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Additional Praise for
Fixed Income Securities: Tools for Today’s Markets,

3rd Edition

“The coverage of fixed income markets and instruments is even better than in pre-
vious editions while the book retains the same clarity of exposition via extensive,
carefully worked examples. An outstanding textbook that is extensively used by
practitioners is something special. This is indeed the standout text on fixed income.”

—Stephen M. Schaefer, Professor of Finance, London Business School

“This is a terrific reference text that combines a strong conceptual framework with
real-world pricing and hedging applications. It is a must-read for any serious investor
in fixed income markets.”

—Terry Belton, Global Head of Fixed Income Research, JPMorgan

“This outstanding book achieves the perfect balance between presenting the foun-
dational principles of fixed income markets and providing interesting and insightful
practical applications. This classic is required reading for anyone interested in un-
derstanding fixed income markets.”

—Francis Longstaff, Allstate Professor of Insurance and Finance,
The Anderson School at UCLA

“This is a great book. It covers the most current issues in fixed income and reflects
the authors’ deep understanding of the markets grounded in the theory of finance
and many years of practical experience.”

—Ardavan Nozari, Treasurer, Citigroup Global Markets Holding Inc.
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Preface to the Third Edition

T he goal of this book is to present conceptual frameworks for pricing
and hedging a broad range of fixed income securities in an intuitive,

mathematically simple, and applied manner. Conceptual frameworks are
necessary so as to connect ideas across products and to learn new material
more easily. An intuitive and mathematically simple approach is certainly
useful to students and practitioners without very advanced mathematical
training, but it is also really a good way for everyone to learn new material.
Finally, an applied approach is crucial for several reasons. First, examples
go a long way in solidifying conceptual understanding. The introduction of
practically every concept in this book is followed by an example taken from
the markets or, at the very least, by an appropriately calibrated example.
Second, important details emerge from applications. Third, only by working
through real or realistic examples can orders of magnitude be learned and
appreciated. For example, a study of DV01 is not complete without having
absorbed that the sensitivity of a 10-year bond is about 8 cents per 100 face
amount per basis point, as opposed to 0.8 cents, 80 cents, or 8 dollars.

The book begins with an Overview of global fixed income markets. This
section provides institutional descriptions of securities and market partic-
ipants along with data designed to illustrate absolute and relative sizes of
markets and players. A well-informed fixed income market professional has
some idea about how central banks around the world have reacted to the
financial crisis of 2007–2009 and can say whether the size of the mortgage
market in the United States is one-tenth the size of GDP, about equal to
GDP, or 10 times GDP.

For securities with fixed cash flows, Part One of the book presents the
relationships across prices, spot rates, forward rates, returns, and yields.
The fundamental notion of arbitrage pricing is introduced and is central to
the analysis. Part Two describes how to measure and hedge interest rate
risk, covering one-factor metrics, namely, DV01, duration, and convexity
(in both their general and yield-based forms); two-factor metrics like key-
rate ’01s, partial PV01s, and forward bucket ’01s; and empirical methods
like regression and principal component analysis.

Part Three turns to the arbitrage pricing of contingent claims, i.e., of
securities with cash flows that depend on interest rates, like options. The sci-
ence of arbitrage pricing in this context is followed by a framework in which

xi
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xii PREFACE TO THE THIRD EDITION

to think about the shape of the term structure of interest rates in terms of ex-
pectations, risk premium, and convexity. One-factor term structure models
are then described, to be used both in their own right, when appropriate, and
as building blocks toward more sophisticated models. Chapter 11, the last
chapter in Part Three, has two parts. First, it presents a multi-factor model
for use in relative value applications, along with suggestions for estimating
its parameters empirically. Second, it introduces the LIBOR Market Model,
an extremely popular model for pricing exotic derivatives, in a particularly
accessible manner.

Finally, Part Four applies the knowledge gained in the previous three
parts to present and analyze a broad and extensive range of fixed income top-
ics and products including repo, bond and note futures, rate futures, swaps,
options, corporate bonds and credit default swaps (CDS), and mortgage-
backed securities.

This edition substantially revises and expands the second. The only
parts of the book that have remained essentially unchanged are Chapters
7 through 10 on pricing contingent claims with one-factor term structure
models. The rest of the material that was in the second edition has been
updated and, with the exception of a couple of particularly interesting case
studies, the numerical illustrations, examples, and applications are all new.
In addition, several chapters in this third edition are completely new and
others significantly expanded. New chapters include the Overview, Chapter
17 on how the realities of financing have changed the practice of discounting
cash flows, and Chapter 19 on corporate bond and CDS markets. Signif-
icantly expanded chapters include Chapter 6 on empirical hedging, which
now includes principal component analysis; Chapter 11, which was dis-
cussed above; Chapter 18 on volatility and fixed income options, which
now covers a very broad range of products, Black-Scholes pricing, and a
mathematically simple introduction to martingale pricing; and Chapter 20,
on mortgages and mortgage-backed securities, which takes a much more
market-oriented approach and adds material on pool characteristics, TBAs,
and dollar rolls.
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An Overview of Global
Fixed Income Markets

T his overview begins with a snapshot of fixed income markets across
the globe and continues with concise reviews of fixed income markets

in the United States, Europe, and Japan. These reviews have three goals:
one, to describe how households and institutions achieve their borrowing
and investing objectives through fixed income markets; two, to highlight
the magnitude of the amounts of securities outstanding and of the balance
sheets of market participants; and three, to emphasize the themes that are
particularly relevant and significant for understanding today’s markets.

A SNAPSHOT OF GLOBAL F IXED INCOME MARKETS

While fixed income markets are truly global, the vast majority of securi-
ties originate in the United States, Europe, and Japan. Figure O.1 shows
the notional amounts outstanding of debt securities by residence of issuer,
arranged in order of decreasing size. The largest markets by far are in the
United States, the Eurozone, Japan, and the United Kingdom. (The Eurozone
includes countries that are part of the European Union and also use the Euro
as their currency.) The amounts outstanding for many Eurozone countries
are shown individually in the graph, and indicated with asterisks, because
several of these markets rank among the largest in the world on their own.

Derivative securities do not have an issuer in the same sense as do
debt securities, but the distribution of the notional amounts of over-the-
counter (OTC) interest rate derivatives across currencies tells a story similar
to that of Figure O.1. According to Figure O.2, which shows amounts
outstanding of single-currency, OTC interest rate derivatives, markets are
dominated by contracts denominated in EUR (Euro), USD (United States
dollar), JPY (Japanese Yen), and GPB (British Pound).1 And with respect

1The other currencies appearing in the graph are CHF (Swiss Franc), SEK (Swedish
krone), CAD (Canadian dollar), AUD (Australian dollar), NOK (Norwegian krone),
HKD (Hong Kong dollar), DKK (Danish krone), and NZD (New Zealand dollar).

1
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2 AN OVERVIEW OF GLOBAL FIXED INCOME MARKETS

0

5

10

15

20

25

30

35

U
.S

.
Eu

ro
zo

ne
Ja

pa
n

U
K

Fr
an

ce
*

G
er

m
an

y*
It

al
y*

Sp
ai

n*
N

et
he

rl
an

ds
*

Ch
in

a
Ir

el
an

d*
Ca

na
da

A
us

tr
al

ia
Br

az
il

So
ut

h 
Ko

re
a

Ca
ym

an
 IS

S
Be

lg
iu

m
*

In
t.

 O
rg

a.
Sw

ed
en

A
us

tr
ia

*
D

en
m

ar
k

In
di

a
G

re
ec

e*
M

ex
ic

o
Lu

xe
m

bo
ur

g*
N

or
w

ay
Po

rt
ug

al
*

Tr
ill

io
ns

 o
f U

.S
. D

ol
la

rs

F IGURE O.1 Debt Securities by Residence of Issuer as of March 2010
Source: Bank for International Settlements.

to exchange-traded derivatives, Table O.1 shows that Europe and North
America comprise almost all of the outstanding notional amount.

It is worthwhile noting that Figures O.1, O.2, and Table O.1 report
the place of origination of fixed income securities rather than the place of
residence of the ultimate owners or counterparties. So, to take one of the
more significant examples, China’s ownership of nearly $850 billion of U.S.
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An Overview of Global Fixed Income Markets 3

TABLE O.1 Exchange-Traded Interest Rate
Derivatives as of March 2010, in Billions of
U.S. Dollars

Region Notional

Europe 27,807
North America 22,604
Asia and Pacific 10
Other 934

Source: Bank for International Settlements.

Treasury securities does not appear anywhere in Figure O.1. Nevertheless,
even accounting for such instances, the data presented here justify this book’s
focus on fixed income securities and markets in the United States, Europe,
and Japan.

As a final note before turning to the three overviews, Figure O.3 gives
a coarse breakdown of the composition of debt securities in the United
States, the Eurozone, Japan, and the United Kingdom. (The totals are the
same as those reported in Figure O.1.) While the proportions of debt issued
by governments, financial institutions, and corporations are similar in the
United States and the Eurozone, debt markets in Japan are dominated by
governments while those in the United Kingdom are dominated by the issues
of financial institutions.
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4 AN OVERVIEW OF GLOBAL FIXED INCOME MARKETS
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Consumer Credit,
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Open Market 
Paper, $1.1 

$Trillions

F IGURE O.4 Credit Market Debt in the United States as of March 2010
Source: Flow of Funds Accounts of the United States.

F IXED INCOME MARKETS IN THE UNITED STATES

Securit ies and Other Assets

Figure O.4 shows the major categories of credit market debt in the United
States, along with the size of the market for each, as of March 31, 2010.2 Due
to the definition of credit market debt in this cut of the data, several assets
are not explicitly mentioned here (e.g., deposits, money-market fund shares,
security repurchase agreements, insurance and pension reserves, equities),
but will be included in the discussions of households and institutions later
in this section.

Mortgages The largest single category of debt in the United States is mort-
gages, at a size of $14.2 trillion. A mortgage is a loan secured by property,
so that if a borrower fails to make the payments required by a mortgage, the
lender has a claim on the property itself. Exercising this claim, the lender
could keep proceeds from the sale of the property up to the amount still
owed; or the lender could seize or foreclose on the property, sell it, and
recover the outstanding loan amount that way. In practice there might be

2The data for this figure and for much of this section come from the Board of
Governors of the Federal Reserve System, “Flow of Funds Accounts of the United
States,” June 10, 2010. See also the accompanying “Guide to the Flow of Funds
Accounts.”
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An Overview of Global Fixed Income Markets 5

restrictions on the immediate or full exercise of this claim, like bankruptcy
and other borrower protections or any tax liens on the same property.
Finally, depending on the laws of the relevant state, the lender might or
might not have recourse to the borrower’s other assets to collect any re-
maining amount owed after the sale of the property.

Of the $14.2 trillion outstanding, $11.6 trillion is home or other resi-
dential mortgages, $2.5 trillion is commercial mortgages, and $138 billion
is farm mortgages. To put the size of this market into context, two compar-
ative statistics are useful. First, the annual gross domestic product (GDP) of
the United States as of the first quarter of 2010 was $14.6 trillion.3 Hence,
it would take almost the entire output of the economy for one year to pay
off all mortgage debt. Second, as of March 31, 2010, the public debt of the
United States, at a historical high of $12.8 trillion, was $1.4 trillion less than
the amount of mortgage debt outstanding.

Mortgages and mortgage-backed securities are the subject of Chap-
ter 20.

Corporate and Foreign Bonds The second largest category of debt in
Figure O.4 consists of corporate and foreign bonds. Corporate bonds are
sold by businesses to finance investment, like the building of a new plant,
the purchase of other businesses, or the purchase of investment securities.
Bonds are also sold to refinance outstanding debt issues, that is, to retire ex-
isting debt not with corporate cash, which might have better uses, but with
the proceeds raised by selling new debt. Motivations for retiring existing
debt include redeeming maturing debt, repurchasing an issue to be rid of
bond covenants that have become overly onerous, or exercising an embed-
ded option to repurchase bonds at some prespecified and currently attractive
call price.

As of the end of March 2010, $11.4 trillion of corporate and foreign
bonds were outstanding, $5.6 trillion of which were sold by corporations
in the financial sector. Proceeds raised by the financial sector, as will be
discussed shortly, are used for the most part to purchase other securities.

Corporate bonds and derivatives on corporate bonds, namely, credit
default swaps, or CDS, are the subject of Chapter 19.

Treasury Securit ies The next category is Treasury securities, obligations
of the U.S. government incurred to finance its spending. U.S. Treasuries are
among the most liquid securities in the world, meaning that investors can
almost always buy and sell large amounts of Treasuries at prices close to
relatively transparent market levels. In addition, while the finances of the
U.S. government have deteriorated by historical standards, its debt is still

3Source: Bureau of Economic Analysis, U.S. Department of Commerce.
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6 AN OVERVIEW OF GLOBAL FIXED INCOME MARKETS

perceived as one of the safest investments in the world; when world events
scare investors and trigger a “flight to quality,” demand for U.S. Treasuries
increases and their prices rise. As shown in Figure O.4, at the end of March
2010, there were $8.3 trillion of such securities outstanding, $7.7 trillion of
which were marketable, i.e., traded in markets.

With respect to the credit quality of Treasury securities, it is important
to note that Treasuries do not constitute the entire public debt of the United
States, which, as mentioned in the discussion of mortgages, is $12.8 trillion
or about 88% of GDP. The public debt includes intragovernmental holdings,
i.e., debt that one part of the government owes to another in support of
third-party claimants (e.g., holdings of government debt in the Medicare
and Social Security trust funds). There is a statutory ceiling on the amount
of public debt, which, of course, limits the issuance of Treasury securities
as well, although this limit has been increased many times. An increase on
February 12, 2010, the latest as of the time of this writing, raised the limit
to $14.294 trillion. In any case, the ratio of public debt to GDP is used as
an indicator of the credit quality of government debt, although it is widely
recognized that certain economies can sustain higher ratios than others.
With this caveat, the ratio of 88% in the United States is low compared with
Japan but high compared with several, although certainly not all, European
countries. Furthermore, 88% is very high relative to recent U.S. history: at
the end of 2006, the public debt was $8.7 trillion and GDP $13.4 trillion,
for a ratio of only 65%.

With the increasing global scrutiny of government financing, the ma-
turity structure of government debt has taken on new importance. Since
shorter-term rates are usually lower than longer-term rates, there is al-
ways an incentive to reduce borrowing costs by concentrating borrowing
at shorter maturities. But this strategy can be dangerous; the more debt with
shorter maturities, the greater a government’s difficulties should investors
suddenly become reluctant to purchase its new bond issues. While the United
States has not had any trouble selling its debt, as Greece and Ireland recently

TABLE O.2 Maturity Structure of U.S. Treasury
Marketable Securities as of March 31, 2010

Maturity Outstanding Percent
Years $Billions %

< 2 3,482 45
2–5 1,953 25
5–10 1,528 20
> 10 782 10

Source: Monthly Statement of the Public Debt of the
United States, March 31, 2010, and authors’ calculations.
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An Overview of Global Fixed Income Markets 7

have, in the spirit of this new scrutiny Table O.2 presents the maturity
structure of marketable U.S. Treasury securities. In comparison with the
maturity structures in Europe and Japan (see Tables O.12 and O.18, respec-
tively), government borrowing in the United States is relatively heavy at the
shorter maturities.

Turning now to taxonomy, the U.S. Treasury issues securities in sev-
eral different forms. Treasury bills, or T-bills, mature in one year or less
and are discount securities, meaning that they make no payments until the
promised payment at maturity and, consequently, sell for less than, i.e.,
at a discount from, that promised payment. Treasury notes are coupon-
bearing securities, issued with 10 or fewer years to maturity, that make
semiannual interest payments at a fixed rate and then return principal at
maturity. Treasury bonds are also coupon-bearing securities, but with origi-
nal maturities greater than 10 years. This separate classification of notes and
bonds continues today, but is a historical artifact: bonds used to be subject
to a maximum, statutory rate of interest, but this limit was eliminated in
1988.4 In any case, this book uses the term “bond” loosely to refer to notes
or bonds.

The U.S. Treasury also issues TIPS, or Treasury Inflation Protected Se-
curities. The principal of TIPS adjusts to reflect changes in the consumer
price index so that the coupon, together with the return of indexed prin-
cipal, preserves a real return, i.e., a return above inflation. The maturing
principal of a TIPS, however, will never be set below the original principal,
no matter how much deflation might take place. As of March 31, 2010, the
amount of TIPS outstanding was a relatively small $573 billion, less than
7% of the $8.3 trillion of Treasury issues. Nevertheless, TIPS have a sig-
nificance beyond their size as their prices reveal market expectations about
future inflation.

The last category of U.S. Treasury securities to be mentioned here,
simply because they are well known, are U.S. savings bonds, which are
nonmarketable, discount securities sold mostly to retail investors. As of
March 31, 2010, the amount of savings bonds outstanding was a relatively
tiny $190 billion.

In a largely successful effort to foster the liquidity of Treasury securities,
the U.S. Treasury auctions them to the public at preannounced auction
dates and quantities. The schedule of which maturities are offered and at
what frequencies changes slowly over time with the financing needs of the
Treasury. Currently, bills with maturities of 4, 13, and 26 weeks are sold
weekly, while bills maturing in 52 weeks are sold every four weeks. Notes
with 2-, 3-, 5-, and 7-year maturities are sold monthly. There are quarterly
issues of 10-year notes and 30-year bonds, although individual issues are

4 Marcia Stigum, The Money Market, 3rd Edition, (Dow Jones-Irwin, 1990) p. 37.
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8 AN OVERVIEW OF GLOBAL FIXED INCOME MARKETS

reopened, i.e., sold through subsequent auctions.5 Finally, 5- and 30-year
TIPS are issued annually and reopened twice per year while 10-year TIPS
are issued semiannually and reopened four times per year.

Agency- and GSE-Backed Securit ies Agency- and GSE-backed securi-
ties are obligations of agencies of the U.S. government and of GSEs or
government-sponsored entities. This category consists of three subcate-
gories:

� Debt issues of U.S. agencies, which comprise only $24 billion of the
$8.1 trillion total.6

� Debt issues of such GSEs as FHLMC (Federal Home Loan Mort-
gage Corporation or “Freddie Mac”), FNMA (Federal National Mort-
gage Association or “Fannie Mae”), and FHLB (Federal Home Loan
Banks), which comprise $2.7 trillion of the total. These debt is-
sues are used to finance a portfolio of mortgage-related investments,
mostly portfolios of mortgages in the case of FHLMC and FNMA
and mostly secured loans to banks making mortgage loans in the case
of FHLB.

� Issues of mortgage-backed securities by FHLMC, FNMA, and of the
wholly-owned government corporation GNMA (Government National
Mortgage Association or “Ginnie Mae”), which comprise $5.4 trillion
of the total. Aside from the portfolio business described in the previ-
ous bullet point, FHLMC and FNMA have a guarantee business, as
does GNMA. This business consists of guaranteeing the performance
of conforming mortgages (i.e., mortgages that meet specified criteria) in
exchange for a fee. These mortgages are then bundled into mortgage-
backed securities, which, in turn, are sold to investors.

The historical justification for GSEs has been that they serve a public
purpose in addition to making profits for their shareholders. In the case of
the mortgage-related GSEs, this public purpose has been to facilitate home
ownership. As a result of this mix of public and private objectives, there

5As an example, consider the issuance and two scheduled reopenings of the 2.625%
notes maturing on August 15, 2020. A face amount of $24 billion of these notes was
initially sold to the public on August 11, 2010. Subsequently, in the first reopening
auction, on September 8, 2010, another $21 billion of this issue was sold. Then,
in the second and final scheduled reopening, on October 13, 2010, yet another
$21 billion was sold.
6This discussion of agency- and GSE-backed securities uses Flow of Funds data as
of December 2009 instead of March 2010, as in Figure O.4. As of 2010, mortgage
pools were consolidated into the balance sheets of FNMA and FHLMC, blurring the
distinction between GSE debt securities and mortgage-backed securities.
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has always been furor about the extent to which the U.S. government is
responsible for agency or GSE debt that it has not explicitly guaranteed,
particularly in the cases of FNMA and FHLMC. These GSEs have been able
to borrow at advantageous terms7 because the global investment community
has believed there is an implicit U.S. government guarantee, despite occa-
sional statements by officials denying that to be the case. And in fact, after
September 2008, when FNMA and FHLMC were failing and placed into
government conservatorship, the U.S. government did exert considerable
effort to protect and calm bondholders.8

Munic ipa l Securit ies Municipal securities or munis are for the most part
issued by state and local governments. The variation across issues is par-
ticularly large in this market, with over 55,000 different issuers9 and a
staggering number of distinct issues. Shorter-term issues are typically used
for cash management purposes, e.g., to manage time gaps between tax col-
lections and expenditures, while longer-term debt issues are often used to
finance infrastructure projects. General obligation (GO) bonds are backed
by the full faith and credit of the issuing municipality while revenue bonds
are backed by the cash flows from a particular project. Municipal bonds as
an investment class have historically had very low rates of default, but per-
ceived creditworthiness does vary dramatically across issues. At the safest
extreme are GO bonds of the most creditworthy states while at the other ex-
treme are revenue bonds dependent on particularly risky projects. At the time
of this writing the credit quality of municipals is under increased scrutiny
because spending commitments made in better economic environments are
now straining municipal budgets.

An extremely important feature of the municipal bond market is that
the interest on the vast majority of issues is exempt from U.S. federal income
tax. As a result, municipalities are able to pay much lower rates of interest
than would otherwise be the case. Nevertheless, investors subject to the
highest marginal federal tax rate earn a higher rate on municipal bonds,
particularly those of longer term, than they earn, on an after-tax basis, on
otherwise comparable taxable bonds.

Muni investors often enjoy advantages with respect to state income
taxes as well, although the exact treatment varies by state. Most commonly,

7The Congressional Budget Office has estimated that the implicit government guar-
antee enables the GSE to raise funds at a rate savings of 0.41% through their
debt issues and 0.30% through their mortgage-backed security issues. See “Updated
Estimates of the Subsidies to the Housing GSEs,” Congressional Budget Office,
April 8, 2004.
8See, for example, Federal Housing Finance Agency, “U.S. Treasury Support for
Fannie Mae and Freddie Mac,” Mortgage Market Note 10-1, January 20, 2010.
9See the Municipal Securities Rulemaking Board website, www.msrb.org.
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a state exempts interest on bonds it has issued while taxing interest on bonds
sold by other states.

The much-heralded Build America Bond (BAB) program, created in
February 2009, expired at year-end 2010 and, as of the time of this writing,
has not been renewed by Congress. Bonds under this program were typically
sold as taxable to the investor, with the U.S. government rebating 35% of
the interest to the issuing municipality. As of the end of October 2010, only
about $150 billion of BABs had been sold, compared with approximately $3
trillion of municipal bonds outstanding,10 but the program was very popular
with municipalities. BABs opened the municipal market to investors in low
or zero tax brackets who typically buy taxable bonds. On the other hand,
the program is costly for the U.S. government to maintain.11

Other Categories Loans and advances of $4.1 trillion in Figure O.4 include
loans made by banks and others (e.g., government, GSEs, finance compa-
nies) that are not included in any other category. Almost all of consumer
credit of $2.4 trillion consists of credit card balances and automobile loans.
Finally, open market paper of $1.1 trillion consists almost exclusively of
commercial paper. Commercial paper issuers borrow money from investors
on an unsecured and short-term basis, with maturities extending up to 270
days12 but averaging about 30 days.

Households and Inst i tut ions

Figures O.5 and O.6 show the largest sectors that borrow and that lend funds
through credit markets, respectively. These sectors are now discussed in turn,
leaving out those that were already described in the securities subsection.
(Note that, as in Figure O.4, only securities defined as credit market debt
are included in Figures O.5 and O.6. Other assets, however, are included in
the balance sheets to follow.)

Households Table O.3 shows the balance sheet for households and non-
profit organizations as of March 2010. Note that the percentage of liabilities
is exactly that, and not the percentage of liabilities plus net worth. Hence,
there is no percentage associated with net worth.

10 Source: U.S. Build America Bond Issuance, Securities Industry and Financial Mar-
kets Association (SIFMA), and Flow of Funds Accounts of the United States.
11 The argument that the program is costly is that since BABs, like all heavily taxed
assets, are bought primarily by investors in low or zero tax brackets, the tax paid on
BABs is very much below the 35% subsidy. It has been argued by some, however,
that the relevant tax rate is higher so that a larger portion of the subsidy is recouped.
12 Longer maturities would trigger Securities and Exchange Commission (SEC) reg-
istration requirements.
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F IGURE O.5 Credit Market Debt Owed as of March 2010
Source: Flow of Funds Accounts of the United States.

The largest asset of households is real estate followed by pension fund
savings. Holdings of other assets are spread relatively evenly, with a signif-
icant percentage in equity of noncorporate business, e.g., relatively small,
family-run businesses. The liabilities of households are predominantly mort-
gages and consumer credit, the latter consisting mostly of credit card debt
and automobile loans. In short then, households own their homes and
durable goods and invest in a wide range of financial assets, a significant por-
tion of which are held through pension funds. Households borrow mostly
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F IGURE O.6 Credit Market Assets Held as of March 2010
Source: Flow of Funds Accounts of the United States.
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TABLE O.3 Balance Sheet of Households and Nonprofit
Organizations as of March 2010, in Trillions of Dollars

Assets 68.5 100%
Real Estate 18.1 26.5%
Consumer Durables 4.6 6.8%
Deposits and Money Market Funds 7.7 11.2%
Credit Market Instruments 4.2 6.1%
Corporate Equities 7.8 11.4%
Mutual Funds 4.3 6.3%
Pension Fund Reserves 12.3 18.0%
Equity in Noncorporate Business 6.5 9.5%
Life Insurance Reserves 1.3 1.8%
Miscellaneous 1.7 2.5%

Liabilities 14.0 100%
Home Mortgages 10.2 73.3%
Consumer Credit 2.4 17.3%
Miscellaneous 1.3 9.4%

Net Worth 54.6

to finance their housing and durable purchases, but also to manage their
short-term cash requirements. The European market overview, by the way,
will discuss pension funds in more detail.

Since the financial crisis of 2007–2009 has had a significant impact on
the balance sheets of households and institutions, it is noted here and in
subsequent discussions how balance sheets have changed since the end of
2006. With respect to households, net worth has fallen from $64.4 to $54.6
trillion, or by more than 15%. And of this $9.8 trillion drop, $7.1 trillion
or 11% was from a fall in the value of real estate assets and most of the rest
from falling values of stocks and noncorporate equity.

Nonf inancia l , Nonfarm Businesses Table O.4 gives the balance sheet of
corporate and noncorporate businesses, excluding the financial and farm
sectors. Businesses in the financial sector will be covered in later subsections
and the farm sector is relatively small.

Nonfinancial business assets consist of real estate and equipment, along
with a large portion classified as miscellaneous. There is a reasonable amount
of trade financing, amounting to 7.2% of assets and 10.8% of liabilities. As
for longer-term liabilities, businesses finance property with mortgages while
financing other assets with loans and corporate bonds.

Table O.4 is not a snapshot of an individual business but an average
across the sector, which obscures the life-cycle of financing a business. Ini-
tial capital comes from “friends and family” and bank loans. Then, as a
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TABLE O.4 Balance Sheet of Nonfinancial Nonfarm Businesses
as of March 2010, in Trillions of Dollars

Assets 36.4 100%
Real Estate 12.1 33.1%
Equipment and Software 5.0 13.6%
Inventories 1.8 4.9%
Deposits and Credit Market Instruments 2.7 7.3%
Trade Receivables 2.6 7.2%
Miscellaneous 12.4 33.9%

Liabilities 18.9 100%
Corporate Bonds 4.2 22.5%
Mortgages 3.4 18.1%
Trade Payables 2.0 10.8%
Loans and Miscellaneous 9.2 48.7%

Net Worth 17.5

business grows, it may obtain loans from investor groups and from private
placements of debt (e.g., negotiating the terms of a loan with one or several
insurance companies). Finally, a larger business, with a track record and
name recognition, can tap public bond markets.

From year-end 2006 to the end of the first quarter of 2010, the balance
sheet of nonfinancial businesses deteriorated along with those of households:
liabilities rose and assets fell, the latter predominantly because of real estates’
values falling. As a result, net worth fell by about $5 trillion, or 23%,
from $22.6 to $17.5 trillion. Or, taking a different perspective, the ratio of
liabilities to assets increased from 42% to 52%.

Commercia l Banking Table O.5 gives the financial assets and liabilities of
the commercial banking sector as of March 31, 2010. Note that unlike the
previous balance sheets, this one lists only financial assets and liabilities.
This is a reasonable view for financial intermediaries whose nonfinancial
assets are relatively insignificant.

The sources of funds for the commercial banking sector as a whole are
deposits, federal funds (overnight loans between banks in the federal reserve
system; see Chapter 15), and repurchase agreements or repo (usually very
short-term loans secured by relatively high-quality collateral; see Chapter
12), bonds, and other sources. These funds are invested in a broad range
of assets, although a significant percentage of these are mortgages (26%) or
mortgage-related (i.e., agency- and GSE-backed securities at 8.8%). Banks
make money by earning spreads between the rates they pay on their sources
of funds and the rates of return they earn on their assets. But to earn spreads,
banks have to take certain risks. In particular, banks typically take on three
types of risk. First, banks take credit risk by lending to homeowners and to
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TABLE O.5 Financial Assets and Liabilities of Commercial
Banks as of March 2010, in Trillions of Dollars

Financial Assets 14.4 100%
Reserves at Federal Reserve 1.0 6.7%
Agency- and GSE-backed Securities 1.3 8.8%
Corporate and Foreign Bonds .8 5.4%
Loans 1.8 12.2%
Mortgages 3.8 26.0%
Consumer Credit 1.2 8.1%
Other and Miscellaneous 4.7 32.7%

Financial Liabilities 12.8 100%
Deposits 7.6 59.6%
Federal Funds and Repo (net) .9 6.7%
Open Market Paper .2 1.6%
Corporate Bonds 1.4 10.7%
Other Loans and Advances .4 2.8%
Other and Miscellaneous 2.4 18.6%

businesses that may not repay their borrowings as promised. This source of
risk is not a main focus of this book, but will be discussed in Chapter 19.
Second, banks may take interest rate risk by borrowing with shorter-term
securities but investing in longer-term assets. Shorter-term funds can usually
be borrowed at relatively low rates of interest but, as these borrowings
come due, banks run the risk of having to pay higher rates of interest on
new borrowing. At the same time, longer-term lending is usually initiated
at relatively high rates of interest, but these rates are fixed for years. Hence,
should a bank’s shorter-term borrowing costs rise relative to its fixed lending
rates, its profit margin or spread will narrow or even turn negative. Interest
rate risk is the subject of Part Two of this book.

