at the short end is proportional to

ab – c – 1/3a3.

which contains a term that is the derivative of the risk-neutral drifts
with respect to time via c. Let’s stress the key points of this analysis.
The slope of the yield curve at the short end depends on the risk-
neutral drift, and vice versa. The curvature of the yield curve at the
short end depends on the time derivative of the risk-neutral drift, and
vice versa. If we choose time-dependent parameters within the risk-
adjusted drift rate such that the market prices are fitted at time t* then
we have

F
(
r∗, t∗, T

)
= FM

(
t∗, T

)

which is one equation for the time-dependent parameters.
Thus, for Ho and Lee, for example, the value of the function

θ(t) at the short t = t∗, depends on the slope of the market yield
curve. Moreover, the slope of θ∗(t) depends on the curvature of the
yield curve at the short end. Results such as these are typical for all
fitted models. These, seemingly harmless, results are actually quite
profound.

It is common for the slope of the yield curve to be quite large and
positive, the difference between very short and not quite so short rates
is large. But then for longer maturities typically the yield curve flattens
out. This means that the yield curve has a large negative curvature. If
one performs the fitting procedure as outlined here for the Ho and Lee
or extended Vasicek models, one typically finds the following
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• The value of θ∗(t) at t = t∗ is very large. This is because the yield-
curve slope at the short end is often large;

• The slope of θ∗(t) at t = t∗ is large and negative. This is because the
curvature of the yield curve is often large and negative.

If we plot θ∗(t) versus t today and we come back in a few months to
look at how our fitted parameter is doing, we would not find that we
have moved forward on the original curve. The recalibrated function
looks nothing like the function a few months earlier. In fact, we don’t
even have to wait for a few months for the deviation to be significant;
it becomes apparent in weeks or even days.

We can conclude from this that yield-curve fitting is an inconsistent
and dangerous business. The results presented here are by no means
restricted to the models we have named; no one-factor model will
capture the suspected behaviour.

15.1.5 The BDT Model

The Black-Derman-Toy (1990) one-factor model is one of the most used
yield-based models to price bonds and interest-rate options. In 1991
Black and Karasinski generalized this model. The model is arbitrage-
free and thus consistent with the observed term structure of interest
rates. The short-rate volatility is potentially time dependent, and the
continuous process of the short-term interest rate is given by

d ln (r(t)) =

{
θ(t) +

σ̇ (t)

σ (t)
ln (r(t))

}
dt + σ (t)dV

where the factor in front of ln(r) is the speed of mean reversion
(“gravity”), and θ(t) divided by the speed of mean reversion is a
time-dependent mean-reversion level.

The model assumes that the market in which the model is estab-
lished is perfect

• Changes in all bond yields are perfectly correlated.

• Expected returns on all securities over one period are equal.
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• Short rates at any time are lognormal distributed thus are positive
for all times.

The model can be derived from a continuous short-rate process:

r(t) = u(t)eσ (t)z(t)

If we take the logarithm, we get

ln r(t) = ln u(t) + σ (t)z(t)

and differentiate

d ln r(t) =
d ln u(t)

dt
dt + σ (t) · dz(t) + dσ (t)

dt
z(t).

Since z(t) can be expressed as

z(t) =
1

σ (t)
(ln r(t) + ln u(t))

we have

d ln r(t) =

(
d ln u(t)

dt
+

1

σ (t)

dσ (t)

dt
[ln r(t) – ln u(t)]

)
dt + σ (t) · dz(t).

With some simplifications we have

d ln (r(t)) =

{
θ(t) +

σ̇ (t)

σ (t)
ln (r(t))

}
dt + σ (t)dV

For constant volatility, the BDT model does not display any mean re-
version. In this case the process reduces to a lognormal version of the
Ho-Lee model.

The short rate evolves by diffusion with a drift that follows the log-
arithm of the median. If the volatility is decaying, the reversion speed
will be positive and the logarithm of the short rate will reverse to
ln[u(t)].
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This means that the short rates will not assume implausibly large
values over long time horizons, which is along the lines of market
observations. However, care must be taken to ensure that the model is
viable.

The BDT model incorporates as we see, two independent functions
of time, θ(t) and σ (t), chosen so that the model fits the term structure
of spot interest rates and the term structure of spot rate volatilities.
The changes in the short rate are lognormal distributed, with the res-
ulting advantage that interest rates cannot become negative. Once θ(t)
and σ (t) are chosen, the future short-rate volatility, by definition, is en-
tirely determined. An unfortunate consequence of the model is that
for certain specifications of the volatility function σ (t) the short rate
can be mean-fleeing rather than mean-reverting. The model has the
advantage that the volatility unit is a percentage, conforming to the
market convention. Unfortunately, due to its lognormality, neither ana-
lytic solutions for the prices of bonds or the prices of bond options are
available, and numerical procedures are required to derive the short-
rate tree that correctly returns the market term structures. Remark
that this model does not have an ATS since the volatility term is pro-
portional to the level of the short rate. Many practitioners choose to fit
the rate structure only, holding the future short-rate volatility constant.
The convergent limit therefore reduces to the following

d ln (r) = θ(t)dt + σ (t)dV

This process can be seen as a lognormal version of Ho-Lee.
The following example shows how to calibrate the BDT bino-

mial tree to the current term structure of zero-coupon yields and
zero-coupon volatilities.

15.1.5.1 A Simple Binomial Tree-Model

The best way to illustrate a simple tree-model is via an example.
We start by looking for the value of an American call option on a

five-year zero-coupon bond with time to expiration of four years and
a strike price of 85.50. The term structure of zero-coupon rates and
volatilities is shown in Table 15.1. From the rates and volatilities, we
will calibrate the BDT interest rate tree. To price the option by using
backward induction, we build a tree for the bond prices, as shown in.
(Fig. 15.12)
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Table 15.1 Market data

Input to BDT Model

Years of maturity Zero-coupon rates (%) Zero-coupon volatilities

1 9 24
2 9.5 22
3 10 20
4 10.5 18
5 11 16

Fig. 15.12 The bond prices I BDT

To build the price tree, we have to build the rate tree as in Fig. 15.13.
We start by finding the prices of the zero-coupon bonds with ma-

turity from one year to five years in the future. The face values are
100 (% of the nominal amount), the zero-coupon rates are given in the
previous table.

100

1 + 0.09
= 91.74

100

(1 + 0.095)2
= 83.40

100

(1 + 0.10)3
= 75.13

100

(1 + 0.105)4
= 67.07
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Fig. 15.13 The interest rate tree in BDT

and

100

(1 + 0.11)5
= 59.35

Then we add this to our data. In a different situation, we might know
from the beginning, these prices from data or by bootstrapping of
coupon-bonds.

This gives us the one-period price tree as in Fig. 15.14.
The next step is to build a two-period price tree. From Table 15.2,
it is clear that the price today of a two-year zero-coupon bond with
maturity of two years from today must be 83.40. To find the second-
year bond prices at year one, we need to know the short rates at step
one as in Fig. 15.15.

Fig. 15.14 A one-period tree



408 J.R.M. Röman

Table 15.2 Data by bootstrapping

Years of maturity Zero-coupon rates (%) Zero-coupon volatilities Zero-bond prices

1 9 24 91.74
2 9.5 22 83.4
3 10 20 75.13
4 10.5 18 67.07
5 11 16 59.35

Fig. 15.15 How to find the rates in period one

Appealing to risk-neutral valuation, the following relationship
must hold

0.5 · 100
1+rd

+ 0.5 · 100
1+ru

1 + 0.09
= 83.40

In a standard binomial tree, we have

u = eσ
√
�t, d = e–σ

√
�t

u

d
= e2σ

√
�t ⇒ ln

(u
d

)
= 2σ

√
�t

σ =
1

2
√
�t

ln
(u
d

)

and ⎧⎪⎪⎨
⎪⎪⎩
Su =

100

1 + ru

Sd =
100

1 + rd
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where �t in the previous situation is one year. Similarly, in the
BDT tree, the rates are assumed to be lognormally distributed. This
implies that

σn =
1

2
√
�t

ln

(
ru
rd

)
= 0.5 · ln

(
ru
rd

)
= 0.22

As we did in the OAS model earlier, we define the volatility factor
Zn by

Zn = e2σn
√
�t

We are left with two equations in two unknowns, ru and rd. We
know that ru = rdZn = rde0.44, which leads to the following quadratic
equation

0.5 · 100
1+rd

+ 0.5 · 100
1+rd·e0.44

1 + 0.09
= 83.40

This gives a second order polynomial equation that can be solved and
we get the following rates at step one

rd = 7.87%, ru = 12.22%.

Using these solutions, it is now possible to calculate the bond prices
that correspond to these rates. The two-step tree of prices then
becomes as in Fig. 15.16.

The next step is to fill in the two-period rate tree, see Fig. 15.17.
Last time, there were two unknown rates, and two sources of

information:

Fig. 15.16 The price-tree in period two



410 J.R.M. Röman

Fig. 15.17 The interest rate in period two

1. Zero-coupon rates.

2. The volatility of the zero-coupon rates.

This time, we have three unknown rates, but still only two sources
of information. To get around this problem, remember that the BDT
model is built on the following assumptions:

• Rates are lognormal distributed.

• The volatility is only dependent on time, not on the level of the
short rates. There is thus only one level of volatility at the same
time step in the rate tree.

Hence, the “steps” between the rates is given by

Z3 = e2σ3
√
�t = e2·0.20 = e0.40

that is,

ruu
rud

=
rud
rdd

= Z3

So we are left with only two unknowns. Based on the risk-neutral
valuation principle, the following relationships must hold

Suu =
100

1 + ruu
=

100

1 + rdd · Z2
3

, Sud =
100

1 + rud
=

100

1 + rdd · Z3 ,

Sdd =
100

1 + rdd
Su =

0.5 · Suu + 0.5 · Sud
1 + 0.1222

,

Sd =
0.5 · Sud + 0.5 · Sdd

1 + 0.0787
, 75.13 =

0.5 · Su + 0.5 · Sd
1 + 0.09
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If the bond only has two years left to maturity, the bond yield or rate
of return must satisfy

75.13 =
0.5 ·

0.5· 100
1+rdd ·Z23

+0.5· 100
1+rdd ·Z3

1+0.1222 + 0.5 · 0.5· 100
1+rdd ·Z3 +0.5·

100
1+rdd

1+0.0787

1 + 0.09

By solving this equation, we get rdd. By multiplying with Z2 we then
also get rud and ruu:

rdd = 7.47%, rud = 10.76%, ruu = 15.50%.

As the bond yields must be approximately lognormal distributed, it
also follows that

0.5 · ln
(
yu
yd

)
= 0.20

yu
yd

= e0.40

Then, yu can be expressed as

yu =
yu
yd
yd = e0.40

(√
100

Sd
– 1

)

and Su can be expressed in terms of Sd as

Su =
100[

1 + e0.40
(√

100
Sd

– 1
)]2

This equation must be solved by a numerical model as Newton-
Raphson. The solution is

{
Su = 78.81

Sd = 84.98
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Fig. 15.18 The four-year short-rate tree

giving

⎧⎪⎨
⎪⎩
rdd = 7.47%

rud = 10.76%

rdd = 15.50%

This gives the missing information in the two-period rate tree. The
consecutive time steps can be computed by forward induction, as in-
troduced by Jamshidan (1991), or more easily with the Bjerksund and
Stensland (1996) analytical approximation of the short-rate interest-
rate tree. Finally, we get the four-year short-rate tree as in Fig. 15.18.

From the short-rate tree, we can calculate the short-rate volatilities
by using the relationship

σn =
1

2
√
�t

ln

(
ru
rd

)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ0 = 24.00%
σ1 = 22.00%
σ2 = 18.24%
σ3 = 14.61%
σ4 = 14.66%

The four-year rate tree supplies input to the solution to the five-year
price tree, Fig. 15.19.
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Fig. 15.19 The price tree at five year

Fig. 15.20 The price tree of an American option

The value of the American call option with strike 85.50 and time to
expiration of four years can now easily be found by standard backward
induction. It follows as in (Fig. 15.20)

Cj,i = max

{
Sj,i – 85.50,

(
0.5 · Cj+1,i+1 + 0.5 · Cj+1,i

)
i + rj,i

}

The price of the American call option on the five-year bond is
thus 2.18.

15.1.5.2 Binomial Interest Trees with Forward Inductions

To solve the tree mentioned previously, more effectively we will in-
troduce forward inductions. But first we will recall the backward
induction. When we refer to nodes in a binomial model we will use
the following index notation as shown in Fig. 15.21.
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Fig. 15.21 The index notation of the nodes in the BDT model

Let the unit time be divided into M periods of length Δt = 1/M each.
At each period n, corresponding to time t = n/M = nΔt, there are n + 1
states. These states range from i = –n, –n+2, . . . , n–2, n. At the present
period n = 0, there is a single state i = 0. see the Fig. 15.21. Let r(n, i)
denote the annualized one-period rate at period n and state i. Denote
the discount factor at period n and state i by

p(n, i) =
1

[1 + r(n, i)]�t

The aforementioned tree is a discrete time representation of the
stochastic process for the short rate, where we have used previous
equation to express the discount. The probability for an up or down
move in the three is chosen to be 1/2.

The attraction of the binomial lattice model lies in the fact that,
once the one period discount factors p(n, i) are determined, securities
are evaluated easily by backward induction. For example, let C(n, i)
denote the price of a security at period n and state i. This price is
obtained from its prices at the up and down nodes in the next period
by the backward equation. (Fig. 15.22)

C (n, i) = 1/2 p (n, i) [C (n + 1, i + 1) + C (n + 1, i – 1)]

This iteration is continued backward all the way to period n = 0. The
price of the security today is given by C(0, 0).



15 Term-Structure Models 415

Fig. 15.22 The relation of the node index

Fig. 15.23 The solution of zero-coupon prices (discount factors)

Suppose we were given the market data in Table 15.3 where the
zero-coupon prices are calculated from the ytm:

Table 15.3 Market data

Maturity: m Zero-Coupon Price: P(0,m) YTM(m) Yield Volatility
(years) (Paying $1 in m years) (%) σterm(m) (%)

1 0.9091 10.0 20
2 0.8116 11.0 19
3 0.7118 12.0 18
4 0.6243 12.5 17
5 0.5428 13.0 16

We want to find the discount factors that assure matching between
the model’s term structure and the market term structure. First we
present the solution, see Fig. 15.23.

The discount factors in the tree were found by using forward induc-
tion, a method first introduced by Jamshidan. Forward induction is
an efficient tool in the generation of yield-curve binomial trees. It is an
application of the binomial formulation of the Fokker-Planck forward
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equation. The forward induction method will be described for the gen-
eral class of Brownian-Path Independent interest models that includes
the BDT model.

Brownian Path-Independent Interest Models

An interest rate model is referred to as Brownian Path Independent
(BPI) if there is a function r(z(t), t) such that r(t) = r(z(t), t), where z(t)
is the Brownian motion. The instantaneous interest rate and hence the
entire yield curve depends, at any time t, on the level z(t) but not on
the prior history z(s), s < t of the Brownian motion. Two BPI families
are of major interest:

Normal BPI r(t) = UN(t) + σN(t)z(t)

Lognormal BPI r(t) = UL(t)eσL(t)z(t)

Where σN(t) and σL(t) represent, respectively the absolute and the per-
centage volatility of the short-rate r(t). UN(t) is the mean and UL(t) the
median of r(t).

The advantages with the lognormal BPI are as we have mentioned
the positive interest rates and natural unit of volatility in percentage
form, consistent with the way volatility is quoted in the market place.
However, unlike the normal BPI, the lognormal BPI does not provide a
closed form solution. It is possible to fit the yield curve by trial and er-
ror but this is inefficient. In fact, the total computational time needed
to calculate all the discount factors of a tree with N periods is pro-
portional to N3. Since N should be at least 100, too many iterations
are needed. Forward induction efficiently solves the yield-curve fitting
problems, but before describing the procedure a discrete version of
the BPI models is necessary.

In most literature, the BDT model is presented with all time periods
equal to one. We will here present the most general model where the
time-steps and the cash flows can vary over time. Then we can handle
all kind of time structures, amortizing instruments etc.
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Consider again the previously mentioned tree. Define the variable
Xk as

Xk =
k∑
j=1

yj

where yj = 1 if an up move occurs at period k and yj = –1 if a down
move occurs at period k.

The variable Xk gives the state of the short rate at period k. At
any period k, the Xk has a binomial distribution with mean zero and
variance k. Now, let us investigate the mean and variance of Xk

√
�t

⎧⎪⎨
⎪⎩
E
[
Xk

√
�t
]
=

√
�tE [Xk] = 0

Var
[
Xk

√
�t
]
= �tVar [Xk] = k�t = 1

It follows that Xk
√
�t has the same mean and variance as the Brownian

motion z(t). Since the normal distribution is a limit of binomial distri-
butions, and the binomial process Xk has independent increments, the
binomial process Xk

√
�t converges to the Brownian motion z(t) as �t

approaches zero.
The state of the short rate was denoted by i. Replacing Xk by i will

lead to having z(t) approximated as i
√
�t. Now, replacing t by m (with

m = t/�t) gives the discrete version of the normal and lognormal BPI
families.

Normal BPI r(m, i) = UN(m) + σN(m)i
√
�t

Lognormal BPI r(m, i) = UL(m)eσL(m)i
√
�t

Where i = –m, –m + 2, . . . ,m – 2, m.

Green Functions and the Forward Induction Method

For a node (m, j) a pure-state security s(m, j) is a short-rate security
expiring at t = m which pays $1 at (m, j) and 0 elsewhere. The Green
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Fig. 15.24 How to build the BDT tree

function G(m, 0) is the time-zero value of s(m, 0). For example, G(2, 0)
is the value at t = 0 of s(2, 0).

We build the tree using the nodes as in Fig. 15.24.

Example 15.1.1
A European short-rate security paying $1 at (2, 0) and 0 elsewhere is given by

G(2, 0) =
1

2
p(0, 0)

[
1

2
p(1, 1) +

1

2
p(1, –1)

]

where p(m, j) is the one-period discount factor

p(m, j) = exp {–r(m, j)�t}

continuously compounded or

p(m, j) =
1

(1 + r(m, j))�t

compounded with use of the simple rate. The nodes are given as in Fig. 15.25.
If we put in the numbers from the following example, we see

G(2, 0) =
1

2
· 0.909091 ·

[
1

2
· 0.8747 + 1

2
· 0.9108

]
= 0.4058

G(2, 2) =
1

2
· 0.909091 · 1

2
· 0.8747 = 0.1988

G(2, –2) =
1

2
· 0.909091 · 1

2
· 0.9108 = 0.2070
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Fig. 15.25 The node indices

Where, for example,

G(2, 2) =
1

2
· G(1, 1) · p(1, 1) = 1

2

{
1

2
G(0, 0) · p(0, 0)

}
p(1, 1)

=
1

2

{
1

2
· 1 · 0.909091

}
p(1, 1)

and

G(2, 0) =
1

2
· (G(1, –1) · p(1, –1) + G(1, 1) · p(1, 1))

=
1

2
·
(
1

2
G(0, 0) · p(0, 0) · p(1, –1) + 1

2
G(0, 0) · p(0, 0) · p(1, 1)

)

=
1

2
·
(
1

2
· 1 · 0.90901 · p(1, –1) + 1

2
· 1 · 0.90901 · p(1, 1)

)

When we number the nodes in the tree as shown earlier, we have the
value of the discount bond at (0, 0) as

p(0, 0) =
1

[1 + r(0, 0)]t0

So we define the discount factors as

P(m) =
1

[1 + r(m)]tm

These are known since we know the spot rate r(m) ≡ r(tm). The simply
compounded forward rate is defined as

f (t,T , T +�t) =
1

�t

(
p(t,T)

p(t,T +�t)
– 1

)

Later, we will use simple rate compounding only, since this is the most
common in the fixed income theory.
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We can compute G(m, j) with forward induction

G(m+1, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2

[
p(m, j – 1)G(m, j – 1) + p(m, j + 1)G(m, j + 1)

] |j| ≤ m – 1

1

2
p(m, j – 1)G(m, j – 1) j = m + 1

1

2
p(m, j + 1)G(m, j + 1) j = –m – 1

The initial condition is given by G(0, 0) = 1.
Note that an arbitrary short-rate security expiring at t = m, with

a payoff p(m, j) can be considered as a combination of pure-state
securities.

In discrete-time finance, the Green function is known as Arrow-
Debreu prices where it represents prices of primitive securities. Let
G(n, i,m, j) denote the price at period n and state i of a security that
has a cash flow of unity at period m (m ≥ n) and state j. Note that
G(m, j,m, j) = 1 and that G(m, i,m, j) = 0 for i �= j. In most cases we
ignore the first two arguments and say that G(m, j) = 1 if we reach the
node (m, j) and zero else.

By intuitive reasoning, the previous forward induction function
states how we discount a cash flow of unity for receiving it one period
later. This is simply the dual of the backward binomial equation. Note
that when j = ±m, there is only one node (at the bottom or at the top),
which gives a modified expression for these two cases.

The term structure p(0, m), which represent the price today of a
bond that pays unity at period m, can be obtained for all values of m,
by the maximum smoothness criterion (see next section).

Arrow-Debreu prices are the building blocks of all securities. The
price of a zero-coupon bond that matures at period m + 1 can be ex-
pressed in terms of the Arrow-Debreu prices and the discount factors
in period m.

p(0,m + 1) =
∑
j

G(0, 0,m, j)p(m, j)

In most cases we simply write this equation as

p(m + 1) =
∑
j

G(m, j)p(m, j)
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The term structure can be fitted to any BPI models using forward
induction. First, assume that σ (m) = σ is a given constant. The prob-
lem is then to solve U(m) to match the given discount function p(m, j)
where

p(m, j) =
1

(1 + r(m, j))�t(m)
=

1(
1 + U(m) exp

(
σ (m)j

√
�t(m)

))�t(m)

Constant Short-Rate Volatility

First, we let the short-rate volatility be a constant, σ (m) = σ . Let m > 0
and assume that U(m–1), G(m–1, j), r(m–1, j) and p(m–1, j) have been
found. The values at the initial time m = 0 are U(0) = r(0, 0),G(0, 0) = 1
and p(0, 0) = 1/[1 + r(0, 0)]Δt(0).

Step 1: Generate the Green functions:

G(m+1, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2

[
p(m, j – 1)G(m, j – 1) + p(m, j + 1)G(m, j + 1)

] |j| ≤ m – 1

1

2
p(m, j – 1)G(m, j – 1) j = m + 1

1

2
p(m, j + 1)G(m, j + 1) j = –m – 1

or

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

[
G(m, j – 1)[

1 + U(m) exp
(
σ (m)(j – 1)

√
�t(m)

)]�t(m)

+
G(m, j + 1)[

1 + U(m) exp
(
σ (m)(j + 1)

√
�t(m)

)]�t(m)

]

1

2

G(m, j – 1)[
1 + U(m) exp

(
σ (m)(j – 1)

√
�t(m)

)]�t(m)

1

2

G(m, j + 1)[
1 + U(m) exp

(
σ (m)(j + 1)

√
�t(m)

)]�t(m)
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or ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

[
G(m, j – 1)[

1 + r(m, j – 1)
]�t(m)

+
G(m, j + 1)[

1 + r(m, j + 1)
]�t(m)

]

1

2

G(m, j – 1)[
1 + r(m, j – 1)

]�t(m)

1

2

G(m, j + 1)[
1 + r(m, j + 1)

]�t(m)

Step 2: Use p(0,m + 1) to solve U(m) via:

p(0,m + 1) =
∑
j

G(m, j)
1[

1 + U(m) exp
(
σ j

√
�t(m)

)]�t(m)

Step 3: From U(m) calculate the short rate, and update the discount
factors, for all nodes at time m:

r(m, j) = U(m)eσ j
√
�t(m)

p(m, j) =
1[

1 + r(m, j)
]�t(m)

For the solution in step 2, we use a Newton-Raphson method

xn+1m = xnm –
f (xnm)

f ′(xnm)

We can easily do this since we have the derivatives. The procedure
converges rapidly with three to four iterations.

Let U(m) = xm be the unknown. Then

f (xm) =
∑
j

G(m, j)
1(

1 + xm · eσ j√�t(m)
)�t(m)

– p(m + 1) = 0

The derivatives are given by

f ′(xm) = –
∑
j

G(m, j)
eσ j

√
�t(m)

[
1 + xm · eσ j√�t(m)

]�t(m)+1
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Example 15.1.2
From the following given data, where we have calculated p from r:

p(i) =
1

(1 + r(i))ti

r(0, 0) ≡ r(1) = 0.100 => p(0, 0) ≡ p(1) = 0.909091

r(0, 1) ≡ r(2) = 0.110 => p(0, 1) ≡ p(2) = 0.811622

r(0, 2) ≡ r(3) = 0.120 => p(0, 2) ≡ p(3) = 0.711780

r(0, 3) ≡ r(4) = 0.125 => p(0, 3) ≡ p(4) = 0.624295

r(0, 4) ≡ r(5) = 0.130 => p(0, 4) ≡ p(5) = 0.542760

and σ = 19%, we calculate (with U(0) = r(0, 0), G(0, 0) = 1.0)

Step 1: Calculate the Green functions at time 1:

G(1, –1) = 0.5 · G(0, 0) · p(0, 0) = 0.5 · 1.0 · 0.9091 = 0.4545

G(1, 1) = 0.5 · G(0, 0) · p(0, 0) = 0.5 · 1.0 · 0.9091 = 0.4545

Step 2: Use p(0, 1), G(1, –1) and G(1, 1) to solve U(1) via.

G (1, –1)

[1 + r (1, –1)]�t(1)
+

G (1, 1)

[1 + r (1, 1)]�t(1)
= p(0, 1)ă

giving

0.4545

{
1

1 + U(1) · e0.19 +
1

1 + U(1) · e–0.19
}
= 0.811622

The result is U(1) = 0.1184.

Step 3: From U(1) calculate the short rate, and the discount factors at time 1:

r(1, –1) = 0.1184.e–0.19 = 9.7915 % => p(1, –1) = 0.9108

r(1, 1) = 0.1184.e0.19 = 14.3180 % => p(1, 1) = 0.8747

Step 1: Calculate the Green functions at time 2:

G(2, –2) = 0.5 · G(1, –1) · p(1, –1) = 0.5 · 0.4545 · 0.9108 = 0.2070

G(2, 2) = 0.5 · G(1, 1) · p(1, 1) = 0.5 · 0.4545 · 0.8747 = 0.1988

G(2, 0) = 0.5 · (G(1, –1) · p(1, –1) + G(1, 1) · p(1, 1))
= 0.5 · (0.4545 · 0.9108 + 0.4545 · 0.8747)) = 0.4058

Step 2: Use p(0, 2), G(2, –2), G(2, 0) and G(2, 2) to solve U(2) = 0.1374.

Step 3: From U(2) calculate the short rate, and the discount factors at time 2:

p(2, –2) = 0.9125 r(2, –2) = 9.5862%
p(2, 0) = 0.8792 r(2, 0) = 13.7401%
p(2, 2) = 0.8355 r(2, 2) = 19.6941%
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Step 1: Calculate the Green functions at time 3:

G(3, –3) = 0.5 · G(2, –2) · p(2, –2) = 0.5 · 0.2070 · 0.9125 = 0.0944

G(3, 3) = 0.5 · G(2, 2) · p(2, 2) = 0.5 · 0.1988 · 0.8355 = 0.0830

G(3, –1) = 0.5 · (G(2, –2) · p(2, –2) + G(2, 0) · p(2, 0))
= 0.5 · (0.2070 · 0.9125 + 0.4058 · 0.8792) = 0.2728

G(3, 1) = 0.5 · (G(2, 0) · p(2, 0) + G(2, 2) · p(2, 2))
= 0.5(0.4058 · 0.8792 + 0.1988 · 0.8355) = 0.2614

Step 2: Use p(0, 3), G(3, j) to solve U(3) = 0.137156.

Step 3: From U(3) calculate the short rate, and the discount factors at time 3:

p(3, –3) = 0.9239 r(3, –3) = 8.2361 %
p(3, –1) = 0.8963 r(3, –1) = 11.5713 %
p(3, 1) = 0.8602 r(3, 1) = 16.2571 %
p(3, 3) = 0.8141 r(3, 3) = 22.8404 %

etc.

In C/C + +, a tree calibrated to yield can be written as

/* ---------------------------------------------------------------
Build a Black-Derman-Toy tree calibrated to the interest rate
Input: yc - a vector with short interest rates at the nodes

to build the tree
vol - a vector with short IR volatilities at the nodes

to build the tree
N - the number of nodes in the vectors
dt - the time intervals between the nodes

Output: d - the discount tree
r - the tree of forward rates

i = 0 -> i < N
j = -i -> j <= i(j+=2

r[i][N+j], d[i][N+j]
----------------------------------------------------------------*/

double buildBDT(double *yc, double *vol, int N, double *dt,
double **d, double **r)

{
double **Q; // State securities = 1 if (i,j) is reached, 0 if not
double *U; // Median of the (lognormal) distribution for r at

// time t
double *P; // Bond prices

const double epsilon = 0.000001; // Error in N-R iterations
const int maxit = 20; // Max number of iterations
int iter;
double error, sum1, sum2, guess, Guess, Time, Disk, Gamma, Disk2;
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U = (double *)calloc(N + 2, sizeof(double));
P = (double *)calloc(N + 2, sizeof(double));
Q = (double **)calloc(2*N + 1, sizeof(double));

for (int i = 0; i < 2*N + 1; i++)
Q[i] = (double *)calloc(2*N + 1, sizeof(double));

Time = 0.0;

// Discount factors per time-node
for (int j = 0; j < N; j++) {

Time += dt[j];
P[j+1] = 1.0/pow(1.0 + yc[j], Time);

}

// initlize first node
Time = 0.0;
Q[0][N] = 1.0;
U[0] = yc[0];
r[0][N] = U[0];
d[0][N] = 1.0/pow(1.0 + r[0][N], dt[0]);

// evolve the tree for the short rate
for(int i = 1; i < N; i++){

//update pure security prices at time i
Q[i][N-i] = 0.5*Q[i-1][N-i+1]*d[i-1][N-i+1];
Q[i][N+i] = 0.5*Q[i-1][N+i-1]*d[i-1][N+i-1];

for (int j = -i+2; j <= i-2; j += 2)
Q[i][N+j] = 0.5*Q[i-1][N+j-1]*d[i-1][N+j-1]

+ 0.5*Q[i-1][N+j+1]*d[i-1][N+j+1];

// Use Ralph-Newton method to solve the mean rate, U[i]
guess=r[0][N];
iter=0;

do {
sum1 = 0; sum2 = 0;

for (int j = -i; j <= i; j += 2) {
Gamma = exp(vol[i]*j*sqrt(dt[i])); //Volatility factor
Disk = pow(1.0+guess*Gamma,dt[i]); //Discount factor
Disk2 = pow(Disk,dt[i]+1.0);
sum1 += Q[i][N+j]/Disk; //Should sum up to P[i+1]
sum2 += Q[i][N+j]*Gamma*dt[i]/Disk2; //Derivative

}
Guess = guess + (sum1 - P[i+1])/sum2;
error = fabs(Guess - guess);
guess = Guess;
iter++;

if (iter > maxit) {
printf("===========WARNING!NOSOLUTION==============\n");
break;

}
}
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while(error > epsilon);

U[i] = guess;
// set r[.] and d[.]
for (int j = -i; j <= i; j+ =2 ) {
r[i][N+j] = U[i]*exp(vol[i]*j*sqrt(dt[i]));
d[i][N+j] = 1/pow(1 + r[i][N+j], dt[i]);

}
}
return0.0;

}

Fitting Interest Rate Yield and Volatility Data

Next consider the case matching both the yield and volatility curves
in BPI models of the same general form. This requires solving jointly
for U(m) and σ (m). Let PU(1,m) and PD(1,m) represent the prices at
period n = 1 states of m-maturity zero-coupon bonds, see Fig. 15.26.

Here, to get the present value of the cash flow at t0, we use r(0, 0)
to discount to time t = 0. We also define the steps in time: �t1 is the
step from t0 to t1, so �t1 is the step from t = 0 to t1. In the figure
we have used the short-rate formula for the BDT model. Note that
an up move of the short rate differs from a down move by a factor
exp(2σ (m)

√
�t(m)).

Fig. 15.26 The BDT tree
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Therefore we have

yU(m)

yD(m)
= e2σterm(m)

√
�t(m)

Pu and Pd are given by

PU(m) =
1[

1 + yU(m)
]tm–�tm

and

PD(m) =
1[

1 + yD(m)
]tm–�tm

A second equation is found by discounting back to the origin

P(m) =
1

2
[PU(m) + PD(m)] p(0, 0)

If we introduce

Tm = tm –�tm

and

�(m) = e–2σterm(m)
√
�t(m)

we have
1

PD(m)Tm
– 1 =

(
1

PU(m)Tm
– 1

)
· �(m)

giving

PD(m) =
(
1 – �(m) + �(m)PU(m)

–1/Tm
)–Tm

We then have two equations to solve simultaneously:⎧⎪⎨
⎪⎩
PD(m) =

(
1 – �(m) + �(m)PU(m)–1/Tm

)–Tm
PU(m) +

(
1 – �(m) + �(m)PU(m)–1/Tm

)–Tm = 2
P(m)

p(0, 0)

We first solve PU(m) via Newton-Raphson and then calculate PD(m).
Forward induction is then used to determine the time-dependent

functions that ensure consistency with the initial yield-curve data.
However, state prices are now determined from the nodes U and D
requiring the following notation:
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GU(m, j): the value, as seen from node U, of a security that pays off
$1 if node (m, j) is reached and zero otherwise.

GD(m, j): the value, as seen from node D, of a security that pays off
$1 if node (m, j) is reached and zero otherwise.

By definition GU(1, 1) = 1 and GD(1, –1) = 1. The tree is construc-
ted from time �t onward using a procedure similar to the previous
section. Now we have two equations{

PU(m + 1) =
∑

GU(m, j)p(m, j)

PD(m + 1) =
∑

GD(m, j)p(m, j)

where j = –m, –m + 2, . . . ,m – 2,m and

p(m, j) =
1[

1 + U(m)eσ (m)j
√
�t(m)

]�t(m)

The term structure of zero-coupon bonds P(m) and the yield volatility
term-structure σterm(m) are known. PU(m) and PD(m) can be found for
all periods m by using the equation for the term structure of volatility
in conjunction with the Arrow-Debreu prices in a Newton-Raphson
iteration where we have two unknown U(m) and σ (m) to solve simul-
taneously. This can easily be done since, as we will see, the Jacobian is
known.

The full set of steps to build the tree is therefore the following.
Assume m > 0 and that U(m – 1), σ (m – 1), GU(m – 1, j), GD(m – 1, j)
and r(m–1, j) are known for all j at time step m–1. The values at initial
time are U(0) = r(0, 0), σ (0) = σterm(1), GU(1, 1) = 1, GD(1, –1) = 1
and r(m – 1, j) giving p(0, 0) = 1/(1 + r(0, 0))�t(0).

Step 1: Derive PU(m) and PD(m) for m = 2 to N.

PD(m) =
(
1 – exp

(
–2
√
�t(m)σterm(m)

)

+ exp
(
–2
√
�t(m)σterm(m)

)
PU(m)

–1/(tm–�tm)
)–(tm–�tm)

PU(m) is found as the solution to

PU(m) +

(
1 – exp

(
–2

√
�t(m)σterm(m)

)
+

exp
(
–2

√
�t(m)σterm(m)

)
PU(m)–1/(tm–�tm)

)–(tm–�tm)

– 2
P(m)

p(0, 0)
= 0 m ≥ 2
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The derivative used in Newton-Raphson is given

1 + exp
(
–2
√
�t(m)σterm(m)

)
· PU(m)

–1/(tm–�tm)–1·(
1 – exp

(
–2
√
�t(m)σterm(m)

)

+ exp
(
–2
√
�t(m)σterm(m)

)
PU(m)

–1/(tm–�tm)
)–(tm–�tm)–1

Step 2: Generate GU(m, j), GD(m, j)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

GU(m, j)

=
1

2

[
p(m – 1, j – 1)GU (m – 1, j – 1) + p(m – 1, j + 1)GU (m – 1, j + 1)

]
GD(m, j)

=
1

2

[
p(m – 1, j – 1)GD (m – 1, j – 1) + p(m – 1, j + 1)GD (m – 1, j + 1)

]

Step 3: Using the derived discount functions PU(m+1) and PD(m+1),
solve U(m) and σ (m) from

{
PU(m + 1) =

∑
GU(m, j)p(m, j)

PD(m + 1) =
∑

GD(m, j)p(m, j)

where j = –m, –m + 2, . . . ,m – 2,m and

p(m, j) =
1(

1 + U(m)eσ (m)j
√
�t(m)

)�t(m)

Step 4: From the calculated values of U(m) and σ (m) calculate the
short rate, and one-period discount factors for all nodes j at time m

r(m, j) = U(m)eσ (m)j
√
�t(m)

p(m, j) =
1[

1 + r(m, j)
]�t(m)

The method of forward induction requires only n arithmetic opera-
tions to construct the discount factors at period n. The iterations are
made only on the nodes at the given period, not the whole way back
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to the root of the tree as in “trial and error”. In a tree with N peri-
ods, the computational time is proportional to the number of nodes
N2, which is of the same order as when closed formed solutions for
the discount factors are available.

The Newton-Raphson Method in 2 Dimensions

The Newton-Raphson method is a well-known numerical method to
solve roots to equations from numerical analysis. The iteration scheme
can be derived from a Maclaurin expansion of a given function f (x)

f (x + h) = f (x) + h · f ′(x) + h2

2!
f ′′(x) + . . .

To the lowest order we have f (x + h) = f (x) + h · f ′(x) where x + h is the
root we are trying to calculate. Let the root be xn+1. We can write an
iteration scheme as

0 = f (xn+1) = f (xn) + (xn+1 – xn)f
′(xn)

This gives the well-known formula

xn+1 = xn –
f (xn)

f ′(xn)
If we have to solve two equations simultaneously:{

f (x, y) = 0
g(x, y) = 0

We can write Newton-Raphson with vector notation:

xn+1 = xn –
f(xn)

f’(xn)

where xn = (xn, yn) and

f(xn) =

(
f (xn, yn)
g(xn, yn)

)

The derivative is called the Jacobian and is defined as

J(xn) = f’(xn) =

⎛
⎜⎜⎝
∂f (xn, yn)

∂xn

∂f (xn, yn)

∂yn
∂g(xn, yn)

∂xn

∂g(xn, yn)

∂yn

⎞
⎟⎟⎠
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Since we cannot divide by the Jacobian, we have to multiply with the
inverse Jacobian. Therefore, we remember how to invert a 2×2matrix
from the linear algebra

J =

(
a b
c d

)
⇒ J–1 =

1

det(J)

(
d –b
–c a

)
, det(J) = ad – bc

We then have the following system of equation to solve:

(
xn+1
yn+1

)
=

(
xn
yn

)
–
1

D

⎛
⎜⎜⎝
∂g(xn, yn)

∂yn
–
∂f (xn, yn

∂yn

–
∂g(xn, yn)

∂xn

∂f (xn, yn)

∂xn

⎞
⎟⎟⎠
(
f (xn, yn)
g(xn, yn)

)

where

D =

∣∣∣∣∣∣∣∣

∂f (xn, yn)

∂xn

∂f (xn, yn)

∂yn
∂g(xn, yn)

∂xn

∂g(xn, yn)

∂yn

∣∣∣∣∣∣∣∣
=
∂f (xn, yn)

∂xn

∂g(xn, yn)

∂yn
–
∂f (xn, yn)

∂yn

∂g(xn, yn)

∂xn

In the previous BTD model we have to solveU(m) and σ (m) from

{
PU(m + 1) =

∑
GU(m, j) p(m, j)

PD(m + 1) =
∑

GD(m, j) p(m, j)

where j = –m, –m + 2, . . . ,m – 2, m and

p(m, j) =
1(

1 + U(m)eσ (m)j
√
�t(m)

)�t(m)

That is, we have two equations

{
f (U, σ ) =

∑
GUp(U, σ ) – PU = 0

g(U, σ ) =
∑

GDp(U, σ ) – PD = 0
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with
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ′ U(U, σ ) =
∑

GU
∂pU(U, σ )

∂U

f ′ σ (U, σ ) =
∑

GU
∂pU(U, σ )

∂σ

g′
U(U, σ ) =

∑
GD

∂pD(U, σ )

∂U

g′
σ (U, σ ) =

∑
GD

∂pD(U, σ )

∂σ

f (xm) =
∑
j

G(m, j)
1(

1 + xm · eσ j√�t(m)
)�t(m)

– P(m + 1) = 0

The derivatives are given by

∂p(U, σ

∂U
= –

�t(m) · eσ (m)j
√
�t(m)

[
1 + U(m) · eσ (m)j√�t(m)

]�t(m)+1

and

∂p(U, σ

∂σ
= –

U(m) · j · �t(m) · √
�t(m) · eσ (m)j

√
�t(m)

[
1 + U(m) · eσ (m)j√�t(m)

]�t+1

Similar expressions yield for the derivatives of PD(U, σ ). Therefore, we
have the Jacobian and can use Newton-Raphson to build the tree.

Example 15.1.3
From the following data, where we now added volatility data:

p(0, 0) = 0.909091 r(0, 0) = 0.100 σ (1) = 0.150

p(0, 1) = 0.811622 r(0, 1) = 0.110 σ (2) = 0.140

p(0, 2) = 0.711780 r(0, 2) = 0.120 σ (3) = 0.130

p(0, 3) = 0.624295 r(0, 3) = 0.125 σ (4) = 0.120

p(0, 4) = 0.542760 r(0, 4) = 0.130 σ (5) = 0.110

and calculate (�t = 1):
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Step 1: Derive PU(m) and PD(m) for m = 2 to N.
Our target here is P(2) = p(0, 1) = 0.811622

exp
(
–2
√
�t(2)σ (2)

)
= 0.7557837

exp
(
–2
√
�t(3)σ (3)

)
= 0.7710515

exp
(
–2
√
�t(4)σ (4)

)
= 0.7866279

exp
(
–2
√
�t(5)σ (5)

)
= 0.8025188

And we calculate:

PU(2) = 0.879073

PD(2) = 0.906496

PU(3) = 0.759125

PD(3) = 0.806791

PU(4) = 0.657237

PD(4) = 0.716213

PU(5) = 0.564908

PD(5) = 0.629164

Since we have GU(1, 1) = 1, and GD(1, -1) = 1 we can calculate U(1) and σ (1) using
Newton-Raphson. The values are:

U(1) = 0.119119 and σ (1) = 0.143949

We also calculate r(1, –1), r(1, 1), p(1, –1) and p(1, 1) from

r(m, j) = U(m)eσ (m)j
√
�t(m)

and p(m, j) = 1
[1+r(m, j)]�t(m)

The values are:

r(1, –1) = 0.103149

p(1, –1) = 0.906496

r(1, 1) = 0.137561

p(1, 1) = 0.879073

Step 2: Generate the Green functions GU(2, 2), GU(2, 0), GD(2, 0) and GD(2, -2)

⎧⎪⎨
⎪⎩
GU(m, j) =

1

2
[p(m – 1, j – 1)GU(m – 1, j – 1) + p(m – 1, j + 1)GU(m – 1, j + 1)]

GD(m, j) =
1

2
[p(m – 1, j – 1)GD(m – 1, j – 1) + p(m – 1, j + 1)GD(m – 1, j + 1)]
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GU(2, 2) =
1

2
[p(1, 1)GU(1, 1)] =

1

2
[0.879073 · 1] = 0.439537

GU(2, 0) =
1

2
[p(1, 1)GU(1, 1)] =

1

2
[0.879073 · 1] = 0.439537

GD(2, 0) =
1

2
[p(1, –1)GU(1, –1)] =

1

2
[0.906496 · 1] = 0.453248

GD(2, –2) =
1

2
[p(1, –1)GD(1, –1)] =

1

2
[0.906496 · 1] = 0.453248

where we omit indices “out of range”.

Step 3: Using the derived discount functions PU(3) and PD(3) and the previous
Green functions to solve U(2) and σ (2)

U(2) = 0.138944, σ (2) = 0.123072

Step 4: From the calculated values of U(2) and σ (2) calculate the short rate, and
one-period discount factors for all nodes j at time m:

r(2, –2) = 0.108628

p(2, –2) = 0.902016

r(2, 0) = 0.138944

p(2, 0) = 0.878006

r(2, 2) = 0.177721

p(2, 2) = 0.849097

Step 2:Generate the Green functionsGU(3, 3),GU(3, 1),GU(3, –1),GD(3, 1),GD(3, –1)
and GD(3, –3) as shown earlier. The result is

GU(3, –1) = 0.192958

GU(3, 1) = 0.379563

GU(3, 3) = 0.186605

GD(3, 1) = 0.198977

GD(3, –1) = 0.403396

GD(3, –3) = 0.204418

Step 3: Using the derived discount functions PU(4) and PD(4) and the previous
Green functions to solve U(3) and σ (3):

U(3) = 0.139140, σ (3) = 0.102192
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Step 4: From the calculated values of U(2) and σ (2) calculate the short rate, and
one-period discount factors for all nodes j at time m:

r(3, –3) = 0.102402

p(3, –3) = 0.907110

r(3, –1) = 0.125624

p(3, –1) = 0.888396

r(3, 1) = 0.154111

p(3, 1) = 0.866468

r(3, 3) = 0.189059

p(3, 3) = 0.841001 etc.

The final interest rate tree is shown next.

In C/C++, a tree calibrated to yield and volatility can be written as:

/* ---------------------------------------------------------------
Build a Black-Derman-Toy tree calibrated to the interest rate
and volatility
Input: yc - a vector with short interest rates at the nodes

to build the tree
vc - a vector with short IR volatilities at the nodes

to build the tree
N - the number of nodes in the vectors
dt - the time intervals between the nodes

Output: d - the discount tree
r - the tree of forward rates

i = 0 -> i < N
j = -i -> j ≤ i (j+= 2
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r[i][N+j], d[i][N+j]
vol - avector with forward volatilities

--------------------------------------------------------------- */
double buildBDT2(double *yc, double *vc, int N, double *dt,

double **d, double **r,
double *vol)

{
double **Qu, **Qd; // State securities = 1 if (i,j) is reached, 0

// if not
double *U; // Median of the (lognormal) distribution for

// r at time t
double *P, *Pu, *Pd; // Bond prices

const double epsilon = 0.000001; // Error in N-R iterations
const int maxit = 20; // Max number of iterations
int iter;
double error, error1, f_Pd, f_Pu, df_PuU, df_PdU, df_PuS, df_PdS;
double Sigss, sigss, Disk, Disk2, Time = 0.0;
double D, T, guess, Guess, f_Der, Gamma, p00;

U = (double *)calloc(N + 2, sizeof(double));
P = (double *)calloc(N + 2, sizeof(double));
Pu = (double *)calloc(N + 2, sizeof(double));
Pd = (double *)calloc(N + 2, sizeof(double));
Qu = (double **)calloc(2*N + 1, sizeof(double));
Qd = (double **)calloc(2*N + 1, sizeof(double));

for (int i = 0; i < 2*N + 1; i++) {
Qu[i] = (double *)calloc(2*N + 1, sizeof(double));
Qd[i] = (double *)calloc(2*N + 1, sizeof(double));

}

Time = 0.0;

for (int j = 0; j < N; j++) {
Time += dt[j];
P[j+1] = 1.0/pow(1.0 + yc[j], Time);

}

//initialize nodes
U[0] = yc[0];
r[0][N] = yc[0];
d[0][N] = 1.0/pow(1.0 + r[0][N], dt[0]);
vol[0] = vc[0];
Qu[1][N+1] = 1; // N is used as "mid point" i.e., Qu[1][1]

// => Qu[1][N+1]
Qd[1][N-1] = 1; // and Qd[1][-11] => Qd[1][N-1] etc...
Time = dt[0]; // This is the first (time) node in the tree.
// compute Pu[.] and Pd[.]
for (int i = 1; i < N+1; i++) {

// solve the following for Pu[i]
T = Time; // Previous time
Time += dt[i]; //Now
error = 0; iter = 0; //Used to exit this loop
guess = U[0]; //Initial guess of Pu[i]
Gamma = exp(-2.0*vc[i-1]*sqrt(dt[i]));
p00 = 1.0/pow(1.0 + r[0][N], dt[0]);
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do {
f_Pu = guess + pow(1.0 - Gamma

+ Gamma*pow(guess, -1.0/T), -T) -2.0*P[i]/p00;
f_Der = 1.0 + Gamma*pow(guess, -1.0/T - 1.0)*

pow(1.0 - Gamma + Gamma*pow(guess, -1.0/T), -(1.0 + T));
Guess = guess - f_Pu/f_Der;
error = fabs(Guess - guess);
guess = Guess;
iter++;
if (iter > maxit) break;

}
while (error > epsilon);

Pu[i] = guess;
Pd[i] = 2.0*P[i]/p00 - Pu[i];

}

// Evolve tree for the short rate
for (int i = 1; i < N; i++) {

// Update pure security prices at time step i
Qu[1][N+1] = 1; // N is usedas "mid point" i.e., Qu[1][1]

//=> Qu[1][N+1]
Qd[1][N-1] = 1; //and Qd[1][-1] => Qd[1][N-1] etc...

if (i > 1) {
for (int j = -i+2; j ≤ i; j += 2) {

Qu[i][N+j] = 0.5*Qu[i-1][N+j-1]*d[i-1][N+j-1]
+ 0.5*Qu[i-1][N+j+1]*d[i-1][N+j+1];

}

for (int j = i-2; j ≥ -i; j -= 2) {
Qd[i][N+j] = 0.5*Qd[i-1][N+j-1]*d[i-1][N+j-1]

+ 0.5*Qd[i-1][N+j+1]*d[i-1][N+j+1];
}

}
// Solve simultaneously U[i] and sig[i] using a 2-dim. Newton
// initial guess
guess = U[i-1];
sigss = vc[i-1];
iter = 0;
do {

f_Pu = 0; f_Pd = 0; df_PuU = 0;
df_PdU = 0; df_PuS = 0; df_PdS = 0;

for (int j=-i+2; j ≤ i; j+=2) {
Gamma = exp(sigss*j*sqrt(dt[i]));

Disk = pow(1.0 + guess*Gamma, dt[i]);
Disk2 = pow(1.0 + guess*Gamma, dt[i] + 1.0);
f_Pu += Qu[i][N+j]/Disk;

df_PuU -= Qu[i][N+j]*Gamma*dt[i]/Disk2;
df_PuS -= Qu[i][N+j]*guess*j*dt[i]*sqrt(dt[i])*Gamma/Disk2;

}
f_Pu -= Pu[i+1];

for (int j=-i; j ≤ i-2; j+=2) {
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Gamma = exp(sigss*j*sqrt(dt[i]));
Disk = pow(1.0 + guess*Gamma, dt[i]);
Disk2 = pow(1.0 + guess*Gamma, dt[i] + 1.0);
f_Pd += Qd[i][N+j]/Disk;
df_PdU -= Qd[i][N+j]*Gamma*dt[i]/Disk2;
df_PdS -= Qd[i][N+j]*guess*j*dt[i]*sqrt(dt[i])*Gamma/Disk2;

}
f_Pd -= Pd[i+1];

D = df_PuU*df_PdS - df_PdU*df_PuS;
Guess = guess - (df_PdS*f_Pu - df_PuS*f_Pd)/D;
error = fabs(Guess - guess);
guess = Guess;

Sigss = sigss - (-df_PdU*f_Pu + df_PuU*f_Pd)/D;
error1 = fabs(Sigss - sigss);
sigss = Sigss;
iter++;
if (iter > maxit) }

printf("=========== WARNING! NO SOLUTION =============\n");
break;

}
} while ((error > epsilon) && (error1 > epsilon));
U[i] = guess;
vol[i] = sigss;

// set r[.] and d[.]
for (int j = -i; j ≤ i; j += 2) {

r[i][N+j] = U[i]*exp(vol[i]*j*sqrt(dt[i]));
d[i][N+j] = 1.0/pow(1.0 + r[i][N+j], dt[i]);

}
}
return 0.0;

}

15.1.6 The Black–Karasinski Model

The BK model is developed in a perfect market environment. It as-
sumes that the forward short rate developed by the model follows
a lognormal distribution where the instantaneous spot rate evolves
under the risk neutral measure, Q, according to the SDE

d ln (r(t)) = [θ(t) – a(t) · ln (r(t))] dt + σ (t) dV(t)

where θ(t), a(t) and σ (t) are deterministic functions of time and
r(0) = r0.
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We let the a(t) = a and σ (t) = σ thus leaving θ(t) being the only
parameter that changes in time. This allows us to use θ(t) to fit our
model perfectly to the current term structure. The other two paramet-
ers, a and σ , will be used to calibrate the model to vanilla instruments,
whose prices are observed in the market. The coefficient a can be
interpreted as the rate at which the model reverts to a long-term mean.

From Itô lemma, we obtain

d(r(t)) = r(t)

[
θ(t) +

σ 2

2
– a · ln (r(t))

]
dt + σ r(t) dV(t)

with the solution (s ≤ t)

r(t) = exp

⎧⎨
⎩ln (r(t)) · e–a(t–s) +

t∫
s

e–a(t–u)θ(u)du + σ

t∫
s

e–a(t–u)dV(u)

⎫⎬
⎭

The first moment of r(t), with respect to the filtration Fs, is given by,

E
[
r(t)|Fs

]
= exp

⎧⎨
⎩ln (r(t)) · e–a(t–s) +

t∫
s

e–a(t–u)θ(u)du +
σ 2

4a

[
1 – e–2a(t–s)

]⎫⎬
⎭

Let

α(t) = ln (r0) · e–at +
t∫

0

e–a(t–u)θ(u)du

The long-term mean of the short rate cannot be calculated analyt-
ically. A numerical procedure such as the trinomial lattice can be
implemented to derive a short-rate tree that matches the initial term
structure.

Given the short-rate dynamics of the model, we can write the short
rate as a function of time,

r(t) = eα(t)+x(t)

where the stochastic differential of the x process is given by,

dx(t) = –a · x(t)dt + σdV(t)

where x(0) = 0. We can integrate the SDE in order to obtain a formula
for the process x,
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x(t) = x(s) · e–a(t–s) + σ

t∫
s

e–a(t–u)dV(u) for each s < t.

We begin by implementing the trinomial tree for x by discretising the
time horizon, where �ti = ti+1 – ti for each i. The process for xwill
evolve according to the trinomial tree where xi;j = j�ti is the value of
the process at time ti for the j-th node. From this node, the process
can take on one of three values, xi+1;k+1, xi+1;k or xi+1;k–1, where xi+1;k
is the central node. The level of k is set such that xi+1;k is as close
as possible to Mi;j. The maximum and minimum number of nodes at
each time step, ti, is denoted by j and j respectively. j and j at time ti+1
can be determined by finding the values of k for the nodes xi,j and xi,j
respectively.

The values of the nodes at each time must be calculated in an iter-
ative manner, starting at the current time and working as far out into
future as desired.

Once the xprocess for the whole tree is generated, the tree needs to
be displaced in order for the model to match the current term struc-
ture. Since the BK model assumes that the instantaneous forward short
rate is lognormal distributed, the model is not analytical tractable. This
implies that one cannot solve αanalytically. In order to overcome this,
a numerical procedure must be used to generate the value of _ at each
time step. We denote Qi;j as the present value of an instrument paying
1 if node (i, j) is reached and 0 otherwise. Qi;j can be thought of as
the discrete analogue of the Arrow-Debreu security prices. We begin
by calculating the current value of α, α0. This is given by

α0 = ln

{
– ln

(
p(0, t1)

t1

)}

where p(0, t1) is the market discount factor for the maturity t1. Once
α0 is computed, Q1,j can be calculated for all jby,

Q1,j =
∑
h

Q0,hq(h, j) · exp{–�t0 · exp (α0 + h�x0)}

where q(h, j) is the probability of moving from node (i, h) to node (i +
1, j). Aftercalculating Q1,j for all j = j1, . . . , j1 we can calculate α1 by
matching it to the marketdiscount factor for the maturity t2. This can
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be calculated by numerically solvingthe equation,

φ(α1) = p(0, t2) –

j
1∑
j1

Q1,j · exp{– exp (α1 + j�x1)�t1} = 0

This can be solved using the Newton-Raphson. Thus, in general
we have,

Q1+1,j =
∑
h

Qi,hq(h, j) · exp{–�ti · exp (αi + h�xi)}

where αi is calculated numerically using

φ(αi) = p(0, ti+1) –

j
i∑
ji

Qi,j · exp {– exp (αi + j�xi)�ti} = 0

The first and the second derivative of φ(αi) is given by:

φ′(αi) =
j
i∑
ji

Qi,j · exp {– exp (αi + j�xi)�ti} exp (αi + j�xi)�ti

and

φ′′(αi) = φ′(αi) – φ′(αi) · exp (αi + j�xi)�ti

As we can see from the previous equation, αis time dependent and not
state dependent. Thus in order to obtain the value of the forward short
rate at each node (i, j), we take xi,j and calculate ri,j using the formula,

ri,j = eαi+xi,j

The BK model does not yield any analytical formulae to price a zero-
coupon bond or any European bond option. Therefore, the only way
to price interest rate derivatives, both vanilla and exotic, is through
numerical procedures such as a lattice approximation or Monte Carlo
simulation. However, by assuming that interest rates are lognormal dis-
tributed, it prevents the forward short rate from becoming negative.
These negative rates could skew the price of a derivative that is priced
using a normally distributed short-rate tree.
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15.1.7 Two-Factor Models

The previously defined one-factor models assume is that at every in-
stant, interest rates for all maturities are perfectly correlated with
each other. For example, a long interest rate, such as a three year
rate, is perfectly correlated with a short interest rate. The perfect
correlation between interest rates along a yield curve implies that
changes to the interest rate in the short end will be equally trans-
mitted along the yield curve to the long end. In order to incorporate
correlation between yields of different maturities, one can introduce
more factors to improve the description of the evolution of the
short rate.

A two-factor model will imply more precision in the modelling but
at a higher cost of implementation. A common assumption amongst
all multiple factor models is that the market must be complete; there
must be as many tradable assets in the market as there are sources of
uncertainty.

Brennan and Swartz model is an early (1982) and well-known
two-factor model that is mainly used when pricing options on bonds.
Instead of focusing solely on the short rate, this model incorporates the
longest and shortest maturity default-free instruments. Brennan and
Swartz goes on to assume that the two yields follow a Gaussian process
and that each yield is driven by its own source of uncertainty. This
model is believed to improve the precision of pricing derivatives that
depend on the behaviour of both a short and long-dated instrument.
For example, an option that allows one to swap a short-dated bond for
a long-dated bond. The processes are given by

dr = [a1 + b1(ρ – r)] dt + σ1rdz

dρ = ρ · [a2 + b2r + c2ρ] dt + σ2ρdw

where dwdz = αdt. σ1 and σ1 are the volatilities for the short-rate r and
the long rate ρ. α is the correlation between the two rates.

Longstaff and Schwartz used the general equilibrium framework of
Cox, Ingersoll and Ross with an extension by assuming two independ-
ent unspecified state variables which follow stochastic processes of
the form

dx = ax(bx – x)dt + σx
√
xdz

dy = ay(by – y)dt + σy
√
ydz
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Both factors assumes to affect the mean of the instantaneous rate
of return, but only the last factor is assumed to affect the variance.
Therefore, risk is only priced using the second factor. By using the
term-structure equation it is possible to determine the short-rate r and
its instantaneous variance V as part of the equilibrium

r = x + y
V = σ 2

x x + σ 2
y y

Now, it is possible to change variables and express the valuation
equation in terms of the new and observable variables r and V.

15.1.7.1 The Two-Factor HW Model

Hull andWhite proposed a two-factor model of a single term structure.
This model provides a more accurate estimation for the changes in the
term structure and volatility structure than their one-factor model. HW
validates the use of this two-factor model for volatility structures that
are humped in nature.

In the HW two-factor model, the risk-neutral process for the short
rate, r, is

df (r) =
[
θ (t) + u – af (r)

]
dt + σ1dz1

where u has an initial value of zero and follows the process

du = –budt + σ2dz2

The parameter θ(t) is a deterministic function of time. The stochastic
variable u is a component of the reversion level of rand itself reverts to
a level of zero at rate b. The parameters a, b, σ1, and σ2 are constants
and dz1 and dz2 are Wiener processes with instantaneous correlation ρ.