The third source of risk for banks is financing risk. Deposits are regarded
as relatively stable sources of funds because of deposit insurance: because the
FDIC (Federal Deposit Insurance Corporation) insures deposits, at least up
to a limit, depositors do not need to pull deposits at the first breath of rumor
about a bank’s financial health. Corporate bonds, with their relatively long
maturities, also constitute a stable source of funds in the sense that a bank
has time between the surfacing of any financial problems and the maturity
of its bonds to sort out its difficulties.13 Federal funds and repo, however,
along with open market paper, are shorter-term sources of funds and are
less stable: at the first sign that a bank is in financial difficulties, its ability
to finance itself with federal (fed) funds and repo can erode in days, to be

13 Of course, corporations typically stagger the maturities of their longer-term debt
to ensure that only manageable amounts come due at any one time.
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followed over subsequent months by the erosion of its ability to sell open
market paper. Depositors with amounts above the insured limit may also
withdraw the excess amounts.14 And should all this happen, a bank cannot
simply let its assets mature commensurately because most of the assets are
of much longer term. Hence, the only way to meet short-term maturing
obligations might very well be a fire-sale of assets at a substantial loss. Such
a dramatic and sudden loss of short-term financing is often called a run on
the bank and can certainly lead to bankruptcy. Chapter 12 revisits financing
risk in the context of broker-dealer balance sheets during the financial crisis
of 2007–2009.

As discussed with respect to the business sector, the balance sheet of a
sector does not show variation across individual entities within that sector.
As larger banks have better opportunities to borrow than do smaller banks,
they tend to rely less on funding from deposits: the ratio of deposits to
liabilities for the largest 25 U.S.-chartered banks was 69% in March 2010,
compared with 84% for the smaller banks.15 Another significant source of
variation across banks is the historical reliance of smaller banks on local
real estate lending, which reliance resulted in significant losses and failures
during the 2007–2009 crisis. For the smaller U.S.-chartered banks, 54% of
their assets as of March 2010 were related to real estate, 45% in the form of
loans and 9% in the form of mortgage-backed securities. For the 25 largest
U.S.-chartered banks, by contrast, 43% of assets were real estate–related,
with 30% in loans and 13% in securitized form.16

A significant difference between household and nonfinancial business
balance sheets compared with that of commercial banking is leverage, or the
amount of assets supported by a given amount of liabilities. From Tables
O.3 and O.4, the assets of the household sector are 4.9 times the liabilities,
and the assets of the nonfinancial business sector are 1.9 times the liabilities.
And at the end of 2006, before the financial crisis, the ratios were somewhat
higher, at 5.8 and 2.4 respectively. Nevertheless, the vale of the assets of
these sectors can fall significantly before assets are insufficient to pay off
liabilities. By contrast, the ratio of finanical assets to financial liabilities
of the commercial banking sector, from Table O.5, is only 1.1. Put another
way, according to the table, the equity or the cushion of assets over liabilities
equals $1.6 trillion. Thus, an 11.1% drop in the value of the $14.4 trillion

14 Lines of credit, which allow customers to draw loans from banks, up to pre-
specified amounts, also contribute to financing risk. In times of stress, customers will
draw their lines while banks are losing their sources of funds.
15 Source: Board of Governors of the Federal Reserve System, “Assets and Liabilities
of Commercial Banks in the U.S.” Note that the category U.S.-chartered commercial
banks is a subset of the larger commercial banking sector described by Table O.5.
This explains why these ratios do not bracket the comparable ratio in the table.
16 Ibid.
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in assets would wipe out the equity of the sector. And of course, any agent
that had more leverage than its sector average would suffer commensurately
larger losses of equity for any given loss of asset value.

This simplified discussion of leverage can explain how the banking sec-
tor got into trouble during the 2007–2009 financial crisis. At year-end 2006,
41.9% of assets were in mortgages and in agency- and GSE-backed securi-
ties. Taking bank capital, which, roughly speaking, is the cushion between
the value of bank assets and liabilities, to be 10% of assets,17 it takes only
a 12% drop in the 41.9% of mortgage-related assets, assuming no other
assets fall in value, to reduce asset value by 41.9% × 12% or 5% and cut
bank capital in half. And to the extent that a particular bank had an even
larger fraction of mortgage-related assets, or to the extent that other assets,
like loans to troubled businesses also fell in value, the effect would be that
much greater.

Monetary Authority , or the Board of Governors of the Federal Reserve
System (Fed) The liabilities of the Fed are predominantly the reserves and
deposits of banking institutions in the federal reserve system. The conduct
of monetary policy is far beyond the scope of this book, but, to review, in
the simplest of terms: the Fed’s goals are given by the Federal Reserve Act,
namely, “to promote effectively the goals of maximum employment, sta-
ble prices, and moderate long-term interest rates.” Therefore, when the Fed
believes that economic growth could be greater without causing inflation,
it lowers short-term interest rates in an attempt to encourage borrowing
and investment. And the way in which the Fed lowers interest rates is to
increase the supply of funds relative to the demand by lending money to
banks and taking securities as collateral. This collateralized lending is done
through repo, which technically means that the Fed buys securities while
simultaneously agreeing to resell them at a fixed price at some short time in
the future. (See Chapter 12.) The Fed’s balance sheet increases with these
operations: its assets increase by the amount of securities taken as col-
lateral (i.e., temporarily bought) from banks and its liabilities increase by
the deposits made by banks with the amounts borrowed (i.e., temporarily
sold). The process works in reverse when the Fed believes that inflation
risks dominate and decides to raise short-term interest rates to discourage
borrowing and invesment. In this case the Fed borrows money and gives

17 A fuller discussion of bank capital ratios is beyond the scope of this overview. Mea-
sures of capital ratios and their corresponding regulatory thresholds vary depending
on which forms of financing count as capital and on how assets are measured. With
respect to capital, common equity always counts, but, for example, subordinated
debt is included only by the broader definitions in the spectrum. And with respect
to assets, the computation is typically either a simple sum or a risk-weighted sum of
individual asset values, where the risk-weights are determined by regulators.
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securities as collateral, which reduces its balance sheet: assets fall by the
amount of securities temporarily sold and liabilities fall by the decrease
in bank deposits to pay for securities temporarily purchased. Tradition-
ally, the Fed has invested the proceeds from incurring bank reserve and
deposit liabilities in U.S. Treasuries, the safest and most liquid domestic
securities available.

The 2007–2009 financial crisis dramatically changed the Fed’s balance
sheet. Responding to the crisis and the ensuing economic slowdown, the
Fed lowered rates from 5.25% at the end of 2006 to between 0% and
0.25% in December 2008. Then, believing that the traditional lowering
of interest rates by supplying the banking system with reserves was not
spurring growth as desired, and worried that the real estate and mortgage
markets remained dangerously fragile, the Fed also bought mortgage-related
securities directly. The idea was to inject cash into the system in a different
way while stabilizing the real estate and mortgage markets. The scale of these
operations raised the assets on the Fed’s balance sheet from $908 billion at
the end of 2006 to $2.3 trillion at the end of March 2010. Furthermore,
over the same period, the composition of the Fed’s assets changed from
over 90% in either Treasuries or loans against Treasury collateral to about
33% in Treasuries and 53% in agency- and GSE-backed securities. Or, from
another perspective, the Fed held no agency and GSE-backed securities at
the end of 2006 but held about 16% of the amount outstanding of these
securities by the end of March 2010. A concern about this situation is that
with $1.2 trillion of mortgage-related securities, the Fed’s balance sheet is
subject to an unprecedented amount of risk. From this point of view, one
facet of the U.S. government’s intervention through the crisis was to move
mortgage-related assets from the private sector’s balance sheet to that of
the Fed.

Issuers of Asset-Backed Securit ies In the boom before the 2007–2009
crisis, there was great demand for securitized assets, i.e., it was profitable to
acquire assets, most often mortgage-related but also including student loans,
business loans, automobile loans, and credit card receivables, and then sell
securities with payouts that depended, sometimes in complex ways, on the
performance of those assets. Chapter 20 discusses the securitization process
for mortgages.

There are “on–balance sheet” and “off–balance sheet” approaches to
securitization. In the on–balance sheet approach, a financial institution ac-
quires the underlying assets outright and then recovers these funds, hopefully
at a profit, when selling the securities. In the off–balance sheet approach,
a financial institution sets up a separate financial entity, called an SPV for
special purpose vehicle or an SIV for special investment vehicle, which pur-
chases the securities by issuing short- and long-term debt whose performance
ultimately depends on that of the underlying assets. Before the 2007–2009
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crisis, financial institutions preferred the off–balance sheet approach for two
reasons. First, they wanted to be in the “moving” business rather than the
“storage” business, i.e., they wanted to be paid for the acquisition and even-
tual sale of assets but did not want any of the resulting risks on their books.
It turned out, however, that many SPVs could not sell debt without various
guarantees from their sponsors. While providing these guarantees made the
risk of the off–balance sheet approach similar to that of the on–balance
sheet approach, there was the second reason for preferring the former. Reg-
ulatory capital requirements and pressure from the investment community
discouraged a direct increase in balance-sheet assets and liabilities without
commensurate increases in capital while indirect claims on the balance sheet
through the guarantees were not penalized as readily.

An inherent problem of asset-backed vehicles that rely on the sale of
short-term debt or commercial paper is financing risk. Should the market
begin to doubt the quality of the underlying assets, short-term debtholders
will refuse to roll their loans at anywhere near the originally contemplated
rate levels and new lenders will be equally difficult to find. In that case the
SPV might very well not be able to redeem the claims of these short-term debt
holders and would either default or fall back on any guarantees provided by
the sponsoring financial institution. During the 2007–2009 financial crisis,
there were many instances in which SPVs were unwound and put back onto
the balance sheets of their sponsors.

At the end of 2006, there were $4.2 trillion of assets in these special pur-
pose entities, 74.3% of which were mortgage-related. Furthermore, 19.9%
of the liabilities of these entities were in the form of commercial paper. The
assets in these entities continued to grow for a while, reaching $4.5 trillion at
the end of 2007, but the decline in real estate prices and the resulting effect
on mortgage-related securities soon took their toll. By March 31, 2010, the
assets in these entities had fallen to only $2.8 trillion and the fraction of
commercial paper in their liabilities was reduced to 4.4%.

L i fe Insurance Companies Life insurance companies sell insurance and
annuity products that investors find particularly attractive for tax reasons,
in particular, for tax-free death benefits and tax-deferral of savings. From
the sale of these products, life insurance companies collect premiums that
they invest so as to meet the obligations incurred and to earn an excess
return. They choose to invest a large portion of their portfolios in longer-
term assets, both to match the term of their liabilities better and to meet
their return hurdles. They also take on default and equity risk to meet
these hurdles. As of March 31, 2010, they invested a significant fraction
of their assets in corporate and foreign bonds (39.9%) and in equities
(27.1%). The former constituted 17% of the amount outstanding of corpo-
rate and foreign bonds, making insurance companies significant players in
that market.
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Broker-Dealers The magnitude of the balance sheet of broker-dealers
(B/Ds), at a bit over $2 trillion at the end of March 2010, did not warrant
inclusion in Figures O.5 and O.6. The sector, however, is clearly important
to fixed income markets and to the functioning of the financial system.

Broker-dealers have three lines of business, although the three cannot
always be cleanly separated from one another. First, investment banking
helps customers raise money from capital markets. Second, sales and trading
facilitate customer trading in a broad range of securities with the B/D acting
as a broker, i.e., buying or selling on behalf of a customer, or as a dealer,
i.e., trading on the B/D’s own account for later trading with a customer.
Third, proprietary trading or positioning, broadly defined trades securities
for profit on the B/D’s own accounts. Investment banking, strictly defined,
does not require much in the way of funding, although there is an associated
proprietary side of the business in which, as part of a larger client transaction,
a B/D commits its own capital to the client on a short-term or even longer-
term basis. Sales and trading often require funding, as broker-dealers find
it necessary to hold an inventory of securities to facilitate customer trading.
Finally, a proprietary business, which by its nature holds positions, requires
longer-term funding.

The asset side of B/D balance sheets consists of a range of securities,
consistent with making markets and proprietary positions across different
markets. The liability side also has some corporate bonds that serve as a
long-term source of funds. Security credit, which is made up of loans to the
B/D from banks to finance securities and customer deposits with B/Ds, are a
larger part of the liability side. Finally, liabilities include secured borrowing
through repos. Repo borrowing can usually be achieved at relatively low
credit spreads since the loans are short-term and secured. Precisely because
repo borrowing is usually short-term, however, with most being overnight,
B/Ds are subject to the same financing risks as discussed in the context
of commercial banks. In fact, during the 2007–2009 crisis, when lenders
became nervous about the credit quality of B/Ds, repo funding became hard
to maintain on any terms and contributed to the stress on B/Ds. (See Chapter
12 for examples of this.) Since then, B/Ds have tried to rely less on short-
term repo financing than previously. Even more dramatically with respect
to managing financing risk, all of the major investment banks that survived
through the fall of 2008 converted to bank holding companies, giving them
access to the safety net of the Fed’s discount lending window.

F IXED INCOME MARKETS IN EUROPE

An overview of European fixed income markets is particularly challenging.
European markets are comprised of many individual country markets which,
as mentioned at the start of this chapter, can be divided in many different
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TABLE O.6 Financial Assets of Households, by Asset Class, 2007

Financial Assets EquitiesGDP Currency Pensions Other
and and and

Deposits Insurance Misc.

% of % of % of % of % of
$Trillions GDP $Trillions Assets Assets Assets Assets

Germany 3.328 188 6.270 36 26 25 13
UK 2.800 296 8.285 27 54 16 3
France 2.598 189 4.905 29 38 27 6
Italy 2.118 241 5.100 27 17 34 22
Spain 1.443 182 2.631 38 14 42 6
Netherlands .779 280 2.184 22 59 15 4
Belgium .459 271 1.244 28 23 40 9
Switzerland .434 375 1.628 24 42 25 9
Denmark .227 235 0.533 21 43 30 6

Sources: IMF and Eurostat.

ways: politically (i.e., countries in the European Union), by currency (i.e.,
countries using the Euro), by the intersection of the two, (i.e., countries in the
Eurozone), or by other subdivisions (e.g., the Benelux countries, including
Belgium, the Netherlands, and Luxembourg). Not surprisingly then, there is
no single source of data that looks across all of the relevant countries with
consistent classifications of securities or of financial market participants.
Consequently, the data presented in this section come from many differ-
ent sources, neither with perfectly consistent categories nor with a single
‘as of’ date.

Households and Inst i tut ions

Households18 Table O.6 describes the financial assets of the household
sector in several European countries. The countries are listed in order of
decreasing GDP and financial assets are presented both as a percentage of
GDP and in absolute terms. As often the case when several currencies are
involved, all absolute quantities have been expressed in U.S. dollars.

The financial assets listed in Table O.6 range from $1.2 to $8.3 trillion
and sum to about $33 trillion. In magnitude, then, the financial assets of
the household sectors of individual European countries are small relative to
those in Japan or the United States. Taken together, however, as a bloc, the
financial assets of the household sector in Europe exceed those in Japan,

18 The data for this subsection come mostly from “Financial Assets and Liabilities of
Households in the European Union,” Eurostat, 2009.
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F IGURE O.7 Private Pensions and Insurance Savings of Households in Europe, as
a Percentage of Financial Assets, vs. the Replacement Rate of Public Pension
Systems, 2006–2007

but still fall short of those in the United States. (See Tables O.13 and O.3,
respectively.19)

The rightmost four columns of Table O.6 give the percentages of finan-
cial assets invested in particular asset categories. The first of these categories
is currency and deposits. The percentage of financial assets held in this ex-
tremely safe and liquid form may be taken as a rough measure of the risk
aversion of households with respect to personal investments. These percent-
ages vary from 21% to 38%, which are all large relative to the 17% for U.S.
households20 but small relative to the 55% for Japanese households.21

The next column of Table O.6 shows that the percentages of European
household financial assets held through private pensions and insurance prod-
ucts, two forms of long-term savings, vary widely across countries, from a
low of 14% in Spain to a high of 59% in the Netherlands. Much of this
cross-sectional variation can be explained by the variation of state-provided
retirement benefits across countries. Figure O.7 graphs the pensions and
insurance allocations from Table O.6 against the replacement rate of state
plans, where the replacement rate is a ratio of pre-tax benefits to retirees’

19 These tables, with 2010 numbers, are not strictly comparable to the 2007 numbers
of Table O.6. Comparing the relevant magnitudes with data from a single year,
however, would yield the same qualitative results.
20 See Table O.3, noting that real estate, consumer durables, and some of the miscel-
laneous category are not considered financial assets. Also see footnote 19.
21 See Table O.13 and footnote 19.
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most recent pre-tax income.22 Clearly, the more generous the state-provided
pension benefit, the less the household sector devotes on its own to retire-
ment and long-term savings vehicles. The trend line of this relationship in
Europe applies to the United States23 and Japan24 as well, which are included
in Figure O.7 for comparison.

Returning to Table O.6, summing the percentage allocations in cur-
rency and deposits with those in pensions and insurance products gives an
indicator of the extent of financial intermediation of household savings in
Europe. The average of these sums across countries is about 63%, which
is high relative to the United States, at about 48%,25 but low relative to
Japan, at about 82%.26 The exception to this ordering is Italy, at a sum of
43.5%, partially because of the high replacement rate of its public pension
system, through the effect described in the previous paragraph, and partially
because households can easily purchase domestic government bonds given
the relatively large supply available (see Table O.12).

Pension Funds Pensions provide people with an income when they are
older and, most likely, no longer employed. While the structure of pension
provisions in Europe varies dramatically across countries, all models are
based on a three-pillar system. The first pillar is made up of public pensions,
paid by the state; the second pillar is comprised of occupational pension
schemes, paid by employers to their retired employees; and the third pillar
consists of private retirement plans, through which individuals accumulate
savings to provide a pension upon retirement.

In the private plans of the second and third pillars, employers and em-
ployees, in some combination, contribute to a fund, often managed by a
trustee, and often with certain tax advantages (i.e., tax-deductible contri-
butions and tax-free accumulation of investment income and capital gains).
Then, upon retirement, the beneficiary is given a lump-sum payment, an
annuity, or a combination of the two. Private pension plans can be divided
into three major categories: defined benefit plans, defined contribution plans,
and hybrid plans. In a defined benefit plan, the sponsor of the plan promises

22 Source: Allianz, as of 2006 and 2007.
23 For replacement rates, see, for example, Chart 1 and Table O.1 of Patricia P.
Martin, “Comparing Replacement Rates Under Private and Federal Retirement Sys-
tems,” Social Security Bulletin, Vol. 65, No. 1, 2003/2004. For household asset
allocations see Table O.3 and footnote 19 in this chapter.
24 For replacement rates, see, for example, Eiji Tajika, “The Public Pension System in
Japan: The Consequences of Rapid Expansion,” The International Bank for Recon-
struction and Development/The World Bank, 2002. For household asset allocation,
see Table O.13 and footnote 19.
25 See footnote 20.
26 See footnote 21.
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payments to retirees according to some formula, which depends on several
factors, e.g., the number of years worked, the level of contributions to the
plan, and salary history. Consequently, the sponsor bears the investment
risk of the fund. In a defined contribution plan, payments to retirees depend
on the accumulated principal plus investment performance of contributions.
In these plans, therefore, the beneficiaries of the fund bear its investment
risk. (Note that third pillar pensions are, by nature, defined contribution
plans.) Lastly, in a hybrid plan, payments typically depend on invest-
ment returns, as in defined contribution plans, but the sponsor bears some
of the investment risk. Examples include guarantees of paid-in principal
(Germany) and minimum guaranteed returns (Switzerland). Historically, al-
most all pensions were defined benefit plans. For some time now, however,
the global trend has been a marked shift to defined contribution and hybrid
plans. The effect of this shift, of course, has been to shift the investment risk
of pension benefits from employers to employees.

Defined benefit plans can be funded or unfunded. If funded, the plan
sponsor uses contributions to buy assets, the income and sales proceeds of
which are used to meet pension obligations as they become due. Of course,
depending on investment returns, this portfolio of assets may or may not be
sufficient to meet promised obligations.

In the case of unfunded defined benefit plans, sometimes called pay-
as-you-go or PAYG plans, the sponsor uses current contributions to meet
current obligations, with surpluses or deficits accumulating based on the
difference between the two. Assets are bought or sold to manage these
accumulated surpluses or deficits.

Most first pillar or public pension plans are PAYG. These can be further
divided into Bismarckian systems, with contributions and benefits linked
to pre-retirement earnings (Austria, Belgium, France, Germany, Italy, and
Spain) and systems characterized by relatively low contributions and benefits
that are designed to prevent poverty in old age (Ireland, the Netherlands, and
UK). In any case, following the years of post-war, baby-boom-generation
contributions to public pension systems, many plans have accumulated as-
sets. However, any such accumulation of assets by no means implies a fiscally
healthy position; most national plans are underfunded in the sense that cur-
rent surpluses plus projected contributions are not nearly sufficient to meet
future, promised obligations.

Returning for a moment to the case of a funded, defined benefit plan,
the asset management challenge is to predict future obligations and to invest
current assets so as to meet those obligations with high probability. Pre-
dicting future obligations requires tools outside the area of finance, such as
mortality analysis, while the investment of assets is a risk-return problem in
the general field of asset-liability management. Not surprisingly, long-dated
fixed income assets are particularly suitable to meet projected, long-term
obligations. Furthermore, the substantial demand from pension funds in
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TABLE O.7 Asset Allocations of Pension Fund
Assets in Selected Countries as of December 2010

Equities Bonds Other

Germany 40% 45% 15%
UK 60% 31% 9%
Italy 20% 75% 5%
Spain 20% 65% 15%
Netherlands 28% 48% 24%
Switzerland 27% 36% 37%
Denmark 42% 51% 7%

Source: Watson Wyat, 2008.

Europe for such long-dated assets is critical in the determination of the
prices of these assets. (See, for example, the trading case study in Chapter
2.) Having established this, it is also the case that pension funds invest in
real assets (i.e., assets expected to generate a return that is relatively in-
dependent of inflation, like equities and real estate) since pension benefits
are often explicitly or implicitly linked to inflation. From this perspective,
inflation-linked bonds would be a natural choice for pension investments,
but the supply of such bonds is very limited relative to the size of pension
portfolios. Table O.7 shows the allocations across equities and bonds for
the largest pension systems in Europe and will be referenced further in the
discussion of individual country pension systems.

Pension Funds in the UK The largest pension system in Europe is in the
UK, with about $1.75 trillion of assets as of year-end 2009,27 which is about
80% of GDP. About 60% of these assets are part of corporate defined benefit
plans, with benefits, subject to some caps, linked to inflation by statute. In
fact, the legal requirement that pension benefits increase with inflation in
the UK goes far in explaining why inflation-linked fixed income security
markets are most developed in the UK.

Historically, UK pension funds have been invested primarily in equities,
the legacy of which can be seen in Table O.7. But a combination of poor
investment results and relatively high benefit levels have left many corporate
defined benefit plans in the UK underfunded.28 Consequently, many compa-
nies have closed plans to new employees, curtailed benefits (sometimes even
within closed plans), and started to offer new, mostly younger employees,
far less generous defined contribution plans.

27 Source: Watson Wyatt, “Global Pension Assets Study,” 2008.
28 According to Aon Consulting, the 200 largest companies in the UK faced a com-
bined deficit of close to $150 billion as of March 2010.
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The accumulating deficits of private defined benefit plans over the past
decades have also resulted in increased regulation of these plans, like the
Minimum Funding Requirement of the late 1990s and the Pensions Act
of 2004, which aim to ensure that pension liabilities be valued appro-
priately, that is, by discounting actuarial projections of benefits at some
prevailing market interest rates. In addition, pension plans are required to
pay annual, risk-based levies to the Pension Protection Fund, established in
2004, which takes control of plans should they become insolvent or should
the sponsoring company declare bankruptcy. The coverage of this fund is
still relatively small because, when established, it did not cover existing,
underfunded obligations.

The relatively new regulatory and accounting standards for pension
funds have caused plan sponsors to hedge more of the interest rate risk as
calculated by these standards. This entails increasing the average maturity
of bonds in the asset portfolio or liability hedging, which, in this case,
means receiving fixed in long-dated interest rate swaps. (Part Two describes
interest rate risk and hedging.) As a result of this change in portfolio strategy,
the asset composition of pension funds in the UK has gradually shifted
from equities to fixed income products, including inflation-linked bonds.
Furthermore, given the magnitude of pension assets in the UK, this shift has
been and continues to be an important explanatory factor for the pricing of
fixed income securities in this market.

Pension Funds in the Netherlands The Netherlands is the second largest
pension market in Europe, with about $1 trillion in pension assets as
of year-end 2009, about 125% of GDP. Corporate-run pensions are
normally mandatory, cover about 90% of the workforce, and are mostly
defined-benefit plans. In general, Dutch pension-fund assets are invested
more conservatively than in the UK, consistent with the data in Table O.7.
As a result, the Dutch pension system stayed relatively well-funded through
the 2007–2009 financial crisis, with a solvency ratio (i.e., assets divided by
the present value of liabilities) falling from 150% before fall 2008 to 107%
in 2010.

Dutch pension assets are marked-to-market. Liabilities were historically
discounted at a static rate of 4%, but are now discounted at relatively
conservative swap rates.29 As a result of this switch to discounting liabilities
at a market rate, Dutch pension sponsors, like those in the UK, are now
quite active in managing their interest rate risk. In particular, Dutch pension
funds tend to be significant receivers in the market for long-dated swaps so
as to narrow the gap between the relatively long average duration of their
liabilities and the relatively short average duration of their assets (about
seven years).

29 International accounting standards allow for the use of a AA corporate curve. See
Chapter 19 for a description of bond ratings.
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Dutch pension benefits are linked to inflation, but indexation can be
suspended when plans are not fully funded. This exemption, combined with
a limited supply of products that hedge Dutch-specific inflation, has resulted
in inflation hedging being less common for Dutch pension funds than for
those in the UK.

Switzerland Switzerland is the third largest pension market in Europe, with
about $550 billion in pension assets as of year-end 2009, about 112% of
GDP. Its mandatory, private pension plans have had a minimum guaranteed
return of 2.75% since 2008 and are held externally to corporations in a
trust-like structure called a Stiftung. Of total pension assets, about 58%
are held in defined contribution plans, which, in a hybrid component, are
usually linked to inflation. A special characteristic of Swiss pension funds,
consistent with the data in Table O.7, is a relatively large asset allocation to
real estate investment.

Germany30 Germany has the fourth largest pension market in Europe,
with more than €400 billion in pension assets as of year-end 2009, about
17% of GDP. Traditionally, companies made direct pension promises to
employees, with the resulting liabilities on balance sheet as book reserves.
With the global trend to segregate and protect pension assets, pensions in
Germany have taken on several additional forms along two distinct paths.
Along the first path, companies have segregated assets held against pension
liabilities through Contractual Trust Agreements (CTAs). In this way, while
the pension plan is still fully run by the company, the liabilities move off
balance sheet by international accounting standards. These direct, company-
run plans in book reserve and CTA forms total €234 billion of pension as-
sets.31 Along the second path of segregating pension assets, companies out-
source the management of plans to legally independent entities. The most
widely-used of these structures, the Pensionskasse, accounting for about
€96 billion of assets, is technically an insurance company and is subject
to funding requirements and guaranteed minimum rates of return. Next,
accounting for about €47 billion of assets, is the direct purchase of insur-
ance on behalf of employees, which is followed by Unterstützungskasse or
support funds, which account for about €37 billion and have wide discre-
tion with respect to investment decisions. Lastly, relatively new structures,
called Pensionsfonds, offer substantial funding and investment flexibility but
account presently for only about €2 billion. The Pensionskasse and direct
insurance purchases, covered already by existing insurance regulation, do

30 Sources: Allianz Global Investors; “The German Pension System,” Mayer-Brown,
2009; Aegon Global Pensions, “Pension Provision in Germany,” 2010.
31 The book reserve entries are technically liabilities, but, as part of corporate balance
sheets, they can be thought of as having corresponding assets.
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TABLE O.8 Asset Mix of European
Insurers, 2010

Asset class Portfolio weight

Equities 7%
Government bonds 28%
Corporate bonds 26%
Structured credit 5%
Real estate 4%
Loans 11%
Covered bonds 10%
Other 9%

Source: Deutsche Bank.

not require contributions to the national Pension Insurance Association as
do the other structures.

L i fe Insurance Companies Life insurance products are among the most
important savings vehicles in Europe, with assets of over €4 trillion in the
four largest markets, which, in descending size, are the UK, France, Ger-
many, and Italy.32 While originally designed to provide a payment upon
death, life insurance products normally feature tax-advantaged accumula-
tion of savings, a minimum guranteed return, and the redemption of pro-
ceeds when desired as a lump-sum payment or an annuity. Insurance com-
panies have to invest premiums collected in a manner conducive to meeting
both the death benefits and the minimum rates of return promised by the
policies.

As with pension funds, insurance companies are being directed by regu-
lators to fund and manage the gap between the market values of their assets
and liabilities. A new regulatory regime, Solvency II, effective in 2012, uses
a risk-based approach to determine required reserves. And the industry re-
sponse has been similar to that of the pension funds: more focus on interest
rate risk and asset-liability management and a shift of investment alloca-
tions from equities to fixed income securities. The portfolio composition of
industry assets in Europe as of 2010 is presented in Table O.8.33 Note that
the allocation to equities is very low relative to that of pension funds shown
in Table O.7.

As in the case of pension funds, insurance companies can either buy
long-term assets to match the long-term nature of their liabilities, or they

32 Source: Allianz, 2008.
33 Covered bonds are typically AAA, mortgage-related, asset-backed securities with
recourse to the issuer.
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can choose assets based on various criteria and then receive fixed in swaps
to achieve the appropriate risk profile. Not surprisingly then, life-insurance
companies are important buyers in the long-dated bond market as well as im-
portant receivers in long-term swaps. Furthermore, in balancing risk against
return hurdles, insurance companies, consistent with the data in Table O.8,
tend to buy significant amounts of corporate bonds. These intermediate- to
long-term fixed income securities are a good match against typical liabil-
ity profiles and, by offering extra return as compensation for credit risk,
are more useful than government bonds for meeting return objectives. The
amount of credit risk insurance companies can prudently take is limited,
however, whether constrained by themselves or by their regulators, so they
tend to purchase investment-grade corporate bonds, i.e., those rated BBB or
bettter. In fact, recent data indicate the following allocations by rating class:
AAA 3%; AA 20%; A 47%; and BBB 30%.34

Banks In Europe there are a large number of independent banks and a
small number of very large banks. Measured by assets, the banking sector is
of significant size relative to the economies of the various countries. Columns
(2) to (4) of Table O.9 report the GDP of selected countries, the assets of
each country’s banking sector, and those assets expressed as a percentage
of GDP. Assets as a percentage of GDP mostly range from about 225% to
425%, with Ireland an outlier at over 1,000%, as compared with a ratio of
about 100% in the United States.35 The size of banking in Europe relative
to GDP certainly reflects the structure of its financial system, but is at least
in part the result of expansion and leverage leading up to the financial crisis
of 2007–2009.

Stable sources of funding enable a banking system to supply credit reli-
ably to the household and corporate sectors and to ensure its own financial
soundness. Since deposits are one of the more stable sources of funds, largely
because of governmental deposit insurance, one indicator of banking system
robustness is the percentage of liabilities in the form of deposits. These ratios,
reported in column (5) of Table O.9, which range from 12%, in the case of
Ireland, to around 40% for several other countries, are low compared with
a ratio of about 60% in the United States.36 While a relatively low reliance
on deposits for funding has historically meant a relatively high reliance on
other financial institutions for funding, the European Central Bank (ECB)

34 Source: BNP Paribas, August 2010.
35 In this discussion of banks, caution is called for when comparing the balance sheet
numbers in Table O.9, which cover Monetary Financial Institutions in Europe as
defined by the ECB, with numbers used here from the Flow of Funds Accounts,
which cover the commercial banking sector in the United States.
36 Source: Flow of Funds Accounts of the United States for 2009 or Table O.5 for
2010.
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TABLE O.9 Selected Statistics for the Banking Sector in Europe, as of Year-End 2009. The final column gives doubtful and
nonperforming loans, net of provisions, as a percent of Tier 1 capital

(1) (2) (3) (4) (5) (6) (7) (8)
Bank AssetsGDP Deposits Housing Tier 1 Net At-Risk Loans /

Loans Capital Ratio Tier 1 Capital

€Trillions €Trillions % GDP % Liabilities % Assets %Risk-Wtd Assets % Capital

Germany 2.397 7.438 310 38 13 10.7 31.8
France 1.907 8.148 427 14 9 10.1 30.4
Italy 1.521 3.965 261 25 9 8.3 40.9
Spain 1.054 3.470 329 48 19 9.3 9.2
Netherlands .572 2.269 397 23 15 12.5 11.1
Belgium .339 1.167 344 20 7 13.2 36.8
Austria .274 1.014 370 29 8 9.3 3.2
Greece .233 .536 230 42 15 10.8 23.7
Finland .171 .460 268 21 16
Portugal .168 .557 332 38 20 7.8 6.0
Ireland .160 1.648 1,032 12 7

Sources: GDP from Eurostat; bank balance sheet and capital ratio data from the ECB.
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has recently taken on a much expanded role as the supplier of this funding.
This will be discussed further in the context of the ECB.

Since the connection between the housing market and bank balance
sheets is particularly important in light of the 2007–2009 financial crisis,
column (6) of the table gives the percentage of bank assets in the form of
housing loans. These data make sense in the context of European banking’s
participation in the global real estate boom, e.g., German Landesbank’s fi-
nancing of U.S. real estate or Spanish banks’ financing of local real estate.
While not insignificant, these percentages are low compared with an equiv-
alent percentage of over 36% for U.S. banks, which includes both mortgage
loans and various mortgage-related securities.

Columns (7) and (8) of Table O.9 report on bank capital adequacy.
Column (7) reports the Tier 1 Capital Ratio, which is essentially common
and preferred stock divided by risk-weighted assets. The regulatory, “Basel
II” minimum for this ratio is currently 4% but the Bank for International
Settlements calls for an increase to 6% by 2015. The banking systems in all
of the countries listed in Table O.9 are above these minimum threshholds.
Many market participants, however, believe that 10% is a more appropri-
ate threshhold, in which case the results in the table are less impressive.
The last column reports doubtful and nonperforming loans,37 net of provi-
sions already taken for potential losses, as a function of Tier 1 capital; the
proportions are not inconsequential.

To conclude the discussion of Table O.9, the soundness of European
banking systems is an important issue for today’s markets. Some concerns
can be gleaned with respect to banks in particular countries from balance
sheet data, e.g., large assets relative to GDP, a relatively small deposit base,
just adequate capital ratios, and somewhat high levels of doubtful and non-
performing loans. Meaningful conclusions, however, cannot be drawn from
balance sheet data alone. Some additional insights with respect to the ro-
bustness of the banking system are discussed next, in the context of the ECB,
but a more complete analysis is beyond the scope of this overview.

The final point to be made here about the European banking system
is that it plays a crucial role in financing the governments of Europe.
Table O.12, to be presented shortly, gives the amounts outstanding of
government bonds and other borrowings across Europe. Aggregating these
across countries, the totals are €4.563 trillion of government bonds and
€2.444 trillion of other borrowings. At the same time, bank balance sheet
data38 show that European banks, in aggregate, hold €1.478 trillion of
government securities and €1.068 trillion of other loans. Expressed as
proportions, then, European banks hold 32% of European government

37 Doubtful loans are those that a bank suspects may not perform. Nonperforming
loans are those which are not currently making contractually required payments.
38 Source: ECB June 2010.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-Overview JWBT539-Tuckman July 26, 2011 23:26 Printer: Courier Westford

An Overview of Global Fixed Income Markets 31

TABLE O.10 Balance Sheet of the ECB as of March 1, 2002, in Billions
of Euros

Assets 570 Liabilities 570

Autonomous factors, gold, and
foreign exchange reserves

387 Autonomous factors, bank-notes
in circulation, and other

378

Outstanding operations Government deposits 57
Main refinancing operations 123 Bank current account holdings 135
Long-term refinancing operations 60 Deposit facility 0

TABLE O.11 Balance Sheet of the ECB as of September 3, 2009, in Billions
of Euros

Assets 1,135 Liabilities 1,135

Autonomous factors, gold, and
foreign exchange reserves

428 Autonomous factors, bank-notes
in circulation, and other

650

Outstanding operations Government deposits 145
Main refinancing operations 72 Bank current account holdings 200
Long-term refinancing operations 635 Deposit facility 140

securities and 44% of other loans to these governments. These are remark-
able proportions, perhaps put in context by noting that the commercial
banking sector in the United States, as of the end of 2009, held about 2.4%
of U.S. Treasury securities.39

The European Central Bank The ECB conducts monetary policy by adjust-
ing the supply of bank reserves. The ECB makes these adjustments in its main
refinancing operations with repo agreements that mature from overnight to
one week and in its long-term financing operations with repo agreements
that mature in three or six months. The ECB also runs a deposit facility
in which it accepts deposits from banks (in excess of their reserve require-
ments) at a relatively low rate of interest. But despite the continuity of these
generic operating procedures, the policy and role of the ECB has changed
dramatically since the financial crisis.

Tables O.10 and O.11 present the balance sheet of the ECB as of March
2002 and as of September 2009, respectively. As of the earlier date, most of
the refinancing operations were in the shorter-term category and the order of
magnitude of refinancing operations matched the order of magnitude of bank
reserves. In other words, the refinancing operations were being used mostly
to manage the size of these reserves. Furthermore, the deposit facility was

39 Source: Flow of Funds Accounts of the United States.
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not being used by banks. As of September 2009, however, the situation had
changed dramatically, with the balance sheet of the ECB having increased
from €570 billion to €1.135 trillion.

After the onset of financial crisis, the ECB shifted the purpose of refi-
nancing operations from managing reserves to financing securities for banks.
Evidence of this shift appears in the refinancing operations of the ECB’s
September 2009 balance sheet. First, the magnitude of the operations is sig-
nificantly larger than the reserves of the banks. Second, the vast majority of
the operations are long term, reflecting the fact that the banks are using the
ECB to finance their assets on a semi-permanent basis.

Another significant change in the behavior and balance sheet of the
ECB after the crisis is the use of the deposit facility. Banks are lending to
the ECB through this facility at relatively low rates of interest either because
they do not see attractive opportunities in the economy or because their own
financial conditions prudently require larger cash balances. In any case, these
balances are being accepted by the ECB and lent to other banks through the
refinancing operations. In other words, the ECB has taken over some of the
financial intermediation previously done within the banking sector.

Since the balance sheet snapshot of Table O.11, the European sovereign
debt crisis came to a boil in 2010 with the relatively abrupt deterioration of
the perceived creditworthiness of the public debt of Greece, Ireland, Portu-
gal, and Spain. While each of these cases is different from the others, common
themes include sharp increases in fiscal deficits during the 2007–2009 crisis,
elevated levels of public debt, and skepticism about the post-crisis valuation
of assets on bank balance sheets, particularly those related to real estate.
In response, the ECB has supported sovereign bond markets with outright
purchases through its Security Market Program. By the end of 2010, these
purchases totalled about €47 billion for Greece, €15 billion for Ireland,
and €12 billion for Portugal. These purchases are, of course, in addition
to support through the repo operations described previously. According to
Deutsche Bank, the ECB’s combined outright and repo holdings of bonds
issued by Greece, Ireland, and Portugal was nearly €400 billion at the end
of 2010, close to 65% of the total public debt outstanding across these
three countries.

Selected Securit ies

Government Debt Table O.12 reports the amount of government bonds
outstanding by maturity, the amount of other government borrowings, and
the grand total as a percentage of GDP. As the table shows, government
bonds in Europe are relatively well spread out across maturities, which is
comforting from the perspective of refinancing risk. On the other hand,
overall debt levels for some countries, like Greece, Ireland, Portugal, and
Spain, have approached problematic levels relative to their economies.
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TABLE O.12 Outstanding Marketable Government Debt and Other Borrowings
as of December 2010

Maturity in Years
Total Other Total/

<2 2–5 5–10 >10 Bonds Borrowings GDP

% % % % €Billions €Billions %

Germany 28 27 27 17 997 1,082 83
France 20 27 28 25 1,125 454 82
Italy 23 25 24 27 1,379 465 119
Spain 28 26 25 20 514 125 60
Netherlands 24 29 28 19 253 118 63
Belgium 25 29 28 18 283 58 97
Austria 7 30 39 24 157 48 72
Greece 18 30 28 24 266 63 143
Finland 11 33 45 11 54 33 48
Portugal 25 28 29 18 120 40 93
Ireland 11 20 60 9 90 58 96

Sources: Bloomberg, Eurostat, Government Financial Statistics and National
Accounts.

Money Markets Banks borrow and lend funds in the uncollateralized Euro
Overnight Index Average (EONIA) market, which is the European equiv-
alent of the U.S. Fed Funds market. The volume-weighted average rate of
transactions in the EONIA market over a day is called the EONIA rate. The
majority of transactions are for overnight funds (about 70% in 2007) and
the vast majority are for less than one month (96% in 2007). Lending on a
secured basis occurs in the repo markets, where the vast majority of terms
are less than one month.

The European issuance of short-term, unsecured commercial paper (CP)
has grown steadily over time, to about €389 billion as of September 2010.
(This is about half the size of the equivalent market in the United States.)
Financial institutions and governments are the biggest borrowers in the mar-
ket, but, at about half the size, non-financial corporations issue here as well.
And interestingly, less than half of the total amount of European issued CP
is denominated in EUR. Other money markets in Europe include: certificates
of deposit (CDs) and other short-term notes, which total $1.85 trillion, of
which 27% is denominated in EUR and 60% in USD; and medium-term
notes (MTNs), which total $8.6 trillion, of which 56% are denominated in
EUR and 18.5% in USD.40 Taken together, these data show that there is
strong demand in Europe for short-term USD financing.

40 Source: Euroclear, September 2010.
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Money market funds, investment vehicles that invest primarily in the
short-term debt of investment grade borrowers, are important for distribut-
ing the issuance of short-term, unsecured paper.

F IXED INCOME MARKETS IN JAPAN

Savings- Investment Dynamics and the
Macroeconomic Environment

The savings and investment dynamics in Japan have shaped a fixed income
market in which individuals save through a single instrument, namely, gov-
ernment debt. This subsection describes the macroeconomic backdrop of
these dynamics: corporate deleveraging, an aging population, and expand-
ing government expenditure. Subsequent subsections describe the market
participants and the most actively traded markets.

Figure O.8 shows that Japanese households have historically been char-
acterized by high savings rates, hovering around 10% of GDP since the
early 1970s. Over the last several years, however, this rate has declined to
below 5%. While comparatively high savings rates were associated with
generational behavior since World War II, the latest declines are likely at-
tributable to the aging of the population and of the most saving-intensive
cohorts, namely, those 45 to 65 years old who are now approaching retire-
ment. Over the past 30 years, these persistent domestic savings surpluses
have been sufficient to finance the investment needs of the corporate sector
and the expenditures of the government.

Figure O.8 also describes the savings and investment behavior of the
corporate sector. For most of the post-war period, this sector was the major
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user of household savings. In fact, from the mid- to late-1980s, the strong
expansion resulting from these high levels of corporate investment increased
government revenues to the extent of temporarily turning the public sector
into a net supplier of savings, which episode can be clearly seen in Figure
O.8. But the loose monetary conditions that accompanied this booming
economy—the official discount rate of the Bank of Japan (BoJ) reached
0.25% in 1987—encouraged extremely high levels of corporate indebtedness
and leverage. As a consequence, the burst of the economic bubble at the end
of the 1980s inaugurated an era of dismal stock returns, low real growth,
and falling nominal prices. In reaction, as can be seen clearly from the
graph, the corporate sector focused on debt reduction or balance sheet
deleveraging41 at the expense of investment to such an extent as to become a
net saver.

With the corporate sector’s deleveraging, the government took over as
the main user of household savings through transfer payments and increased
public works (and deteriorating public finances). As shown in Figure O.8,
this situation has persisted with the added complication that the gross supply
of savings by households is decreasing.

Lastly, the foreign sector’s behavior in Figure O.8 implies consistent
current account surpluses that have resulted in Japan’s accumulation of a
sizable, international, net creditor position.

To round out the description of the economic background, GDP growth
in Japan dipped into negative territory during the recessions of 1998 and
2001–2002, but then measured between 0 and 3% until the financial crisis
that resulted in a −8.4% year-on-year GDP growth in the first quarter
of 2009. The main source of information to track the performance of the
Japanese economy, by the way, is the Tankan survey, published quarterly
by the BoJ.

Households and Inst i tut ions

Households Household savings and investment behavior in Japan is domi-
nated by demographics; an aging population, facing retirement and medical
costs, results in preferences for precautionary savings in cash, for liquid
assets, and for capital preservation. To put some perspective on these de-
mographics, the share of the population above 65 years of age reached
20% in 2005, is estimated to be 22.5% in 2010, and is expected to
be 35.7% by 2050.42 This compares, for example, with 2010 levels of
12.8% in the United States and 20.4% in Germany. From another per-
spective, more than half of Japanese households are headed by someone

41 The corporate debt to equity ratio decreased consistently from slightly above 4 in
1990 to about 1.8 at the end 2009. Source: Ministry of Finance, corporate statistics.
42 Source: National Institute of Population and Social Security Research.
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TABLE O.13 Financial Assets of Households in Japan
as of March 2010

Assets (�1,453 Trillion) % of Financial Assets

Currency and deposits 54.9%
Insurance and pension reserves 27.0%
Stocks 7.1%
Investment trusts 3.8%
Bonds 2.9%
Other 4.3%

Source: Bank of Japan.

over the age of 55. The preferences of these households are far from over-
whelmed by younger households, whose investable amounts are limited by
the weight of such major expenditures as home purchases and children’s
education. It is an open question, however, whether younger households,
in response to the uncertain prospects of public pensions, will begin to ac-
cept higher levels of risk and seek high-yielding alternatives to traditional
savings deposits.

As of March 2010, households held financial assets of �1,453 trillion
and liabilities of �369 trillion.43 Table O.13 breaks down these financial
assets by instrument. Most of the corresponding liabilities, about 85% of
the total, are in the form of loans.

Household risk aversion, in addition to institutional and regulatory fea-
tures of Japanese financial markets, has led to a high proportion of house-
hold wealth in cash and deposits, reported as almost 55% in Table O.13.
High risk aversion has been also been evident in the choice between demand
deposits, which can be withdrawn without penalty at any time, and time
deposits, which have maturities ranging up to three years. In 2000, time
deposits constituted about 67% of total bank deposits, but fell to about
20% from 2006. But due to changes in government deposit insurance, this
trend reversed itself and time deposits grew back to about 50% of total
bank deposits. It should be noted, however, that the most popular savings
vehicle has been offered not by any bank, but rather by the Japanese Postal
System, which, using its huge network of offices, has acted for years as the
largest retail financial institution in the world. Its most popular product is
the postal savings certificate, a time deposit that can be withdrawn without
penalty after six months.

Moving beyond the 55% held in cash and deposits, another 27%
of household financial wealth is in the form of insurance policies and

43 Source: Bank of Japan.
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TABLE O.14 Aggregate Balance Sheet of Depository
Institutions as of March 2010

Banks (�1,522 trillion)

Assets Liabilities

Loans 43.1% Deposits 75.9%
Bonds 31.0% Bonds 3.4%
Currency and Deposits 10.3% Borrowings 10.3%
Stock 3.1% Equity 5.2%
Other 12.1% Other 5.2%

Source: Bank of Japan.

pension reserves. Hence, household investments in financial markets are
highly intermediated.44

Life insurance products in Japan are primarily savings vehicles with
death-contingent payoffs. The most popular products are single-premium
endowment policies in which a lump-sum contribution buys a tax-
advantaged investment to be realized as a death benefit or a withdrawal
at a guaranteed rate of return.

Banks Traditionally, commercial banks in Japan have been divided into
three categories: city, regional, and trust. City banks have historically been
the most active in financial markets. City and regional banks are banks in the
sense of making commercial loans, while trust banks act mostly as investor
agents for pension funds. The largest banks are known as the six “Megas,”
with combined holdings approximately equal in size to Japan’s GDP.45

Table O.14 reports the composition of the �1,522 trillion balance sheet
of all depositary institutions. The dominance of deposits in the liability struc-
ture, relative to the United States and Europe, has been noted previously.
With respect to loans, as of May 2010, the composition of bank loans was
as follows: 28% in housing and consumer loans; 24% in loans to large
companies; and 42% in loans to small and medium-sized companies.

Japanese commercial banks essentially raise funds by taking deposits,
making loans to the corporate sector, and, with most of the funds that

44 This has not always been the case. Direct stock ownership was high when the
zaibatsu, the large industrial conglomerates from the prewar era, were broken up
after the war and stocks sold to employees. Since then, however, direct ownership
has declined as the investment trusts, i.e., stock funds, developed as an investment
vehicle in the early 1950s.
45 These are Mitsubishi UFJ, Mizuhuo FG, Sumitomo Mistsui FG, Resona holdings,
Sumitomo Trust, and Mitsui Trust holdings.
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TABLE O.15 Assets of Investment Trusts, Pension Funds, and Life
Insurance Companies as of March 2010

Investment Pension Life Insurance
Trusts Funds Cos.

Assets �90 trillion �123 trillion �372 trillion
Assets as a % of GDP 19% 26% 78%

% % %

Foreign securities 48.9 19.7 12.2
Domestic bonds 19.4 33.3 56.4
Domestic stock 17.1 11.4 7.8
Loans 4.6 2.2 15.2
Currency and deposits 0.4 6.6 1.8
Other 9.6 26.8 6.6

Source: Bank of Japan.

remain, investing in government bonds. It follows that bank holdings of
government bonds vary inversely with loan activity: these holdings fell in
2004–2007 as loan volume picked up, but increased during the financial
crisis and the large economic contraction of 2008–2009, reaching 16% of
financial assets. (The Bonds asset percentage of 31% in Table O.14 includes
assets other than Japanese Government Bonds (JGBs))

Following the burst of the financial bubble in the early 1990s, banks
went through a long period of balance sheet restructuring while amortizing
bad loans. The proportion of nonperforming loans in the major banks’
portfolios, which peaked at 8% in late 2001, fell steadily to slightly less
than 2% in 2009, although for regional banks the improvement was not
as pronounced. While banks initially received capital injections from the
government to deal with the nonperforming-loan problem, they did not
receive further assistance after 2003.46 And, in another sign of recovery,
although the net interest margin on loans has been low, it is positive and
somewhat higher than in the 1980s, when funding costs were much higher.

Private, Asset-Management Inst i tut ions: Investment Trusts, Pension
Funds, and L i fe Insurance Companies Table O.15 presents the compo-
sition of assets of private asset-management institutions. The domestic bond
holdings are mostly government bonds with maturities greater than 10 years
and, in particular, with maturities around 20 years. The liabilities of these
institutions appears for the most part on the asset side of household bal-
ance sheets as insurance and pension reserves and as investment trusts.

46 Source: Financial Services Authority (FSA); Deposit Insurance Corp.
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Investment trusts are affiliates of Japanese securities firms (the largest being
Nomura Asset Management) or mutual fund managers that moved into the
Japanese market (e.g., Fidelity Investments). The public can invest in these
trusts through banks, insurance companies, and securities firms.

As percentages of GDP, Japanese investment trust and pension fund
assets are quite low relative to those in the United States, while Japanese
insurance assets are quite high. The relevant percentages for Japan are in
Table O.15 while the corresponding percentages for the United States are
84%,47, 40%,48 and 44%,49 respectively. But the trend in Japan is for
households to allocate less of their savings to insurance companies. This is
partially due to an aging population, but also in good part due to insur-
ance companies’ failing and not paying eligible claims: between 1997 and
2000, six insurers collapsed. In the past decade the sector underwent a ma-
jor reorganization, including the entrance of foreign insurers. Nevertheless,
the industry still faces the structural problem that investment returns have
not kept up with rates that have been guaranteed to policy holders: since
the 1990s the average yield on interest-bearing assets has been low, e.g.,
around 2% in 2009, while the average rate on outstanding policies has been
around 3%.

Pension plans in Japan have faced the same issues as those described in
Europe: poor performance of financial markets relative to defined benefits
and pressure to account properly for the value of liabilities versus assets.
In any case, the net effect has been that the size of the corporate pension
market has not grown significantly since the beginning of the decade.

Semi-Publ ic Asset-Management Inst i tut ions: The Posta l Savings System
and the Publ ic Pensions System

The Postal Savings System The public or semi-public postal savings system
has historically attracted between 20% and 25% of household financial
wealth, two-thirds in savings accounts (yū-cho) and one-third in insurance

47 The Flow of Funds accounts as of March 2010 report the following amounts:
money market mutual funds, $1.8 billion; mutual funds (credit instruments), $2.8
billion; mutual fund shares (equities), $7.3 billion; closed-end funds, $140 billion.
Dividing the total of about $12 billion by a 2009 U.S. GDP of $14.3 billion gives a
proportion of 84%.
48 The Flow of Funds accounts report private pension fund assets of $5.7 trillion
as of March 2010. Dividing by a 2009 GDP of $14.3 trillion gives a proportion of
about 40%.
49 The Flow of Fund accounts as of March 2010 report life insurance company assets
of $4.9 trillion and property and casualty insurance company assets of $1.4 trillion.
Dividing the $6.3 trillion sum by a 2009 U.S. GDP of $14.3 trillion gives a proportion
of about 44%.
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products (kampo). Japanese households are attracted by the convenience
of obtaining the products at post offices and by the perceived safety of the
offerings, originated, as they are, by a quasi-public entity. In addition, postal
service life insurance products are particularly accessible (e.g., they require
no medical exam) and, like other such policies in Japan, also function as
tax-advantaged vehicles for savings.

Until 2003, the system was managed by the Postal Services Agency,
which deposited all its assets with the Trust Fund Bureau, an arm of the
Ministry of Finance, which, in turn, would buy government debt and extend
loans to local government entities. In 2003 the agency was reorganized into
Japan Post as preparation for a long-term plan to privatize the system.
This had implications for fixed income markets as Japan Post changed the
management of postal savings assets by investing them directly in financial
markets. But to complete the institutional story, in October 2007, Japan Post
was split into four entities, Japan Post Bank, Japan Post Insurance, and two
nonfinancial companies, with a view to spin them off as independent entities
by 2017. Subsequent policy reversals have delayed these privatization plans,
however, and a final privatization is far from certain.

As of September 2009, the combined assets of the postal system were
�303.6 trillion. And with its �177 trillion in deposits, it is the largest
savings institution in the world. (The next largest in Japan would be the
country’s largest publicly-traded bank, Mitsubishi UFJ, with �119 trillion
in deposits.) Finally, the postal system invests a substantial portion of its
funds in Japanese government bonds, holding �158 trillion in its banking
unit and �68 trillion in its insurance unit, which together constitute nearly
one third of the amount outstanding.

The Public Pensions System Japan’s public pension program has two pil-
lars. The first is the National Pension System (NPS), a program for all
Japanese nationals in which they contribute premiums while they work and
ultimately receive a fixed pension benefit that is independent of individual
contribution levels. The NPS is a PAYG system and, since contributions are
no longer sufficient to cover benefits, the Treasury contributes a significant
amount to fund the program.

The second pillar is a public pension system for employees of private
companies. Complementing the NPS, this system pays benefits based on
each participant’s income and contributions. The sum of contributions by
active workers and the government has, in fact, exceeded cumulative benefits
paid, thus building a reserve that amounted to �121 trillion in June 2009.50

The funds in this reserve are managed by the Government Pension Invest-
ment Fund, both directly and, more commonly, through private financial

50 Source: Government Pension Investment Fund.
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TABLE O.16 Government Revenues and Expenditures as a % of GDP. Nominal
GDP in Trillions of Yen.

2005 2006 2007 2008 2009

Revenue 31.1 33.8 32.2 33.6 31.0
Tax (direct) 15.0 15.6 16.1 14.3 13.0
Tax (indirect) 2.6 2.6 2.5 2.5 2.5
NPS contributions 10.6 10.8 11.1 11.2 11.3
Other 2.9 4.9 2.8 5.6 4.3

Expenditure 37.3 34.8 35.2 38.6 40.6
Debt interest 2.4 2.5 2.5 2.6 2.7
NPS benefits 17.2 17.1 17.5 18.2 19.1
Public works 4.0 3.6 3.4 3.4 4.4
Other 13.7 11.6 11.9 14.4 14.4

Surplus/Deficit −6.1 −1.0 −3.0 −5.0 −9.6
Nominal GDP 503.2 510.9 515.8 497.7 483.0

Source: Ministry of Finance and Morgan Stanley.

institutions. Its guideline is to invest about 70% of its funds in domestic
government bonds. For public employees, the role of this second pillar is
assumed by mutual-aid pension programs, which are funded individually by
the government.

The Government The overall indebtedness of the Japanese government,
relative to GDP, is higher than that of any other G20 country. Total gross
government debt, securitized and not securitized, including the debt of re-
gional governments, the National Pension System (NPS), and semi-public
administrative corporations, reached �968 trillion at the end of 2008, 188%
of GDP. Public finances have deteriorated consistently since the beginning
of the 1990s, explained by a shrinking tax base and increasing expenditure
levels. Table O.16 details government revenues and expenditures over the
past several years and the resulting annual deficits. Note that over half of
government expenditures are used to service the debt and pay NPS benefits.

As of March 2009, the outstanding amount of JGBs was �798 trillion.
The next subsection will detail the ownership distribution of JGBs, but note
here that almost half of all JGBs are owned by public or semi-public institu-
tions. This public debt in public hands should be included in the total debt
outstanding as it supports third-party claims (e.g., private deposits in the
postal savings system or premia paid into Kampo life insurance policies).51

51 By contrast, the BoJ’s holdings of JGBs, resulting from its open market purchases,
should not be included in total debt outstanding.
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The future of Japan’s public finances and the sustainability of its
promised benefits seem bleak given the problems described in this overview:
a large amount of government debt relative to GDP; endemic budget deficits;
consistently lackluster economic performance; demographic trends toward
an aging society; and a fall in the household savings rate. Providing some
room for maneuver, however, is the fact that the tax and social security
burden in Japan is lower than that of developed European economies like
the UK, Germany, and France. Also, Japan runs a positive current account
balance and has accumulated a net position of �258 trillion of foreign as-
sets, which is more than half of GDP. In addition to providing resources
to improve its fiscal position, this holding of foreign assets hedges Japan
against an underperforming domestic economy: about half of the income
from foreign assets is interest from bonds purchased abroad, while some-
what more than half of payments to foreigners is a return on direct business
investment by foreigners.