This model provides a richer pattern of term-structure movements
and a richer pattern of volatility structures than the one-factor model.
For example, when f (r) = r, a = 1, b = 0.1, σ1 = 0.01, σ2 = 0.0165 and
ρ = 0.6 the model exhibits, at all times, a “humped” volatility structure
similar to that observed in the market.

When f (r) = r the model is analytically tractable. The price at time t
of a zero-coupon bond that provides a payoff of 1 CU at time T is

P (t, T) = A(t, T) exp [–B (t, T) r – C (t, T) u]
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where

B (t, T) =
1

a

[
1 – e–a(T–t)

]

C (t, T) =
1

a (a – b)
e–a(T–t) –

1

b (a – b)
e–b(T–t) +

1

ab

and A (t, T)is as given in the following.
The prices, c and p, at time zero of European call and put options

on a zero-coupon bond are given by

c = LP (0, s)N (h) – KP (0, T)N
(
h – σp

)
p = KP (0, T)N

(
–h – σp

)
– LP (0, s)N (–h)

where T is the maturity of the option, s is the maturity of the bond, K
is the strike price and L is the bond’s principal

h =
1

σp
ln

LP (0, s)

P (0, T)K
+
σp

2

and σp is as given in the following.

The A(t, T), σp, and θ(t) Functions in the Two-Factor HW Model

In this part, we provide some of the analytic results for the two-factor
HW model when f (r) = r.

The A(t, T) function is

lnA(t, T) = ln
P(0, T)

P(0, t)
+ B(t, T)F(0, t) – η

where

η =
σ 2
1

4a
(1 – e–2at)B(t, T)2 – ρσ1σ2[B(0, t)C(0, t)B(t, T) + γ4 – γ2]

–
1

2
σ 2
2 [C(0, t)

2B(t, T) + γ6 – γ5]
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and

γ1 =
e–(a+b)T (e(a+b)t – 1)

(a + b)(a – b)
–
e–2aT (e2 at – 1)

2a(a – b)

γ2 =
1

ab
(γ1 + C(t, T) – C(0, T) +

1

2
B(t, T)2 –

1

2
B(0, T)2

+
t

a
–
e–a(T–t) – e–aT

a2
)

γ3 = –
e–(a+b)t – 1

(a – b)(a + b)
+

e–2at – 1

2a(a – b)

γ4 =
1

ab
(γ3 – C(0, t) –

1

2
B(0, t)2 +

t

a
+
e–at – 1

a2
)

γ5 =
1

b
[
1

2
C(t, T)2 –

1

2
C(0, T)2 + γ2]

γ6 =
1

b
[γ4 –

1

2
C(0, t)2]

where B(t, T) and C(t, T) functions are as we mentioned before and
F(t, T) is the instantaneous forward rate at time t for maturity T.

The volatility function, σp, is

σ 2
p =

t∫
0

{σ 2
1 [B(τ , T) – B(τ , t)]

2 + σ 2
2 [C(τ , T) – C(τ , t)]

2

+2ρσ1σ2[B(τ , T) – B(τ , t)][C(τ , T) – C(τ , t)]}dτ

This shows that σ 2
p has three components. Define

U =
1

a(a – b)
(e–aT – e–at)

V =
1

b(a – b)
(e–bT – e–bt)

The first component of σ 2
p is

σ 2
1

2a
B(t, T)2(1 – e–2at)
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the second

σ 2
2 (
U2

2a
(e2at – 1) +

V2

2b
(e2bt – 1) – 2

UV

a + b
(e(a+b)t – 1))

and the third
2ρσ1σ2

a
(e–at – e–aT )(

U

2a
(e2at – 1) –

V

a + b
(e(a+b)t – 1))

Finally, the θ(t) function is

θ(t) = Ft(0, t) + aF(0, t) + φt(0, t) + aφ(0, t)

where the subscript denotes a partial derivative and

φ(t, T) =
1

2
σ 2
1B(t, T)

2 +
1

2
σ 2
2C(t, T)

2 + ρσ1σ2B(t, T)C(t, T)

15.1.8 Three-Factor Models

In recent years, researches have come up with some yield-based term-
structure models which specify three factors driving the future from
the term structure. Such models are assumed to follow stochastic
processes which can take on different forms. For example

dr = κ(θ – r)dt +
√
Vdz

dθ = α(β – θ)dt + ηdw
dV = a(b – V)dt + φ

√
Vdy

where r is the short rate, θ denotes the long run mean of r and V the
variance of the short rate. This set of factors are designed to give the
term-structure evolution more flexibility in that it allows not only for
parallel shifts, but also for twists and not perfectly correlated bond
prices. This advantage comes at the price of higher computational
demands and theoretical sophistication.

15.1.9 Fitting Yield Curves with Maximum Smoothness

Single-factor term-structure models, such as HW, can be used to fit
yield curves and forward rate curves with maximum smoothness.
Such a method will generally match the observable yield-curve data
very well but between observable data points, yield-curve smoothing
technique is necessary. Kenneth J. Adams and Donald R. Van De-
venter provide an approach to yield-curve fitting by introducing the
“maximum smoothness criterion”.
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The objective is to fit observable points on the yield curve with the
function of time that produces the smoothest possible forward rate
curve. To do this, a technique from numerical analyses is used. The
smoothest possible forward rate curve on an interval (0, T) is defined
as one that minimizes the functional

Z =

T∫
0

[
f ′′(0, s)

]2
ds

subject to

exp

⎧⎨
⎩–

ti∫
0

f (0, s)ds

⎫⎬
⎭ = P(0, ti)i = 1, 2, . . . ,m

where P(0, ti) represent the observed prices of zero-coupon bonds
with maturities ti. Expressing the forward rate curve as a function of
a specified form with a finite number of parameters may approach
this problem. The maximum smoothness term structure can then be
found within this parametric family, that is, it will be smoother than
that given by any other mathematical expression of the same degree
and same functional form.

However, it would be more useful to determine the maximum
smoothness term structure within all possible functional forms. This is
possible due to the theorem provided by Oldrich Vasicek and stated in
an article by Adams and Van Deventer in The Journal of fixed income,
pp. 53–62. June 1994.

Theorem 15.1.8. The term-structure f (0, t), 0 ≤ t ≤ T of forward
rates that satisfies the previous equations is a fourth order spline
with the cubic term absent given by

f (0, t) = cit
4 + bit + ai ti–1 ≤ t < ti i = 1, 2, . . . ,m + 1

where the maturities satisfy 0 = t0 < t1 < . . . < tm+1 < T . The
coefficients ai, bi, ci, satisfy the equations
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cit
4
i + biti + ai = ci+1t

4
i + bi+1ti + ai+1

4cit
3
i + bi = 4ci+1t

3
i + bi+1

cm+1 = 0

1

5
ci
(
t5i – t

5
i–1

)
+
1

2
bi
(
t2i – t

2
i–1

)
+ ai(ti – ti–1) = – ln

{
P(0, ti)

P(0, ti–1)

}

For a proof of this theorem, we refer to the article written by Kenneth
J. Adams and Donald R. Van Deventer. It is seen that the theorem spe-
cifies 3m + 1 equations for the 3m + 3 unknown parameters ai, bi, ci,
i = 1, 2, ..,m + 1. The maximum smoothness solution is unique and can
be obtained analytically as follows.

The objective function is proportional to

Z =
m∑
i=1

c2i
(
t5i – t

5
i–1

)

according to the term-structure f (t). This function is quadratic in the
parameters while the previously mentioned four conditions are all lin-
ear in the parameters. We have an unconstrained quadratic problem of
the form

min xTDx

subject to

Ax = b

with the solution (
I - AT

(
AAT

) - 1
A

)
Dx = 0

Any two of these equations provide the remaining conditions on the
parameters ai, bi, ci. Two additional requirements may be stated

1. f ’(T) = 0 for the asymptotic behaviour of the term structure.

2. a0 = rwhich means that the instantaneous forward rate at time zero
is equal to an observable rate r.

If both of the additional requirements are used, no equation from the
previous equation is needed.
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Heath-Jarrow-Morton

16.1 The Heath-Jarrow-Morton (HJM) Framework

Up to this point we have studied interest models where the short-rate
r is the only explanatory variable. The main advantages with such
models are as follows.

1. Specifying r as the solution of an Stochastic Differential Equation
(SDE) allows us to use Markov process theory, so we may work
within a partial differential equation (PDE) framework.

2. In particular it is often possible to obtain analytical formulas for
bond prices and derivatives.

The main drawbacks of short-rate models are as follows.

1. From an economic point of view it seems unreasonable to assume
that the entire money market is governed by only one explanatory
variable.

2. It is hard to obtain a realistic volatility structure for the forward
rates without introducing a very complicated short-rate model.

3. As the short-rate model becomes more realistic, the inversion of the
yield curve described earlier becomes increasingly more difficult.

These, and other considerations, have led various authors to propose
models that use more than one state variable. One obvious idea would,
for example, be to present an a priori model for the short rate as well as
for some long rate, and one could of course also model one or several
intermediary interest rates. The method proposed by Heath-Jarrow-
Morton (HJM) is at the far end of this spectrum — they choose the
entire forward rate curve as their (infinite dimensional) state variable.
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We will now specify the HJM framework, and we start by specifying
everything under a given objective measure P.

Assumption: We assume that, for every fixed T > 0, the forward rate
f (t,T) has a stochastic differential which under the objective measure
P is given by {

df (t,T) = α(t,T)dt + σ (t,T)dWP(t,T),

f (0,T) = f ∗(0,T)
where WP is a (d-dimensional) P-Wiener process whereas α(t,T) and
σ (t,T) is adapted processes.

Note that conceptually this is one stochastic differential in the
t-variable for each fixed choice of T. The index T thus only serves
as a “mark” or “parameter” in order to indicate which maturity we are
looking at. Also note that we use the observed forward rated curve
{f ∗(0,T); T ≥ 0} as the initial condition. This will automatically give us
a perfect fit between observed and theoretical bond prices at t = 0,
thus relieving us of the task of inverting the yield curve.

It is important to observe that the HJM approach is not a proposal
for a specific model, like for example, the Vasicek model. It is instead a
framework to be used for analysing interest rates models. Every short-
rate model can be equivalently formulated in forward rate terms, and
for every forward rate model, the arbitrage-free price of a contingent
T -claim X will still be given by the pricing formula

� [0,X] = EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
0

r(s)ds

⎫⎬
⎭ .X

⎤
⎦

where the spot rate is as usual given by r(t) = f (t, t).
Suppose now that we have specified α, σ and {f ∗(0,T}; T ≥ 0}.

Then we have specified the entire forward rate structure and thus, by
the relation

p(t,T) = exp

⎧⎨
⎩–

T∫
t

f (t, s)ds

⎫⎬
⎭

we have in fact specified the entire term-structure {p(t,T); T > 0,
0 ≤ t ≤ T}. Since we have d sources of randomness (one for every
Wiener process), and an infinite number of traded assets (one bond
for each maturity T), we run a clear risk of having introduced arbitrage
possibilities into the bond market. The first question we pose is thus
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very natural: How must the processes α and σ be related in order that
the induced system of bond prices admits no-arbitrage possibilities?
The answer is given by the HJM drift condition that relates α to σ .

We start as usual with the assumptions that there exists a local risk-
free security with the price process B given by{

dB(t) = r(t)B(t)dt
B(0) = 1

where the spot rate is given by r(t) = f (t, t).
We also assume that an equivalent probability measure Q ∼ P such

as each ZT -process is a Q-martingale on [0,T], where the discounted
bond prices ZT is defined as

ZT (t) =
p(t,T)

B(t)

We also know that the dynamic of the forward rates imply the
following dynamic for the bond prices:

dp(t,T) = p(t,T) {r(t) + b(t,T)} dt + p(t,T)a(t,T)dW(t)

where

df (t,T) = α(t,T)dt + σ (t, T)dW(t)

and a(t,T) and b(t,T) are given by:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a(t,T) = –

T∫
t

σ (t, u)du

b(t,T) = –

T∫
t

α(t, u)du +
1

2
a(t,T)2

The dynamic of ZT is then given by:

dZ(t,T) = b(t,T)Z(t,T)dt + a(t,T)Z(t,T)dW(t)

Therefore we have to find out if there exists a Girsanov transformation
that for all T at the same time removes the drift.

dQ = L(T)dP on FT

where {
dL(t) = g(t)L(t)dW(t)

L(0) = 1
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for some process g(t). From Girsanov theorem we get

dW(t) = g(t)dt + dV(t)

where V is a Q-Wiener process. We then have

dZ(t,T) =
∂Z(t,T)

∂p(t,T)
dp(t,T) +

∂Z(t,T)

∂B(t)
dB(t) =

1

B(t)
dp(t,T) –

p(t,T)

B2(t)
dB(t)

= Z(t,T) {r(t) + b(t,T)} dt + Z(t,T)a(t,T)dW(t) – Z(t,T)r(t)dt

= b(t,T)Z(t,T)dt + a(t,T)Z(t,T)dW(t)

= {b(t,T) + g(t)a(t,T)}Z(t,T)dt + a(t,T)Z(t,T)dv(t)

We must have

g(t,T) = –
b(t,T)

a(t,T)

This Girsanov kernel, g(t,T), holds for a given T. Therefore a martin-
gale measure QT will be generated such as ZT becomes martingale.
Remark! This depends on our choice of T, so there is no guarantee that
QS for S �= T is QT -martingale. If there exists a Girsanov transformation
that make all ZT -processes martingale at the same time, then g(t,T)
must be independent of the choice of T.

Theorem 16.1. The following statements are equivalent

• There exists a measure QT that makes all ZT processes martin-
gales.

• For all T and S we have
b(t,T)

a(t,T)
=
b(t, S)

a(t, S)

for all t ≤ min(T , S).

• The Girsanov kernel g(t,T) is independent of T.

• For each S and T we have

α(t,T) = –σ (t,T)

⎧⎨
⎩g(t, S) –

T∫
t

σ (t, s)ds

⎫⎬
⎭

Proof: We only prove the last statement since the others are obvious.
We have

g(t, S) = –
b(t,T)

a(t,T)
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which in detail gives

g(t, S)a(t,T) = –b(t,T)

g(t, S)

T∫
t

σ (t, u)du = –

T∫
t

α(t, u)du +
1

2
a(t,T)2

g(t, S)

T∫
t

σ (t, s)ds = –

T∫
t

α(t, s)ds +
1

2

⎧⎨
⎩

T∫
t

σ (t, s)ds

⎫⎬
⎭

2

so

T∫
t

α(t, s)ds = –g(t, S)

T∫
t

σ (t, s)ds +
1

2

⎧⎨
⎩

T∫
t

σ (t, s)ds

⎫⎬
⎭

2

Take the derivative with respect to T and we are finished.

Theorem 16.2. If one of the previous statements holds, then the
market is free of arbitrage.

It is natural to call the function g(t,T), the market price of risk. We
remember that on a market free of arbitrage, the market price of risk
is the same for all securities.

Suppose one of the aforementioned statements hold. Then we can
define a unique measure Q that makes all discounted bond prices mar-
tingales. The question we ask us is, how does the forward process look
like under this measure? The answer is surprisingly simple.

Theorem 16.3. Let the forward dynamic under P be given by:

df (t,T) = α(t,T)dt + σ (t, T)dW(t)

Then, if any of the previous statements holds, the forward rates
under Q are given by

df (t,T) = α∗(t,T)dt + σ (t,T)dV(t)

where

α∗(t,T) = σ (t,T)

T∫
t

σ (t, s)ds
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Proof: After Girsanov transformation, the Q-dynamic is given by

df (t,T) = {α(t,T) + g(t)σ (t,T)} dt + σ (t,T)dV(t)

Using

α(t,T) = –σ (t,T)

⎧⎨
⎩g(t, S) –

T∫
t

σ (t, s)ds

⎫⎬
⎭

⇒

df (t,T) =

⎧⎨
⎩–σ (t,T)

⎧⎨
⎩g(t) –

T∫
t

σ (t, s)ds

⎫⎬
⎭ + g(t)σ (t,T)

⎫⎬
⎭ dt + σ (t, T)dV(t)

=

⎧⎨
⎩σ (t, T)

T∫
t

σ (t, s)ds

⎫⎬
⎭dt + σ (t, T)dV(t) = α∗(t,T)dt + σ (t, T)dV(t)

The result is a little bit surprising, since the Q-dynamic is completely
determined by the diffusion function σ (t, T). Therefore, if the process
σ (t,T) is deterministic, the forward rates are independent of the mar-
ket price of risk. This is also true in a more complex situation where
the forward rate solves a system of SDEs.

If we remember what we found when we went from df T to dpT and
if we use the super index * in the drift and diffusion under Q we have:

df (t,T) = α∗(t,T)dt + σ ∗(t,T)dV(t)
dp(t,T) = p(t,T)

{
r(t) + b∗(t, T)

}
dt + p(t,T)a

∗
(t,T)dW(t)⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a∗(t,T) = –

T∫
t

σ ∗(t, u)du

b∗(t,T) = –

T∫
t

α∗(t, u)du + 1

2
a∗(t,T)2

We know that a Girsanov transformation does not change the drift, so
we must have σ ∗(t,T) = σ (t,T). Then we know that under Q the yield
is given by the short rate. Therefore we must have b∗(t,T) = 0.



16 Heath-Jarrow-Morton 455

16.1.1 The HJM Program

To use the HJM framework we will use the following program:

1. Fix a filtrated probability space (�,F ,P,F ) and a Wiener pro-
cess V. The filtration is the natural, generated by V.

2. Specify the choice of volatility structure for the forward rates for
each T > 0, explicitly giving the process σ (t,T).

3. Define the drift of the forward rates by

α(t,T) = σ (t, T)

T∫
t

σ (t, s)ds

4. Observe on the market, the initial forward structure {f ∗(0,T);
T > 0}.

5. Integrate the forward rates with the equations

f (t,T) = f ∗(0,T) +
t∫

0

α(u,T)du +

t∫
0

σ (u,T)dV(u)

6. Calculate the bond prices as

p(t,T) = exp

⎧⎨
⎩–

T∫
t

f (t, u)du

⎫⎬
⎭

7. Calculate derivative prices based on p(t,T).

16.1.1.1 Ho-Lee Model

To see how this works, we use the simplest we can think of, a constant
volatility σ (t,T) = σ > 0. If we use the HJM equation

df (t,T) = α∗(t,T)dt + σ (t,T)dV(t)
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where

α∗(t,T) = σ (t,T)

T∫
t

σ (t, s)ds

We then get

df (t,T) =

⎛
⎝σ

T∫
t

σds

⎞
⎠ dt + σdV(t) = σ 2(T – t)dt + σdV(t)

We see that the drift is then given by: α(t,T) = σ 2(T – t). We then get

f (t,T) = f ∗(0,T)+
t∫

0

σ 2(T–u)du+

t∫
0

σdV(u) = f ∗(0,T)+σ 2t
(
T –

t

2

)
+σV(t)

We remember that a Wiener process at time t = 0 is zero: V(0) = 0.
We recognize these rates as the one we got from the Ho-Lee model.
Remark how easy we get them in the HJM framework. We also get the
bond prices

p(t,T) = exp

⎧⎨
⎩–

T∫
t

f ∗(0, u)du – σ 2Tt

2
(T – t) – σ (T – t)V(t)

⎫⎬
⎭

i.e.,

p(t,T) =
p∗(0,T)
p∗(0, t)

exp

{
–
σ 2Tt

2
(T – t) – σ (T – t)V(t)

}

16.1.2 Hull-White Model

If we use a Gaussian forward rates with volatility given by

σ (t,T) = σe–a(T–t)

We get

df (t,T) = α∗(t,T)dt + σ (t,T)dV(t)
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where

α∗(t,T) = σ (t,T)

T∫
t

σ (t, s)ds

Therefore

df (t,T) =

⎛
⎝σe–a(T–t)

T∫
t

σe–a(T–s)ds

⎞
⎠ dt + σe–a(T–t)dV(t)

=
σ 2

a

(
e–a(T–t) – e–2a(T–t)

)
dt + σe–a(T–t)dv(t)

Integrating with respect to t, we obtain

f (t,T) = f ∗(0,T)+ σ 2

2a2
(
1 – e–aT

)2
–
σ 2

2a2

(
1 – e–a(T–t)

)2
+σ

t∫
0

e–a(T–s)dV(s)

Introducing the notation

X(t) =

t∫
0

e–a(t–s)dV(s)

And using the fact that

t∫
0

e–a(T–s)dV(s) = e–a(T–t)X(t)

We obtain the following formulas for f (t,T) and r(t)

f (t,T) = f ∗(0,T) + σe–a(T–t)X(t) +
σ 2

2a2
(
1 – e–aT

)2
–
σ 2

2a2

(
1 – e–a(T–t)

)2

and

r(t) = f ∗(0, t) + σX(t) +
σ 2

2a2
(
1 – e–at

)2
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We recognize these rates as the Hull-White (extended Vasicek) model.
The formula shows that the forward rates and the instantaneous short
rate are linear functions of the same Gaussian process X(t), so we
observe a perfect correlation of the forward rates.

The asymptotical behaviour of the short rate is given by

r(t) = f (0, t) + σX(t) +
σ 2

2a2

which is a Gaussian random variable with mean

μ∞(t) = f (0, t) +
σ 2

2a2

and variance

σ 2∞ = σ 2E

⎡
⎢⎣
⎛
⎝

t∫
0

e–a(t–s)dV(s)

⎞
⎠

2
⎤
⎥⎦ = σ 2

t∫
0

e–2a(t–s)ds =
σ 2

2a

(
1 – e–2at

)

We see that the short-rate fluctuation have a non-trivial asymptotic
probability distribution. This fact is known as mean-reversion of the
spot rate and a is called the rate of mean reversion.

16.1.2.1 The General Situation

In a mode general situation we can let the volatility depend on the
forward rates and then solve a system of SDEs under Q. In more detail

1. Specify σ as function of three variables: t, T and f (t,T).

2. Solve {
df (t,T) = α(t,T)dt + σ (t,T , f (t,T)) dV(t)

f (0,T) = f ∗(0,T)

where

α(t,T) = σ (t,T , f (t,T))

T∫
t

σ (t, s, f (t, s))ds
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The question to ask at this point is under what condition on σ we can
solve the previous equations. The situation is complex since this is
infinite number of coupled equations where α(t,T) at time t not only
depends on the actual forward rates, f (t,T), but also all forward rates
f (t, s)with t ≤ s ≤ T. But more difficult is the problem with σ . If we do
not specify σ well enough, α which is quadratic in σ can explode and
give infinite forward rates. This gives bond prices of zero and possible
arbitrage situations. If σ is Lipschitz continuous in f (t, s), positive and
uniformed limited, then there exists a solution to the system for all
initial forward rates.

16.1.3 A Change of Perspective

The main result of the HJM approach consists in providing the exten-
sion of the Black and Scholes (1973) reasoning to the fixed income
sector using forward rates. This can be done as there exists a one-to-
one correspondence between instantaneous forward rates and bond
prices. Bonds are traded assets, so we can apply the procedure
of replacing the drift coefficient with the short rate under a risk-
neutral probability measure. Passing from spot rates to forward rates,
thus, allows us to incorporate directly arbitrage restrictions without
specifying in advance the market price of risk.

The noticeable fact is that the drift, determined by arbitrage argu-
ments, depends only on the volatility parameters, and this resembles
the Black and Scholes (1973) results. In this sense it can be said that
the HJM can be considered the true extension of their methodology to
the fixed income sector. Up to now it might seem that HJM comes in at
no cost, but this is not the case. Switching to forward rates and relying
only on volatility calibration, has two main drawbacks: first, under the
risk-free measure, the forward rates are biased estimators of the future
spot rates; second there may be cases in which the spot rate does not
follow a Markov process. This is a somewhat unpleasant feature of the
HJM approach because of the heavy computational difficulties arising
in non-Markovian contexts.

Jeffrey in a 1995 article derived general conditions on the volatility
structures in HJM under which markovness is still retained. To be more
specific, he provides necessary and sufficient conditions such that one
can determine which volatility structures are allowable in a Markovian
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spot interest rate context and the set of allowable initial term struc-
tures corresponding to a given volatility structure. We will not discuss
this here, because this is out of the scope at this point.

Mari (2003) has proposed a perturbative extension of a model for
Bond Prices within the affine class. This model is set up with the
property of consistency with arbitrary initial term structures. Affine
structures possess very interesting properties: first of all they are math-
ematically very tractable; as a consequence they allow for risk analysis
and estimation via closed-form solutions of PDE or via solutions of Or-
dinary Differential Equation (ODE) of the first order; moreover they
can be estimated using maximum likelihood techniques. In the model
it is assumed that the discount factor is a smooth function of the spot
rate and of maturity T.

Under the risk-neutral measure, the stochastic dynamics of the term
structure is given by

⎧⎨
⎩

dp(t,T , r(t))

p
= r(t)dt + σp (t,T , r (t)) dw∗(t)

p(0,T , r(0)) = p∗(0,T)

Mari (2003) proved that the model can be fitted consistently with arbit-
rary initial term structures and the implied spot rate follows a Markov
process if and only the following condition holds

σp(t,T , r(t)) =
√
h(t) + k(t)r(t)B(t,T)

with

B(t,T) = 2
C′(t) – A(t)

k(t)

⎡
⎢⎢⎢⎣

1

C(t)
–

1
T∫
t
A(u)du + C(t)

⎤
⎥⎥⎥⎦

and

A(t) =
1

2

{
C′(t) –

√
C′2(t) – 2k(t)C2(t)

}

where h(t), k(t) and C(t) are functions that can be arbitrarily chosen
which must satisfy the condition C’(t)2 ≥ 2k(t)C2(t). Under this
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condition Mari shows that the solution of the term structure is:

p(t,T , r(t)) =
p∗(0,T)
p∗(0, t)

exp

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f ∗(0, t)B(t,T) –
t∫

0

H(u)B(u,T)du+

1

2

t∫
0

σ 2(u,T , f ∗(0, t))B2(u,T)du

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
e–r(t)B(t,T)

where H(t) is the solution of the Volterra integral equation of the
first kind:

t∫
0

H(u)B(u,T)du = G(t)

with

g(t) = –
1

2

t∫
0

σ 2(u,T , f ∗(0, t))B2(u,T)du

and f ∗ as usual is the initial forward rate curve. As a corollary, Mari
proves that the dynamics of the spot rate is described by

dr(t) = {a(t) – b(t)r(t)} dt +
√
h(t) + k(t)r(t)dW(t)

where

⎧⎪⎪⎨
⎪⎪⎩
a(t) =

∂f ∗(0, t)
∂t

+ b(t)f ∗(0, t) – H(t)

b(t) =
∂B(t,T)

∂T2
|T=t

The innovation of the paper consists in the explicit determination of
the function a(t) which is the term accounting for the initial term
structure, and in bringing to the forefront the Volterra equation, as
a device to overcome the obstacle met by Hull and White (1992). In
the following, Mari goes on considering some applications.
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Gaussian Models, the CIR volatility structure and the generalized
CIR volatility structure, in which h(t) �= 0. The problem is that, in gen-
eral, Volterra equation does not admit closed-form solution, except for
simple case, as the Vasicek one. In fact for the extended Vasicek model,
this method gives the same solution of the Hull and White (1992). As
for the generalized CIR model, a perturbative solution of the Volterra
equation is proposed.



17
A New Measure – The Forward Measure

17.1 Forward Measures

In previous sections, we have used two probability measures: the
objective (real) probability measure P, and the “risk-neutral”
martingale measure Q. In this section we will introduce a whole
new class of probability measures, so-called forward measures, in-
cluding Q as a member of that class. These probability measures are
connected to a technique called change of numeraire. They are
of great importance both in the understanding and for practical cal-
culations since the amount of computational work needed in order
to obtain a pricing formula can be drastically reduced by a suitable
choice of numeraire. Especially the forward measures simplify the
calculations of prices on bond options.

To get some feeling for where we are heading, let us consider a
pricing problem. But first we remember that a martingale is a zero-
drift stochastic process. We will also in general think of measures as
units in which we value other securities. If we use the price of a traded
security as such a unit measure, then there is some market price of risk
for which all other security prices are martingales.

Suppose that p1(t,T) and p2(t,T) are prices of two traded securities
that depend on a single source of uncertainty. Define the relative price
of p1(t,T) with respect to p2(t,T) as

γ =
p1(t,T)

p2(t,T)

We refer p2(t,T) as the numeraire. The equivalent martingale meas-
ure states that, if there are no arbitrage opportunities, γ is martingale
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for some market price of risk. What is more, for a given numeraire
security p2(t, T), the same choice of the market price of risk makes γ
martingale for all securities p1(t,T). This choice of market price of risk
is the volatility of p2(t, T). We can state this as a theorem and we now
give a proof.

Proof: Suppose the volatilities of p1(t,T) and p2(t,T) are σ1 and σ2. In
general, when we introduce the market price of risk, λ we have:

dp = (r + λσ )pdt + σpdW

Therefore
{
dp1 = (r + σ1σ2)p1dt + σ1p1dW

dp2 = (r + σ 2
2 )p2dt + σ2p2dW

Using Itô’s lemma we get

d

(
p1
p2

)
=

∂

∂p1

(
p1
p2

)
dp1 +

∂

∂p2

(
p1
p2

)
dp2 +

1

2

∂2

∂p2

(
p1
p2

)
(dp2)

2

+
∂2

∂p1∂p2

(
p1
p2

)
dp1dp2

=
1

p2
{(r + σ1σ2)p1dt + σ1p1dW} –

p1
p22

{(r + σ 2
2 )p2dt + σ2p2dW}

+
1

2
2
p1
p32
σ 2
2 p

2
2dt –

1

p22
σ1σ2p1p2dt

=
p1
p2

{(r + σ1σ2)dt + σ1dW} –
p1
p2

{(r + σ 2
2 )dt + σ2dW}

=
p1
p2
σ 2
2 dt –

p1
p2
σ1σ2dt

+
p1
p2
σ1dW –

p1
p2
σ2dW +

p1
p2

(σ1 – σ2)dW

We then see that p1/p2 is martingale. We say that in a world where
the market price of risk is σ2 the world is forward risk neutral with
respect to p2. Therefore we call this measure (in terms of p2) as a
forward measure.

This very simple analysis shows that we can change to any nu-
meraire security, and use that as a forward measure where the market
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price of risk is the volatility of the numeraire security. Then in terms
of this security all processes become martingales.

We have used exactly this in option pricing on equities, where we
used B(t) as the numeraire security. Then we found that the discounted
stock price was martingale. If we remember the “rollover strategy” in
the bond pricing section, we called this themoney market account.

Because f /g, where f and g are any securities, is martingale in a
world that is forward risk neutral with respect to g, it follows that

f (t)

g(t)
= Eg

[
f (s)

g(s)

∣∣∣∣Ft

]

or

f (t) = g(t) · Eg
[
f (s)

g(s)

∣∣∣∣Ft

]

Let us now consider the pricing problem for a contingent claim X, in
a model with a stochastic short rate of interest r(t). From the general
theory we know that the price at t = 0 of X is given by the formula

�[0,X] = EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
0

r(s)ds

⎫⎬
⎭ · X

⎤
⎦

The problem with this formula from a computational point of view is
that, in order to compute the expected value we have to get hold of the
joint distribution (underQ) of the two stochastic variables (the integral
of r(s) and X) and finally integrate with respect to that distribution.
Thus we have to compute a double integral, and in most cases this
turns out to be rather hard work.

Let us nowmake the (extremely unrealistic) assumption that r and X
are independent under Q. Then the previously mentioned expectation
splits, and we have the formula

�[0,X] = EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
0

r(s)ds

⎫⎬
⎭
⎤
⎦EQ[X]

which we may write as

�[0,X] = p(0,T) · EQ[X]
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We now note that this is a much nicer formula since:

• We only have to compute the single integral EQ[X] instead of the
double integral.

• The bond price p(0,T) does not have to be computed theoretically
at all. We can observe it (at t = 0) directly on the bond market.

The drawback with the previous argument is that, in most concrete
cases, r and X are not independent under Q, and if X is a contingent
claim on an underlying bond, this is of course obvious. What may be
less obvious is that even if X is a claim on an underlying stock that is
P-independent of r, it will still be the case that X and r will be depend-
ent (generically) under Q. The reason is that under Q the stock will
have r as its local rate of return, thus introducing a Q-dependence.

This is the bad news. The good news is that there exists a general
pricing formula, a special case of which reads as

�[0,X] = p(0,T) · ET [X]

Here ET denotes expectation with respect to the so-called forward-
neutral measureQT , which we will discuss later. We see from this
formula that we do indeed have the multiplicative structure, but the
price we have to pay for generality is that the measure QT depends
upon the choice of maturity date T. We define, on the bond market,
the forward measure QT on FT as:

Definition 17.1 Let T be a fixed time. Then the forward measure
QT on FT is defined by

1dQT

dQ
=

exp

{
–

T∫
0
r(s)ds

}

EQ

[
exp

{
–

T∫
0
r(s)ds

}]

That is, the Radon-Nikodym derivative RT is given by

RT =
1

p(0,T)
exp

⎧⎨
⎩–

T∫
0

r(s)ds

⎫⎬
⎭
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It is very important to notice that we get different measures QT for
different choices of T.

We will now prove a stronger pricing formula:

Theorem 17.2. Let X be a given T-claim. Then the arbitrage-free
price of X is given by

�[t,X] = p(t,T) · ET [X|Ft]

where ET quote integrations with respect to QT .

Proof: If we use

ET [X|Ft] =
EQ
[
RTX|Ft

]
EQ
[
RT |Ft

]
We then have

EQ [RTX|Ft
]
=

1

p(0,T)
EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
0

r(s)ds

⎫⎬
⎭X|Ft

⎤
⎦

=
1

p(0,T)
exp

⎧⎨
⎩–

t∫
0

r(s)ds

⎫⎬
⎭EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
t

r(s)ds

⎫⎬
⎭X|Ft

⎤
⎦

=
�[t, x]

p(0,T)
exp

⎧⎨
⎩–

t∫
0

r(s)ds

⎫⎬
⎭

and

EQ [RT |Ft
]
=

1

p(0,T)
EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
0

r(s)ds

⎫⎬
⎭ |Ft

⎤
⎦

=
p(t,T)

p(0,T)
exp

⎧⎨
⎩–

t∫
0

r(s)ds

⎫⎬
⎭

These two give the result.
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Theorem 17.3. The likelihood process LT is given by:

LT =
p(t,T)

p(0,T)
exp

⎧⎨
⎩–

t∫
0

r(s)ds

⎫⎬
⎭ =

p(t,T)

p(0,T)B(t)

Proof: Since LT is QT martingale

LT (t)EQ [LT (t)|Ft
]
= EQ [RT |Ft

] p(t,T)
p(0,T)

exp

⎧⎨
⎩–

t∫
0

r(s)ds

⎫⎬
⎭ =

p(t,T)

p(0,T)B(t)

If we are using one-factor models where all uncertainty is generated
by the Q-Wiener process V, we know that all absolute continuous
transformations of measure are given by a Girsanov kernel. Especially,
there must exist a Girsanov transformation between Q and QT . We are
curious of how this Girsanov transformation looks like.

We know that the dynamic of a T -bond under Q is given by

dp(t,T) = r(t)p(t,T)dt + v(t,T)p(t,T)dV(t)

With Itô we get

dLT (t) =
∂LT

∂p
dp +

∂LT

∂B
dB =

1

p(0,T)B(t)
dp –

p(t,T)

p(0,T)B2(t)
dB

=
1

p(0,T)B(t)
{r(t)p(t,T)dt + v(t,T)p(t,T)dv(t)}

–
p(t,T)

p(0,T)B2(t)
r(t)B(t)dt

=
p(t,T)

p(0,T)B(t)
v(t,T)dV(t) = v(t, T)LT (t)dV(t)

Therefore we have proved the following result:

Theorem 17.4. For a given T, the Girsanov transformation from Q
to QT is given by a likelihood process given by:

dLT (t) = v(t, T) = LT (t)dV(t)
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The Girsanov kernel is given by the process ν(t, T) and the likelihood
process LT have the representation given by

LT (t) = exp

⎧⎨
⎩

t∫
0

v(s, T)dV(s) –
1

2

t∫
0

v2(s, T)ds

⎫⎬
⎭

Furthermore
dV(t) = v(t, T)dt + dWT (t)

where dWT(t) is a QT -Wiener process on the interval [0, T].

The forward measures have an important economical interpretation
as well. In the aforementioned discussion we have used a T -bond as
numeraire. But generally we can use any security as the numeraire
process.

In order to understand why formulas of this type have anything to
do with the choice of numeraire, let us give a very brief and informal
argument.

We start by recalling that the risk-neutral martingale measure Q has
the property that for every choice of a price process �(t) for a traded
asset, the quote

�(t)

B(t)

is a Q-martingale. The point here is that we have divided the asset
price �(t) by the numeraire asset price B(t). It is now natural to in-
vestigate whether this martingale property can be generalized to other
choices of numeraire, and we are led to the following conjecture:

Consider a fixed financial market, and a fixed “numeraire” asset
price process S0(t) on the market. Then there exists a probability
measure, denoted Q0, such that

�(t)

S0(t)

is a Q0-martingale for every asset price process �(t).
Let us for the moment assume that the conjecture is true. We then

fix a certain date of maturity T, and we choose the bond price pro-
cess p(t,T) (for this fixed T) as numeraire. According to the conjecture
there should then exist a probability measure, which we denote by
QT , such that the quotient

�(t)

p(t,T)
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is a martingale under the measure QT , for every�(t)which is the price
process of a traded asset. In particular we have (using the relation
p(T ,T) = 1)

�(0)

p(0,T)
= ET

[
�(T)

p(T ,T)

]
= ET [�(T)]

where ET denotes expectation under QT . Let us now choose the de-
rivative price process �(t,X) as �(t) in the previous equation. Then
we have �(T) = �(t,X) = X:

�(0,X)

p(0,T)
= ET [X]

⇒
�(0,X) = p(0,T) · ET [X]

An alternative is a try to construct a measure QT with p(t,T) as nu-
meraire that makes all prices to martingales. Especially this measure
should make

ZT (t)
B(t)

p(t,T)

to a martingale. If we use the dynamics of p(t,T) under Q:

dp(t,T) = r(t)p(t,T)dt + v(t,T)p(t,T)dV(t)

and use Itô’s formula on ZT

dZT (t) =
∂ZT

∂B
dB +

∂ZT

∂p
dp +

1

2

∂2ZT

∂p2
(dp)2

=
1

p(t,T)
dB –

B(t)

p2(t,T)
dp +

B(t)

p3(t,T)
(dp)2

=
B(t)

p(t,T)
rdt –

B(t)

p2(t,T)
(rp(t,T)dt + v(t,T)p(t,T)dV(t))

+
B(t)

p3(t,T)
v2(t,T)p2(t,T)dt

= ZT (t)rdt – ZT (t) (rdt + v(t, T)dV(t)) + ZT (t)v2(t,T)dt

= ZT (t)v2(t,T)dt – ZT (t)v(t,T)dV(t)
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If we now make a Girsanov transformation from Q to QT with the
kernel g(t) we get

dZT (t) = ZT (t)
{
v2(t, T) – g(t)v(t,T)

}
dt – ZT (t)v(t,T)dVT (t)

where VT is a QT -Wiener process. We see that ZT becomes a QT -
martingale if g(t) = ν(t, T). This Girsanov kernel is the same as the
one in the previous theorem. Thus QT makes all prices martingales
with p(t,T) as numeraire.

Theorem 17.5. If S is a process such as S(t)/B(t) is a Q-martingale.
Then, the process

ZT (t) =
S(t)

p(t,T)

is a QT -martingale on the interval [0,T].
Under QT , also

�(t,X)

p(t,T)

is a QT -martingale. By using p(T ,T) = 1 and �(T ,X) = X we get

�(t,X)

p(t,T)
= ET

[
�(T ,X)

p(T ,T)
|Ft

]
= ET [X|Ft

]

This is the forward price at time t for the contract X.

17.1.1 Forwards and Futures

Let us study a simple example where we need the forward measure,
to value a forward or a future contract on underlying equity.

We suppose there exists a martingale measure Q. If we buy a
T -contract today, at time t we know that the price is given by

πt[X] = EQ

⎡
⎣X · exp

⎧⎨
⎩–

T∫
t

r(s)ds

⎫⎬
⎭ |Ft

⎤
⎦
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The cash flows are:

1. At time t we pay the amount πt[X].

2. At time T we receive the stochastic amount X.

A forward and a future contract are variants of the aforementioned
contract, but they differ on how the cash flows are paid. We start with
the simplest, the forward contract.

Definition 17.2 Let X be a contingent T-claim. With a forward
contract on X contracted at time t, with the delivery at T and the
forward price φ(t, T,X) we mean the following construction:

(i) The holder of the forward contract receives at time T the
stochastic amount X cash units.

(ii) The holder of the forward contract pays at time T the amount
φ(t, T,X) cash units.

(iii) The forward price φ(t, T,X) is determined when we sign the
contract at time t.

(iv) The forward price is determined so that the arbitrage-free price at
the contract is equal zero when we sign the contract at time t.

The forward contract defined earlier are traded over-the-counter
(OTC) and not at exchanges. An important characteristic of the con-
tract is the value of zero when the contract is signed at time t. Our
problem is to find the mathematical price of the contract X of the
previous construction. This is quite obvious:

0 = πt[X – φ(t, T,X)] = EQ

⎡
⎣[X – φ(t, T,X)] · exp

⎧⎨
⎩–

T∫
t

r(s)ds

⎫⎬
⎭ |Ft

⎤
⎦

= EQ

⎡
⎣X · exp

⎧⎨
⎩–

T∫
t

r(s)ds

⎫⎬
⎭ |Ft

⎤
⎦

–φ(t, T,X) · EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
t

r(s)ds

⎫⎬
⎭ |Ft

⎤
⎦

= πt[X] – φ(t, T,X)p(t, T)
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where p(t, T) is the price at time t of a zero-coupon bond paying one
cash unit at maturity T. We can summarize this and write down the
price of the forward contract.

φ(t, T,X) =
πt[X]
p(t, T)

=
1

p(t, T)
· EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
t

r(s)ds

⎫⎬
⎭ |Ft

⎤
⎦

We write this as

φ(t, T,X) = ET[X|Ft]

where ET means integration with respect to the forward measure
QT.

The reason that this contract is not traded at exchanges is credit
risk (i.e. that the other party cannot fulfil the obligation). Therefore,
another contract, which can be traded, standardized on exchanges,
has been created. This is the future contract.

Definition 17.3 Let X be a contingent T-claim. With a future con-
tract on X contracted at time t, with the future price �(t, T,X) we
mean the following construction:

(i) For each time t there exists a price, �(t, T,X) called the future
price for X with delivery at T.

(ii) At time T the holder of the contract pays �(t, T,X) and receives
X cash units.

(iii) During each time interval (t, t + dt] the holder receives
�(t + dt,T,X) – �(t, T,X) cash units.

(iv) The market price at each time is equal to zero.

In practical situations, the time dt is one bank day but can also be a
week or a month. Step (iii) means that there are continuous cash flows
between the buyer and the seller of the contract. In such construction,
the credit risk is minimized to the change of the price during a period
of dt. The buyer and the seller also have to hold a margin requirement
on an account on the market place. This margin can be used to close
the contract at time T.

We can notice the following about the future contract.

1. �(T, T, X) = X so at time T there are no reason to deliver anything.
This is also true in real situations.
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2. A future contract is not a contract where you have to deliver any
security at T with a predefined price.

3. There are no costs to enter or leave a future contract.

4. The only part of the contract is the cash flows during the lifetime
calculated as the price difference during a period dt in time.

We will now give a mathematical definition of the future contract.

Definition 17.4 A future contract on a contingent T-claim X is a
security with an adapted price-and-dividend process [π ,�] given by
the following conditions:

�(t, T,X) = X,P – almost true
πt = 0 P – almost true,∀t � T

Theorem 17.9. The price of a future contract is given by

�(t,T ,X) = EQ[X|Ft]

If the short-rate r and X are independent, the price of the forward
and future contract coincide. That is,

�(t,T ,X) = φ(t,T ,X) = EQ[X|Ft]

17.1.2 A General Option Pricing Formula

As we have seen earlier, that for a forward measure QT “takes care
of the stochasticity” on the interval [0,T]. This can be seen in the
previous theorem that states the pricing formula:

�(t,X) = p(t,T) · ET [X|Ft]

We will now show how the calculations of prices of interest rate op-
tions can be simplified by using forward measures. But first we give
the following lemma:

Lemma 17.10 For a fixed T, then the forward rate process f (t,T) is
a QT -martingale. Especially, for all t � T we have:

ET [r(T)|Ft] = f (t,T)
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Proof: From the previous theorem we have

ET [r(T)|Ft] =
1

p(t,T)
EQ

⎡
⎣r(T) exp

⎧⎨
⎩–

T∫
t

r(s)ds

⎫⎬
⎭ |Ft

⎤
⎦

= –
1

p(t,T)
EQ

⎡
⎣ ∂

∂T
exp

⎧⎨
⎩–

T∫
t

r(s)ds

⎫⎬
⎭ |Ft

⎤
⎦

= –
1

p(t,T)

∂

∂T
EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
t

r(s)ds

⎫⎬
⎭ |Ft

⎤
⎦

= –
pT (t, T)

p(t,T)
= f (t,T)

To simplify the calculations of options, we suppose that the short-rate
r(t) under Q is given by

dr(t) = {a(t) + b(t)r(t)} dt + σ (t)dV(t)

Then we know

1. r(t) is a normal distributed process.

2. The bond prices have the form of
p(t,T) = exp {A(t,T) – B(t,T)r(t)}

3. The price of a European call option on a S-bond, with maturity T
and strike K is given by:

�(t,X) = EQ

⎡
⎣g {r(T)} exp

⎧⎨
⎩–

T∫
0

r(s)ds

⎫⎬
⎭ |Ft

⎤
⎦

X = g(r) = max (exp {A(T , S) – B(T , S)r(T)} – K, 0)

With the aforementioned theorem, the price of this contract can at
t = 0 be written as:

�(0,X) = p(0,T) · ET [g(r(T))]
This is a much simpler formula than before, since:

• We do not have to calculate p(0,T). This value is given on the
market!

• The expectation value is a simple integral instead of an double
integral.



476 J.R.M. Röman

To use the pricing formula, we have to find the distribution of r(T)
under QT . But this is a simple procedure.

Theorem 17.11. Suppose that the dynamics of r under Q is given by

dr(t) = {a(t) + b(t)r(t)} dt + σ (t)dV(t)

Then r(T) is normal distributed under QT with:

ET [r(T)] = f (0,T)

VarT [r(T)] = VarQ [r(T)] = ET

⎡
⎢⎣
⎛
⎝

T∫
0

σ (s) · exp
⎧⎨
⎩

T∫
s

b(τ )dτ

⎫⎬
⎭ dV(s)

⎞
⎠

2
⎤
⎥⎦

=

T∫
0

σ 2(s)e2H(T ,s)ds

where H is defined by

H(t,T) =

T∫
t

b(u)du

We show this by usung a integrating factor exp
{
–
∫ t
0 b(u)du

}
and

calculate

d

⎛
⎝exp

⎧⎨
⎩–

t∫
0

b(u)du

⎫⎬
⎭ r(t)

⎞
⎠ = r(t)

∂

∂t

⎛
⎝exp

⎧⎨
⎩–

t∫
0

b(u)du

⎫⎬
⎭
⎞
⎠ dt

+ exp

⎧⎨
⎩–

t∫
0

b(u)du

⎫⎬
⎭

∂

∂r
(r(t)) dr

The first term is calculated as

–b(t)r(t) ·
⎛
⎝exp

⎧⎨
⎩–

t∫
0

b(u)du

⎫⎬
⎭
⎞
⎠ dt

and the second as

exp

⎧⎨
⎩–

t∫
0

b(u)du

⎫⎬
⎭ [{a(t) + b(t)r(t)} dt + σ (t)dV(t)]
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We finally have

d

⎛
⎝exp

⎧⎨
⎩–

t∫
0

b(u)du

⎫⎬
⎭ r(t)

⎞
⎠ = exp

⎧⎨
⎩–

t∫
0

b(u)du

⎫⎬
⎭ [a(t)dt + σ (t)dV(t)]

With the definition of H(t, T) we can write this as

d
(
e–H(0,T)r(t)

)
= e–H(0,T) [a(t)dt + σ (t)dV(t)]

To calculate the variance of r(T) under QT , we first integrate the
process of r, giving

r(T) = r(0) exp

⎧⎨
⎩

T∫
0

b(u)du

⎫⎬
⎭ +

T∫
0

exp

⎧⎨
⎩

T∫
s

b(u)du

⎫⎬
⎭ a(s)ds

+

T∫
0

exp

⎧⎨
⎩

T∫
s

b(u)du

⎫⎬
⎭ σ (s)ds

or

r(T) = r(0)eH(0,T) +

T∫
0

eH(s,T)a(s)ds +

T∫
0

eH(s,T)σ (s)dV(s)

We know that from Section 13.1 that under Q

dp(t,T) = r(t)p(t,T)dt + ν(t,T)p(t,T)dV(t)

have the kernel g(t) = ν(t,T). If we change the measure to QT with
this Girsanov transformation and use the process for an affine term
structure

dp(t,T) = r(t)p(t,T)dt – σ (t, r(t))B(t,T)p(t,T)dV(t)

we get

ν(t,T) = –σ (t)B(t,T)
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where ν(t, T) is deterministic. After the Girsanov transformation
we have

r(T) = r(0)eH(0,T) +

T∫
0

eH(s,T) {a(s) + ν(s, T)} ds +

T∫
0

eH(s,T)σ (s)dWT (s)

We can sum up this in the following theorem.

Theorem 17.12. Suppose that the dynamics of r under Q is given by

dr(t) = {a(t) + b(t)r(t)} dt + σ (t)dV(t)

Then the price of a European call option is given by

�(t,X) = p(t,T)

∞∫
–∞

max (exp {A (T , S) – B(T , S)z} – K, 0)φ(z)dz

where φ is the density of a normal distribution with the expectation
value

m = ET [r(T)|Ft
]
= f (t,T)

and variance

v = varT [r(T)] =

T∫
t

e2H(T ,s)σ 2(s)ds

The price is given by

� [t,X] =
p(t,T)√
2πv

∞∫
–∞

g (r(T)) exp

{
–
(r(T) – m)2

2v2

}
dr

We remember from the end of lecture notes I that a general payoff for
a European call option is given by:

CT = max (S(T) – K, 0) = (S(T) – K) I{S(T)>K}

where I{S(T)>k} is an indicator function equal to 1, if S(T) > K and
0 else. We use S(t) as any underlying security. We then have the
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arbitrage-free price as

�(0,X) = EQ
[

1

B(T)
(S(T) – K) I{S(T)�K}

]

= EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
0

r(s)ds

⎫⎬
⎭ S(T)I{S(T)�K}

⎤
⎦

– K · EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
0

r(s)ds

⎫⎬
⎭ I{S(T)�K}

⎤
⎦

= A – B

The first expectation value is, if we use S(t) as numeraire, S(T)
discounted to a present value S(0)

A = EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
0

r(s)ds

⎫⎬
⎭ S(T)I{S(T)�K}

⎤
⎦ = S(0)ES [I{S(T)�K}

]

= S(0)QS (S(T) � K)

The second expectation value is, if we use p(t,T) as numeraire, the
price of a discount bond with maturity T

B = K.EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
0

r(s)ds

⎫⎬
⎭ I{S(T)�K}

⎤
⎦ = K · p(0,T)ET [I{S(T)�K}

]

= K · p(0,T)QT (S(T) � K)

Then we can write

�(0,X) = S(0)QS (S(T) � K) – K · p(0,T)QT (S(T) � K)

where QT denotes the T -forward measure and QS the martingale
measure for the numeraire process S(t).

In order to use this formula in real situation we have to be able
to calculate the previously mentioned probabilities. Before we do the
calculation we will repeat some parts discussed in earlier sections. We
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know that S(t)/B(t) is Q-martingale, where

B(t) = exp

⎧⎨
⎩

t∫
0

r(u)du

⎫⎬
⎭

Therefore

d

(
S(t)

B(t)

)
=
S(t)

B(t)
σ (t)dW(t).

The zero-coupon bond price is given by

p(t,T) = EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
t

r(u)du

⎫⎬
⎭ |Ft

⎤
⎦ = EQ

[
B(t)

B(T)
|Ft

]

so
p(t,T)

B(t)
= EQ

[
1

B(T)
|Ft

]

is also a martingale. The T -forward price F(t,T) of S is the price set at
time t for delivery of S at time T with payment at time T. The value of
the forward contract at t is zero, so

0 = EQ
[
B(t)

B(T)
{S(T) – F(t, T)} |Ft

]

= B(t)EQ
[
S(T)

B(T)
|Ft

]
– F(t,T)EQ

[
B(t)

B(T)
|Ft

]

= B(t)
S(t)

B(t)
– F(t, T)p(t,T) = S(t) – F(t,T)p(t,T)

Therefore,

F(t,T) =
S(t)

p(t,T)

Definition 17.5 Any asset in the model whose price is always strictly
positive can be taken as numeraire. We can denominate all other
assets in units of this numeraire.

Example 17.1.14
Money market account as numeraire. At time t, a stock S is worth S(t)/B(t) units of
money market and a T-bond is worth p(t,T)/B(t) units of money market.
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Example 17.1.15
Bond as numeraire. At time t < T, a stock S is worth F(t,T) units of a T-maturity
bond and the T-maturity bond is worth 1 unit.

Theorem 17.16. Let N be a numeraire, that is, the price process for
some asset whose price is always positive. Then QN defined by

QN(A) =
1

N(0)

∫
A

N(T)

B(T)
dQ, ∀A ∈ FT

is risk-neutral for N. QN is called the risk-neutral measure for the
numeraire N.
Note: Q and QN are equivalent, that is, they have the same probab-
ility zero set, and

Q(A) = N(0)
∫
A

B(T)

N(T)
dQN , ∀A ∈ FT

Proof: Because N is the price process of some asset, N/B(t) is
martingale under Q. Therefore

QN(�) =
1

N(0)

∫
�

N(T)

B(T)
dQ =

1

N(0)
EQ
[
N(T)

B(T)

]
=

1

N(0)

N(0)

B(0)
= 1

and we see that QN is a probability measure. Let Y be a traded as-
set price. Under Q, Y/B(t) is a martingale. We must show that under
QN ,Y/N is a martingale. Using

EQ [X] =
∫
�

XdQ =
∫
�

X
dQ

dP
dP = EP

[
dQ

dP
X

]

EQN
[
Y(T)

N(T)
|Ft

]
=

B(t)

N(t)
EQ
[
N(T)

B(T)

Y(T)

N(T)
|Ft

]
=

B(t)

N(t)
EQ
[
Y(T)

B(T)
|Ft

]

=
B(t)

N(t)

Y(t)

B(t)
=
Y(t)

N(t)

which is the martingale property for Y/N under the probability
measure QN .
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17.1.2.1 The Bond Price as Numeraire

Fix T ∈ [0,T] and let p(t,T) be the numeraire. The risk-neutral measure
for this numeraire is

QT (A) =
1

p(0,T)

∫
A

p(T ,T)

B,T
dQ =

1

p(0,T)

∫
A

1

B(T)
dQ, ∀A ∈ FT

Because the bond is not defined after the time T, we change measure
only “up to time T”, that is, using

1

p(0,T)

p(T ,T)

B(T)
and only forA ∈ FT

QT is called the T -forward measure. Denominated in units of the
T -maturity bond the value of the security S is

F(t,T) =
S(t)

p(t,T)
, 0 � t � T

This is a martingale under QT and has the differential form:

dF(t,T) = σF(t,T)F(t,T)dW
T (t), 0 � t � T

That is, a differential without a drift term dt. The process {WT ;
0 � t � T}is a Brownian motion under QT , and we may assume
without loss of generality that σF(t,T) � 0.
Remark: The numeraire p(t,T) is the price of the bond with matur-
ity, T. Therefore, different forward-neutral measures are not compat-
ible against each other’s. The value of $1 on maturity T cannot be
equal to another measure.

17.1.2.2 The Stock Price as Numeraire

Let S(t) be the numeraire. In terms of this numeraire, the stock price
is identical to 1. The risk-neutral measure under this numeraire is

QS(A) =
1

S(0)

∫
A

S(T)

B(T)
dQ, ∀A ∈ FT
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Denominated in shares of the stock, the value of the T -maturity
bond is:

p(t,T)

S(t)
=

1

F(t,T)
, 0 � t � T

This is a martingale under QS and so has the differential form:

d

(
1

F(t,T)

)
= γ (t,T)

(
1

F(t,T)

)
dWS(t)

Where {WS; 0 � t � T} is a Brownian motion under QS, and we may
assume without loss of generality that γ (t,T) � 0.

Theorem 17.17. The volatility γ (t,T) is equal to the volatility
σF(t,T). In other words we have

d

(
1

F(t,T)

)
= σF(t,T)

(
1

F(t, T)

)
dWS(t)

Proof: Let g(x) = 1/x, so g′(x) = –1/x2, g′′(x) = 2/x3. Then

d

(
1

F(t,T)

)
= dg (F(t,T)) = g′ (F(t,T)) dF(t,T) + 1

2
g′′ (F(t,T)) (dF(t,T))2

= –
1

F2(t,T)
σF(t,T)F(t,T)dW

T (t) +
1

F3(t,T)
σ 2
F(t,T)F

2(t,T)dt

=
1

F(t,T)

[
–σF(t,T)dW

T (t) + σ 2
F(t,T)dt

]

= σF(t,T)
1

F(t,T)

[
–dWT (t) + σF(t,T)dt

]

Under QT , –WT is a Brownian motion. Under this measure 1/F(t,T)
has volatility σF(t, T) and mean rate of return σ 2

F(t,T). The change of
measure from QT to QS makes 1/F(t,T) a martingale, that is, it changes
the mean return to zero, but the change in measure does not affect the
volatility. Therefore γ (t,T) must be σF(t,T) and WS must be

WS(t) = –WT (t)

t∫
0

σF(u,T)du



484 J.R.M. Röman

We now turn back to the general pricing formula for a call option

�(0,X) = S(0)QS (S(T)K � K) – K · p(0,T)QT (S(T) � K)

We assume that the process

Z(t) =
S(t)

p(t,T)

has a stochastic differential of the form

dZ(t) = Z(t)m(t)dt + Z(t)σ (t)dW

We start to compute the second term:

QT (S(T) � K) = QT
(

S(T)

p(T ,T)
� K

)
= QT (Z(T) � K)

Since Z is an asset price, normalized by the price of a T -bond, it has
zero drift under QT , so its QT -dynamics are given by

dZ(t) = Z(t)σ (t)dWT

The solution to this is given by (use Itô’s formula on ln(Z)):

d ln (Z(t)) =
∂

∂Z
ln (Z(t)) dZ(t) +

1

2

∂2

∂Z2
ln (Z(t)) (dZ(t))2

= –
1

2
σ 2(t)dt + σdWT

and we get

Z(T) =
S(0)

p(0,T)
exp

⎧⎨
⎩

T∫
0

σ (t)dWT (t) –
1

2

T∫
0

σ 2(t)dt

⎫⎬
⎭

=
S(0)

p(0,T)
exp

{
�(T) · WT –

1

2
�2(T)

}

We know from stochastic calculus that the previous stochastic integral
has a normal distribution with mean zero and variance

�2(T) =

T∫
0

σ 2(s)ds
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The entire exponent is thus normal distributed, and we can write the
probability as

QT (Z(T) � K) = QT
(

S(0)

p(0,T)
exp

{
� · WT –

1

2
�2(T)

}
� K

)

= QT
(
�(T) · WT –

1

2
�2(T) � ln

(
K · p(0,T)

S, (0)

))

= QT
(
�(T) · WT � ln

(
K · p(0,T)

S0

)
+
1

2
�2(T)

)

= QT
(
–WT � 1

�(T)

{
ln

(
S(0)

K · p(0,T)
)
–
1

2
�2(T)

})

= N [d2]

where

d2 =
ln
(

S(0)
K·p(0,T)

)
– 1

2�
2(T)

�(T)

The first probability in the option formula is a QS-probability, which
we write as

QS (S(T) � K) = QS
(
p(T ,T)

S(T)
� 1

K

)
= QS

(
Y(T) � 1

K

)

where we defined Y(t) as

Y(t) =
p(t,T)

S(t)
=

1

Z(t)
=
p(0,T)

S(0)
exp

{
�(T) · WS –

1

2
�2(T)

}

Therefore

QS (S(T) � K)

= QS
(
Y(T) � 1

K

)
= QS

(
p(0,T)

S(0)
exp

{
�(T) · WS –

1

2
�2(T)

}
� 1

K

)

= QS
(
�(T) · WS –

1

2
�2(T) � ln

(
S(0)

K · p(0,T)
))

= QS
(
WS � 1

�(T)

{
ln

(
S(0)

K · p(0,T)
)
+
1

2
�2(T)

})
= N [d1]
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where

d1 = d2 +�(T)

To summarize, we have a general formula for call options

�(0,X) = S(0) · N[d1] – K · p(0,T) · N[d2]
where

d2 =
ln
{

S(0)
K·p(0,T)

}
– 1

2�
2(T)

�(T)
and

d1 = d2 +�(T)

Remark! If r(t) is a constant, then p(t,T) = e–rT and we get the usual
Black-Scholes formula.