The Bank of Japan and Monetary Pol icy Before 2001 the BoJ conducted
monetary policy by choosing a target for the Tokyo Overnight Average Rate
(TONAR) consistent with its macroeconomic objectives, where TONAR is
the daily average rate on uncollateralized borrowing and lending of reserves
held at the BoJ, analogous to the Fed Funds rate in the United States and
the EONIA rate in Europe. After having chosen a target level for TONAR,
the BoJ pushed the call rate to that target mostly by trading short-term
funds to supply or drain cash from bank reserve accounts. The bulk of these
operations were conducted with repo (Gensaki) with an average maturity
of about seven days, as well as with indirect loans against collateral.

From 2001 to 2006, in an attempt to stimulate the economy by inject-
ing large amounts of liquidity into financial markets, the BoJ embarked on
a program of quantitative easing. The strategy was to expand significantly
the reserves that banks have at the BoJ in the hope that these reserves would
support loan volumes to businesses that would, in turn, stimulate economic
activity. The BoJ used two tactics to implement this strategy. First, the BoJ
began using 25-day term repos to inject liquidity, thus expanding the set of
participants willing to borrow money from the BoJ. Second, the BoJ began
to conduct monthly auctions (Rinban) through which it bought JGBs of ma-
turities greater than two years. This allowed the bank to put large amounts
of cash into the hands of the public in exchange for bonds over a much
longer term than achievable through repo markets. The quantitative easing
experiment, however, was not particularly successful. First, banks chose to
keep the extra liquidity rather than aggressively expand their extensions of
credit. Second, the corporate sector persisted in deleveraging from the very
high indebtedness levels of the early 1990s.

After 2006 the BoJ suspended its use of 25-day repos and returned to
calibrating TONAR through the more traditional use of short-term repos
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and indirect, collateralized loans. However, since the 2007–2009 financial
crisis, the BoJ, like the ECB, has been using longer-term repo, with the BoJ
conducting a significant portion of its operations with 3- and 6-month repos.

The Rinban has continued beyond the quantitative easing period, with
auctions now held four times per month across all JGB maturities.

The Markets

The products used for most investments in Japan are relatively simple: de-
posits, short-term money market products, and JGBs. Swap markets are de-
veloped as well, but activity there derives from the risk management needs of
investors in JGBs. With respect to money markets, overnight, uncollateral-
ized funds among banks trade in a call market, and overnight, collateralized
funds trade in the larger repo (Gensaki) market in which trust banks, and to
a lesser extent regional banks, have been the traditional suppliers of funds.
Money markets in Japan also include, in order of importance, government
bills, bank certificates of deposit, and commercial paper.

Japanese Government Bonds JGBs are center stage of fixed income mar-
kets in Japan. Table O.17 shows the distribution of ownership of JGBs. The
amount of JGBs owned by public or semi-public institutions has already
been noted. But it is remarkable that about 94% of JGBs are held by do-
mestic investors, a proportion much higher than that of any other major
government debt market and, for that matter, of Japanese equity markets

TABLE O.17 Distribution of Ownership
of JGBs in 2009

Share

Public sector 55.6%
Japan Post Bank 23.7%
Post Insurance (Kampo) 10.0%
Public Pensions 11.6%
Bank of Japan 7.7%
Mutual Aid Pensions 2.6%
Other 0.3%

Private sector 44.4%
Banks 12.4%
Life Insurance 6.5%
Foreign 6.0%
Households 5.2%
Other 14.3%

Source: Barclays Bank.
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TABLE O.18 JGBs Maturity Structure
as of July 2010

Maturity Outstanding Percent
Years � Trillion %

< 2 190 27
2–5 183 26
5–10 191 28
>10 130 19

Source: Bloomberg.

in which foreign investors have very relevant stakes.52 Strong domestic de-
mand for JGBs is the result of many factors discussed earlier, including the
life-cycle of Japanese households, the institutional structure of savings and
investment, and financial regulation.

Low foreign ownership of JGBs does not correspond to low trading
participation: foreigner trading has accounted for between 15% and 25%
of JGB trading volume over the last decade and for between 25% and 40%
of JGB futures trading volume. Domestic traders of JGBs include many insti-
tutions described in the previous subsection, with the most important being
public sector entities, regional and city banks, life insurance companies, and
pension funds. Putting the participation of these institutions in perspective,
city and trust banks account for about four times the trading volume as that
of regional banks and life insurance companies.53

JGBs are currently issued in six categories: short-term (6-month and
1-year bills); medium-term (2-year and 5-year bonds, with tickers JN and
JS, respectively); long-term (10-year bonds, ticker JB); super-long term (20-
year bonds, JL, 30-year bonds, JX, 40-year bonds, JU, and the recently
discontinued 15-year floating rate note, JF); JGBs for individual investors
(5-year and 10-year); and inflation-indexed bonds (10-year, JBI).54 The av-
erage maturity of all outstanding JGB issues is about 5.8 years and Table
O.18 shows that outstanding volumes are relatively evenly spread across
maturities. The resulting percentage of volume in the short end is high rel-
ative to Europe (see Table O.12) but low relative to the United States (see
Table O.2).

JGB 15-year floaters pay a coupon equal to the greater of zero and the
difference between 1) the average yield of the 10-year bond at the most

52 In equity markets, overseas investors absorbed approximately all net selling of
stocks by domestic banks and insurers from 2000 to 2010. Source: Tokyo Stock
Exchange.
53 Source: Japan Securities Dealers Association (JSDA).
54 Source: Ministry of Finance.
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recent, prior auction; and 2) a fixed margin set at the auction of the floater.
Floating rate notes were issued with the intention of enabling large, insti-
tutional investors in JGBs to hedge against rising yields. Currently, floaters
account for about 6% of total JGBs outstanding.

The government started issuing inflation-linked bonds (JGBi) with a
maturity of 10 years in March 2004 and stopped issuing them, buying them
back as well, in August 2008. Notional outstanding reached a maximum of
about �10 trillion, but, as of 2010, is at a relatively small �4.8 trillion. The
structure of the JGBi is like that of TIPS, discussed in the section on U.S.
markets, with the important difference that JGBi principal is not floored at
the initial amount. As a result, the nominal return to a JGBi investor can be
negative in a deflationary environment.

Asset-Backed Securit ies While there are markets for asset-backed secu-
rities in Japan, they are of much less importance than comparable markets
in western economies. The market for residential, mortgage-backed secu-
rities has grown the most, but is still relatively small and most mortgages
remain on bank balance sheets. A good part of the explanation for this lies
in the residential mortgage market itself. First, residential mortgages consti-
tute only about 30% of GDP, which is substantially less than a comparable
proportion of about 80% in the United States. Second, the residential mort-
gage market in Japan has not grown for the last two decades due to the
lackluster performance of the real estate market. But despite this backdrop,
securitization of residential real estate has grown very rapidly since 2005
and is approaching a �200 trillion cumulative total. This growth is in good
part due to the insistence of the government that the Government Home
Loan Corporation arrange securitizations rather than make loans directly.
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PART

One
The Relative Pricing of

Securities with Fixed
Cash Flows

C onsumers and businesses are willing to pay more than $1 in the future in
exchange for $1 today. A newly independent adult borrows money to buy

a car today, agreeing to repay the loan price plus interest over time; a family
takes a mortgage to purchase a new home today, assuming the obligation
to make principal and interest payments for years; and a business, which
believes it can transform $1 of investment into $1.10 or $1.20, chooses to
take on debt and pay the prevailing market rate of interest. At the same
time, this willingness of potential borrowers to pay interest attracts lenders
and investors to make consumer loans, mortgage loans, and business loans.
This fundamental fact of financial markets, that receiving $1 today is better
than receiving $1 in the future, or, equivalently, that borrowers pay lenders
for the use of their funds, is known as the time value of money.

Borrowers and lenders meet in fixed income markets to trade funds
across time. They do so in very many forms: from one-month U.S. Treasury
bills that are almost certain to return principal and interest to the long-term
debt of companies that have already filed for bankruptcy; from assets with
a simple dependence on rates, like Eurodollar futures, to callable bonds and
swaptions; from assets whose value depends only on rates, like interest rate
swaps, to mortgage-backed securities or inflation-protected securities; and
from fully taxable private-sector debt to partially or fully tax-exempt issues
of governments and municipalities.

47



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c01 JWBT539-Tuckman July 20, 2011 11:47 Printer: Courier Westford

48 THE RELATIVE PRICING OF SECURITIES WITH FIXED CASH FLOWS

To cope with the challenge of pricing the vast number of existing and
potential fixed income securities, market professionals often focus on a lim-
ited set of benchmark securities, for which prices are most consistently and
reliably available, and then price all similar assets relative to those bench-
marks. Sometimes, as when pricing a UK government bond in terms of other
UK government bonds, or when pricing an EUR swap in terms of other EUR
swaps, relative prices can be determined rigorously and for the most part
accurately by arbitrage pricing. This methodology is developed in Chapter 1,
where it is also shown that discounting, i.e., calculating present values with
discount factors, is really just shorthand for arbitrage pricing.

While discount factors in many ways solve the relative pricing prob-
lem, they are not very intuitive for understanding the time value of money
that is embedded in market prices. For this purpose, markets rely on spot,
forward, and par rates. Chapter 2 introduces these rates and derives the re-
lationships linking them to each other and to discount factors. The trading
case study in Chapter 2, inspired by an abnormally shaped EUR forward
swap curve, illustrates how fixed income analytics, market technicals (due
to institutional factors described in the Overview), and a macroeconomic
setting all contribute to a trade idea.

While the interest rates of Chapter 2 provide excellent intuition with re-
spect to the time value of money embedded in market prices, other quantities
provide intuition with respect to the returns offered by individual securities.
The first half of Chapter 3 defines returns, spreads, and yields. Spreads de-
scribe the pricing of particular securities relative to benchmark government
bond or swap curves and yields are the widely used, although somtimes mis-
understood, internal rates of return on individual securities. The second half
of Chapter 3 breaks down a security’s return into several component parts.
First, how does the security perform if rates and spreads stay the same?
Second, how does the security perform if rates change? Third, how does the
security perform if spreads change?

Given the central role of benchmarks in Part One, it is worth describing
which securities are used as benchmarks and why. Until relatively recently,
benchmark curves in U.S. and Japanese markets were derived from the
historically most liquid markets, that is, from government bond markets.
Recently, however, the benchmark has shifted significantly to swap curves.
European markets, on the other hand, have for some time relied predom-
inantly on interest rate swap markets for benchmarks because their swap
markets have been, on average across the maturity spectrum, more liquid
than government bond markets.

It is not hard to understand why government bond and interest rate
swap markets are the preferred choices for use as benchmarks. First, they
are the most liquid markets, consistently providing prices at which market
participants can execute trades in reasonable size. Second, they incorporate
information about interest rates that is common to all fixed income markets.
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The value of a corporate bond, for example, depends on the interest rate
information embedded in the government bond or swap curve in addition
to depending on the credit characteristics of the individual corporate issuer.

But what about the choice between government bond and swap curves
as benchmarks? Historically, government bonds were the only choice be-
cause swaps did not exist until the early 1980s and it took some time for
their liquidity to become adequate. But bond markets have a significant
disadvantage when used as a benchmark, namely that an individual bond
issue is not a commodity in the sense of being a fungible collection of cash
flows: bond issues are in fixed supply and have idiosyncratic characteristics.
The best-known examples of nonfungibility are on-the-run U.S. Treasury
bonds that trade at a premium relative to other government bonds because
of their superior liquidity and financing characteristics. Put another way,
pricing with a curve that is constructed from “similar” bonds, which are
not on-the-run bonds, will underestimate the prevailing prices of on-the-
runs. By contrast, an interest rate swap is really a commodity, that is, a
fungible collection of cash flows. A 10-year, 4% interest rate swap cannot
possibly be in short supply because any willing buyer and seller can create
a new contract with exactly those terms. In fact, market practice bears out
this distinction between bonds and swaps. While bond traders set prices for
each and every bond they trade (although they certainly may use heuristics
relating various prices to each other or to related futures markets), swap
traders strike a curve that is then used to price their entire book of swaps
automatically.

In short, global fixed income markets currently use interest rate swaps
as benchmarks or base curves and build other curves from spreads or spread
curves on top of swap curves. Even in the liquid U.S. Treasury market,
strategists assess relative value using spreads of individual Treasury issues
against the USD swap curve.
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CHAPTER 1
Prices, Discount Factors,

and Arbitrage

T his chapter begins by introducing the cash flows of fixed-rate, government
coupon bonds. It shows that prices of these bonds can be used to extract

discount factors, which are the market prices of one unit of currency to be
received on various dates in the future.

Relying on a principle known as the law of one price, discount factors
extracted from a particular set of bonds can be used to price other bonds,
outside the original set. A more complex but more convincing relative pricing
methodology, known as arbitrage pricing, turns out to be mathematically
identical to pricing with discount factors. Hence, discounting can rightly be
used and regarded as shorthand for arbitrage pricing.

The application of this chapter uses the U.S. Treasury coupon bond and
Separate Trading of Registered Interest and Principal of Securities (STRIPS)
markets to illustrate that bonds are not commodities, meaning that their
prices reflect individual characteristics other than their scheduled cash flows.
This idiosyncratic component of bond valuation implies that the predictions
of the simplest relative pricing methodologies only approximate the complex
reality of bond markets.

The chapter concludes with a discussion of day-counts and accrued
interest, pricing conventions used throughout fixed income markets and,
consequently, throughout this book.

THE CASH FLOWS FROM FIXED-RATE
GOVERNMENT COUPON BONDS

The cash flows from fixed-rate, government coupon bonds are defined by
face amount, principal amount, or par value; coupon rate; and maturity date.
For example, in May 2010 the U.S. Treasury sold a bond with a coupon rate
of 2 1

8 % and a maturity date of May 31, 2015. Purchasing $1 million face
amount of these “2 1

8 s of May 31, 2015,” entitles the buyer to the schedule of
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TABLE 1.1 Cash Flows of the U.S. 2 1
8 s of

May 31, 2015

Coupon Principal
Date Payment Payment

11/30/2010 $10,625
5/31/2011 $10,625
11/30/2011 $10,625
5/31/2012 $10,625
11/30/2012 $10,625
5/31/2013 $10,625
11/30/2013 $10,625
5/31/2014 $10,625
11/30/2014 $10,625
5/31/2015 $10,625 $1,000,000

payments in Table 1.1. The Treasury promises to make a coupon payment
every six months equal to half the note’s annual coupon rate of 2 1

8 % times
the face amount, i.e., 1

2 × 2 1
8 % × $1,000,000, or $10,625. Then, on the

maturity date of May 31, 2015, in addition to the coupon payment on that
date, the Treasury promises to pay the bond’s face amount of $1,000,000.
One fact worth mentioning, although too small a detail to receive much
attention in this book, is that scheduled payments that do not fall on a
business day are made on the following business day. For example, the
payments of the 2 1

8 s scheduled for Sunday, May 31, 2015, would be made
on Monday, June 1, 2015.

For concreteness and continuity of exposition this chapter restricts at-
tention to U.S. Treasury bonds. But the analytics of the chapter apply easily
to bonds issued by other countries because the cash flows of all fixed rate
government coupon bonds are qualitatively similar. The most significant
difference across issues is the frequency of coupon payments, which can
be semiannual or annual; government bond issues in France and Germany
make annual coupon payments, while those in Italy, Japan, and the UK
make semiannual payments.

Returning to the U.S. Treasury market, then, Table 1.2 reports the
coupons and maturity dates of selected U.S. Treasury bonds, along with
their prices as of the close of business on Friday, May 28, 2010. Almost all
U.S. Treasury trades settle T + 1, which means that the exchange of bonds
for cash happens one business day after the trade date. In this case, the next
business day was Tuesday, June 1, 2010.

The prices given in Table 1.2 are mid-market, full (or invoice) prices per
100 face amount. A mid-market price is an average of a lower bid price, at
which traders stand ready to buy a bond, and a higher ask price, at which
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TABLE 1.2 Selected U.S. Treasury Bond
Prices as of May 28, 2010

Coupon Maturity Price

1 1
4 % 11/30/2010 100.550

4 7
8 % 5/31/2011 104.513

4 1
2 % 11/30/2011 105.856

4 3
4 % 5/31/2012 107.966

3 3
8 % 11/30/2012 105.869

3 1
2 % 5/31/2013 106.760

2% 11/30/2013 101.552

2 1
4 % 5/31/2014 101.936

2 1
8 % 11/30/2014 100.834

traders stand ready to sell a bond. A full price is the total amount a buyer
pays for a bond, which is the sum of the flat or quoted price of the bond
and accrued interest. This division of full price will be explained later in
this chapter. In any case, to take an example from Table 1.2, purchasing
$100,000 face amount of the 3 1

2 s of May 31, 2013, costs a total of $106,760.
The bonds in Table 1.2 were selected from the broader list of U.S.

Treasuries because they all mature and make payments on the same cycle,
in this case at the end of May and November each year. This means, for
example, that all of the bonds make a payment on November 30, 2010,
and, therefore, that all their prices incorporate information about the value
of a dollar to be received on that date. Similarly, all of the bonds apart
from the 1 1

4 s of November 30, 2010, which will have already matured,
make a payment on May 31, 2011, and their prices incorporate information
about the value of a dollar to be received on that date, etc. The next section
describes how to extract information about the value of a dollar to be
received on each of the payment dates in the May–November cycle from the
prices in Table 1.2.

DISCOUNT FACTORS

The discount factor for a particular term gives the value today, or the present
value of one unit of currency to be received at the end of that term. Denote
the discount factor for t years by d (t). Then, for example, if d (.5) equals
.99925, the present value of $1 to be received in six months is 99.925
cents. Another security, which pays $1,050,000 in six months, would have
a present value of .99925 × $1,050,000 or $1,049,213.
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Since Treasury bonds promise future cash flows, discount factors can be
extracted from Treasury bond prices. In fact, each of the rows of Table 1.2
can be used to write one equation that relates prices to discount factors. The
equation from the 1 1

4 s of November 30, 2010, is

100.550 =
(

100 + 1 1
4

2

)
d (.5) (1.1)

In words, equation (1.1) says that the price of the bond equals the present
value of its future cash flows, namely its principal plus coupon payment, all
times the discount factor for funds to be received in six months. Solving
reveals that d (.5) equals .99925.

By the same reasoning, the equations relating prices to discount factors
can be written for the other bonds listed in Table 1.2. The next two of these
equations are

104.513 = 4 7
8

2
× d (.5) +

(
100 + 4 7

8

2

)
d (1) (1.2)

105.856 = 4 1
2

2
× d (.5) + 4 1

2

2
× d (1) +

(
100 + 4 1

2

2

)
d (1.5) (1.3)

Given the solution for d (.5) from equation (1.1), equation (1.2) can
be solved for d (1). Then, given the solutions for d (.5) and d (1), equation
(1.3) can be solved for d (1.5). Continuing in this fashion through the rows
of Table 1.2 generates the discount factors, in six-month intervals, out to
four and one-half years, which are reported in Table 1.3. Note how these

TABLE 1.3 Discount Factors from
U.S. Treasury Note and Bond Prices
as of May 28, 2010

Discount
Term Factor

11/30/2010 .99925
5/31/2011 .99648
11/30/2011 .99135
5/31/2012 .98532
11/30/2012 .97520
5/31/2013 .96414
11/30/2013 .94693
5/31/2014 .93172
11/30/2014 .91584
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discount factors, falling with term, reflect the time value of money: the longer
a payment of $1 is delayed, the less it is worth today.

THE LAW OF ONE PRICE

Another U.S. Treasury bond issue, one not included in the set of base bonds
in Table 1.2, is the 3

4 s of November 30, 2011. How should this bond be
priced? A natural answer is to apply the discount factors of Table 1.3 to
this bond’s cash flows. After all, the base bonds are all U.S. Treasury bonds
and the value to investors of receiving $1 from a Treasury on some future
date should not depend very much on which particular bond paid that $1.
This reasoning is an application of the law of one price: absent confounding
factors (e.g., liquidity, financing, taxes, credit risk), identical sets of cash
flows should sell for the same price.

According to the law of one price, the price of the 3
4 s of November 30,

2011 should be

.375 × .99925 + .375 × .99648 + 100.375 × .99135 = 100.255 (1.4)

where each cash flow is multiplied by the discount factor from Table 1.3 that
corresponds to that cash flow’s payment date. As it turns out, the market
price of this bond is 100.190, close to, but not equal to, the prediction of
100.255 in equation (1.4).

Table 1.4 compares the market prices of three bonds as of May 28,
2010, to their present values (PVs), i.e., to their prices as predicted by the
law of one price. The differences range from −2.8 cents to +6.5 cents per
100 face value, indicating that the law of one price describes the pricing of
these bonds relatively well but not perfectly.

According to the last row of Table 1.4, the 7
8 s of May 31, 2011,

trade 2.8 cents rich to the base bonds, i.e., its market price is high rel-
ative to the discount factors in Table 1.3. In the same sense, the 3

4 s of
November 30, 2011, and the 3

4 s of May 31, 2012, trade cheap. In fact,
were these price discrepancies sufficiently large relative to transaction costs,
an arbitrageur might consider trying to profit by selling the rich 7

8 s and

TABLE 1.4 Testing the Law of One Price for Three
U.S. Treasury Notes as of May 28, 2010

Bond 7
8 s 5/31/11 3

4 s 11/30/11 3
4 s 5/31/12

PV 100.521 100.255 100.022
Price 100.549 100.190 99.963
PV−Price −.028 .065 .059
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simultaneously buying some combination of the base bonds; by buying ei-
ther of the cheap bonds and simultaneously selling base bonds; or by selling
the rich 7

8 s and buying both of the cheap bonds in the table. Trades of this
type, arising from deviations from the law of one price, are the subject
of the next section.

ARBITRAGE AND THE LAW OF ONE PRICE

While the law of one price is intuitively reasonable, its justification rests on
a stronger foundation. It turns out that a deviation from the law of one
price implies the existence of an arbitrage opportunity, that is, a trade that
generates profits without any chance of losing money.1 But since arbitrageurs
would rush en masse to do any such trade, market prices would quickly
adjust to rule out any such opportunity. Hence, arbitrage activity can be
expected to do away with significant deviations from the law of one price.
And it is for this reason that the law of one price usually describes security
prices quite well.

To make this argument more concrete, the discussion turns to an arbi-
trage trade based on the results of Table 1.4, which showed that the 3

4 s of
November 30, 2011, are cheap relative to the discount factors in Table 1.3
or, equivalently, to the bonds listed in Table 1.2. The trade is to purchase
the 3

4 s of November 30, 2011, and simultaneously sell or short2 a portfolio
of bonds from Table 1.2 that replicates the cash flows of the 3

4 s. Table 1.5
describes this replicating portfolio and the arbitrage trade.

Columns (2) to (4) of Table 1.5 correspond to the three bonds chosen
from Table 1.2 to construct the replicating portfolio: the 1 1

4 s of November
30, 2010; the 4 7

8 s of May 31, 2011; and the 4 1
2 s of November 30, 2011.

Row (iii) gives the face amount of each bond in the replicating portfolio,
so that this portfolio is long 98.166 face amount of the 4 1

2 s, short 1.790
of the 4 7

8 s, and short 1.779 of the 1 1
4 s. Rows (iv) through (vi) show the

cash flows from those face amounts of each bond. For example, 98.166
face amount of the 4 1

2 s, which pay a coupon of 2.25% on May 31, 2011,
generates a cash flow of 98.166 × 2.25% or 2.209 on that date. Similarly,
−1.779 of the 1 1

4 s, which pay coupon and principal totalling 100 + 1.25
2 or

1Market participants often use the term arbitrage more broadly to encompass trades
that could conceivably lose money, but promise large profits relative to the risks
borne.
2To short a security means to sell a security one does not own. The mechanics of
short selling bonds will be discussed in Chapter 12. For now, assume that a trader
shorting a bond receives the price of the bond and is obliged to pay all its coupon
and principal cash flows.
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TABLE 1.5 The Replicating Portfolio of the 3
4 s of November 30, 2011, with Prices

as of May 28, 2010

(1) (2) (3) (4) (5) (6)

(i) Coupon 1 1
4 s 4 7

8 s 4 1
2 s 3

4 s

(ii) Maturity 11/30/10 5/31/11 11/30/11 Portfolio 11/30/11
(iii) Face Amount −1.779 −1.790 98.166 100

Date Cash Flows

(iv) 11/30/10 −1.790 −.044 2.209 .375 .375
(v) 5/31/11 −1.834 2.209 .375 .375

(vi) 11/30/11 100.375 100.375 100.375

(vii) Price 100.550 104.513 105.856 100.190
(viii) Cost −1.789 −1.871 103.915 100.255 100.190
(ix) Net Proceeds .065

100.625 per 100 face value on November 30, 2010, produces a cash flow
of −1.779 × 100.625% or −1.790 on that date. Row (vii) gives the price of
each bond per 100 face amount, simply copied from Table 1.2. Row (viii)
gives the initial cost of purchasing the indicated face amount of each bond.
So, for example, the “cost” of “purchasing” −1.790 face amount of the 4 7

8 s
is −1.790 × 104.513% or −1.871. Said more naturally, the proceeds from
selling 1.790 face amount of the 4 7

8 s are 1.871.
Column (5) of Table 1.5 sums columns (2) through (4) to obtain the cash

flows and cost of the replicating portfolio. Rows (iv) through (vi) of column
(5) confirm that the cash flows of the replicating portfolio do indeed match
the cash flows of 100 face amount of the 3

4 s of November 30, 2011, given in
the same rows of column (6). Note that most of the work of replicating the
3
4 s of November 30, 2011, is accomplished by the 4 1

2 s maturing on the same
date. The other two bonds in the replicating portfolio are used for minor
adjustments to the cash flows in six months and one year. Appendix A in
this chapter shows how to derive the face amounts of the bonds in this or
any such replicating portfolio.

With the construction of the replicating portfolio completed, the discus-
sion returns to the arbitrage trade. According to row (viii) of Table 1.5 , an
arbitrageur can buy 100 face amount of the 3

4 s of November 30, 2011, for
100.190, sell the replicating portfolio for 100.255, pocket the difference or
“net proceeds” of 6.5 cents, shown in row (ix), and not owe anything on
any future date. And while a 6.5-cent profit may seem small, the trade can
be scaled up: for $500 million face of the 3

4 s, which would not be an abnor-
mally large position, the riskless profit increases to $500,000,000 × .065%
or $325,000.
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As stated at the start of this section, if a riskless and profitable trade
like the one just described were really available, arbitrageurs would rush
to do the trade and, in so doing, force prices to relative levels that admit
no arbitrage opportunities. More specifically, arbitrageurs would drive the
prices of the 3

4 s and of the replicating portfolio together until the two were
equal.

The crucial link between arbitrage and the law of one price can now
be explained. The total cost of the replicating portfolio, 100.255, given
in column (5), row (viii) of Table 1.5, exactly equals the present value of
the 3

4 s of November 30, 2011, computed in Table 1.4. In other words,
the law of one price methodology of pricing the 3

4 s (i.e., discounting with
factors derived from the 1 1

4 s, 4 7
8 s, and 4 1

2 s) comes up with exactly the same
value as does the arbitrage pricing methodology (i.e., calculating the value
of portfolio of the 1 1

4 s, 4 7
8 s, and 4 1

2 s that replicates the cash flows of the
3
4 s). This is not a coincidence. In fact, Appendix B in this chapter proves
that these two pricing methodologies are mathematically identical. Hence,
applying the law of one price, i.e., pricing with discount factors, is identical
to relying on the activity of arbitrageurs to eliminate relative mispricings, i.e.,
pricing by arbitrage. Expressed another way, discounting can be justifiably
regarded as shorthand for the more complex and persuasive arbitrage pricing
methodology.

Despite this discussion, of course, the market price of the 3
4 s was quoted

at a level somewhat below the level predicted by the law of one price. This
can be attribtured to one or a combination of the following reasons. First,
there are transaction costs in doing arbitrage trades which could significantly
lower or wipe out any arbitrage profit. In particular, the prices in Table 1.2
are mid-market whereas, in reality, an arbitrageur would have to buy securi-
ties at higher ask prices and sell at lower bid prices. Second, bid-ask spreads
in the financing markets (see Chapter 12), incurred when shorting securities,
might also overwhelm any arbitrage profit. Third, it is only in theory that
U.S. Treasury bonds are commodities, i.e., fungible collections of cash flows.
In reality, bonds have idiosyncratic differences that are recognized by the
market and priced accordingly. And it is this last point that is the subject of
the next section.

APPLICATION: STRIPS AND THE ID IOSYNCRATIC
PRIC ING OF U.S. TREASURY NOTES AND BONDS

STRIPS

In contrast to coupon bonds that make payments every six months, zero
coupon bonds make no payments until maturity. Zero coupon bonds is-
sued by the U.S. Treasury are called STRIPS. For example, $1,000,000
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TABLE 1.6 STRIPS Face Amounts from
1,000,000 Face Amount of the 3 1

2 s of
May 15, 2020

C-STRIP P-STRIP
Date Face Amount Face Amount

11/15/10 $17,500 0
5/15/11 $17,500 0
11/15/11 $17,500 0

...
...

...
5/15/19 $17,500 0
11/15/19 $17,500 0
5/15/20 $17,500 $1,000,000

face amount of STRIPS maturing on May 15, 2020, promises only one
payment: $1,000,000 on that date. STRIPS are created when a particular
coupon bond is delivered to the Treasury in exchange for its coupon and
principal components. Table 1.6 illustrates the stripping of $1,000,000 face
amount of the 3 1

2 s of May 15, 2020, which was issued in May 2010, to
create coupon STRIPS maturing on the 20 coupon payment dates and prin-
cipal STRIPS maturing on the maturity date. Coupon or interest STRIPS are
called TINTs, INTs, or C-STRIPS while principal STRIPS are called TPs,
Ps, or P-STRIPS. Note that the face amount of C-STRIPS on each date is
1/2 × 3.5% × $1,000,000 or $17,500.