17.1.2.3 The Hull-White Model

As a concrete application of the option pricing formula of the previous
section, we will now consider the case of interest rate options in the
simplified Hull-White model (the extended Vasicek model). To this end
recall that in the Hull-White model the Q-dynamics of r(t) are given by

dr = (θ(t) – ar) dt + σdV(t)

We recall that we have an affine term structure

p(t,T) = eA(t,T)–B(t,T)r(t)

where A(t,T) and B(t,T) are deterministic functions, and where B(t,T)
is given by

B(t,T) =
1

a

{
1 – e–a(T–t)

}

The project is to price a European call option with date of maturity T1
and strike price K, on an underlying bond with date of maturity T2,
where T1 < T2. In the notation of the aforementioned general theory,
this means that T = T1 and that S(t) = p(t,T2). We start by checking if
the volatility, σZ , of the process

ZT (t) =
p(t,T2)

p(t,T1)
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is deterministic. Inserting p(t,T) into this gives

Z(t) exp {A(t,T2) – A(t,T1) – [B(t,T2) – B(t,T1)] r(t)}

Applying the Itô formula to this expression, we get the Q-dynamics:

dZ(t) =
∂

∂t
Z(t)dt +

∂

∂r
Z(t)dr +

1

2

∂2

∂r2
Z(t)σ 2

Zdt

= Z(t) {. . .} dt – Z(t) · {B(t,T2) – B(t,T1)} σdV
= Z(t) {. . .} dt + Z(t) · σZ(t)dV

That is,

σZ(t) = –σ {B(t,T2) – B(t,T1)} = –
σ

a

{
1 – e–a(T2–t) – 1 + e–a(T1–t)

}

=
σ

a

{
e–a(T2–t) – e–a(T2–t)

}
=
σ

a
eat
{
e–aT2 – e–aT1

}

Thus σZ is in fact deterministic, so we may apply the option formula.
We obtain the following result, which also holds for the Vasicek model.

The Hull-White bond option: In the Hull-White model the price,
at t = 0, of a European call with strike price K, and time of maturity
T1, on a bond maturing at T2 is given by the formula

�(0,X) = p(0,T2) · N[d1] – K · p(0,T1) · N[d2]
where

d2 =
ln
{

p(0,T2)
K·p(0,T1)

}
– 1

2�
2

�

and

d1 = d2 +�

where

�2 =

T∫
0

σ 2
z (s)ds =

σ 2

a2
{
e–aT2 – e–aT1

}2 T1∫
0

e2asds

=
σ 2

2a3

{
e–2aT2 + e–2aT1 – 2e–aT1e–aT2

} {
1 – e–aT1

}

=
σ 2

2a3

{
e–2a(T2–T1) + 1 – 2e

–a(T2–T1)
} {

1 – e2aT1)
}
e–2aT1

=
σ 2

2a3

{
1 – e–2aT1)

} {
1 – e–a(T2–T1)

}2
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We have used from the previous equation the formula

�(0,X) = S(0) · N[d1] – K · p(0,T) · N[d2]
and replaced the stock price S(0) with the discount underlying bond
p(0,T2) with maturity at T2 and T with time to maturity for the bond
option, T1.

We end the discussion of the Hull-White model, by studying the
pricing problem for a claim of the form

Z = � (r(T))

Using the T -bond as numeraire, we have by using the forward measure

�(t,Z) = p(t,T)ET
t,r [� (r(T))] ,

so we must find the distribution of r(T) under QT , and to this we will
use the volatility of the T -bond, and we obtain bond prices (under
Q) as

dp(t,T) = r(t)p(t,T)dt + v(t,T)p(t,T)dV(t)

where the volatility v(t,T) is given by

v(t,T) = –σ (t)B(t,T)

Thus, the QT -dynamics of the short rate are given by

dr =
(
θ(t) – ar – σ 2v(t,T)

)
dt + σdVT (t)

where VT is a QT -Wiener process. We observe that, since v(t, T) and
θ(t) are deterministic, r is a Gaussian process, so the distribution of
r(T) is completely determined by its mean and variance under QT .
Solving the aforementioned linear SDE gives us

r(T) = e–a(T–t)r(t) +

T∫
t

e–a(T–s)
[
θ(s) – σ 2v(s,T)

]
ds + σ

T∫
t

e–a(T–s)dVT (s)

We can now compute the conditional QT -variance of r(T), σ 2
r (t,T), as

σ 2
r (t,T) = σ 2

T∫
t

e–a(T–s)ds =
σ 2

2a

{
1 – e–2a(T–t)

}
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Note that the QT -mean of r(T), does not have to be computed at all,
since we have

mr(t, T) = ET
t,r [r(T)] = f (t,T)

which can be observed directly from market data. Under QT ,
the conditional distribution of r(T) is thus the normal distribution
N[f (t,T), σr(t,T)], and performing the integration we have the final
result.

Given the previous assumptions, the price of the claim

X = � (r(T))

is given by

�(t,X) = p(t,T)
1√

2πσ 2
r (t,T)

∞∫
–∞

�(z) exp

{
–
(z – f (t,T))2

2σ 2
r (t,T)

}
dz

17.1.2.4 The General Gaussian Model

In this section we extend our earlier results, by computing prices of
bond options in a general Gaussian forward rate model. We specify the
model (under Q) as

df (t,T) = α(t,T)dt + σ (t, T)dV(t)

where V is a d-dimensional Q-Wiener process. We assume that the
volatility vector function

σ (t,T) =
[
σ1(t,T), . . . , σp(t,T)

]
is a deterministic function of the variables t and T. Using the bond
price dynamics under Q given by

dp(t,T) = p(t,T)r(t)dt + p(t,T)v(t,T)dV(t)

where the volatility is given by

v(t,T) = –

T∫
t

σ (t, s)ds
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we consider a European call option, with expiration date T0 and exer-
cise price K, on an underlying bond with maturity T1 (where of course
T0 < T1). In order to compute the price of the bond, we use the
previous pricing formula, which means that we first have to find the
volatility σT1,T0 of the process

Z(t) =
p(t,T1)

p(t,T0)

in easy calculation shows that in fact

σT1,T0 = v(t,T1) – v(t,T0) = –

T1∫
T0

σ (t, s)ds

This is clearly deterministic. We now have the following pricing for-
mula for prices of Gaussian forward rates. The price, at t = 0, of the
option

X = max {p(T0, T1) – K, 0}

is given by

�(0,X) = p(0,T1) · N[d1] – K · p(0,T0) · N[d2]
where

d2 =
ln
{

p(0,T1)
K·p(0,T0)

}
– 1

2�
2
T0,T1√

�2
T0,T1

and

d1 = d2 +
√
�2

T0,T1

and

�2
T0,T1 =

T0∫
0

||σT0,T1(s)||
2ds



18
Exotic Instruments

18.1 Some Exotic Instruments

For some exotic instruments, we can use the forward measure pricing
described in the previous chapter. We will now describe methods of
how we can calculate prices for such kinds of derivatives.

18.1.1 Constant Maturity Contracts

Constant maturity contracts are instruments using a floating rate,
based on a swap index (i.e. the par rate of a generic swap). They can be
valued using the forward measure technology based on term-structure
models. This requires the mapping/calibration of a volatility structure
with a term-structure model.

Let the value of such a CMS contract be g(Rf (T1,T2)) at the payday
Tp, where

Rf
(
T1,T2

)
=
1

τ

⎡
⎢⎢⎢⎣
1 – p (T1,TN)
n∑
i=2

p (T1,Ti)

⎤
⎥⎥⎥⎦

is the swap rate, having p(T1,T2) equal to a zero-coupon bond price at
T1 of bond maturing at T2. Here t is the reset period with T1 as reset
day and T2 as payday. We will primarily study the calculations using
the Hull and White model.
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If the dynamics of the instantaneous rate under the measure Q is

dr = (q (t) – kr)dt + sdz,

and the forward measure QT is defined by

dQT

dQ
=

exp

{
–

T∫
0
r(s)ds

}

EQ

[
exp

{
–

T∫
0
r(s)ds

}]

then the present value of the contract PV(t) can be expressed as

PV(t) = p
(
t, Tp

)
EQTp

[
g
(
Rf
(
Tp,Ts,Te

))
r(t) = r

]
where the expectation value ends up in an integral in r(Tp)

PV(t) = p
(
t,Tp

) 1√
2πv

∞∫
–∞

g(r) exp

(
–(r – m)2

2v

)
dr

with

m = EQTp [r(Tr)]

= –
∂

∂s
ln p(0, s)

∣∣∣∣
s=Tr

+
σ 2

2κ2
e–κTr

[
e–κTr – e

κTr + e–κTpe2κTr – e
–κTp
]

and

v = VarQ
Tp
[r(Tr)]

σ 2

2κ
e–κTr

(
eκTr – e–κTr

)

If instead using the Ho and Lee model, we have

m = –
∂

∂S
ln p(0, s)

∣∣∣∣
s=Tr

+ σ 2(T2
r – TpTr)

and

v = σ 2Tr

We can here use Romberg method to calculate the integral.
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18.1.2 Compound Options

By compound options, we mean options on option-style instruments.
These include:

• options on options

• options on caps/floors

• options on free defined cash flows where there is at least one
optional cash flow.

To make an accurate valuation possible, these contracts must also
be mapped/calibrated to a volatility structure with a term-structure
model. The underlying instrument should here use the same volatility
structure as the compound option, regardless of how the instrument
is underlying.

Compound options can be valued using the forward measure
technique described under constant maturity contracts. With this tech-
nique, the valuation is carried out by integrating the product of the
payout function at expiry and a density function and then discounting
the result.

For compound options, no swap rate is involved and there is no
need to calculate the expectation value of r(Tr) under the forward
measure QTp (i.e. Tr here equals Tp), which simplifies the calculations.
The present value PV(t) of a compound option is

PV (t) = p
(
t,Tp

) 1√
2πv

∞∫
–∞

g(r) exp

(
–(r – m)2

2v

)
dr

with Tp = option expiration day,

g (r) = g
(
r
(
Tp
))

is the boundary condition, including the value at r = r(Tp) of the
underlying option/cap/floor defined cash flow

m = EQTP [r (Tp)] = –
∂

∂s
ln p(0, s)

∣∣∣∣
s=Tp

Using Hull and White

v = VarQ
Tp [

r
(
Tp
)]

=
σ 2

2κ

(
1 – exp

(
–2κTp

))
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or Ho and Lee

v = σ 2Tp

Romberg’s method is used when calculating the integral.

18.1.3 Quanto Contracts

Quanto contracts have floating cash flows where the reference rate is
a rate index in a currency other than the payout currency. Such quanto
products are:

• Differential swaps

• Quanto caps/floors

• Quanto bond options

• Swaptions

These products can be valued according to term-structure models Ho
and Lee or Hull and White.

The model is a multi-factor model in the sense that the domestic
rate, r(t), the foreign rate, y(t), and the exchange rate are modelled as
stochastic processes:

dr(t) = αrdt + σrdZ

and

dy(t) = αydt + σydW
F

For the exchange rate S(t), we have the following differential equation
in the domestic world

ds(t)

S(t)
= (r – y)dt + σsdX

The T -forward exchange rate is

fS(t) =
S(t)qT (t)

pT (t)

For valuation, the correlation between the domestic interest rate and
the foreign interest rate, ρ as well as the correlation between the
foreign interest rate and the exchange rate, δ is needed.
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In addition, a quanto option needs three volatility structures for the
valuation: the volatility of the domestic rate of the option, the volatil-
ity of the foreign rate of the underlying asset and the volatility of the
exchange rate of the underlying currency.

A quanto swaption is defined by selecting a different instrument
currency for the option than the underlying swap currency. The type
of quanto bond option that is valued as the difference between the
price of the foreign bond, q(T), and a fixed amount in the domestic
currency (strike K):

payout = max (q (T) – K, 0) ,

with the payout in the domestic currency.
The explicit formulas for each contract type are given next.

18.1.3.1 Differential Swaps

Differential swaps are valued using the following formula:

PV (t) = pt1 (t)

[
1

qt1 (t0)
–

1

pt1 (t0)

]
+

n∑
i=2

(
Dti–1,ti (t) – p

ti–1 (t)
)

where

pT (t) is the value of a zero-coupon bond paying out 1 unit of the
domestic currency at time T,

qT (t) is the value of a zero-coupon bond paying out 1 unit of the
foreign currency at time T

DT ,τ (t) =
pτ (t)qτ (t)

qτ (t)
a(t)

a(t) = ecov(t,T ,τ ) is the “correction factor” that takes the quanto effect
into account and where cov(. . . ) is model dependent.

In Ho and Lee we have

cov(t,T , τ ) = σy(τ – T)(T – t)
[
[δσs – σyτ + ρσrT] +

σy – ρσr
2

(T + t)
]

and in Hull and White we have

cov(t,T , τ ) = C(T , τ ) · [I1 + I2 + I3]
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where

C(T , τ ) =
σy

κy

[
e–κy(τ–T) – 1

]

I1 =
δσs

κy

(
1 – e–κy(T–t)

)

I2 =
σy

κy

[
1 – e–κy(T–t)

κy
–
1 – e–2κy(T–t)

2κy

]

and

I3 =
ρσr

κr

[
1 – e–κy(T–t)

κy
–
1 – e–(κy+κr)(T–t)

κy + κr

]

δ is the correlation between the foreign interest rate and the ex-
changed rate and ρ is the correlation between the domestic and
foreign short interest rates.

The time t0 does not have to be the starting time of the contract, it
can be any reset date.

Quanto Caps/Floors

Quanto caps/floors have a present value that equals the sum of the
present value of each caplet. The caplet value is

Caplet(t) = pT (t)

[
a(t).qT (t)

qτ (t)
�(d+) – (1 + (τ – T) · RCAP)�(d–)

]

where

�(d) =
1√
2π

d∫
–∞

e–
x2
2 dx,

d± =
ln

(
a(t) · qT (t)

qτ (t) · (1 + (τ – T) · RCAP)

)

v(t)
± v(t)

2
,

v2(t) =

T∫
t

vars

[
df (s)

f (s)

]
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and

f =
a · qT
qt

The rest of the variables used are the same as for differential swaps.

Quanto Bond Options

According to a result obtained by Jamshidian, an option on a portfolio
of zero-coupon bonds can be valued as a portfolio of options on zero-
coupon bonds

C(t) = max
(
0, qcoupon(T) – K

)
=

n∑
i=1

cimax
(
0, qTi(T) – Di

)

If all bond prices are continuously decreasing functions of the short
interest rate y, there is a value of y where the value of the coupon
bond equals the strike price K. Let us call this value y∗.

The option will only be exercised if the value of the short rate is be-
low y∗. With y∗ and the formula for bonds as a function of the interest
rate, discount factors Di can be calculated from the exercise date T to
the different coupon dates Ti.

The value of the ith option on a zero-coupon bond is then:

cimax
(
0, qTi(T) – Di

)
= pT (t)

[
qTi(t)a(t)

qT (T)
�(d+) – Di�(d–)

]

where the parameters are the same as the previous equation and

�(d) =
1√
2π

d∫
–∞

e–
x2
2 dx

d±(t) ≡ ln
(
f (t)
/
Di
)

v(t)
± v(t)

2

v2(t) =

T∫
t

vars

[
df (s)

f (s)

]

and

f =
qTi · a
qT
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The Black Model

19.1 Pricing Interest Rate Options Using Black

The Black-76 modified Black-Scholes model has become the standard
model for valuing over-the-counter (OTC) interest rate options, caps,
floors and European swaptions. The formula was originally developed
to price options on forwards and assumes that the underlying asset is
lognormal distributed.

Black’s formula is often recalled as a special case of the Black-Scholes
one, but it is in reality a generalization: if one applies Black to an equity
option, where S(T) = S(0)erT one gets the Black-Scholes formula.
But the Black-Scholes formula also holds when the spot has complex
dynamics and there is no replication of the forward with the spot.

When used to price a cap, for example, the underlying forward rates
of the cap are thus assumed to be lognormal. Similarly, when used to
price a swaption (an option on a swap), the underlying swap rate is
assumed to be lognormal.

The lognormality can be justified when pricing cap/floors and
swaptions independently (Jamshidan (1996), Miltersen, Sandmann and
Sondermann (1997)). Still, a simultaneous valuation of both a cap and
a swaption with the Black formula is theoretically inconsistent. Both
the forward rate of the cap and the swap rate cannot be lognormal
simultaneously. However, the great popularity of this model for pri-
cing both caps and swaptions indicates that any problems due to this
inconsistency are negligible in an economic sense. Traders use to ad-
just this inconsistency by adjusting the volatility based on experience
for the particular market in which they operate.
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The same is true with bond prices and swap rates; they cannot be
lognormal at the same time. For instance, if the bond price is assumed
to be lognormal, the continuously compounded swap rate must be
normally distributed.

19.1.1 Par and Forward Volatilities

Volatilities quoted on the market are par volatilities applied to some
generic instruments. As an example, we see next the cap volatilities
based on 3-month USD Libor.

Cap maturity Volatility [%]
1 yr 10.37
2 yr 12.87
3 yr 14.12
4 yr 15.12
5 yr 15.25
7 yr 15.13
10 yr 14.88

The par or average volatility of 10.37 % would apply for all the three
caplets in a 1-year cap (normally, there is no option on the first Libor
fixing), the par volatility of 12.87 % would apply to all seven caplets in
a 2-year cap and so on.

This makes the quotation in terms of volatility very easy. However,
the first three caplets in the 2-year cap must be identical to the caplets
in the 1-year cap. Therefore, it would seem sensible that they should
always be priced using the same volatilities.

Let us define “forward” volatility1 as the volatility that would apply
to a single caplet. The forward volatility for the very first caplet would
be the volatility of a 3-month rate, which will be fixed in 3 months’
time. The forward volatility for the second caplet would be the volatil-
ity again of a 3-month rate, but this time fixed in 6 months’ time, and
so on.

1 Some does not use the confusing, expression “forward volatility”. Since volatility is not a
traded asset, it can therefore be either present or future, but not forward. Similarly, one might
not use the term “forward-forward volatility”, which probably is used to mean the future
volatility of a forward quantity.
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In the cap market, forward volatilities are derived from quoted par
volatilities. Let T denote the maturity of the Tth generic cap for which
we have par volatilities. Define the price of a cap of maturity T using
par volatility VT as:

CT =
∑
t≤T

ct(VT )

where ct(VT ) is the price of a single caplet of maturity t. For arbitrage
reasons, the same cap using the forward volatility curve should have
the same price:

CT =
∑
t≤T

ct(VT ) =
∑
t≤T

ct(vt)

where v, is the single period forward volatility. Hence, we can define
a recursive relationship:

CT = CT–1 =
∑

T–1≤t≤T

ct(vt)

A crude but common assumption is to set v, equal to a constant for
T—1 < t < T . Then we can calculate sequentially the forward volatil-
ities. Also, remember that par volatilities are most appropriate for ATM
options.

To estimate the forward volatility curve we use the following
process:

1. Guess a forward piece-wise constant volatility curve.

2. Price each of the caps using this curve.

3. Adjust each segment of the volatility curve, starting at the short
end in a bootstrapping fashion, so that the price of each cap based
on the forward volatility curve matches the original price.

We end up with a curve like Fig. 19.1.
Whilst such a curve is arbitrage free, a smoother curve would

be better. The approach may use an optimization technique using a
smoothness criterion:

∑
(σt – σt–1)2 which has to be minimized whilst

still being arbitrage free.
The result might look like. (Fig. 19.2)
Notice the very typical “humped” structure over the 2- to 5-year

region; this is likely because of the traditional high demand by end-
users for interest rate protection over those maturities.
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Fig. 19.1 The initial caplet volatility curve. The dots represent the cap volatility

Fig. 19.2 The optimized bootstrapped caplet volatility
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Remark that the volatilities cannot be linearly interpolated with re-
spect to time. Instead, you need to interpolate the squared volatility
multiplied with time. This gives us the following interpolation formula

σ 2(t) · t = σ 2(T1) · T1 + σ 2(T2) · T2 – σ 2(T1) · T1
T2 – T1

(t – T1)

giving

σ (t) =

√
σ 2(T1) · T1

t
+
σ 2(T2) · T2 – σ 2(T1) · T1

T2 – T1

(
1 –

T1
t

)

These curves are often combined with statistical confidence bands. In
practice it is found that volatilities do revert to a long-run level (as sug-
gested by the ARCH model), which means that the confidence bands
are wider at the short end than at the longer end. The bands are often
called “volatility cones” due to their shape, and are used by traders to
imply the likely movement of volatility through time.

We have just derived forward volatilities from a single ATM par volat-
ility curve. It is however, common practice to use volatility surfaces,
that is, a matrix of strike vs. forward start date, when pricing and valu-
ing caps and floors. This allows the smile effect to be incorporated. IR
options on 3-month Libor are the most common, probably reflecting
the fact that one can get exchange-traded options on 3-month deposit
futures for hedging. Therefore, the most liquid volatility surface would
also be on 3-month Libor, and volatility surfaces for other tenors rep-
resented by an offset surface from the 3-month one. A more complete
approach therefore would be to model the entire two-dimensional sur-
face. This surface is likely to contain gaps due to missing maturities and
also missing volatilities for particular strikes.

19.1.2 Caps and Floors

As we have seen, an interest-rate cap consists of a series of individual
European call options, called caplets. Each caplet can be priced by
using a modified version of the Black-76 formula. This is accomplished
by using the implied forward rate, F, at each caplet maturity as the
underlying asset. The price of the cap is the sum of the price of the
caplets that make up the cap. Similarly, the value of a floor is the sum
of the sequence of individual put options, called floorlets that make
up the floor.
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As we know, the Black formula is

Pcall = e–rT (F · N(d1) – K · N(d2))
Pput = e–rT (K · N(–d2) – F · N(–d1))

where F is the forward price and

d2 =
ln(F/K) – (σ 2/2)T

σ
√
T

= d1 – σ
√
T

Consider the pricing model of a caplet whose ceiling rate is Lc.
The holder of the cap receives at time ti an amount equal to
αimax {Li–1(Ti–1) – Lc, 0}. The present value of this payment at Li–1 is

αi

1 + αiLi–1(Ti–1)
max {Li–1(Ti–1) – Lc, 0} = max

{
1 –

1 + αiLc
1 + αiLi–1(Ti–1)

, 0

}

Remember the value of a pure discount bond

p (Ti–1,Ti) =
1

1 + αiLi–1(Ti–1)

Therefore, the quantity

1 + αiLc
1 + αiLi–1(Ti–1)

can be considered as the value at time Ti–1 of a discount bond that pays
1 + αiLc at time T. Hence, the payoff in the aforementioned max{.} is
the same as that from a put option with expiration date Ti–1 on a bond
with maturity time Ti. The par value of the bond is 1 + αiLc and the
strike price of the put option is unity. Therefore, an interest rate cap
can be considered as a portfolio of European put options on discount
bonds.

The time-t value of the caplet can then be expressed as:

Ci(t,Ti–1, Ti) = p(t,Ti)E
t
QT(i–1)

[αimax {Li–1(Ti–1) – Lc, 0}]

Since Li–1(Ti–1) is FT(i–1)-measurable, we may write

Ci(t,Ti–1,Ti) = p(t,Ti–1)E
t
QT(i–1)

[
p(Ti–1, Ti)αimax {Li–1(Ti–1) – Lc, 0}

]
= p(t,Ti–1)E

t
QT(i–1)

[
max {1 – (1 + αiLc) p(Ti–1, Ti), 0}

]
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If we finally assume that the bond prices p(t,T), under the risk-neutral
measure Q, follow a general Gaussian process (as given next), the
time-t value of the caplet is given by

Ci(t,Ti–1,Ti) = p(t,Ti–1)N(–d
(i)
2 ) – (1 + αiLc) p(t,Ti–1)N(–d

(i)
1 ), t < Ti–1

where

d(i)2 =
ln
{
(1+αiLc)p(t,Ti)

p(t,Ti–1)

}
– 1

2�
2
i (t)(Ti–1 – t)

�i(t)
√
Ti–1 – t

and

d1 = d2 +�i(t)
√
Ti–1 – t

and

�2
i (t) =

1

Ti–1 – t

Ti–1∫
t

Ti∫
Ti–1

m∑
j=1

σ 2
F(s, u)duds

The previous analytical expression is complicated. This is because we
have based the model on unobservable instantaneous forward rates.
This makes the model difficult to implement and calibrate the volatility
to market cap data. This motivates to use a market model.

We therefore assume that the underlying forward Libor process is
lognormal distributed with zero drift under some “market probability”
Qm. In its simplest form we let the volatility denote the constant Black
volatility of the forward Libor process

dLi–1(t) = Li–1(t)σ
L
i–1dW

m
t

where Wm
t is a Brownian process under Qm. The Black formula for the

time-t value of the caplet that pays αimax {Li–1(Ti–1) – Lc, 0} at time Ti
is given by

CBlack
i (t,Ti–1, Ti) = αip(t,Ti)E

t
Qm

[max {Li–1(Ti–1) – Lc, 0}]

= αip(t,Ti)
[
Li–1(t)N(d

i–1
1 ) – LcN(d

i–1
2 )
]

where

di–11 =
ln
{
Li–1(t)
Lc

}
– 1

2

(
σ L
i–1

)2
(Ti–1 – t)

σ L
i–1

√
Ti–1 – t
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and

d2 = d1 – σ
L
i–1

√
Ti–1 – t

We can simplify this as

C(t) =
N · τ

1 + F · τ e
–r(T–t) [F · N(d1) – K · N(d2)]

where τ is the tenor, N the face value and F the implied forward rate
between time t and at the caplets maturity, T. Similarly, for a floorlet,
we have

F(t) =
N · τ

1 + F · τ e
–r(T–t) [K · N(–d2) – F · N(–d1)]

Example 19.1.1
We will illustrate the cap value in a simple example. Suppose we have a caplet,
with 6 months to expiry on a 182-day forward rate and a face value of 100 million.
The 6-month forward rate is 8% (with act/360 as day-count), the strike is 8%, the
risk-free interest rate 7%, and the volatility of the forward rate 28% per annum.

F = 0.08,K = 0.08,T = 0.5, r = 0.07, σ = 0.28.

d1 =
ln(0.08/0.08) + (0.282/2)0.5

0.28
√
0.5

= 0.0990, d2 = d1 – 0.28
√
0.5 = –0.990

N(d1) = 0.5394, N(d2) = 0.4606

C(t) =
109 · 182

360

1 + 0.08 · 182
360

e–0.07·0.5 [0.08 · N(d1) – 0.08 · N(d2)] = 295.995

19.1.3 Swaps and Swaptions

It is usual to distinguish between the two different types of swap-
tions:

• Payer swaptions. The right but not the obligation to pay fixed rate
and receive floating rate in the underlying swap.

• Receiver swaptions. The right but not the obligation to receive fixed
rate and pay floating rate in the underlying swap.

Most swaptions (about 90 %) is of European types and are normally
priced by using the forward swap rate as input in the Black-76 option-
pricing model. The Black-76 value is multiplied by a factor adjusting
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for the tenor of the swaption, as shown by Smith (1991). This is
the practitioner’s benchmark swaption model. As illustrated by Jam-
shidan (1996), the model is arbitrage-free under the assumption of a
lognormal swap rate.

To derive a formula for a swaption we will start by studying a
forward-starting swap. That is a swap that starts at a future time where
we exchange floating against fixed cash flows. A Tn × (TN – Tn) swap
means a swap that starts at time Tn and have maturity at time TN .

Denote the reset days for any swap as: T0,T1,TN and define αi as
Ti – Ti–1. The holder of a forward-starting Tn × (TN – Tn) payer swap
with tenor TN – Tn receives fixed payments at times Tn+1,Tn+2, . . . , TN
and pays at the same times floating payments.

For each period [Ti, Ti+1] the Libor rate Li+1(Ti) is set at time Ti and
the floating leg αi+1Li+1(Ti) is received at Ti+1. For the same period the
fixed leg α.

i+1F is paid at Ti+1 where F is the (fixed) swap rate.
The arbitrage-free value at t < Tn of the floating payment made at Ti

is given by p(t,Ti) –p(t,Ti+1). The total value of the floating legs at time
t for t � Tn equals

N∑
i=n+1

αi · f (t,Ti) · p(t,Ti–1) =
N–1∑
i=n

αi+1 · 1

αi+1

p(t,Ti) – p(t,Ti+1)

p(t,Ti)
· p(t,Ti)

=
N–1∑
i=n

[
p(t,Ti) – p(t,Ti+1)

]
= p(t,Tn) – p(t,TN)

= pn(t) – pN(t)

where we have used that the forward rate is given by

p(0, ti) = p(0, ti–1) · 1

1 + αif (ti–1, ti)
⇒ f (ti–1, ti) =

1

ai

p(0, ti) – p(0, ti–1)

p(0, ti)

If we go back to the FRN, we remember that the value at the starting
day is the same as the face value = 1. In a swap, we do not have any
final payment of the face value. This gives the swap value at the starting
day t = 0, as 1 – p(0,T). Between to resets we therefore must have the
swap value as: p(t, t0) – p(t,T) where t0 is the time for the next reset
day. This explains the previous formula.

The total value at time t for the fixed side equals

N–1∑
i=n

F · p(t,Ti+1)αi+1 = F
N∑

i=n+1

αipi(t)



508 J.R.M. Röman

where F is called the swap rate. This is a par rate since it makes the
price of the swap to be equal zero when entering the swap contract.
Therefore, the total value of the payer swap is given by

PSNn (t,F) = pn(t) – pN(T) – F
N∑

i=n+1

αipi(t)

We therefore define the forward swap rate (at par) RN
n (t) of the

Tn × (TN – Tn) swap as the value of F for which the total value earlier
is zero. That is,

RN
n (t) = F =

pn(t) – pN(t)
N∑

i=n+1
αipi(t)

Therefore we also define for each pair n, k with n < k, the process

Skn(t) =
N∑

i=n+1

αipi(t)

as the accrual factor or the value of a basis point (also called the
level, DV01 Dollar Value change in a shift, PV0l Present Value change
in a shift, annuity or numerical duration of the swap).

We then express the swap value as

RN
n (t) =

pn(t) – pN(t)

SNn (t)

In the market there are no quoted prices for different swaps. Instead
there are market quotes for the par swap rates. We see that we can
easily compute the arbitrage-free price for a payer swap with the strike
rate K as

PSNn (t,R
N
n (t),K) =

(
RN
n (t) – K

)
SNn (t)

A payer swaption is then a contract given by;

PN
n (t,R

N
n (Tn),K) = max

(
RN
n (Tn) – K, 0

)
SNn (Tn)

This contract gives the holder the right to enter a swap contract at
time Tn with swaption strike (fixed rate) K.
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Under the numeraire process SNn a payer swaption is then a call op-
tion on RN

n with strike price K. The value of this contract is given by
the Black-76 formula:

PN
n (t) = SNn (t)

{
RN
n (t)N(d1) – KN(d2)

}

where

d1 =
ln
{
RNn (t)
K

}
+ 1

2σ
2
n,N (Tn – t)

σn,N
√
Tn – t

,

d2 = d1 – σn,N
√
Tn – 1

The constant σn,N is known as the Black volatility. Given a market
price for a swaption, the Black volatility implied by the Black formula
is referred as the implied Black Volatility.

We can also write the Black formula as

PN
n (t) = SNn (t)

{
RN
n (t)N(d1) – K · N(d2)

}

≡
N∑

i=n+1

αipi(t) · {RN
n (t) · N(d1) – K · N(d2)

}

= ϕ(t) · {F · N(d1) – K · N(d2)}

or

PN
n (t) =

pn(t) – pN(t)

RN
n (t)

{
RN
n (t) · N(d1) – K · N(d2)

}

Here the function ϕ(t) is a discount function. If we denote the forward
swap rate between tn and tN as F, we have at tn

pn(t) – pN(t) ≡ p(t, tn) – p(t, tN) = p(t, tn) {1 – p(tn, tN)}

= p(t, tn)

{
1 –

1

(1 + f (tn, tN))tN–tn

}
≡ p(t, tn)

{
1 –

1

(1 + F)tN–tn

}

If we now let T = tn be the maturity of the swaption, F the for-
ward swap rate (aforementioned RN

n (t)) and introducing m reset days
per year (the frequency), we finally have, where PS denote a payer



510 J.R.M. Röman

swaption, and RS is a receiver swaption

PS =
1 – 1

(1+F/m)τ ·m

F
e–rT [F · N(d1) – K · N(d2)]

RS =
1 – 1

(1+F/m)τ ·m

F
e–rT [K · N(–d2) – F · N(–d1)]

d1 =
ln(F/K) + 1

2σ
2 · T

σ
√
T

, d2 = d1σ
√
T

where

τ = Tenor of swap in years (time between swaption maturity and
swap maturity).

F = Forward rate of the underlying swap.

K = Strike rate of the swaption.

r = Risk-free interest rate.

T = Time to swaption expiration in years.

σ = Volatility of the forward-starting swap rate.

m = Compounding’s per year in swap rate.

We also used continuous compounding, that is, p(t,T) = e–r(T–t)

Example 19.1.2
Consider a 2-year payer swaption on a 4-year swap with semi-annual compounding.
The forward swap rate of 7% starts two years from now and ends 6 years from
now. The strike is 7.5%, the risk-free interest rate is 6%, and the volatility of the
forward-starting swap rate is 20% per annum.

τ = 4.0,m = 2,F = 0.07,K = 0.075,T = 2, r = 0.06, σ = 0.20.

d1 =
ln(0.07/0.075) + (0.202/2) · 2

0.20
√
2

= –0.1025, d2 = d1 – 0.20
√
2 = –0.3853

N(d1) = 0.4592, N(d2) = 0.3500

c = e–0.06·2 [0.07 · N(d1) – 0.075 · N(d2)] = 0.5227%

With a semi-annual forward swap rate, the upfront value of the payer swaption in
per cent of the notional is

c ·
⎡
⎣1 – 1

(1+0.07/2)4·2

0.07

⎤
⎦ = 1.7964%
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19.1.3.1 The Greeks

If we return to the Black formulas we can first see that the Greeks are
more complicated to calculate than the Greeks in the Black-Scholes
formula. Delta for instance can be defined as the derivative of the
Premium (swaption value) with respect to the forward rate F. Other
definitions of delta is as the derivative with respect to the present value
of the fixed leg of the swap or as the derivative with respect to the
annuity. We can also calculate a delta by shifting the yield curve.

Let’s try to explain the general difficulties when defining a delta; op-
tions (including swaptions) pricing is based on models. Those models
have parameters. The market, on the other hand, takes this in the op-
posite direction. There are market prices and the model parameters
are selected (calibrated) to achieve the market prices. In this context
all the models provide the same (market) prices.

Regarding delta, the situation is different. The figures are not calib-
rated, they are the consequences of the price calibration and intrinsic
model dynamic for the rates. You can therefore refer to two different
types of deltas. The theoretical delta is a ratio. It is often referred to (in
particular by Rebonato) as in-the-model delta (or hedging). The DV01
is obtained by shifting one rate (or the entire curve) by one basis point.
This is (often) incompatible with the model used for the pricing. For
that reason it is known as out-of-the-model delta (hedging).

In the formula

PN
n (t) = ϕ(t) · {F · N(d1) – K · N(d2)}

we have seen that there is a “hidden” F. Some books and articles give
delta as:

� = ϕ(t) · N(d1)
alternatively,

� = N(d1)

However, by making the approximation:

�PN
n (t)

�F
=
PN
n (t,F + dF) – PN

n (t,F – dF)

2 · dF
it is easy to prove that none of the previous deltas gives the cor-
rect value. The calculation of delta is quite messy. Remember the
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calculation of delta for a stock option. We know that d1 and d2 also
are functions of F. For the stock option d1 and d2 also includes the
risk-free rate.

To calculation of delta as the derivative with respect to F, we use:

PS =
1 – 1

(1+F/m)τ ·m

F
e–rT [F · N(d1) – K · N(d2)]

and

d1 =
ln(F/K) + 1

2σ
2 · T

σ
√
T

, d2 = d1 – σ
√
T

First, we have

∂d1
∂F

=
∂d2
∂F

=
1

F · σ · √
T

then

� =
∂PS

∂F
=

∂

∂F

{
1 – 1

(1+F/m)τ ·m

F
e–rT [F · N(d1) – K · N(d2)]

}

= e–rT
∂

∂F

{
f (F) ·

[
N(d1) –

K

F
· N(d2)

]}

where
{
f (F) = 1 –

1

(1 + F/m)τ ·m

}

= e–rT ·
{[

N(d1) –
K

F
· N(d2)

]
∂f (F)

∂F
+ f (F) · ∂

∂F

[
N(d1) –

K

F
· N(d2)

]}

We now have two derivatives, and they are calculated as

∂

∂F

[
N(d1) –

K

F
· N(d2)

]
=
∂N(d1)

∂F
+

K

F2
N(d2) –

K

F

F

K

∂N(d1)

∂F
=

K

F2
N(d2)

and
∂f (F)

∂F
=

∂

∂F

{
– (1 + F/m)–τ ·m} = τ

(1 + F/m)τ ·m
So

� = e–rT
{(

1 –
1

(1 + F/m)τ ·m
)

K

F2
N(d2)

+
τ

(1 + F/m)τ ·m+1

[
N(d1) –

K

F
· N(d2)

]}
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where we used

∂N(d(F))

∂F
=

∂

∂F

d(F)∫
–∞

φ(x)dx =
∂

∂F
[�(x)]d(F)–∞ =

∂d(F)

∂F
[φ(d(F)) – φ(–∞)]

=
∂d(F)

∂F
φ(d(F)) =

∂d(F)

∂F
N′(d(F)) = 1

Fσ
√
T
N′(d(F)))

and

N′(d2) =
∂

∂F
N(d1 – σ

√
T) =

1√
2π

∂d1
∂F

e
–
(
d1–σ

√
T
)2
/2

=
1√
2π

1

Fσ
√
T
e–(d1)

2/2ed1σ
√
Te–σ

2T/2 = ed1σ
√
Te–σ

2T/2N′(d1)

= eln(F/K)+σ
2T/2e–σ

2T/2N′(d1) =
F

K
N′(d1)

Greeks in the Black Model

If we ignore the annuity the Greeks in the Black model is given by:

�call =
∂C

∂F
= e–r(T–t)N(d1)

�put =
∂P

∂F
= e–r(T–t) (N(d1) – 1)

� =
∂2C

∂F2
=
∂2P

∂F2
=

e–r(T–t)

Fσ
√
T – t

· 1√
2π

e–d
2
1/2

ν =
∂C

∂σ
=
∂P

∂σ
= F · e–r(T–t)

√
T – t√
2π

· e–d21/2

�call =
∂C

∂t
= e–r(T–t)

(
r · F · N(d1) – r · K · N(d2) – F · N′(d1) · σ

2
√
T – t

)

�put =
∂P

∂t
= –e–r(T–t)

(
r · F · N(–d1) – r · K · N(–d2) + F · N′(d1) · σ

2
√
T – t

)

ρcall =
∂C

∂r
= t · K · e–r(T–t)N(d2)

ρput =
∂P

∂r
= –t · K · e–r(T–t)N(–d2)
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19.1.4 Swaps in the Multiple Curve Framework

We saw earlier how to derive the swap rate for a forward-starting swap.
If we generalize this for an ordinary swap, under the multiple curve
framework we generate the cash flows with one curve (on tenor) and
discount with another. Here we will study the difference when using
one or two curves.

Denote the reset days for any swap as T0, T1, TN and define αi as
the time interval Ti – Ti–1. The holder payer swap with tenor TN – T0
receives fixed payments at times T1,T2, . . . ,TN and pay at the same
times floating payments.

For each period [Ti, Ti+1] the Libor rate Li+1(Ti) is set at time Ti and
the floating leg α.

i+1Li+1(Ti) is received at Ti+1. For the same period the
fixed leg α.

i+1F is paid at Ti+1 where F is the (fixed) swap rate.
The arbitrage-free value at 0 = t < Tn of the floating payment made

at Ti is given by p(Ti) – p(Ti+1). The total value of the floating legs at
time t for t � Tn equals

N∑
i=1

αi · f (Ti–1,Ti) · p(Ti) =
N∑
i=1

αi · 1

αi

p(Ti–1) – p(Ti)

p(Ti)
· p(Ti)

=
N∑
i=1

[
p(Ti–1) – p(Ti)

]
= p(0) – p(TN)

= 1 – p(T)

where we have used that the forward rate is given by

p(ti) = p(ti–1) · p(ti–1, ti) ⇒ p(ti–1) · 1

1 + αif (ti–1, ti)

⇒ f (ti–1, ti) =
1

αi

p(ti) – p(ti–1)

p(ti)

In the previously mentioned analysis the forward rate f (t,Ti) and the
discount factor, p(t,Ti) is given by the same curve/tenor. In a multi-
curve framework we might generate the cash flows with one curve
(as follows, a 3-month tenor curve) and discount with another (in sub-
sequent section, a 6-month tenor curve). Then, we have to modify the
calculation as follows

N∑
i=1

αi · f3M(Ti–1, Ti) · p6M(Ti) =
N∑
i=1

p3M(Ti–1) – p3M(Ti)

p3M(Ti)
· p6M(Ti)
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We see that we cannot simplify this as we did when using the same
tenors on both curves. The total value at time t for the fixed side,
using a 6-month tenor for discounting equals

N∑
i=1

F · αi · p6M(Ti) = F ·
N∑
i=1

αi · p6M(Ti)

where F is the swap rate. This is a par rate since it makes the price
of the swap to be equal zero when entering the swap contract. So the
total value of the payer swap is given by

PS(F) =
N∑
i=1

p3M(Ti–1) – p3M(Ti)

p3M(Ti)
· p6M(Ti) – F ·

N∑
i=1

αi · p6M(Ti)

=
N∑
i=1

(
p3M(Ti–1) – p3M(Ti)

p3M(Ti)
– F · αi

)
· p6M(Ti)

With the old methodology, we should have the result

PS(F) = 1 – p(T) – F
N∑
i=1

αi · p(Ti)

If we use the same tenors (a before the credit crises) for the cash-flow
generation as for the discounting we derive the following swap rate:

F =
1 – p(T)

N∑
i=1

αi · p(Ti)
With different tenors we get

F =

N∑
i=1

p3M(Ti–1)–p3M(Ti)
p3M(Ti)

· p6M(Ti)
N∑
i=1

αi · p6M(Ti)
So

N∑
i=1

(
p3M(Ti–1) – p3M(Ti)

p3M(Ti)
– F · αi

)
= 0

⇒
F · T =

N∑
i=1

p3M(Ti–1) – p3M(Ti)

p3M(Ti)
=

N∑
i=1

(
p3M(Ti–1)

p3M(Ti)
– 1

)
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and

F =
1

T

N∑
i=1

(
p3M(Ti–1)

p3M(Ti)
– 1

)

19.1.5 Swaptions with Forward Premium

In the European, the swaption markets have changed to be traded with
a forward premium in contrast to spot premium. In such a way we
can minimize the counterparty risk. Therefore we can also discount
with the new risk-free interest rate, the EONIA overnight index-swap
(OIS) rate.

Say that we want to buy a payer swaption at t = 0 with maturity at
t = T. The swap maturity here is denoted by t = S. The present value
of the swaption at t = 0 is in general given by

P(0,T , S) = SST (0) {F(0,T , S) · N (d1(0,T , S)) – K · N (d2(0,T , S))}

where F(0,T , S) is the forward swap rate between t = T and t = S
contracted at t = 0 and

d1(0,T , S) =
ln
{
F(0,T ,S)

K

}
+ 1

2σ
2(0,T , S) · T

σ (0,T , S) · √
T

,

d2(0,T , S) = d1 – σ (0,T , S) · √
T

and

SST (0) =
S∑

i=T+�t

αip(ti, S) =
p(0,T) – p(0, S)

F(0,T , S)

Here p(t, S) is the forward discount factor (zero coupon) between time
t and S. This means that the premium at t = 0 is P(0,T , S). If this is a
forward premium, we shall at t = T pay

premium =
P(0,T , S)

p(0,T)

We therefore construct a portfolio consisting of the swaption and the
premium, so that the total value at t = 0 is zero. At any arbitrary time t,
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the value of our portfolio is

V(t,T , S) = SST (t) {F(t,T , S) · N (d1(t, T , S)) – K · N (d2(t,T , S))}

– p(t,T) · premium
=
p(t,T) – p(t, S)

F(t,T , S)
{F(t,T , S) · N (d1(t,T , S)) – K · N (d2(t,T , S))}

– p(t,T) · premium

where F(t, T , S) is the forward swap rate between t = T and t = S at
time t and

d1(t,T , S) =
ln
{
F(t,T ,S)

K

}
+ 1

2σ
2(t,T , S) · (T – t)

σ (t,T , S) · √
T – t

,

d2(t,T , S) = d1 – σ (t,T , S) · √
T – t

19.1.6 The Normal Black Model

Usually the underlying security is assumed to follow a lognormal
process (or Geometric Brownian Motion). However, there are some
traders who believe that the normal process describes the real market
more closely than that of lognormal counterpart. This model is also
known as the Bachelier’s model.

Let us assume that the current future price, strike price, risk-free
interest rate, volatility and time to maturity as denoted as f ,K, r, σ
and T – t respectively. Let us also assume that the current future price
follows the following normal process:

df = μdt + σdWt

where μ is a constant drift. For instruments like swaptions, f repres-
ents the forward rate.

Let us start by studying the behaviour of the delta-hedged portfo-
lio which consists of long delta shares of future contract and short
one derivative in question. Say, call it �. Let us also denote the value
of derivative by g. Then, the value of the delta-hedged portfolio is
given by:

� = g –
∂g

∂f
f
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So applying Ito’s lemma using the earlier mentioned SDE into the
changes of the portfolio value, one gets

d� = dg –
∂g

∂f
df

=

(
∂g

∂t
+ μ

∂g

∂f
+
1

2
σ 2 ∂

2g

∂f 2

)
dt + σ

∂g

∂f
dW –

∂g

∂f
(μdt + σdW)

=

(
∂g

∂t
+
1

2
σ 2 ∂

2g

∂f 2

)
dt

We want the aforementioned quantity to be a Q-martingale under the
discounted expectation with risk-free rate. This is the same as stating
that the previous quantity equals the gain from the risk-free interest
rate for the portfolio value. So, we have:

d� = r�dt

Since it costs nothing to enter into a futures contract, one has � = g.
Thus, we obtain the following PDE

∂g

∂t
+
1

2
σ 2 ∂

2g

∂f 2
= rg

In a risk-neutral world the process is giving as

df = σdVt

with the trivial solution, from integration over the interval [t,T]:

f (T) = f (t) + σ (VT – Vt)

We see that f is a Gaussian process; N[ft, σ 2(T – t)], that is, with mean
f (t) and variance σ 2(T – t). By the application of Feynman-Kač, we
obtain the following solution

g(t, fT ) = e–r(T–t)EQ [�(T)] =
e–r(T–t)

σ
√
2π(T – t)

∞∫
–∞

�(T) · e–
(fT–ft)2

2σ2(T–t)dfT

=
{
fT = ft + σ

√
T – t · z

} e–r(T–t)

σ
√
2π(T – t)

×
∞∫

–∞
�(T) · e–

(σ
√
T–t·z)2

2σ2(T–t) σ
√
T – tdz

=
e–r(T–t)√

2π

∞∫
–∞

�(T) · e– z2
2 dz
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Here

�(T) =

{
(fT – K)+ for a Call
(K – fT )+ for a Put

For the Call we have

�C(t) =
e–r(T–t)√

2π

∞∫
–∞

(fT – K)+ · e– z2
2 dz

= e
–r(T–t)

√
2π

∞∫
–∞

(ft + σ
√
T – t · z – K)+ · e– z2

2 dz

=
e–r(T–t)√

2π

∞∫
z0

(ft + σ
√
T – t · z – K) · e– z2

2 dz = A – B

Set ft = F and with z0 =
(F–K)
σ
√
T–t

we get

A =
e–r(T–t)√

2π
(F – K)

∞∫
z0

e–
z2
2 dz = e–r(T–t)(F – K) · N[z0]

B =
e–r(T–t)√

2π

∞∫
z0

σ
√
T – t · z · e– z2

2 dz = e–r(T–t)
σ
√
T – t√
2π

e–
z20
2

Then, the fair values of call C (payer swaption, PS) and put P (receiver
swaption, RS) are expressed as

C = e–r(T–t)
[
(F – K) · N(d) + σ

√
T – t√
2π

e–d
2/2

]

P = e–r(T–t)
[
(K – F) · N(–d) + σ

√
T – t√
2π

e–d
2/2

]

where

d =
F – K

σ
√
T – t

and

τ = Tenor of swap in years (time between swaption maturity and
swap maturity).

F = Forward rate of the underlying swap.
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K = Strike rate of the swaption.

r = Risk-free interest rate.

T = Time to swaption expiration in years.

σ = Volatility of the forward-starting swap rate.

m = Compounding’s per year in swap rate.

To apply this on swaptions we need, as before, to multiply C and P
with the annuity

1 – 1
(1+F/m)τ ·m

F

The Greeks can easily be calculated by simple differentiations

�C =
∂C

∂F
= e–r(T–t) · N(d)

�P =
∂P

∂F
= –e–r(T–t) · N(–d)

� =
∂2C

∂F2
=
∂2P

∂F2
=

e–r(T–t)

σ
√
T – t

· 1√
2π

e–d
2/2

ν =
∂C

∂σ
=
∂P

∂σ
= e–r(T–t)

√
T – t√
2π

e–d
2/2

�C =
∂C

∂t
= e–r(T–t)

×
(
–r · (F – K) · N(d) + σ

√
T – t√
2 · π e–d

2/2 –
σ

2
√
2 · π · t e

–d2/2

)

�P =
∂P

∂t
= e–r(T–t)

×
(
r · (F – K) · N(–d) + σ

√
T – t√
2 · π e–d

2/2 –
σ

2
√
2 · π · t e

–d2/2

)

19.1.6.1 Convexity Adjustments

A standard bond or interest rate swap has a convex price-yield relation-
ship. To price options with the Black-76 model when the underlying
asset is a derivative security with a payoff function linear in the bond
or swap yield, the yield should be adjusted for lack of convexity value.
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Examples of derivatives where the payoff is a linear function of the
bond or swap yield are constant maturity swaps (CMS) and constant
maturity treasury swaps (CMT). The closed-form formula published by
Brotherton-Ratcliffe and Iben (1993) assumes that the forward yield is
lognormal distributed.

adj. = –
1

2

∂2P
∂y2F
∂P
∂yF

· y2F
(
eσ

2T – 1
)

where

P = Bond or fixed side swap value.

yF = Forward yield.

T = Time to payment date in years.

σ = Volatility of the forward yield.

Example 19.1.3
Consider a derivative instrument with a single payment 5 years from now that is
based on the notional principal times the yield of a standard 4-year swap with an-
nual payments. The forward yield of the 4-year swap starting 5 years in the future
and ending 9 years in the future is 7%. The volatility of the forward swap yield is
18%. Calculate the convexity adjustment of the swap yield.

The value of the fixed side of the swap with annual yield is equal to the value
of a bond where the coupon is equal to the forward swap rate/yield yF .

P =
c

1 + yF
+

c

(1 + yF)2
+

c

(1 + yF)3
+

1 + c

(1 + yF)4

The partial derivative of the swap with respect to the yield is

∂P

∂yF
= –

c

(1 + yF)2
–

2c

(1 + yF)3
–

3c

(1 + yF)4
–

4 (1 + c)

(1 + yF)5

= {c = yF = 0.07} = –3.3872

and the second partial derivative with respect to the forward swap rate is

∂2P

∂y2F
=

2c

(1 + yF)3
+

6c

(1 + yF)4
+

12c

(1 + yF)5
+
20 (1 + c)

(1 + yF)6
= 15.2933

The convexity adjustment can now be found as:

adj. = –
1

2

15.2933

–3.3872
· 0.072

(
e0.18

5
– 1
)
= 0.0019

The convexity-adjusted rate is then equal to 7.19% (0.07+0.0019).
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19.1.6.2 Vega of the Convexity Adjustment

By taking the derivative of the convexity adjustment, we get the
convexity adjustment’s sensitivity to a small change in volatility

ν = –

∂2P
∂y2F
∂P
∂yF

· y2FσTeσ
2T

19.1.6.3 Implied Volatility From the Convexity Value
in a Bond

If the convexity adjustment is known, it is possible to calculate the
implied volatility by simply rearranging the convexity adjustment
formula

σ =

√√√√√√√ln

⎛
⎜⎜⎝ adj.

–1
2

(
∂2P
∂y2F

/
∂P
∂yF

)
· y2F

+ 1

⎞
⎟⎟⎠ 1

T

19.1.7 European Short-Term Bond Options

European bond options can be priced in the Black-76 model by using
the forward price of the bond at expiration as the underlying asset.

c = e–rT (F · N(d1) – K · N(d2))
p = e–rT (K · N(–d2) – F · N(–d1))

where F is the forward price of the bond at the expiration of the
option, and

d2 =
ln(F/K) – (σ 2/2)T

σ
√
T

= d1 – σ
√
T

This model does not take into consideration the pull to par effect of the
bond. At maturity, the bond price must be equal to principal plus the
coupon. For this reason, the uncertainty of a bond will first increase
and then decrease.

The Black-76 model assumes that the uncertainty (variance) of the
underlying asset increases linearly with time to maturity. Pricing of
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European bond options using this approach should thus be limited to
options with short time to maturity relative to the time to maturity of
the bond. A rule of thumb used by some traders is that the time to
maturity of the option should be no longer than one-fifth of the time
to maturity on the underlying bond

Example 19.1.4
Consider a European put option with 6 months to expiry and strike price 122 on a
bond with forward price at option expiration equal to 122.5. The volatility of the
forward price is 4%, and the risk-free discount rate is 5%. Calculate the option’s
value.

F = 122.5,K = 122,T = 0.5, r = 0.05, σ = 0.04.

d1 =
ln(122.5/122) – (0.042/2) · 0.5

0.04
√
0.5

= 0.1587, d2 = d1 – 0.04
√
0.5 = 0.1305

N(–d1) = 0.4369, N(–d2) = 0.4481

p = e–0.05·0.5 [122N(–d2) – 122.5N(–d1)] = 1.1155

19.1.8 The Schaefer and Schwartz Model

Schaefer and Schwartz (1987) modified the Black-Scholes model for
pricing bond options to take into consideration that the price volatility
of a bond increases with duration

c = S · N(d1) – Ke–rTN(d2)
p = Ke–rTN(–d2) – S · N(–d1)

where σ =
(
λSα–1

)
D, and

d2 =
ln(S/K) – (r + σ 2/2)T

σ
√
T

= d1 – σ
√
T

Here D is the duration of the bond after the option expires. λ is estim-
ated from the observed price volatility σ0 of the bond. α is a constant
that Schaefer and Schwartz suggest should be set to 0.5.

λ =
σ0

Sα–1 · D∗

where D∗ is the duration of the bond today.
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Example 19.1.5
Assume that the duration of the bond is 8 years and that the observed price
volatility of the bond is 12%. This gives: λ = 0.15.

In Table 19.1 we use this value and compares the option prices from the Schaefer
and Schwartz formula with option prices from the Black-76 formula.

Table 19.1 Option prices from Schaefer and Schwartz and Black-76

Bond Base Adjusted Black-76 Modified
Duration Volatility (%) Volatility (%) Value Black-76 value

1 12.0 1.5 5.5364 0.6929
2 12.0 3.0 5.5364 1.3857
3 12.0 4.5 5.5364 2.0783
4 12.0 6.0 5.5364 2.7707
5 12.0 7.5 5.5364 3.4628
6 12.0 9.0 5.5364 4.1545
7 12.0 10.5 5.5364 4.8457
8 12.0 12.0 5.5364 5.5364



20
Convertibles

20.1 Convertible Bonds

A convertible bond is a security issued by a company that may be
converted from debt to equity (and vice versa) at various prices and
stages in the life cycle of the contract (e.g. the time to maturity). There
are many types of convertible bonds with various conversion proper-
ties and complex structures. Common examples of convertible bonds
are Convertible Preferred Stock bonds, Zero-Coupon convert-
ibles, Mandatory convertibles, to name but a few. The traditional
(simplest) convertible bond is one that is a fixed coupon paying bond
when the stock price S is below some predetermined conversion price
K (i.e. S < K), and may be converted to a predetermined number
of stocks (the conversion ratio) when above (i.e. S > K). It may im-
mediately become apparent that the traditional convertible bond is
effectively a bond with an imbedded call warrant (option) on the stock
of the issuing company with strike price K.

Since a convertible bond is a liability of the issuer, if the company
goes into liquidation, the convertible bondholder has priority over
most other parties except pure bondholders.

Returning to our traditional convertible bond example, for the mo-
ment we ignore credit rating issues, the convertible price Bcon is close
to its fixed income value (bond) B of an equivalent pure bond from
the same issuer when deep out-of-the-money. Hence,

Bcon ∼ B for S � K.
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When the stock price is very high and exceeds the conversion price
K, the convertible bond becomes stock-like when deep in-the-money.
Hence,

Bcon ∼ S for S � K.

Moreover, given that the convertible is effectively a bond plus a war-
rant on the stock, the price of a convertible must be comparable to the
sum of the two individual components. From arbitrage considerations
for options, we know that the price of a call warrant W must satisfy

W > max[S – K, 0]

prior to expiry. Ignoring issues related to credit risk, when the warrant
element is out-of-the-money the convertible is worth the fixed income
value B. Therefore, the convertible has to satisfy the relation

Bcon > max[S – K, 0] + B

given the hybrid nature of the convertible bond. Here the price of the
convertible bond has been approximated as

Bcon = B +W

In Fig. 20.1 we show the price track of a traditional convertible bond.
The convertible price (solid red line) is always above the stock price
track as already discussed. The red dotted line demonstrates the price
track of a bond plus warrant in the absence of credit risk.

The true price track of the convertible is found to fall below the
fixed income value (Bcon < B) when the stock price falls to low levels
due to the widening of credit risk spread when the company’s stock
price falls. As the stock price falls to low levels there is an increas-
ing correlation between the price of the convertible and the stock;
however, as the price rises to very high values, the correlation be-
comes insignificant (as the credit rating improves). A fall below the
fixed income value is also seen in the pure bonds due to poorer credit
rating.

The following terms are used to describe various sections of the
price track of the convertible:

1. Distressed debt –In this region the convertible is on close to a de-
fault event. If a default event occurs, a sum proportional to the
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Fig. 20.1 The price track of a convertible bond

recovery rate R is paid out to the holder of a convertible. The
value of the convertible is highly sensitive to the credit risk spread
(a parameter often referred to as omicron) in this region.

2. Busted convertible–A term often used to describe a convertible that
is out-of-the money but above the distressed zone.

3. Hybrid zone–The convertible shows behaviour between the stock
and a pure bond.

4. Equity zone–The convertible price is more equity-like than debt.
Credit risk factors become insignificant since the company’s credit
rating is high due to the high stock value.

The hybrid nature of convertibles is often exploited by arbitrageurs in
the rather popular practice of convertible arbitrage. Convertible arbit-
rage is especially successful at times of high volatility in stock price,
producing high returns with relatively low risk. Delta, gamma and
other more sophisticated hedging strategies are used to capture the
low-risk profits (though not completely risk-free). Instances can occur



528 J.R.M. Röman

when the equity options imbedded are priced different to those of the
equivalent pure options that may exist in the market for various reas-
ons. These situations, when a relative price difference is observed, are
exploited by arbitrageurs in a long-short trade.