The Treasury not only creates STRIPS but retires them as well. For
example, upon delivery of the set of STRIPS in Table 1.6 the Treasury would
reconstitute the $1,000,000 face amount of the 3 1

2 s of May 15, 2020. But in
this context it is crucial to note that C-STRIPS are fungible while P-STRIPS
are not. When reconstituting a bond, any C-STRIPS maturing on a particular
date may be applied toward the coupon payment of that bond on that date.
By contrast, only P-STRIPS that were stripped from a particular bond may
be used to reconstitute the principal payment of that bond.3 This feature of
the STRIPS program implies that P-STRIPS, and not C-STRIPS, inherit the
cheapness or richness of the bonds from which they came, an implication
that will be demonstrated in the following subsection.

STRIPS prices are essentially discount factors. If the price of the
C-STRIPS maturing on May 31, 2015, is 89.494 per 100 face amount,
then the implied discount factor to that date is .89494. With this in

3Making P-STRIPS fungible would not affect either the total or the timing of cash
flows owed by the Treasury, but could change the amounts outstanding of particular
securities.
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F IGURE 1.1 Discount Factors from C-STRIPS Prices as of May 28, 2010

mind, Figure 1.1 graphs the C-STRIPS prices per unit face amount as of
May 28, 2010.

The Id iosyncrat ic Pric ing of U.S. Treasury
Notes and Bonds

If U.S. Treasury bonds were commodities, with each regarded solely as a
particular collection of cash flows, then the price of each would be well ap-
proximated by discounting its cash flows with the C-STRIPS discount factors
of Figure 1.1. If however individual bonds have unique characteristics that
are reflected in pricing, the law of one price would not be as accurate an
approximation. Furthermore, since C-STRIPS are fungible while P-STRIPS
are not, any such pricing idiosyncrasies would manifest themselves as differ-
ences between the prices of P-STRIPS and C-STRIPS of the same maturity.
To this end, Figure 1.2 graphs the differences between the prices of P-STRIPS
and C-STRIPS that mature on the same date as of May 28, 2010. So, for
example, with the price of P-STRIPS and C-STRIPS, both maturing on May
31, 2015, at 89.865 and 89.494, respectively, Figure 1.2 records the dif-
ference for May 31, 2015, as 89.865 − 89.494 or .371. Note that Figure
1.2 shows two sets of P-STRIPS prices, those P-STRIPS originating from
Treasury bonds and those originating from Treasury notes.4

Inspection of Figure 1.2 shows that there are indeed significant pricing
differences between P-STRIPS and C-STRIPS that mature on the same date.
This does not necessarily imply the existence of arbitrage opportunities, as
discussed at the end of the previous section. However, the results do suggest

4The difference between notes and bonds is of historical interest only; see “Fixed
Income Markets in the United States, Securities and Other Assets” in the Overview.
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F IGURE 1.2 Differences between the Prices of P-STRIPS and C-STRIPS
Maturing on the Same Date per 100 Face Amount as of May 28, 2010

that bonds have idiosyncratic pricing differences and that these differences
are inherited by their respective P-STRIPS. Of particular interest, for ex-
ample, is the largest price difference in the figure, the 2.16 price difference
between the P-STRIPS and C-STRIPS maturing on May 15, 2020. These
P-STRIPS come from the most recently sold or on-the-run 10-year note, an
issue which, as will be discussed in Chapter 12, traditionally trades rich to
other bonds because of its superior liquidity and financing characteristics. In
any case, to determine whether idiosyncratic bond characteristics are indeed
inherited by P-STRIPS, Table 1.7 analyzes the pricing of selected U.S. Trea-
sury coupon securities in terms of STRIPS prices. The particular securities
selected are those on the mid-month, May-November cycle with 10 or more
years to maturity as of May 2010.

Columns (1) to (3) of Table 1.7 give the coupon, maturity, and market
price of each bond. Column (4) computes a price for each bond by discount-
ing all of its cash flows using the C-STRIPS prices in Figure 1.1, and column
(5) gives the difference between the market price and that computed price.
By the simplest application of the law of one price, these computed prices
should be a good approximation of market prices. There are, however, some
very significant discrepancies. The approximation misses the price of the 3 1

2 s
of May 15, 2020, the 10-year on-the-run security, by a very large 2.076; the
5s of May 15, 2037, by .924; and the 6 1

4 s of 5/15/30 by .708.
Column (6) of Table 1.7 computes the price of each bond by discounting

its coupon payments with C-STRIPS prices and its principal payment with
the P-STRIPS of that bond. Column (7) gives the difference between the
market price and that computed price. To the extent that P-STRIPS prices
inherit pricing idiosyncrasies of their respective bonds, these computed prices
should be better approximations to market prices than the prices computed
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TABLE 1.7 Market Prices Compared with Pricing Using C-STRIPS and with
Pricing Using C-STRIPS for Coupon Payments and the Respective P-STRIPS for
Principal Payments

(1) (2) (3) (4) (5) (6) (7)
Coupon Maturity Market C- Error C- and P- Error

Price Pricing Pricing

3 1
2 5/15/20 101.896 99.820 2.076 101.982 −.086

8 3
4 5/15/20 146.076 145.738 .338 146.070 .006

8 1
8 5/15/21 142.438 142.357 .080 142.407 .031

8 11/15/21 141.916 141.750 .167 141.980 −.063

7 5
8 11/15/22 139.696 139.545 .151 139.805 −.109

7 1
2 11/15/24 140.971 140.694 .277 141.059 −.087

6 1
2 11/15/26 131.582 130.894 .687 131.716 −.134

6 1
8 11/15/27 127.220 126.643 .578 127.291 −.070

5 1
4 11/15/28 116.118 115.456 .661 116.175 −.058

6 1
4 5/15/30 130.523 129.815 .708 130.639 −.116

5 5/15/37 113.840 112.916 .924 113.943 −.102

4 1
2 5/15/38 105.114 104.625 .490 105.214 −.100

4 1
4 5/1539 100.681 100.425 .256 100.764 −.083

4 3
8 11/15/39 102.780 102.638 .143 102.905 −.124

4 3
8 5/15/40 102.999 102.308 .691 102.969 .030

using C-STRIPS prices alone. And, in fact, this is the case. Comparing the
absolute values of the two error columns reveals that the approximation in
column (6) is better than the approximation in column (4) for every bond
in the table.

In conclusion, then, individual Treasury bonds have idiosyncratic char-
acteristics that are reflected in market prices. Furthermore, since P-STRIPS
are not fungible across bonds, their prices inherit the idiosyncratic pricing
of their respective bond issues.

ACCRUED INTEREST

This section describes the useful market practice of separating the full price
of a bond, which is the price paid by a buyer to a seller, into two parts: a
quoted or flat price, which is the price that appears on trading screens and
is used when negotiating transactions; and accrued interest. The full and
quoted prices are also known as the dirty and clean prices, respectively.
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Def in i t ion

To make the concepts concrete, consider an investor who purchases $10,000
face amount of the U.S. Treasury 3 5

8 s of August 15, 2019, for settlement on
June 1, 2010. The bond made a coupon payment of 1

2 × 3 5
8 % × $10,000 or

$181.25 on February 15, 2010, and will make its next coupon payment of
$181.25 on August 15, 2010. See the time line in Figure 1.3.

Assuming the purchaser holds the bond through the next coupon date,
the purchaser will collect the coupon on that date. But it can be argued
that the purchaser is not entitled to the full semiannual coupon payment on
August 15 because, as of that time, the purchaser will have held the bond for
only two and a half months of a six-month coupon period. More precisely,
using what is known as the actual/actual day-count convention, which will
be explained later in this section, and referring again to Figure 1.3, the
purchaser should receive only 75 of 181 days of the coupon payment, that
is, 75

181 × $181.25, or $75.10. The seller of the bond, whose cash was invested
in the bond from February 15 to June 1, should collect the rest of the coupon,
i.e., 106

181 × $181.25, or $106.15. A conceivable institutional arrangment is
for the seller and purchaser to divide the coupon on the payment date, but
this would undersirably require additional arrangements to ensure that this
split of the coupon actually takes place. Consequently, market convention
dictates instead that the purchaser pay the $106.15 of accrued interest to the
seller on the settlement date and that the purchaser keep the entire coupon
of $181.25 on the coupon payment date.

On May 28, 2010, for delivery on June 1, 2010, the flat or quoted
price of the 3 5

8 s was 102-26, meaning 102 + 26
32 or 102.8125. The full or

invoice price of the bond per 100 face amount is defined as the quoted
price plus accrued interest, which, in this case, is 102.8125 + 1.0615 or
103.8740. For this particular trade, of $10,000 face amount, the invoice
price is $10,387.40.

At this point, by the way, it becomes clear why discussion earlier in the
chapter had to make reference to the fact that prices were full prices. When
trading bonds that make coupon payments on May 31, 2010, for settlement
on June 1, 2010, purchasers have to pay one day of accrued interest to sellers.

F IGURE 1.3 Example of Accrued Interest Time Line
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Pric ing Impl icat ions

The present value of a bond’s cash flows should be equated or compared with
its full price, that is, with the amount a purchaser actually pays to purchase
those cash flows. Conceptually, denoting the flat price by p, accrued interest
by AI, the present value of the cash flows by PV, and the full price, as
before, by P,

P = p + AI = PV (1.5)

Equation (1.5) reveals an important point about accrued interest: the
particular market convention used in calculating accrued interest does not
really matter. Say, for example, that everyone recognizes that the convention
in place is too generous to the seller because, instead of being made to wait
for a share of the interest until the next coupon date, the seller receives that
share at settlement. In that case, by equation (1.5), the flat price would adjust
downward to mitigate this advantage. Put another way, the only quantity
that matters is the invoice price, which determines the amount of money
that changes hands.

Having made this argument, why is the accrued interest convention
useful in practice? The answer is told in Figure 1.4, which draws the full
and flat prices of the 3 5

8 s of August 15, 2019, from February 15, 2010, to
September 15, 2010, under several assumptions, with the most important
being that 1) the discount function does not change, i.e., d (t) does not
change, where t is the number of days from settlement; and 2) the flat price of
the bond for settlement on June 1 is 102.8125. In words, then, Figure 1.4 says
that the full price changes dramatically over time even when the market is

102.0
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8/15/20105/16/20102/15/2010
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F IGURE 1.4 Full and Flat Prices for the 3 5
8 s of August 15, 2019, Over

Time with a Constant Discount Function
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unchanged, including a discontinuous jump on coupon payment dates, while
the flat price changes only gradually over time. Therefore, when trading
bonds day to day, it is more intuitive to track flat prices and negotiate
transactions in those terms.

The shapes of the price functions in Figure 1.4 can be understood as
follows. Within a coupon period, the full price of the bond, which is just the
present value of its cash flows, increases over time as the bond’s payments
draw near. But from an instant before the coupon payment date to an instant
after, the full price falls by the coupon payment: the coupon is included in the
present value of the remaining cash flows at the instant before the payment,
but not at the instant after. The time pattern of the flat price, supposing
that prevailing interest rates do not change, will be discussed in Chapter 3.
Basically, however, the flat price of a bond like the 3 5

8 s, which sells for more
than its face value, will trend down to its value at maturity, i.e., par.

Day-Count Convent ions

Accrued interest equals the coupon times the fraction of the coupon period
from the previous coupon payment date to the settlement date. For the
3 5

8 s, as for most government bonds, this fraction is calculated by dividing
the actual number of days since the previous coupon date by the actual
number of days in the coupon period. Hence the term “actual/actual” for
this day-count convention.

Other day-count conventions, however, are applied in other markets.
Two of the most common are actual/360 and 30/360. The actual/360 con-
vention divides the actual number of days between two dates by 360, and
is commonly used in money markets, i.e., for short-term, discount (i.e.,
zero coupon) securities, and for the floating legs of interest rate swaps.
The 30/360 convention assumes that there are 30 days in a month when
calculating the difference between two dates and then divides by 360. Ap-
plying this convention, the number of days between June 1 and August 15
is 74 (29 days left in June, 30 days in July, and 15 days in August), as
opposed to the 75 days using an actual day count. The 30/360 convention
is used most commonly for corporate bonds and for the fixed leg of interest
rate swaps.

APPENDIX A: DERIV ING REPLICATING PORTFOLIOS

To replicate the 3
4 s of November 30, 2011, Table 1.5 uses the 1 1

4 s due
November 30, 2010, the 4 7

8 s due May 31, 2011, and the 4 1
2 s due November

30, 2011. Number these bonds from 1 to 3 and let Fi be the face amount
of bond i in the replicating portfolio. Then, the following equations express
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the requirement that the cash flows of the replicating portfolio equal those
of the 3

4 s on each of the three cash flow dates.
For the cash flow on November 30, 2010:

(
100% + 1 1

4 %

2

)
F 1 +

(
4 7

8 %

2

)
F 2 +

(
4 1

2 %

2

)
F 3 =

3
4 %

2
(1.6)

For the cash flow on May 31, 2011:

0 × F 1 +
(

100% + 4 7
8 %

2

)
F 2 +

(
4 1

2 %

2

)
F 3 =

3
4 %

2
(1.7)

And, for the cash flow on November 30, 2011:

0 × F 1 + 0 × F 2 +
(

100% + 4 1
2 %

2

)
F 3 = 100% +

3
4 %

2
(1.8)

Solving equations (1.6), (1.7), and (1.8) for F1, F 2, and F3 gives the
replicating portfolio’s face amounts in Table 1.5. Note that since one bond
matures on each date, these equations can be solved one-at-a-time instead of
simultaneously, i.e., solve (1.8) for F3, then, using that result, solve (1.7) for
F2 , and then, using both results, solve (1.6) for F1. In any case, the results
are as follows:

F 1 = −1.779% (1.9)

F 2 = −1.790% (1.10)

F 3 = 98.166% (1.11)

Replicating portfolios are easier to describe and manipulate using matrix
algebra. To illustrate, equations (1.6) through (1.8) are expressed in matrix
form as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 + 1.25%
2

4.875%
2

4.5%
2

0 1 + 4.875%
2

4.5%
2

0 0 1 + 4.5%
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

F 1

F 2

F 3

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

.75%
2

.75%
2

1 + .75%
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(1.12)
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Note that each column of the leftmost matrix describes the cash flows of
one of the bonds in the replicating portfolio; the elements of the vector
to the right of this matrix are the face amounts of each bond for which
equation (1.12) has to be solved; and the rightmost vector contains the cash
flows of the bond to be replicated. This equation can easily be solved by
pre-multiplying each side by the inverse of the leftmost matrix.

In general then, suppose that the bond to be replicated makes payments
on T dates. Let C be the T × T matrix of cash flows, principal plus interest,
with the T columns representing the T bonds in the replicating portfolio
and the T rows the dates on which those bonds make payments. Let −→F be
the T × 1 vector of face amounts in the replicating portfolio and let −→c be
the vector of cash flows, principal plus interest, of the bond to be replicated.
Then, the replication equation is

C −→F = −→c (1.13)

with solution

−→F = C−1 −→c (1.14)

The only complication is in ensuring that the matrix C does have an
inverse. Essentially, any set of T bonds will do so long as there is at least
one bond in the replicating portfolio making a payment on each of the T
dates. In this case, the T bonds would be said to span the payment dates.
So, for example, T bonds all maturing on the last date would work, but T
bonds all maturing on the second-to-last date would not work: in the latter
case there would be no bond in the replicating portfolio making a payment
on date T.

APPENDIX B: THE EQUIVALENCE OF
THE DISCOUNTING AND ARBITRAGE
PRIC ING APPROACHES

Proposition: Pricing a bond according to either of the following methods
gives the same price:

� Derive a set of discount factors from some set of spanning bonds and
price the bond in question using those discount factors.

� Find the replicating portfolio of the bond in question using that same
set of spanning bonds and calculate the price of the bond as the price
of this portfolio.
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Proof: Continue using the notation introduced at the end of Appendix A.
Also, let −→d be the T × 1 vector of discount factors for each date and let −→P
be the vector of prices of each bond in the replicating portfolio, which is
the same as the vector of prices of each bond used to compute the discount
factors. Generalizing the “Discount Factors” section of this chapter, one can
solve for discount factors using the following equation:

−→d = (
C′)−1 −→P (1.15)

where the ′ denotes the transpose. Then, the price of the bond according to
the first method is c′ −→d . The price according to the second method is −→P ′ −→F
where −→F is as derived in equation ( 1.14).

Hence, the two methods give the same price if

−→c ′ −→d = −→P ′ −→F (1.16)

Expanding the left-hand side of equation (1.16) with (1.15) and the right-
hand side with (1.14),

−→c ′ (C′)−1 −→P = −→P ′C−1 −→c (1.17)

And since both sides of this equation are just numbers, take the transpose
of the left-hand side to show that equation (1.17) is true.
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CHAPTER 2
Spot, Forward, and Par Rates

I t is clear from Chapter 1 that price and cash flows completely describe any
fixed-rate investment. Nevertheless, investors and traders almost always

find it more intuitive to express the time value of money in terms of interest
rates. This chapter, therefore, introduces the most commonly-used interest
rates, which are spot rates, forward rates, and par rates. The relationships
linking these rates to discount factors and to each other reveal why interest
rates are so intuitively appealing.

Given the importance of interest rate swaps as a benchmark of market
interest rates, the illustrative examples and the trading case study of this
chapter are taken from global swap markets. The valuation of interest rates
swaps, however, is not covered by this book until Chapter 16. Until then,
the reader is asked to accept the assertion, made here and justified there,
that interest rates embedded in the swap market can be properly extracted
by treating the fixed side of a swap as if it were a coupon bond and the
floating side as if it were a floating rate bond worth par.1

The trading case study of this chapter begins by highlighting the abnor-
mally downward-sloping forward rates of the EUR swap curve in the second
quarter of 2010. Then, in the context of macroeconomic factors and market
technicals, a trade is constructed to take advantage of this abnormally-
shaped curve.

SIMPLE INTEREST AND COMPOUNDING

Price and cash flows completely describe an investment: a bond might cost
101.980 today and pay 103 in six months; a 100,000,000 1.5-year loan, six
months forward (i.e., a loan made in six months for 1.5 years) might pay

1Chapter 16 explains and justifies this widely-used methodology, but money market
conditions during the financial crisis of 2007–2009 motivate the relatively advanced
material in Chapter 17, which shows when an alternate swap-pricing methodology
is more appropriate.

69
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103,797,070 in two years. But investors and traders often prefer to quote
and think in terms of interest rates, saying that the bond just described
earns 2% and the forward loan 2.5%. Interest rates are more intuitive than
prices because they automatically normalize for the amount invested and,
expressed as annual rates, normalize for the investment horizon as well. So
even though the bond costs 101.98 and matures in six months while the
forward loan invests 100,000,000 for 1.5 years, the interest rates on the
two investments can be sensibly and intuitively compared.

The purpose of this section is to describe the conventions through which
interest rates are quoted given prices and cash flows. The most straightfor-
ward convention is simple interest, in which interest paid is the quoted,
annualized rate times the term of the investment, in years. While the dis-
cussion of day-count conventions in Chapter 1 showed that there are many
ways to define the term of an investment in years, in the context of this chap-
ter semiannual periods are defined to have a term of half a year. Continuing
then with the bond example of the previous paragraph, the six-month bond
earns 2% because

101.98 + 101.98 × 2%
2

= 101.98 ×
(

1 + 2%
2

)
= 103 (2.1)

In words, a simple interest investment is conceptualized as making a single
payment at maturity equal to the initial investment amount plus interest on
that initial investment. In equation (2.1), the initial investment is 101.980
and the interest earned is that 101.98 times 2%

2 , where the latter is one-half
the quoted, annual rate of 2%. The sum of these two is the bond’s total
payment of 103.

The forward loan example introduced at the start of this section has
a term of 1.5 years or of three semiannual periods, requiring an outlay of
100 million in six months for a terminal payment of 103,797,070 in two
years. Under the convention of semiannual compounding, an investment is
conceptualized as follows. First, simple interest is earned within each six-
month period. Second, each six-month period’s total proceeds, that is, both
principal and interest, are reinvested for the subsequent six-month period.
So, in the case of the forward loan earning a rate of 2.5%, the proceeds from
earning simple interest over the first six months are

100,000,000 ×
(

1 + 2.5%
2

)
= 101,250,000 (2.2)

Then, reinvesting this total amount over the subsequent six months at the
same rate produces a total of

101,250,000 ×
(

1 + 2.5%
2

)
= 100,000,000 ×

(
1 + 2.5%

2

)2

= 102,515,625 (2.3)
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To appreciate the impact of compounding, note that an investment of
100 million earning simple interest of 2.5% over a year would be worth
100,000,000 × (1 + 1 × 2.5%) or 102,500,000. The 15,625 difference be-
tween the semiannually compounded proceeds in (2.3) and this simple in-
terest amount is exactly equal to the interest on interest, that is, the inter-
est earned in the second six-month period on the interest earned over the
first six-month period. More specifically, the interest over the first period,
from (2.2), is 1,250,000 and the interest on that amount for six months is
1,250,000 × 2.5%

2 or 15,625.
Returning now to the forward loan, over the last of its three semiannual

periods, the proceeds grow to

102,515,625 ×
(

1 + 2.5%
2

)
= 100,000,000 ×

(
1 + 2.5%

2

)3

= 103,797,070 (2.4)

which is the terminal payoff set out in the example.
Generalizing this discussion, investing F at a rate of r̂ compounded

semiannually for T years generates

F ×
(

1 + r̂
2

)2T

(2.5)

at the end of those T years. (Note that the power in this expression is 2T
since an investment for T years compounded semiannually is, in fact, an
investment for 2T half-year periods.)

This discussion has been framed in terms of semiannual compound-
ing because coupon bonds and the fixed side of interest rate swaps most
commonly pay interest semiannually. Other compounding conventions, in-
cluding continuous compounding (for which interest is assumed to be paid
every instant), are useful in other contexts and are presented in Appendix A
in this chapter.

EXTRACTING DISCOUNT FACTORS
FROM INTEREST RATE SWAPS

As the examples of this chapter are drawn from global swap markets,
this section digresses with a very brief introduction to interest rate swaps.
Chapters 16 and 17 present a much fuller discussion of these important
derivatives.

Two parties might agree, on May 28, 2010, to enter into an inter-
est rate swap with the following terms. Starting in two business days, on
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F IGURE 2.1 An Example of an Interest Rate Swap

June 2, 2010, party A agrees to pay a fixed rate of 1.235% on a notional
amount of $100 million to party B for two years, who, in return, agrees
to pay three-month LIBOR (London Interbank Offered Rate) on this same
notional to Party A. See Figure 2.1. Chapter 15 explains the mechanics
of payments based on floating rate indexes and describes LIBOR rates in
detail. For the present, suffice it to say that three-month LIBOR is the
rate at which the most creditworthy banks can borrow money from each
other for three months and that a fixing of this rate is published once each
trading day.

The $100 million in the example is called the notional amount of a
swap, rather than the face, par, or principal amount, because it is used only
to compute the fixed- and floating-rate payments: the $100 million itself is
never paid or received by either party. In any case, party A, who pays fixed
and receives floating, makes fixed payments of 1.235%

2 × $100,000,000, or
$617,500 every six months. Party B, who receives fixed and pays floating,
makes floating rate payments quarterly.

While swap contracts do not include any payment of the notional
amount, it is convenient to assume that, at maturity, party A pays the no-
tional amount to party B and that party B pays that same notional amount
to party A. Once again, see Figure 2.1. There are three points to be made
about these fictional payments. First, since they cancel each other, their
inclusion has no effect on the value of the swap.2 Second, adding the fic-
tional notional amount to the fixed side makes that leg of the swap look
like a coupon bond, i.e., a security with semiannual, fixed coupon pay-
ments and a terminal principal payment. Third, adding the fictional notional
amount to the floating side makes that leg look like a floating rate bond,
i.e., a security with semiannual, floating coupon payments and a terminal
principal payment.

Chapter 16 presents the widely-used valuation methodology in which
the floating leg of the swap, with its fictional notional amount, is worth par,
or, in the example, $100 million, on payment dates. Taking this as given for
the purposes of this chapter, an interest rate swap can be viewed in a very sim-
ple way: party B, the fixed receiver, “buys” a 1.235% seminannually-paying

2See Chapter 16 for a more detailed discussion of this point.
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TABLE 2.1 Discount Factors, Spot Rates, and Forward Rates
Implied by Par USD Swap Rates as of May 28, 2010

Term Swap Discount Spot Forward
in Years Rate Factor Rate Rate

0.5 .705% .996489 .705% .705%
1.0 .875% .991306 .875% 1.046%
1.5 1.043% .984494 1.045% 1.384%
2.0 1.235% .975616 1.238% 1.820%
2.5 1.445% .964519 1.450% 2.301%

coupon bond (i.e., the fixed leg) for $100 million (i.e., the value of the float-
ing leg). Party A, the fixed payer, “sells” a 1.235% bond for $100 million.
This interpretation of swaps is so useful and commonplace that the phrase,
the “fixed leg of a swap,” is almost always meant to include the fictional
notional payment at maturity.

Invoking the interpretation of swaps in the previous paragraph, discount
factors can be derived from swaps using the methodology of Chapter 1,
developed in the context of coupon bonds. To illustrate this, along with
the rate calculations of later sections, Table 2.1 presents some data on
shorter-maturity, USD interest rate swaps as of May 28, 2010. The sec-
ond column gives the rates that are quoted and observed in swap market
trading. These indicate that counterparties are willing to exchange fixed pay-
ments of .875% against three-month LIBOR for one year, 1.043% against
three-month LIBOR for 1.5 years, etc. The 2-year swap rate, depicted in
Figure 2.1, is 1.235%. In any case, to derive the third column of Table 2.1,
the discount factors implied by swap rates, proceed as in Chapter 1. Write
an equation for each “bond” that equates the present value of its cash flows
to its price of par, i.e.,

(
100 + .705

2

)
d (.5) = 100 (2.6)

.875
2

d (.5) +
(

100 + .875
2

)
d (1) = 100 (2.7)

etc. The set of five such equations, corresponding to the maturities .5 through
2.5, allows for the solution of the discount factors given in the third column
of the table.

The derivation of spot and forward rates, the fourth and fifth columns
of Table 2.1, along with the relationships across all of these rates, is the
subject of the rest of the chapter.
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DEF IN IT IONS OF SPOT, FORWARD, AND PAR RATES

Chapter 1 defined a curve of discount factors, d(t), which gives the present
values of one unit of currency to be received at various times t. This section
expresses the information in the discount curve as a term structure of in-
terest rates and, in particular, in terms of semiannually-compounded spot,
forward, and par rates. Definitions of continuously compounded spot and
forward rates can be found in Appendix B in this chapter.

Spot Rates

A spot rate is the rate on a spot loan, an agreement in which a lender gives
money to the borrower at the time of the agreement to be repaid at some
single, specified time in the future. Denote the semiannually compounded
t-year spot rate by r̂ (t). Then, following (2.5), investing 1 unit of currency
from now to year t will generate proceeds at that time of

(
1 + r̂ (t)

2

)2t

(2.8)

To link spot rates and discount factors, note that if $1 grows to the
quantity (2.8) in t years, then the present value of that quantity is $1. Using
discount factors to compute that present value,

(
1 + r̂ (t)

2

)2t

d (t) = 1 (2.9)

Then, solving for d(t) gives

d(t) = 1(
1 + r̂ (t)

2

)2t
(2.10)

Table 2.1 gives the discount factors from the USD swap curve as of
May 28, 2010. Taking the 2-year discount factor of .975616 from that table,
equation (2.10) can be used to derive the 2-year, semiannually-compounded
spot rate of 1.238%:

d (2) = 1(
1 + 1.238%

2

)2×2 = .975616 (2.11)

From (2.8), this rate implies that, in two years, an investment of $100
grows to

$100 ×
(

1 + 1.238%
2

)2×2

= $102.499 (2.12)
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Forward Rates

A forward rate is the rate on a forward loan, which is an agreement to lend
money at some time in the future to be repaid some time after that. There
are many possible forward rates: the rate on a loan given in six months for a
subsequent term of 1.5 years; the rate in five years for six months; etc. This
subsection, however, focuses exclusively on forward rates over sequential,
six-month periods. Let f (t) denote the forward rate on a loan from year
t − .5 to year t. Then, investing 1 unit of currency from year t − .5 for six
months generates proceeds, at year t, of

(
1 + f (t)

2

)
(2.13)

To link forward rates to spot rates, note that a spot loan for t − .5
years combined with a forward loan from year t − .5 to year t covers the
same investment period as a spot loan to year t. To ensure that rates are
quoted consistently, that is, to ensure that the proceeds from these identical
investments are the same,

(
1 + r̂ (t)

2

)2t

=
(

1 + r̂ (t − .5)
2

)2(t−.5) (
1 + f (t)

2

)

=
(

1 + r̂ (t − .5)
2

)2t−1 (
1 + f (t)

2

)
(2.14)

This logic can be extended further, to write the spot rate of term t as a
function of all forward rates up to f (t):

(
1 + r̂ (t)

2

)2t

=
(

1 + f (.5)
2

)(
1 + f (1)

2

)
· · ·

(
1 + f (t)

2

)
(2.15)

Finally, to express forward rates in terms of discount factors, simply use
equation (2.10) to replace the spot rates in (2.14) with discount factors:

(
1 + f (t)

2

)
= d (t − .5)

d(t)
(2.16)

Continuing with the USD swap data in Table 2.1, use the 2- and 2.5-year
spot rates or discount factors from the table, together with (2.14) or (2.16),
to derive that f (2.5) = 2.301%. This value implies that an investment of
$100 in 2 years will, in 2.5 years, be worth

$100 ×
(

1 + 2.301%
2

)
= $101.151 (2.17)
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In passing, note that if the term structure of spot interest rates is flat,
so that all spot rates are the same, i.e., r̂ (t) = r̂ for all t, then, from (2.14),
each forward rate must equal that same r̂ and the term structure of forward
interest rates is flat as well.

Par Rates

Consider 100 face or notional amount of a fixed-rate asset that makes
regular semiannual coupon or fixed-rate payments of 100 × c

2 and a terminal
payment at year T of that 100. The T-year, semiannual par rate is the rate
C(T) such that the present value of this asset equals par or 100. But that
is exactly the definition of swap rates given earlier in this chapter. Hence,
swap rates in Table 2.1 are, in fact, par rates. For example, for the 2-year
swap rate of 1.235%,

1.235
2

[d (.5) + d (1) + d (1.5) + d (2)] + 100d (2) = 100 (2.18)

This equality can be verified by substituting the discount factors from
Table 2.1 into (2.18), but this comes as no surprise: the discount factors from
that table are derived from a set of pricing equations that included (2.18).

In general, for an asset with a par amount of one unit that makes
semiannual payments and matures in T years,

C(T)
2

2T∑
t=1

d
(

t
2

)
+ d(T) = 1 (2.19)

The sum in equation (2.19), i.e., the value of one unit of currency to be
received on every payment date until maturity in T years, is often called an
annuity factor and denoted by A(T). For semiannual payments,

A(T) =
2T∑
t=1

d
(

t
2

)
(2.20)

Using the discount factors from Table 2.1, for example, A(2) is about 3.948.
In any case, substituting the annuity notation of (2.20) into (2.19), the par
rate equation can also be written as

C(T)
2

A(T) + d(T) = 1 (2.21)

If the term structure of spot or forward rates is flat at some rate, then
the term structure of par rates is flat at that same rate. This is proven in
Appendix C in this chapter.
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Before closing this subsection it is important to point out that a bond
with a price of par, or the fixed leg of a swap worth par, may be valued at
par only for a moment. As interest rates and discount factors change, the
present values of these bonds or swaps change as well and the assets cease
to be “par” bonds or swaps.

Synopsis : Quot ing Prices with Semiannual Spot ,
Forward, and Par Rates

Chapter 1 showed that prices of fixed-rate assets can be expressed in terms
of discount factors and this section showed that spot, forward, and par
rates can be expressed in terms of discount factors. Hence, prices of fixed-
rate assets can be expressed in terms of either discount factors or rates. For
review and easy reference, this subsection collects these relationships for a
unit par amount of a fixed-rate asset with price P that makes semiannual
payments at a rate c for T years and then returns par. Using discount and
annuity factors,

P = c
2

A(T) + d(T) (2.22)

Using spot rates,

P = c
2

⎡
⎢⎣ 1(

1 + r̂ (.5)
2

) + 1(
1 + r̂ (1)

2

)2 + · · · + 1(
1 + r̂ (T)

2

)2T

⎤
⎥⎦

+ 1(
1 + r̂ (T)

2

)2T
(2.23)

Using forward rates,

P = c
2

⎡
⎣ 1(

1 + f (.5)
2

) + 1(
1 + f (.5)

2

) (
1 + f (1)

2

) + · · ·

+ 1(
1 + f (.5)

2

) (
1 + f (1)

2

)
· · ·

(
1 + f (T)

2

)
⎤
⎦

+ 1(
1 + f (.5)

2

) (
1 + f (1)

2

)
· · ·

(
1 + f (T)

2

) (2.24)
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And finally, using the par rate, C(T), subtract (2.21) from (2.22) to
obtain

P = 1 + c − C(T)
2

A(T) (2.25)

CHARACTERISTICS OF SPOT, FORWARD,
AND PAR RATES

The six-month spot rate is identically equal to the corresponding forward
rate: both are rates on a six-month loan starting on the settlement date. But
an interesting first observation from Table 2.1 is that each of the other spot
rates is nearly equal to the average of all the forward rates of equal and
lower term. Taking the 2.5-year spot rate, for example,

1.450% ≈ .705% + 1.046% + 1.384% + 1.820% + 2.301%
5

(2.26)

Intuitively this is not at all surprising: the interest rate on a 2.5-year loan is
approximately equal to the average of the rates on a six-month loan and on
six-month loans six months, one year, one and a half years, and two years
forward. Mathematically, the proceeds from the 2.5-year spot loan must be
the same as those from the five forward loans:

(
1 + r̂ (2.5)

2

)5

=
(

1 + f (.5)
2

) (
1 + f (1)

2

) (
1 + f (1.5)

2

)

×
(

1 + f (2)
2

) (
1 + f (2.5)

2

)
(2.27)

So while the 2.5-year spot rate is, strictly speaking, a complex average of
the first five six-month forward rates, the simple average is usually a very
good approximation.3

A second observation from Table 2.1 is that spot rates are increasing
with term while forward rates are greater than spot rates. This is not a
coincidence. It has just been established that spot rates are an average of
forward rates. Furthermore, adding a number to an average increases that
average if and only if the added number is larger than the pre-existing

3Very precisely, one plus half the spot rate is a geometric average of one plus half
of each of the forward rates. But a first-order Taylor series approximation to the
geometric average is, in fact, the arithmetic average, and is relatively accurate since
interest rates are usually small numbers.
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average. Using the data in the table, adding the 2-year forward of 2.301% to
the 2-year “average” or spot rate of 1.238%, gives a higher new “average”
or 2.5-year spot rate of 1.450%. Appendix E in this chapter proves in
general that, for any t, r̂ (t) > r̂ (t − .5) if and only if f (t) > r̂ (t − .5) and
that r̂ (t) < r̂ (t − .5) if and only if f (t) < r̂ (t − .5). These are period-by-
period statements and, as such, do not necessarily extend to entire spot and
forward rate curves. In practice, however, spot rates increase or decrease
over relatively wide maturity ranges and therefore forward rates are above
or below spot rates over relatively wide maturity ranges. Figures 2.2 and
2.3, of the EUR and GBP swap curves as of May 28, 2010, illustrate typical
relationships between spot and forward rate curves. In each currency, the
spot rate curve increases with term while forward rates are above spot rates,
but, as forward rates cross from above to below the spot rates, the spot rate
curve begins to decrease with term.

A third and final observation from Table 2.1 is that while spot rates are
increasing with term, par rates are near, but below, spot rates. To understand
the intuition here, consider the 2.5-year par and spot rates of 1.445% and
1.450%, respectively. From the discussion earlier in this chapter, were the
spot rate curve flat at 1.450%, the par rate would be 1.450% as well. In other
words, discounting fixed payments of 1.450% at a flat spot rate curve of
1.450% would give a price of par. But this means that discounting 1.450%
payments at the spot rates in Table 2.1, which are all less than or equal to
1.450%, would give a price greater than par. Hence, discounting with the
spot rates in the table, the par rate must be below 1.450%. More generally,
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F IGURE 2.2 EUR Swap Curves as of May 28, 2010
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Appendix F in this chapter proves that when the spot rate curve is strictly
upward-sloping, par rates are below equal-maturity spot rates and that when
spot rates are strictly downward-sloping, par rates are above equal-maturity
spot rates. USD swap rate curves as of May 28, 2010, shown in Figure 2.4,
illustrate how par rates are below spot rates as spot rates increase over most
of the maturity range. By the end of the year 2041 the spot rate curve starts
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F IGURE 2.4 USD Swap Rates as of May 28, 2010
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to decrease very gradually, but not nearly enough for par rates to exceed
spot rates. By contrast, the EUR spot rate curve in Figure 2.2 does decrease
rapidly enough at the longer maturities for the par rate curve to rise above
the spot rate curve.

Maturity and Price or Present Value

If the term structure of rates remains completely unchanged over a six-month
period, will the price of a bond or the present value of the fixed side of a
swap increase or decrease over the period?

Table 2.2 explores this question by computing the present value of the
fixed sides of swaps paying 1.445% to different maturities using the discount
factors or rates from Table 2.1. Since 1.445% is the 2.5-year par rate, the
present value of 100 face amount of the fixed side of the 2.5-year swap
is 100. Six months later, should the term structure be exactly the same,
the swap would be a two-year swap and this present value would rise to
100.41. Then, after another six months, the swap would be a 1.5-year swap
and, with the term structure still unchanged, would have a present value of
100.60, etc. The third column of the table simply reproduces the forward
rates of Table 2.1.

To understand why the present value behaves as it does, rising and then
falling, begin by comparing the six-month and 1-year swaps. Both swaps pay
1.445% over the first six months. But then the 1-year swap pays 1.445%
for an additional six months while the forward rate over that additional
six-month period is only 1.046%. This paying of an above market rate
makes the 1-year swap more valuable than the six-month swap and so its
price is higher. And so with the 1.5-year swap: it pays 1.445% for the six
months from 1-year to 1.5-years from now while the forward rate over that
period is only 1.384%. And so, again, the present value increases as maturity
increases from one to 1.5 years. But now consider the 2-year swap relative
to the 1.5-year swap. The 2-year swap pays 1.445% for an additional six
months while the forward rate for that six months is 1.820%. Hence the
2-year swap pays a below-market rate for the additional six months and

TABLE 2.2 Present Values of 100 Face Amount of the
Fixed Sides of 1.445% Swaps as of May 28, 2010

Maturity Present Value Forward Rate

.5 100.37 .705%
1 100.57 1.046%
1.5 100.60 1.384%
2 100.41 1.820%
2.5 100.00 2.301%
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has a present value less than that of the 1.5-year swap. Finally, the present
value of the 2.5-year swap is less than that of the 2-year swap because the
2.5-year swap pays 1.445% for an additional six months while the forward
rate is 2.301%.

Returning to the original question, then, if the term structure of rates
remains unchanged over a six-month period, the present value will rise as
the swap matures if its fixed rate is less than the forward rate corresponding
to the expiring six-month period. The present value will fall as the swap
matures if its fixed rate is greater than that forward rate. Appendix G in this
chapter proves this general result.

TRADING CASE STUDY: TRADING AN ABNORMALLY
DOWNWARD-SLOPING 10S-30S EUR FORWARD
RATE CURVE IN Q2 2010

Figure 2.5 graphs six-month forward rate curves for USD, EUR, GBP, and
JPY as of May 28, 2010. In EUR for example, the six-month rate, 10-years
forward, or the 10y6m rate, is about 4.25% while the USD six-month rate,
30-years forward, or the 30y6m rate, is about 4%. By historical standards
the EUR curve is remarkable in how the “10s-30s” forward curve, i.e., the
curve from 10- to 30-year terms, slopes so steeply downward. The more
usual historical shape is more like that of the other curves in the figure,
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F IGURE 2.5 Forward Swap Rates in USD, EUR, GBP, and JPY as of
May 28, 2010
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sloping upward from short- to intermediate-maturities and then flattening
out and falling gradually at the long end.

The macroeconomic context at the time was concerned about the fiscal
difficulties and economic prospects of EUR countries triggered by fears that
Greece and a number of other countries might default on their government
debts. These fears were somewhat mitigated by a bailout fund proposed by
EUR countries and the International Monetary Fund.

The technical context of these curves at this time was a particular theme
of the Overview, namely, the need for European pension funds and insurance
companies to invest in long-dated assets, or, in swap language, to receive
fixed on the long end, so that their asset profiles better matched their long-
term liabilities. This need was particularly acute after the approval of the
Solvency II directive, which required additional capital to reflect any asset
and liability mismatches. In any case, this institutional pressure to receive
fixed on the long end, without any commensurately sized payers on the long
end, drove down long-term swap rates and was one factor responsible for
the abnormally downward sloping EUR forward curve.

Before moving on to trade ideas, it will be useful to explain some market
jargon. Consider the two pairs of abstract term structures of rates depicted
in Figure 2.6. Market practitioners use the word flattening to describe shifts
in which either 1) longer-term rates fall by more than shorter-term rates,
or 2) shorter-term rates rise by more than longer-term rates. Therefore, by
1), a shift from either of the solid lines in the figure to its corresponding
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F IGURE 2.6 Shifting from Either Solid Line to Its Dashed Line Is Called a
“Flattening” of the Term Structure
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dashed line would be called a flattening even though everyday usage of the
word “flatten” would not apply to the shift from the lower solid line to the
lower dashed line. Similarly, market practitioners use the word steepening
to describe shifts in which either 3) longer-term rates increase by more
than shorter-term rates, or 4) shorter-term rates fall by more than longer-
term rates. Therefore, by 3), a shift from either of the dashed lines to its
corresponding solid line would be called a steepening even though everyday
normal usage of “steepen” would not apply to the shift from the lower
dashed line to the lower solid line.

Returning now to the case, many market participants wanted to bet
that the EUR forward curve in Figure 2.5 would revert to a more normal
shape, i.e., that the 10s-30s forward curve would steepen. It was argued that
the institutional demand to receive fixed would eventually be absorbed by
the market so that a more normally sloped curve could be obtained. Fur-
thermore, the technical factors holding down the long end would soon be
overpowered by trading to follow in the wake of the resolution of macroeco-
nomic uncertainty in Europe. More precisely, should the fiscal and economic
situation in the EUR seriously deteriorate, the EUR forward curve would
converge to the JPY forward curve and 10s-30s would steepen. On the other
hand, should the fiscal and economic situation in the EUR improve, the EUR
forward curve would converge to the USD and GBP curve and, once again,
10s-30s would steepen.

It might be the case, of course, that 10s-30s does not steepen. First, the
institutional demand to receive fixed in the long end might so overwhelm
the supply of payers that no amount of trading driven by macroeconomic
considerations would drive 10s-30s EUR forwards back to historical norms.
In fact, should incremental institutional demand to receive fixed continue
to exceed incremental supply, 10s-30s might flatten even more. Also, global
macroeconomic forces might flatten 10s-30s across the globe, which may
very well have nothing to do with EUR technicals but which would still
result in the EUR curve’s flattening.

A trader who comes to the conclusion that the risk-return characteris-
tics of the steepening bet are appealing can implement the bet through the
following trade: receive fixed in the relatively high EUR 10y6m rate and
pay fixed in the abnormally low long end.4 Put another way, lock in a rate
to receive 10y6m and lock in a rate to pay in the long end as a bet that
the 10y6m forward is going to fall relative to the longer-dated forwards. In
addition, construct the trade so that if the 10y6m and longer-dated forward
rates both increase by one basis point (i.e., .01%), the loss from the 10-year

4It is possible that the trade would be implemented in exactly this way, but as six-
month forwards at long maturities are not liquid, a much more likely implementation
would use portfolios of par swaps. For clarity of exposition, however, the text
assumes direct trading in short-term forwards.
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TABLE 2.3 Selected EUR and JPY Forward Rates as of May 28, 2010

10y6m 9y6m 25y6m 24y6m 30y6m 29y6m

EUR 4.254% 4.127% 2.550% 2.724% 2.293% 2.237%
JPY 2.712% 2.594% 2.433% 2.452% 2.219% 2.339%

TABLE 2.4 One-Year Roll-Down from Receiving 10y6m EUR and Paying 30y6m
EUR as of May 28, 2010, Assuming an Unchanged Term Structure

Today One Year Later Gain/Loss

Forward Rate Forward Rate (bps)

Receive 10y6m 4.254 9y6m 4.127 +12.7
Pay 30y6m 2.293 29y6m 2.237 −5.6

Total +7.1

leg is offset by the gain from the longer-dated leg and the trade neither makes
nor loses money. (Part Two shows how this type of hedge is constructed.)

A final aspect of the trade to consider is roll-down,5 i.e., how the trade
fares if rates do not change much at all, which would be the case, for
example, if the forward rate curve remains the same. For if the trade does
lose money over time as nothing happens, then the trader may not be able to
stay in the trade long enough to realize the anticipated profits. This implied
impatience can arise from internal risk management controls that force
the closure of trades hitting stop-losses (i.e., loss threshholds). Impatience
can also arise from the inability or reluctance, as trades lose money, to
post more and more collateral to counterparties to ensure the performance
of increasingly under-water contracts. (See Chapter 12.) In any case, to
analyze the roll-down of the trade discussed thus far, Table 2.3 gives six-
month forward rates of various terms in EUR and, for later use, in JPY
as of May 28, 2010.

Say that a trader decides to implement the suggested trade by receiving
in EUR 10y6m and paying in EUR 30y6m. How does this trade roll-down
over a year in which the term structure does not change? Table 2.4, using the
forward rates in Table 2.3, outlines the answer. After one year the trader will
have a position receiving 4.254% in 9y6m and paying 2.293% in 29y6m,
but the market rates for those forwards will have fallen to 4.127% and
2.237%, respectively. As the table shows, this means a gain of 12.7 basis
points (i.e., 4.254% − 4.127%) on the receiving leg of the trade and a loss

5Some practitioners would call this carry or carry-roll-down. See the discussion in
Chapter 3.
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of 5.6 basis points (i.e., −2.293% + 2.237%) on the paying leg of the trade.
Furthermore, since the trade is constructed so that each leg has the same
exposure to a change in interest rates, the net result would simply be the
sum of the individual results or +7.1 basis points. So, for example, a trade
scaled to have an interest rate exposure of €10,000 per basis point would
gain €71,000.

But what if, instead of selling the 30y6m forward, the trader pays fixed in
the 25y6m forward? This may be harder to transact, as the 30-year maturity
is more liquidly traded, but it is a choice to be considered. Table 2.5 com-
putes the roll-down in this case, again using the forward rates in Table 2.3.
The receiving leg is unchanged and still gains 12.7 basis points. But the
paying leg, since the 24y6m rate is greater than the 25y6m rate, gains
as well, in the amount of 17.4 basis points. Hence the total roll-down,
the sum of the roll-down of the two legs, is 30.1 basis points. This re-
vised trade, then, has much better roll-down properties than the originally
conceived trade.

It was noted above that the proposed trade would lose money if 10s-30s
around the globe flattened due to shared macroeconomic shocks. A possible
hedge to this losing scenario is to put on the opposite trade in another
currency, e.g., to pay fixed in 10y6m and to receive fixed in 25y6m in JPY.
It makes sense to put on this hedge only if two conditions are met. One,
10s-30s in that currency is not likely to experience any idiosyncratic moves
over the time horizon of the trade; if such idiosyncratic moves were likely,
the hedge might very well increase rather than decrease the volatility of the
trade’s results. Two, the roll-down of the hedge is not so negative as to spoil
the appealing risk-return profile of the original trade.

As it turns out, the JPY curve seems very suitable for this hedge, i.e.,
paying in 10y6m and receiving in 25y6m. First, resolution of Japan’s fiscal
and economic situation and, therefore, a reshaping of its swap curve, is
expected to happen much more slowly than a resolution of the situation in
the EUR countries. Second, using the data in Table 2.3, the incremental roll-
down of this trade is a negative 2.712% − 2.594% or −11.8 basis points
from the 10-year leg and a negative 2.433% − 2.453% or −2 basis points

TABLE 2.5 One-Year Roll-Down from Receiving 10y6m EUR and Paying 25y6m
EUR as of May 28, 2010, Assuming an Unchanged Term Structure

Today One Year Later Gain/Loss

Forward Rate Forward Rate (bps)

Receive 10y6m 4.254 9y6m 4.127 +12.7
Pay 25y6m 2.550 24y6m 2.724 +17.4

Total +30.1
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from the 25-year leg for a total of −13.8 basis points. Noting that the overall
roll-down of the trade, the original 30.1 basis points minus the 13.8 basis
points of the macroeconomic hedge, is a reasonable +16.3 basis points, a
trader might very well choose to purchase this insurance by adding the hedge
to the original trade.

It is possible, of course, that 10s-30s in EUR becomes more steeply
downward sloping at the same time that JPY 10s-30s becomes less steeply
downward sloping, in which case both the original trade and the hedge lose
money. But nothing in the analysis of the macroeconomic and technical
foundations of the trade suggests this eventuality. And, after all, a trade is
always a bet on something!

APPENDIX A: COMPOUNDING CONVENTIONS

The text discussed semiannual compounding, which assumes that interest is
paid twice a year, and showed that one unit of currency invested at the rate
r̂ sa for T years would grow to

(
1 + r̂ sa

2

)2T

(2.28)

Similarly, it is easy to see that one unit of currency invested at an annual
rate r̂ a , a monthly rate r̂ m, or a daily rate r̂ d, would grow after T years to
the following quantities, respectively,

(1 + r̂ a)T (2.29)(
1 + r̂ m

12

)12T

(2.30)

(
1 + r̂ d

365

)365T

(2.31)

More generally, if interest at a rate r̂ is paid n times per year, the proceeds
after T years will be

(
1 + r̂

n

)nT

(2.32)

One would expect that, holding all other characteristics of investment
constant, the market would offer a single terminal amount for having in-
vested one unit of currency for T years. Given the quantities in equations
(2.28) through (2.32), this means that the market could offer many different
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rates of interest for that investment, each associated with a different com-
pounding convention. So, for example, if the market offers 2% annually
compounded for a one-year investment, so that a unit investment grows to
1.02 at the end of a year, rates of other compounding conventions would be
determined by the equations

(
1 + r̂ sa

2

)2

=
(

1 + r̂ m

12

)12

=
(

1 + r̂ d

365

)365

= 1.02 (2.33)

Solving equations (2.33) for each rate, r̂ sa = 1.9901%; r̂ m = 1.9819;
and r̂ d = 1.9803%. Note that the more often interest is paid, the more
interest can earn interest on interest, and the lower the rate required to earn
the fixed amount 1.02 over the year.

Under continuous compounding, interest is paid every instant, resulting
in a terminal value equal to the limit of the quantity (2.32) as n approaches
infinity. Taking the natural logarithm of both sides of that equation and
rearranging terms,

nT ln
(
1 + r

n

)
= T ln

(
1 + r

n

)
1
n

(2.34)

Using l’Hôpital’s rule, the limit of the right-hand side of (2.34) as n
becomes large is rT. Hence, the limit of (2.32) must be erT, where e =
2.71828 . . . is the base of the natural logarithm. Therefore, if interest is paid
at a rate rc every instant, an investment of one unit of currency will grow
after T years to

ercT (2.35)

Equivalently, the value of one unit of currency to be received in T years is

e−rcT (2.36)

APPENDIX B: CONTINUOUSLY COMPOUNDED SPOT
AND FORWARD RATES

Let r̂ c(t) be the continuously compounded spot rate from time 0 to t, let f c(t)
be the continuously compounded forward rate at time t, and let f c (t − �, t)
be the forward rate from time t − �t to time t, which approaches f c(t)
as �t approaches 0. From the discussion on spot rates in the text and the
discussion on continuous compounding in Appendix A and equation (2.36)
in particular, the continuously compounded spot rate is defined such that

d(t) = e−r̂ c(t)t (2.37)



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c02 JWBT539-Tuckman July 22, 2011 13:52 Printer: Courier Westford

Spot, Forward, and Par Rates 89

With respect to forward rates, the continuously compounded analogue
of equation (2.14) of the text is

er̂ c(t−�)×(t−�)e f c(t−�,t)� = er̂ c(t)t (2.38)

Substituting for each of the two spot rates using equation (2.37) and rear-
ranging terms,

e f c(t−�,t)� = d (t − �)
d(t)

(2.39)

Next, taking the natural logarithm of both sides and rearranging terms,

f c (t − �, t) = − ln [d(t)] − ln [d (t − �)]
�

(2.40)

Finally, taking the limit of both sides, recognizing the limit of the right-hand
side of (2.40) as the derivative of ln [d(t)],

f c(t) = −d′(t)
d(t)

(2.41)

where d′(t) is the derivative of the discount function.

APPENDIX C: FLAT SPOT RATES IMPLY
FLAT PAR RATES

Proposition: If spot rates are flat at the rate r̂ , then par rates are flat at that
same rate.

Proof: Write equation (2.19) in terms of the single spot rate, r̂ :

C(T)
2

2T∑
t=1

1(
1 + r̂

2

)t + 1(
1 + r̂

2

)2T
= 1 (2.42)

Using (2.49) in Appendix 2.D, rewrite this equation as

C(T)
r̂

[
1 − 1(

1 + r̂
2

)2T

]
+ 1(

1 + r̂
2

)2T
= 1 (2.43)

But solving (2.43) for C(T) shows that C(T) = r̂ for all T.
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APPENDIX D: A USEFUL SUMMATION FORMULA

Proposition:

b∑
t=a

zt = za − zb+1

1 − z
(2.44)

Proof: Define S such that

S =
b∑

t=a

zt (2.45)

Then,

zS =
b+1∑

t=a+1

zt (2.46)

And, subtracting (2.46) from (2.45),

S (1 − z) = za − zb+1 (2.47)

Finally, dividing both sides of (2.47) by 1 − z gives equation (2.44), as
desired.

This proposition is quite useful in fixed income where expressions like
the one in equation (2.42) of Appendix C are common:

2T∑
t=1

1(
1 + r̂

2

)t (2.48)

Setting z = 1
(1+ r̂

2 ) and applying the proposition of this appendix gives

the result

2T∑
t=1

1(
1 + r̂

2

)t =
1

(1+ r̂
2 ) − 1

(1+ r̂
2 )2T+1

1 − 1
(1+ r̂

2 )

=
1 − 1

(1+ r̂
2 )2T

r̂
2

= 2
r̂

[
1 − 1(

1 + r̂
2

)2T

]
(2.49)
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APPENDIX E: THE RELATIONSHIP BETWEEN
SPOT AND FORWARD RATES AND THE SLOPE
OF THE TERM STRUCTURE

Proposition: For semiannually compounded rates, f (t) > r̂ (t − .5) if and
only if r̂ (t) > r̂ (t − .5).

Proof: f (t) > r̂ (t − .5) is equivalent to

(
1 + r̂ (t − .5)

2

)2t−1 (
1 + f (t)

2

)
>

(
1 + r̂ (t − .5)

2

)2t−1 (
1 + r̂ (t − .5)

2

)

>

(
1 + r̂ (t − .5)

2

)2t

(2.50)

But the left-hand side of this equation can be written in terms of r̂ (t)
using equation (2.14).

(
1 + r̂ (t)

2

)2t

>

(
1 + r̂ (t − .5)

2

)2t

(2.51)

And this is equivalent to r̂ (t) > r̂ (t − .5).

Proposition: For semiannually compounded rates, f (t) < r̂ (t − .5) if and
only if r̂ (t) < r̂ (t − .5).

Proof: Reverse the inequalities in the previous proof.

Proposition: For continuously compounded rates, f c(t) � r̂ c(t) if and only

if d r̂ c(t)
dt � 0 and f c(t) � r̂ c(t) if and only if d r̂ c(t)

dt � 0.

Proof: Taking the derivative of equation (2.37),

d′(t) = −
[̂
r c(t) + t

d r̂ c(t)
dt

]
d(t) (2.52)

Dividing both sides by −d(t) and then substituting for the left-hand side
using (2.41),

f c(t) = r̂ c(t) + t
d r̂ c(t)

dt
(2.53)
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Rearranging terms,

d̂r c(t)
dt

= f c(t) − r̂ c(t)
t

(2.54)

By inspection, then, d r̂ c(t)
dt has the same sign as f c(t) − r̂ c(t).

APPENDIX F: THE RELATIONSHIP BETWEEN
SPOT AND PAR RATES AND THE SLOPE OF
THE TERM STRUCTURE

Proposition: If r̂ (.5) < r̂ (1) < · · · < r̂ (T) then C(T) < r̂ (T).

Proof: By the definition of the par rate, C(T),

C(T)
2

⎡
⎢⎣ 1(

1 + r̂ (.5)
2

) + · · · + 1(
1 + r̂ (T)

2

)2T

⎤
⎥⎦ + 1(

1 + r̂ (T)
2

)2T
= 1 (2.55)

Also, setting all spot rates in (2.55) equal to C(T), it follows from (2.49)
of Appendix D that

C(T)
2

⎡
⎢⎣ 1(

1 + C(T)
2

) + · · · + 1(
1 + C(T)

2

)2T

⎤
⎥⎦ + 1(

1 + C(T)
2

)2T
= 1 (2.56)

Furthermore, since r̂ (.5) < r̂ (1) < · · · < r̂ (T), the expression

C(T)
2

⎡
⎢⎣ 1(

1 + r̂ (T)
2

) + · · · + 1(
1 + r̂ (T)

2

)2T

⎤
⎥⎦ + 1(

1 + r̂ (T)
2

)2T
(2.57)

which sets all of the discounting rates to r̂ (T), is less than the left-hand side
of equation (2.55). But since the left-hand sides of both (2.55) and (2.56)
equal 1, this implies that (2.57) is also less than the left-hand side of (2.56).
And this, in turn, implies that C(T) < r̂ (T), as was to be proved.

Proposition: If r̂ (.5) > r̂ (1) > · · · > r̂ (T) then C(T) > r̂ (T).
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Proof: In this case, (2.57) is greater than the left-hand side of equation
(2.55) and, therefore, of (2.56). But this implies that C(T) > r̂ (T), as was to
be proved.

APPENDIX G: MATURITY, PRESENT VALUE,
AND FORWARD RATES

Proposition: The sign of P(T) − P (T − .5) equals the sign of c − f (T).

Proof: Using equation (2.24) for P(T) and for P (T − .5) it can be shown
that

P(T) − P (T − .5) = 1 + c
2(

1 + f (.5)
2

) (
1 + f (1)

2

)
· · ·

(
1 + f (T)

2

)

− 1(
1 + f (.5)

2

)
· · ·

(
1 + f (T−.5)

2

) (2.58)

Or,

P(T) − P (T − .5) =
1 + c

2 −
(
1 + f (T)

2

)
(
1 + f (.5)

2

) (
1 + f (1)

2

)
· · ·

(
1 + f (T)

2

) (2.59)

Or, again,

P(T) − P (T − .5) =
1
2 (c − f (T))(

1 + f (.5)
2

) (
1 + f (1)

2

)
· · ·

(
1 + f (T)

2

) (2.60)

Therefore the sign of P(T) − P (T − .5) equals the sign of c − f (T).
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CHAPTER 3
Returns, Spreads, and Yields

S pot, forward, and par rates, presented in Chapter 2, intuitively describe
the time value of money embedded in market prices. To analyze the

ex-post performance and the ex-ante relative attractiveness of individual
securities, however, market participants rely on returns, spreads, and yields.