20.1.1 A Model for Convertibles

The stock is modelled as a lognormal Brownian process

dS = μSdt + σSdZ1

and the interest rate as

dr = u(r, t)dt + w(r, t)dZ2

where Z1 and Z2 are two independent Wiener processes with a cor-
relation ρ. The drift u(r, t) and volatility w(r, t) is dependent on the
interest rate model. We make the choice

dr = (a1 – b1r)dt + wdZ2

where all parameters are time dependent. The value of the convertible
V depends on the stock price, the interest rate and of time, V(S, r, t),
and given by the following PDE

∂V

∂t
+
σ 2S2

2

∂2V

∂S2
+ ρσSw

∂2V

∂S∂r
+
w2

2

∂2V

∂r2
+ rS

∂V

∂S
+ (u – λw)

∂V

∂r
– rV = 0

This is found by hedging the two processes against each other and
with the introduction of the market price of risk. The value of the
convertible must be: V(S, r, t) ≥ nS where n is the number of stocks
on exercise. We get

∂V

∂t
+
σ 2S2

2

∂2V

∂S2
+ ρσSw

∂2V

∂S∂r
+
w2

2

∂2V

∂r2
+ rS

∂V

∂S
+ (a1 – b1r)

∂V

∂r
– rV = 0

This equation can be solved with a finite difference method.



21
A New Framework

21.1 Pricing Before and After the Crisis

Ten years ago if you had suggested that a sophisticated investment
bank did not know how to value a plain vanilla interest rate swap,
people would have laughed at you. But that isn’t too far from the case
today.

We will now give an introduction to yield curve constructions and
how this has been changed since after the financial crisis.

21.1.1 Introduction

Pricing complex interest rate derivatives requires modelling the fu-
ture dynamics of the yield curve term structure. Most of the literature
considers the existence of the current zero-coupon yield curve as
a given, and its construction is often neglected, or even obscured,
as it is considered to be more of an art than science. Actually, any
yield curve term structure modelling approach will fail to produce
good/reasonable prices if the current term structure is not correct.

Financial institutions, software houses and practitioners have de-
veloped their own proprietary methodologies in order to extract the
current zero-coupon yield curve term structure from quoted prices
on subsets of liquid market instruments. These can be divided into
two groups: “best fit” and “exact fit” algorithms. “Best-fit” algorithms
start by assuming a functional form for the term structure and calibrate
its parameters such as to minimize the re-pricing error of the chosen
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set of calibration instruments. An example of this is the Smith-Wilson
approach to discounting used by regulators for insurance companies.

In banks, “exact-fit” algorithms are often preferred in practice. Such
algorithms fix the zero-coupon yield curve on a time grid of N points
in order to exactly re-price N pre-selected market instruments, often
referred to as benchmarks. The implementation of these algorithms is
often incremental, extending the yield curve step by step in increas-
ing order of maturity for the selected instruments, in a “bootstrap”
approach.

Intermediate yield curve values are then obtained by interpolation
on the bootstrapping grid. Here different interpolation algorithms are
available but little attention has been devoted in the literature to the
fact that interpolation is often already used during bootstrapping,
not just after that, and that the interaction between bootstrapping
and interpolation can be subtle if not nasty (see e.g. Patrick Hagan,
Interpolation method for curve constructions).

While naive algorithms may fail to deal with market subtleties such
as date conventions, the intra-day fixing of the first floating payment
of a swap, the turn-of-year effect, the futures convexity adjustment,
etc., even very sophisticated algorithms used in a naive way may fail to
provide relevant estimates of forward Euribor rates in difficult market
conditions, such as those observed since the summer of 2007 and the
so-called subprime credit crunch crisis. Today using just one single
curve is not enough to account for forward rates of different tenors,
such as 1, 3, 6, 12 months, because of the large basis swap spreads
presently quoted in the market.

Prior to the credit crisis, (zero-coupon) yield curve modelling was
reasonably well understood. The underlying fundamental principles
had existed for over 15 years with steady evolutions in areas that
were most relevant to options and complex products. Credit and li-
quidity issues were ignored as their effects were minimal. Pricing a
single-currency interest rate swap was relatively straightforward. A
single “default free” zero-coupon yield curve was calibrated to liquid
market products, and future cash flows of other instruments were
discounted and evaluated using this single curve. There was little vari-
ation between implementations, and results across the market were
consistent.

Following the credit crisis, yield curve modelling has undergone
nothing short of a revolution. During the credit crisis, credit and liquid-
ity problems appeared in several markets. This drove apart previously
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closely-related interest rates. For example, Euribor basis swap spreads
dramatically increased and the spreads between Euribor and Eonia
overnight indexed swaps (OIS) diverged. In addition, the impact of
counterparty credit on valuation and risk management dramatically
increased.

Existing modelling and infrastructure no longer seemed to work
and a re-assessment of the basic principles has taken place. Currently
a new interest rate modelling framework is evolving which is based
on OIS discounting and the integration of credit value adjustments
(CVAs). Pricing a single-currency interest rate swap (IRS) now takes
into account the difference between projected rates such as Euribor
that include credit risk and the rates appropriate for discounting cash
flows that are risk free or based on funding cost. CVAs take into ac-
count the likelihood that the counterparty will default, along with
the expected exposure given default, the volatility of these expected
exposures, and wrong way risk.1

One of the many consequences of the liquidity crisis that started
in the second half of 2007 has been a strong increase in quoted
basis spreads in the market between single-currency interest rate in-
struments, in particular for swaps. This is characterized by different
underlying rate tenors (e.g. Euribor3M, Euribor6M, etc.), reflecting
the increased liquidity risk, and an increased preference of financial
institutions for receiving payments with higher frequency (quarterly
instead of semi-annually, for instance). Such asymmetry has induced
the “segmentation” of interest rate markets into various sub-areas, with
1M, 3M, 6M and 12M underlying rate tenors. Each area is character-
ized, in principle, by its own internal dynamic, reflecting the different
views and interests of the market participants.

In order to price derivatives we must now know

1. the underlying interest rate (Libor/Eonia, etc.);

2. the matching market prices for plain vanilla derivatives, which are
used to construct zero-coupon yield curves and the term structure
of volatilities, as well as for calibration and hedging;

3. the transaction mechanics: collateral and liquidity/funding issues;

4. the counterparties: credit and default issues.

1 Wrong-way risk is defined by the International swaps and Derivatives Association (ISDA) as
the risk that occurs when “exposure to a counterparty is adversely correlated with the credit
quality of that counterparty”.



532 J.R.M. Röman

21.1.2 After the Crises – How the Market Has Changed

In Fig. 21.1, we show the market quotations on 31 September 2008,
for six basis swap curves corresponding to the four Euribor tenors 1,
3, 6 and 12 months.

As one can see, the basis spreads are monotonically decreasing from
over 100 to around four basis points. There is neither way nor any
good reason to ignore such quotations in a market pricing framework
of interest rate derivatives. Before the credit crunch of August 2007,
the basis spreads were just a few basis points.

The consequences of the credit crunch crisis that started in August
2007 can also be seen in the historical series of the Euribor 6-month
(6M) rate vs. the Eonia OIS rate as in Fig. 21.2. The change in the
spread is essentially a consequence of the different credit and liquid-
ity risk reflected by Euribor and Eonia rates. This divergence is not
a consequence of any difference in counterparty risk between these
contracts. Euribor and OIS rates are exchanged in the interbank mar-
ket by risky counterparties, but they also depend on different fixing
frequences of the underlying rates.

Fig. 21.1 A typical overnight index swap
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Fig. 21.2 The 6-month Euribor vs. Eonia overnight indexed swap rate

In Fig. 21.3, we show the basis spread between some of the term
structures of interest rates in June 2011

The different influence of credit risk on Libor and overnight rates
is shown in Fig. 21.4, where we compare the historical series for
the Euribor-OIS spread above credit default swaps (CDS) spreads for
some main banks in the Euribor Contribution Panel (Commerzbank,
Deutsche Bank, Barclays, Santander, Royal Bank of Scotland and
Credit Suisse). We observe that the Euribor-OIS basis explosion in Au-
gust 2007 exactly matches the CDS explosion, corresponding to the
generalized increase of the default risk seen in the interbank market.

An effect of the credit crunch has been the great increase of col-
lateral agreements (Credit Support Annex (CSA) agreements) in an
attempt to reduce the counterparty risk of over-the-counter (OTC)
derivatives. Nowadays most of the counterparties in the interbank mar-
ket have mutual collateral agreements. In 2010, more than 70% of all
OTC derivatives transactions were collateralized.2

The main feature of the CSA is a margination mechanism similar
to those adopted by central clearing houses for standard instruments
exchange (e.g. futures). Shortly, at every margination date, the two

2 International swaps and Derivatives Association, ISDA (2010).
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Fig. 21.3 The EUR basis preads for market data in June 2011

Fig. 21.4 The 5months Euribir-OIS spread and credit default spread for somemain
banks in Euorope during the financial crisis
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counterparties check the value of the portfolio of mutual OTC trans-
actions and regulate the margin, adding to or subtracting from the
collateral account the corresponding mark to market variation with
respect to the preceding margination date.

We can also look at CSA as a hedging mechanism, where the
collateral amount hedges the creditor against the event of default
of the debtor. The most diffused CSA provides a daily margination
mechanism and an overnight collateral rate.

An important consequence of the diffusion of collateral agreements
among the interbank counterparties is that we can consider the prices
of derivatives quoted in the interbank market as counterparty risk-free
OTC transactions. A second important consequence is that, by no ar-
bitrage, the CSA margination rate and the discounting rate of future
cash flows must match, hence the name “CSA discounting”. Since the
OIS curve is what is usually used, the alternative name is “OIS dis-
counting”. Such a discounting curve is also the best available proxy
for a risk-free yield curve.

21.1.2.1 Discount Rate – The Risk-Free Interest Rate, Then
and Now

Before the crisis, the risk-free rate was defined in either two ways:

1. The rate at which the government borrows. This assumes that
governments do not default and that their bond yields are not
contaminated by liquidity or tax premiums.

2. The (Libor) rate at which the big international (Libor rated) banks
borrow at short maturities (e.g. 3 months). This assumes that
the credit spread over a short horizon of a highly rated bank is
practically zero.

Now, many actors in the markets use the OIS/Eonia as the risk-free
interest rate. This is obtained by compounding the overnight interest
rate at which Libor rated banks borrow. One way to justify this new
definition is to argue that zero credit risk at short horizons is valid for 1
day but not for longer periods. Another justification is that OIS/Eonia is
the rate that is paid on cash collateral and is therefore the correct dis-
counting rate for collateralized forward contracts and swaps. The latter
argument does not require that Libor rated banks have zero credit risk
at even overnight horizons.
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21.1.2.2 Reasons to Change the Idea of the Risk-Free Rates

The argument that highly rated entities have zero credit risk over short
time horizons requires perfect observability of the balance sheet (as-
set values and debt). However, the crisis in 2008 showed that bank
balance sheets are terribly opaque. Banks valued illiquid assets not by
marking to market but by marking to model (see model risk) or some-
times marking to their own belief. Similarly, the true liabilities of the
bank were hidden using off balance sheets. This meant that the true
distance to default could be much lower than the estimated distance
to default based on observable parameters.

The unreliability of accounting information creates a “jump to de-
fault” risk and creates non-negligible credit spreads over short time
horizons. So, even 1-month Libor can no longer be regarded as risk
free. Whether overnight Libor can be regarded as risk free is an open
question.

We also have to remember, even if a bank is Libor rated today (i.e. it
can borrow at Libor today), this does not guarantee that it can borrow
at Libor in the next quarter because it may no longer be Libor rated
then. The Libor rate for the next quarter will be the rate at which a
bank can borrow if it is Libor rated on that date. This makes a big
difference between 6-months Libor and the 3-months Libor rate.

This implies that an interest rate swapwhose floating leg is 3-months
Libor is not the same as a swap whose floating leg is 6-months Libor.
The floating leg payments on the first swap are expected to be lower
and therefore the fixed leg should also be lower. A tenor swap in
which both legs are floating – say 3-months Libor on one leg and 6-
months Libor on the other leg – should include a tenor spread3 on the
3-months leg to ensure that the swap is fair at inception. We are assum-
ing here that the interest rate swaps are free of credit (counterparty)
risk as discussed later when we turn to collateralization.

Similar explanations can be given for the cross-currency swap (CCS)
spread. In a basis CCS, both legs are floating but in different currencies.
For example, US dollar Libor on a dollar notional amount may be ex-
changed for Japanese yen Libor on an equivalent yen notional with an
exchange of principals at the end. If Libor is regarded as risk free, then

3 This tenor spread is usually called basis spread, but I think tenor spread is a better name. In
the following I will call this spread basis spread
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the two legs are floating rate bonds that must be worth par and the
swap should trade flat. In reality however, for several years, there has
been a premium on the yen leg of this swap. Credit quality differences
could be one explanation for this, though liquidity issues might also
play an important role.

21.1.3 A Multi-Curve Framework

To set up this framework, we denote with Mx, x = {d, f1, . . . , fn} a
multiple distinct interest rate sub-market, characterized by the same
currency and by distinct money market accounts Bx, such as

Bx(t) = exp

⎧⎨
⎩

t∫
0

rx(t
′)dt′

⎫⎬
⎭ ,

where rx(t) are the associated short rates. We also have multiple yield
curves Cp

x in the form of a continuous term structure of discount
factors,

Cp
x = {T → px(t0, T), T � t0},

where t0 is the reference date of the curves (e.g. settlement date, or
today) and px(t, T) the price at time t � t0 of the Mx-zero-coupon
bond for maturity T, such that px(T ,T) = 1. In each sub-market Mx we
postulate the usual no-arbitrage relation,

px(t, T2) = px(t, T1)px(t, T1, T2), t � T1 < T2,

where px(t, T1, T2) denotes the Mx forward discount factor from time
T1 to time T2, prevailing at time t. The financial meaning is that, in
each market Mx, given a cash flow of one unit of currency, at time T2,
its corresponding value at time t < T2 must be unique. This must be
true, both if we discount in one single step from T2 to t, using the
discount factor px(t, T2), and if we discount in two steps, first from T2
to T1, using the forward discount px(t, T1, T2) and then from T1 to t,
using px(t,T1).

We also define continuously compounded zero-coupon rates
zx(t0,T) and simply compounded instantaneous forward rates fx(t0, T)
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such that

px(t0,T) = exp {–zx(t0,T) · τc(t0,T)} = exp

⎧⎨
⎩–

t∫
0

fx(t0, u)du

⎫⎬
⎭ ,

ln px(t0,T) = –zx(t0, T) · τc(t0, T) = –

T∫
0

fx(t0, u)du,

where τc(T1, T2) = τ (T1, T2, dcc) and dcc, the day count convention for
the zero rate. From the relationships mentioned earlier it is immediate
to observe that

• zx(t0, T) is the average of fx(t0, u) over [t0, T];

• if rates are non-negative, p(t0, T) is a monotone non-increasing
function of T such that 0 < p(t0, T) � 1∀T > t0; the instantan-
eous forward curve Cf

x is the most severe indicator of yield curve
smoothness, since anything else is obtained through its integration,
therefore being smoother by construction.

Using the rate formulas we define two other curves associated with
Cx, a zero curve and an instantaneous forward rate curve

Cz
x = {x(t0, T), T � t0}

Cf
x = {x(t0,T), T � t0}

,

where zx and fx are given from the previous equation as

zx(t0,T) = –
1

τc(t0,T)
· ln px(t0,T)

fx(t0, u) = –
∂

∂t
ln px(t0, t)|t=T = zx(t0, T) + τc(t0, T)

∂

∂t
zx(t0, t)|t=T .

In the following we will denote with Cx the generic curve and we
will specify the particular typology (discount, zero or forward curve)
if necessary.

Denoting with Fx(t;T1, T2) the discretely compounded forward
rate corresponding to the Mx forward discount factor px(t, T1, T2),
resetting at time T1 and covering the time interval [T1, T2], we have

px(t,T1,T2) =
px(t,T2)

px(t,T1)
=

1

1 + Fx(t;T1, T2) · τx(T1,T2) ,
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where τx(T1, T2) is the year fraction between times T1 and T2 with
day-count dcx. We then obtain the familiar no-arbitrage expression

Fx(t;T1T2) =
1

τx(T1,T2)

[
1

px(t,T1,T2)
– 1

]
=

px(t,T1) – px(t,T2)

τx(T1, T2) · px(t, T2) .

This can be also derived as the fair value condition at time t of the
forward rate agreement (FRA) contract with pay-off at maturity T2
given by

FRAx(T2;T1,T2,K,N) = N · τx(T1, T2) [Lx(T1, T2) – K]

Lx(T1, T2) =
1 – px(T1, T2)

τx(T1, T2) · px(T1, T2) ,

where N is the nominal amount, Lx(T1, T2) the T1-spot Libor rate for
maturity T2 and K the (simple compounded) strike rate (sharing the
same day-count convention for simplicity). Introducing expectations
we have ∀t � T1 < T2:

FRAx(T2;T1,T2,K,N) = px(t,T2) · EQ(T2)
t,x [FRAx(T2;T1,T2,K,N)] ,

= N · px(t,T2) · τx(T1,T2)
{
EQ(T2)
t,x [Lx(T1,T2)] – K

}
,

= N · px(t,T2) · τx(T1,T2) {Fx(t;T1, T2) – K} ,

where the expectation is taken in the Mx – T2-forward measure corres-
ponding to the numeraire px(t,T2), at time t with respect to measure
Q and filtration Ft, encoding the market information available up to
time t, and we have assumed the standard martingale property of the
forward rates

Fx(t;T1, T2) = EQ(T2)
t,x [Fx(T1;T1, T2)] = EQ(T2)

t,x [Lx(T1, T2)]

to hold in each interest rate market Mx. The previous assumptions im-
ply that each sub-market Mx is internally consistent and has the same
properties as the “classical” interest rate market had before the crisis.

The value of a FRA at time t can therefore be written as

FRAx(t;T1,T2,K,N) = N ·
[
px(t,T1) – px(t,T2)

px(t,T2)
– τx(T1,T2) · K

]
· px(t,T2),

= N · [px(t,T1) – (1 + τx(T1,T2)) · K · px(t,T2)
]
.
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Regarding swap rates, given two increasing dates vectors T =
{T0, . . . , Tn}, S = {S0, . . . , Sm}, Tn = Sm > T0 = S0 � t0, and an
interest rate swap with a floating leg paying at times Sj, j = 1, . . . ,m,
the Euribor rate with tenor [Sj–1; Sj] fixed at time Sj–1, plus a fixed leg
paying a fixed rate at times Ti, i = 1, . . . , n, the corresponding simple
compounded fair swap rate on curve Cx with day count convention
dcS is given by

Sx(t,T,S) =

m∑
j=1

px(t, Sj)τF(Sj–1, Sj)Fx(t, Sj–1, Sj)

Ax(t,T)

px(t,T0) – px(t,Tn)

Ax(t,T)
,

where

Ax(t,T) =
n∑
i=1

px(t,Ti)τS(Ti–1, Ti)

is the forward annuity on curve Cx and we have defined τS(Ti–1, Ti) =
τ (Ti–1, Ti, dcS). Notice that on the right-hand side of the previous equa-
tion for Sx, we have used the definition of the forward rate and the
telescopic property of the summation. Actually the telescopic prop-
erty would hold exactly only if the forward rates end dates equal the
next forward rate start dates, with no period’s gaps or overlaps.

This is not true in general, because start and end dates are adjusted
with their business day convention, and the resulting periods do not
concatenate exactly. Typically, such date mismatch does not exceed
one business day (which sometimes can be three calendar days). In
practice, on the one hand the error is small, of the order of 0.1 basis
points; on the other hand nothing prevents us from using the exact
dates and accrual periods.

21.1.3.1 The Single-Curve Framework

So how did the market practice for pricing and hedging interest
rate derivatives change through the credit crunch crisis? Using the
notation described earlier we start by considering a general single-
currency interest rate derivative with m future coupons with pay-offs
π = {π1, . . . , πm}, with πi = πi(Fx), generating m expected cash
flows c = {c1, . . . , cm} on the future dates T = {T1, . . . , Tm}, with
t < T1 < . . . < Tm.
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The pre-crisis standard market practice was based on a single-curve
procedure, well known to the financial world, that can be summarized
as follows:

1. Select one finite set of the most convenient (e.g. liquid) vanilla
interest rate instruments traded in real time in the market with in-
creasing maturities. For instance, a very common choice in the EUR
market was a combination of short-term EUR deposit, medium-term
futures on Euribor3M and medium-long-term swaps on Euribor6M.

2. Build one yield curve, Cd using the selected instruments plus
a set of bootstrapping rules (e.g. pillars, priorities, interpolation
method, etc.)

3. Compute the relevant forward rates using the same yield curve
Cd as

Fd(t;Ti–1,Ti) =
pd(t, Ti–1) – pd(t,Ti)

τd(Ti–1,Ti) · pd(t,Ti) ,
where t � Ti–1 < Ti, i ∈ {1, . . . , m}

4. Compute cash flows ci as expectations at time t of the correspond-
ing coupon pay-offs πi(Fd) with respect to the Ti-forward measure
associated to the numeraire pd(t,Ti) from the same yield curve Cd,

ci = c(t;Ti,πi) = EQ(Ti)
t,d [πi(Fd)] .

5. Compute the relevant discount factors pd(t, Ti) from the same yield
curve Cd.

6. Compute the derivative’s price at time t as the sum of the discoun-
ted cash flows,

π(t;Ti,πi) =
m∑
i=1

pd(t,Ti) · c(t;Ti,πi) =
m∑
i=1

pd(t,Ti) · EQ(Ti)
t,d [πi(Fd)].

7. Compute the delta sensitivity with respect to the yield curve Cd and
hedge the resulting delta risk using the suggested amounts (hedge
ratios) of the same set of vanillas.
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21.1.3.2 The Multi-Curve Framework

Unfortunately, the pre-crisis approach outlined earlier is no longer
consistent, at least in its simple formulation, with the present market
conditions.

• First, it does not take into account the market information carried
by basis swap spreads, now much larger than in the past and no
longer negligible.

• Second, it does not take into account that the interest rate market
is segmented into sub-areas corresponding to instruments with dis-
tinct underlying rate tenors, characterized, in principle, by different
dynamics (e.g. short rate processes). Thus, pricing and hedging an
interest rate derivative on a single yield curve mixing different un-
derlying rate tenors can lead to “dirty” results, incorporating the
different dynamics, and eventually the inconsistencies, of distinct
market areas, making prices and hedge ratios less stable and more
difficult to interpret. On the other side, the more the vanillas and
the derivative share the same homogeneous underlying rate, the
better should be the relative pricing and the hedging.

• Third, by no arbitrage, discounting must be unique: two identical
future cash flows of whatever origin must display the same present
value (PV); hence we need a unique discounting curve.

In principle, a consistent credit and liquidity theory would be required
to account for the interest rate market segmentation. This would also
explain the reason why the asymmetries cited earlier do not neces-
sarily lead to arbitrage opportunities, once counterparty and liquidity
risks are taken into account. Unfortunately such a framework is not
easy to construct. In practice, interest rate derivatives with a given un-
derlying rate tenor should be priced and hedged using vanilla interest
rate market instruments with the same underlying rate tenor.

The post-crisis market practice may be summarized in the following
working procedure:

1. Build one discounting curve Cd using the preferred selec-
tion of vanilla interest rate market instruments and bootstrapping
procedure;

2. Build multiple distinct forwarding curves Cf1, . . . , Cfn us-
ing the preferred selections of distinct sets of vanilla interest
rate market instruments, each homogeneous in the underlying
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Xibor rate tenor (typically with 1M, 3M, 6M and 12M tenors) and
bootstrapping procedures.

3. Compute the relevant forward rates with tenor f using the corres-
ponding yield curve as

Ff (t;Ti–1, Ti) =
pf (t,Ti–1) – pf (t, Ti)

τf (Ti–1,Ti) · pf (t,Ti) ,
where t � Ti–1 < Ti, i ∈ {1, . . . ,m};

4. Compute cash flows ci as expectations at time t of the corres-
ponding coupon pay-offs πi(Ff ) with respect to the discounting
Ti-forward measure associated to the numeraire pd(t, Ti), as

ci = c(t;Ti,πi) = EQ(Ti)
t,d

[
πi(Ff )

]
;

5. Compute the relevant discount factors pd(t, Ti) from the discount-
ing yield curve Cd.;

6. Compute the derivative’s price at time t as the sum of the discoun-
ted cash flows,

π(t;Ti) =
m∑
i=1

pd(t,Ti) · c(t;Ti,πi) =
m∑
i=1

pd(t,Ti) · EQ(Ti)
t,d

[
πi(Ff )

]
;

7. Compute the delta sensitivity with respect to the market pillars of
each yield curve Cd, Cf1, . . . ,Cfn and hedge the resulting delta risk
using the suggested amounts of the corresponding set of vanillas.

The FRAs are now priced under the T2 forward measure associated to
the numeraire px(t, T2) as

FRAx(t;T1, T2,K) = px(t,T2) · τx(T1,T2)
{
EQ(T2)
t,x [Lx(T1,T2)] – K

}
,

= px(t,T2) · τx(T1,T2) [Fx(t;T1, T2) – K] .

21.1.3.3 Pricing in Single- and Multi-Curve Framework

Now, we will study and compare a 5.5Y maturity EUR floating swap
leg on Euribor1M (not directly quoted in the market) in the two
frameworks.

In the single curve framework this is commonly priced us-
ing discount factors and forward rates calculated on the same
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depo-futures-swap curve cited earlier. The corresponding delta risk
is hedged using the suggested amounts (hedge ratios) of 5Y and 6Y
Euribor6M swaps. Notice that the expectation in step 3 is taken with
respect to the pricing measure EQ(Ti)

t,d associated to the numeraire
pd(t, Ti) of the discounting curve. Any other equivalent measure
associated to different numeraire may be used as well.

In the multiple curve framework the forward rates are calculated
on the C1M forwarding curve, bootstrapped using Euribor1M vanillas
only, plus discount factors calculated on the discounting curve Cd.
The delta sensitivity is computed by shocking one by one the market
pillars of both C1M and Cd curves and the resulting delta risk is hedged
using the suggested amounts (hedge ratios) of 5Y and 6Y Euribor1M
swaps plus the suggested amounts of 5Y and 6Y instruments from the
discounting curve Cd.

In the single curve framework approach, a unique yield curve is
built and used to price and hedge any interest rate derivative on a given
currency. This is equivalent to assuming that there exists a unique fun-
damental underlying short rate process able to model and explain the
whole term structure of interest rates of all tenors. It is also a relative
pricing approach, because both the price and the hedge of a derivative
are calculated relatively to a set of vanillas quoted in the markets. We
notice also that it is not strictly guaranteed to be arbitrage-free, because
discount factors and forward rates obtained from a given yield curve
through interpolation are, in general, not necessarily consistent with
those obtained by a no-arbitrage model; in practice bid-ask spreads and
transaction costs hide any arbitrage possibilities.

The multiple-curve framework is consistent with the present mar-
ket situation, but it is also more demanding. First, the discounting
curve clearly plays a special and fundamental role and must be built
with particular care. This “pre-crisis” obvious step has become, in the
present market situation, a very subtle and controversial point. In fact,
while the forwarding curves construction is driven by the underlying
rate homogeneity principle, for which there is (now) a general market
consensus, there is no longer, at the moment, any general consensus
for the discounting curve construction.

At least two different practices can be encountered in the market:

1. the old “pre-crisis” approach (e.g. the depo, futures/FRA and swap
curve cited earlier) that can be justified with the principle of
maximum liquidity, and
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2. the OIS curve, based on the overnight rate (Eonia for EUR), con-
sidered as the best proxy to a risk-free rate available on the market
because of its 1-day tenor, justified with collateralized (riskless)
counterparties.

Second, building multiple curves requires multiple quotations: many
more bootstrapping instruments must be considered (deposits, fu-
tures, swaps, basis swaps, FRAs, etc., on different underlying rate
tenors), which are available in the market with different degrees of
liquidity and can display transitory inconsistencies.

Third, non-trivial interpolation algorithms are crucial for producing
smooth forward curves.

Fourth, multiple bootstrapping instruments imply multiple sensitiv-
ities, so hedging becomes more complicated.

Last but not least, pricing libraries, platforms, reports, etc., must
be extended, configured, tested and released to manage multiple and
separated yield curves for forwarding and discounting, not a trivial task
for quants, risk managers, developers and IT people.

The static multiple-curve pricing and hedging methodology de-
scribed earlier can be extended, in principle, by adopting multiple
distinct models for the evolution of the underlying interest rates with
tenors f1, . . . , fn to calculate the future dynamics of the yield curves
Cf1, . . . , Cfn and the expected cash flows. The volatility/correlation
dependencies carried by such models imply, in principle, bootstrap-
ping multiple distinct variance/covariance matrices and hedging the
corresponding sensitivities using volatility- and correlation-dependent
vanilla market instruments.

21.1.4 Bootstrapping with Multiple Curves

21.1.4.1 Settings

A yield curve is a complex object that results from many different fea-
tures that concur to shape the curve. We have different types of yield
curves, for example, the discount factor curve Cp

x the zero-coupon
yield curve Cz

x and the instantaneous forward rate curve Cf
x.

Since the discount factor curve is observed to be monotonically
decreasing, the zero rates are chosen to be continuous, as in

px(t0,T) = exp {–zx(t0,T) · τc(t0, T)} = exp

⎧⎨
⎩–

t∫
0

fx(t0, u)du

⎫⎬
⎭ .
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The associated year fraction must be monotonically increasing with
increasing time intervals and additive, such that

τC(T1,T2) + τC(T2, T3) = τC(T1, T3).

The day count convention satisfying the aforementioned conditions
that will be used is the common actual/365(fixed), such that

τC(T1, T2) := τ [T1 T2; actual/365(fixed)] = (T2 – T1)/365.

The forward rates are chosen to be simply compounded as with an
associated year fraction (Euribor rates are quoted as actual/360 so that

τF(T1, T2) := τ [T1 T2; actual/360(fixed)] = (T2 – T1)/360.

The reference date, t0 can be, today, spot (two business days after
today according to the chosen calendar) or, in principle, any business
day after today. Once the yield curve at spot date is available, the cor-
responding yield curve at today can be obtained using the discount
between these two dates implied by O/N and T/N deposits.

We choose a time grid of the yield curve as a predetermined vector
of dates, defined by the set of maturities associated with the selec-
ted bootstrapping instruments. The first point in the time grid is the
reference date t0.

Finally we have the bootstrapping instruments, quoted in the
market, chosen as input for the bootstrapping procedure. We will use
an algorithm that ensures exact re-pricing of the choosen input boot-
strapping instruments. We also use an interpolation algorithm for
calculating the yield curve outside the time grid points. Notice that
interpolation is also used during the bootstrapping procedure. In prin-
ciple, we can interpolate on discounts, zero rates or log discounts. We
build curves for all needed currencies for their specific calendars
used to determine holidays and business days. In some cases we also
specify the bid, mid or ask price chosen for the market instruments, if
quoted.

21.1.4.2 Market Instruments

In the current market situation, similar instruments may display very
different price levels, liquidity, and may also give erratic forward rates.
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Therefore, the first step for multiple yield curve construction is a very
careful selection of the corresponding sets of bootstrapping instru-
ments while they roughly cover different maturities and overlap in
significant areas. For this reason we select those with more liquid ones
with a tighter bid/ask spread.

We start by examining these instruments in detail. In order to fix the
data set once for all, we use the quotes on liquid instruments observed
in the market.

We begin with the interest rate deposits (depos) which are over-
the-counter zero-coupon contracts that start at a reference date t0
(today or spot), and pay the interest accrued until maturity with a
given rate fixed at t0. Let RDepo

x (t0, Ti) be the quoted rate associ-
ated to the i:th deposit with maturity Ti and underlying rate tenor
x = t0 months. The implied discount factor at time Ti is given by the
following relation:

px(t0, Ti) =
1

1 + RDepo
x (t0,Ti) · τF(t0, Ti)

, t0 < Ti.

The previous expression can be used to bootstrap the yield curve Cx
at point Ti.

We continue with FRAs which are forward starting deposit contacts.
For instance the 3x9 FRA is a 6 months deposit starting 3 months for-
ward. In some markets FRAs are quoted between IMM days. In EUR,
FRAs do concatenate exactly; for example, the 6x9 FRA starts when
the preceding 3x6 FRA ends. The underlying forward rate fixes two
working days before the forward start date.

Market FRAs provide direct empirical evidence that a single curve
cannot be used to estimate forward rates with different tenors. This
can be seen if we observe the levels in the market. For instance, if
the 1x4 FRA3M between March 18 and June 18, (τF;1x4 = 0.25556), is
Fmkt
1x4 = 1.696% and the 4x7 FRA3M between June 18 and September18,

(τF;4x7 = 025556), is Fmkt
4x7 = 1.580%, we can compound these two rates

to obtain the implied 1x7 FRA6M between March 18 to September 18,
(τF;1x7 = 0.50556), as

Fimplied
1x7 =

(
1 + Fmkt

1x4τF;1x4
) · (1 + Fmkt

4x7τF;4x7
)
– 1.0

= 1.641%

while the market quote for the 1x7 FRA6M might be Fmkt
1x7 = 1.831%,

that is, 19 basis point higher. The difference is a liquidity risk premium
in the market.



548 J.R.M. Röman

Market FRAs can be used together with deposits to construction
of the short-term structure of the yield curve Cx. If Fx(t; Ti–1, Ti) is
the i:th Euribor forward rate resetting at time Ti–1 with tenor x = Ti –
Ti–1 months associated to the i:th FRA with maturity Ti, the implied
discount factor at time Ti is obtained by

px(t0,Ti) =
px(t0, Ti–1)

1 + Fx(t0,Ti–1, ti) · τF(Ti–1,Ti) , t0 < Ti–1 < Ti.

Note that the closer the forward starting date of each FRA Ti–1 gets to
the current date t0 the closer each FRA rate gets to the matching spot
deposit rate

lim
Ti–1→t0

Fx(t0,Ti–1,Ti) = Rdepo
x (t0, Ti).

Interest rate futures are the exchange-traded counterparts to the
over-the-counter FRAs. While FRAs have the advantage of being more
customizable, futures are highly standardized contracts which can be
bought and sold at some exchanges. The most common contracts are
traded at the Intenational Money Market in Chicago (so-called IMMFu-
tures). They refer to Euribor3M or USD Libor3M. Some contracts are
also traded in London at LIFFE. These standardized contracts expire
the third Wednesday, every March, June, September and December
(the IMM dates). The closing rates for these contracts will be fixed
by the exchange on the third Wednesday of the maturity month, the
last trading day being the preceding Monday (because of the 2 days of
settlement).

Notice that such a date grid is not always regular: if Si is the maturity
date of the i’th futures, then Si and Ti, such that τF(Si,Ti) = 3M, are the
underlying FRA3M start and end dates, respectively, and, in general,
Ti �= Si+1. On some exchanges, futures are quoted in terms of prices
instead of rates, for example, eurodollar futures. Then, the relation
between rate and price is

PFut
x (t0, Si,Ti) = 100 – RFut

x (t0, Si,T).

Since exchange-traded futures have a daily marking-to-market mechan-
ism they do not have exactly the same pay-off as FRAs. An investor
who is long a futures contract will have a loss when the futures price
increases (and the futures rate decreases) but he will finance such loss
at a lower rate. On the other hand, when the futures price decreases
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the daily profits will be reinvested at a higher rate. This means that the
volatility of the forward rates and their correlation to the spot rates
have to be accounted for; hence a convexity adjustment is needed to
convert the rate RFut

x implied in the futures price to its corresponding
forward rate Fx,

Fx(t0, Si,Ti) = RFut
x (t0, Si,T) – Cx(t0, Si,Ti).

In other words, the trivial unit discount factor implied by daily mar-
gination according to the rules of the exchange introduces a pricing
measure mismatch with respect to the corresponding FRA case that
generates a volatility-correlation-dependent convexity adjustment. The
calculation of the convexity adjustment thus requires a model for the
evolution of the underlying interest rates. While advanced approaches
are available in literature, a standard practitioner’s recipe is based on a
simple short rate 1-factor Hull & White model.

EUR futures on Euribor3M uses in their names, the letters “H”, “M”,
“U” and “Z”, stand for March, June, September and December expiries,
respectively. A future FUT3MH6 means a March 2016 expiry.

Futures on an x-tenor Euribor can be used as bootstrapping instru-
ments for the construction of short-medium term structure section of
the yield curve. Be aware of the fact that futures contracts have ex-
piration dates gradually shrinking to zero and generate rolling pillars
that periodically jump and overlap the depo and FRA pillars. Hence
some priority rule must be used in order to decide which instruments
should be excluded from the bootstrapping procedure.

Given the i’th futures market quote PFut
x (t0, Si, Ti) with underlying

FRA maturity Ti, the implied discount factor at Ti is given by

px(t0, Ti) =
px(t0,Ti–1)

1 +
{
RFut
x (t0, Si,Ti) – Cx(t0, Si, Ti)

} · τF(Si,Ti) .

The aforementioned expression can be used to bootstrap the yield
curve Cx at point Ti once point Si is known.

Interest rate swaps are OTC contracts in which two counter-
parties agree to exchange fixed against floating rate cash flows. The
EUR market quotes standard plain vanilla swaps starting at spot date
with annual fixed leg vs. floating leg indexed to x-months Euribor rate
paid with x-months frequency. Such swaps can be regarded as port-
folios of FRA contracts (the first one being actually a deposit). The
day count convention for the quoted (fair) swap rates is 30/360 (bond
basis).
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Swaps can be selected as bootstrapping instruments for the con-
struction of the medium-long term structure section of the yield
curve.

By setting T0 = S0 = t = t0 and Tn = Sm = Ti = Sj in

Sx(t,T , S) =

m∑
j–1

px(t, Sj)τF(Sj–1, Sj)Fx(t, Sj–1, Sj)

Ax(t,T)
=
px(t,T0) – px(t, Tn)

Ax(t,T)
,

we obtain

Sx(t,Ti) =

j∑
k=1

px(t0, Sk)τF(Sk–1, Sk)Fx(t0, Sk–1, Sk)

Ax(t0,Ti)
,

=

⎡
⎣ j–1∑

k=1

px(t0, Sk)τF(Sk–1, Sk)Fx(t0, Sk–1, Sk) + px(t0, Sk–1) – px(t0, Ti)

⎤
⎦

× 1

Ax(t0,Ti–1) + px(t0,Ti)τS(Ti–1,Ti)
,

where the last discount factor px(t0, Ti) has been separated in the
second line and τS(T1, T2) = τ [T1, T2, 30/360(bond basis)]. Ax(t,T)
is the annuity factor. This can be inverted to find px(t0, Ti) as

px(t0, Ti) =

[ j–1∑
k=1

px(t0, Sk)τF(Sk–1, Sk)Fx(t0, Sk–1, Sk)

+ px(t0, Sk–1) – Sx(t0,Ti–1)Ax(t0,Ti–1)

]
× 1

1 + Sx(t0,Ti)τS(Ti–1,Ti)
.

This last formula can be used to bootstrap the yield curve at point Ti =
Sj once the curve points at {T1, . . . , Ti–1} and {S1, . . . , Sj–1} are known.
Since the fixed leg frequency is annual and the floating leg frequency is
given by the underlying Euribor rate tenor, we have that {T1, . . . , Ti} ⊆
{S1, . . . , Sj = Ti} for any given fixed leg date Ti. Hence some points
between px(t0, Ti–1) and px(t0, Ti) may be unknown and one must
resort to interpolation and, in general, to a numerical solution.
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Interest rate (single-currency) basis swaps are floating vs. floating
swaps admitting underlying rates with different tenors. The EUR mar-
ket quotes standard plain vanilla basis swaps as portfolios of two swaps
with the same fixed legs and floating legs paying Euribor xM and yM,
for example, 3M vs. 6M, 1M vs. 6M, 6M vs. 12M, etc. Basis swaps are
a fundamental element for long-term multi-curve bootstrapping, be-
cause they allow one to imply levels for non-quoted swaps on Euribor
1M, 3M and 12M, which can be selected as bootstrapping instruments
for the corresponding yield curves construction. If �x6M(t0, Ti) is the
quoted basis spread for a basis swap receiving Euribor xM and paying
Euribor6M plus spread for maturity Ti, we simply have

Sx(t0, Ti) = S6M(t0, Ti) +�x6M(t0,Ti).

Note that the bootstrapping of yield curves requires extrapolation of
basis swap quotations.

21.1.4.3 Interpolation

The choosen interpolation method determines how reasonable the
yield curve will be. For instance, linear interpolation of discount
factors is an obvious but extremely poor choice. Linear interpolation
of zero rates or log discounts are popular choices leading to stable
and fast bootstrapping procedures, but unfortunately they produce
horrible forward curves, with a sag saw or piecewise-constant shape.

In Fig. 21.5, we show examples of bad (but very popular!) inter-
polation scheme, linear interpolation. The lower curve is the Swedish
zero swap curve in April 2016 based on deposits (O/N, T/N, 1W, 1M,
2M and 3M), IMM FRAs (with maturities between June 2016 and June
2018) and swaps (3Y–10Y, 12Y, 15Y, 20Y and 30Y). The upper curve
shows the forward curve.

While the zero curve displays a smooth behaviour, the forward
curve is non-smooth with oscillations that can exceed several basis
points. Such discontinuities in the forward curves correspond to angle
points (knees) in the zero curves, generated by linear interpolation
that forces them to suddenly turn around a market point.

It is recommended to only use the most liquid swaps, with ma-
turities 3–10, 12, 15, 20, 25 and 30 years in the bootstrapping.
The remaining less liquid quotations for 11, 13, 14, 16–19, 21–24,
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Fig. 21.5 A bootstrap of SEK swap curve with linear interpolation. This shows the
very bad shape of the forward curve

26–29 years maturity should only be included in the linear interpol-
ation schemes in order to reduce the amplitude of the forward curve
oscillations.

The choice of cubic interpolations is a very delicate issue. Simple
splines suffer of well-documented problems such as spurious inflec-
tion points, excessive convexity and lack of locality after input price
perturbations. Some researchers found the classic Hyman monotonic
cubic filter4 applied to spline interpolation of log discounts to be the
easiest and perhaps the best approach. Its monotonicity ensures non-
negative forward curves and actually removes most of the unpleasant
waviness. Notice that the Hyman filter can be applied to any cubic
interpolants. This helps to address the non-locality of spline using
alternative more local cubic interpolations.

21.1.4.4 No-Arbitrage and Forward Basis

Now, we wish to understand the consequences of the assumptions
given earlier in terms of no arbitrage. First, we notice that in the

4 James M. Hyman. Accurate monotonicity preserving cubic interpolation. SIAM Journal on
Scientific and Statistical Computing, 4(4):645–654, 1983.
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multiple-curve framework the classic single-curve no-arbitrage rela-
tions are broken. For instance,

pd(t,T2) = pd(t,T1) · pf (t,T1, T2) t‘T1 ≤ T2

pf (t,T1,T2) =
1

1 + Ff (t;T1,T2) · τf (T1, T2) .

No arbitrage between distinct yield curves Cd and Cf can be immedi-
ately recovered by taking into account the forward basis, the forward
counterparty of the quoted market basis, as

pf (t,T1,T2) =
1

1 + Fd(t;T1,T2) · BAfd(t;T1,T2) · τd(T1,T2)
or through the equivalent simple transformation rule for forward rates

Ff (t; T1, T2) τf (T1, T2) = Fd(t; T1, T2) τd(T1,T2)BAfd(t; T1, T2).

From this equation we can express the forward basis as a ratio
between forward rates or, equivalently, in terms of discount factors
from Cd and Cf curves as

BAfd(t;T1,T2) =
Ff (t;T1, T2) · τf (T1,T2)
Fd(t;T1, T2) · τd(T1, T2) =

pd(t,T2) · pf (t,T1) – pf (t,T2)
pf (t, T2) · pd(t,T1) – pd(t,T2) .

Obviously the following alternative additive definition is completely
equivalent

pf (t, T1, T2) =
1

1 +
[
Fd(t;T1,T2) + BA′

fd(t;T1, T2)
] · τd(T1,T2)

BA′
fd(t;T1, T2) =

Ff (t;T1,T2) · τf (T1,T2) – Fd(t;T1,T2) · τd(T1, T2)
τd(T1,T2)

=
1

τd(T1,T2)

[
pf (t,T1)

pf (t,T2)
–
pd(t,T1)

pd(t,T2)

]

= Fd(t;T1, T2)
[
BAfd(t;T1,T2) – 1

]

which is more useful for comparisons with the market basis
spreads. Notice that if Cd = Cf we recover the single-curve case
BAfd(t, T1, T2) = 1, BA′

fd(t, T1,T2) = 0.
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The forward basis in the previous equations is a straightforward con-
sequence of the aforementioned assumptions, essentially the existence
of two yield curves and no arbitrage. Its advantage is that it allows for
a direct computation of the forward basis between forward rates for
any time interval [T1, T2], which is the relevant quantity for pricing
and hedging interest rate derivatives. In practice its value depends on
the market basis spread between the quotations of the two sets of
vanilla instruments used in the bootstrapping of the two curves Cd
and Cf .

The approach can be inverted to bootstrap a new yield curve from
a given yield curve plus a given forward basis, using the following
recursive relations:

pd,i =
pf ,i · BAfd,i

pf ,i–1 – pf ,i + pf ,i · BAfd,i
pd,i–1 =

pf ,i
pf ,i–1 – pf ,i · BA′

fd,i · τd,i pd,i–1

pf ,i =
pd,i

pd,i +
(
pd,i–1 – pd,i

) · BAfd,i
pf ,i–1 =

pd,i
pd,i–1 + pd,i–1 · BA′

fd,i · τd,i pf ,i–1,

where τx(Ti–1, Ti) = τx,i, px(t, Ti) = px,i and BAfd(t, Ti–1, Ti) = BAfd,i.
Given the yield curve Cx up to step px,i–1 plus the forward basis for the
step i – 1 → i, the earlier equations can be used to obtain the next
step px,i.

We now discuss a numerical example of the forward basis in a
realistic market situation where we consider the four underlying
interest rates I = {I1M, I3M, I6M, I12M}, where I = Euribor index,
and we bootstrap from market data five distinct yield curves C =
{Cd, C1M, C3M, C6M, C12M}, using the first one for discounting and
the others for forwarding.

We build the discounting curve Cd following a “pre-crisis” tra-
ditional recipe from the most liquid deposit, IMM futures/FRA on
Euribor3M and swaps on Euribor6M. The other four forwarding curves
are built from convenient selections of deposits, FRAs, futures, swaps
and basis swaps with homogeneous underlying rate tenors; a smooth
and robust algorithm (monotonic cubic spline on log discounts) is
used for interpolations. Different choices (e.g. an Eonia discount-
ing curve) as well as other technicalities of the bootstrapping are
described by Ferdinando M. Ametrano and Marco Bianchett (see
references).
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The corresponding multiplicative forward basis curves can be
calculated as

BAfd(t;T1,T2) =
Ff (t;T1, T2) · τf (T1,T2)
Fd(t;T1, T2) · τd(T1, T2) =

pd(t,T2) · pf (t,T1) – pf (t,T2)
pf (t,T2) · pd(t,T1) – pd(t,T2)

and the additive forward basis are given by

BA′
fd(t;T1, T2) =

Ff (t;T1, T2) · τf (T1,T2) – Fd(t;T1,T2) · τd(T1,T2)
τd(T1,T2)

,

=
1

τd(T1,T2)

[
pf (t,T1)

pf (t,T2)
–
pd(t,T1)

pd(t,T2)

]

= Fd(t;T1, T2)
[
BAfd(t;T1,T2) – 1

]
.

21.1.5 Modern Pricing

According to Bianchetti and Morini (2010), the new market situation
has induced a sort of “segmentation” of the interest rate market into
sub-areas, mainly corresponding to instruments with 1, 3, 6 and 12
months underlying rate tenors. These are characterized, in principle,
by different internal dynamics, liquidity and credit risk premia, reflect-
ing the different forwarding horizon views and interests of the market
participants (“on average” i.e. views are weighted by how much Cap-
ital each investor is willing and able to invest according to his/her
opinion).

In response to the crisis, the classical pricing framework, based
on a single yield curve used to calculate forward rates and discount
factors, has been abandoned, and a new modern pricing approach has
been created by practitioners. This new methodology takes into ac-
count the market segmentation as an empirical fact and incorporates
the new interest rate dynamics into a multiple curve framework as
follows.

• Discounting curves: these are the yield curves used to discount
futures cash flows. These curves must be constructed and selected
so that they reflect the funding cost of the bank in combination
with the actual nature of the specific contract that generates the
cash flows. In particular:
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◦ an OIS-based curve is used to discount cash flows generated
by a contract under CSA with daily margination and overnight
collateral rate;

◦ a funding curve is used in case of contracts without CSA;

◦ in case of non-standard CSA (e.g. different margination frequency,
rate, threshold, etc.), an appropriate funding curve should in
principle be selected, but we will not discuss this topic here.

• We stress that the funding curve for non-CSA contracts is specific
to each counterparty that will have its specific funding curve. This
modern discounting methodology is called CSA-discounting.

• Forwarding curves: these are the yield curves used to compute
forward rates. As discussed before, the curve must be construc-
ted and selected according to the tenor and typology of the rate
underlying the actual contract to be priced. For instance, a swap
floating leg indexed to Euribor6M requires a Euribor6M forwarding
curve constructed from quoted instruments with Euribor6M as the
underlying rate.

During the pricing process it is important to generate all cash flows
from the curve based on instruments with the same tenor and then
discount with the matching discount curve. It is also important to use
an exact fit bootstrap method and a good interpolation method.

21.1.6 Pricing Under Collateralization

The financial crisis in 2008 was a catalyst for significant changes in
the market. Financial practitioners witnessed a tremendous increase
in basis swap spreads, implying a divergence from implied rates and
traded rates in interest rate markets. When collateral agreements in-
creased in use and when counterparties began discounting at the
overnight rates dictated by the credit support annex, the world had
forever changed.

As a result, many financial institutions are currently in the process
of migrating to new market standards. But questions remain as to the
potential impact on existing portfolios and how to effectively manage
instruments with longer-dated maturities when spreads in Libor vs.
OIS rates diverge.

Collateral discounting and the impact of standardization in the mar-
ket are adding a whole new level of complexity to derivative pricing
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and risk management. Market participants are seeking a deeper under-
standing when it comes to the potential consequences of moving to
collateral discounting.

With such collateral agreements, also called CSA agreements, we
have to make changes in the valuation formulas. The swap market has
already moved to the dual-curve approach, with the London Clear-
ing House (LCH) using OIS discounting for clearing swaps, and the
International swaps and Derivatives Association (ISDA) standardiza-
tion on the imminent horizon. Other markets, including swaptions,
caps/floors, exotics and equities, are still evolving. Now, receivers of
fixed rates gain under OIS discounting, while payers lose when com-
pared to the old ways. Taking into account recent studies of the swap
market moving towards the multi-curve approach, we come to the
conclusion that swaps can be significantly mispriced under the single
curve framework.

In the market, one can observe that spreads and OIS rate risks are
close for par swaps, but differ significantly for out-of-the-money (OTM)
swaps (vs. ATM swaps). Under the single curve approach, one neglects
the risk that actually exists, while under the dual-curve approach one
can estimate these risks.

When we price under a collateral agreement we make two simplify-
ing assumptions:

1. We consider full collateralization (with zero thresholds) by cash.

2. The collateral is adjusted continuously with zero minimum transfer
amount (MTA).

Most CSA contracts include a threshold and an MTA to avoid posting
small amounts of cash each day. The CSA contracts can be one sided or
bilateral. About 16% of the agreements are unilateral (one sided) while
84% bilateral.

21.1.6.1 Problems in the Old-Style Implementation

We start by considering a plain vanilla tenor basis swap,5 typic-
ally 3-months floating against 6-months floating rate as illustrated in
Fig. 21.6.

5 It is also common that payment of short-tenor leg is compounded and paid at the same time
with the other leg.
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Fig. 21.6 A 3-month floating rate (the upper cash flows) against a 6-month float-
ing rate (the lower cash flows). The arrow above the upper “wave” represents the
spread over the floating rate

In the old-style implementation, the spread between the rates in
Fig. 21.6 was typically zero (or very near zero). However, since 2008
the spread is quite significant and also volatile as seen in Fig. 21.7,
where tenor swap spreads for maturities 1, 3, 5, 7, 10 and 20 years are
shown. This spread represents the difference in risk; the long tenor
has a higher risk than the short tenor.

The upper curve is the 1 YR
and lowest the 20 YR

Fig. 21.7 Historical data for USD 3-month vs. 6-month TS spread. The curves are
given in the same order as the legends6

6 Source Bloomberg.
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Fig. 21.8 A 3-month floating rate in JPY (with a constant spread) against a 3-
month floating rate in USD. The arrow above the upper “wave” represents the
JPY spread over USD

Similar problems are found if we consider cross-currency swaps
(CCS or CIRS) as shown in Fig. 21.8.

In the old-style implementation the spread in a CCS was zero. How-
ever, since 2007 the spread is quite significant and volatile. Here we
have seen a drastic change in recent years. This is shown in Fig. 21.9
where we show the cross-currency USD/JPY spreads for maturities 1,
3, 5, 7 and 10 years.

Before 2008, most banks did their funding on the interbank mar-
kets; that is, the trades were made without collateral. Then we had the
situation as in Fig. 21.10.

According to the old view, the purchase of an OTC derivative was
funded with an unsecured external loan.

Here counterparty R (Red) buys a derivative of B (Blue) where the
value of the derivative is given by some optional payment. To fund the
trade, R takes a loan from another party or internally in his own bank.7

The interest A pays on this loan is (supposed to be) given by Libor. We
then have unsecured funding. A Libor rate is §, an unsecured offer rate
in the interbank (deposit) market and Libor discounting is appropriate
for such unsecured trades between financial firms with Libor credit

7 If the trader is a person who funds the trade with his/her savings from his/her own money-
market account, he/she will typically earn less interest on this amount than the running rate on
his/her own money-market account.
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The upper curve is the 10 YR
 and lowest the 1 YR

Fig. 21.9 Historical data for USD/JPY cross-currency spread. The curves are given
in the reverse order as the legends8

Fig. 21.10 Funding via the nterbank market

quality. In addition, Libor discounting makes the present value of the
loan equal to zero.

After the credit crisis in 2008, banks started requesting collateral.
This modifies the pricing of OTC derivatives. The current view is to
require collateral, so the funding is secured, and the picture looks like
Fig. 21.11.

In the new view, we finance the trade by “a loan” from the
counterparty via collateral from counterparty B.

Here, the outright cash flow, that is, the collateral is equal to the
PV of the trade so no external funding is needed. And when the PV of
the trade changes, R pays back or receives more collateral from B. This
collateral is (ideally) paid/received once every day. Also, the party who

8 Source Bloomberg.
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Fig. 21.11 Funding via collateral

holds the collateral must pay the other party interest. The size of this
interest is specified in the collateral agreement. Since the collateral is
posted on a daily basis, the relevant default risk is an overnight risk.
Therefore, the collateral rate is usually the over-night (O/N) rate, so we
use OIS to bootstrap the discount curve. When funding is provided by
the collateral agreement Libor discounting is inappropriate.

21.1.6.2 Collateral Agreements

In Table 21.1 we provide some details for a given collateral agreement.
In many CSA agreements you also have the opportunity to post (gov-

ernment) bonds. When posting bonds there normally is a haircut. This
haircut is a percentage that is subtracted from the market value of
the asset that is being used as collateral. The size of the haircut re-
flects the perceived risk associated with holding the asset. The higher
the haircut, the safer the loan as regarded by the lender. For example,

Table 21.1 A simplified collateral agreement

Base currency USD
Eligible currency USD, EUR, GBP
Independent amount 5M
Haircuts [Schedule]
Threshold 5OM
Minimum transfer amount 500,000
Rounding Nearest 100,000 USD
Valuation agent Party A
Valuation date Daily, NewYorkBusinessDay
Notification time 2PM, NewYorkBusinessDay
Interest rate OIS, EONIA, SONIA
Daycount Act/360
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United States Treasury bills, which are seen as fairly safe, might have a
haircut of only 10%. For most other bonds the collateral is higher.

In most CSA agreements you also have to consider the MTA and the
threshold amount. The MTA is the smallest amount of currency that
is allowed for transfer as collateral. For large banks, the MTA is usually
in the USD 100,000 range, but can be lower. The threshold amount is
the amount of unsecured credit risk that two counterparties are willing
to accept before any demand for additional collateral demand will be
made. The counterparties typically agree to a threshold amount prior
to committing to the deal, but this is a source of on-going friction
between OTC counterparties and their brokers.

All these choices in the CSA agreements complicate the application
of the theoretical priniciples. However, we will omit this here since
it is a rather complex subject. But we need to remember this when
dealing with the full valuation in a practical situation. For simplicity,
we will pursue the analysis of CSAs with MTA and threshold amount
set to zero and in addition assume that the posting frequency is
instantaneous. Instantaneous posting enables us to approximate the
collateral with an integral instead of a sum. Furthermore, we only use
cash as collateral.

Also note that, except for the MTA and thresholds, CSA typically
does not involve hedging 100% of the credit exposure. As illustrated in
Fig. 21.12, a 6-year swap (paying fixed at 2.5% on $1,000,000 notional)

Fig. 21.12 A 6-year swap paying fixed rate at 2.5% on 1,000,000 notional. The
collateral amount is the difference between the credit exposure and the swap
value
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cannot be 100% funded with collateral. The reason is that the value of
the trade changes faster than the collateral frequency, and MTA and
threshold considerations must also be taken into account, in addition
to cash flow events. We must also consider the movements in the value
of the collateral itself.

Fig. 21.12 shows the total exposure of a swap over the lifetime of
the trade, and a hypothetical collateral amount. Since imperfections
exist, the total exposure of the trade is not perfectly hedged. The mis-
match between the current exposure and the amount in the collateral
account means funding is not purely OIS. This is the reason for funding
value adjustments (FVA), which we will discuss later.

21.1.6.3 Overnight Index Swaps

For an OIS the floating rate is a daily compounded O/N rate and the
market quotes; the fixed rates are called OIS rates9 (see Fig. 21.13).

Figure 21.13 shows the Libor vs. OIS spread in USD and JPY over a
few years. According to the old view, an inappropriate kind of dis-
counting was used for secured trades which mispriced future cash
flows. This has as a significant impact on multi-currency trades where
the change is given by

Change ≈ Notional × Duration × (Difference in discount rate)

This is also inconsistent with CCS. The implied Foreign Exchange (FX)
forwards are off market, leading to mispricing of foreign Libors. Long-
dated FX products are most affected. We also get wrong forward Libors
and overestimation of forward Libors with short tenors.

Fig. 21.14 shows the 3-month Libor vs. OIS spread in USD and JPY
over a few years.

Fig. 21.13 A typical overnight index swap

9 Usually, there is only one payment for tenors (maturities) shorter than a year.
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Fig. 21.14 A 3-month Libor rate vs. the overnight index swap spread in USD
and JPY

The bootstrapping of OIS curves is made by the same formula that
we use when we bootstrap interest rate swaps

D(t, TN) =
D(t,T0) – ROIS

N

∑N–1
n=1 �nD(t,Tn)

1 + ROIS
N · �n

.

Here we get the discount factors from the quoted OIS rates ROIS
N with

maturity TN and day fraction �n. The continuously compounded zero-
coupon rate is then calculated by

ZOIS
N = –100 · ln (D(t,TN))

dN
365

21.1.7 Pricing with Collateral Agreements

With no collateral (or collateral in domestic rate rd), the price of a
contingent claim paying �(T) at maturity T is given by the Feynmann-
Kaè representation

�d (t) = EQd

⎡
⎣exp

⎧⎨
⎩

T∫
t

rd(u)du

⎫⎬
⎭ · �d(T)|Ft

⎤
⎦ = EQd

[
Bd(t)

Bd(T)
· �d(T)|Ft

]
.
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Here the expectation is taken with respect to the domestic martingale
(risk-neutral) probability measure Qd and the domestic money-market
account⎧⎨

⎩
dBd(t) = rd(t)Bd(t)dt

Bd(0) = 1
⇒ Bd(t) = exp

⎧⎨
⎩

t∫
0

rd(u)du

⎫⎬
⎭

so

exp

⎧⎨
⎩–

T∫
t

rd(u)du

⎫⎬
⎭ =

Bd(t)

Bd(T)
.

If there is a collateral agreement where we are supposed to get or pay
cash collateral in a foreign currency f , then we have to add an extra
term in the pricing formula for the aforementioned contingent claim.
Say that we are in the money and get collateral from our counterparty.
In this case we are free to invest this collateral in the market. However,
we also have to pay interest to our counterparty since he/she still owns
the collateral. This collateral rate is specified in the CSA agreement
between the counterparties. If we denote the instantaneous return
(or cost when it is negative) by holding the collateral in the foreign
currency f at time t by yf (t), we have

yf (t) = rf (t) – cf (t).