The first section of this chapter defines these terms. Horizon returns in
the fixed income context have to account for intermediate cash flows and are
often computed both on a gross basis and net of financing, but are otherwise
similar to the returns calculated for any asset. Spreads measure the pricing of
an individual fixed income security relative to a benchmark curve, usually of
swaps or government bonds. Yield is a practical and intuitive way to quote
price and is used extensively for quick insight and analysis. It cannot be used,
however, as a precise measure of relative value. This first section concludes
with a brief news excerpt about the sale of Greek government bonds that
illustrates the convenience of speaking in terms of spreads and yields.

The second section of the chapter shows how the profit-and-loss (P&L)
or return of a fixed income security can be decomposed into component
parts. Such decompositions are defined differently by different market par-
ticipants, but this book will define terms as follows. Cash carry is a security’s
coupon income minus its financing cost, a quantity that will be particularly
useful in the context of forwards and futures (see Chapters 13 and 14).
Carry-roll-down is the change in the (flat) price of a security if rates move
“as expected,” where one common interpretation of “as expected” is the
scenario of realized forwards and another is the scenario of an unchanged
term structure, both of which are described in this chapter.

The third and final section of the chapter presents several carry-roll-
down scenarios, partly to complete the discussion of return decompositions,
but partly for the insights these scenarios provide with respect to bond
returns. Two such insights are the following: 1) if realized forward rates
exceed the forward rates embedded in bond prices, a strategy of rolling over
short-term bonds outperforms an investment in long-term bonds; 2) a bond’s
return equals its yield only if its yield stays constant and if all coupons are
reinvested at that same yield.

95
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DEF INIT IONS

Real i zed Returns

This section begins the chapter by defining gross and net realized returns
over a single period and over several periods. Very simply, net returns are
gross returns minus financing costs. For concreteness and ease of exposition
this chapter focuses exclusively on bonds, but the principles and definitions
presented can easily be extended to other securities. For the same reasons,
this chapter calculates returns only over holding periods equal to the length
of time between cash flows, so that, for example, the returns of semiannual
coupon bonds are calculated only over six-month holding periods.

Since Chapters 1 and 2 have dealt extensively with the details of semian-
nual cash flows, this chapter simplifies notation by not explicitly recording
the length of each period. Denote the price of a particular bond at time t
by Pt per unit face value and the price of that same bond, after one period
of unspecified length, as Pt+1. Also, denote the bond’s periodic coupon pay-
ment per unit face value by c. Numerical examples, however, will explicitly
incorporate semiannual cash flow conventions and will assume face values
of 100.

An investor purchasing a bond at time t pays Pt and then, at time t + 1,
receives a coupon c and has a bond worth Pt+1. The gross realized return
on that bond from t to t + 1, Rt,t+1, is defined as the total value at the
end of the period minus the starting value all divided by the starting value.
Mathematically,

Rt,t+1 = Pt+1 + c − Pt

Pt
(3.1)

Continuing with the U.S. Treasury example of Chapter 1, say that an
investor bought the U.S. Treasury 4 1

2 s of November 30, 2011, for 105.856
for settlement on June 1, 2010. Then suppose that the price of the bond
one coupon-period later, on November 30, 2010, turned out to be 105. The
six-month return on that investment would have been

105 + 2.25 − 105.856
105.856

= 1.317% (3.2)

where the 2.25 in the numerator is the bond’s semiannual coupon payment.
Computing a realized return over a longer holding period requires keep-

ing track of the rate at which coupons are reinvested over the holding period.
Consider an investment in the same bond for one year, that is, to May 31,
2011. The total proceeds at the end of the year consist not only of the value
of the bond and the coupon payment on May 31, 2011, but also of the
reinvested proceeds of the coupon paid on November 30, 2010. Assuming
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that this November coupon is invested at a semiannully compounded rate of
.60% and that the price of the bond on May 31, 2011, is 105, the realized
gross holding period return over the year would be

105 + 2.25 + 2.25 × (
1 + .60%

2

) − 105.856

105.856
= 3.449% (3.3)

Now consider an investor in the 4 1
2 s of November 30, 2011, who fi-

nanced the purchase of the bond, that is, who borrowed cash to make the
investment. (The important institutional details of such borrowing are pre-
sented in Chapter 12.) While not usually the case, assume for the purposes
of this chapter that the investor could borrow the entire purchase price of
the bond. Assume a rate of .2% for .5 years on the amount borrowed so that
paying off the loan costs 105.856 × (

1 + .2%
2

)
or 105.962. Also assume, as

before, that the price of the bond is 105 on November 30, 2010. Then, this
investment over a six-month horizon is described as in Table 3.1.

One obvious problem in calculating a return on this investment is that
it requires no initial cash and the final value cannot be divided by zero. But
even if the investor did have to put up some amount of initial cash, so that
borrowing was 90% rather than 100% of the purchase price, it would still
not be sensible to divide the final value by the amount invested when trying
to describe the return on the 4 1

2 s of November 30, 2011. After all, another
investor might have borrowed 95% of the purchase price and a third investor
only 85%. Hence it would be sensible to divide by the investor’s outlay only
to calculate a return on capital for that investor. But that is not the exercise
here. Therefore, when calculating realized returns on securities, even when
those securities are financed, it is conventional to divide that final value by
the initial price of the security.

With this choice of a denominator, the net realized return on the security
looks almost, but not exactly, like the gross return in (3.2):

105 + 2.25 − 105.962
105.856

= 1.217% (3.4)

TABLE 3.1 A Financed Purchase of the 4 1
2 s of November 30, 2011

Settlement Date Transaction Proceeds Total Proceeds

June 1, 2010 buy bond −105.856 0
borrow price 105.856

November 30, 2010 collect coupon 2.250
sell bond 105.000 1.288
pay off loan −105.962
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In fact, the net return is simply the previously calculated gross return of
1.317% minus the 0.1% cost of six-month financing. To make this a bit
more explicit,

105 + 2.25 − 105.856 × (
1 + .2%

2

)
105.856

= 105 + 2.25 − 105.856
105.856

− .2%
2

= 1.317% − .1% (3.5)

Without going into further detail here, calculating a multi-period net
return requires not only the reinvestment rates of the coupons but the future
financing costs as well.

Spreads

As mentioned in the introduction to the chapter, spreads are important mea-
sures of relative value and their convergence or divergence is an important
component of return.

The market price of any security can be thought of as its value computed
using some term structure of interest rates, denoted generically by R, plus a
premium or discount, ε, relative to that term structure:

P ≡ P(R) + ε (3.6)

Furthermore, the premium or discount ε is often expressed in terms of a
spread to interest rates, s, rather than in terms of price. Mathematically, first
write P(R) using forward rates (as in equation (2.24) but with periods of
unspecified length):

P ≡ c
(1 + f (1))

+ c
(1 + f (1)) (1 + f (2))

+ · · ·

+ 1 + c
(1 + f (1)) (1 + f (2)) · · · (1 + f (T))

+ ε (3.7)

Then, instead of defining the deviation of the market from P(R) through ε,
define it through a spread. In other words, find s such that the following
equation is identically true:

P ≡ c
(1 + f (1) + s)

+ c
(1 + f (1) + s) (1 + f (2) + s)

+ · · ·

+ 1 + c
(1 + f (1) + s) (1 + f (2) + s) · · · (1 + f (T) + s)

(3.8)
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In words, the market price is recovered by discounting a bond’s cash flows
using an appropriate term structure plus a spread.

Spreads defined as in equation (3.8) are usually intended to be either
bond- or sector-specific. As an example of the former, recall the testing of
the law of one price in Table 1.4. The 3

4 s of November 30, 2011, when
priced using the discount curve derived in Chapter 1, gave a present value
of 100.255 compared with a market price of 100.190. To express this price
deviation or ε in terms of spread, express the discount factors in Table 1.3
as forward rates and solve the following equation for s:

100.190 ≡ .375(
1 + .149%

2 + s
2

) + .375(
1 + .149%

2 + s
2

) (
1 + .556%

2 + s
2

)
+ 100.375(

1 + .149%
2 + s

2

) (
1 + .556%

2 + s
2

) (
1 + 1.036%

2 + s
2

) (3.9)

The result is s = .044% or 4.4 basis points. With this spread result,
instead of saying that the 3

4 s of November 30, 2011, trade 6.5 cents cheap
relative to the reference bonds, one could say that they trade 4.4 basis points
cheap. Sometimes speaking in terms of price is more useful, as when saying
that buying the 3

4 s and selling its replicating portfolio will produce a P&L
of 6.5 cents per $100. But sometimes speaking in terms of spread is more
intuitive, as when saying that the 3

4 s trade at 4.4 basis points above the
Treasury curve. There is also an interpretation of that 4.4 basis points in
terms of the bond’s return, which will be presented in the third section of
this chapter.

Equation (3.8) and the U.S. Treasury note example illustrate bond-
specific spreads. A common example of sector-specific spreads would be
corporate bonds, the subject of Chapter 19. In that context bonds issued
by a particular corporation are thought of as trading at a spread curve to
government bonds or swaps, where a spread curve means that the forward
spread at each term is different. The pricing equation for a bond in that case
might take the following form:

P ≡ c
(1 + f (1) + s (1))

+ c
(1 + f (1) + s (1)) (1 + f (2) + s (2))

+ · · ·

+ 1 + c
(1 + f (1) + s (1)) · · · (1 + f (T) + s (T))

(3.10)

Yie ld-to-Maturity

While par, spot, and forward rates are in many contexts more intuitive
than prices, their appeal suffers from needing so many rates to describe the
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pricing of a single bond. As a result, yield-to-maturity is often quoted when
describing a security in terms of rates rather than price.

Yield-to-maturity is the single rate such that discounting a security’s cash
flows at that rate gives that security’s market price. For example, Table 1.2
reported that, with 1.5 years to maturity, the price of the 4 1

2 s of November
30, 2011, was 105.856. The yield-to-maturity, y, of this bond is therefore
defined such that1

105.856 ≡ 2.25(
1 + y

2

) + 2.25(
1 + y

2

)2 + 102.25(
1 + y

2

)3 (3.11)

Juxtaposing equation (3.11) with equations (2.23), (2.24), and (3.8)
or (3.10) reveals that yield summarizes both the term structure of interest
rates as well as any spread or spread curve for this bond relative to that
term structure. In any case, solving (3.11) for y by trial-and-error or some
numerical method shows that the yield of the 4 1

2 s is about .574%. While it
is much easier to solve for price given yield than for yield given price, many
calculators and computer applications are readily available to move from
price to yield or vice versa. Yield is often used as an alternate way to quote
price: a trader could bid to buy the 4 1

2 s of November 30, 2011, at a price
of 105.856 or at a yield of .574%. Needless to say, market practice is not
such that a trader can bid to buy the bond with three spot or forward rates
instead of a price.

The definition of yield for a coupon bond for settlement on a coupon
payment date is2

P =
1
2 c(

1 + y
2

) +
1
2 c(

1 + y
2

)2 + · · · + 1 + 1
2 c(

1 + y
2

)2T
(3.12)

Or, more compactly,

P = c
2

2T∑
t=1

1(
1 + y

2

)t + 1(
1 + y

2

)2T
(3.13)

And simplifying using the summation formula given in Appendix D in
Chapter 2,

P = c
y

(
1 − 1(

1 + y
2

)2T

)
+ 1(

1 + y
2

)2T
(3.14)

1This is not perfectly correct since the prices in Table 1.2 were for settlement on
June 1, 2010, rather than May 31, 2010. See Appendix A in this chapter for a more
precise definition.
2The formula for other settlement dates is given in Appendix A in this chapter.
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F IGURE 3.1 Prices of Bonds with Varying Coupons Over Time with Yields Fixed
at 3%

Equation (3.14) provides several immediate facts about the price-yield
relationship. First, when c = y, P (T) = 1. In words, when the yield is
equal to the coupon rate, the bond sells for its face value. Second, when
c > y, P (T) > 1: when the coupon rate exceeds the yield, the bond sells
at a premium to its face value. Third, when c < y, P (T) < 1: when
the yield exceeds the coupon rate, the bond sells at a discount to its
face value.

Figure 3.1 illustrates these first three implications of equation (3.14).
Fixing all yields at 3%, each curve gives the price of a bond with a partic-
ular coupon rate as a function of years remaining to maturity. The bond
with a coupon of 3% has a price of 100 at all terms. With 30 years to
maturity, the 4% and 5.5% bonds sell at substantial premiums to par. As
these bonds mature, however, the value of an above-market coupon falls:
receiving a coupon 1% or 2.5% above market for 20 years is not so valuable
as receiving those above-market coupons for 30 years. Hence, the prices of
these premium bonds fall over time until they are worth par at maturity.
Conversely, the .5% and 2% bonds sell at substantial discounts to par with
30 years to maturity and rise in price as they mature. The time trend of
bond prices depicted in the figure is known as the pull to par. Of course,
the realized price paths of these bonds will differ dramatically from those in
Figure 3.1 (which fixes all yields at 3%) according to the actual realization
of yields.

The fourth lesson from the price-yield relationship of equation (3.14)
is the annuity formula. An annuity makes annual payments of 1 until date
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T with no final principal payment. In this case, the second term of (3.14)
vanishes and, with c = 1, the value of the annuity, A(T), becomes

A(T) = 1
y

(
1 − 1(

1 + y
2

)2T

)
(3.15)

The annuity formula appears frequently in fixed income as the present value
factor for a bond’s coupons, a swap’s fixed rate cash flows, or a mortgage’s
payments, which are most often structured as a series of equal payments.
(See Chapter 20.)

A fifth implication of equation (3.14) is that the value of a perpetuity,
a security that makes the fixed payment c forever, can be found by letting T
approach infinity in (3.14) and multiplying by c, which gives c

y .
A sixth and final implication of the definition of yield is that if the term

structure is flat, so that all spot rates and all forward rates equal some single
rate, then the yield-to-maturity of all bonds equals that rate as well. This is
easily seen by observing that, in the case of a flat spot rate curve, the pricing
equation for each bond would take exactly the same form as equation (3.12)
with the yield equal to the single spot rate.

Yie ld Curves and the Coupon Ef fect The phrase “yield curve” is used
often, but its meaning is not very precise because the concept of yield is
intertwined with the cash flows of a particular bond. Spot, forward, and par
rate curves can, as shown in Chapter 2, be used to price any similar security.
By contrast, the yield of a particular security derived from (3.14) can be
used to price only that security. To illustrate this point, Figure 3.2, using
C-STRIPS prices as of May 28, 2010, graphs the yields on hypothetical
but fairly priced zero coupon bonds, par bonds, and 9% coupon bonds
of various maturities on the mid-month, May-November cycle. In other
words, using discount factors derived from C-STRIPS prices, the prices of
these hypothetical bonds are computed along the lines of Chapter 1. Then
the yields of these bonds are calculated. Figure 3.2 also shows the yields of
actual U.S. Treasury notes and bonds on the same payment cycle and as of
the same pricing date. Figure 3.3 shows the same data as Figure 3.2, but
zooms in on a narrower yield range by focusing on the longer maturities.

These figures show that the “zero coupon yield curve,” the “par yield
curve,” and the “9% coupon yield curve,” are indeed all different. In other
words, a yield curve is not well defined until particular cash flows have
been defined. And securities with a structure different from that of a coupon
bond, like an amortizing bond or a fixed-rate mortgage, which spread prin-
cipal payments out over time, would generate more dramatically different
“yield curves.”

In Figures 3.2 and 3.3, for any given maturity, zero coupon yields ex-
ceed par yields, which, in turn, exceed the 9% coupon yields. This can be
explained by the fact that yield is the one rate that describes how a security’s
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F IGURE 3.2 Yields of Hypothetical Securities Priced with C-STRIPS as of May
28, 2010

cash flows are being discounted. Since a zero coupon bond has only one
cash flow at maturity, its yield is simply the spot rate corresponding to that
maturity. A 9% coupon bond, on the other hand, makes cash flows every six
months. Its yield, therefore, is a complex average of all of the spot rates from
terms of six months to the bond’s maturity, although the greatest weight is
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F IGURE 3.3 Yields of Long-Term Hypothetical Securities Priced with C-STRIPS
as of May 28, 2010
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on the spot rate corresponding to the bond’s largest present value, namely,
that of the final payment of coupon plus principal. Furthermore, since the
term structure of interest rates in the figures slopes upward, any weight this
complex average places on the shorter-term spot rates lowers that average
below the spot rate at maturity. Hence the yield on the 9% bond has to be
lower than the yield on the 0% bond. The par bonds, with coupons between
0% and 9%, discount a lot of their present value at the shorter-term spot
rates relative to zero coupon bonds, but discount little of their present value
at those shorter-term rates relative to the 9% bonds. Hence, the yield of
a par bond of a given maturity will be between the yield of the 0% and
9% bonds of that maturity. While not illustrated here, if the term structure
slopes downward, then the argument just made would be reversed and the
zero coupon yield curve would be below the 9%-coupon yield curve.

The fact that fairly priced bonds of the same maturity but different
coupons have different yields-to-maturity is called the coupon effect. The
implication of this effect is that yield is not a reliable measure of relative
value. Just because one fixed income security has a higher yield than another
does not necessarily mean that it is a better investment. Any such difference
may very well be due to the relationship between the time pattern of the
security’s cash flows and the term structure of spot rates, as discussed in the
previous paragraph.

The yields on the actual notes and bonds are seen most easily in Fig-
ure 3.3. Many of the bonds, particularly those of longer term, are closest
to the 9% coupon yield curve because those bonds, having been issued rel-
atively long ago when rates were much higher, do indeed have very high
coupons. The 6 1

2 s of November 15, 2026, the 6 1
8 s of November 15, 2027,

the 5 1
4 s of November 15, 2028, and the 6 1

4 s of May 15, 2030, are all easily
seen in the figure to fall into this category. Other bonds, however, were is-
sued more recently at lower coupons and trade closer to the par yield curve.
The three bonds in the figure with longest maturities, which were issued
relatively recently, fall into this category: the 4 1

4 s of May 15, 2039, the 4 3
8 s

of November 15, 2039, and the 4 3
8 s of May 15, 2040.

Japanese Simple Yie ld Before concluding the discussion of yield, it is noted
here that Japanese government bonds are quoted on a simple yield basis.
With a fiat price p per unit face amount, a coupon rate c, and a maturity in
years, T, this simple yield, y, is given by y = c/p + (1/T) × (1 − p)/p. So,
for example, if p = 101.45%, c = 2%, and T = 20, then y = 1.90%.

News Excerpt : Sale of Greek Government Bonds
in March, 2010

At the end of March, 2010, investors around the world were concerned
that Greece might not be able to meet all its debt obligations. At that time,
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Bloomberg reported the following3 about the Greek government’s sale of
new, seven-year bonds:

Greece priced the 5 billion euros ($6.7 billion) of seven-year bonds
to yield 310 basis points more than the benchmark mid-swap rate,
according to a banker involved in the transaction . . .

The bonds’ 6 percent yield equates to 334 basis points more
than seven-year German bunds, Europe’s benchmark government
securities. That compares with a yield premium, or spread, of 61
basis points for similar maturity Spanish debt and 114 basis points
on Portugal’s government bonds due 2017, according to composite
prices on Bloomberg. Italy’s seven-year bonds yield 45 basis points
more than bunds, the prices show.

“Greece’s borrowing costs exceed those of Spain and Portugal
as it still needs to convince the market that it can roll over exist-
ing debt . . .”

COMPONENTS OF P&L AND RETURN

As stated in the introduction to this chapter, breaking down P&L or return
into component parts is extremely useful for understanding how money is
being made or lost in a trading book or investment portfolio. In addition,
many sorts of errors can often be caught by a thorough analysis of ex-post
profitability or loss.

For expositional ease, this section makes the following choices. First,
it decomposes P&L; a return decomposition can then be found by dividing
each P&L component by the initial price. Second, the P&L considered is that
of a single bond trading at a single spread, but the analysis can be extended
to more general portfolios and term structures of spreads. Third, the holding
period is assumed to be equal to a coupon payment period. Appendix B of
this chapter gives the P&L decomposition for holding periods both within
and across coupon payment periods.

P&L is generated by price appreciation plus cash-carry, which consists
of explicit cash flows like coupon payments and financing costs. This section
decomposes price appreciation into three components and then presents a
sample return decomposition. The next section focuses on one component
of return, namely, carry-roll-down, in more detail.

Set the following notation:

� Pt (Rt, st): the price of a bond at time t, under term structure Rt, and
bond-specific spread st.

3“Greece Pays Bond Investors 5 Times Spain Yield Spread (Update1),” Bloomberg
BusinessWeek, Thursday May 27, 2010.
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� c: periodic coupon payment of the bond.
� Pt+1 (Rt+1, st+1): the price of the bond at t + 1, with the term structure

and bond-specific spreads changing as indicated.
� R

e
t+1: some term structure of rates that is not necessarily the term struc-

ture at time t or t + 1. The choice of this term structure will be discussed
shortly.

The total price appreciation and a breakdown of that appreciation into
its component parts can be defined as follows.4 Note that the sum of the
component parts is, by design, identically equal to total price appreciation.

� Total Price Appreciation: Pt+1 (Rt+1, st+1) − Pt (Rt, st)
� Carry-Roll-Down: Pt+1

(
R

e
t+1, st

) − Pt (Rt, st)
� Rate Changes: Pt+1 (Rt+1, st) − Pt+1

(
R

e
t+1, st

)
� Spread Change: Pt+1 (Rt+1, st+1) − Pt+1 (Rt+1, st)

The first component of the decomposition, called carry-roll-down, is the
price change due to the passage of time with rates moving “as expected,”
from Rt to R

e
t+1, and with no change in spread. Before proceeding further,

however, it is worthwhile to explain the name carry-roll-down by discussing
the generic concepts of carry and roll-down, which are invoked often in
practice, but tend to generate some confusion.

Most generally, P&L due to carry is meant to convey how much a po-
sition earns due to the passage of time, holding everything else constant.
A clean example is a par bond when the term structure is flat and un-
changing: since the bond’s price is always par, its carry is clearly its coupon
income minus its cost of financing. Another clean example is a premium
bond when the term structure is, again, flat and unchanging. Since this
bond’s price is pulled to par over time (see Figure 3.1), its carry is easily
defined as its coupon income minus the decline in its price minus its cost
of financing. Note, by the way, that the concept of carry just described,
by including pull-to-par P&L, is broader than cash carry, defined earlier as
coupon income minus financing costs. As to be discussed in Chapters 13
and 14, cash carry plays an important role in describing bond forward and
futures prices.

P&L due to roll-down is meant to convey how much a position earns
due to the fact that, as a security matures, its cash flows are priced at ear-
lier points on the term structure. A clean example of this is the 10y6m
forward highlighted in the case study of Chapter 2. At the time of that

4Defining the breakdown in a different order can change the allocation of the total
price appreciation, but the magnitude of this change is usually very small except for
securities with values that are very nonlinear in rates or spreads.
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case, an investor might agree to lend EUR for six months, 10-years for-
ward, at a rate of 4.254%. That trade has no carry in the sense of the
previous paragraph: it pays no coupon, it costs nothing to finance, and,
if the market rate of the forward trade remains at 4.254%, then its P&L
is zero. But if at the time of the trade the 9y6m rate was 4.127%, then
the trade would be said to have roll-down P&L in the following sense. If
the term structure does not change, then, after a year, the 10y6m forward
trade at 4.254% matures into a 9y6m forward with an appropriate mar-
ket rate of 4.127%. Hence, the investor would gain the difference between
4.254% and 4.127%, or 12.7 basis points, because the forward trade had
“rolled-down” the curve.

The examples in the previous two paragraphs cleanly illustrate the con-
cepts of carry and roll-down, but the division of P&L between the two
often requires further calculation. Consider a premium bond when the term
structure is upward-sloping and unchanging. The resulting P&L over time
would be a combination of carry, i.e., pull-to-par plus coupon minus fi-
nancing costs, and roll-down, as the bond’s cash flows are discounted at
lower rates. While an investor could define some separation of this P&L
into distinct carry and roll-down components, the separation would not be
as clean as in the earlier examples and, more importantly, would probably
not be worth the effort. From the perspective of understanding P&L over
time, the more important objective is to separate out what happens to a
position when rates move “as expected” from what happens as rates and
spread change.

Taking all of these considerations into account, this book preserves a
separate accounting for cash carry, i.e., coupon income minus financing
costs, so as to be consistent with concepts in forward and futures markets.
The remaining P&L due to the passage of time, i.e., the P&L due to the
passage of time excluding cash carry, is called carry-roll-down. This name
reflects the fact that carry-roll-down is a mix of P&L that might otherwise
be classified as either carry or roll-down.

Returning then to the P&L decomposition given previously, carry-roll-
down P&L is the price appreciation due to the bond’s maturing over the
period and rates moving from the original term structure Rt to some hypo-
thetical, “expected,” or intermediate term structure, R

e
t+1. There are many

possible choices for R
e
t+1 and some common ones are discussed in the next

section, but no choice clearly dominates another. In any case, note that carry-
roll-down price appreciation assumes that the bond’s individual spread has
not changed over the period. Also note that practitioners often calculate
carry-roll-down in advance, that is, at time t they are interested in knowing
the carry-roll-down from time t to time t + 1.

The price appreciation due to rate changes is the price effect of rates
changing from the intermediate term structure, R

e
t+1, to the term structure

that actually prevails at time t + 1, namely Rt+1. This component of price
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appreciation is the subject matter of Part Two of this book. Note that spread
is assumed unchanged here as well. Note also that price appreciation due
to changes in rates might be calculated in advance as part of a scenario
analysis, but is usually reserved for calculations done ex-post as part of
realized return.

Finally, the price appreciation due to a spread change is the price effect
due to the bond’s individual spread changing from st to st+1. The spread
is, in fact, the focus or bet of many trades. Is this U.S. Treasury too cheap
relative to others? Is that corporate bond too expensive relative to swaps?
Price appreciation due to a spread change, like that due to rate changes,
may be calculated in advance as part of a scenario analysis or ex-post in the
process of computing realized returns.

Note that dividing each of the components of price appreciation and
then cash carry by the initial price, Pt (Rt, st), gives the respective components
of bond return.

A Sample P&L Decomposit ion

This subsection works through an example of decomposing the return of
the 3

4 s of November 30, 2011, over the six months from May 28, 2010, to
November 30, 2010. The example assumes that:

� The initial term structure and spreads are as in equation (3.9);
� The carry-roll-down scenario is realized forwards, which will be ex-

plained shortly;
� The term structure falls in parallel by 10 basis points over the six-month

holding period;
� The bond’s spread converges from its initial 4.4 basis points to 0 over

the holding period.

Table 3.2 shows how forward rates and prices change from their initial
values to the values in each step of the decomposition. The initial forwards
used to price the 3

4 s on May 28, 2010, given in row (i) of the table, are the
sums of the initial base forwards on that date, row (ii), and the computed
spread of the 3

4 s on that date, row (iii). The price of the bond using these
forwards and this spread is 100.190, given in the rightmost column of row
(i). See equation (3.9). Rows (iv) through (xii) of the table describe the
pricing of the 3

4 s at the end of the holding period, on November 30, 2010.
The first price change, due to carry-roll-down, is presented in rows (iv)

through (vi) of Table 3.2. The assumption of realized forwards means the
following. As of the initial date, May 28, 2010, the forward rate curve in
row (ii) “anticipated” a rate of .556% from November 30, 2010, to May
31, 2011, and a rate of 1.036% from May 31, 2011, to November 31, 2011.
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TABLE 3.2 A Decomposition of the Price Appreciation for the 3
4 s of November

30, 2011, over a Six-Month Holding Period

Start Period 5/30/10 11/30/10 5/31/11
End Period 11/30/10 5/31/11 11/30/11 Price

Pricing Date 5/28/10
(i) Initial Forwards .193% .600% 1.080% 100.190
(ii) Term Structure .149% .556% 1.036%

(iii) Spreads .044% .044% .044%

Pricing Date 11/30/10
(iv) Carry-Roll-Down Forwards .600% 1.080% 99.911
(v) Term Structure .556% 1.036%

(vi) Spreads .044% .044%

(vii) Rate-Change Forwards .500% .980% 100.011
(viii) Term Structure .456% .936%
(ix) Spreads .044% .044%

(x) Spread-Change Forwards .456% .936% 100.054
(xi) Term Structure .456% .936%

(xii) Spreads .000 .000

Then, six months later, these anticipated rates were realized: on November
30, 2010, the forward rate curve in row (v) is taken to be .556% in the first
period and 1.036% in the second. The justification for the assumption of
realized forwards will be described in the next section. Under these forwards
in row (v), however, along with an unchanged spread of .044%, row (vi),
the price of the now one-year bond is 99.911, given in the rightmost column
of row (iv). Hence, the price appreciation due to carry-roll-down in this
example is 99.911 − 100.190 or −.279. (Of course, the bond paid a coupon
on November 30, 2010, but that will be handled in the cash carry part of
the calculations.)

The next price change, due to rate changes, is presented in rows (vii)
through (ix). For this example it is assumed that all forward rates fell by
10 basis points. Therefore, the term structure of forwards falls from .556%
and 1.036% in row (v) to .456% and .936% in row (viii). The spreads in
row (ix) remain again at 4.4 basis points, so the new forwards for pricing the
3
4 s in row (vii) are .500% and .980%. These new forwards give a bond price
of 100.011 in the rightmost column of row (vii) and a price appreciation
due to rate changes of 100.011 − 99.911 or .1.

The final price change, due to the change of the spread from .044% to
0%, is presented in rows (x) through (xii). Keeping the new term structure
in row (xi) the same as in row (viii) and using a zero spread in row (xii),
the new forwards in row (x) are .456% and .936%, which gives a final
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TABLE 3.3 Decomposition of P&L
of the 3

4 s of November 30, 2011, over
a Six-Month Holding Period

$

Initial Price 100.190
Price Appreciation −.136
Carry-Roll-Down −.279
Rates +.100
Spread +.043
Cash Carry .375
Coupon .375
Financing 0.000
P&L +.239

bond price of 100.054 in the rightmost column of row (x). Hence, the price
appreciation due to spread change is 100.054 − 100.011 or .043.