Here rf (t) denotes the “risk-free” interest rate, assumed to be equal
to the funding or repo rate for uncollateralized assets and cf (t) the
collateral rate in the foreign currency f . In the case of cash collateral,
the collateral rate c(t) is usually given by the overnight rate, that is, the
OIS rate of the corresponding currency. When using treasury bonds
as collateral, the collateral rate is usually the repo rate. For corporate
bonds, we can use Libor plus a spread.

The collateral rate is pre-specified in the collateral agreement. There-
fore, we let r(t) accumulate in a money-market (bank) account and c(t)
in a collateral account. When we get collateral, we invest this money
in the market.

The spot measure is taken to be that measure under which uncollat-
eralized assets grow at r(t), and collateralized assets grow at c(t). Both
uncollateralized p(t, T) and collateralized D(t, T) zero-coupon bonds
pay 1 unit in the domestic currency at time T.
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If we denote the PV of the derivative at time t by �d(t) (in terms of
the domestic currency d), the collateral amount posted from the coun-
terparty in the foreign currency f is given by �f (t) ≡ �d(t)/fxd,f (t),
where fxd,f (t) is the foreign exchange rate at time t,representing the
price of the unit amount of currency f in terms of currency d. These
considerations lead to the following calculations for the collateralized
derivative price:

�d (t) = EQd

[
Bf
t

Bf
T

· �d
T |Ft

]
+ fxd,ft · EQf

⎡
⎣

T∫
0

Bf
t

Bf
s

yfs

(
�d

s

fxd,fs

)
ds|Ft

⎤
⎦ .

We start by calculating the expectation

EQf

⎡
⎣

T∫
0

Bf
t

Bf
s

yfs

(
�d

s

fxd,fs

)
ds|Ft

⎤
⎦

= EQd
t

⎡
⎣

T∫
0

Bf
t

Bf
s

· Bf
s

Bd
s /fx

d,f
s

· B
d
t /fx

d,f
t

Bf
t

· yfs
(
�d

s

fxd,fs

)
ds|Ft

⎤
⎦ ,

where we have used Bf (s) = Bd(s)/f (d,f )x (s)∀s in order to change the
measure from Qf to Qd. This can be simplified into

EQf

⎡
⎣

T∫
0

Bf
t

Bf
s

· yfs
(
�d

s

fxd,fs

)
ds

⎤
⎦ = EQd

t

⎡
⎣

T∫
0

Bd
t

Bd
s

· fx
d,f
s

fxd,ft

· yfs
(
�d

s

fxd,fs

)
ds

⎤
⎦ ,

=
1

fxd,ft

EQd
r

⎡
⎣

T∫
0

Bd
t

Bd
s

· yfs · �d
s ds

⎤
⎦ ,

=
1

fxd,ft

EQd
t

⎡
⎣

T∫
0

exp

⎧⎨
⎩–

s∫
t

rdudu

⎫⎬
⎭ · yfs · �d

s ds

⎤
⎦.

Using this formula we have

�d
t = EQd

t

⎡
⎣exp

⎧⎨
⎩–

T∫
t

rdudu

⎫⎬
⎭ · �d

T +

T∫
t

exp

⎧⎨
⎩–

s∫
t

rdudu

⎫⎬
⎭ · yfs · �d

s ds

⎤
⎦
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which is equivalent to

�d
t = exp

⎧⎨
⎩

t∫
0

rdudu

⎫⎬
⎭

× EQd
t

⎡
⎣exp

⎧⎨
⎩–

T∫
0

rdudu

⎫⎬
⎭ · �d

T +

T∫
t

exp

⎧⎨
⎩–

s∫
t

rdudu

⎫⎬
⎭ · yfs · �d

s ds

⎤
⎦ ,

= Bd
t · EQd

t

⎡
⎣�d

T

Bd
T

· +
T∫
t

�d
s

Bd
s

· yfsds
⎤
⎦ ,

= Bd
t · EQd

t

⎡
⎣�d

T

Bd
T

· +
T∫

0

�d
s

Bd
s

· yfsds–
t∫

0

�d
s

Bd
s

· yfsds
⎤
⎦ ,

= Bd
t ·
⎛
⎝EQd

t

⎡
⎣�d

T

Bd
T

+

T∫
0

�d
s

Bd
s

· yfsds
⎤
⎦ –

t∫
0

�d
s

Bd
s

· yfsds
⎞
⎠ .

Now we see that

EQd
t

⎡
⎣�d

T

Bd
T

+

T∫
0

�d
s

Bd
s

· yfsds
⎤
⎦ =

�d
t

Bd
t
+

t∫
0

�d
s

Bd
s

· yfsds = M(t)

since the expectation is a martingale under the domestic money-
market account. Here we have also defined M(t). Remark that
EQd
d [M(T)] = M(t). Next, use Ito’s lemma on

M(t) =
1

Bd
t

· �d
t +

t∫
0

1

Bd
s

· yfs · �d
s ds.

The result is

dMt =
∂Mt

∂t
dt +

∂Mt

∂Bd
t
dBd

t +
∂Mt

∂�d(t)
d�d(t)

=
�d

t

Bd
t

· yft dt – �d
t(

Bd
t
)2 rdt · Bd

t dt +
1

Bd
t
d�d

t =

(
�d

t

Bd
t

· yft – �d
t

Bd
t

· rdt
)
dt +

1

Bd
t
d�d

t

= exp

⎧⎨
⎩–

t∫
0

rdudu

⎫⎬
⎭ ·
(
yft – r

d
t

)
· �d

t dt + exp

⎧⎨
⎩–

t∫
0

rdudu

⎫⎬
⎭ · d�d

t
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or

exp

⎧⎨
⎩

t∫
0

rdudu

⎫⎬
⎭ dMt =

(
yft – r

d
t

)
· �d

t dt + d�d
t

that is,

d�d
t =
(
yft – r

d
t

)
· �d

t dt + exp

⎧⎨
⎩

t∫
0

rdudu

⎫⎬
⎭ dMt.

We can now solve the previously mentioned Stochastic Differential
Equation (SDE): {

d� = α · �dt + dB

�(t) = π

where we use

α =
(
yf (t) – rd(t)

)

and

dB = exp

⎧⎨
⎩

t∫
0

rd(u)du

⎫⎬
⎭ dM(t).

Set X = e–αt� and use Ito

dX =
∂X

∂t
dt +

∂X

∂�
d� = –α · X · dt + α · X · dt + e–αtdB = e–αtdB.

If we integrate this we get

X(T) – X(t) =

T∫
t

e–αudB ⇒ e–αT�(T) – e–αt�(t) =

T∫
t

e–αudB

and by taking expectation value we get

�(t) = eα(T–t)EQd
t [�(T)] .

Finally we have the following theorem.
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Theorem 21.1. Suppose that �d(T) is a derivative’s pay-off at time
T in terms of the domestic currency d and that the foreign currency
f is used as the collateral for the contract. Then, the value of the
derivative at time t,�d(t) is given by

�d(t) = EQd
t

⎡
⎣exp

⎧⎨
⎩–

T∫
t

rd(s)ds

⎫⎬
⎭ · exp

⎧⎨
⎩

T∫
t

yf (s)ds

⎫⎬
⎭�d(T)

⎤
⎦ ,

= Dd(t,T)ETd
t

⎡
⎣exp

⎧⎨
⎩

T∫
t

(
yd(s) – yf (s)

)
ds

⎫⎬
⎭�d(T)

⎤
⎦ .

Here we also have defined the collateralized zero-coupon bond of
currency d as

Dd(t,T) = EQd
t

⎡
⎣exp

⎧⎨
⎩–

T∫
t

cd(s)ds

⎫⎬
⎭
⎤
⎦

or equivalently

cd(t,T) = –
∂

∂T
lnDd(t, T)

and the collateralized forward measure Td, where the collateralized
zero-coupon bond is used as the numeraire.

In the case where the deal and collateral currencies are different, (d)
and (f ) respectively, we define the foreign collateralized zero-coupon
bond D(d, f ) by

Dd,f (t,T) = EQd
t

⎡
⎣exp

⎧⎨
⎩–

T∫
t

cd(s)ds

⎫⎬
⎭ · exp

⎧⎨
⎩–

T∫
t

yd,f (s)ds

⎫⎬
⎭
⎤
⎦ .

In particular, if cd and yd,,f (t) = (rd(t) – cd(t)) – (rf (t) – cf (t)) are
independent, we have

Dd,f (t,T) = Dd(t,T) · exp
⎧⎨
⎩–

T∫
t

yd,f (s)ds

⎫⎬
⎭ ,
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where

yd,f (t, s) = –
∂

∂s
lnEQd

t

⎡
⎣exp

⎧⎨
⎩–

s∫
t

yd,f (s)ds

⎫⎬
⎭
⎤
⎦ .

We also have some corollaries to the Theorem 21.1.

Corollary 21.1 When the foreign “risk-free” rate is the foreign col-
lateral rate, that is, when rf (t) = cf (t) and the collateral is posted in
foreign currency, the PV of the derivative at time t becomes

�(t) = EQ
t

⎡
⎣exp

⎧⎨
⎩–

T∫
t

rd(s)ds

⎫⎬
⎭ · �(T)

⎤
⎦ = p(t,T)ETd

t [�(T)] ,

where p(t, T) is an uncollateralized zero-coupon bond and ETd
t the

expectation under the domestic forward measure with information
given up to time t.

Corollary 21.2 When the domestic “risk-free” rate is the domestic
collateral rate, that is, when rd(t) = cd(t) and the collateral is posted
in domestic currency, again we have

�(t) = EQ
t

⎡
⎣exp

⎧⎨
⎩–

T∫
t

rd(s)ds

⎫⎬
⎭ · �(T)

⎤
⎦ = p(t,T)ETd

t [�(T)] .

Corollary 21.3 If the foreign and the domestic economies are inter-
changed so that the domestic risk-free rate is equal to the domestic
collateral rate, that is, rd(t) = cd(t), and the collateral is posted in
domestic currency, then the previous equation is transformed into

�f (t) = pf (t,T)E
Tf
t

[
�f (T)

]
.

This result clearly shows the fact that the effective funding cost is
given by the collateral rate, regardless of the risk-free rate of the
corresponding currency.



21 A New Framework 571

It is also possible to construct a maturity T dependent measure
associated with the collateralized zero-coupon bonds

Dd(t,T) = EQd
t

⎡
⎣exp

⎧⎨
⎩–

T∫
t

cd(s)ds

⎫⎬
⎭
⎤
⎦

that is similar in some ways to forward measures. Define Q̄T (with
expectation ĒT ) by Q̄T = Z(T) · Q, where

Z(T) =

exp

{
–

T∫
0
cd(s)ds

}

D(0,T)
.

Then

ĒT
t [X(T)] =

EQd
t

[
exp

{
–

T∫
0
cd(s)ds

}
· X(T)

]

EQd
t

[
exp

{
–

T∫
0
cd(s)ds

}]

=

EQd
t

[
exp

{
–

T∫
t
cd(s)ds

}
· X(T)

]

D(t,T)
.

If the spread yd(t) is deterministic, then Q̄Tbecomes the standard
T -forward measure QT because

Z(T) =

exp

{
–

T∫
0

[
rd(s) – yd(s)

]
ds

}

EQd
t

[
exp

{
–

T∫
0

[
rd(s) – yd(s)

]
ds

}] =
1

Bd(T) · pd(0,T) ,

which is the Radon-Nikodym derivative for QT . In particular, Q̄T = QT

when yd(t) = 0 and the collateral rate is equal to the overnight rate,
that is, cd(t) = rd(t).
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From the definition of D(t,T), for any 0 � s � t � T

EQd
s

⎡
⎣exp

⎧⎨
⎩–

t∫
0

cd(s)ds

⎫⎬
⎭Dd(t,T)

⎤
⎦ = EQd

s

⎡
⎣EQd

t

⎡
⎣exp

⎧⎨
⎩–

T∫
0

cd(s)ds

⎫⎬
⎭
⎤
⎦
⎤
⎦

= EQd
s

⎡
⎣exp

⎧⎨
⎩–

T∫
0

cd(s)ds

⎫⎬
⎭
⎤
⎦ = exp

⎧⎨
⎩–

s∫
0

cd(s)ds

⎫⎬
⎭D(s, T)

giving a result that will prove to be useful, for example, in modelling
cd(t) and D(t, T) as SDEs.

Corollary 21.4 The value of the collateralized zero-coupon bond
discounted by the collateral rate

exp

⎧⎨
⎩–

t∫
0

cd(s)ds

⎫⎬
⎭D(t,T)

is a Qd-martingale, confirming thet the drift under Qd of D(t, T)
is cd(t).

In the literature Q̄T is often referred to as the T -forward measure in-
duced by D(t, T) as numeraire because it makes collateralized trades
Q̄T -martingales; that is, changing measures from Qd to Q̄T allows
Theorem 21.1 to be restated as the followng corollary.

Corollary 21.5 When payment and pricing currencies are different

EQ̄T

t

⎡
⎣exp

⎧⎨
⎩–

T∫
0

[
yd(s) – yf (s)

]
ds

⎫⎬
⎭ · �(T)

⎤
⎦

=

�(t) · exp
{
–

t∫
0

[
yd(s) – yf (s)

]
ds

}

D(t, T)

and when payment and pricing currencies are the same

EQ̄T

t [�(T)] =
�(t)

D(t, T)
.
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21.1.7.1 Pricing with Multiple Currency Collateralization

With full collateralization in multiple currencies, the funding spread
between currencies i and k is given by y(i,k) = yi–yk =

(
ri – ci

)
–
(
rk – ck

)
.

The pricing formula can then be written as (remember: yj(t) = rj(t) –
cj(t))

�d(t) = EQd
t

⎡
⎣exp

⎧⎨
⎩–

T∫
t

max
j∈C

(
rd(u) – yj(u)

)
du

⎫⎬
⎭ · �d(T)

⎤
⎦ ,

= Dd(t,T) · exp
⎧⎨
⎩–

T∫
0

max
j∈C

(
y(d,j)(u)

)
du

⎫⎬
⎭ · ETd

t

[
·�d(T)

]
.

Here we use a blended cheapest-to-deliver (CTD) curve through the
life of the trade constructed for each unique CSA agreement. If we
have an agreement with six possible collateral currencies (USD, EUR,
GBP, JPY, CHF and CAD), we need to bootstrap 29 different interest
rate curves, as shown in Fig. 21.15.

Also, note that we have the following spread relations:

{
y(i,j) = –y(j,i) ∀t > 0

y(i,j) = y(i,k) + y(k,j) ∀t > 0
.

Fig. 21.15 The complicated bootstrap process if 6 collateral currencies are used
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21.1.7.2 What Currency Gives the CTD?

The CTD currency is given by the one with the highest interest rate.
The reason is that the standard contracts in the market always stip-
ulate that it is the party who posts the collateral that can decide on
the currency. By choosing the highest paying currency for the collat-
eral he/she will get the highest rate of return. This contractual feature
is closely related to the fact that the party who posts the collateral
can at any time decide to get the collateral back and then post an-
other collateral in another currency. The receiver of the collateral, on
the other hand, has to pay interest in the currency chosen by his/her
counterparty.

In some agreements, the counterparties can also post bonds. When
bonds are posted, a haircut is made depending on the credit quality of
the bonds.

The party holding the collateral can do what he/she likes with the
cash or the bonds, like selling it in the market. But note that he/she
must return exactly the same collateral when the other party wants it
back and it can be difficult to buy back the same bond when market
liquidity is low.

When you have to post collateral yourself, you might not be able
to deliver the CTD currency. Then you might have to deliver the next
CTD currency or even another one.

If you could decide to return the interest rate in any other currency
than the one your counterparty chooses, then for you the currency
with the lowest rate would be CTD.

In Fig. 21.16, we illustrate the CTD curve for two different curren-
cies, GBP (SONIA) and EUR (EONIA).

21.1.7.3 Bootstrap Technique

Before we end this section, we will describe how to bootstrap in some
different currencies. The exact bootstrap procedure depends on what
liquid instruments are available in each market.

In general, curve stripping is based on market instruments such as

• OIS

• swaps (floating Xibor vs. fixed)

• Basis swaps also known as tenor basis swaps (e.g. Xibor 3M vs.
Xibor 6M)
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Fig. 21.16 A CTD curve for two currencies, GBP (SONIA) and EUR (EONIA)

• Cross-currency basis swaps (CCBS) (e.g. USD Libor 3M vs. GBP
Libor 3M)

The building blocks of these instruments are

• Fixed cash flows: Fixed * YF * Notional

• Libor payments: Libor * YF * Notional

To price these we only need the elementary bits

• Discount factors: DF = PV(1 unit of currency)

• Forwards: FWD = PV(Libor)/DF

Then, the PVs are given by

• PV (Fixed cash flow) = Fixed * YF * Notional * DF

• PV (Floating cash flow) = YF * Notional * FWD * DF,

where YF is the year fraction.
Once we know the discount factors for all maturities and the for-

ward rates for all maturities and tenors that is, the dscount curve
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t → DF(t) and the forward curves t → FWDδ(t) for all tenors δ we
are able to price all linear instruments.

In practice, the discount factors and the forward rates are stripped
from market instruments for a set of maturities and tenors. For other
maturities and tenors the values are obtained by interpolation. Here
we have some practical issues:

How is this interpolation performed?
How are the curves represented? In terms of discount factors,

forwards directly, etc.?
Liquid OIS markets exist for the G5 currencies (USD, EUR, GBP,

JPY and CHF) and AUD and CAD among others. If there is no OIS
market or the market is not liquid enough we cannot find an OIS
curve. Therefore we cannot strip the projection curves in the usual
manner. One possible idea is then to turn to a cross-currency market
which is liquid enough and try to simultaneously strip the pro-
jection curve and the implied discounting curve from local swaps
and CCBS.

In the single-currency case, we first do the stripping of the OIS
curve, typically done using OIS. OIS is a fixed/float interest rate swap
with the floating leg based on the published overnight rate index.

O/N rate + OIS swaps → OIS curve used for discounting

Next, we do the stripping of the projection curves (e.g. 1M, 3M, 6M,
1Y curves) given the OIS curve. Here we use instruments indexed on
Xibor:

Cash deposits + FRA/futures + swaps♦projection curve

In the cross-currency case we first assume that the domestic and for-
eign curves for all needed tenors have been already stripped. Then we
strip the implied foreign basis curve

FX forwards + CCBS♦Foreign discount curve

For the 3-month tenor, we now have Table 21.2.
In the most liquid markets we have the following available curves

(Table 21.3).
For different currencies, the trading conventions and instrument

dependencies are slightly different.
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Table 21.2 The 3-month tenor in the bootstrap process

Domestic floating leg Foreign floating leg
3MDOM index 3MFOR index + spread

Projection Curve DOM3M swap Curve Projection Curve FOR3M swap curve
Discount curve DOM OIS curve Discount curve Implied DOM3M/FOR3M

basis curve

Table 21.3 Available curves for the most liquid markets

Currency Overnight rate Standard curve Forward
curves

Basis curves

USD Fed funds
effective rate

3M USD Libor Muni swaps 1M vs. 3M
3M vs. 6M
3M vs. 12M
3M Prime/Libor

Basis swap
Muni vs 3M Libor
T-bill vs 3M Libor

EUR EONIA 6M Euribor 1M Euribor
3M Euribor
12M Euribor

3M vs. 6M
6M vs. 12M

JPY MUTAN 6M JPY Libor 1M JPY Libour
3M JPY Libour

1M vs. 3M
3M vs. 6M

GBP SONIA 6M GBP Libor 1M GBP Libour
3M GBP Libour
12M Euribor

3M vs. 1M
12M vs. 6M
12M GBP Libor

CHF TOIS 6M CHF Libor 3M CHF Libour
1M CHF Libour

12M vs. 6M

CAD Bnak of Canada
Overnight Repo
Rate
(CORRA)

6M CAD-BA 6M vs. 3M&3M
vs. 1M

21.1.8 Market Instruments

We now start to present some formulas that are used for the curve
generation. By a time schedule, we mean times t < T0 < T1 < . . . <

TN and the corresponding year fractions {�n}Nn=1 where �n is the year
fraction from Tn–1 to Tn. We also denote by Lx(Tn–1) the Libor rate with
tenor x that starts at Tn–1 (the rate is usually fixed 2 days before Tn–1).

21.1.8.1 Overnight Index Swap

If the collateral and the pay currency are the same, we have the fol-
lowing definition of the forward overnight rate: For a given currency
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i, collateral rate ci and times T1 and T2, the time t forward overnight
rate is defined by

O(t,T1,T2) =
1

�(T1, T2)

{
D(t,T1)

D(t,T2)
– 1

}
.

An OIS in a currency i with collateral rate ci is a contract where you
exchange a daily compounded floating overnight rate for a fixed rate
at pre-specified points in time. The fixed rate OISN is chosen so that
the PV of the swap, according to market discounting conventions,
becomes zero today

OISN

N∑
n=1

�nD(t,Tn) =
M∑
n=1

EQi
t

[
exp

{
–

Sm∫
0

ci(s)ds

}

·
( Jm∏

j=1

(
1 + O(U∗

j–1,m,Uj–1,m,Uj,m)

)
· δj,m – 1

)]
,

where {Tn} and {Sm} are the time schedules for the fixed leg and
the floating leg respectively, {Uj,m} is the time schedule for the daily
compounded overnight rate, U∗j–1,m is the fixing date for the rate in
the period (Uj–1,m, Uj,m] and �n, δj,m are the year fractions for the
periods (Tn–1, Tn] and (Uj–1,m, Uj,m]. Here, U0,m = Sm–1, UJm,m =
Sm, T0 = S0 and TN = SM. By using the forward overnight rate and
the approximation

O(U∗
j–1,m,Uj–1,m,Uj,m) ≈ O(Uj–1,m,Uj–1,m,Uj,m),

we get

EQi
i

⎡
⎣exp

⎧⎨
⎩–

Sm∫
t

ci(s)ds

⎫⎬
⎭ ·
⎛
⎝ Jm∏

j=1

(
1 + O(U∗

j–1,m,Uj–1,m,Uj,m) · δj,m
)
– 1

⎞
⎠
⎤
⎦

≈ EQi
i

⎡
⎣exp

⎧⎨
⎩–

Sm∫
t

ci(s)ds

⎫⎬
⎭ ·
⎛
⎝ Jm∏

j=1

(
1

D(Uj–1,m,Uj,m)

)
– 1

⎞
⎠
⎤
⎦

= EQi
i

⎡
⎣exp

⎧⎨
⎩–

Sm–1∫
t

ci(s)ds

⎫⎬
⎭
⎤
⎦ – EQi

i

⎡
⎣exp

⎧⎨
⎩–

Sm∫
t

ci(s)ds

⎫⎬
⎭
⎤
⎦ .
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In the last step, we were splitting up the integral and used the tower
property of conditional expectation: if H ⊂ G then E[E[X|G]|H]
= E[X|H] = E[E[X|H]|G].

Finally, we end up with the following approximation (where we
ignore that the fixing is made in two trading days before the start of
the time interval).

(OIS) OISN

N∑
n=1

�nD(0,Tn) = D(0,T0) – D(0,TN)

We can also get the previous equation from a simplification of a
collateralized OIS

OISN

N∑
n=1

�nE
Q

⎡
⎣exp

⎧⎨
⎩–

Tn∫
0

c(s)ds

⎫⎬
⎭
⎤
⎦

=
N∑
n=1

EQ

⎡
⎢⎣exp

⎧⎨
⎩–

Tn∫
0

c(s)ds

⎫⎬
⎭
⎛
⎜⎝exp

⎧⎪⎨
⎪⎩–

Tn∫
Tn–1

c(s)ds

⎫⎪⎬
⎪⎭ – 1

⎞
⎟⎠
⎤
⎥⎦

by using the collateralized zero-coupon bond. The collateralized zero-
coupon bond price can then be bootstrapped as

D(t,TN) =
D(t, T0) – OISN

∑N
n=1�nD(t,Tn)

1 + OISN · �N
.

If the collateral and the pay currency are not the same, we use that
fair value of a payer OIS swap in currency i with collateral in currency
j, collateral rate cj and quote OIS

PV =
M∑
m=1

δm · D(t, Sm) · exp
⎧⎨
⎩–

Sm∫
t

yi,j(s)ds

⎫⎬
⎭ · O(t, Sm–1, Sm)

– OISN

N∑
n=1

�n · D(t, Tn) · exp
⎧⎨
⎩–

Tn∫
t

yi,j(s)ds

⎫⎬
⎭.
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21.1.8.2 Forward Rate Agreements (FRA)

Given times T1 and T2 the T1×T2 FRA traded in the market is a contract
paying out to the buyer at time T1 the amount

�(T1,T2) · (Lx(T1) – K)
1 –�(T1,T2) · Lx(T1) ,

where K is the pre-specified fixed rate of the FRA, x is the tenor starting
at T1 and ending in T2, and �(T1, T2) is the year fraction for the tenor
interval (T1, T2]. Under certain model assumptions and reasonable
market conditions it can be shown that

FRA) K ≈ E
Tc
2

t [Lx(T1)] ,

where the expectation is taken with respect to the forward measure at
T2 discounted with the current (time t) price of a zero-coupon bond
with expiry T2 using the collateral rate in currency i (domestic).

21.1.8.3 Interest Rate Swaps

An IRS in currency i with collateral in currency j with collateral rate cj
and quote IRS is given by

(IRS)

IRSN
N∑
n=1

�nD(t,Tn) · exp
{
–

Tn∫
t
yi,j(s)ds

}

=
M∑
m=1

δmD(t,Tm) · EScm
t [Lx(Sm–1)] exp

{
–

Sm∫
t
yi,j(s)dx

}

and a collateralized tenor swap (TS) by

(TS)

N∑
n=1

�nD(t,Tn)
{
ETc

n [L(Tn–1,Tn, τS)] + TSN
} · exp

{
–

Tn∫
t
yi,j(s)ds

}

=
M∑
m=1

δmD(t, Sm) · EScm [Lx(Sm–1, Sm, τL)] · exp
{
–

Sm∫
t
yi,j(s)dx

} .
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Market quotes of collateralized OIS, IRS and TS and proper spline
method allow us to determine

{D(0,T)},
{
ETm [L(Tm.–1, Tm, τ )] + TSN

}

for all relevant T , Tm and tenor τ .

21.1.8.4 Cross-Currency Swaps

When dealing with multiple currencies, we also need to consider CCS
and FX forwards. The cross-currency formula for currencies i, j, with
collateral in currency k, and collateral rate ck and quote s is given by

(CCS)

N∑
n=1

δnD(ci, t,Tn) · exp
⎧⎨
⎩–

TN∫
t

yi,k(s)ds

⎫⎬
⎭
{
ETc,i

n [L (Tn–1,Tn)] + s
}

–D(ci, t,T0) · exp
⎧⎨
⎩–

T0∫
t

yi,k(s)ds

⎫⎬
⎭

+D(ci, t,TN) · exp
⎧⎨
⎩–

TN∫
t

yi,k(s)ds

⎫⎬
⎭

=
M∑
n=1

δmD(cj, t, Sm) · exp
⎧⎨
⎩–

Sm∫
t

yj,k(s)ds

⎫⎬
⎭ESc,jM [L (Sm–1, Sm)]

–D(cj, t, S0) · exp
⎧⎨
⎩–

S0∫
t

yj,k(s)ds

⎫⎬
⎭

+D(cj, t, SN) · exp
⎧⎨
⎩–

SN∫
t

yj,k(s)ds

⎫⎬
⎭

21.1.8.5 FX Forwards

A collateralized FX forward rate at time t for the currency pair (i, j)
with collateral in currency k with collateral rate ck and maturity T is
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defined as the solution f (i,j)x (t,T) of the following equation:

0 = f (i,j)x (t,T)EQi
t

⎡
⎣exp

⎧⎨
⎩–

T∫
t

ri(s)ds

⎫⎬
⎭ · exp

⎧⎨
⎩

T∫
t

yi,k(s)ds

⎫⎬
⎭
⎤
⎦

– f (i,j)x (t)E
Qj
t

⎡
⎣exp

⎧⎨
⎩–

T∫
t

rj(s)ds

⎫⎬
⎭ · exp

⎧⎨
⎩

T∫
t

yj,k(s)ds

⎫⎬
⎭
⎤
⎦ ,

where an amount of currency i is exchanged for one unit of currency
j, assuming a collateralization in currency k. Then we have

f (i,j)x (t,T) = f (i,j)x (t)
pj(t,T)

pi(t,T)
·
E
Tj
t

[
exp

{
T∫
t
yj,k(s)ds

}]

ETi
t

[
exp

{
T∫
t
yi,k(s)ds

}] .

If the spread y is stochastic, the currency triangle, such as USD/JPY ×
EUR/USD = EUR/JPY, holds only for the same collateral currency.
When y is deterministic, this becomes

f (i,j)x (t,T) = f (i,j)x (t)
pj(t,T)

pi(t,T)
= f (i,j)x (t)

Dj(t,T)

Di(t,T)
· exp

⎧⎨
⎩

T∫
t

yi,j(t, s)ds

⎫⎬
⎭

which is independent of the choice of collateral currency. In a boot-
strap all the previous except yi,j can be observed in the market. This
can only be used for short maturities due to the lack of liquidity in the
forward market for longer maturities. In the previous equation

yi,j(t,T) = –
∂

∂T
ln

⎛
⎝ETi

t

⎡
⎣exp

⎧⎨
⎩–

T∫
t

yi,j(s)ds

⎫⎬
⎭
⎤
⎦
⎞
⎠ .

21.1.9 Curve Calibration

In this section, we describe our procedure for generating the curves
needed. We fix t = 0 as today and we will write E0[.] = E[.].
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Definition 21.1 By a collateral pair, we mean (i, ci), where i is a
currency and ci a collateral rate in currency i.

Definition 21.2 Given a currency i and a collateral pair (j, cj), we
call the mapping

T �→ Dci(0, T) · exp
⎧⎨
⎩

T∫
0

yi,j(s)ds

⎫⎬
⎭

a discount curve and denote it by Di
j,cj (0, T).

Definition 21.3 Given a currency i and a set of collateral pairs{(
fj, cj

)}n
i=1, we call the mapping

T �→ Dci(0, T) · exp
⎧⎨
⎩

T∫
0

max
j

(
yi,fj(s)

)
ds

⎫⎬
⎭

a CTD curve and denote it by Di
j,cj (0, T).

Definition 21.4 Given a tenor x and a currency i we call the map-

ping T �→ ET(ci) [Lx(S;T)] a forward curve, where S,T are the start
and maturity date, respectively.

21.1.9.1 Single-Currency Collateral

Given a currency i from the set of available currencies, a set of ten-
ors (the number depending on i) and a collateral pair, our task is to
generate the corresponding discount and forward curves. Due to li-
quidity problems, we have to make some more assumptions regarding
the quotes that we observe in the markets. Moreover, in some curren-
cies the complete lack of OIS quotes forces us to make some sort of
approximations. In this section we describe the currency-independent
assumptions and we will come back to certain currency-dependent
issues later.

• A CCS quote observed in the market is interpreted to be of constant
notional type. Mark-to-market (MtM) CIRS are not considered in the
curve generation.

• The CCS quote in Equation (CCS) is independent of the collateral
pair (j, cj).
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The last assumption makes it possible for us to compute for example
EUR discounting under SEK collateral where the collateral rate is
the Swedish repo rate (such a cross-currency quote is definitely not
available in the markets).

21.1.9.2 Stripping in EUR

In EUR, the available instruments are OIS, IRS, FRA, CIRS and FX for-
ward and the collateral pair is (EUR, EONIA). The OIS and IRS quotes
are assumed to be under (EUR, EONIA).

We start to bootstrap the (EUR, EONIA) discounting curve using
Equation (OIS) given earlier and then the forward rate curves for the
tenors {1M, 3M, 6M} using Equations (FRA) and (IRS)

These are the consistency conditions needed to get the market
quotes of various swaps. We have denoted the market observed OIS
rate, IRS rate and TS spread respectively as OISN , IRSM and TSN ,
where the subscripts represent the lengths of swaps. {Ti}i�0 are the
reset/payment times of each instrument. We distinguish the day-count
fraction of the fixed and floating legs by � and δ, respectively. These
are not necessarily the same for different instruments. L(Tm–1; Tm, τ )
is the Libor with tenor τ whose reset and payment times are Tm–1
and Tm, respectively. In Equation (IRS), we have distinguished between
two different tenors, τS and τL(> τS), although we have used the same
payment frequencies in the fixed and floating legs of the IRS.

ROIS is defined as

ROIS(t) =
– ln (D(t,T))

T – t
.

For the forward Libor, the zero-rate curve Rt is determined reclusively
through the relation

ETc
m [L (t,Tm–1, Tm, τ )] =

1

δm

(
e–Rτ (Tm–1)·(Tm–1–t)

e–Rτ (Tm)·(Tm–t)
– 1

)

=
1

δm

(
D(t,Tm–1)

D(t,Tm)
– 1

)

=
1

δm

(
D(t,Tm–1) – D(t, Tm)

D(t,Tm)

)
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21.1.9.3 Stripping in USD

In the United States, 30-day fed funds futures and 3-months OIS futures
are commonly used, although there are only 36 standard 30-day FF
futures contracts and eight standard 3M OIS futures contracts, based
on www.cmegroup.com. Therefore, one can only bootstrap the OIS
curve up to 2 or 3 years.

In order to capture longer-term OIS discounting, one could then
bootstrap the short end of OIS curve from fed funds OIS (and/or fed
funds futures) and then bootstrap the long end through fed funds basis
swap (FFBS) (typically combined with IRS to get Libor information). In
the United States, the instruments are typically FFBS ranging from 1y
to 30y, which are averaged index basis swaps. This has become the
common practice in the USD market. However, the actual implement-
ation methodology could vary in several ways. We describe these in
Method 1, Method 2 and Method 3 in the following sections.

Method 1: Approximation Approach

By ignoring discrepancy business day count adjustment and com-
pounding crude adjustment (see Bloomberg (2012), Extending USD
OIS curves using Fed Funds Basis swap quotes), we obtain

OIS(t)adj ≈ 4 ·
((

1 +
OIS(t)approx.

360

)
90 – 1

)
,

where

OIS(t)approx. ≈
(
1 +

rQ – FFBS(t)

4

)
4 – 1

rQ = 4 ·
((

1 +
IRS(t)360/365

2

)
2/4 – 4

)
,

where IRS(t) is the market quote of swap rate.
FFBS(t) is the market spread quote of FFBS.
One can observe from market quotes that the implied OIS rate has

approximately deterministic spread to IRS and such an OIS has embed-
ded market information from FFBS. Moreover, the OIS is reasonably
close to market OIS for long tenors, so using this adjusted OIS for
longer (say, 30y) tenors is justified and computationally efficient.

Thus this approximation method makes the following assumptions
that practitioners must recognize.
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• Ignore conventions like business day count, calendar, roll conven-
tion, basis, spot lag, schedule mismatch, etc.

• The compounding approximation assumes “flat curve with rate
equal to the difference between Libor and Fed Funds Basis while
ignoring weekends and holidays”.

• The error between adjusted OIS and OIS market quotes is a
combination of approximation errors and liquidity.

• Thanks to the simplifying assumptions this method is very fast.

Method 2: Brute Force Approach

The brute force approach jointly solves both FFBS and IRS to par. We
know analytics for both FFBS and the IRS, as shown in Table 21.4.

Table 21.4 The fed funds basis swap and IRS

Fed funds basis swap

Pay Receive
Libor leg Fed fund leg
–3m Libor + weighted average Fed fund + basis spread
IRS
Receive Pay
Libor leg Fixed leg
+3m Libor – fixed swap rate

Note:

• This is the most accurate approach because it solves for discount
factors for both OIS discounting curve and Libor 3m forward curve
jointly.

• Schedules among legs between FFBS and IRS may not align, which
burdens the solver and is very sensitive to choice of interpolation
method.

• Computationally expensive (especially the weighted average on
daily forward fed funds effective rate feature).

Method 3: Synthetic Approach

The synthetic approach is to bootstrap the OIS curve by re-pricing
FFBS to par given an IRS. The idea is represented as in Table 21.5.

Through the synthetic construction in the previous graph, we can
have a single instrument (fixed vs. floating (weighted average FF +
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Table 21.5 Re-pricing fed fund basis swaps to par with IRS

Synthetic fed fund swap

Receive Pay
Fed fund leg Fixed leg
+ weighted average fed fund + basis spread – fixed swap rate

basis spread)) per tenor, which would fit into most standard curve
stripping frameworks as a regular bootstrapping procedure.

Note:

• This is faster than Method 2.

• This is more accurate than Method 1.

• Schedule alignment is still an issue.

• Tenors have to be matched so as to create a synthetic FF average
swap.

21.1.10 The Bootstrap

We now assume we have OIS, IRS, FRA, CIRS and FX forward and the
collateral pair is (USD, FEDL01) where FEDL01 is the USD fed fund
rate. The OIS and IRS quotes are assumed to be under (USD, FEDL01).

We start to bootstrap the (USD, FEDL01) discounting curve as
shown previously and then the forward rate for tenors {1M; 3M}. The
6M forward rate curve can be built using the 6M-3M tenor basis swaps
to create a synthetic 6M swap curve.
Remarks: In the previous calculations for EUR and USD, we have
assumed that all the instruments are collateralized by the cash of do-
mestic currency, which is the same as the payment currency. You may
worry about the possibility that the market quotes contain significant
contributions from market participants who use a foreign currency as
collateral. In fact, some of the major financial firms prefer USD cash
collateral regardless of the payment currency of the contracts. This
gives rise to additional factors in discounting as in

�d(t) = EQd
t

[
exp

{
–

T∫
t
rd(s)ds

}
· exp

{
T∫
t
yf (s)ds

}
�d(T)

]
,

= Dd(t,T)ETd
t

[
exp

{
T∫
0

(
yd(s) – yf (s)

)
ds

}
�d(T)

]
.
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Changes in IRS/TS quotes are very small and impossible to distinguish
from the bid/offer spreads in normal circumstances, because the cor-
rection appears both in the fixed and floating legs which keeps the
market quotes almost unchanged. However, the PVs of off-the-market
swaps can be significantly affected when the collateral currency is
different.

21.1.10.1 Stripping in SEK

In SEK, the available instruments are also OIS (STINA swaps, which are
not real OIS, but T/N), IRS, FRA, CIRS and FX forwards. The collateral
pairs are (SEK, STIB1D) and (SEK, SWRRATE). Here STIB1D is the T/N
rate (STINA) and SWRRATE the Swedish repo rate. The OIS quotes are
assumed to be under (SEK, STIB1D) and the IRS quotes are assumed
to be under (EUR, EONIA).

The assumption about the IRS quote makes the bootstrap procedure
a little bit different from earlier. We begin to bootstrap (SEK, ST IB1D)
as usual for OIS. Then we need to add a cross-currency formula so
we simultaneously can bootstrap the discounting curve for SEK with
collateral pair (EUR, EONIA) and the SEK 3M forward curve.

The (SEK, SWRRATE) is generated as follows:

1. Bootstrap a curve from available SEK RIBA (Riksbanks futures) in-
struments and compute the daily instantaneous forward rates up to
the maturity of the last RIBA instrument. This will be the short end
of the resulting curve.

2. Compute the spread between the last instantaneous forward rate
in the first step and the corresponding rate generated from (SEK,
STIB1D).

3. Extrapolate the spread and convert the resulting instantaneous
forwards to a discount curve.

The reason we also have to bootstrap the Swedish repo rate is that it
is used as collateral rate in most CSA agreements.

21.1.10.2 Different Problems with Bootstrapping

The Choices of Instruments

The first problem is related to the availability and choice of liquid in-
struments. Let us assume that we have an OIS curve (obtained from the
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previous method) and we need to find a forward curve (e.g. USD Libor
3m curve). In the single-curve world, we typically bootstrap from com-
binations of cash (1w up to 1y), futures or FRAs (typically most liquid
up to 3y or 5y) and swaps (1y up to 50y). However, in the dual-curve
world, each Libor has its own risk, which means we cannot use spot
Libor cash rates like 1w, 2w, 3w, 1m, 2m, 4m, 5m, 6m, etc., to strip the
3m Libor curve. Therefore, one possible choice could be to use FRAs
for short term and swaps for long term. Note that the use of FRAs
is subject to a few problems. In the dual-curve world, the Libor be-
comes risky, which means that the old approach would use the wrong
discounting curve.

The problem here is that trading parties can only put daily collateral
until the start time of the FRA period. Therefore, the period between
the start time and the first maturity date of the FRA is only for theor-
etical Libor tenor, and there won’t be any collateral transactions. This
simple approach would assume that Libor forward is risky when it is
settled, though any such settlement amount would still be discoun-
ted at the risk-free rate (e.g. continuously full collateralization with
zero MTF). For futures, it is even trickier in view of the convexity
adjustment.

The Libor Rates

In the single-currency world, the standard curve construction would
be to make a discount curve and then an implied forward curve. This
implies that the Libor forward depends on the choice of discounting.
However, intuitively Libor is a floating index that should not depend
on the choice of a discount curve. Different players may have different
funding curves, and CSA may also require discounting other than OIS
discounting which really refers to cash collateral within that single-
currency market.

Mathematically, the curve construction depends on the discount-
ing method in our typical risk-neutral environment. This is because
the probability measure changes when the discounting method is
changed. Prior to the crisis, the “standard” discount curve was the
“same” as the Libor forward curve in USD. Now, the “standard” dis-
counting method has shifted into OIS discounting. OIS discounting
and Libor discounting would produce nearly the same price for a 3m
Libor forward.
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Furthermore, Libor fixings too have shifted to OIS discounting,
although dealers/brokers may not report their quotes consistently.
As CSA regulation tends to standardize collateral agreements and as
the LCHuses OIS discounting for clearing swaps, the swap quotes
and Libor fixings would be more reliable than during the crisis
period, when Libor was criticized due to various reasons including
collateral/funding discounting and liquidity.

Collateral

Another concern is collateral currency. This is actually a fairly com-
mon problem in the real world. Suppose a EUR-based bank is trading
collateralized vanilla US IRS with a US bank. Assume further that most
of the EUR-bank’s business is in the EUR and that the EUR-based bank
owns a lot of EUR treasury bonds and cash in EUR. Therefore, it would
be very natural for the EUR bank to put collateral in a EUR cash or EUR
treasury bonds, rather than put collateral in USD even if the trade is a
USD single currency. In this situation, we are faced with the dilemma
of how to discount the value of the trade price and the risks. This is
the “cheapest to deliver” problem.

Cross-Currency swaps

There are two popular types of CCS.

• Float-float (commonly used for major currency pairs like USD/EUR,
USD/JPY, EUR/JPY)

• Fix-float (commonly used for minor currency pairs like USD/TWD).

We will focus mostly on float-float CCS (CCBS). Using USD vs. JPY as
a simple example to illustrate arbitrage-free relationships in interest
rate and FX markets (“interest rate parity”), let us suppose a JPY in-
vestor has a future cash flow of 100 million in USD ($100 MM) at future
date T. She/he could either discount it using USD discounting back to
today t = 0 and convert it into JPY using the spot FX rate (FX(0)), or
she/he could convert the future cash flow at T through FX rate (FX(T))
and then discount back to today using JPY discounting. If there were
no-arbitrage opportunities, these two methods would yield the same
amount. Such parity relations can be visualized in Fig. 21.17.
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Fig. 21.17 A parity relation on cross-currency

Fig. 21.18 With two known the third can be solved

Fig. 21.19 Bootstrap of an implied foreign yield curve

Therefore, in theory, we should see a perfect triangle relationship
betweeen the domestic yield curve, the foreign yield curve and the FX
forward. As we illustrate in Fig. 21.18, one can solve for one out of
three given the other two.

However, both interest rates (domestic and foreign) and FX forwards
are independent actively traded markets. Therefore, the triangle won’t
be “perfect” even in normal market situations due to differences in
liquidity among those three markets.

If one needs to value a cross-currency trade under the domestic
measure, then a typical way would be to bootstrap the “implied” for-
eign yield curve (the foreign basis curve) from a set of FX forwards
given a domestic yield curve as in Fig. 21.19.
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Note that such a foreign basis curve typically won’t be same as the
foreign local yield curve (e.g. bootstrapped from cash, FRA/future,
swap). This reflects the fact that the foreign investor’s (domestic
currency’s) funding interest rate (discounting) at the local (foreign cur-
rency) market typically will be different from that of a local investor.
Such a basis curve would satisfy

• Re-pricing each node of FxFwd back to par.

So far, everything is still consistent. Such a relationship implies that
the cross-currency basis is zero (which is what “perfect” means here).
However, if we look at CCBS quotes, they are not zero! This im-
plies that the CCBS actually breaks the previous interest rate parity
due to many reasons, supply and demand factors, including liquid-
ity premium, currency strength, currency country’s credit profile
differentials, etc.

Prior to the crisis, such bases were very small, and many practition-
ers simply ignored them . However, after the crisis these bases became
much larger (50–100 bps, compared to 1–5 bps pre-crisis). Therefore,
such a basis can no longer be ignored in derivatives pricing and risk
management. As with FX forward, one can also bootstrap an “implied”
foreign basis curve from a set of CCBS given both domestic yield curve
and foreign yield curve (which makes Libor forward consistent with
local Libor forward, see Fig. 21.20).

Such a foreign basis curve should satisfy

• re-pricing each node of CCBS back to par;

• matching local Libor forward.

Fig. 21.20 Bootstrap an “implied” foreign basis curve from a set of cross-currency
basis swaps
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In short, we solve for the discount curve while keeping the prevailing
index forward unchanged. Therefore, the Libor definition is changed
slightly due to different discounting methods. From a practical point
of view, this problem can often be ignored due to the tiny effect on
forward change which means one can still assume that the basis swap’s
Libor forward in foreign currency is the same as Libor forward in the
domestic market. As in the single-currency world, even if we change
from single curve Libor to a very different discount curve (e.g. the OIS
curve) when pricing a vanilla IRS, the Libor forwards in the IRS would
be almost the same (maximum about 1–3 bps for 30y).

Furthermore, FX forwards may only last up to 5 years, depending
on the currencies, while cross-currencies basis swaps would last up to
30 years. Therefore, from a liquidity point of view, one may strip the
foreign basis curve from a combination of FX forward (for short term)
and CCBS (for long term) (see Fig. 21.21).
OIS curve

We now turn our attention from the traditional problem in the cross-
currency world to the problems arising in a multi-curve environment.

Recall that within the single-currency framework, the dual-curve lo-
gic is to bootstrap the OIS curve, then solve for the index forward
curve while keeping the OIS curve unchanged. In the cross-currency
world, the logic is to solve for the implied foreign discounting curve
while keeping the foreign Libor forward unchanged. Thus, in a CCBS
there are four curves involved:

1. Domestic discount curve (e.g. OIS curve).

2. Domestic forward curve (e.g. 3m Libor curve).

Fig. 21.21 A foreign basis curve stripped from a combination of four sources
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3. Foreign discount curve.

4. Foreign forward curve (e.g. 3m Libor).

Still the goal here is to solve for a “cross-currency implied” foreign basis
discount curve (or say a foreign OIS basis curve) where discounting
and forward projections are decoupled.

The foreign OIS basis curve can be bootstrapped:

1. From FX forward and the domestic OIS curve

2. Using domestic and foreign OIS curves and CCY OIS basis swaps

3. Using CCY Libor basis swaps

In point 1 we assume that both domestic and foreign FX forward mar-
kets move to OIS discounting. Point 3 is more complex due to the
market conventions. The common practice would be the following
steps (using USD 3m Libor vs. JPY 3m Libor as an example):

1. Construct the domestic OIS discount curve.

2. Construct the domestic index forward curve (e.g. USD 3m Libor).

3. Construct the foreign OIS discount curve (e.g. JPY OIS curve from
Tonar).

4. Construct the foreign index forward curve (e.g. JPY 6m Libor).

5. Construct the foreign index forward curve (e.g. JPY 3m Libor from
Libor basis swap).

6. Solve for implied foreign basis curve (or, say, foreign OIS basis
curve) from CCBS given in 1, 2 and 5.

Cheapest to Deliver

CTD is driven by the collateral agreement and CSA standardization.
In CSA, the two counterparties may have rights to choose collateral
on the fly among a few predefined currencies. This will create a huge
headache for modelling, hedging and risk management.

Most dealers agree that the discount rate should – in theory – be
based on the CTD collateral. Market practice is altogether different,
with even the major dealers taking a variety of approaches to pricing
trades based on multi-currency CSAs.
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“Theoretically, it is not difficult to put together a model – it would
be an extension of a stochastic basis model where you have more than
one basis,” says Vladimir Piterbarg, global head of quantitative research
at Barclays Capital in London. “The huge question is whether you are
able to execute the hedging strategy required.”

Such a disorder in CTD modelling and hedging would have much
bigger model risks. CSA standardization and simplification become
critical while the market is moving towards a consistently multi-curve
approach.

21.1.10.3 Collateral Choice

To compute the integral in the mapping

T �→ Dci(0,T) · exp
⎧⎨
⎩

T∫
0

max
j

(
yi,fj(s)

)
ds

⎫⎬
⎭ ,

we assume for each i and fj that yi,fj(t) is a piecewise constant function
of t. This implies that the integral can be written as

T∫
0

max
j

(
yi,fj(s)

)
ds =

K∑
k=1

max
j

⎛
⎜⎝

Tk∫
Tk–1

yi,fj(s)ds

⎞
⎟⎠,

where 0 = T0 < T1 < . . . < TK = T is the approximation
scheme where all the yi,fj(t) are piecewise constant. Moreover, from
the definition of the discount curve we can see that

Tk∫
Tk–1

yi,fj(s)ds = ln
(
Dci(0,Tk)

)

– ln
(
Di
fj(0,Tk)

)
– ln

(
Dci(0,Tk–1)

)
+ ln

(
Di
fj(0,Tk–1)

)

and hence the computation is now straight forward given the relevant
discount curves.
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21.1.10.4 Stripping in HUF as an Example of Illiquid
Currencies

For example, say we are looking for curves in HUF (Hungarian For-
int) rates. Then we can use local swaps, that is, HUF3M vs. fixed and
CCS HUF3M vs. EUR3M. At the same time, we have to consider the
collateral assumptions behind this.

We then use vanilla swap HUF3M vs. fixed, quarterly HUF3M (3M
BUBOR) annually fixed and CCBS EUR3M vs. HUF3M where the EUR
floating leg is quarterly EUR3M (EURIBOR3M) and HUF floating leg,
quarterly HUF3M + spread (Tables 21.6 and 21.7).

When we do simultaneously stripping of the discount curves and
the projection curves we use the following stripping equation for the
1Y point:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q · δ · D4 = δ1 · F1 · D1 + δ2 · F2 · D2 + δ3 · F3 · D3 + δ4 · F4 · D4

δ1 · (F1 + s) · D1 + δ2 · (F2 + s) · D2 + δ3 · (F3 + s) · D3 + δ4 · (F4 + s) · D4

=
EURLeg

X(0)

where

Di = Discount factors
Fi = HUF3M forwards
δi = Year fractions
(0) = Spot EUR/HUF exchange rate
Q = Quoted 1Y par swap rate
s = Quoted 1Y EUR3M/HUF3M basis spread

We also assume that the EUR curves are already stripped (e.g. from
EONIA swaps and vanilla EUR3M swaps). So the unknowns in the

Table 21.6 Vanilla swap HUF3M vs. fixed

Discount curve Projecting curve

Fixed leg HUFdisc curve N/A
Floating leg HUFdisc curve HUF3M curve

Table 21.7 Cross-currency basis swap EUR3M vs. HUF3M

Discount curve Projecting curve

EUR leg EONIA curve EUR3M curve
HUF leg HUFdisc curve HUF3M curve
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previous formula are only D4 and D4. The intermediate Ds and Fs (if
unknown) are computed via interpolation. This can also be handled
by a general solver.

In a practical situation, things might need to be done differently. The
payment dates of the local vanilla swaps and those of the CCBS might
be misaligned (due to differing day count conventions), or simply the
quoted maturities for one set of instruments might be different from
the quoted maturities for the other set of instruments. Thus perform-
ing a bootstrap might not be the best solution. Instead, we could use a
global solver for all quoted instruments simultaneously. This is slower
but produces more stable results. We could still perform intermediate
passes using the quotes up to some fixed maturities in order to find
good initial guesses for the later passes.

Simultaneous stripping produces two curves, a discount curve
HUFdisc and a projection curve HUF3M. By §construction, using these
two curves as the discount curve and the projection curve, respect-
ively, we will price at par both the vanilla swaps HUF3M vs. fixed and
the CCBS HUF3M vs. EUR3M.

Now, we might ask how this curve stripping does fit into a general
model for derivatives pricing. So far we have only considered “linear”
instruments and defined formally discount factors and forwards. Can
these be used to price something else but swaps? Is this backed by a
theory where the curves get back their usual meaning?

Consider an economy with two currencies: a domestic (Dom) and
foreign one (For). Assume that collateral can be posted in any of the
two currencies. The choice of the collateral currency holds for the
whole lifetime of the derivative (i.e. assuming there is no option to
switch collateral), so the domestic collateral earns foreign collateral
earnings cf . A pricing theory can be constructed rigorously with the
help of the following replication argument.10

Denote the price of a collateralized domestic derivative by V. Then,
in the domestic collateral

V(t) = Et

⎡
⎣exp

⎧⎨
⎩–

T∫
t

cd(s)ds

⎫⎬
⎭ · V(T)|Ft

⎤
⎦ .

10 See Piterbarg (2010).
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In the foreign currency we have

V(t) = Et

⎡
⎣exp

⎧⎨
⎩–

T∫
t

cd(s) + h(s)ds

⎫⎬
⎭ · V(T)|Ft

⎤
⎦ .

Similarly, a collateralized foreign derivative Vf is given by

Vf (t) = Ef
t

⎡
⎣exp

⎧⎨
⎩–

T∫
t

[
cf (s) – h(s)

]
ds

⎫⎬
⎭ · Vf (T)|Ft

⎤
⎦

and

Vf (t) = Ef
t

⎡
⎣exp

⎧⎨
⎩–

T∫
t

cf (s)ds

⎫⎬
⎭ · Vf (T)|Ft

⎤
⎦ .

The fact that the spread when computing from the foreign point of
view is –h follows from the domestic-foreign “parity” condition. If we
fix the collateral currency and then compute the price of a contin-
gent claim through foreign or through domestic yields we must get
the same result in order to exclude arbitrage (see Fig. 21.22).

This implies that the drift of the FX rate X (in the domestic
measure E) should be rd, = cd – cf + h.

Fig. 21.22 Foreign or domestic yields we must give the same result to exclude
arbitrage
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Table 21.8 Pricing in classical theory and collateral

Domesticrate Foreign rate FX rate drift

Classical theory rd rf rd – rf
Domestic collateral cd Cfd = cf – h rdf = Cd – Cf + h
Foreign collateral Cdf = Cd + h Cf rdf = Cd – Cf + h

Table 21.9 Vanilla swap HUF6M vs. fixed

Discount curve Projecting curve

Fixed leg HUFdisc curve N/A
Floating leg HUFdisc curve HUF6M curve

Table 21.10 Tenor basis swap HUF6M vs. HUF3M

Discount curve Projecting curve

Fixed leg HUFdisc curve HUF3M curve
Floating leg HUFdisc curve HUF6M curve

Table 21.11 Cross-currency basis swap EUR3M vs. HUF3M

Discounting curve Projecting curve

EUR leg EONIA curve EUR3M curve
HUF leg HUFdisc curve HUF6M curve

Once the collateral currency has been chosen, pricing under a CSA
is in some way the same as pricing in the classical theory, as long as
the appropriate curves are used.

Hence we have a pricing theory that is consistent and extends the
formal swap pricing theory based on stripping where the stripping
produces the initial term structures of the rates, that is, today’s values
of the curves used for discounting and forwarding. As seen before,
the choice of the collateral is reflected in the curves that are used for
discounting.

A problem will occur if the market does not directly quote 3M
swaps. If we have quotes for 3M vs. 6M tenor basis swaps then we
can simultaneously strip three curves (Tables 21.9, 21.10 and 21.11).

• Local swaps: HUF6M vs. fixed

• Local TS: HUF6M vs. HUF3M

• CCS: HUF3M vs. EUR3M
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In the aftermath of the financial crisis in 2007 and 2008, the market
has turned towards OIS discounting as the new standard. The G5 cur-
rencies and a few others have liquid OIS markets which provide the
quotes from which the OIS curves in those currencies can be stripped.
But for the other currencies the OIS markets are more often than
not inexistent or illiquid. This renders it impossible to strip out any
OIS curve. There is no magical solution, but one can contemplate
using available cross-currency quotes to infer a number of curves.
This requires the simultaneous stripping of single-currency and cross-
currency instruments. The discounting method is intimately tied to the
choice of the collateral; hence there is a trade-off: not having a curve
at all vs. using curves based on a different collateral assumptions.

21.1.10.5 The Future – Standard CSA (SCSA)

The problem with the aforementioned method is the embedded op-
tionality in CSA discounting to post collateral in many currencies
and the choice of instrument to post. This leads to the following
problems:

• no price transparency

• difficult to do unwinding and novation of trades

• difficult to hedge

Many market actors believe in using the Standard Credit Support An-
nex (SCSA), that is, a single-currency CSA. Here one will probably use
the following:

• 17 currency silos

• Emerging currencies will use the multi-currency USD silo. For these
currencies, we have no domestic OIS market. Therefore, we will
use a simultaneous calibration of USD-collateralized domestic IRS
and CIRS.

This would eliminate the currency switch options and we could use
standardization on OIS in order to get better alignment with Central
Clearing Partners. The institutions can make the move from CSA to
SCSA but not vice versa. The switch to SCSA will not be mandatory.
A greater collateralization will reduce the counterparty risk but also
increase the funding costs.
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21.1.11 General Pricing in the New Environment with
Funding Value Adjustments

We will now describe general pricing in the new environment, with
collateral and funding. Here the FVA can be considered as the differ-
ence between the PV of the trades between the “real-world” and the
theoretical CSA: FVA(t) = PV(real-word CSA) – PV(theoretical CSA).
This is the cost above the risk-free price to fund the trades in the pres-
ence of a real-world CSA. We can also consider the FVA as the cost to
fund the trades above that of the risk-free price

FVA(t) = PV(including funding costs) – PV(risk-neutral).

There is still, in 2014, an ongoing debate on how to calculate and
report the FVA and how to pass this cost to the counterparty. An-
other unresolved question is whether the FVA should be included in
MtM prices or just be included in the unrealized profit/loss (P&L). In
addition, it is not clear what the regulators will decide.

Market practitioners recognize that collateral has been successfully
introduced in order to mitigate CVA. However, since collateral affects
the funding of the trade, it also affects profitability. There is no argu-
ment that the FVA charge is real, and passed onto traders by funding
desks.

In the classical theory we have postulated the existence of a single
rate r(t) where all tradable assets grow at this rate under a risk-neutral
measure. The portfolio value v(t) satisfied the standard Black-Scholes
partial definition equation (PDE) (or term-structure equation)

L(t)v(t) = r(t)v(t),

where L(t) is the evolution operator of the model drivers. All payments
are discounted with the single rate r(t). The modern market on the
other hand has multiple rates, for example:

rC the collateral rate (which is almost risk free)
rR the interest rate for asset secured borrowing (the repo rate)
rF the interest rate for unsecured funding

For example, a fully collateralized payment is discounted with rC.
Now, we will study what happens if the collateralization is only partial
and how this theory is constructed. The evolution of the aforemen-
tioned rates is modelled by correlated stochastic processes and the



602 J.R.M. Röman

portfolio may consist of general instruments, both vanillas and exot-
ics, with known future payouts as function of the rates. Furthermore,
the collateral is a known function of the portfolio value.

The FVA is defined as the difference between the modern price
and the base one. The base price is often related to a fully collater-
alized portfolio. This is the only difference between the modern and
the base models; the payments/indexes coincide. Only modern price
is important; the base can be chosen from pragmatically numerical
reasons.

Piterbarg11 calculated a modern portfolio value by replication. This
replication gives a modified pricing PDE (with respect to the classical
theory) and is a unique way to determine the price. However, at this
stage, the default risk (of the bank or the counterparty) is not taken
into account.

Let V(t) be the portfolio price and C(t) the collateral. The collat-
eral is a known function of the portfolio (e.g. C(t) = (V(t))+). Then by
replication we have

L(t)V(t) = rCC(t) + rF(V(t) – C(t)) = rFV(t) + C(t)(rC – rF),

where L(t) is the evolution operator corresponding to the rate pro-
cesses. We also assume that the equity grows with the repo rate rR(t)
minus dividends. In the right-hand side we divide the portfolio value
in two parts V = C + (V – C) where the part under collateral,
C, is discounted with the collateral rate rC and the residual part, not
covered by collateral, V – C, is discounted with the funding rate rF.
One can generalize the theory to different rates for positive/negative
parts of the collateral and funding (see Pallavicini et. al.). This would
reflect a distinction between borrowing and lending.

11 Vladimir Piterbarg (2010), “Funding beyond discounting: collateral agreements and derivat-
ives pricing”, RISK, Feb.
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The solution to the PDE between payment/exercise dates is ob-
tained via the Feynman-Kaè theorem

V(t) = EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
t

rF(s)ds

⎫⎬
⎭ · V(T)|Ft

⎤
⎦

+ EQ

⎡
⎣

T∫
t

exp

⎧⎨
⎩–

T∫
t

rF(s)ds

⎫⎬
⎭ (rF(u) – rC(u))C(u)du|Ft

⎤
⎦ .

or equivalently

V(t) = EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
t

rC(s)ds

⎫⎬
⎭ · V(T)|Ft

⎤
⎦

+ EQ

⎡
⎣

T∫
t

exp

⎧⎨
⎩–

T∫
t

rC(s)ds

⎫⎬
⎭ (rC(u) – rF(u)) (V(u) – C(u)) du|Ft

⎤
⎦

The previously mentioned PDE is non-linear (except when collateral is
a linear function of the price V). We also have some special cases:

For C = 0 we get a solution for a non-collateralized deal

V(t) = EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
t

rF(s)ds

⎫⎬
⎭ · V(T)|Ft

⎤
⎦ .

For C = V we get a solution for the fully collateralized situation

V(t) = EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
t

rC(s)ds

⎫⎬
⎭ · V(T)|Ft

⎤
⎦ .

Notice here that a fully collateralized security is discounted with the
collateralized savings account, while the uncollateralized security is
discounted with the pure funding account. Note that both condi-
tional expectations are taken with respect to the same measure. Also,
some conditions must be imposed on the coefficients in the evolution
operator L(t) in order to avoid explosive solutions.
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Of course, one can change the pricing measure using, for example,
the Radon-Nikodym derivative

M(t) = D(t,T)/BC(t),
where D(t,T) is a collateralized zero-coupon bond

D(t,T) = EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
t

rc(s)ds

⎫⎬
⎭ |Ft

⎤
⎦ .

The collateralized deal propagation leads to a standard formula

VC(t) = EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
t

rC(s)ds

⎫⎬
⎭ · VC(T)|Ft

⎤
⎦

= M(t) · ETC

⎡
⎣exp

⎧⎨
⎩–

T∫
t

rC(s)ds

⎫⎬
⎭ · VC(T) · 1

M(T)
|Ft

⎤
⎦

= D(t,T) · ETC

[
VC(T)

D(T ,T)
|Ft

]

= D(t,T) · ETC
[
VC(T)|Ft

]

However, for the pure funding security, such a change of measure gives

VF(t) = EQ

⎡
⎣exp

⎧⎨
⎩–

T∫
t

rF(s)ds

⎫⎬
⎭ · VF(T)|Ft

⎤
⎦

= M(t) · ETC

⎡
⎣exp

⎧⎨
⎩–

T∫
t

rF(s)ds

⎫⎬
⎭ · VF(T) · 1

M(T)
|Ft

⎤
⎦

and will not lead to a standard numeraire-deflated form.

21.1.11.1 Portfolio FVA

One way to calculate the portfolio FVA can be summarized as follows:
First, compute future values (exposures) for each instrument in the
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portfolio using the single-curve model and then aggregate of the in-
struments at the portfolio (netting set) level and compute the FVA with
the following approximate formula:

FVA(t) = E

⎡
⎣

T∫
0

(
reff (t,V(t) – r(t)

)
exp

⎧⎨
⎩–

t∫
0

reff (s,V(s))ds

⎫⎬
⎭ · V(t)dt

⎤
⎦ .

Here reff (t,V(t) – r(t) is the effective funding spread over the OIS rate
and V(t) the future exposure (MtM) of the portfolio at time t. The last
integral represents an effective funding discount factor. The effective
rate is given by

reff (t,V(t)) · V(t) = rCC(t) + rF(V(t) – C(t)).

This gives us the price, including the funding costs as

V(t) = EQ
t

⎡
⎣exp

⎧⎨
⎩–

T∫
t

reff (s,V(s)) ds

⎫⎬
⎭ · V(T)|Ft

⎤
⎦ .

The important point to note in the previous formulas is that V(t) is the
uncollateralized exposure, and not the total exposure of the deriv-
ative. The average is taken over all possible future paths where both
the derivative and the collateral change due to market movements.

Intuitively you can think of the FVA formula as averaging the amount
of the derivative trade that cannot be funded by the collateral. Also, in
order to ensure that you will be able to meet your future cash flows,
you must have access to funding at your external or market funding
rate, which will typically be higher than the OIS rate prescribed in
the CSA.

We now define the effective funding rate as

reff (t) = ϕC(t) · rC(t) + (1 – ϕc(t)) · rF(t),
where ϕc is the fraction of traded value in the collateral account and
1 – ϕcthe fraction of traded value with credit exposure. With 100%
collateral ϕc = 1 and reff the collateral (OIS) rate. With 100% funding
ϕc= 0 and reff the funding rate.
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The effective rate is a path-dependent quantity, due to the collateral
changing depending on the prevailing rate environment – or if a secur-
ity is used as collateral – due to the market fluctuations of the collateral
itself.

Over the lifetime of the trade, you can calculate the “effective fund-
ing rate” on each path, which is a weighted average of the collateral
rate (OIS) and the firm’s market funding rate, weighted by the amount
inside and outside the collateral account respectively. Again, the in-
tuition is that the collateral account cannot be 100% relied upon to
ensure that you could meet all future cash flow obligations, due to
the imperfect nature of the collateral arrangement with CTD options,
MTM, thresholds, etc. The amount needed above the amount present
in the collateral account will have to be funded in the market. This
effective rate gives the average funding rate taking into account both
sources of funding.

21.1.11.2 The Law of One Price

If a corporate (price-taker) gets bids from a number of banks, he/she
will certainly get different quotes. These quotes may differ up to 100
bps or thereabouts. Therefore FVA is a real charge to traders reflect-
ing their diverse funding costs. Traders are passed this charge from
their treasury/funding desk.

Traders will attempt to pass this charge onto the purchaser as an
upfront fee as a spread over the floating rate. However, this will
be difficult in competitive markets. The FVA will certainly affect the
profitability of the trade and all traders must know this charge.

In the interbank market, where the price is determined by the law
of supply and demand, the prices on average should not include any
charge for FVA.

In 2013, four banks (RBS, Lloyds, Goldman and Barclays) reported
funding valuation in their financial statements.
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CVA and DVA

22.1 Credit Value Adjustments and Funding

For years, a practice in the financial industry has been to mark de-
rivatives portfolios to market without considering counterparty risk.
All cash flows were discounted using the LIBOR or another “risk-free”
curve. However, the true portfolio value must incorporate the possib-
ility of losses due to counterparty default. This observation has gained
wider recognition following the high-profile defaults of 2008. The
credit value adjustment (CVA) is by definition the difference between
the risk-free portfolio and the true portfolio value which should take
into account the possibility of counterparty defaults. In other words,
CVA represents the monetized value of the CCR.

22.1.1 Definitions of CVA and DVA

When reporting the fair value of any derivative position, we also
need to consider counterparty credit risk (CCR). This is done by an
adjustment to the value, known as CVA.

A pure definition can be written as

CVA = Discounted expected exposure × Default probability

× Loss given default.

For symmetry reason, we also need to consider the bilateral nature
of CCR. This means that an institution would calculate a CVA under
the assumption that they, as well as their counterparty, may default. A
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defaulting institution “gains” on any outstanding liabilities that cannot
be paid in full. This component is often referred to as debt value
adjustment (DVA).

The justification for using DVA is that a bank could buy back its debt
cheaply to realize DVA gains, but no firm has actually done this.

22.1.2 Standard Approach

To study CVA and DVA we consider the simplest deal we can think of,
a loan where the premium paid for an amount K at time T is equal to
the risk-free price minus CVA. This is

P = e–rTK – CVAL,

where

CVAL = E
[
e–rTK · 1{τ (B)≤T}

]
= e–rTK·Q[τ (B) ≤ T] = e–rTK·

[
1 – e–π(B)T

]
.

Here, we denote the lender with L. τ (B) is time to default for the
borrower (B), and π(B) the credit default swap (CDS) spread for
the borrower. Here we used the definition of the default probability

QD(τ (B) > T) = E
[
1{τ (B)>T}

]
= e–π(B)T

⇔
QD(τ (B) ≤ T) = E

[
1{τ (B)≤T}

]
= 1 – e–π(B)T .

If we have a certain recovery rate R, the previous formula should be

QD(τ (B) ≤ T)E
[
1{τ (B)≤T}

]
=
1 – e–π(B)T

1 – R
.

For the borrower we have

P = –e–rTK + DVAB.

The present values of all cash flows are given by

VL = e–rTK – CVAL – P;

VB = –e–rTK + DVAB + P.
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To get an agreement between the borrower and the lender we need
VL = VB. We then have

2P = 2e–rTK – CVAL – DVAB.

With DVAL = CVAB we get

P = e–rTK – e–rT
[
1 – e–π(B)T

]
= K · e–(r+π(B))T .

This is the agreed price between the borrower and the lender. But
something is missing here. We need to know about the liquidity.
The lender needs to finance the amount until maturity at a funding
spread S(L) but the borrower can reduce his funding cost with P.
The borrower should therefore see a funding benefit, and the lender
should see that the fair value of the claim reduced by the funding cost.
Therefore, the effect of this funding cost seems to be missing in the
earlier formula.

22.1.3 Approach Including Liquidity

One method is to introduce DVA as a liquidity cost by adjusting
the discounting term and introduce the possibility of defaulting on
the payoff. This means that we need to replace the term e–rTK with
e–(r+s(L))TK · 1{τ (B)>T} and get

VL = E
[
e–(r+s(L))TK · 1{τ (B)>T}

]
– P = E

[
e–(r+π(L)+γ (L))TK · 1{τ (B)>T}

]
– P

= e–(r+π(L)+γ (L))T · K · e–π(B)T – P ≡ e–(r+π(L)+π(B)+γ (L))T · K – P.
(22.1)

Here γ (L) is the deterministic default intensity for the lender, L

s(X) = π(X) + γ (X);X = {B,L}.

Similarly, for the borrower B we have

VB = –E
[
e–(r+s(B))T · K · 1{τ (B)>T}

]
+ P

= –E
[
e–(r+π(B)+γ (B))T · K · 1{τ (B)>T}

]
+ P

= –e–(r+π(B)+γ (B))T · K · e–π(B)T + P ≡ –e–(r+2π(B)+γ (B))T · K + P
(22.2)
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When comparing this result with the previous section, it is conveni-
ent to confine ourselves to the simplest situation where the lender is
default-free with no liquidity spread, while the borrower is defaultable
with the minimum liquidity spread allowed, the CDS spread. In this
case we have (s(L) = 0, s(B) = π(B) > 0) and we get

VL = e–(r+π(B))TK – P

VB = –e–(r+2π(B))TK + P.

Here we observe two bizarre aspects. First, even in a situation where
we have assumed no liquidity spread the two counterparties cannot
agree on the simplest transaction with default risk. A day-one profit
should be accounted for by borrowers in all transactions with CVA.
This contradicts market reality.

Secondly, the explicit inclusion of the DVA term results in a duplic-
ation of the funding benefit for the party that assumes the liability.
Against all evidence the formula implies that the funding benefit is re-
munerated twice. If this were correct then a consistent accounting
of liabilities at fair value would require pricing zero-coupon bonds
by multiplying twice their risk-free present value by their survival
probabilities.

22.1.4 How to Make It Right

To solve this in a right way, we do not calculate the liquidity by the
adjusted discounting approach as in Equations (22.1) and (22.2). In-
stead, we generate the liquidity costs and the benefits by modelling
explicitly the funding strategy. Here we take into account how the
companies capitalize and discount money with the risk-free rate r, and
then add or subtract the actual credit and funding costs that arise in
the deal.

This allows us to introduce explicitly both credit and liquidity and to
investigate more precisely, where credit/liquidity gains and losses are
financially generated. We take into account that the aforementioned
deal has two legs.

If we consider the lender, one leg is the deal leg, with net present
value

E
[
–P + e–rT�

]
.
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Here � is the payoff at T, including a potential default indicator. The
other leg is the funding leg with the net present value

E
[
+P – e–rTF

]
,

where F is the funding payback at T, including a potential de-
fault indicator. When there is no default risk or liquidity cost in-
volved, this funding leg can be overlooked because it has a value of
E
[
+P – e–rTerTP

]
= 0. In the general case the total net present value is

VL = E
[
–P + e–rT� + P – e–rTF

] ≡ E
[
e–rT (� – F)

]
.

Thus, the premium at time 0 cancels out with its funding and we are
left with the discounting of a total payoff including the deal’s payoff
and the liquidity payback. An analogous relationship applies for the
borrower, as will be described later.

When we continue, we work under the hypothesis that all liquidity
management happens in the cash market. Then, the funding is made
by issuing bonds and excess funds are used to reduce or to avoid in-
creasing the stock of bonds. This is the most natural assumption since
it is similar to the assumption that banks make in their internal liquid-
ity management, namely, what the treasury desk assumes in charging
or rewarding trading desks.

22.1.4.1 Risky Funding with DVA for the Borrower

The borrower has a liquidity advantage from receiving the premium P
at time zero, as it allows him/her to reduce the funding requirement
by an equivalent amount. The amount P generates a negative cash flow
at T, when funding must be paid back. This is equal to

–P · erTes(B)T · 1{τ (B)>T}.

This future outflow equals P, capitalized at the funding cost, times
a default indicator. We need to include a default indicator in case of
default and zero recovery. During default, the borrower does not pay
back the borrowed funding and there is no outflow. Thus reducing the
funding by P corresponds to receiving at T a positive amount equal to

P · erTes(B)T · 1{τ (B)>T} = {s(B) = π(B) + γ (B)}

= P · erTeπ(B)Teγ (B)T · 1{τ (B)>T}. (22.3)
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Thus, the total payoff at Tis

P · erTeπ(B)Teγ (B)T · 1{τ (B)>T} – K · 1{τ (B)>T}.

Taking discounted expectation, we get

VB = e–π(B)T ·P ·eπ(B)Teγ (B)T –e–rT ·K ·e–π(B)T = P ·eγ (B)T –K ·e–(r+π(B))T .

Compared with Equation (22.2), (P – K · e–(r+2π(B)+γ (B))T ) we have no
unrealistic double-accounting of default probability. Also notice that

VB = 0 ⇒ PB = K · e–rTe–2π(B)Teγ (B)T , (22.4)

where PB is the breakeven premium for the borrower, in the sense
that the borrower will find this deal convenient as long as VB ≥ 0 =>
P ≥ PB. Compared with Equation (22.2) i.e. the standard DVA with
liquidity where we observe the double counting

VB = 0 ⇒ PB = K · e–rTe–2π(B)Teγ (B)T .

As before, assuming

PB = K · e–(r+π(B))T

we may conclude that, in this case, the computation from the standard
CVA is correct, because it is taking into account the probability of
default in the valuation of the funding benefit, which removes any
liquidity advantage for the borrower.

Equation (22.4) shows what happens when, in addition, there is a
pure liquidity basis component in the funding cost. On the other
hand, charging liquidity costs with an adjusted funding spread cannot
be naturally extended to the case where we want to observe explicitly
the possibility of default events in our derivatives.

In writing the payoff for the borrower we have not explicitly con-
sidered the case in which the deal is interrupted by the default of the
lender, since we can replace the deal with a new counterparty. This
keeps VB independent of the default time of the lender, consistently
with the reality of bond and deposit markets.
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22.1.4.2 Risky Funding with CVA for the Lender

If the lender pays P at time 0, he incurs a liquidity cost. In fact, he
needs to finance (borrow) P until T. At T, the lender will pay back
the borrowed money with interest, but only if he has not defaulted.
Otherwise, he gives back nothing, so the outflow for the lender is

P · erTes(L)T · 1{τ (L)>T} = P · erTeπ(L)Teγ (L)T · 1{τ (L)>T}

while he receives in the deal K · 1{τ (B)>T}. The total payoff at T is
therefore

–P · erTeπ(L)Teγ (L)T · 1{τ (L)>T} + K · 1{τ (B)>T}.

Taking discounted expectation we get

VL = –P · e–π(L)Teπ(L)Teγ (L)T · 1{τ (L)>T} + e–rTe–π(B)TK,

= –P · eγ (L)T · 1{τ (L)>T} + e–(r+π(B))TK.

The condition that makes the deal convenient for the lender is

VL ≥ 0 ⇒ P ≤ PL,

PL = K · e–rTe–π(B)Te–γ (L)T ≡ K · e–(r+π(B)+γ (L))T ,
where PL is the break-even premium.

It is interesting to note that when the lender computes the value of
the deal and takes into account all future cash flows as they are seen
from the counterparties, the valuation does not include a charge to
the borrower for the component π(L). This term, the cost of funding
would be associated with his own risk of default. This term is cancelled
by the fact that funding is not given back in case of default.

In terms of relative valuation of a deal, this fact about the lender
is exactly symmetric to the fact that for the borrower, the inclusion
of the DVA eliminates the liquidity advantage associated with π(B). In
terms of managing cash flows, instead, there is an important differ-
ence between the parties, which is discussed next. For reaching an
agreement in the market, we need

VL ≥ 0,VB ≥ 0
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which implies

PL ≥ P ≥ PB ⇔
K · e–rTe–π(B)Te–γ (L)T ≥ P ≥ K · e–rTe–π(B)Te–γ (B)T
⇒
γ (B) ≥ γ (L).

This solves the problem, and shows that, if we only want to guaran-
tee a positive expected return from the deal, the liquidity cost that
needs to be charged to the counterparty of an uncollateralized deriv-
ative transaction is just the liquidity basis, rather than the bond spread
or the CDS spread.

This is in line with what actually happened during the liquidity crisis
in 2007–2009, when the bond-CDS basis exploded. Next we also show
how the picture changes when we look at the possible realized cash
flows (as opposed to the expected cash flows).

22.1.4.3 Positive Recovery

Now, we study what happens if we relax the assumption of zero
recovery. The discounted payoff for the borrower is now

e–rT
(
P · erTeπ(B)Teγ (B)T – K

)
· 1{τ (B)>T}

+ RB · e–rT
(
P · erTeπ(B)Teγ (B)T – K

)
· 1{τ (B)≤T}

⇒
e–rT

(
P · erTeπ(B)Teγ (B)T – K

)
· ((1 – 1{τ (B)≤T}) + RB · 1{τ (B)≤T}

)
,

⇒(
P · eπ(B)Teγ (B)T – e–rTK

)
· (1 – (1 – RB)(1 – 1{τ (B)>T})

)
,

where the recovery is a fraction, RB of the present value of the claims
at the time of default of the borrower, consistent with standard de-
rivative documentation. Notice that the borrower acts as a borrower
both in the deal and in the funding leg, since we represented the latter
as a reduction of the existing funding of the borrower. By taking the
expectation at time 0 we obtain

VB = (1 – (1 – RB)SB(T)) ·
(
P · eπ(B)Teγ (B)T – e–rTK

)
,
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where SB(T) is the survival probability of B. Using π(B) = λ(B)(1 –RB),
we can apply a first order approximation

1 – e–π(B)T ≈ (1 – RB) ·
(
1 – e–λ(B)T

)
.

Here λ(B) is the deterministic default intensity. Then

VB ≈ e–π(B)T ·
(
P · eπ(B)Teγ (B)T – e–rTK

)
= P · eγ (B)T – K · e–(r+π(B))T .

Rather surprisingly, this is the same formula we found when we were
studying the risky funding with DVA for the borrower!

Similar arguments apply to the value of the claim for the lender,
which acts as a lender in the deal and as a borrower in the funding leg.
For the lender we have

VL = –P · eγ (L)T · 1{τ (L)>T} + e–(r+π(B))TK

is recovered as a first-order approximation of

VL = – (1 – (1 – RL)SL(T)) · P · eπ(L)Teγ (L)T + (1 – (1 – RB)SB(T)) · e–rTK.

22.1.4.4 Can DVA Become a Funding Benefit?

One of the most controversial aspects of DVA concerns the con-
sequences for the accounting of liabilities on the balance sheet. In
fact, DVA enables the borrower to condition future liabilities on sur-
vival and create a benefit on default. However, liabilities are already
reduced by risk of default in the case of bonds when banks use the
fair value option according to international accounting standard, and
when banks mark the bond liabilities at historical cost.

So, what is the meaning of DVA? Can we really observe a benefit in
case of our own default?

In order to answer this question we need to study what happens if
the borrower pretends to be default-free, thereby ignoring DVA.

The borrower can perform valuation for accounting purposes us-
ing an accounting credit spread π(B) that may be different from the
market spread and an accounting liquidity basis γ (B) possibly differ-
ent from the market one, albeit with the constraint that their sum s(B)
must match the market funding spread. In particular, when the party
pretends to be default free, we have π(B) = 0 and γ (B) = s(B), and
there are no more indicators for our own default in the payoffs.



616 J.R.M. Röman

Assume that the borrower pretends, for accounting purposes, to
have zero default risk. The premium P paid by the lender gives the
borrower a reduction of the funding payback at T corresponding to a
cash flow P · erTes(B)T at T, where there is no default indicator because
the borrower is treating itself as default-free.

This cash flow must be compared with the payout of the deal at T,
which is – K, again without indicator, i.e. without DVA. Thus the total
payoff at T is

P · erTes(B)T – K.

By discounting to time 0 we obtain an accounting value VB such that

VB = P · es(B)T – K · e–rT

which yields an accounting break-even premium PB for the borrower
equal to the break-even in Equation (22.4),

PB = K · e–rTe–π(B)Te–γ (B)T ≡ K · e–(r+π(B)+γ (B))T ,

where now π(B) and γ (B) are those provided in the market. So in this
case too the borrower B sees a funding benefit that actually takes into
account its own market risk of default π(B), plus an additional liquidity
basis γ (B), thereby matching the premium computed by the lender
that includes the CVA/DVA term. But now this term is accounted for
as a funding benefit and not as a benefit coming from the reduction of
future expected liabilities, thanks to the risk of default.

This shows how the DVA term can be implemented. When a bank
enters a deal in a borrower position, it is making funding for an amount
as large as the premium. If this premium is used to reduce existing
funding which is equally or more expensive, which in our setting
means buying bonds or avoiding some issuance that would be neces-
sary otherwise, this provides a real financial benefit that is enjoyed in
the case of survival by a reduction of the payments at maturity. A bank
can buy back its own bonds, which is like ‘selling protection on itself’
fully funded. When a sale of protection is funded, there is no counter-
party risk and therefore no limit to whom can sell protection, which is
different from the case of an unfunded CDS. In fact buying their own
bonds is a standard and important activity of banks. The reduction is
given by the difference in P · erTes(B)T – K.
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If the quantity of outstanding bonds is sufficiently high to allow the
implementation of such a strategy, we have shown how the DVA term
can be seen not as a default benefit, but rather a natural component
of fair value whenever fair value mark-to-market takes into account
counterparty risk and funding costs.

22.1.4.5 The Accounting View for the Lender

The previous results show that the borrower’s valuation does not
change if he considers himself default free by using an accounting
credit spread π(B) = 0 and treating all the funding cost s(B) he sees
in the market as a pure liquidity spread γ (B) = s(B). Do we have a
similar property also for the lender? Not at all.

If the lender computes the break-even premium using an accounting
credit spread π(L) and an accounting liquidity spread γ (L) = s(L) –
π(L) different from those provided by the market, he gets a different
breakeven premium, because

PL = K · e–(r+π(B)+γ (L))T .
Thus, the breakeven premium and the agreement that will be reached
in the market depend crucially on γ (L). In Fig. 22.1, for a sample
deal, we show how PL varies when, holding s(L) fixed, we vary
κ(L) = γ (L)/s(L), which we call the liquidity ratio of the lender. This

Fig. 22.1 Break-even premium for L, PL as a function of the liquidity cost
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is not the only difference between the situation for the borrower and
the lender. Notice that the borrower’s net payout at maturity T is given
by

P · e(r+π(B)+γ (B))T · 1{τ (B)>T} – K · 1{τ (B)>T}

and is non-negative in all states of the world if provided we keep
P ≥ PB, although the latter condition was designed only in order to
guarantee that the expected payout is non-negative. For the lender
instead the payout at maturity is given by

–P · e(r+π(L)+γ (L))T · 1{τ (L)>T} + K · 1{τ (B)>T}.

The condition VL ≥ 0 does not imply the non-negativity of the earlier
expression. In particular, we can have a negative carry even if we
assume that both counterparties will survive until maturity.

Figure 22.1 shows break-even premium for the lender PL as a func-
tion of the liquidity cost ratios κ(L) and κ(B) when s(L) = 005,
s(B) = 01, T = 20, K = 100, r = 002. The xyplane crosses the z-axis
at the break-even premium for the borrower PB. A deal is possible
only in the blue region.

If we want to guarantee a non-negative carry at least when nobody
defaults we need π(L) ≤ π(B). Otherwise, the lender is exposed to
liquidity shortages and a negative carry even if the deal is convenient
for him. Liquidity shortages when no one defaults can be excluded by
imposing for each deal π(L) ≤ π(B), or, with a solution working for
whatever deal with whatever counterparty, by working as if the lender
were default-free. Only if the lender pretends for accounting purposes
to be default-free will the condition for the convenience of the deal
based on expected cash flows be

P ≤ K · e–(r+π(B)+s(L))T = K · e–(r+π(B)+γ (L)+π(L))T .
This clearly implies that

–P · e(r+π(L)+γ (L))T · 1{τ (L)>T} + K · 1{τ (B)>T}.

should be non-negative. On the other hand, the lender’s assumption
to be default-free makes a market agreement more difficult, since

K · e–(r+π(B)+γ (B))T ≤ P ≤ K · e–(r+π(B)+γ (L)+π(L))T .
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implies

γ (B) ≥ γ (L) + π(L)

rather than γ (B) ≥ γ (L). Under this assumption, uncollateralized pay-
offs should be discounted at the full funding cost also in our simple
setting. Let us consider a bank X that pretends to be default-free and
thus works under the assumption κ(B) = κ(X) = 1 when the bank X
is a net borrower and κ(L) = κ(X) = 1 when X is in a lender position.
When the bank is in the borrower position, we have

PB = PX = K · e–(r+s(X))T .
When it is in a lender position with respect to a counterparty the
breakeven premium will be given by

PL = K · e–(r+s(X))T = PB = PX .

and the discounting at the funding rate r + s(X) is recovered for both
positive and negative exposures.

22.1.5 Final Conclusions

The previous discussion showed how a consistent framework for the
joint pricing of liquidity costs and counterparty risk can be formulated.
This was accomplished by explicitly modelling the funding com-
ponents of a simplified derivative where both counterparties might
default. We saw how bilateral counterparty risk adjustments (CVA and
DVA) could be combined with liquidity/funding costs without any
unrealistic double counting effects.

We also found that DVA has a meaningful representation in terms of
funding benefit for the borrower, so that a bank can take into account
DVA and find an agreement with lenders computing CVA even when it
neglects its own probability of default. On the other hand, the lender’s
cost of funding includes a component that is associated with his own
risk of default, but this component cancels out with his default prob-
ability, so that only his liquidity spread (or equivalently his bond-CDS
basis) contributes as a net funding cost to the value of the transaction.

We also discussed how the situations of the borrower and the lender
were different; in particular, the lender could have negative carry upon
no default even if the value of the deal was positive for him.
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Thus, while the debate appears to be focused on the impact of ac-
counting choices on the valuation of liabilities, the previous discussion
illustrated that it is rather on the valuation of assets that such choices
make a difference.



23
Market Models

23.1 The LIBOR Market Model

One of the general disadvantages of short rate and HJM models is that
they focus on unobservable instantaneous interest rates. The so-called
market models, that was developed in the late 90’s1 tries to overcome
this problem by instead modelling observable market rates such as
LIBOR and swap rates. These models can be calibrated to the market
and have gained a widespread acceptance from practitioners.

The first market models were developed in the HJM framework
where the dynamics of instantaneous forward rates are used to determ-
ine the dynamics of zero-coupon bonds. The dynamics of zero coupon
bond prices were then used to determine the dynamics of LIBOR. Mar-
ket models are therefore not inconsistent with HJM models discussed
in Chapter 16.

23.1.1 Introduction

The term structure models studied in the previous chapters have
involved assumptions about the evolution in one or more continu-
ously compounded interest rates, either the short rate r(t) or, as in
the Heath-Jarrow-Morton (HJM) framework, the instantaneous forward
rates f (t,T). One drawback of these models is that they are expressed

1 See Miltersen, Sandmann and Sondermann (1997), Brace, Gatarek and Musiela (1997),
Jamshidian (1997) and Musiela and Rutkowski (1997).
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in terms of interest rates that are not directly observed in the mar-
ket. Another disadvantage in HJM is that all model parameters must
be recalibrated at each point in time; there is no mechanism for se-
quential updating. Also it is difficult to calibrate the model to actively
traded prices in the market. However, many securities traded in money
markets (e.g. caps, floors, swaps and swaptions) depend on discretely
compounded interest rates such as spot LIBOR rates l(t, t + δ), forward
LIBOR rates L(t,T ,T + δ), spot swap rates lswap(t, δ) and forward swap
rates Lswap(t,T , δ). For the pricing of these securities it seems more
appropriate to apply models that are based on assumptions about the
LIBOR rates directly or spot and forward swap rates.

We use the term market models for models based on assumptions
about discretely compounded interest rates. Market models take the
currently observed term structure of interest rates as a given and
are therefore to be classified as relative pricing or pure no-arbitrage
models. Consequently, they offer no insights into the determination
of the current interest rates. LIBOR market models (LMM) are based
on assumptions about the evolution of forward LIBOR rates. Similarly,
swap market models are based on assumptions about the evolution
of forward swap rates. By construction, market models are not suit-
able for the pricing of futures and options on government bonds and
similar contracts that do not depend on money market interest rates.

In the recent literature various market models have been developed,
but most attention has been given to the so-called lognormal LMM.
In such models the volatilities of a relevant selection of the for-
ward LIBOR rates are assumed to be proportional to the level of
the forward rate so that the distribution of the future forward LIBOR
rates is lognormal. Lognormally distributed continuously compounded
interest rates have unpleasant consequences, but Sandmann and Son-
dermann (1997) showed that models with lognormally distributed,
discretely compounded rates are not subject to the same problems.
Later, we will demonstrate that a lognormal assumption on the dis-
tribution of forward LIBOR rates implies that pricing formulas for
caps and floors identical to Black’s pricing formulas can be derived.
Hence, the lognormal market models provide some support for the
widespread use of Black’s formula for fixed income securities.

We have to be aware that lognormal models can’t handle negative
rates. So we here suppose we have a market situation with strictly
positive interest rates.
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23.1.2 General LIBOR Market Models

In this section we will introduce a general LMM, also referred to as
the BGM/J model (Brace, Gatarek, Musiela and Jamshidian), describe
some of the model’s basic properties, and discuss how derivative
securities can be priced within the framework of the model.

23.1.2.1 Model Description

As was described in Section 4.1.14, a cap is a contract that protects
a floating rate borrower against paying an interest rate higher than
some given rate K, the so-called cap rate. We let T1, . . . ,Tn denote the
payment dates and assume that Ti – Ti–1 = δ for all i. In addition we
define T0 = T1 – δ. At each time Ti(i = 1, . . . , n) the cap gives a payoff
of

Ci(Ti) = Nδmax{L(Ti, Ti –δ)–K, 0} = Nδmax{L(Ti –δ, Ti –δ, Ti)–K, 0},

where N is the face value of the cap. A cap can be considered as a
portfolio of caplets, namely one caplet for each payment date with
payoffs described by the previous formula.

The definition of the forward martingale measure in Chapter 17
implies that the value of the aformentioned payoff can be found as
the product of the expected payoff computed under the Ti-forward
martingale measure and p(t,Ti) the current discount factor for time Ti
payments, that is,

Ci(t) = Nδp(t, Ti)E
QTi

t [max{L(Ti – δ, Ti – δ, Ti) – K, 0}]; t < Ti – δ.

The price of a cap can therefore be determined as the sum of the value
of the caplets

C(t) = Nδ
n∑
i=1

p(t, Ti)E
QTi

t [max{L(Ti – δ, Ti – δ, Ti) – K, 0}]; t < T0.

For t � T0 the first-coming payment of the cap is known so that its
present value is obtained by multiplication by the risk-less discount
factor, while the remaining payoffs are valued as the previous one.
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The price of the corresponding floor is

F(t) = Nδ
n∑
i=1

p(t, Ti)E
QTi

t [max{K – L(Ti – δ, Ti – δ, Ti), 0}]; t < T0.

In order to compute the cap price, we need to know of the distri-
bution of L(Ti – δ,Ti – δ, Ti) under the Ti-forward martingale measure
QTi for each i = 1, . . . , n. For this purpose it is natural to model the
evolution of L(t,Ti – δ, Ti) under QTi . The following argument shows
that under the QTi probability measure the drift rate of L(t,Ti – δ,Ti) is
zero, that is, L(t,Ti – δ,Ti) is a QTi martingale. The simple compounded
forward rate at time t spanning the future period [T1, T2], L(t,T1, T2) is
defined by

p(t, T2)

p(t, T1)
=

1

1 + L(t, T1, T2)(T2 – T1)
.

We rewrite this as

L(t, Ti – δ, Ti) =
1

δ

(
p(t, Ti – δ)

p(t, Ti)
– 1

)
,

where δ = T2 – T1. The following diagram illustrates a set of forward
rates spanning the set of dates Ti

Under the Ti-forward martingale measure QTi the ratio between the
price of any asset and the numeraire, that is, the zero-coupon bond
price p(t,Ti) is a martingale. In particular, the ratio p(t,Ti – δ)/p(t,Ti)
is a QTi martingale so its expected change over any time interval is
equal to zero under the QTi measure. From the previous formula it
follows that the expected change (over any time interval) in the peri-
odically compounded forward rate L(t,Tiδ,Ti) also is zero under QTi .
We summarize the result in the following theorem
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Theorem 23.1. The forward rate L(t,Ti – δ, Ti) is a QTi martingale.

Consequently, a LMM is fully specified by the number of factors (i.e.
the number of standard Brownian motions) that influence the forward
rates and the forward rate volatility functions. For simplicity, we focus
on the one-factor models

dL(t, Ti – δ, Ti) = β
(
t, Ti – δ, Ti, L(t, Tj, δ)|Tj�t

)
dz(t, Ti), i = 1 . . . , n,

where z(t,Ti) is a one-dimensional standard Brownian motion under
the Ti-forward martingale measure QTi. The fourth argument in the
volatility function β indicates that the volatility at time t can depend on
the current values of all the modelled forward rates. In the lognormal
LMMs we will study later, one assumes that volatility of each forward
rate is proportional to the current level of the same forward rate

β
(
t, Ti – δ, Ti, L(t, Tj, δ)|Tj�t

)
= γ (t, Ti – δ, Ti)L(t, Ti – δ, Ti)

for some deterministic function γ . However, for now we continue to
discuss the more general specification. We see from the general cap
pricing formula that the cap price also depends on the current dis-
count factors p(t,T1), p(t,T2), . . . , p(t,Tn). These discount factors can
be determined by p(t,T0), and the current values of the modelled for-
ward rates (i.e. L(t,T0, T1),L(t,T1,T2)), . . . ,L(t,Tn–1, Tn),. Similar to the
HJM model, the LMMs take the currently observable values of these
rates as given.

23.1.2.2 The Dynamics of All Forward Rates Under the
Same Probability Measure

The basic specification of the LMM involves n different forward mar-
tingale measures. In order to better understand the model and to
simplify the computation of some derivative prices we will describe
the evolution of the relevant forward rates under a common probabil-
ity measure. As discussed below, Monte Carlo simulation is often used
to compute prices of certain derivatives in LMMs. It is much simpler to
simulate the evolution of the forward rates under a common probabil-
ity measure than to simulate the evolution of each forward rate under
a different martingale measure associated with the respective forward
rate. One possibility is to choose one of the n different forward mar-
tingale measures used in the assumption of the model. Note that the
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Ti-forward martingale measure only makes sense up to time Ti. There-
fore, it is appropriate to use the forward martingale measure associated
with the last payment date (i.e. the Tn-forward martingale measure
QTn), since this measure applies to the entire relevant time period.
In this context QTn is sometimes referred to as the terminal meas-
ure. Another obvious candidate for the common probability measure
is the spot martingale measure. Let us look at these two alternatives
in more detail.

23.1.2.3 The Terminal Probability Measure

We wish to describe the evolution of all modelled forward rates un-
der a common probability measure – here the Tn-forward martingale
measure. For that purpose we shall apply the following theorem
that outlines how to shift between the different forward martingale
measures of the LMM.
Theorem 23.2. Assume that the evolution in the LIBOR forward
rates L(t,Ti – δ, Ti) for i = 1, ..., n, where Ti = Ti–1 + δ, is given by

dL(t,Ti – δ, Ti) = β
(
t,Ti – δ, Ti,L(t,Tj, δ)|Tj≥t

)
dz(t,Ti), i = 1 . . . , n.

Then the processes z(Ti – δ) and z(Ti) are related as follows:

dz(t, Ti) = dz(t, Ti – δ) +
δβ
(
t, Ti – δ, Ti, L(t, Tj, δ)|Tj�t

)
1 + δL(t, Ti – δ, Ti)

dt.

Using this repeatedly, we get that

dz(t, Tn) = dz(t, Ti) +
n–1∑
j=i

δβ
(
t, Tj, Tj+1, L(t, Tj, δ)|Tj�t

)
1 + δL(t, Tj, Tj+1)

dt.

Consequently, for each i = 1, . . . , n, we can write the dynamics of
L(t,Ti – δ, Ti) under the QTn-measure as

dL(t, Ti – δ, Ti) = β
(
t, Ti – δ, Ti, L(t, Tj, δ)|Tj�t

)
dz(t, Ti)

= β
(
t, Ti – δ, Ti,L(t, Tj, δ)|Tj�t

)

×
⎡
⎣dz(t, Tn) –

n–1∑
j=1

δβ
(
t, Tj, Tj+1, L(t, Tj, δ)|Tj�t

)
1 + δL(t, Tj, Tj+1)

dt

⎤
⎦ ,
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= –
n–1∑
j=i

δβ
(
t, Ti – δ, Ti,L(t, Tk, δ)|Tk�t

)
β
(
t, Tj, Tj+1,L(t, Tk, δ)|Tk�t

)
1 + δL(t, Tj, Tj+1)

dt

+ β
(
t, Ti – δ, Ti,L(t, Tk, δ)|Tk�t

)
dz(t, Tn).

Note that the drift may involve some or all of the other mod-
elled forward rates. Therefore, the vector of all the forward rates
(L(t,T0,T1), . . . ,L(t,Tn–1, Tn)) will follow an n-dimensional diffusion
process so that an LMM can be represented as an n-factor diffusion
model. Security prices are hence solutions to a partial differential
equation (PDE), but in typical applications the dimension n (i.e. the
number of forward rates) is so big that neither explicit nor numer-
ical solution of the PDE is feasible. For example, in order to price
caps, floors, and swaptions that depend on 3-month interest rates and
have maturities of up to 10 years, one must model 40 forward rates so
that the model is a 40-factor diffusion model! However, Andersen and
Andreasen (2000) introduce a trick that may reduce the computational
complexity considerably.

Next, let us consider an asset with a single payoff at some point
in time T ∈ [T0,Tn]. The payoff N(T) may in general depend on the
value of all the modelled forward rates at and before time T. Let V(t)
denote the value of this asset at time t (measured in monetary units,
e.g. dollars). From the definition of the Tn-forward martingale measure
QTn it follows that

V(t) = p(t, Tn)E
QTn
[

N(T)

p(T , Tn)

∣∣∣∣Ft

]
.

In particular, if T is one of the time points of the tenor structure, say
T = Tk, we get

V(t) = p(t, Tn)E
QTn
[

N(Tk)

p(Tk, Tn)

∣∣∣∣Ft

]
.

From

L(t, Ti – δ, Ti) =
1

δ

(
p(t, Ti – δ)

p(t, Ti)
– 1

)
,
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we have that

1

p(Tk, Tn)
=

p(Tk, Tk)

p(Tk, Tk+1)

p(Tk, Tk+1)

p(Tk, Tk+2)
. . .

p(Tk, Tn–1)

p(Tk, Tn)
= [1 + δL(Tk, Tk, Tk+1)][1 + δL(Tk, Tk+1, Tk+2)] . . . [1 + δL(Tk, Tn–1, Tn)]

=
n–1∏
j=k

[1 + δL(Tk, Tj, Tj+1)]

so that the price can be rewritten as

V(t) = p(t, Tn)E
QTn

⎡
⎣N(Tk)

n–1∏
j=k

[1 + δL(Tk, Tj, Tj+1)]

∣∣∣∣Ft

⎤
⎦ .

The right-hand side may be approximated using Monte Carlo simula-
tions in which the evolution of the forward rates under QTn is used, as
outlined earlier. If the security matures at time Tn, the price expression
is simpler

V(t) = p(t, Tn)E
QTn

[N(Tn)|Ft].

In that case it suffices to simulate the evolution of the forward rates
that determine the payoff of the security.

The Spot LIBOR Martingale Measure

The spot martingale measureQ, which we defined before, is associated
with the use of a bank account earning the continuously compounded
short rate as the numeraire. However, the LMM does not at all involve
the short rate so the traditional spot martingale measure does not make
sense in this context. The LIBOR market counterpart is a roll over
strategy in the shortest zero-coupon bonds. To be more precise, the
strategy is initiated at time T0 by an investment of one dollar in the
zero-coupon bond maturing at time T1, which allows for the purchase
of 1/p(T0, T1) units of the bond. At time T1 the payoff of 1/p(T0, T1)
dollars is invested in the zero-coupon bond maturing at time T2, etc.
Let us define

I(t) = min{i ∈ {1, 2, . . . , n} : Ti � t}

so that TI(t) denotes the next payment date after time t. In particular,
I(Ti) = i so that TI(Ti) = Ti. At any time t � T0 the strategy consists of
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holding

M(t) =
1

p(T0, T1)

1

p(T1, T2)
. . .

1

p(TI(t)–1, TI(t))

units of the zero-coupon bond maturing at time TI(t). The value of this
position is

A∗(t) = p(t, TI(t))M(t) = p(t, TI(t))
I(t)–1∏
j=0

1

p(Tj, Tj+1)
,

= p(t, TI(t))
I(t)–1∏
j=0

[1 + δL(Tj, Tj, Tj+1)],

where the last equality follows from

L(t, Ti – δ, Ti) =
1

δ

(
p(t, Ti – δ)

p(t, Ti)
– 1

)
.

Since A∗(t) is positive, it is a valid numeraire. The corresponding mar-
tingale measure is called the spot LIBOR martingale measure and
is denoted by Q∗ .

Let us look at a security with a single payment at a time T ∈ [T0,Tn].
The payoff N(T)may depend on the values of all the modelled forward
rates at and before time T. Let us by V(t) denote the dollar value of
this asset at time t. From the definition of the spot LIBOR martingale
measure Q∗ it follows that

V(t)

A∗(t)
= EQ∗

[
N(T)

A∗(T)

∣∣∣∣Ft

]

and hence

V(t) = EQ∗
[
A∗(t)
A∗(T)

N(T)

∣∣∣∣Ft

]
.

From the calculation

A∗(t)
A∗(T)

=
p(t, TI(t))

p(T , TI(T))

I(t)–1∏
j=0

[1 + δL(Tj, Tj, Tj+1)]

I(T)–1∏
j=0

[1 + δL(Tj, Tj, Tj+1)]
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=
p(t, TI(t))

p(T , TI(T))

I(T)–1∏
j=I(t)

[1 + δL(Tj, Tj, Tj+1)]
–1

we get that the price can be rewritten as

V(t) = p(t, TI(t))E
Q∗
⎡
⎣ N(T)

p(T , TI(T))

I(T)–1∏
j=I(t)

[1 + δL(Tj, Tj, Tj+1)]
–1
∣∣∣∣Ft

⎤
⎦ .

In particular, if T is one of the dates in the tenor structure, say T = Tk,
we get

V(t) = p(t, TI(t))E
Q∗
⎡
⎣N(Tk)

I(T)–1∏
j=I(t)

[1 + δL(Tj, Tj, Tj+1)]
–1
∣∣∣∣Ft

⎤
⎦

since I(Tk) = k and p(Tk, TI(Tk)) = p(Tk, Tk) = 1.
In order to compute (typically by simulation) the expected value

on the right-hand side, we need to know the evolution of the forward
rates L(t,Tj,Tj+1) under the spot LIBOR martingale measure Q∗ . It can
be shown that the process z* defined by

dz∗(t) = dzTi(t) –
[
σ TI(t) (t) – σ Ti(t)

]

is a standard Brownian motion under the probability measure Q∗. As
usual, σ T (t) denotes the volatility of the zero-coupon bond maturing
at time T. Repeated use of the previous theorem yields

σ TI(t) (t) – σ Ti(t) =
i–1∑
j=I(t)

δβ
(
t, Tj, Tj+1, L(t, Tk, δ)|Tk�t

)
1 + δL(t, Tj, Tj+1)

so that

dz∗(t) = dz(t, Ti) –
i–1∑
j=I(t)

δβ
(
t, Tj, Tj+1, L(t, Tk, δ)|Tk�t

)
1 + δL(t, Tj, Tj+1)

dt.

Substituting this relation into

dL(t,Ti – δ, Ti) = β
(
t,Ti – δ, Ti,L(t,Tj, δ)|Tj≥t

)
dz(t,Ti), i = 1 . . . , n.
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we can rewrite the dynamics of the forward rates under the spot
LIBOR martingale measure as

dL(t, Ti – δ, Ti) = β
(
t, Ti – δ, Ti, L(t, Tk, δ)|Tk�t

)
dz(t, Ti)

= β
(
t, Ti – δ, Ti, L(t, Tk, δ)|Tk�t

)

×
⎡
⎣dz∗(t) –

i–1∑
j=I(t)

δβ
(
t, Tj,Tj+1, L(t, Tk, δ)|Tk�t

)
1 + δL(t, Tj, Tj+1)

dt

⎤
⎦ ,

= –
i–1∑
j=I(t)

δβ
(
t, Ti – δ, Ti, L(t, Tk, δ)|Tk�t

)
β
(
t, Tj, Tj+1, L(t, Tk, δ)|Tk�t

)
1 + δL(t, Tj, Tj+1)

dt

+ β
(
t, Ti – δ, Ti, L(t, Tk, δ)|Tk�t

)
dz∗(t).

Note that the drift in the forward rates under the spot LIBOR martin-
gale measure follows from the specification of the volatility function β

and the current forward rates. The relation between the drift and the
volatility is the market model counterpart to the drift restriction of the
HJM models.

23.1.2.4 Consistent Pricing

As indicated earlier, the model can be used for the pricing of all se-
curities that only have payment dates in the set {T1,T2, . . . ,Tn}, and
where the size of the payment only depends on the modelled forward
rates and no other random variables. This is true for caps and floors
on δ-period interest rates of different maturities where the price can
be computed as before. The model can also be used for the pricing of
swaptions that expire on one of the dates T0, T1, . . . ,Tn–1, and where
the underlying swap has payment dates in the set {T1, . . . , Tn} and is
based on the δ-period interest rate. For European swaptions the price
can be written as

V(t) = p(t, TI(t))E
Q∗
⎡
⎣N(Tk)

I(T)–1∏
j=I(t)

[1 + δL(Tj, Tj, Tj+1)]
–1|Ft

⎤
⎦ .

For Bermuda swaptions that can be exercised at a subset of the swap
payment dates {T1, . . . , Tn}, one must maximize the right-hand side
over all feasible exercise strategies. See Andersen (2000) for details
and a description of a relatively simple Monte Carlo-based method for
the approximation of Bermuda swaption prices.
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The LMM is built on assumptions about the forward rates over the
time intervals [T0,T1], [T1,T2], . . . , [Tn–1,Tn]. However, these forward
rates determine the forward rates for periods that are obtained by con-
necting succeeding intervals. For example, the forward rate over the
period [T0,T2] is uniquely determined by the forward rates for the
periods [T0, T1] and [T1, T2] since

L(t, T0, T2) =
1

T2 – T0

(
p(t, T0)

p(t, T2)
– 1

)
=

1

T2 – T0

(
p(t, T0)

p(t, T1)

p(t, T1)

p(t, T2)
– 1

)
,

=
1

2δ
([1 + δL(t, T0, T1)][1 + δL(t, T1, T2)] – 1),

where δ = T1 –T0 = T2 –T1 as usual. Therefore, the distributions of the
forward rates L(t,T0,T1) and L(t,T1,T2) implied by the LMM determ-
ine the distribution of the forward rate L(t,T0, T2). A LMM based on
3-month interest rates can hence also be used for the pricing of con-
tracts that depend on 6-month interest rates, as long as the payment
dates for these contracts are in the set {T0, T1, . . . ,Tn}. More generally,
in the construction of a model, one is only allowed to make exogenous
assumptions about the evolution of forward rates for non-overlapping
periods.

23.1.3 The Lognormal LIBOR Market Model

23.1.3.1 Black’s Model

The standard model for valuing OTC interest rate options, caps, floors
and European swaptions is the Black model. The Black model is used
by traders in the market to price these derivatives, and as will be
seen later on, the analytical Black formulas will play a key role when
calibrating the LMM.

The basic assumptions under the Black model are the following:

• The underlying forward rate or swap rate is a lognormally distrib-
uted stochastic variable.

• The volatility of the underlying is constant.

• Prices are arbitrage free.

• There is continuous trading in all instruments.
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In Black’s world we denote the forward/futures price with expiry T
on an underlying with expiry T∗ as �(T ,T∗). The price is lognormally
distributed with standard deviation σ

√
T – t. It is further assumed that

on expiry, the expected futures price is equal to the current futures
price

EQ[�(T , T∗)|Ft] = �(t, T∗).

For a European call option in Black’s model we have

Ct = e–r(T–t)
{
�(t, T∗) · N (d1 [t, �(t, T∗)

])
– K · N (d2 [t, �(t, T∗)

])}
,

where

d2 =
ln(�(t, T∗)/K) – (σ 2/2)(T – t)

σ
√
T – t

= d1 – σ
√
T – t.

23.1.3.2 Bond Options

The unique no-arbitrage value at time t of a forward contract with de-
livery at time T of a zero-coupon bond maturing at time S at delivery
price K is given by

V(t, T , S) = p(t, S) – K · p(t, T).

The unique no-arbitrage forward price on the zero-coupon bond is

F(t, T , S) =
p(t, S)

p(t, T)
.

Next, we consider a forward contract on a coupon bond where we
assumed to yield payments at T1 < T2 < . . . < Tn in time where
T < Tn. We denote the coupon payments as ci, i = 1, 2, . . . , n. At time t
the value of the bond is therefore given by

P(t) =
∑
Ti>t

cip(t, Ti).
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Let Vcpn(t,T) denote the time t value of this forward contract. Then we
have a no-arbitrage value if the forward given by

Vcpn(t, T) =
∑
Ti>t

cip(t, Ti) – K · p(t, T) = P(t) –
∑

t<Ti<T

cip(t, Ti) – K · p(t, T).

The no-arbitrage forward price is given by

Fcpn(t, T) =

∑
Ti>Tcip(t, Ti)

p(t, T)
=
P(t) –

∑
t<Ti<Tcip(t, Ti)

p(t, T)

=
∑
Ti>T

ciF(t, T , Ti).

Consider between time t and delivery time T, the two portfolios.

1. A forward contract, K zero-coupon bonds maturing at T and for
each Ti with t < Ti < T , ci zero-coupon bonds maturing at Ti

2. The underlying coupon bond.

These portfolios have exactly the same payments. At time T, the first
portfolio equals P(T) – K + K = P(T), which is identical to the value of
the second portfolio. Therefore the absence of arbitrage implies

Vcpn(t, T) + K · p(t,T) +
∑

t<Ti<T

ci · p(t,Ti) = P(t).

The expected payoff of the forward contract is then given by

EQ [max(p(T) – K, 0) |Ft
]
= Fcpn(t,T) · N (d1 [t,Fcpnt,T

])
– K · N (d2 [t,Fcpn(t,T)

])

where

d2 =
ln(Fcpn(t,T)/K) – (σ 2/2)(T – t)

σ
√
T – t

= d1 – σ
√
T – t.

If we multiply the expected payoff with the relevant discount factor
(e.g. the zero-coupon bond price p(t,T)), we get Black’s formula for
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a European call option on a bond

Ccpn(t,T ,K) = p(t,T)

{
Fcpn(t,T) · N (d1 [t,Fcpn(t, T)])
–K · N (d2 [t,Fcpn(t,T)])

}
,

=

⎛
⎝P(t) – ∑

t<Ti<T

ci · p(t,Ti)
⎞
⎠N

(
d1
[
t,Fcpn(t,T)

])

– K · p(t,T)N (d2 [t,Fcpn(t,T)
])
.

Similarly, for a put option we have

Pcpn(t,T ,K) = K · p(t,T)N (–d2 [t,Fcpn(t, T)
])

–

⎛
⎝P(t) – ∑

t<Ti<T

ci · p(t,Ti)
⎞
⎠N

(
–d1

[
t,Fcpn(t,T)

])
.

23.1.3.3 Caps and Floors

For a caplet, with a payoff given by

Ci
Ti = Nδmax{L(Ti,Ti – δ) – K, 0}

we obtain the Black’s price as

Ci(t) = Nδp(t, Ti)

{
L(t,Ti – δ, Ti) · N (di1 [t,L(t,Ti – δ, Ti)])
–K · N (di2[t,L(t,Ti – δ,Ti)])

}
,

where t < Ti < δ and

di2 =
ln(L(t,Ti – δ,Ti)/K) – (σ 2

i /2)(Ti – δ – t)

σ
√
Ti – δ – t

= d1 – σi
√
Ti – δ – t.

We have assumed that the forward rates F(t,Ti – δ, Ti) in a risk-free
world follow the process

dL(t,Ti – δ, Ti) = σiL(t,Ti – δ, Ti)dV(t).
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The price of the cap and the floor is given by

C(t) = Nδ
n∑
i=1

p(t,Ti)

{
L(t,Ti – δ, Ti) · N (di1 [t,L(t,Ti – δ, Ti)])
–K · N (di2 [t,L(t,Ti – δ, Ti)])

}
,

F(t) = Nδ
n∑
i=1

p(t,Ti)

{
K · N (–di2 [t,L(t,Ti – δ, Ti)])
–L(t,Ti – δ,Ti) · N (–di1 [t,L(t,Ti – δ, Ti)])

}
.

23.1.3.4 LMM Model Description

The traditional derivation of Black’s formula is based on some inappro-
priate assumptions.

First, the assumed lognormality of bond prices and interest rates
is doubtful. For several reasons the price of a bond cannot follow
a geometric Brownian motion throughout its life. We know that the
price converges to the terminal payment of the bond as the maturity
date approaches. Furthermore, the bond price is limited from above
by the sum of the future bond payments under the appropriate as-
sumption that all forward rates are non-negative. When the bond price
approaches its upper limit or the maturity date approaches, the volatil-
ity of the bond price has to go to zero. The volatility of the bond price
will therefore depend on both the level of the price and the time to ma-
turity. The lognormality assumption can at most be a locally relevant
approximation to the true distribution. In addition, the forward price
and the futures price on a bond are not necessarily equal when the
interest rate uncertainty is taken into account. It is less clear whether
it is reasonable to assume that future interest rates are lognormally dis-
tributed, and that the expected changes in the forward rates and the
forward swap rates are zero in a risk-neutral world.

Second, the multiplication of the current discount factor and the
risk-neutral expectation of the payoff do not lead to the correct
price. In fact, this is true only if we take the expectation under the
appropriate forward martingale measure instead of the risk-neutral
measure.

Third, simultaneous applications of Black’s formula to different de-
rivative securities are mutually inconsistent. If, for example, we apply
Black’s formula to the pricing of a European option on zero-coupon
bond, we must assume that the price of the zero-coupon bond is
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lognormally distributed. If we also apply Black’s formula for the pri-
cing of a European option on a coupon bond, we must assume that the
price of the coupon bond is lognormally distributed. Since the price of
the coupon bond is a weighted average of the prices of zero-coupon
bonds and a sum of lognormally distributed random variables is not
lognormally distributed, these assumptions are inconsistent. Similarly,
the swap rate is a linear combination of forward rates. When Black’s
formula is applied for the pricing of caplets, it is implicitly assumed
that the relevant forward rates are lognormally distributed. Then the
swap rate will not be lognormally distributed, so that it is inconsistent
to use Black’s formula for swaptions also. Furthermore, lognormality
assumptions for both interest rates and bond prices are inconsistent.

Several research papers suggest other models for bond option pri-
cing that are also based on specific assumptions on the evolution of
the price of the underlying bond. The most prominent examples are
Ball and Torous (1983) and Schaefer and Schwartz (1987). A critical
analysis of such models can be seen in Rady and Sandmann (1994). A
problem in applying these models is that the assumptions about the
price dynamics for different bonds may be inconsistent, and hence
the option pricing formula obtained in the model will only be valid for
options on one particular bond.

To ensure consistent pricing of different fixed income securities
we must model the evolution of the entire term structure of interest
rates. In many of the consistent term structure models we shall
discuss in the following sections, we will obtain relatively simple
and internally consistent pricing formulas for many of the popular
fixed income securities. As we shall see in this section, it is in fact
possible to construct consistent term structure models in which
Black’s formula is the correct pricing formula for some securities, but,
even in those models, applications of Black’s formula for different
classes of securities are inconsistent.

The lognormal LMM provides a more reasonable framework in
which the Black cap formula is valid. The model was originally de-
veloped by Miltersen, Sandmann, and Sondermann (1997), while
Brace, Gatarek, and Musiela (1997) sorted out some technical details
and introduced an explicit, but approximate, expression for the prices
of European swaptions in the lognormal LMM. Whereas Miltersen,
Sandmann, and Sondermann derive the cap price formula using PDEs,
we will follow the approach taken by Brace, Gatarek, and Musiela and
use the forward martingale measure technique, since this simplifies
the analysis considerably.
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In the development of Black’s cap pricing formula, we assumed
among other things that the forward rate L(t,Ti – δ, Ti) was a martin-
gale under the spot martingale measure Q and that the future value
L(Ti – δ,Ti – δ,Ti) was lognormally distributed under Q. However, as
was seen in the previous theorem this forward rate is a martingale un-
der the Ti-forward martingale measure QTi and will therefore not be
a martingale under the Q-measure. (Remember: an equivalent change
of measure corresponds to changing the drift rate.) Looking at the
general cap pricing formula

C(t) = Nδ
n∑
i=1

p(t,Ti)E
QTi
t [max{L(Ti) – δ,Ti – δ,Ti – K, 0}] t < T0

it is clear that we can obtain a pricing formula of the same form as
Black’s formula by assuming that L(Ti – δ,Ti – δ, Ti) is lognormally dis-
tributed under the Ti-forward martingale measure QTi. This is exactly
the assumption of the lognormal LMM

dL(t,Ti – δ,Ti) = L(t,Ti – δ, Ti)γ (t,Ti – δ,Ti) dz(t,Ti), i = 1, 2 . . . , n.,

where γ (t,Tiδ, Ti) is a bounded, deterministic function. Here we as-
sume that the relevant forward rates are only affected by one Brownian
motion, but below we shall briefly consider multi-factor lognormal
LMMs.

A familiar application of Itô’s lemma implies that

d [ln L(t,Ti – δ, Ti)] = –
1

2
(γ (t, Ti – δ, Ti))

2 dt + γ (t,Ti – δ, Ti) dz(t,Ti)

from which we see that

ln L(Ti – δ, Ti – δ,Ti) = lnL(t,Ti – δ, Ti) –
1

2

Ti–δ∫
t

(γ (u,Ti – δ,Ti))
2 du

+

Ti–δ∫
t

γ (u,Ti – δ, Ti) dz(u,Ti).

Because γ is a deterministic function, it follows that

Ti–δ∫
t

γ (u,Ti – δ, Ti) dz(u,Ti) ∼ N

⎡
⎣0,

Ti–δ∫
t

(γ (u,Ti – δ,Ti))
2 du

⎤
⎦
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under the Ti-forward martingale measure. Hence,

ln L(Ti – δ,Ti – δ,Ti) = N

⎡
⎢⎢⎢⎢⎢⎢⎣

ln L(t,Ti – δ,Ti) –
1

2

Ti–δ∫
t

(γ (u,Ti – δ, Ti))
2 du,

Ti–δ∫
t

(γ (u,Ti – δ, Ti))
2 du

⎤
⎥⎥⎥⎥⎥⎥⎦

so that Ti – δ is lognormally distributed under QTi. The following result
should not now come as a surprise.

Theorem 23.3. Under the assumption

dL(t,Ti – δ,Ti) = L(t,Ti – δ,Ti)γ (t,Ti – δ,Ti) dz(t,Ti), i = 1, 2 . . . , n.,

the price of the caplet with payment date Ti at any time t < Ti – δ is
given by

Ci(t) = Nδp(t, Ti)
{
L(t,Ti – δ, Ti) · N (di1) – K · N (di2)} ,

where

⎧⎨
⎩
di1 =

ln(L(t,Ti – δ, Ti)/K)

vL(t,Ti – δ, Ti)
+
1

2
vL(t,Ti – δ, Ti)

di2 = di1 – vL(t,Ti – δ, Ti)

and

vL(t,Ti – δ, Ti) =

√√√√√
Ti–δ∫
t

(γ (u,Ti – δ, Ti))2 du.

Note that vL(t, Ti – δ, Ti)2 is the variance of ln[L(Ti – δ, Ti – δ,Ti)] un-
der the Ti-forward martingale measure given the information available
at time t. The previous caplet price is identical to Black’s formula if
we insert

σi =
vL(t,Ti – δ, Ti)√

Ti – δ – t
.
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An immediate consequence of the previous theorem is the following
cap pricing formula in the lognormal one-factor LMM.

Theorem 23.4. Under the assumption

dL(t,Ti – δ,Ti) = L(t,Ti – δ,Ti)γ (t,Ti – δ,Ti) dz(t,Ti), i = 1, 2 . . . , n.

the price of a cap at any time t < T0 is given as

C(t) = Nδ
N∑
I=1

p(t,Ti)
{
L(t,Ti – δ, Ti) · N (di1) – K · N (di2)},

where d i
1 and di2 are as above.

For t � T0 the first upcoming payment of the cap is known and is
therefore to be discounted with the relevant discount factor, while the
remaining payments are to be valued as shown previously.

Analogously, the price of a floor is

F(t) = Nδ
N∑
I=1

p(t,Ti)
{
K · N (–di2) – L(t,Ti – δ, Ti) · N (–di1)}.

The deterministic function γ (t,Ti – δ, Ti) remains to be specified. We
will discuss this matter below.

If the term structure is affected by n exogenous standard Brownian
motions, the assumption on dL(t,Ti – δ,Ti) earlier is replaced by

dL(t,Ti – δ, Ti) = L(t,Ti – δ, Ti)
n∑
j=1

γj (t,Ti – δ,Ti) dzj(t,Ti),

where all γj(t,Ti–δ,Ti) are bounded and deterministic functions. Again,
the cap price is given by the previous formula with the small change
that vL(t,Ti – δ, Ti) is to be computed as

vL(t, Ti – δ, Ti) =

√√√√√ n∑
j=1

Ti–δ∫
t

(
γj (u,Ti – δ, Ti)

)2
du.
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23.1.3.5 Pricing of Other Securities

No exact explicit solution for European swaptions has been found in
the lognormal LIBOR market setting. In particular, Black’s formula for
swaptions is not correct under the assumption on dL(t,Ti–p–δ,Ti). The
reason is that when the forward LIBOR rates have volatilities propor-
tional to their level, the volatility of the forward swap rate will not
be proportional to the level of the forward swap rate. The swaption
price can be approximated by a Monte Carlo simulation, which is of-
ten quite time-consuming. Brace, Gatarek, and Musiela (1997) derived
the following Black-type approximation to the price of a European
payer swaption with expiration date T0 and exercise rate K under the
lognormal LMM assumptions

P(t) = Nδ
N∑
I=1

p(t,Ti)
{
L(t,Ti – δ, Ti) · N (di1) + K · N (di2)} t < T0,

where d1 and d2 are quite complicated expressions involving the
variances and covariance of the time T0 values of the forward rates
involved. These variances and covariance are determined by the γ -
function. This approximation delivers the price much faster than
a Monte Carlo simulation. Brace, Gatarek, and Musiela provide nu-
merical examples in which the price computed using the previous
approximation is very close to the correct price (computed using
Monte Carlo simulations). Of course, a similar approximation also
applies to the European receiver swaption.

Under the assumptions of the lognormal LMM Miltersen, Sand-
mann, and Sondermann (1997) derived an explicit pricing formula for
European options on zero-coupon bonds, but only for options expir-
ing at one of the time points T0, T1, . . . ,Tn–1, and where the underlying
zero-coupon bond matures at the following date in this sequence. In
other words, the time distance between the maturity of the option
and the maturity of the underlying zero-coupon bond must be equal
to δ. Representing the exercise price by K, the pricing formula for a
European call option is

Ci(t,K,Ti –δ,Ti) = (1 – K) p(t,Ti)N
(
ei1
)
–K ·[p(t,Ti – δ) – p(t,Ti)]N (ei2) ,

where⎧⎪⎨
⎪⎩
ei1 =

1

vL(t,Ti – δ, Ti)
ln

(
(1 – K)p(t,Ti)

K · [p(t,Ti – δ) – p(t,Ti)]
)
+
1

2
vL(t,Ti – δ, Ti)

ei2 = ei1 – vL(t, Ti – δ, Ti)
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and

vL(t,Ti – δ, Ti) =

√√√√√
Ti–δ∫
t

(γ (u,Ti – δ, Ti))2 du

or

vL(t, Ti – δ, Ti) =

√√√√√ n∑
j=1

Ti–δ∫
t

(
γj (u,Ti – δ, Ti)

)2
du.

The price of the corresponding European put option follows from the
put-call parity.

23.1.3.6 Further Remarks

De Jong, Driessen, and Pelsser (2001) investigated the extent to which
different lognormal LIBOR and Sap market models can explain em-
pirical data consisting of forward LIBOR interest rates, forward swap
rates, and prices of caplets and European swaptions. The observations
are from the US market in 1995 and 1996. For the lognormal one-
factor LMM they find that it is empirically more appropriate to use
a γ -function that is exponentially decreasing in the time-to-maturity
Ti – δ – t of the forward rates,

γ (t,Ti – δ, Ti) = γ e–κ(Ti–δ–t),

than to use a constant, γ (t,Ti – δ,Ti) = γ . This is related to the well-
documented mean reversion of interest rates that makes long-term
interest rates relatively less volatile than shorter-term interest rates.
They also calibrate two similar model specifications perfectly to ob-
served caplet prices, but find that in general the prices of swaptions
in these models are further from the market prices than are the prices
in the previous time homogeneous models. In all cases the swaption
prices computed using one of these lognormal LMM exceed the mar-
ket prices; that is, the lognormal LMMs overestimate the swaption
prices. All their specifications of the lognormal one-factor LMM give
a relatively inaccurate description of market data and are rejected by
statistical tests. De Jong, Driessen and Pelsser also show that two-
factor lognormal LMMs are not significantly better than the one-factor
models and conclude that the lognormality assumption is probably
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inappropriate. Finally, they present similar results for lognormal swap
market models and find that these models are even worse than the
lognormal LMMs when it comes to fitting the data.

23.1.4 Calibrating the LIBOR Market Model

In this section we describe how to calibrate LMM to market data. A
basic assumption is that we have chosen the forward-rate-based LMM.
This is the natural approach when pricing caps and floors both not
when pricing swaptions.

Let the tenor structure be 0 = T0 < T1 < . . . < Tn–1 < Tn and i an
integer ranging over the reset dates of the rates (e.g. 1 � i � n).

We define η(t) as the unique index such that Tη(t) is the next tenor
date after t. The (one factor) model is given by the following SDE for
the underlying rates (swap or forward)

dfi
fi

= μi (f (t), t) dt + σi(t)dz(t),

where
fi = forward/swap rate at time i
μi = drift term
σi = volatility of rate i
z(t) = is a Wiener process

The solution to this SDE is

fi(T) = fi(T) exp

⎛
⎝

T∫
0

(
μi (u) –

1

2
s2i (u)

)
du +

T∫
0

si (u) dz (u)

⎞
⎠ .

The drift terms depend on the choice of numeraire and can be de-
termined by applying the assumption of no arbitrage. Suppose we
have forward rates as the underlying rates and choose p(T0,T1) as the
numeraire. Then the drift terms become

μi = σi

i∑
k=1

σkfk(Tk+1 – Tk)ρik
1 + fk(Tk+1 – Tk)

.
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Determining the time-dependent forward rate volatilities is equivalent
to calibrating the model. How the calibration is performed is explained
in a section below.

Although it is not necessary it will always be assumed here that
the (instantaneous) volatilities σi of the rates are deterministic (not
stochastic) functions of time.

A one-factor model means that all the forward rates are perfectly
instantaneously correlated. In this case, a single Wiener process is suf-
ficient to evolve the rates. This is not often a reasonable assumption,
and eliminates one of the advantages of employing the LMM. An m-
factor model is one where m-independent Wiener processes are used
to evolve the rates. In this case the equation becomes

dfi
fi

= μi (f (t), t) dt +
m∑
k=1

σi,k(t)dzk(t), 1 � k � m.

This is solved for

fi(T) = fi(T) exp

⎛
⎝

T∫
0

[
μi (u) –

1

2
σ 2
i (u)

]
du +

T∫
0

m∑
k=1

σi,k (u) dzk (u)

⎞
⎠ .

The loadings σi.k(u) can be interpreted as the sensitivities at time
u of the ith forward rate to the kth shock provided by the Wiener
process zk. They must satisfy

σ 2
i (t) =

m∑
k=1

σ 2
i,k(t).

All that remains before we can start to analyse how the rates will evolve
is to specify the instantaneous volatilities σi’s and their loadings σi,k’s.
This can be done in many different ways. One choice is presented
below.

23.1.4.1 Volatility Calibration

Volatility calibration deals with the determination of the σi’s (the in-
stantaneous volatility of the forward rate with reset at Ti). This is done
differently for caps and swaptions. Since the cap volatility calibration is
a first step in the swaption volatility calibration, we start by describing
the cap volatility calibration.
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23.1.4.2 Cap Volatility Calibration

In the Black model for caplets it is assumed that the underlying
rate has a lognormal distribution with variance equal to T · σ 2

Black
where T is the reset date of the underlying forward rate. In the
LMM, this lognormal assumption is also made for each rate separ-
ately. The instantaneous volatility at reset for each rate is related to
the aforementioned expression in the following way:

Ti∫
0

σ 2
i (t)dt = Tiσ

2
Black.

In other words, the instantaneous volatility at reset for each underlying
rate is equal to the implied Black volatility, which can be read from the
market. Although not necessary, we make the assumption that the σi’s
are deterministic functions of time only. There are (infinitely) many
solutions to these equations, and our goal is to pick one that fits our
needs. We follow the approach suggested by Rebonato (2002). Let

σ (t) = (a + b t) e–ct + d

and

σi (t) = kiσ (Ti – t) .

This form is flexible and can by varying the constants a, b, c and d take
many different shapes. The constants ki are rate specific and are used
to assure that the caplet prices are exactly recovered. How the ki’s are
set should become clear below.

1 Find values on the constants a, b, c and d such that the forward rates

dfi
fi

= μi (f (t), t) dt + σi(t)dz(t)

fit as close as possible. We use both the Broyden-Fletcher-Goldfarb-
Shannon dimensional variable metric method and the Levenberg-
Marquardt method2 in parallel to solve this problem and pick the
best solution.

2 The Broyden-Fletcher-Goldfarb-Shannon dimensional variable metric sometimes gives adjust-
ing factors with the property that the first ones (i.e. i = 1, 2, . . .) have a higher deviation from
unity than the rest. The Levenberg-Marquardt method yields adjusting factors with a more
constant deviation from unity.
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2 Set values on the ki’s by computing

ki =

√√√√√√
σ 2
BlackTi

Ti∫
0
σ 2
i (t) d t

The second step ensures equality for the forward rates; that is, the
instantaneous volatility and the implied Black volatility are set to be
equal at each reset. This completes the volatility calibration for caps.

Before we end the cap calibration section, we shall discuss the issue
of deciding the implied Black volatility, for example, σBlack, in the case
when we are calibrating to an exotic cap with path-dependent strikes.
For example, consider a ratchet cap where each caplet has a strike
given by Ki = fi–1+X where Ki and X denote the strike for the i:th caplet
and a spread respectively. Recall that σBlack of a caplet is a function of
the maturity of the caplet and the strike.

The fact that σBlack depends on the strike gives us some problems.
To see this, note that in order to get σBlack of a caplet we must know
its strike. But if the strike is path-dependent, as it is in a ratchet cap,
we cannot know the strike beforehand. To solve this problem the
following approach is taken:

1. Make good guesses on the start values of the strikes.

2. Get the σBlack of the caplets by using the strikes from the first step.

3. Evolve a small sample of the rates (e.g. 1024 Monte-Carlo simula-
tions). Then compute the average rates for each caplet.

4. Compute new strikes by using the average rates.

5. Go to the second step with the newly computed strikes and repeat
until some desirable convergence criterion is achieved.

Empirical results show that this scheme always (although not proven)
converges and gives good estimates on the strikes. Let us now turn to
the volatility calibration for swaptions.

23.1.4.3 swaption Volatility Calibration

We concentrate on the volatility calibration of a Bermudan swaption.
The volatility calibration of a European swaption is a special case of
this discussion. The basic set-up of the calibration is that we want to
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recover the implied Black volatilities of a set of co-terminal swap rates.
Let T1,T2, . . . , Tn be the expiry dates of the co-terminal swaptions and
SRi denote the i:th swap rate (e.g. the swap rate for the swaption with
expiry Ti). Recall that

SRi =
n∑
j=i

wjfj(t),

where

wj =
Bj+1(Tj+1 – Tj)

n∑
k=i

Bk+1(Tk+1 – Tk)
.

Furthermore, denote with σi×n(t) the instantaneous volatility of SRi,
for example, the instantaneous volatility of the swap rate with expiry
at Ti and maturity at Tn. It can be shown that

σi×n(t)
2 =

n∑
j=i

n∑
k=i

ζjk(t)ρjkσj(t)σk(t),

where

ζjk(t) =
wk(t)fk(t)wj(t)fj(t)(

n∑
m=i

wm(t)fm(t)

)2
.

The last equation is an approximation. One of the main results is that

σi×n(t)
2 ≈

n∑
j=i

n∑
k=i

ζjk(T0)ρjkσj(t)σk(t).

This is the key point in the calibration and one ought to under-
stand how this greatly simplifies our task (it is recommended to read
Rebonato (2002), “Modern Pricing of Interest-Rate Derivatives”, Prin-
ceton University Press for a discussion regarding this issue). In order
to recover the swaption prices, we must have that

σBlack
i×n (t)2Ti =

∫ Ti

0
σi×n(u)

2du.

Our approach to achieving this is the following.
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Find values of the constants a, b, c and d such that the equations for
the forward rates fit as close as possible. We use both the Broyden-
Fletcher-Goldfarb-Shannon dimensional variable metric method and
the Levenberg-Marquardt method (for a description of these methods,
refer to Press et. al, (2002) “Numerical Recipes in C”) in parallel to
solve this problem and pick the best solution. Note that this is the
same first step as in the cap calibration.

Consider the last swaption in the set of co-terminal swaptions (e.g.
with expiry Tn). This is simply a floating rate exchanged for a fixed rate
(i.e. a caplet). Set

kn =

√√√√ σBlack
n×n (t)2Tn∫ Tn

0 σn×n(u)2du

which makes

σi (t) = kjσ (Ti – t)

for i = n an equality.
Move a step back and consider the swaption with expiry Tn–1. Our

goal is to set the value for kn–1 such that

σBlack
n–1×n(t)

2Tn–1 =
∫ Tn–1

0
σn–1×n(u)

2du.

Since we have already solved for kn and are using the approximation of

Ti∫
0

σ 2
i (t)dt = Tiσ

2
Black,

kn–1 is the only unknown variable. Since kn–1 appears in squared form,
we need to solve a second-degree equation. Although straightforward,
the algebra becomes quite messy.

Next we continue to compute the values of the remaining ki’s in a
similar fashion as in the previous step. Doing this yields values for the
ki’s such that

σi (t) = kiσ (Ti – t)

is fulfilled for 1 � i � n.
Our approach to calibration of the instantaneous swap volatility can-

not, as far as we know, be found in any published/academic/scientific
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article. This is a brief motivation why it seems to be a desirable proced-
ure. In all but very rare cases, the first step gives values on a, b, c and
d such that the instantaneous volatilities of the forward rates are time
homogeneous. A problem might be that the constants a, b, c and d are
not designed to recover the swaption prices. However, they should
not be too far off since we are considering the same rates, namely the
forward rates. Finally, the remaining steps make sure that we recover
the swaption prices exactly.

23.1.4.4 Principal Component Analysis

We use principal component analysis to reduce the number of driving
factors needed when valuing plain-vanilla caps, European swaptions,
and Bermudan swaptions. In this section we describe how this is done.
Note that we do not use principal component analysis for the valu-
ation of path-dependent caps such as ratchet, sticky, momentum, flexi,
and chooser. In this case, we use as many factors as there are rates.
More information on why we do this can be found in Rebonato (2002)
“Modern Pricing of Interest-Rate Derivatives”, Princeton University
Press.

Consider a cap with n caplets with resets at T1,T2, . . . , Tn respect-
ively. Each caplet has an associated forward rate fi for 1 � i � n. We
describe the principal component analysis in a simple case, namely
when the rates f1, f2, . . . , fn are evolved to the first reset date T1. The
complete picture can then be understood from this discussion. Now
suppose we have an m-factor model where m < n and let

Covij =
∫ T1

0
ρijσi(u)σj(u)du

be the n×n terminal covariance matrix where 1 � i � n and 1 � j � n.
Note that Covij is symmetric.

Use the Jacobian transformations of a symmetric matrix method to
find the n eigenvalues of Covij and the corresponding normalized ei-
genvectors as described by Rebonato (2002, section 11.1). Denote the
vector of eigenvalues with ei = [e1 e2 . . . en]T and the corresponding
normalized eigenvectors with vi. Furthermore, let vij = [v1 v2 . . . vn].
Sort ei in decreasing order and change the vectors in vij accordingly.
Compute

Bik =
[√

e1v1
√
e2v2 . . .

√
emvm

]
,
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where 1 � k � m. Compute

si =

⎡
⎢⎢⎢⎣
√√√√√

Cov11
m∑
l=1

elv21l

√√√√√
Cov22
m∑
l=1

elv22l

· · ·
√√√√√

Covnn
m∑
l=1

elv2nl

⎤
⎥⎥⎥⎦

T

= [s1 s2 . . . sn]
T .

and

B
′
ik =

⎡
⎢⎢⎣
s1

√
e1v11 s1

√
e2v12 . . . s1

√
emv1m

s2
√
e1v21 s2

√
e2v22 . . . s2

√
emv2m

...
sn

√
e1vn1 sn

√
e2vn2. . . sn

√
emvnm

⎤
⎥⎥⎦ .

Finally, compute the model covariance Cov
′
ij = B

′
ik × B

′T
ik . In particular

note that Cov
′
ii = Covii for all i’s, that is, the variance of each rate is

unchanged, and that B
′
ik is the principal component matrix. To put this

in the context of the section “Libor Market Model”, the equation for
the drift terms

μi = σi

i∑
k=1

σkfk(Tk+1 – Tk)ρik
1 + fk(Tk+1 – Tk)

is rewritten as

μi =
i∑

l=1

fl(Tl+1 – Tl)

1 + fl(Tl+1 – Tl)
Cov

′
il

and in equation

dfi
fi

= μi(f (t), t)dt +
m∑
k=1

σi,k(t)dzk(t), 1 ≤ k ≤ m

σi,k correspond to B
′
ik.

23.1.4.5 Correlation Matrix

The n × n correlation matrix

Pij =

⎡
⎢⎢⎣
ρ11 ρ12 . . . ρ1n
ρ21 ρ22 . . .
...

. . .
ρn1 . . . ρnn

⎤
⎥⎥⎦
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is user defined. After the user has input Pij, we use the heuristic of ap-
plying principal component analysis to it as described in the previous
section before the calculations start. In other words, Pij is exposed to
the same transformation as Covij was above.

23.1.5 Evolving the Forward Rates

We use two different approaches to evolve the forward rates – the
short step and the long step. The short step approach evolves the
“living” forward rates to each reset. To exemplify, suppose that the re-
sets of the rates are T1,T2, . . . , Tn. Then f1, f2, . . . , fn are evolved to T1,
f2, . . . , fn are evolved to T2, and so on. We do not attempt to describe
the technical details of the approach here. However, the implications
of the results are that we can evolve a forward rate to an appropriate
point in time in one step, without hardly any loss of accuracy when
compared to the short step approach.

We use both approaches when evolving the forward rates. In par-
ticular, we use the long step when valuing a cap (of any kind). This
allows us to evolve each forward rate to its reset date in one step.
When valuing a swaption (of any kind) we use the short step for all
but the first time sensitive date (i.e. the first exercise date in the case
of a Bermudan swaption) – to the first time sensitive date when we
use the long step.

23.1.6 Pricing of Bermudan Swaptions

In this section we make a theoretical elaboration of the pricing proced-
ure for a Bermudan swaption. This pricing procedure is the only one
we need to describe; a European swaption is, as we will see, a spe-
cial case of this discussion, and the pricing procedure of a cap follows
from its definition.

A Bermudan swaption contract denoted by X-non-call-Y gives the
holder the right to enter into a swap at a pre-specified strike rate “K”
on a number of exercise opportunities. The first exercise opportun-
ity in this case would be Y years after inception. The swap that can
be entered into always has the same terminal maturity date, X. A Ber-
mudan swaption entitling the holder the right to enter into a swap
in which they pay the fixed rate is referred to as a Payer’s otherwise
Receiver’s.
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Therefore, as the owner of a Bermudan swaption one is in a position
where at each exercise date it is necessary to use one’s own judgement
to determine if exercise is optimal or not. This makes the pricing of
Bermudan swaptions a little more complicated than that of a European
swaption. We have implemented Andersen’s strategy that can be found
in Andersen (1999) “A simple approach to the pricing of Bermudan
swaptions in the multi-factor LIBOR Market Model”, The Journal of
Computational Finance, 3(2): 5–32, 1999/2000. Below we describe
the approach and how we use it.

When pricing a Bermudan swaptions the most important question
is how to determine the free exercise boundary. In other words, given
that the world is in a certain state at one of the exercise dates, under
what circumstances should one exercise the option?

Let

Ss,e = The European payer’s swaption maturing at time Ts and with
a last cash flow at date Te.

Ss,x,e = The Bermudan swaption with lockout date (first exercise
opportunity) Ts, last exercise date Tx and final swap maturity Te.

The decision whether or not to exercise a Bermudan swaption at a
date Ti will in general depend on the state of all forward rates FI(Ti).
To simplify matters somewhat one could make the assumption that the
strategy depends only on the intrinsic values of the underlying swap.
Let I(Ti), be the indicator function that equals one if exercise is optimal
at dates Ti and zero otherwise. It is hence assumed that

I (Ti) = f
(
Si,e,H (Ti)

)
,

where f is a specified Boolean function with a possibly time-dependent
parameter H. The relationship

I (Tx) =

{
1 S (Tx) > 0
0 otherwise

must of course be fulfilled. For the other exercise opportunities the
following form of I(Ti) is assumed:

I (Ti) =

{
1 Si,e (Ti) > H (Ti)
0 otherwise

.

In this strategy the option is exercised if the intrinsic value of the
underlying swap is above the barrier H.
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The next step is to determine the value of the functionH at the dates
Ts, . . . ,Tx.H(T). The function H is characterized as being the function
that maximizes the value of the Bermudan swaption.

A brute-force way of determining the values of the function H is
hence to solve the multi-dimensional optimization problem. This could
be done as follows. Store a Monte Carlo simulation in memory. Simul-
taneously find values on the function H at the dates Ts, . . . , Tx such
that value of the Bermudan swaption is maximized. This would be an
iterative process where in each iteration, first, new values on H at the
dates Ts, . . . , Tx are set, then, the value of the Bermudan swaption is
calculated. Whichever choices on H at the dates Ts, . . . ,Tx that give
the highest value on the Bermudan swaption are picked. Obviously,
this way of finding H is tremendously slow and not applicable in prac-
tice. Fortunately, there is an another way of finding H, as proposed by
Andersen (1999), which is much more efficient. It can be described as
follows:

1. Set H(Tx) = 0.

2. Compute an appropriate Monte Carlo simulation of the forward
rates and store it in memory.

3. Consider the Bermudan swaption Sn–1,x,e. At time Tn–1 the exercise
strategy must be the same as for Ss,x,e since at this time there is
no difference between the options. H(Tx) = 0 (ordinary European
option) is known and determining the value of H(Tn–1) is hence a
one-dimensional optimization problem. We solve this optimization
problem with the Golden Section Search in One Dimension (see
section 10.1 of Press et. al, (2002) “Numerical Recipes in C” for a
description of this algorithm).

4. Repeat in turn the previous step for Sx–2,x,e, Sx–3,x,e, . . . , Ss+1,x,e, Ss,x,e.

When doing this, it is sufficient to store a single Monte Carlo session in
memory and to re-use it over and over again. Having determined the
exercise boundary in this way another Monte Carlo simulation is run
to calculate the price. This Monte Carlo approach to determine the
free exercise boundary produces a lower bound on Bermudan swap-
tion prices that can be shown to be very tight for many realistic term
structures.

Finally, note that valuing a European swaption is a special case of
valuing a Bermudan swaption; a European swaption is a Bermudan
swaption with one exercise event, Tx, and it follows that H(Tx) = 0.
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A Model for Exotic Instruments

24.1 Managing Exotics

In the following section, I refer to articles by Patrick Hagan. The adjus-
tors described here are called “Hagan adjustors”. This is a method of
turning bad prices into good prices,

We will study the need of pricing and trading an exotic derivative,
but because of limitations in our pricing systems, we cannot calibrate
on the “natural set” of hedging instruments. Instead, we have to cal-
ibrate on some other set of vanilla instruments, which provide only a
poor cash-flow replication of the exotic. Consequently, our prices are
questionable, and if we are bold enough to trade on these prices, our
hedges will be unstable, chewing up any profit as bid-ask spread. Here
we discuss how to get out of these jams by using “adjusters”, a tech-
nique for re-expressing the Vega risks of an exotic derivative in terms
of its “natural hedging instruments”. This helps to prevent unstable
hedges and exotic deal mismanagement, and, as a side benefit, leads
to significantly better pricing of the exotic. First, let us briefly discuss
how we get in these jams.

During normal times, the pricing of fixed income derivatives de-
pends on two key markets. First we have the swap market (or delta
market), from where we get the yield curve. swap desks maintain
current yield curves by continually stripping and re-stripping a set of
liquid swaps, futures, and deposit rates throughout the day. This curve
determines all current swap rates, FRA rates, forward swap rates, etc.
The yield curve also shows how to hedge all interest rate risks by
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buying and selling the same swaps, futures, and deposit rates used
in the stripping process.

Second, we have the plain vanilla option market (or Vega market)
for European swaptions, caps, and floors. Prices of these options are
quoted in terms of the volatility σ , which is inserted into Black’s 1976
formula to determine the dollar price of the option.

European swaptions are defined by three numbers:

1. the exercise date,

2. the tenor (length) and

3. the strike (fixed rate) of the swap received upon exercise.

Keeping track of this market requires maintaining a volatility cube,
which contains the volatilities σ as a function of the three coordinates.
However, the vast majority of swaptions are struck ATM, i.e. at strikes
equalling the current swap rate of the underlying forward swap, so
desks normally track this market by maintaining a volatility matrix con-
taining the volatilities of ATM swaptions, and a set of auxiliary “smile”
matrices showing howmuch to add/subtract to the volatility for strikes
50 bps, 100 bps, etc., above or below the current swap rate.

Alternatively, some swap desks determine the adjustment by using
a smile model, such as the SABR or Heston models. In any case, desks
are reasonably confident that they can trade the vanilla instruments at
the indicated prices.

Now consider the typical management of an exotic interest rate
derivative, such as a Bermudan swap or a callable range note. During
the nightly mark-to-market, the deal will be priced by

• selecting an interest rate model, such as Hull-White or Black-
Karasinski,

• selecting a set of vanilla swaptions and/or caplets as the calibration
instruments,

• calibrating the interest rate model so that the model reproduces
the market prices of these instruments, either exactly or in a least
squares sense, and

• using the calibrated model to find the value of the exotic via finite
difference methods, trees, or Monte Carlo.
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The exotic’s Vega risks will then be obtained by

• bumping each volatility in the matrix (or cube) one at a time,

• re-calibrating the model and re-pricing the exotic derivative for each
bump and

• subtracting to obtain the difference in value for the bumped case
versus the base (market) case.

This results in a matrix of Vega risks where each cell represents the
deal’s dollar gain or loss when the volatility of that particular swaption
changes. These Vega risks are then hedged by buying or selling enough
of each underlying swaption so that the total Vega risks are zero. Of
course the desk first adds up the Vega exposure of all deals, and only
hedges the net exposure.

Calibration is the only step in this procedure, which incorporates
information about marketing the volatilities.

Under the typical nightly procedure the exotic derivative will only
have Vega risks to the set of vanilla swaptions and/or caplets used
in calibration. So regardless of the actual nature of the exotic derivat-
ive, the Vega hedges will be trying to mimic the exotic derivative as a
linear combination of the calibration instruments. If the calibration in-
struments are “natural hedging instruments” which are “similar” to the
exotic, then the hedges probably provide a faithful representation of
the exotic. If the calibration instruments are dissimilar to the exotic,
having the wrong expiries, tenors, or strikes, then the Vega hedges
will probably be a poor representation of the exotic. This often causes
the hedges to be unstable, which gets expensive as bid-ask spread is
continually chewed up in re-hedging the exotic.

For example, consider a cancellable 10-year receiver swap struck
at 7.50%, where the first call date is in 3 years (10NC3@7.50). Surely
the natural hedging instruments for this Bermudan are the diagonal
swaptions: the 3y into 7y struck at 7.50%, the 4y into 6y struck at
7.50%, . . ., and the 9y into 1y struck at 7.50%, since a dynamic combin-
ation of these instruments should be capable of accurately replicating
the exotic. Indeed, if we do not calibrate on these swaptions, then our
calibrated model would not produce the correct market prices of these
swaptions, and if our prices for the 3y into 7y, the 4y into 6y, . . ., are
incorrect, we don’t have a prayer of pricing and hedging the callable
swap correctly.
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When feasible, best practice is to use auto-calibration for managing
exotic books. For each exotic derivative on the books, auto-calibration
first selects the “natural hedging instruments” of the exotic, usually
based on some simple scheme of matching the expiries, tenors, and
effective strikes of the exotic. It then re-calibrates the model to match
these instruments to their market values, and then values the exotic.
Auto-calibration then picks the next deal out of the book, selects a
new set of natural hedging instruments, re-calibrates the model, and
re-prices the exotic, and so on.

There are a variety of reasons why auto-calibration may not be feas-
ible. If one’s interest rate model is too complex, perhaps a several
factor affair, one may not have the computational resources to allow
frequent calibration. Or if one’s calibration software is too “fractious,”
one may not have the patience to calibrate the model very often. In
such cases one would generally calibrate to all swaptions in the volat-
ility matrix in a least squares sense and the calibration would only
include ATM swaptions. Alternatively, an interest rate model may be
more easily calibrated on some instruments than others. For example,
a multi-factor Brace-Gatarek-Musiela (BGM) model is much easier to
calibrate to caplets than to swaptions. Finally, one’s software may not
be set up to calibrate on the “natural hedging instruments”.

A callable range note provides an example. Consider a regular (non-
callable) 10-year range note, which pays a coupon of, say, $1 each day
Libor sets between 2.50% and 6.00%. Apart from minor date differ-
ences, the range note is equivalent to being long one digital call at
2.50% and short a digital call at 6.00% for each day over the next 10
years. Since digital calls can be written in terms of ordinary calls, a
range note is very, very close to being a vanilla instrument, and can be
priced exactly from the swaption volatility matrix (or cube). To price a
callable range note, one would like to calibrate on the underlying daily
range notes, for if we don’t price the underlying range notes correctly,
how could we trust our price for the callable range note? Yet many
systems are not set up to calibrate on range notes.

24.1.1 At-The-Money Volatility Matrix

European swaptions are defined by the time-to-exercise (row), and
length (column) and fixed rate (strike) of the swap received upon ex-
ercise. A volatility matrix (as opposed to a volatility cube) contains the
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Table 24.1 A volatility matrix

σ (in %) 3m 1y 2y 3y . . . 10y

1m 5.25 12.25 13.50 14.125 . . . 14.25
3m 7.55 13.00 14.125 14.375 . . . 14.50
6m 11.44 14.25 14.875 15.00 . . . 14.75
1y 16.20 16.75 16.375 16.125 . . . 15.50
2y 19.25 17.75 17.125 17.00 . . . 15.75
...

...
...

...
...

10y 14.00 13.50 13.00 12.50 . . . 11.00

volatilities of ATM swaptions, swaptions whose fixed rates are equal to
the current forward swap rate of the underlying swap. Linear interpol-
ation is used for the volatilities in between grid points. The 3m column
is the caplet column. Such a volalility matrix is shown in Table 24.1.

24.1.2 Migration of Risk

We will now describe a method for moving the Vega risk, either all of
it, or as much as possible, to the natural hedging instruments. Suppose
we have an exotic derivative v which has h1, h2, . . . , hm as its natural
hedging instruments. For example, for the 10NC3 Bermudan struck at
7.50%, the natural hedging instruments are just the 3y into 7y swap-
tion struck at 7.50%, the 4y into 6y at 7.50%, . . ., and the 9y into 1y at
7.50%. Suppose that for “operational reasons”, one could not calibrate
on h1, h2, . . . , hm, but instead were forced to calibrate on the swap-
tions and/or caplets S1, S2, . . . , Sn. Let these instruments have market
volatilities σ1, σ2, . . . , σn.

Then after calibrating the model, all prices obtained from the model
are functions of these volatilities. So let

Vmod = Vmod(σ1, σ2, . . . , σn)

be the value of the exotic derivative v obtained from the model.
Suppose we use the model to price the natural hedging instruments
h1, h2, . . . , hm. Let

H mod
k (σ1, σn, . . . , σn) k – 1, 2, . . . ,m

be the value of these instruments according to the calibrated model.
Finally, let

Hmar
k k = 1, 2, . . . ,m
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be the market price of the natural hedging instruments. Let us cre-
ate an imaginary portfolio consisting of the exotic derivative and its
natural hedging instruments,

π = v –
m∑
k=1

bkhk,

where the amounts bk of the hedging instruments will be selected
shortly. Using the calibrated model to price this portfolio yields

� – V mod (σ1, σn, . . . , σn) –
m∑
k=1

bkH
mod
k (σ1, σn, . . . σn).

According to the calibrated model, this portfolio has the Vega risks

∂�

∂σj
=
∂V mod

∂σj
–

m∑
k=1

bk
∂H mod

k

∂σj

to the calibration instruments.
In the next section we will show how to choose the amounts bk

so as to eliminate the Vega risks, either completely or as completely
as possible. For the moment just suppose we have chosen the portfo-
lio weights bk. We add and subtract this portfolio of natural hedging
instruments to write the exotic derivative v as

v =

{
v –

m∑
k=1

bkhk

}
+

{
m∑
k=1

bkhk

}
.

We now use the calibrated model to value the instruments in the first
set of braces, and use the market prices to evaluate the instruments in
the second set of braces. This yields the adjusted price

Vadj =

{
V mod –

m∑
k=1

bkH
mod
k

}
+

{
m∑
k=1

bkH
mar
k

}

= V mod +
m∑
k=1

bk
(
Hmar
k – H mod

k

)
.

This procedure is generally known as “applying an adjuster”. The
terms inside {} are evaluated using the calibrated model, so they
only have Vega risk to the volatilities of the calibration instruments
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σ1, σ2, . . . , σn.With the weights bk chosen to eliminate these risks as
nearly as possible, the adjusted price Vadj has little or no Vega risk
to the calibration instruments. Instead, the Vega risks of the adjusted
price come from the last term,

m∑
k=1

bkH
mar
k

which only contains the market prices of the natural hedging instru-
ments. So, as claimed, the adjuster has moved the Vega risks from the
calibration instruments to the natural hedging instruments. In fact, to
hedge these risks one must take the opposite position

–
m∑
k=1

bkhk

in the natural hedging instruments of the exotic. For the 10NC3
Bermudan struck at 7.50%, for example, the resulting hedge is a com-
bination of the 3y into 7y, the 4y into 6y, . . . , and the 9y into 1y
swaptions, all struck at 7.50%, regardless which set of instruments
were used originally to calibrate the model.

The last part of the previous equation gives a different view. It shows
the adjusted price as being the model price corrected for the differ-
ence between the market price and the model price of the natural
hedging instruments.

24.1.3 Choosing the Portfolio Weights

We wish to choose the hedging portfolio weights bk so as to minimize
the model’s Vega risks. This is an exercise in linear algebra. Define the
matrix M and vectors Uj by

Mjk =
∂H mod

k

∂σj
, Uj =

∂�

∂σj

and let b be the vector of positions (b1, b2, . . . , bm)T so that the Vega
risks to the calibration instruments are

U –Mb.
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There are three cases to consider. First suppose that there are fewer
hedging instruments than model calibration instruments. One can-
not expect to eliminate n risks with m < n hedging instruments, so
one cannot eliminate all the Vega risks in this case. Instead one can
minimize the sum of squares of the Vega risks:

b = (MTM)–1M U (if m < n)

If there are exactly as many hedging instruments as calibration instru-
ments, then we can expect to completely eliminate the risk entirely
by choosing

b = M–1U (if m = n)

Finally, if there are as many hedging instruments than model cal-
ibration instruments, then we can select the smallest hedge which
completely eliminates the Vega risks to the calibration instruments.
This yields

b = MT (MMT )–1U (if m > n)

24.1.3.1 Examples

Consider once more the cancellable 10-year receiver swap struck at
7.50%, where the first call date is in 3 years. This derivative is normally
booked as a straight 10-year swap, with a Bermudan option to enter
into the opposite swap. Here we just price the Bermudan option, the
option to enter a payer swaption at 7.50% on any coupon date starting
on the third anniversary of the deal. For the purposes of this example,
we assume a flat 5% yield curve, and use the Hull-White model with
the USD volatility matrix from March 1999.

Clearly the natural hedging instruments are the 3y into 7y swaption
struck at 7.50%, the 4y into 6y swaption at 7.50%, . . ., and the 9y into
1y swaption at 7.50%. Suppose we calibrate the Hull-White model to
these “natural hedging instruments” and then use the calibrated model
to price the Bermudan. This leads to a price of

V = 200.18 bps.

This represents the best price available within the one factor Hull-
White framework. Suppose we calibrate to the same “diagonal” swap-
tions as before, but instead of calibrating to swaptions struck at 7.50%,
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we calibrate to swaptions struck ATM, at 5.00%. This yields a much
lower price,

Vmod = 163.31 bps.

If we add in the adjustor, we obtain the price

V mod +
m∑
k=1

bk
(
Hmar
k – H mod

k

)
= 163.31 + 39.18 = 202.49bps

a great improvement.
Alternatively, suppose we calibrate the Hull-White model to the

caplets starting at 3 years, at 3.25 years, at 3.5 years, . . . , and at 9.75
years, with all caplets struck at 7.50%. Now we have the correct strike,
but the wrong tenors. The calibrated model yields the price

Vmod = 196.82 bps.

If we add in the adjustor, we obtain a price of

V mod +
m∑
k=1

bk
(
Hmar
k – H mod

k

)
= 196.82 + 9.12 = 199.94 bps,

again a distinct improvement.

24.1.4 Nothing Is Free

At first glance, it appears that using an adjuster greatly increases the
computational load. After all, to determine the adjustment requires
computing the exotic derivative’s Vega risk ∂Vmod/∂σj to all calibra-
tion instruments. These risks are usually found via finite differences,
so evaluating these risks would seem to require model calibrations
in n + 1 separate scenarios (base case, and each σ j bumped separ-
ately). However, these Vega risks are needed for hedging purposes,
and are nearly always computed as part of the nightly batch, even if
one is not applying an adjustor. So computing the Vega matrix is usu-
ally free. The computational load does increase modestly, because for
each natural hedging instrument, one has to calculate the model price
Hmod

k and its Vega derivatives ∂Hmod
k/∂σj. This requires calculating

the model price of m vanilla instruments n + 1 times. This is the same
load as calculating the calibration error in each of the n+ 1 scenarios,
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clearly much, much faster than actually calibrating the model in each
of the n + 1 scenarios.

24.1.5 The SABR Volatility Model

The SABR model is a stochastic volatility model, which attempts to
capture the volatility smile in derivatives markets. The name stands for
Stochastic Alpha, Beta, Rho, referring to the parameters of the model.

24.1.5.1 Dynamics

The SABR model describes a single forward F, such as a LIBOR for-
ward rate, a forward swap rate, or a forward stock price. The volatility
of the forward F is described by a parameter σ . SABR is a dynamic
model in which both F and σ are represented by stochastic state
variables whose time evolution is given by the following system of
SDEs

dFt = σtF
β
t dWt

dσt = ασtdZt

with the prescribed time zero (currently observed) values F0 and σ0.
Here, Wt and Zt are two correlated Wiener processes with correla-
tion coefficient –1 < ρ < 1. The constant parameters β,α satisfy the
conditions 0 ≤ β ≤ 1,α ≥ 0.

The aforementioned dynamics is a stochastic version of the constant
elasticity of variance (CEV) model with the skewness parameter β: in
fact, it reduces to the CEV model if α = 0 The parameter α is often
referred to as the volvol, and its meaning is that of the log-normal
volatility of the volatility parameter σ .

24.1.6 Asymptotic Solution

We consider a European option (say, a call) on the forward price
F struck at K, which expires T years from now. The value of this
option is equal to the suitably discounted expected value of the pay-
off max(FT – K, 0) under the probability distribution of the stochastic
process for Ft.
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Except for the special cases of β = 0 and β = 1, no closed form
expression for this probability distribution is known. The general case
can be solved approximately by an asymptotic expansion in the para-
meter ε = Tα2. Under typical market conditions, this parameter is
small and the approximate solution is actually quite accurate. Also sig-
nificantly, this solution has a rather simple functional form; it is easy to
implement in computer code and lends itself well to risk management
of large portfolios of options in real time.

It is convenient to express the solution in terms of the implied
volatility of the option. Namely, we force the SABR model price of
the option into the form of the Black model valuation formula. Then
the implied volatility, which is the value of the log-normal volatility
parameter in Black’s model that forces it to match the SABR price, is
approximately given by

σimpl = α
ln(F0/k)

D(ς)

{
1 +

[
2γ2 – γ 2

1 + 1/F2
mid

24

(
σ0C(Fmid)

α

)2

+
ργ1

4

σ0C(Fmid)

α
+
2 – 3ρ2

24

]
ε

}
,

where, for clarity, we have set C(F) = Fβ . The value Fmid denotes a
conveniently chosen midpoint between F0 and K (such as the geo-
metric average

√
F0K or the arithmetic average (F0 + K)/2). We have

also set

ς =
α

σ0

F0∫
K

dx

C(x)
=

α

σ0(1 – β)

(
F1–β
0 – K1–β

)

and

γ1 =
C′(Fmid)

C(Fmid)
=

β

Fmid
,

γ2 =
C′′(Fmid)

C(Fmid)
= –

β(1 – β)

F2
mid

.

The function D(ζ ) entering the previous formula is given by

D(ς) = ln

(√
1 – 2ρ ς + ς2 + ς – ρ

1 – ρ

)
.



666 J.R.M. Röman

Alternatively, one can express the SABR price in terms of Black’s nor-
mal model. Then the implied normal volatility can be asymptotically
computed using the following expression:

σ n
impl = α

F0 – K

D(ς)

{
1 +

[
2γ2 – γ 2

1

24

(
σ0C(Fmid)

α

)2

+
ργ1

4

σ0C(Fmid)

α
+
2 – 3ρ2

24

]
ε

}

It is worth noting that the normal SABR implied volatility is generally
somewhat more accurate than the log-normal implied volatility.

24.1.7 Conversion Between Log Normal
and Normal Volatility

We have seen in Section 4.1.15.2 how to convert between normal and
log-normal volatility for ATM swaptions. This is when the strike rate K
and the forward rate F are equal. We will now give a general formula of
how to convert between volatilities. The subsequent formulas follow
the articles by Hagan and Woodward (1998) and Hagan1 where they
used a singular perturbation expansion.

The Black’s log-normal model is

dF = σ .
BFdWt F(0) = f ,

where f is today’s forward swap/caplet rate and where σB is the
implied Black (log-normal) volatility. The Black’s normal model is

dF = σ .
NdWt F(0) = f ,

where σN is the “normal” or “absolute” or the annualized “basis point”
volatility. For a swaption with strike (fixed rate) K, the normal volat-
ility σN (which gives the same price of the option) as the log normal
volatility σB is

σN = σB
f – K

ln(f /K)
· 1

1 + 1
24

(
1 – 1

120

[
ln(f /K)

]2)
σ 2
Bτ + 1

5760σ
4
B τ

2
,

1 Hagan, Volatility Conversion Calculators
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where τ is the time to the exercise date in years. When f– > K,
the aforementioned formula goes to a “0 over 0”. To avoid this
complication, we should use the alternative formula

σN = σB
√
f · K · 1 + 1

24

[
ln(f /K)

]2
1 + 1

24σ
2
Bτ + 1

5760σ
4
B τ

2

when
∣∣∣∣ f – KK

∣∣∣∣ ≤ 0.001.

To calculate the Black log-normal volatility from the normal volatil-
ity, we apply the previous formulas in a Newton-Raphson solver (or
similar).

Since Black’s log-normal model, in a risk-neutral world, can be
written as

dF

F
= σBdW

and the normal Black as

dF = σNdW

we say that σB is a relative volatility while σN is an absolute volatility.

24.1.8 Conversion Between Normal and CEV Volatility

The CEV model is

dF = αFβdWt F(0) = f .

To convert the CEV volatility into a normal (absolute) volatility, one
can use

σN = α
(1 – β)(f – K)

f 1–β – K1–β
· 1

1 +
1–2–2·β+β2

120 ·[ln(f /K)]2
1– (1–β)2

12 ·[ln(f /K)]2
· β(2–β)
24(f ·K)1–β α

2τ

.
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When f is very near K, or when β is very near 1, the previous formula
is singular. To avoid this complication, we should use the alternative
formula

σN = α(f · K)β/2 · 1+ 1
24 [ln(f /K)]

2

1+ (1–β)2
24 ·[ln(f /K)]2

· 1

1+
1– 2–2·β+β2120 ·[ln(f /K)]2

1– (1–β)
2

12 ·[ln(f /K)]2
· β(2–β)
24(f ·K)1–β α

2τ

when

(1 – β)

∣∣∣∣ f – KK
∣∣∣∣ ≤ 0.001.

To calculate the CEV volatility from the normal volatility, we apply the
aforementioned formulas in a Newton-Raphson solver (or similar).
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Modern Term Structure Theory

25.1 Term Structure Theory

From the bootstrapped Swap curve, see Section 6.1.4 we have a given
yield curve. This curve is used for discounting all cash flows. We define
the discount function D(t) as

D(t) = exp

⎧⎨
⎩–

t∫
0

f (0,T ′)dT ′
⎫⎬
⎭ .

To price exotic instruments we use the following schema:

1. To examine the risk, select an arbitrage free model.

2. Calibrate the model by

a. selecting some vanilla hedging instruments

b. matching the current discount curve D(T)

c. matching the vanilla prices (caps, floors, swaptions) by e.g.
least square method.

3. Price the exotics via the model and interpolation of vanilla instru-
ments.

You can use a global calibration process with known instruments or a
local calibration with the most likely vanilla instruments.

© The Author(s) 2017 669
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25.1.1 The Three Elements

We use three elements as described next:

1. A numeraire N(t). Use a positive value of a coupon free security,
e.g. the money market account

N(t) = exp

⎧⎨
⎩

t∫
0

r(t′)dt′
⎫⎬
⎭

or zero-coupon bonds

N(t) = p(t,T)

2. The valuation in a risk neutral world is then given by

V(t) = N(t)E

[
V(T)

N(T)
|Ft

]
.

3. We also use a random evolution of the interest rates.

There exist three approaches to model the interest rates:

1. Heath-Jarrow-Morton (HJM) and BGM (Brace Gatarek Musiela)
sometimes also called the Libor market model (LMM),

2. A short rate model, such as Ho-Lee, Hull-White (HW), Black-
Karasinsky (BK) etc.

3. A Markov model.

25.1.2 The BGM Model (Brace Gatarek Musiela)

The BGM model is a financial model of interest rates. It is used
for pricing interest rate derivatives, especially exotic derivatives like
Bermudan swaptions, ratchet caps and floors, target redemption
notes, auto-caps, zero-coupon swaptions, constant maturity swaps and
spread options, among many others.

The quantities that are modelled in BGM are a set of forward rates,
which have the advantage of being directly observable in the mar-
ket, and whose volatilities are naturally linked to traded contracts.
Each forward rate is modelled by a log-normal process under its for-
ward neutral martingale measure, i.e. a Black model leading to a Black
formula for interest rate caps. This formula is the market standard to
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quote cap prices in terms of implied volatilities, hence the term “mar-
ket model”. The LMM may be interpreted as a collection of forward
LIBOR dynamics for different forward rates with spanning tenors and
maturities, each forward rate being consistent with a Black interest
rate caplet formula for its canonical maturity. One can describe the
dynamics of the different rates under a common pricing measure, for
example, the forward-neutral measure for a preferred single maturity,
in which case forward rates will not be log-normal under the unique
measure in general, leading to a need for numerical methods such as
Monte Carlo simulations.

The LMM models a set of n forward rates Li, as log-normal processes

dLi(t)

Li(t)
= μi({Li(t)}, t)dt + σi(t)dWi i = 1, . . . , n.

Here, Li denotes the forward rate for the period [Ti, Ti+1]. For each
single forward rate, the model corresponds to the Black model. The
novelty is that, in contrast to the Black model, the LMM describes the
dynamic of a whole family of forward rates under a common measure.

The valuation is given by

Ṽ(t, �r) = V(t, �r)
Z0(t)

= E

[
V(T , �R(T))

Z0(T)
�R(T) = �r

]

dRk = μk(t, �R)dt + ak(t,Rk)dWk k = 1, 2 . . . ,

where Ṽ(t, r̃) will satisfy

∂Ṽ

∂t
+
∑
k

μk
∂Ṽ

∂rk
+
1

2

∑
j

∑
k

ρjkajak
∂2Ṽ

∂rj∂rk
= 0.

The function

Ṽ(t, �r) = Zj(t, �r)
Z0(t, �r) =

j∏
k=1

1

1 + akrk

satisfies the PDE earlier, if and only if

j∑
k=1

μk
ak

1 + akrk
=

j∑
i=1

j∑
k=1

ρikaiak
ai

1 + airi

ak
1 + akrk
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which gives the BGM drift condition

μk(t, �r) =
k∑
j=1

ρjkajak
aj

1 + ajrj
.

Compare this to the HJM drift condition. If we let Rm be the interest
rate in the interval [Tm–1, Tm] and Zm = Z(t,Tm), then we can use the
numeraire

Zm(t) = Z0(t)
m∏
k=1

1

1 + akRk(t)
.

We now remember that a change of numeraire only changes the drift.
We now have the valuation formula

V(t, �r)
Zm(t)

= E

[
V(T , �R(T))
Zm(T)

|�R(T) = �r
]

dRk = vk(t, �R)dt + ak(t,Rk)dWk k = 1, 2 . . .

If we replace Z0 with Zm in the preceding calculation

vk(t, �r) =
⎧⎨
⎩

k∑
j=1

–
m∑
j=1

⎫⎬
⎭ ρjkajak

aj
1 + ajrj

for the numeraire Zm(t). If we set k = m, we have no drift, i.e.

dRm = am(t,Rm)dWm

i.e. Rm is a martingale when Zm(t) is numeraire.

25.1.3 A Caplet in the BGM Framework

In this section we will study a caplet with strike Rf , a tenor αm, and a
FRA fair rate Rm over the interval [Tm–1, Tm]. Its payoff is given by

payoff = αm(Rm(t) – Rf )
+Zm(t) t < Tm–1 < Tm.
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If we use

Vc(0,R0
m)

Zm(0)
= E

[
Vc(T ,Rm(T))

Zm(T)
|Rm(0) = R0

m

]

dRm = ak(t,Rm)dWm

we get

Vc(0,R
0
m) = αmD(Tm)E

[(
Rm(t) – Rf

)+ |Rm(0) = R0
m

]
.

If we use Black’s log-normal model: am(t,Rm) = σmRm we get

Vc = αmD(Tm)BS
(
t,R0

m,Rf , σm
)
.

If we use a local volatility model: am(t,Rm) = Am(Rm)Rm we get

Vc = αmD(Tm)BS
(
t,R0

m,Rf , σm
)

σm = A

(
1

2

(
R0
m + Rf

)
{1 + . . .

Using a SABR (Stochastic Alpha, Beta, Rho) model we have
{
dRk = vk(t, �R)dt + ωakR

β

k dWk k = 1, 2 . . .

dω = γωdW
,

where the correlation matrix is given by
{
dRk = vk(t, �R)dt + akRkdWk

dWjWk = ρjkdt = Corr
{
dRj,DRk

}
dt

and the volatilities ak(t,Rk) are determined by the volatility and smile
of caplet k. The correlation matrix ρij then determines swaption volat-
ilities. High correlations give high swaption prices. The correlation
matrix can be determined by

1. historical correlations

2. using factor analysis to write ρij = λ21q1jq1k + λ22q2jq2k+ . . .where
only two or three factors, q1, q2, . . ., are significant

3. adjusting factors to match swaption volatility as closely as possible.
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The strength of the BGM model is that you can understand intuit-
ively the relationships between caplet volatilities, correlations and the
swaption volatility matrix.

The weaknesses are as follows:

• High dimensions, one per Rk. So, a 10-year deal has for example 40
rates and 40 dimensions!

• Limit valuation methods to Monte Carlo.

• Monte Carlo is very slow, is very noisy, gives bad hedges and is very
challenging for multiple exercise deals.

So do not use Monte Carlo when there is an alternative.

25.1.4 Short Rate Models

The roll-over numeraire N(t) is the money market given by

N(t) = exp

⎧⎨
⎩

t∫
0

r(t′)dt′
⎫⎬
⎭ .

The valuation in a risk neutral world is

V(t, r0) = E

⎡
⎣

t∫
0

r(t′)dr·V(T , r(T))|r(t) = r0

⎤
⎦ .

Generalized Cross-Currency Interest Rate (CIR) models

dr = [θ(t) – κ(t) · r] dt + σ (t)rβdW,

where β is a skew, β = 1/2 gives CIR and β = 0 HW. The generalized
BK models can be written by

dr = [θ(t) – κ(t) · Y] dt + σ (t)dW,

where Y is Gaussian. Y = log r gives BK, Y = r the HW and Y = r1–β

the generalized BK.
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We can also use a multi-factor generalization. The calibration is made
on spot prices of zero-coupon bonds

p(t,Y0;T) = E

⎡
⎣

t∫
0

r(t′)dt′ · 1|Y(t) = Y0

⎤
⎦ .

With a given κ(t) and σ (t) adjust θ(t) to match the yield curve;
D(T) = p(0,Y0; T) or use the Jamshidean’s forward induction scheme
and adjust κ(t) and σ (t) to match caps/floors/swaptions.

Short rate models are easy to work with. An n factor model has n
dimensions. But the most serious valuations are done with either one
or two factors. For n = 1 or n = 2 you can use tree models, lattice
methods or finite difference methods to value deals with a fast and
accurate result. The calibration process is often straightforward.



26
Pricing Exotic Instruments

26.1 Practical Pricing of Exotics

In this chapter we will give an introduction of valuation of exotic in-
terest rate derivatives in a Gaussian framework and how to calibrate
such models to market data of plain vanilla instruments.

26.1.1 Discount Factors, Zeroes and FRAs

Suppose at date t, one agrees to loan out $1 at date T, and get repaid
the next day

1 paid at T ,
1 + f (t,T)�T received at T +�T

By definition, the fair interest rate to charge is f (t,T) = instantaneous
forward rate for date T as seen at date t.

Now suppose at date t one agrees to loan out $1 on Tst, with the
money repaid on Tend. Economically this is equivalent to loaning out
$1 on Tst, getting repaid $1 plus interest the next day, re-loaning out
the $1 plus interest, getting repaid $1 plus interest plus interest on the
interest, . . . . Clearly, if one agrees at date t to loan out

1 paid at Tst

the agreement should specify getting repaid

e
∫ Tend
Tst

f (t,T ′)dT ′
paid at t

1 received atTend
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for the deal to be fair. Alternatively, we can rephrase this as

e–
∫ Tend
Tst

f (t,T ′)dT ′
paid at t

1 received at Tend.

This type of single payment deal is equivalent to an FRA (forward rate
agreement). Suppose we imagine that we are at date t, and we ask how
much I would need to pay immediately to receive $1 at date T . Clearly
the fair amount is

e–
∫ Tend
t f (t,T ′)dT ′

paid atTst
1 received at Tend.

By definition,

p̂(t,T) = e–
∫ T
t f (t,T ′)dT ′

i.e. the value at t of $1 paid at T is the value of a zero-coupon bond for
maturity T on date 0. Today is always t = 0 in our notation. Discount
factors are today’s values of the zero-coupon bonds

D(T) = p̂(0,T) = e–
∫ T
0 f (0,T ′)dT ′

,

where f (0,T) is today’s instantaneous forward rate curve.

26.1.2 Swaps

We start by studying the fixed leg. Consider a swap with start date t0,
fixed leg pay dates t1, t2, . . . , tn, and fixed rate Rfix. The fixed leg makes
the payments:

αiRfix paid at ti, i = 1, 2, . . . , n – 1

1 + αnRfix paid at tn,

where

αi = cvg(ti–1, ti,β)

is the coverage (day count fraction) for interval i computed according
to the appropriate day count basis β. Discounting the future payments
with some given market discount factors p(t, ti) the current value of
the fixed leg on any given day t will be

V̂fix(t) = Rfix
n∑
i=1

αip̂(t, ti) + p̂(t, tn).
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Then we study the floating leg of the swap. Floating legs usually have
a different frequency than the fixed legs, so let the reset and pay dates
of the floating leg be denoted by

t0 = τ0, τ1, . . . , τm = tn.

We suppose that the pay dates for the floating leg are τ0,τ1, . . ., τm.
These will typically not be the same dates as the pay dates t1, t2, . . . , tn,
for the fixed leg. Indeed, the number of pay dates for the fixed and
floating leg may differ, often m > n. We do however require that the
first and last pay dates for both legs coincide, i.e. t0 = τ0, and τm = tn . . .

The floating leg pays

α′
irj paid at τj, j = 1, 2, . . . ,m – 1

1 + α′
mrm paid at τm = tn,

where

α′
i = cvg(τi–1, τi,β

′)
is the coverage for interval j computed according to the appropriate
day count basis β’. Here rj is generally the Libor or Euribor floating rate
for interval j. This rate is set on the fixing date; for most floating legs,
the fixing (reset) date is 2 London business days before the interval
starts on τj–1.

We may consider the floating leg as a sequence of FRAs in which
one lends 1 unit of the currency at τj–1 and receives 1 + α′

jrj units back
at τ j. On the later date 1 unit of currency is lent again so the net cash
flow of the series of FRAs will exactly duplicate the cash flow of the
floating leg, i.e. α′

jrj for j < m and the final payment 1 + α′
mrm , the

notional does not relent on date τm . Taking a closer look at one of
the FRAs we note that the current value of the lent amount must be
equal to the current value of the repaid amount on each fixing date

τ
fix
j ,. Using the relevant market discount factors we have

p̂(τ fixj , τj) = (1 + α′
jrj)

·p̂(t, τj).

From this formula we can solve for the discounted value of the interest
payment α′

jrj on each fixing day

Vtheor
j (τ fixj ) = p̂(τ fixj , τj–1) –p̂(τ

fix
j , τj).

If the value of the floating rate payment is the difference between two
freely tradable securities (two zero-coupon bonds) at the fixing time,
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then the value must equal this difference for all earlier times as well.
So in principle, the value of the jth floating interest rate payment is

Vtheor
j (t) = p̂(t, τj–1) –p̂(t, τj) for t<τ

fix
j

for any date t, at least until the rate is fixed. At any date t, the for-
ward fair or true rate rtruej (t) is defined so that the value of the interest
payment exactly equals the theoretical value

α′
jr
true
j (t) .p̂(t, τj) = theoretical value of interest rate payment

= p̂(t, τj–1) – p̂(t, τj).

So

rtruej (t) =
p̂(t, τj–1) – p̂(t, τj)

α′
j p̂(t, τj)

.

In practice, floating rates are not set at the fair rate; they are set at
the fair rate plus a small offset sj, the forward basis spread, due to
credit considerations and supply and demand. The value of the (for-
ward) basis spread depends on which index is used for the floating
rate (3M USD Libor, 1M fed funds, 6M Euribor, etc.), and on the start-
ing date. Taking the spread into consideration the value of the floating
rate payment paid at τj is

V̂j(t) = p̂(t, τj–1) – p̂(t, τj) + α′
jsjp̂(t, τj).

By definition, the forward rate for the floating rate is defined by

α′
j r

fwd
j p̂(t, τj) = value of interest ratepayment

so

rfwdj (t)rtruej (t) + sj =
p̂(t, τj–1) –p̂(t, τj)

α′
jp̂(t, τj)

+ sj.

26.1.3 Basis Spread

Basis spread curves are obtained by stripping basis swaps. One can
show that forward basis spreads are martingales with respect to the
appropriate forward measures. Since they are very small, usually just
1-2 bps, and since they seldom vary, one always assumes they are con-
stant. That is, one assumes that the gamma of the forward spread is
inconsequential.
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Summing these payments together, the value of the floating leg is

V̂flt(t) = p̂(t, t0) +
m∑
j=1

α′
jsjp̂(t, τj).

This is true regardless of the model used. The value of the receiver
swap (receive the fixed leg, pay the floating leg) is

V̂rec(t) = Rfix
m∑
i=1

αip̂(t, ti) +p̂(t, tn) –p̂(t, t0) –
m∑
j=1

α′
jsjp̂(t, τj).

The value of the payer swap (pay the fixed leg, receive the floating leg)
is

V̂pay(t) = –V̂rec(t) = p̂(t, t0) +
m∑
j=1

α′
jsjp̂(t, τj) – R

fix
n∑
i=1

αip̂(t, ti) –p̂(t, tn).

26.1.3.1 Handling the Basis Spread

Basis spreads are a nuisance. They are too big to be neglected (except
for USD 3m Libor), yet small enough to be nearly irrelevant. One way
of handling them is to treat them as another, very small, fixed leg of
the swap. There is really nothing wrong with this approach, although
one usually has twice as many fixed leg pay dates.

However, here we will use a second, common approach in which
each interval’s fixed rate is adjusted to account for the value of the
basis spreads. If the basis spread is 0.625 bps in an interval, then we
subtract 0.625 bps from the fixed rate instead of adding it to the float-
ing leg. More precisely, including this adjustment, today’s value of the
swap is,

V̂rec(0) = Rfix
n∑
i=1

αiD(ti) + D(tn) – D(t0) –
m∑
j=1

α′
jsjD(τj),

=
n∑
i=1

αi

(
Rfix – Si

)
D(ti) + D(tn) – D(t0).

Here Si is the basis spread expressed with the same frequency and day
count basis as the fixed leg. If the floating leg frequency is the same or



682 J.R.M. Röman

higher than the fixed leg frequency, then

Si =

∑
j∈Ii

α′
jsjD(τj)

αiD(ti)
,

where j ∈ Ii represents the floating leg intervals which are part of
the ith fixed leg interval. That is, the floating leg intervals whose the-
oretical dates τ thj are contained in the ith fixed leg theoretical interval

tthj–1 � tthi � tthj . If the fixed leg frequency is shorter than the floating
leg frequency (this is rare), then the same Si is used for all fixed leg
intervals forming part of each floating leg interval. So,

Si =
α′

jsjD(τj)∑
i=Ij

αjD(ti)
,

where i ∈ Ij represents the fixed leg intervals i with τ thj–1 � tthi � τ thj .
Either way, we may approximate the swap values as⎧⎪⎪⎨

⎪⎪⎩
V̂rec(t) =

n∑
i=1

αi
(
Rfix – Si

)
p̂(t, ti) +p̂(t, tn) –p̂(t, t0)

V̂pay(t) = p̂(t, t0) –p̂(t, tn) –
n∑
i=1

αi
(
Rfix – Si

)
p̂(t, ti)

for all dates t, where the strike Rf ix and effective spread Si are known
constants. We are neglecting any evolution of the basis spreads and any
minor differences due to the differences between the legs’ day count
bases and frequencies. We will use this approach throughout. Compu-
tationally, it would be just as easy to modify the code to add another
fixed leg, but this would make the formulas messier and debugging
more difficult.

26.1.3.2 Swap Rate and Level

At any time t, the swap rate Rsw(t) is defined to be the break even rate,
the value of Rf ix which would make the swap value equal to zero.
Clearly,

Rsw(t) =

p̂(t, t0) –p̂(t, tn) +
n∑
i=1

αiSip̂(t, ti)

L(t)
,
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where the level L(t) (also known as the PV01, the DV01, or the
annuity) is

L(t) =
n∑
i=1

αip̂(t, ti).

We can rewrite the swap values in terms of the swap rate and level as

V̂rec(t) =
[
Rfix – Rsw(t)

]
L(t) V̂pay(t) =

[
Rsw(t) – Rfix

]
L(t).

In particular, today’s swap rate and level are

R0 =

D(t0) – D(tn) +
n∑
i=1

αiSiD(ti)

L0

L0 =
n∑
i=1

αiD(ti)

and the swap values are

V̂rec(t) =
[
Rfix – R0

]
L0 V̂pay(t)

[
R0 – Rfix

]
L0.

Swaptions. A swaption is a European option on a swap. Consider a
receiver swaption with notification date tex. If one exercises on this
date, one obtains the receiver swap. Clearly

V̂
opt
rec(t

ex) =
[
Rfix – Rsw(tex)

]+
L(tex)

is the value of the receiver swaption on the exercise date. Swaption
prices are almost always quoted in terms of Black’s model. To intro-
duce this model, suppose we choose the level L(t) as our numeraire.
(It is just the sum of a bunch of zero-coupon bonds, and hence is a
tradable instrument.) The function L(t) is sometimes called the for-
ward annuity. There exists a probability measure in which the value
of all tradable instruments (including the swaption) divided by the
numeraire is a martingale. So

V̂opt
rec (t) = L(t)E

[
V̂opt
rec (T)

L(T)
|Ft

]
.

If we evaluate the expected value at T = tex, we see that

V̂opt
rec (t) = L(t)E

[[
Rfix – Rsw(tex)

]+
|Ft

]
.
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Moreover, the swap rate

Rsw(t) =
p̂(t, t0)p̂(t, tn) +

∑
i = 1nαiSip̂(t, ti)

L(t)

is clearly a tradable market instrument (a bunch of zero-coupon bonds)
divided by the numeraire. So the swap rate is also a martingale. By the
martingale representation model, then, we conclude that

dRsw = A(t, ∗)dW,

where dW is Brownian motion, and A(t, ∗) is some measureable coef-
ficient. Fundamental theory can take us no further. We now have to
model A(t, ∗). Black proposed that A(t, ∗) = σRsw, so that the swap rate
is log normal

dRsw = σRswdW.

Finding the expected value previously under this model yields Black’s
formula

V̂
mkt
rec (t) =

{
RfixN(d1) – R

sw(t)N(d2)
}
L(t)

d1,2 =
log Rfix

Rsw(t) ± 1
2σ

2 (tex – t)

σ
√
tex – t

.

Today’s market price of the swaption is

V̂
mkt
rec (0) =

{
RfixN(d01) – R

0N(d02)
}
L0

d01,2 =
log Rfix

R0
± 1

2σ
2tex

σ
√
tex

R0 =
D0 – Dn +

∑n
i=1 αiSiDi

L0
L0 =

∑n

i=1
αiDi.

Here Di = D(ti) are today’s discount factors. A payer swaption is a
European option to pay the fixed leg and receiver the floating leg. The
value of the payer swaption is obtained by reversing Rfix and R0 in the
aforementioned formulas.

If one analyses Black’s formula, one discovers that the receiver and
payer swaption values are both increasing functions of the volatility σ .
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Instead of quoting swaption prices in terms of dollar values, one can
just as well quote the price in terms of the value of σ that needs to be
inserted into Black’s formula to obtain the market price. This value of
the volatility is known as the implied volatility.

26.1.4 Caplets and Floorlets

Consider a floorlet for the interval τ0 to τ1. The floating rate r for the
interval is set on the fixing date tex two (London) business days before
the interval starts at τ0, and the floorlet pays the difference between
the strike (fixed rate) and the floating rate at the end of its period,
provided this difference is positive:

α(Rfix – r)
+ paid at τ1.

Here α is the coverage (day count fraction) of the interval [τ0, τ1]. As
before, the value of the floating rate payment is

p̂(tex, τ0) –p̂(tex, τ1) + αs1p̂(tex, τ1),

on the fixing date, where s1 is the (forward) basis spread for the
interval. The floorlets payoff is

V̂floorlet(t) =
[
α
(
Rfix – s1

)
p̂(tex, τ1) +p̂(tex, τ1) –p̂(tex, τ0)

]+
.

This is the same payoff as a 1-period receiver swaption. Similarly, caplet
payoffs are identical to the payoffs of 1-period payer swaptions.

The analysis of caplets and floorlets parallels the analysis for swap-
tions exactly. We define the forward or FRA rate as

RFRA(t) =

p̂(t, τ0) –p̂(t, τn) +
n∑
i=1

αisip̂(t, τi)

αip̂(t, τ1)

and choose the zero-coupon bond p̂(t, τ1) as our numeraire. The value
of the floorlet is

V̂floorlet(tex) – αp̂(tex, τ1)E
[[
Rfit – RFRA(tex)

]+
| Ft

]
,
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where the forward FRA rate is a martingale under this measure.
Modelling this rate as log normal

dRF RA = σRF RAdW

again yields Black’s formula,

⎧⎪⎪⎨
⎪⎪⎩
V̂floorlet(t) =

{
RfixN(d1) – RFRA(t)N(d2)

}
αp̂(t, τ1)

d1,2 =
ln
(
Rfix/RFRA(t)

)± 1
2σ

2(tex – t)

σ
√
tex – t

.

Today’s market price of the floorlet is

⎧⎪⎪⎨
⎪⎪⎩
V̂
mkt
floorlet(0) =

{
RfixN(d01) – R

0N(d02)
}
αD(τ1)

d01,2 =
ln
(
Rfix/R0

)± 1
2σ

2(tex)

σ
√
tex

R0 =
D0 – Dn + αs1D1

αD1
.

The value of the caplet is obtained by reversing Rfix and R0 in the
previous formulas

V̂mkt
caplet(0) =

{
R0N(–d02) – R

fixN(–d01)
}
αD(τ1)

= V̂mkt
floorlet(0) –

{
Rfix – R0

}
αD(τ1).

Note that the caplet and floorlet values are special cases of the payer
and receiver swaptions with n = 1. As before, the implied volatility
σ is the value of the volatility which makes the previously mentioned
formulas match the actual market values of the floorlet and caplet.

26.1.5 Linear Gaussian Models

A modern interest rate model consists of 3 parts: a numeraire, a set of
random evolution equations in the forward risk neutral world, and the
matching martingale pricing formula. The one-factor Linear Gaussian
Models (LGM) has a single state variable, X. It starts at today = 0 and
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satisfies {
dX̂(t) = α(t)dŴ(t)
X̂(0) = 0.

This is the evolution under the risk neutral measure induced by the
numeraire, which will be named shortly. Clearly X̂(t) is Gaussian with
the transition density

ϕ(t, x | T ,X)dX = prob
{
X < X̂(T) � X + dX|X̂(t) = x

}

given by

ϕ(t, x|T ,X) =
1√

2π�ς
e–

1
2 (X–x)

2/�ζ

N(t, x) =
1

D(t)
eH(t)·x+1

2H
2(t)ς (t)

ζ (T) =

T∫
0

α2(τ )dτ ; �ζ = ζ (T) – ζ (t) =

T∫
t

α2(τ )dτ ,

where N̂(t, x) is the chosen numeraire. Note that in this case, the value
of the numeraire is 1 today: N̂(0, 0) = 1. The last part of the model is
the martingale valuation formula. Suppose at time t the economy is in
state X(t) = x. If V̂(t, x) is the value of any freely tradeable security,
then (t, x) i s a martingale. So in the LGM model we get the valuation
formula

V̂(t, x) = N̂(t, x)E

[
V̂(T ,X)

N̂(T ,X)
|X̂(t) = x

]
=

N̂(t, x)√
2π�ζ

∫
V̂(T ,X)

N̂(T ,X)
e–

1
2 (X–x)

2�ζdX.

If the security has intermediate cash payments, then we need to
modify this formula appropriately. The prices in LGM model can be
written in terms of the relative prices

V(t, x)
V̂(t, x)

N̂(t, x)
.

Since the value of the numeraire is 1 today, values and relative values
are equal today, i.e. V̂(0, 0) = V(0, 0) As we shall see, we only have to
calculate the relative prices V(t, x) and never have to calculate the full
prices V̂(t, x). This simplifies our formulas substantially. In terms of the
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relative prices V(t, x), the LGM model is

V(t, x)
1√

2π�ζ

∫
V(T ,X)e–

1
2 (X–x)

2/�ζdX.

The value of a zero-coupon bond is

p(t, x,T) =
p̂(t, x, T)

N̂(t, x)
=

1√
2π�ζ

∫
1

N̂(T ,X)
e–

1
2 (X–x)/2�ζdX for anyT > t.

Substituting for the numeraire and carrying out the integration yields
the zero-coupon price

p(t, x, T) = D(T)e–H(T)x– 1
2H

2(t)ζ (t).

At t = 0, the state variable is x = 0, by definition. Since p(0, 0,T) = D(T),
the LGM model automatically matches today’s discount curve D(T).

At t, x the instantaneous forward rate for maturity T, namely f (t, x,T),
is defined via

p̂(t, x,T) = p(t, x,T)N̂(t, x, T) = e–
∫ T
t f (t,x,T ′)dT ′

.

Similarly, the discount factor can be written in terms of today’s
instantaneous forward rate f0(T) as

D(T) = e–
∫ T
0 f0(T ′)dT ′

.

This shows that for the LGM model,

f (t, x,T) = f0(T) + H′(T)x +
[
H′(T)

]2
ζ (t).

The last term [H′(T)]2ζ (t) is a small convexity correction; although it
is needed for pricing, it does not affect the qualitative behaviour of the
model. The other terms show that at any date t, the forward curve is
made up of today’s forward curve f0(T) plus an amount x of the curve
H′(T). The amount x of the shift is a Gaussian random variable with
mean zero and variance ζ (t).

The curve H′(T) is a model parameter; as we shall see, it replaces
the mean reversion coefficient κ(t) in the Hull-White (HW) model. The
other model parameter is the variance ζ (t). It takes the place of the
volatility σ (t). As always, model parameters have to be set a priori dur-
ing the calibration procedure by combining both theoretical reasoning
(guessing) and calibration of vanilla instruments.
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26.1.6 Hull-White

We continue to study LGM. The HW model is given by

dt = [θ(t) – κ(t) · r] dt + σ (t)dW

p(t, r0;T) = E

⎡
⎣

T∫
t

r(τ )dτ · 1 | r(t) = r0

⎤
⎦ .

For given κ(t) and σ (t) we adjust θ(t) to match the yield curve;
D(T) = p(0, r0;T). We can transform HW into a LGM model with

X(t) = exp

⎧⎨
⎩

t∫
0

κ(τ )dτ

⎫⎬
⎭
⎧⎨
⎩r(t) – r(0) –

T∫
t

θ(τ ) · exp
⎧⎨
⎩

τ∫
0

κ(τ ′)dτ ′
⎫⎬
⎭ dτ

⎫⎬
⎭.

Using Itô we can write

dX = α(t)dW

X(0) = 0,

where X is a Gaussian martingale. In the LGM model we get the
valuation formula

V(t, x)

N(t, x)
= E

[
V(T ,X)

N(T ,X)
|X(t) = x

]
=
∫

V(T ,X)

N(T ,X)
ϕ(T ,Xvert, t, x)dX,

where

ϕ(t, x |T ,X) =
1√

2π�ς
e–

1
2 (X–x)

2/2·[ζ (T)–ζ (t)]

N(t, x) =
1

D(t)
eH(t)·x+1

2H
2(t)ς (t)

ζ (T) =

T∫
0

α2(τ )dτ ; �ζ = ζ (T) – ζ (t) =

T∫
t

α2(τ )dτ .

The model parameters are ζ (T), the accumulated volatility and H(T),
the mean revision. For a zero-coupon bond (V(T ,X) = 1) we have

p(t, x,T)

N(t, x)
= D(t)e–H(t)·x– 1

2H
2(t)·ζ (t)
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Table 26.1 The Hull-White and the LGM model functions

Hull-White LGM

σ (t) = H′(t)
√
δ′(t) rate volatility ζ (t) accumulated volatility

K(t) = –H“(t)/H‘(t) reversion H(t) reversion
θ(t) = f ′

o(t) +K (t) · fo(t) + [H′(t)]2ζ (t)

But

p(t, x,T) = e

T∫
t
f (t,x,T ′)dT ′

gives

f (t, x, T) = f0(T) + H′(T) · x + H′(T)H(T) · ζ (t).
So in terms of LGM we can write the HW model as

dX = α(t)dW, X(0) = 0

f (t, x, T) = f0(T) + H′(T) · x + H′(T) · H(T) · ς(t)
r(t, x) = f (t, x, t) = f0(t) + H′(t) · x + H′(t) · H(t) · ς(t).

With the money market numeraire we have

V(t, r0) = E

⎡
⎣e–

T∫
t
r(τ )dτ

V(T , r(T)) | r(t) = r0

⎤
⎦

dr = [θ(t) – κ(t) · r] dt + α(t)dW.

To compare the models we use Table 26.1, where ζ (t) and H(t) are
directly measured!

The calibrated LGM prices are shown in Table 26.3 and their pre-
dicted implied volatility in Table 26.4. The error in the At-The-Money
volatility with diagonal = 2% are shown in Table 26.5.

As we shall see, the value of any vanilla option depends only on the
value of the variance at the exercise date, ζ (tex), and on the mean re-
version function H(tj) at the deal’s pay dates tj. Calibration determines
the functions ζ (t) and H(t) fairly directly. Obtaining the mean rever-
sion parameter κ(t) requires differentiating H(t) twice, which is an
inherently noisy procedure. Similarly, obtaining σ (t) also requires dif-
ferentiating ζ (t). This is why calibrating directly on the HW model
parameters (instead of the LGM formulation of the model) is often an
inherently unstable procedure.



26 Pricing Exotic Instruments 691

The LGM parameters can be written in terms of the HW paramet-
ers as

H(t) = A

t∫
0

e–
∫ t′
0 κ(τ )dτdt′ + B

ζ (t) =
1

A2

t∫
0

σ 2
1 (t

′)e2
∫ t′
0 κ(τ )dτdt′.

where A and B are arbitrary positive constants. Since different A and B
yield the same HWmodel, and thus yield the identical prices, the LGM
model has 2 invariant representations.

First, all market prices remain unchanged if we change the model
parameters by

H(t) → C · H(t), ζ (t) → ζ (t)/C2

for any positive constant C. To prove this, note that if we make the
previous transformation and then transform the internal variables x
and X by

x → x/C,X → X/C,

we obtain the same transition probabilities and zero-coupon bond
prices that we started with. Second, all market prices remain un-
changed if

H(T) → H(T) + Kζ (T) → ζ (T)

for any constant K. To prove this, note that if we make the previous
transformation, and then transform the internal variables xand X by

x → x + Kζ ,X → X + Kζ ,

we obtain the same transition probabilities and zero-coupon bond
prices as before.

It is critical to pin down these invariances by arbitrarily choosing
some value of H(t) and of ζ (t)) before calibration. Otherwise conver-
gence would be infinitely slow, with numerical round-off determining
which of the equivalent sets of model parameters is chosen.
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26.1.6.1 Scaling

On average, interest rates in G7 countries change by ±80 bps or so
over the course of a year. Equivalently, the standard deviation of H′(T)x
should be about 1% or less each year. We choose to use the time scale
of years (so �T = 1 means an elapsed time of 1 year) and we scale
H(T) and H′(T) to be O(1). Then x is of order O(1% × √

t) at date t,
and ζ (t) is of the order of O(10–4t). More precisely, suppose we have
chosen H(0) = 0, and have scaled H(T) so it increases by 1 or so every
year. Then

H′(T) ∼ O(1),H(T) ∼ O(T), ζ (t) ∼ O(0.64 × 10–4)t

x,X ∼ (0.8 × 10–2)
√
t

H′(T)H(T)ζ (t) ∼ (064 × 10–4)tT .

26.1.7 Summary of the LGM Model

The complete LGM model can be summarized as

V(t, x) =
1√

2π�ζ
e
1
2 (X–x)/2�ζdX for anyT < t

with �ζ ≡ ζ (T) – ζ (t), and with the (reduced) zero-coupon bond
formula being

p(t, x,T) = D(T)e–H(T)x– 1
2H(t)ζ (t)

and with x = 0 at t = 0. Consequently, ζ (0) = 0.
These equations are the only facts about the model we need to price

any security. This model automatically reproduces the discount curve
D(T). The functions H(T) and ζ (t) are model parameters, which are
set during the calibration step, where the model prices are matched
to the market prices of selected vanilla instruments, usually caplets
and swaptions. Once the model is calibrated, H(T) and ζ (t) are known
functions, and the price of exotic deals can be determined from the
aforementioned martingale formula, using the previous zero-coupon
formula to calculate the payoffs. Later we will present the calibration
and pricing steps in exquisite detail.
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26.1.8 Calibration

26.1.8.1 Calibration and Hedging

Model calibration is the most critical step in pricing. It determines
not only the price, obtained for an exotic deal, but also the hedges
of the exotic. To see this, suppose we have some model M. It in-
variably contains unknown mathematical parameters which are set by
calibration.

To calibrate, one selects a set of vanilla instruments whose volatil-
ities (prices) are known from market quotes. Let these volatilities be
σ1, σ2, . . . , σn.

The calibration procedure picks the model parameters by matching
the model’s yield curve to today’s discount factors D(T) and matching
the model’s price of the selected vanilla instruments to their market
volatilities, either exactly or in a least squares sense.

The calibrated model M’ is a function of today’s discount factors
and these n volatilities. The calibrated model is then used to price the
exotic deal. The only step in this procedure which uses market inform-
ation is the calibration step. This means that the price of the deal is a
function of today’s yield curve D(T) and the n volatilities σ1, σ2, . . . , σn.
The price of the deal depends on no other market information.

Consider what happens at the nightly mark-to-market. The model
is calibrated and deals are priced as mentioned before. Next the Vega
risks are calculated by bumping the volatilities in the volatility mat-
rix (cube) one by one. After each bump, the deal is priced using the
identical software, and the difference between the new price and the
base price is the bucket Vega risk for the bumped volatility. Unless
the bumped volatility is one of the n volatilities used in calibration,
it has no effect on the calibration of the model, so it does not af-
fect the price of the instrument. An exotic deal only has Vega risks
to the n vanilla instruments used in calibration. After the Vega risks
are calculated for all the deals on the books, enough of each vanilla in-
strument is bought/sold to neutralize the corresponding bucket Vega
risk. This means that in the normal course of events, an exotic deal
will be hedged by a linear combination of the vanilla instruments used
during calibration. If the span of the vanilla instruments provides a
good representation of the exotic, then the hedges should exhibit rock
solid stability, with the day-to-day amounts of the hedges changing
only as much as necessary to account for the actual changes in the
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market place. If the vanilla instruments do not provide a good repres-
entation of the exotic, then the hedges may exhibit instabilities, with
day-to-day amounts of the hedges changing substantially even for rel-
atively minor market changes. This latter is highly undesirable as the
increased hedging costs gradually eliminate any initial profit from the
exotic. (The nice term for this is leaking away your P&L.) Indeed, in
practice, even small improvements in the algorithm for matching the
hedges to the exotics pay off disproportionately in the adroitness of
the hedging.

One can move most of, and possibly all, the Vega risk from the
calibration instruments to a different (and presumably better) set of
hedging instruments by using risk migration. This is also known as ap-
plying an external adjuster. As a side benefit, this method also improves
the pricing, often dramatically. This technique will also be discussed
as it pertains to the different exotics.

26.1.9 Exact Formulas for Swaption and Caplet Pricing

Under the LGM model, the reduced value of the swap is

Vrec(t, x) =
n∑
i=1

αi

(
Rfix – Si

)
p(t, x, ti) + p(t, x, tn) – p(t, x, t0)

Vpay(t, x) = p(t, x, t0) – p(t, x, tn) –
n∑
i=1

αi

(
Rfix – Si

)
p(t, x, ti).

where

p(t, x, ti) = Die
–Hix– 1

2H
2
i ζ (t)

is the reduced value of the zero-coupon bonds. Here Di = D(ti),Hi =
H(ti) are the discount factors and values of H(t) at the swap’s pay
dates ti.

Under the LGM model, the prices of vanilla swaptions, caplets, and
floorlets depend on ζ (t) only through ζ (tex), its value at the notification
date. The swaption prices depend on H(T) only through the differ-
ences H(tj) – H(t0) for the pay dates tj of the fixed leg. This will be the
key to creating lightning fast and stable calibration schemes.

Under the one-factor LGM model, the exact pricing formulas for
swaptions are
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V̂rec(0, 0) =
n∑
i=1

αi

(
Rfix – Si

)
DiN

(
y + [Hi – H0] ζex√

ζex

)

+ DnN

(
y + [Hn – H0] ζex√

ζex

)
– D0N

y√
ζex

,

V̂pay(0, 0) = D0N
y√
ζex

–
n∑
i=1

αi

(
Rfix – Si

)
DiN

(
y + [Hi – H0] ζex√

ζex

)

– DnN

(
–
y + [Hn – H0] ζex√

ζex

)
.

= V̂rec(0, 0) + D0 –
n∑
i=1

αi

(
Rfix – Si

)
Di – Dn

Here y is obtained by solving
n∑
i=1

αi

(
Rfix – Si

)
Die

–(Hi–H0)y–
1
2 (Hi–H0)2ςex + Dne

–(Hn–H0)y–
1
2 (Hn–H0)2ςex = D0.

Newton’s method requires the derivatives of the prices with respect
to the model parameters. We observe

∂

∂Hi
V̂rec(0, 0) =

∂

∂Hi
V̂pay(0, 0)

=
√
ςexαi

(
Rfix – Si

)
DiN

′
(
y + [Hi – H0] ςex√

ςex

)

∂

∂Hn
V̂rec(0, 0) =

∂

∂Hn
V̂pay(0, 0)

=
√
ςex

[
1 + αi

(
Rfix – Sn

)
Dn

]
N′
(
y + [Hn – H0] ςex√

ςex

)

∂

∂H0
V̂rec(0, 0) =

∂

∂H
V̂pay(0, 0)

= –
√
ςex

n∑
i=1

αi

(
Rfix – Si

)
DiN

′
(
y + [Hn – H0] ςex√

ςex

)

–
√
ςexDnN

′
(
y + [Hn – H0] ςex√

ςex

)
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∂

∂
√
ςex

V̂rec(0, 0) =
∂

∂
√
ςex

V̂pay(0, 0)

=
n∑
i=1

αi

(
Rfix – Si

)
Di [Hi – H0]N

′
(
y + [Hi – H0] ςex√

ςex

)

+ Dn [Hn – H0]N
′
(
y + [Hn – H0] ςex√

ςex

)
.

The caplet/floorlet prices are given by

V̂caplet(0, 0) = D0N(d1) –
(
1 + α̃

[
Rfix – s1

])
D1N(d2)

d1,2 =
log

1+α̃
[
R0–s1

]
1+α̃[Rfix–s1]

± 1
2(H1 – H0)2ζex

(H1 – H0)
√
ζex

and

V̂floorlet(0, 0) =
(
1 + α̃

[
Rfix – s1

])
D1N(d

∗
1
) – D0N(d

∗
2)

= V̂
opt
caplet(0, 0) +

(
1 + α̃

[
Rfix – s1

])
D1 – D0

d∗
1,2 =

log
1+α̃

[
Rfix–s1

]
1+α̃[R0–s1]

± 1
2(H1 – H0)2ζex

(H1 – H0)
√
ζex

.

where

R0 =
D(τ0) – D(τ1)

α̃D(τ1)
+ s1

is the forward FRA rate. The caplet/floorlet prices are clearly Black’s
formulas for call/put prices for an asset with forward value D0, strike

(1 + α1R
fix
adj)D1, and implied volatility satisfying

σimp
√
tex = (H1 – H0)

√
ζex
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26.1.10 Approximation of Vanilla Pricing Formulas for the
One-Factor LGM Model

It is practically useful to develop approximate formulas for the one-
factor LGM model, even though exact closed form formulas are
known. Recall that market prices for swaptions are usually quoted in
terms of Black’s formula

V̂
mkt
rec (0) =

{
RfixN(d01) – R

0N(d02)
}
L0

V̂
mkt
pay(0) =

{
R0N(–d02) – R

fixN(–d01)
}
L0 = V̂

mkt
rec (0) – L0

{
Rfix – R0

}

where

d01,2 =
log Rfix

R0
± 1

2σ
2tex

σ
√
tex

and

R0 =
D0 – D1 +

∑n
i=1 αiSiDi

L0
.

Here Di = D(ti) are today’s discount factors at the pay dates. By using
equivalent volatility techniques (or direct asymptotic), one discov-
ers that under the LGM model, the implied (Black) volatility of the
swaption is approximately

σB
√
tex ≈

√
ζex√

RfixR0

∑n
i=1 αi

(
R0 – Si

)
Di (Hi – H0) + Dn (Hn – H0)∑n

i=1 αiDi
.

This provides a good way to use market quotes of the implied volat-
ility to obtain initial guesses for calibration. One can rewrite these
quotes more simply in terms of the implied normal volatility. Under
the Gaussian (normal) swap rate model, the value of the swaption is

V̂mkt
rec (0) =

{
(Rfix – R0)N

(
Rfix – R0

σN
√
τex

)
– σN

√
τexG

(
Rfix – R0

σN
√
τex

)}
L0

V̂mkt
pay (0) =

{
(R0 – Rfix)N

(
R0 – Rfix

σN
√
τex

)
– σN

√
τexG

(
R0 – Rfix

σN
√
τex

)}
L0

= V̂mkt
rec (0) – L0

{
Rfix – R0

}
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The equivalent volatility work shows that the implied normal or
absolute volatility σN , is approximately

σB
√
tex ≈

√
ζex√

RfixR0

∑n
i=1 αi

(
R0 – Si

)
Di (Hi – H0) + Dn (Hn – H0)∑n

i=1 αiDi
.

26.1.10.1 Forward Volatility

Forward volatility is a key concern of calibrated models. Suppose that
we calibrate a model and then ask what the swaption volatilities will
look like at a future date t in the future. If the volatilities are increasing
with t, we may be buying future volatility at too dear a price, and if
volatilities are decreasing with t, we may be selling future volatility too
cheaply.

If we repeat the previous equivalent volatility analysis at a date t in
the future, then we discover that the (normal) swaption volatility at
that date is

σN≈
√
ζ (τex) – ζ (t)

τex – t

∑n
i=1 αi

(
R0 – Si

)
Di (H(ti) – H(t0))+ Dn(H(tn) – H(t0))∑n

i=1 αiDi

where

R0 =
D0 – D1 +

∑n
i=1 αiSiDi

L0
.

If H(t) is decreasing exponentially, then ζ (τex) should be increasing
exponentially to compensate.

26.1.10.2 Calibration Strategy

The most critical aspect of pricing is choosing the right set of vanilla
instruments for calibrating the model. Even small improvements in
matching the vanilla instruments to the exotic deals often lead to sig-
nificant improvements in the price and the stability of the hedge. For
each type of exotic, the best calibration strategy often cannot be de-
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termined from purely theoretical considerations. Instead, one needs
to determine which method leads to the best (the most “market fit”)
prices and risks.

We will now briefly discuss calibration strategies, illustrating the
different strategies with a simple Bermuda swap (Bermudan swap-
tions and callable swaps are considered much more carefully in a later
section).

Consider a Bermudan receiver with start date t0, end date tn, and
strike Rfix. Let the fixed leg dates be t0, t1, . . . , tn, and let the exer-
cise dates be τ1, τ2, . . . , τn. If the Bermudan is exercised at τj, then the
holder receives the fixed leg payments

αiRfix paid at ti, i = j, j + 1, . . . , n – 1
1 + αnRfix paid at tn,

where

αi = cvg(ti–1, ti,β)

is the coverage (day count fraction) for interval i computed according
to the appropriate day count basis β. In return, the holder makes the
floating leg payments, which are worth the same as

1 paid at tj–1
αiSj paid at ti, i = j, j + 1, . . . ,m – 1,

where

α′
i = cvg(τi–1, τi,β

′).

Here we have adjusted the basis spread to the fixed leg’s frequency
and day count basis as discussed earlier. Therefore, if the Bermudan is
exercised at τj, one receives/makes the payments

–1 at tj–1

αi
(
Rfix – Si

)
at tifor i = j, j + 1, . . . , n – 1

1 + αn
(
Rfix – Sn

)
at tn
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Clearly at any point t, x the jth payoff is worth

V̂
pay
j (t, x) =

n∑
i=j

αi

(
Rfix – Si

)
p̂(t, x, ti) +p̂(t, x, tn) –p̂(t, x, tj–1).

The first step in calibration is to characterize the exotic, extracting its
essential features.»> If the Bermudan is exercised on exercise date τj,
one receives a swap worth

V̂
pay
j (t, x) =

n∑
i=j

αi

(
Rfix – Si

)
p̂(t, x, ti) +p̂(t, x, tn) –p̂(t, x, tj–1)

The first step in calibration is to characterize the exotic, extracting its
essential features. If the Bermudan is exercised on exercise date τj, one
receives a swap worth

n∑
i=j

αi(R
fix – Si)p̂(τj, x, ti) +p̂(τj, x, tn) –p̂(τj, x, tj–1) , at τj.

Suppose we evaluate this swap using today’s yield curve with a parallel
shift of size γ ,

p̂(τj, x, ti) → D(ti)e
–γ ti = Die

–γ ti .

The shift γj at which the jth swap is at the money is found by solving

n∑
i=j

αi

(
Rfix – Si

)
Die

–γj(ti–tjt–1) + Dne
–γj(tn–tjt–1) = Dj–1.

The Bermudan is characterized by

(a) the set of exercise dates τ1, τ2, . . . , τn;

(b) the set of parallel shifts γj for j = 1, 2 . . . , n; and

(c) the length tn – t0 of the longest swap.
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The second step is to select a calibration strategy and choose the calib-
ration instruments. As we shall see, since we have 2 functions of time
to calibrate, we can calibrate 2 separate series of vanilla instruments.

Under the LGM model, the prices of vanilla swaptions, caplets, and
floorlets depend on ζ (t) only through ζ (tex), its value at the notification
date. The swaption prices depend on H(T) only through the differ-
ences H(tj) – H(t0) for the pay dates tj of the fixed leg. This will be the
key to creating lightning fast, stable calibration schemes.

The trick is to calibrate on vanilla instruments whose pay dates line
up exactly. We now go through the various calibration strategies for
this Bermudan.

26.1.11 swaptions

From

V(t, x)

N(t, x)
= E

[
V(T ,X)

N(T ,X)
|X(t) = x

]
=
∫

V(T ,X)

N(T ,X)
φ(T ,X|t, x)dX

we have today

V(0, 0) =
∫

V(T ,X)

N(T ,X)
φ(T ,X|0, 0)dX.

The payoff at tex is given by (Fig. 26.1)

Fig. 26.1 Cash flows for a swaption
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⎡
⎣Rf

n∑
j=1

αjp(tex,X, tj) + p(tex,X, tn) – p(tex,X, t0)

⎤
⎦

p(tex, x,T)

N(tex, x)
= D(tj)e

–H(tj)·x– 1
2H

2(tj)·ς (tex).

If we integrate this for a receiver swaption we get

Vrec = Rf

n∑
j=1

αjDjN

(
x – Hjςex√

ςex

)
+DnN

(
x – Hnςex√

ςex

)
–D0N

(
x – H0ςex√

ςex

)

where x solves
⎧⎨
⎩
Rf

n∑
j–1

αjDje
Hjx– 1

2H
2
j ςex + DneHnx–12H

2
nςex = D0eH0x–

1
2H

2
0ςex

ςex = ς(tex), Hj = H(tj), H0 = H(t0)

As we can see, the price only depends on the accumulated volatility at
the expiry date ζ (tex) and on the mean reversion on pay days H(tj), j =
0, 1, . . . , n. From a “put/call” parity, we also have the price of a payer
swaption

Vpay = Vrec – Rf

n∑
j=1

αjDj – Dn + D0.

26.1.12 Bermudan Swaption

We study a “2 into 4, annual pay, receiver at 8%, 5 days’ notice”. The
fixed leg is given by

Rfαj paid at tj = 1, 2, . . . , n – 1

1 + Rfαn paid at tn,
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where Rf is the fixed rate and with notification dates τj, j = 0, 1, . . . , n–
1. If we exercise at τj we get a swap starting at tj with fixed leg pay-
ments at tj+1, tj+2, . . . , tn and a floating leg at tj worth 1. The current
value is given by

V = Rf

n∑
j=1+1

αjp(τj,X, tk) + p(τj,X, tn) – p(τj,X, tj).

26.1.13 Calibration, Diagonal + Constant κ

In the calibration process we choose the model parameters ζ (t) and
H(t) to match the LGM prices to the market. For a “2 into 4 Bermudan
receiver @ 8%” we use for the underlying risk: “2 into 4”, “3 into 3”, “4
into 2” and “5 into 1”, i.e. the diagonal. For the smile risk we calibrate
to swaptions @ 8% (Table 26.2).

κ(t) = –H′′(t)/H′(t) ⇒ H(t) = A + B · e–κt
H(t) → H(t) + C

H(t) → H(t)/eC, ς(t) → C2 · ς(t)
Set H(t) = (1 – e–κt)/κ Then calibrate

2 into 4 ζ (t2),H(t2),H(t3), . . . ,H(t6) => ζ (t2)

3 into 3 ζ (t3),H(t3),H(t4), . . . ,H(t6) => ζ (t3)

4 into 2 ζ (t4),H(t4),H(t5),H(t6) => ζ (t4)

5 into 1 ζ (t5),H(t5),H(t6) => ζ (t5).

Then use ζ (0) = 0 and the above and use linear interpolation.
Choose κ = 2%, which gives H(t) and then use the diagonal to get ζj.
The calibrated LGM prices are shown in Table 26.3 and their predicted
implied volatility in Table 26.4. The error in the At-The-Money volatility
with diagonal k = 2% are shown in Table 26.5.
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Table 26.3 LGM prices

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1y 0.58% 1.62% 2.33% 2.97% 3.48% 3.96% 4.39% 4.77% 5.13% 5.93%
2y 0.88% 1.68% 2.42% 3.03% 3.60% 4.11% 4.57% 4.99% 5.33% 5.61%
3y 0.89% 1.71% 2.40% 3.03% 3.61% 4.13% 4.61% 5.01% 5.35% 5.65%
4y 0.89% 1.65% 2.35% 2.99% 3.57% 4.10% 4.54% 4.93% 5.28% 5.59%
5y 0.83% 1.59% 2.28% 2.91% 3.48% 3.97% 4.40% 4.80% 5.14% 5.46%
6y 0.81% 1.55% 2.22% 2.84% 3.37% 3.84% 4.26% 4.64% 4.99% 5.32%
7y 0.78% 1.49% 2.14% 2.70% 3.20% 3.65% 4.05% 4.43% 4.78% 5.11%
8y 0.75% 1.44% 2.03% 2.57% 3.05% 3.49% 3.89% 4.37% 4.63% 4.96%
9y 0.72% 1.35% 1.92% 2.44% 2.90% 3.33% 3.74% 4.12% 4.47% 4.81%

10y 0.66% 1.26% 1.81% 2.30% 2.74% 3.19% 3.59% 3.96% 4.32% 4.66%

Table 26.4 Implied ATM Volatilities (from LGM prices)

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1y 14.65% 14.46% 14.30% 14.15% 13.99% 13.83% 13.69% 13.55% 13.42% 13.30%
2y 14.67% 14.53% 14.38% 14.21% 14.05% 13.90% 13.76% 13.63% 13.50% 13.39%
3y 14.53% 14.38% 14.19% 14.02% 13.87% 13.72% 13.59% 13.46% 13.35% 13.26%
4y 14.40% 14.20% 14.02% 13.87% 13.72% 13.59% 13.46% 13.35% 13.26% 13.18%
5y 14.12% 13.95% 13.81% 13.66% 13.53% 13.41% 13.30% 13.22% 13.15% 13.08%
6y 13.83% 13.70% 13.55% 13.42% 13.30% 13.20% 13.13% 13.06% 13.00% 12.95%
7y 13.47% 13.32% 13.19% 13.07% 12.98% 12.92% 12.86% 12.81% 2.77% 12.73%
8y 13.27% 13.15% 13.04% 12.96% 12.91% 12.86% 12.81% 12.78% 12.76% 12.74%
9y 13.11% 13.00% 12.94% 12.90% 12.86% 12.82% 12.80% 12.78% 12.76% 12.75%

10y 12.97% 12.94% 12.91% 12.88% 12.85% 12.83% 12.82% 12.81% 12.80% 12.79%

Table 26.5 Error in ATM volatility (diagonal, kappa = 2%)

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1y 1.03% 0.81% 0.65% 0.59% 0.40% 0.32% 0.26% 0.13% 0.00% –0.12%
2y 0.31% 0.36% 0.20% 0.10% 0.27% 0.16% 0.05% 0.00% –0.05% –0.08%
3y 0.35% 0.24% 0.16% 0.02% 0.11% 0.05% 0.00% 0.03% –0.05% –0.04%
4y 0.30% 0.10% 0.06% –0.06% 0.02% 0.00% –0.02% 0.01% 0.01% 0.04%
5y 0.03% –0.04% –0.05% –0.11% 0.00% 0.00% 0.03% 0.06% 0.10% 0.15%
6y 0.00% 0.01% 0.03% 0.00% 0.08% 0.09% 0.11% 0.14% 0.18% 0.24%
7y –0.11% –0.06% 0.00% 0.00% 0.08% 0.09% 0.11% 0.14% 0.19% 0.24%
8y –0.07% 0.00% 0.08% 0.14% 0.30% 0.33% 0.36% 0.44% 0.53% 0.62%
9y 0.00% 0.08% 0.22% 0.32% 0.53% 0.59% 0.65% 0.77% 0.90% 1.02%

10y 0.10% 0.25% 0.42% 0.54% 0.81% 0.89% 0.97% 1.13% 1.29% 1.44%
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26.1.14 Calibration to the Diagonal with H(T) Specified

Suppose that H(T) is specified a priori. (A possible source of such
curves H(T) is indicated next.) Typically H(T) is given at discrete
points H(T1),H(T2), . . . ,H(TN). In that case, piecewise linear interpol-
ation is used between nodes. This is equivalent to assuming that all
shifts of the forward rate curve are piecewise constant curves.

With H(T) set, we can use the preceding procedure and formulas to
calibrate on the diagonal swaptions. This determines the value of ζ (t)
at τ1, τ2, . . . , τn. As before, one adds the point ζ (0) = 0, ensures that
the ζj = ζ (τj) are increasing, and uses piecewise linear interpolation to
obtain ζ (t) at other values of t.

Origin of the H(T). Suppose one had the set of Bermudan swap-
tions 30 NC 20, 30 NC 15, 30 NC 10, 30 NC 5 and 30 NC 1. Wouldn’t
it be nice if the same curve H(T) were used for each of these Ber-
mudans? The 30 NC 10 Bermudan includes the 30 NC 15 and the 30
NC 20 Bermudans. It would be satisfying if our valuation procedure
for the 30 NC 15 and 30 NC 20 assigned the same price to these Ber-
mudans regardless of whether they were individual deals or part of a
larger Bermudan.

One could arrange this by first using a constant κ , let’s call it κ4, to
calibrate and price the 30 NC 20 Bermudan. Without loss of generality,
we could select

H′(T) = eκ4(T30–T)

H(T) =
1 – eκ4(T30–T)

κ4

for T20 � T � T30. We would calibrate on the diagonal to find ζ (t)
at expiry dates τm, τm+1, . . . beyond 20 years, and then price the 30
NC 20 Bermudan. Selecting the right value of κ4 would match the
Bermudan price to its market value. Neither the swaption prices nor
the Bermudan prices depend on H(T) or ζ (t) for dates before the 20-
year point.

To price the 30 NC 15, one could use the H(T) obtained from κ4 for
years 20 to 30, and choose a different kappa, say κ3, for years 15 to 20:

H′(T) = eκ3(T20–T)eκ4(T30–T)

H(T) =
1 – eκ3(T20–T)

κ3
eκ4(T30–T20) +

1 – eκ4(T30–T20)

κ4
.
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Calibrating would produce the same ζ (t) values for years 20 to 30 as be-
fore. In addition, for each κ3 it would determine ζ (t) for years 15 to 20.
By selecting the right κ3, one could match the 30 NC 15 Bermudan’s
market price.

Continuing in this way, one produces the values of ζ (t) and H(T) for
years 10 to 15, for years 5 to 10, and finally for years 1 to 5. These
ζ (t) and H(T) would then yield a model which matches all the di-
agonal swaptions and happens to correctly price all the liquid, 30y
co-terminal Bermudans. These κ(t)’s turn out to be extremely stable,
only varying very rarely, and then by small amounts. Typically a desk
would remember the κ(t)’s as a function of the co-terminal points,
relying on the same κ(t)’s for years.

In general, if Tn is the co-terminal point and T0, T1, . . . , Tn–1 are the
“no call” points, then H(T) is

H(T) =
1 – eκj(Tj–T)

κj

n∏
i=j+1

eκi(Ti–Ti–1) +
n∑

k=j+1

1 – eκk(Tk–Tk–1)

κk

n∏
i=k+1

eκi(Ti–Ti–1)

for Tj–1 � T � Tj.
After H(T) and ζ (t) have been found, one can use the invariants to

re-scale them if desired.

26.1.15 Calibration, Diagonal + Linear ζ (t)

This is an idea pioneered by Solomon brothers. Let us use a constant
local volatility α. Then

ζ (t) =

t∫
0

α2du = α2t

is linear. By using the invariance ζ (t) → ζ (t)/C2,H(T) → CH(T)we can
choose α to be any arbitrary constant without affecting any prices. So
we choose

ζ (t) = α2
0 t,

where t is measured in years, and the dimensionless constant α0 is
typically 10–2. For this calibration, we use the other invariant to set
Hn = H(tn) = 0. We now determine the values of Hi for other values
of i by calibrating on the diagonal swaptions, starting with the last
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swaption. Recall that the price of the jth diagonal swaption is

V̂ mod
j (0, 0) = Rfix

n∑
i=j

αi

(
Rfix – Si

)
DiN

(
y∗
j + [Hi – Hj–1]ςj√

ςj

)

+ DnN

(
y∗
j + [Hn – Hj–1]ςj√

ςj

)
– DjN

(
y∗
j√
ςj

)

and its derivative with respect to Hj–1 is

∂

∂Hj–1
V̂ mod
j = –

√
ςj

n∑
i=j

αi

(
Rfix – Si

)
Di
[
Hi – Hj–1

]

× G

(
y∗
j +
[
Hi – Hj–1

]
ςj√

ςj

)

–
√
ςjDn

[
Hn – Hj–1

]
G

(
y∗
j +
[
Hn – Hj–1

]
ςj√

ςj

)

Here y∗
j is given implicitly by

n∑
i=j

αi(R
fix–Si)Die

–(Hi–Hj–1)y∗j – 1
2 (Hi–Hj–1)2ςj+Dne

–(Hn–Hj–1)y∗j – 1
2 (Hn–Hj–1)2ςj = Dj–1

Consider the last swaption, j = n. It depends on ζn = ζ (τn), on Hn,
and Hn–1. Of these, ζn is known, Hn has been set to zero, so only Hn–1
is unknown. Since Vmod

n is a decreasing function of Hn–1, there is a
unique value of Hn–1 which matches the model price to the market
price. This can be found easily using a global Newton’s method. We
can then move onto the j = n – 1 swaption. This swaption depends
on Hn–2, which is unknown, and ζj–1,Hn–1, and Hn, which are known.
Working backwards like this, we can calibrate all of the swaptions, and
for each calibration there will only be a single unknown parameter,
Hj–1.

This calibration procedure will yield H0,H1, . . . ,Hn on the dates
t0, t1, . . . , tn. One uses linear interpolation/extrapolation to get H(t) at
other values of t.

Infeasible values. In deriving the swaption formulas, we assumed
that H(T) was an increasing function of T. (This assumption was
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stronger than we needed: inspection of the previous argument shows
that one only needs to assume that there is a unique break-even point
y∗ , with in-the-moneyness on the left.) Since we are calibrating the Hj
’s separately, it may happen that Hn–1 may exceed Hj . (In practice, this
has never happened to my knowledge. Still one must be prepared.)
After each Hn–1 is found, one should check to see that Hj–1 � Hj

If this condition is violated, one should reset Hn–1 = Hj . This means
the jth swaption would not match its market price exactly. Instead it
would be the closest feasible price.

This kind of calibration is used by Solomon & Brothers. The hedging
instruments for the underlying risk are again “2 into 4”, “3 into 3”, “4
into 2” and “5 into 1”, i.e. the diagonal.

We then assume that ζ (t) is linear
ς(t) = α2

0t setα0 = 10–2

H(t) → H(t) + C

H(t) → H(t)/C, ς(t) → C2 · ς(t)

Set H(t6) = 0 Then calibrate

5 into 1 ζ (t5),H(t5),H(t6) => H(t2)

4 into 2 ζ (t4),H(t4),H(t5),H(t6) => H(t3)

3 into 3 ζ (t3),H(t3),H(t4), . . . ,H(t6) => H(t4)

2 into 4 ζ (t2),H(t2),H(t3), . . . ,H(t6) => H(t5).

Use a global Newton-Raphson method and linear interpolation to find
H(tj).

The error after calibration are shown in Table 26.6.

Table 26.6 Error in ATM volatility (diagonal, constant alpha)

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1y –1.29% –0.52% –0.35% –0.13% –0.08% 0.06% 0.10% 0.05% 0.00% –0.06%
2y –0.39% –0.33% –0.32% –0.24% 0.11% 0.04% –0.01% 0.00% 0.00% 0.00%
3y –0.46% –0.32% –0.18% –0.11% 0.01% 0.00% 0.00% 0.01% 0.02% 0.05%
4y –0.16% –0.16% 0.01% –0.13% –0.01% 0.00% 0.01% 0.03% 0.07% 0.11%
5y –0.13% 0.02% –0.08% –0.14% 0.00% 0.02% 0.06% 0.10% 0.14% 0.20%
6y 0.24% 0.00% 0.00% 0.00% 0.10% 0.11% 0.14% 0.18% 0.22% 0.28%
7y –0.29% –0.14% 0.00% 0.04% 0.15% 0.17% 0.19% 0.24% 0.29% 0.34%
8y –0.14% 0.00% 0.10% 0.17% 0.34% 0.37% 0.41% 0.50% 0.58% 0.68%
9y 0.00% 0.08% 0.22% 0.32% 0.53% 0.59% 0.65% 0.77% 0.90% 1.02%

10y 0.04% 0.19% 0.36% 0.48% 0.75% 0.83% 0.91% 1.07% 1.23% 1.35%
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26.1.16 Calibration, Diagonal + Row

The hedging instruments for the underlying risk is again “2 into 4”, “3
into 3”, “4 into 2” and “5 into 1”, i.e. the diagonal. And exercise or
wait (forward volatility risk), use “2 into 1”, “2 into 2”, “2 into 3” and
“2 into 4” (i.e. a row).

Set ς(t2) = α2
0 t2H(t2) = 0 and set α0 = 10–2

H(t) → H(t) + C

H(t) → H(t)/C, ς(t) → C2 · ς(t)
Then calibrate

2 into 1 ζ (t2),H(t2),H(t3) => H(t3)
2 into 2 ζ (t2),H(t2),H(t3),H(t4) => H(t4)
2 into 3 ζ (t2),H(t2),H(t3), . . . ,H(t5) => H(t5)
2 into 4 ζ (t2),H(t2),H(t3), . . . ,H(t6) => H(t6)

3 into 3 ζ (t3),H(t3),H(t4), . . . ,H(t6) => ζ (t3)
4 into 2 ζ (t4),H(t4),H(t5),H(t6) => ζ (t4)
5 into 1 ζ (t5),H(t5),H(t6) => ζ (t5).

Use a global Newton-Raphson method and linear interpolation. As
we will see next, over-calibrating gives worse result. Similar result will
be found if we use a column instead of a row.

The error after calibration are shown in Table 26.7.

Table 26.7 Error in ATM volatility (diagonal and row)

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% –0.02%
2y –0.47% –0.27% –0.41% –0.30% –0.06% –0.13% –0.09% 0.00% 0.06% 0.11%
3y –0.27% –0.43% –0.23% –0.33% –0.20% –0.10% 0.00% 0.08% 0.15% 0.22%
4y –0.56% –0.31% –0.33% –0.41% –0.14% 0.00% 0.10% 0.19% 0.27% 0.35%
5y –0.13% –0.38% –0.42% –0.28% 0.00% 0.11% 0.22% 0.31% 0.39% 0.47%
6y –0.58% –0.53% –0.19% 0.00% 0.21% 0.30% 0.39% 0.46% 0.54% 0.62%
7y –0.81% –0.30% 0.00% 0.12% 0.27% 0.33% 0.37% 0.43% 0.49% 0.56%
8y –0.20% 0.00% 0.12% 0.20% 0.37% 0.41% 0.45% 0.54% 0.63% 0.72%
9y 0.00% 0.08% 0.22% 0.32% 0.53% 0.59% 0.65% 0.77% 0.90% 1.02%

10y –0.01% 0.14% 0.32% 0.43% 0.70% 0.78% 0.86% 1.02% 1.18% 1.34%

26.1.17 Calibration, Caplets + Constant κ

In the calibration process we choose the model parameters ζ (t) and
H(t) to match the LGM prices to the market. For a “2 into 4 Bermudan
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receiver @ 8%” we use for the underlying risk “2 into 1”, “3 into 1”, “4
into 1” and “5 into 1”, i.e. a column.

κ(t) = –H′′(t)/H′(t) ⇒ H(t) = A + B · e–κt
H(t) → H(t) + C

H(t) → H(t)/C, ς(t) → C2 · ς(t)
Set H(t) = (1 – e–κt)/κ Then calibrate

2 into 1 ζ (t2),H(t2),H(t3) => ζ (t2)

3 into 1 ζ (t3),H(t3),H(t4) => ζ (t3)

4 into 1 ζ (t4),H(t4),H(t5) => ζ (t4)

5 into 1 ζ (t5),H(t5),H(t6) => ζ (t5).

Then use ζ (0) = 0 and the above and linear interpolation. You can
also use caplets + linear ζ (t).

26.1.18 Calibration to Diagonals with Prescribed ζ (t)

Suppose ζ (t) is a known function which is increasing and has ζ (0) = 0.
We could carry out the preceding calibration procedure to determine
H(T) from the diagonal swaptions; the procedure does not depend on
ζ (t) being linear.

26.1.19 Calibration to Diagonal Swaptions and Caplets

A Bermudan swaption can be viewed as the most expensive of its com-
ponent European swaptions, plus an option to “switch” to a different
swaption should market conditions change. The component swap-
tions are just the diagonal swaptions, so calibrating to the diagonals
accounts for this part of the pricing. On any exercise date, “switch”
option is the option to exercise immediately, or to delay the exercise
decision until the next exercise date. Since these delays are short, typ-
ically 6 months, one may believe that the switch option can best be
represented by short underlyings. Accordingly, one could argue that
one should calibrate to either a column of caplets or a column of 1
year underlyings, as well as the diagonal swaptions. Here we calibrate
on the caplets and swaptions simultaneously; in the next section we
calibrate to the diagonal swaptions and the swaptions with 1 year
underlyings.
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26.1.20 Calibration to Diagonal Swaptions
and a Column of Swaptions

One could argue that caplet and swaption markets have distinct iden-
tities, and that mixing the 2 markets introduces small, but needless,
noise. Instead one could calibrate on the diagonal swaptions and a
column of swaptions with 1 year tenors. (In most currencies, these
are the swaptions with the shortest underlying available.)

26.1.21 Other Calibration Strategies

There are many other simple calibration strategies; although they are
not overly appropriate for pricing a Bermudan, they may well be
appropriate for other deal types.

26.1.21.1 Calibrate on Swaptions with Constant κ

or Specified H(T)

Suppose we have chosen a constant mean reversion parameter κ ,
or have otherwise specified H(T). Then the calibration procedure
just needs to find ζ (t). Suppose we have selected an arbitrary set of
n swaptions to be our calibration instruments. In LGM valuation of
each swaption the only unknown parameter is ζ (t) at the swaption’s
exercise date. Using a global Newton’s method to calibrate each swap-
tion to its market value thus determines ζ (t) and the exercise dates
τ1, τ2, . . . , τn of the n swaptions. After obtaining the ζ j = ζ (τ j), we
need to ensure that ζ (τ j) are non-decreasing, altering the offending
values if necessary. We then include the value ζ0 = ζ (0) = 0, and use
piecewise linear interpolation to obtain ζ (t) at other dates.

Note that this method fails if 2 swaptions share the same exercise
date τ ; calibration would either yield the same ζ , in which case one
of the swaptions is redundant, or differing ζ , in which case our data
is contradictory. If the exercise dates of any 2 swaptions are too close,
say within 1–2 months, the results may be problematic. For this reason
one usually ensures that the swaption exercise dates are, say, at least
21/2 months apart, excluding instruments from the calibration set to
achieve this spacing, if necessary.
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26.1.21.2 Calibrate on Swaptions with Specified ζ (t)

Suppose we have chosen a linear ζ (t), or otherwise specified para-
meter ζ (t). The calibration procedure just needs to find H(T). Suppose
we have selected an arbitrary set of n swaptions to be our calibration
instruments. We can then arrange the swaptions in increasing order of
their final pay dates. Let these final pay dates be T1, T2, . . . , Tn. Suppose
we use our invariance to set H = H(0) = 0, and we use piecewise linear
interpolation

H(T) = �1T for T < T1,

H(T) =
k–1∑
i=1

�i(Ti – Ti–1) +�k(T – Tk–1) for Tk–1 < T < Tk,

H(T) =
n–1∑
i=1

�i(Ti – Ti–1) +�n(T – Tn–1) for Tn < T

where T0 = 0.
For the first swaption, the slope �1 determines the value of H(T) at

all the swaption’s pay dates. Since ζ (t) is known, the LGM value of the
swaption depends only on a single unknown quantity, �. It is easily
seen that the value is an increasing function of �1, so one can use
a global Newton scheme to find the unique �1 which matches the
swaption’s price to its market value. The value of H(T) at the second
swaption’s pay dates is determined by both �1 and �2, of which only
�2 is unknown at this stage. Again a global Newton scheme can be
used to find the �2 needed to calibrate the swaption to its market
value. (In rare cases it may occur that �2 < 0; in this case we need to
set �2 = 0, its minimum feasible value.)

We then continue in this way, calibrating the swaptions and obtain-
ing the �j’s in succession. This method will fail only if 2 deals have
the same final pay date, and will work poorly if the final pay dates are
too near together. For this reason one usually ensures that the final pay
dates are, say, at least 21/2 months apart, excluding instruments from
the calibration set to achieve this spacing, if necessary.
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