Table 3.3 summarizes the components of price appreciation and adds
the coupon payment to complete the decomposition of gross dollar return.
Were the position financed, the financing cost would be included in the
carry so as to compute net dollar returns. Finally, these dollar returns can be
divided by the initial price to obtain percentage returns, although, since the
initial price is very near 100, percentage returns do not add much insight in
this particular example.

CARRY-ROLL-DOWN SCENARIOS

When considering potential trades or investments, many practitioners want
to calculate the dollar return of the trade or investment under the expectation
or scenario of “no change” in rates. So the question with respect to carry-
roll-down is, “What are good choices for no change scenarios?”

One common choice is to assume that forward rates equal expectations
of future rates and that, as time passes, these forward rates are realized.
So, for example, today’s six-month rate two years forward is the realized
six-month rate two years from today. This realized forward assumption was
used in the sample P&L decomposition of the previous section. A second
common choice assumes that the entire term structure of interest rates re-
mains unchanged over time. So, for example, today’s six-month rate two
years forward will be the six-month rate two years forward a week from
now, a month from now, a year from now, etc.

This section derives some implications of the realized forward and un-
changed term structure assumptions, in addition to the related assumption
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of unchanged yields. To conclude, the section considers one alternative as-
sumption which, while conceptually attractive, is hardly used in practice.

Real i zed Forwards

Given the example of realized forwards in the previous section, this subsec-
tion proceeds directly to the mathematics. Recall the pricing equation of a
bond in terms of forwards, omitting any spreads to the base curve:

P0 (R0) = c
(1 + f (1))

+ c
(1 + f (1)) (1 + f (2))

+ · · ·

+ 1 + c
(1 + f (1)) (1 + f (2)) · · · (1 + f (T))

(3.16)

Under the assumption of realized forwards, the price of the bond after one
period becomes

P1 (R1) = c
(1 + f (2))

+ c
(1 + f (2)) (1 + f (3))

+ · · ·

+ 1 + c
(1 + f (2)) (1 + f (3)) · · · (1 + f (T))

(3.17)

Combining equations (3.16) and (3.17) it is easy to see that

P1 (R1) + c − P0 (R0)
P0 (R0)

= f (1) (3.18)

In words, equation (3.18) says that the gross, single-period return of any
security is the prevailing one-period rate. A two-year bond and a 10-year
bond, over the next period, both earn the short-term rate. As will be made
clear in Chapter 8, this result and the underlying assumption of realized
forwards is not particularly satisfying. It is more common to assume that,
since the 10-year bond has more interest rate risk than the two-year bond
(see Part Two), investors demand a higher return for the 10-year bond. In
any case, under the reasonable assumption that the one-period financing
rate is f (1), subtracting this rate from the gross return in (3.18) shows that
the single-period, net return of any security is 0.

In a similar manner it is easy to show that in the presence of a term
structure of spreads, i.e., with price given by (3.10), the one-period gross
return of a bond in the case of realized forward rates and spreads is f (1) +
s (1), i.e., the short-term rate plus the short-term spread.

The gross return under the realized forward assumption can be calcu-
lated over many periods as well. In general, it can be shown that the return
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to maturity under realized forwards is

c (1 + f (2)) (1 + f (3)) · · · (1 + f (T)) + · · ·
P0 (R0)

+ PT (RT) − P0 (R0)
P0 (R0)

= (1 + f (1)) (1 + f (2)) · · · (1 + f (T)) − 1 (3.19)

In words, the return to a bond held to maturity under the assumption
of realized forward rates is the same as rolling a $1 investment one period
at a time at those forward rates.

The discussion of this subsection has interesting implications in the
answer to the following question. Which of the following two strategies
is more profitable, rolling over one-period bonds or investing in a long-
term bond and reinvesting coupons at prevailing short-term rates? As just
demonstrated, if forward rates are realized, the two strategies are equally
profitable. But if realized forwards are greater than the forwards implicit
in the initial bond price, rolling over one-period bonds is more profitable.
And if realized forwards are less than those implicit in the initial bond price,
investing in the long-term bond is more profitable. Hence, the decision to
roll short-term investments or to purchase long-term bonds depends on how
the decision maker’s forecast of rates compares with market forward rates.
Note, however, that while this reasoning provides a good deal of intuition
about the returns of short- versus long-term bonds, it says nothing about
the more realistic case of some forwards being realized above the initial
forwards and some being realized below.

Unchanged Term Structure

A very common carry-roll-down assumption is that the term structure stays
unchanged. If the six-month rate two years forward is 1.25% today, then,
six months from now, the six-month rate two-years forward will still be
1.25%. Under this assumption, the prices of a bond today and after one
period are

P0 (R0) = c
(1 + f (1))

+ c
(1 + f (1)) (1 + f (2))

+ · · ·

+ 1 + c
(1 + f (1)) (1 + f (2)) · · · (1 + f (T))

(3.20)

P1 (R1) = c
(1 + f (1))

+ c
(1 + f (1)) (1 + f (2))

+ · · ·

+ 1 + c
(1 + f (1)) (1 + f (2)) · · · (1 + f (T − 1))

(3.21)
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Combining the two equations (3.20) and (3.21) reveals the one-period gross
return under the assumption of an unchanged term structure:

P1 (R1) + c − P0 (R0)
P0 (R0)

=
[

f (T) − c
(1 + f (1)) · · · (1 + f (T))

+ c
]

1
P0 (R0)

(3.22)

While equation (3.22) does not have as neat an interpretation as the
analogous equation for realized forwards, it does make the following point.
The gross return under the assumption of an unchanged term structure
depends most crucially on the last relevant forward rate, that is the forward
rate from one-period before maturity to maturity, versus the bond’s coupon
rate. The intuition for this result parallels the discussion in the “Maturity
and Price or Present Value” subsection of Chapter 2. Finally, it is easy to
show that in the presence of a term structure of spreads, the relevant quantity
for determining the return becomes f (T) + s (T) − c.

The realized forward assumption implicitly assumes that there is no risk
premium built into forward rates. The unchanged term structure implicitly
assumes the opposite extreme. If the term structure slopes upward on average
and yet remains unchanged on average, it must be that the upward-sloping
shape is completely explained by investors’ requiring a risk premium that
increases with term.

Unchanged Yie lds

Yet another carry-roll-down assumption is that a bond’s yield remains un-
changed. This assumption is useful not so much for explicit carry-roll-down
calculations but for interpreting yield-to-maturity as a measure of return.
The bond pricing equation in terms of yield, equation (3.12) without the
explicit semiannual payment convention, is

P0 (R0) = c
(1 + y)

+ c

(1 + y)2 + · · · + 1 + c

(1 + y)T (3.23)

Under the assumption of unchanged yields,

P1 (R1) = c
(1 + y)

+ c

(1 + y)2 + · · · + 1 + c

(1 + y)T−1 (3.24)

And, along the lines of the previous subsections, combine equations (3.23)
and (3.24) to see that

P1 (R1) + c − P0 (R0)
P0 (R0)

= y (3.25)
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In words, the one-period gross return, assuming that yield remains un-
changed, is the yield. It is in this sense that an investor in a bond earns
its yield-to-maturity.

Extending this analysis to many periods, it can be shown that, under
the assumption of constant yields,

c (1 + y)T−1 + c (1 + y)T−2 + · · ·
P0 (R0)

+ PT (RT) − P0 (R0)
P0 (R0)

= (1 + y)T − 1 (3.26)

In words, an investor to maturity earns the bond’s yield in the sense that,
if the yield does not change and if all coupons are reinvested at that yield,
then the return of the bond to maturity equals the return of rolling over a $1
invesment period-by-period at that yield. Now while this sounds similar to
the statement made in the context of realized forwards, the unchanged yield
scenario is even less satisfying. The assumptions that yield stays unchanged
over the life of a bond and that all coupons can be reinvested at that same
yield are particularly flawed: the fact that there is a term structure of interest
rates implies that a bond’s yield will change with maturity and that single-
period reinvestment rates should not equal bond yield. The unchanged yield
assumption is less problematic for these reasons if the term structure is
always flat, but that condition is quite unrealistic as well.

Expectat ions of Short-Term Rates are Real i zed

A more conceptually appealing scenario for computing carry-roll-down is
that expectations of short-term rates are realized. This is much more difficult
to implement than the other scenarios presented in this section because an
investor has to specify expectations of rates in the future and then describe
how forwards rates are formed relative to those expectations. A framework
of this sort is presented in Chapter 8. The outcome, arguably more sensible
than others in this section, is that the expected return of a bond, which is
not the same as the roll-down return,5 is equal to the short-term rate plus a
risk premium that depends on the riskiness of the bond.

APPENDIX A: Y IELD ON SETTLEMENT DATES
OTHER THAN COUPON PAYMENT DATES

To keep the presentation of ideas simple, the “Yield-to-Maturity” subsection
earlier in this chapter considered only settlement dates that fall on coupon

5The expected return of a bond is not the same as the return of the bond should
rates evolve according to expectation. Mathematically, a price at expected rates is
not equal to the expected price.
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payment dates. This appendix gives the formula for yield-to-maturity when
the settlement date does not fall on a coupon payment date. The definition
of yield is expressed in the text as equation (3.13) or (3.14):

P = c
2

2T∑
t=1

1(
1 + y

2

)t + 1(
1 + y

2

)2T
(3.27)

P = c
y

(
1 − 1(

1 + y
2

)2T

)
+ 1(

1 + y
2

)2T
(3.28)

Equation (3.27) has to change in two ways to take account of a set-
tlement date between coupon dates. First, price has to be interpreted to be
the full price of the bond. See the “Accrued Interest” section of Chapter 1.
Second, the exponents of equation (3.27) have to be adjusted to reflect the
timing of the cash flows. When the coupon payments arrive in semiannual
intervals, then, following the semiannual compounding convention, the first
payment is discounted by dividing by 1 + y

2 , the second by dividing by(
1 + y

2

)2, etc. But what if the first payment is paid in a fraction τ of a semi-
annual period? (If the next coupon were paid in five months, for example,
then τ = 5

6 .)6

Market convention for the purpose of calculating yield (which cannot
really be justified in terms of the logic of semiannual compounding) is to
discount the next coupon payment by

1(
1 + y

2

)τ (3.29)

and a subsequent payment i semiannual periods later by

1(
1 + y

2

)τ+i (3.30)

Under this convention, the price-yield equation for a bond making its
next payment in a fraction τ of a semiannual period and then making 2T − 1
subsequent semiannual payments is

P = c
2

2T−1∑
t=0

1(
1 + y

2

)τ+t + 1(
1 + y

2

)τ+2T−1 (3.31)

6More accurately, τ would be calculated with the day-count convention appropriate
for the security in question.
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Finally, applying the summation formula in Appendix D of Chapter 2
to (3.31) in order to derive the generalization of equation (3.28) gives the
relatively simple

P =
(
1 + y

2

)1−τ

[
c
y

(
1 − 1(

1 + y
2

)2T

)
+ 1(

1 + y
2

)2T

]
(3.32)

APPENDIX B: P&L DECOMPOSIT ION ON DATES
OTHER THAN COUPON PAYMENT DATES

For ease of exposition, the text assumed that dates t and t + 1 are both
coupon payment dates. To generalize the P&L decomposition, this appendix
allows these dates to fall between coupon payment dates. The notation of
the text continues here, with the following qualifications and additions. Let
Pt denote the full price of a bond, pt denote its quoted price, and AI(t) denote
its accrued interest, so that Pt = pt + AI(t). The coupon rate is c, as in the
text, and let the financing rate be r. Finally, let there be d days between dates
t and t + 1.

Begin with the case in which there is no coupon paid between dates t
and t + 1. Then the total P&L of a bond, including the cost of financing the
full price of the bond for d days, is

Pt+1(Rt+1, st+1) − Pt(Rt, st)
(

1 − rd
360

)
(3.33)

Using the breakdown of full price into quoted price plus accrued interest
and rearranging terms, the P&L becomes

pt+1(Rt+1, st+1) − pt(Rt, st) + AI(t + 1) − AI(t) − Pt(Rt, st)
rd

360
(3.34)

Applying the breakdown in the text to the quoted price appreciation in
(3.34) gives

[pt+1(Re
t+1, st) − pt(Rt, st)] + [pt+1(Rt+1, st) − pt+1(Re

t+1, st)]

+ [pt+1(Rt+1, st+1) − pt+1(Rt+1, st)]

+
[

AI(t + 1) − AI(t) − Pt(Rt, st)
rd

360

]
(3.35)

The P&L terms of (3.35) are, in order, the contributions due to carry-
roll-down, rates, spread, and cash carry.
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In the case that there is a coupon payment between dates t and t + 1,
then, ignoring the second order amount of interest on the coupon payment
from its payment date to t + 1, the P&L expression (per unit face amount)
changes only with the cash carry term in (3.35) changing to

c
2

+ AI(t + 1) − AI(t) − Pt(Rt, st)
rd

360
(3.36)

Note, however, that in (3.35), AI(t + 1) > AI(t) because there is no
coupon paid between t and t + 1. By contrast, in (3.36), AI (t + 1) may
be greater or less than AI (t) depending on where the two dates fall in the
coupon cycle.
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PART

Two
Measures of Interest
Rate Risk and Hedging

T he interest rate risk of a security is measured by how much its price
changes as interest rates change. Not surprisingly, measures of interest

rate risk are used routinely in fixed income markets. To hedge the interest
rate risk of one set of securities with other securities, traders have to compute
how the price of each security responds to changes in rates. To take a view
on the level or the shape of the term structure of interest rates in the future,
investors have to determine how securities perform under various interest
rate scenarios. To ensure that a portfolio of assets can continue to support a
portfolio of liabilities, asset-liability managers have to compare the interest
rate risks of the two portfolios. Lastly, to carry an appropriate amount
of risk relative to a mandate or charter, risk managers need to be able to
compute the volatility of fixed income portfolios.

Computing the price change of a security given a change in interest
rates is straightforward. For example, given an initial and a shifted spot
rate curve, the tools of Part One can be used to calculate the price change
of securities with fixed cash flows, and the models of Part Three can be
used to calculate the price change of interest rate derivatives. Therefore,
the challenge of measuring price sensitivity comes not so much from the
computation of price changes given changes in interest rates but in defining
what is meant by changes in interest rates.

One of the simplest formulations of a change in interest rates is that
rates of every term move up or down by the same amount. More general
one-factor formulations assume that changes in the rates of all terms are fully
determined by the change in a single interest rate factor, e.g., the 10-year
par rate. Multi-factor formulations assume that changes in all rates are a

119
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function of two or more factors. A popular two-factor approach posits that
a “level” factor and a “slope” factor are sufficient to describe term structure
movements while popular approaches using many more factors take each
forward rate as a separate interest rate factor.

Simple assumptions about how interest rates change result in risk met-
rics that are intuitive and easy to use, but may not accurately capture
the dynamics of term structure behavior. For example, yield-based DV01,
which assumes that all yields move up and down in parallel, is easy to
compute, easy to understand, and only requires one security to hedge the
risk of a large portfolio of securities. But the resulting hedge does not pro-
tect against curve risk, that is, changes in the slope of the term structure.
On the other hand, more complex, multi-factor formulations capture term
structure dynamics more accurately but are more challenging to use and
require several securities to hedge a given portfolio. In the end, practi-
tioners choose the simplest model that is appropriate for the application
at hand.

Chapter 4 introduces one-factor risk metrics. The first part of the
chapter presents one-factor metrics without explicitly describing how the
term structure changes as a function of that one factor. The point of
this expositional approach is to distinguish the concepts underlying risk
metrics from the models that describe how the term structure changes.
Then, with this distinction established, Chapter 4 continues with the pop-
ular yield-based DV01, duration, and convexity measures of interest rate
risk. More sophisticated models of term structure behavior are deferred to
Part Three.

Chapter 5 describes risk metrics that divide the term structure into sev-
eral regions, make very simple assumptions about how rates change within
each region, and then measure risk with respect to each region separately.
Key-rate analysis, for example, measures a portfolio’s exposure to changes
in several “key” rates, e.g., the two-year, five-year, 10-year, and 30-year
rates. Because each exposure is measured and then hedged separately, there
is no need to make assumptions about how the key rates change relative
to one another. However, in this example, four securities would be needed
to hedge any fixed income portfolio. Key rates exposures are used mostly
for bond portfolios. For portfolios of swaps and portfolios with both bonds
and swaps, however, partial PV01s and forward bucket ’01s tend to be used
instead. These approaches are similar in spirit to key rates, but divide the
term structure into many more regions.

Chapter 6 turns to methods that rely directly on data and empirical
analysis to describe changes in rates and to construct appropriate hedges.
While presented in a separate chapter, empirical approaches are not com-
pletely distinct from the methods of Chapters 4, 5, and Part Three. Sensible
practitioners use yield-based DV01 to hedge only when it is empirically rea-
sonable to do so. Similarly, the assumptions of any good factor model are
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consistent with empirical regularities of the data that are expected to persist
in the future. The particular methods described in Chapter 6 are single-factor
regression hedging, two-factor regression hedging, and principal compo-
nents analysis. Substantial effort has been made to enable a reader to ap-
preciate the power of these empirical approaches with a minimum amount
of mathematics.
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CHAPTER 4
One-Factor Risk Metrics

and Hedges

T his chapter presents some of the most important concepts used to measure
and hedge risk in fixed income markets, namely, DV01, duration, and

convexity. These concepts are first presented in a very general, one-factor
framework, meaning that the only significant assumption made about how
the term structure changes is that all rate changes are driven by one factor. As
an application used to illustrate concepts, the chapter focuses on a market
maker who shorts futures options and hedges with futures, although the
reader need not know anything about futures at this point.

The chapter then presents the yield-based equivalents of these more
general concepts, i.e., yield-based DV01, duration, and convexity. Because
these can be expressed through relatively simple formulas, they are very
useful for building intuition about the interest rate risk of bonds and are
widely used in practice. They cannot, however, be applied to securities with
interest-rate contingent payoffs, like options.

The chapter concludes with an application in which a portfolio manager
is deciding whether to purchase duration in the form of a bullet or barbell
portfolio. As it turns out, the choice depends on the manager’s view on
future interest rate volatility.

DV 01

Denote the price-rate function of a fixed income security by P(y), where y
is an interest rate factor. Despite the usual use of y to denote a yield, this
factor might be a yield, a spot rate, a forward rate, or a factor in one of the
models of Part Three. In any case, since this chapter describes one-factor
measures of price sensitivity, the single number y completely describes the
term structure of interest rates.

This chapter uses three securities, with prices as of May 28, 2010, to
illustrate concepts: the U.S. Treasury 4 1

2 s of May 15, 2017; the 10-year U.S.

123
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note futures contract maturing in September 2010, whose ticker is TYU0;
and a call option on TYU0 with a strike of 120 and a maturity of August
27, 2010, whose ticker is TYU0C 120. For the purposes of this chapter, the
reader need not know anything about futures and futures options, which are
covered in Part Four. As mentioned in the introduction to Part Two, under-
standing the interest rate risk of a security from its price-rate function can
be separated from the creation of that price-rate function. For completeness,
however, it is noted here that the price-rate curves of the three illustrative
securities were created using a particular calibration of the Vasicek model,
described in Chapter 9 and applied to futures in Chapter 14.

Figure 4.1 graphs three price-rate curves as a function of a (hypothetical)
seven-year U.S. Treasury par rate, which, on the pricing date, was 2.77%.
The three curves are for TYU0, for 100 notional amount of the 4 1

2 s, and for
an adjusted notional amount of the 4 1

2 s which, because of the technicalities
of the futures contract, is more comparable to TYU0.1 This adjusted notional
position is included in Figure 4.1 to highlight the difference between the
shape of a bond’s price-rate curve and that of a futures contract. The price-
rate curve of the 4 1

2 s is typical of all coupon bonds; it decreases with rates
and is very slightly convex,2 though that is hard to see from this figure. The

1The notional amount is 100 divided by the conversion factor of the bond for delivery
into TYU0. See Chapter 14.
2A line connecting any two points of a convex curve lies above the curve over that
region.
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price rate curve of TYU0 is typical of futures, decreasing with rates but with
both convex and concave3 regions. The convex region is to the left of the
graph, for low values of rates, while the concave region is to the right of
the graph, most easily recognized in contrast with the convexity of the two
bond curves over that same region.

Figure 4.2 graphs the price-rate curve of TYU0C 120. Its shape is typical
for a call option on a fixed income security, decreasing to zero as rates
increase and highly convex between a decreasing linear segment on the left
and a flat, zero-valued segment on the right.4

The price-rate curves in Figures 4.1 and 4.2 can be used to compute
the price sensitivities of the three securities with respect to interest rates.
From Figure 4.2, for example, if rates rise 10 basis points from .95% to
1.05%, the price of the option falls from 13.550 to 12.755, for a slope of
13.550−12.755
1.05%−.95% , which is −795 or −7.95 cents per basis point. If rates rise from

2.45% to 2.55% the same option falls in price from 3.096 to 2.622, for a
slope of −474 or −4.74 cents per basis point. And finally, if rates rise from
3.45% to 3.55% the option falls from .310 to .225, for a slope of −85 or
−.85 cents per basis point. The fact that price sensitivity changes as rates
change will be explored in later sections.

3The line connecting any two points of a concave curve lies below the curve over
that region.
4The typical shape of an option price-price curve is a hockey stick increasing to the
right. Figure 4.2, however, is a price-rate curve.
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To define a measure of interest rates more generally, let �P and �y
denote the changes in price and rate, respectively, and note that the change
in rate measured in basis points is 10,000 × �y. Then, consider the following
measure of price sensitivity:

DV01 ≡ − �P
10,000 × �y

(4.1)

DV01 is an acronym for dollar value of an 01 (i.e., of .01%) and gives the
change in the value of a fixed income security for a one-basis point decline
in rates. The negative sign defines DV01 to be positive if price increases
when rates decline and negative if price decreases when rates decline. This
convention has been adopted so that DV01 is positive most of the time: all
fixed coupon bonds and most other fixed income securities do rise in price
when rates decline.

In the discussion of Figure 4.2, the slope of the call is estimated using
pairs of option prices valued at rates which are 10 basis points apart: the
points (.95%, 13.550) and (1.05%, 12.755) are used to provide an estimate
of the slope at a rate of 1%, the points (2.45%, 3.096) and (2.55%, 2.622)
are used to provide an estimate at a rate of 2.5%, etc. Since the slope of the
call does change with rates, using points closer together, e.g., at 2.49% and
2.51% for an estimate of the slope at 2.50%, would—so long as the price of
the call can be computed accurately enough—give a more precise estimate
of the slope at a single point on the curve. In the limit of moving these points
together, the estimation gives the slope of the line tangent to the price-rate
curve at the chosen rate level. Figure 4.3 graphs two such tangent lines to
TYU0C 120, one tangent at 2.50% and one at 3.50%. That the former is
steeper than the latter shows that the option is more sensitive to rates at
2.50% than it is at 3.50%.

In the calculus, the slope of the tangent line at a particular rate level is
called the derivative of the price-rate function at that rate and is denoted
dP
dy . In some special cases, e.g., the yield-based metrics discussed later in this
chapter or certain model-based metrics of Part Three, the derivative of the
price-rate function can be written in closed form, i.e., as a relatively simple
mathematical formula. In other cases it has to be calculated numerically as
in the calculations for TYU0C 120 shown previously. In either case, in terms
of the derivative, equation (4.1) for DV01 becomes

DV01 ≡ − 1
10,000

dP
dy

(4.2)

Before closing this section, a note on terminology is in order. Most
market participants use DV01 to mean yield-based DV01, which is discussed
later in this chapter. Yield-based DV01 assumes that the yield-to-maturity
of a particular security changes by one basis point while, in the general
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definition of DV01 in this section, some factor changes by one basis point,
which then propagates in some way across the rest of the term structure. To
avoid confusion, some market participants have different names for DV01
measures according to the assumed change in rates. For example, the change
in price after a parallel shift in forward rates might be called DVDF or DPDF
while the change in price after a parallel shift in spot or zero coupon rates
might be called DVDZ or DPDZ.5

A HEDGING APPLICATION, PART I : HEDGING A
FUTURES OPTION

Say that in the course of business on May 28, 2010, a market maker sells
$100 million face amount of the option, TYU0C 120, when the seven-year
par rate used in the figures of the previous section is 2.77%. How might
the market maker hedge the resulting interest rate exposure by trading in
the underlying futures contract, TYU0?6 Since the market maker has sold

5The term PV01 will be discussed in the next chapter.
6For expositional reasons this application is somewhat contrived. Since futures op-
tions are traded on exchanges, a broker-dealer would, in reality, act as an agent to
purchase TYU0C for a customer’s account rather than act as a principal to sell the
option to a customer from its own account. Over-the-counter derivatives, on the
other hand, would be more strictly consistent with the spirit of the application.
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TABLE 4.1 Selected Model Prices and DV01s for TYU0 and
TYU0C 120 as of May 28, 2010

7-Year TYU0C
Par Rate TYU0 DV01 120 DV01

2.72% 120.0780 1.9194
2.77% 119.7061 .07442 1.7383 .03505
2.82% 119.3338 1.5689

the option and stands to lose money if rates fall, purchasing futures can
hedge the resulting exposure. The DV01 of the two securities can be used
to figure out exactly how many futures should be bought against the short
option position.

Table 4.1 gives selected price-rate pairs for TYU0 and for TYU0C 120
along with a calculated DV01. Note that, along the lines of the previous
section, the calculated DV01 at 2.77% uses the prices at rates of 2.72%
and 2.82%, but not the price at 2.77% itself. In any case, let F be the face
amount of futures the market maker needs to hedge the $100 million short
option position. Then, set F such that, after a one basis-point decline in
rates, the change in the price of the hedge position plus the change in the
price of the option position equals zero. Mathematically,

F
.07442

100
− 100,000,000 × .03505

100
= 0 (4.3)

There is a negative sign in front of the second term on the left-hand
side because the option position is short $100 million. Also, since DV01
values quoted in the text and shown in the figures are for 100 face amount,
they have to be divided by 100 before being multiplied by face amounts.
Rearranging terms of (4.3) shows that

F = 100,000,000 × .03505
.07442

(4.4)

Solving (4.4) for F, the market maker should purchase $47.098 million face
amount of TYU0.

To summarize this hedging strategy, the change in value of the short
option position for each basis point decline in rates is

−$100,000,000 × .03505
100

= −$35,050 (4.5)
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The change in the value of the hedge, the $47 million face amount of TYU0,
offsets this loss:

$47,098,000 × .07442
100

= $35,050 (4.6)

Generally, if DV01 is expressed in terms of a fixed face amount, hedging
a position of FA face amount of security A requires a position of FB of
security B where

FB = − FA × DV01A

DV01B
(4.7)

To avoid careless trading mistakes, it is worth empahsizing the simple
implications of equation (4.7), assuming for the moment that, as usually is
the case, each DV01 is positive. First, hedging a long position in security A
requires a short position in security B and vice versa. In the example, the
market maker sells futures options and buys futures. Second, the security
with the higher DV01 is traded in smaller quantity than the security with the
lower DV01. In the example, the market maker buys only $47.098 million
futures against the sale of $100 million options.

There are securities for which DV01 is negative, most notably in mort-
gage derivatives. See Chapter 20. Hedging such a security with a positive-
DV01 security would, by (4.7), require both sides of the trade to be long
or short.

Return to the market maker who sells $100 million of TYU0C 120
and buys $47.098 million TYU0 when rates are 2.77%. Using the prices in
Table 4.1, the value of the hedged position immediately after the trades is

−$100,000,000 × 1.7383
100

+ $47,098,000 × 119.7061
100

= $54,640,879

(4.8)

Now say that rates fall by 5 basis points to 2.72%. Using the prices in
Table 4.1 at the new rate level, the value of the position becomes

−$100,000,000 × 1.9194
100

+ $47,098,000 × 120.0780
100

= $54,634,936

(4.9)

The hedge has succeded in that the value of the position has hardly changed
even though rates have changed.

To avoid misconceptions about market making, note that the market
maker in this example makes no money. In reality, the market maker would
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sell the options at some premium to their fair value. Taking half a tick, for
example, the market maker would take an immediate value gain of half of
1
32 or .015625 on the $100 million options for a total of $15,625. This
spread compensates the market maker for executing the original trade and
for managing the hedge of the position over the time. Some of the challenges
of hedging the option after the initial trade are discussed in the continuation
of this application later in this chapter.

DURATION

DV01 measures the dollar change in the value of a security for a basis
point change in interest rates. Another measure of interest rate sensitivity,
duration, measures the percentage change in the value of a security for a
unit change in rates. Mathematically, letting D denote duration,

D ≡ − 1
P

�P
�y

(4.10)

As in the case of DV01, when an explicit formula for the price-rate
function is available, the derivative of the price-rate function may be used
for the change in price divided by the change in rate:

D ≡ − 1
P

dP
dy

(4.11)

Otherwise, prices at various rates must be substituted into (4.10) to esti-
mate duration.

Table 4.2 gives the same rate levels and prices as Table 4.1 but computes
duration instead of DV01. Once again, rates above and below the rate level
in question are used to compute changes. The duration of TYU0 at 2.77%
is given by

D = − 1
119.7061

(119.3338 − 120.0780)
2.82% − 2.72%

= 6.217 (4.12)

TABLE 4.2 Selected Model Prices and Durations for TYU0 and
TYU0C 120 as of May 28, 2010

7-Year TYU0C
Par Rate TYU0 Duration 120 Duration

2.72% 120.0780 1.9194
2.77% 119.7061 6.217 1.7383 201.6
2.82% 119.3338 1.5689
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One way to interpret the duration number of 6.217 is to multiply both
sides of definition (4.10) by �y:

�P
P

= −D�y (4.13)

In the case of TYU0, equation (4.13) says that the percentage change in
price equals −6.217 times the change in rate. Therefore, a one-basis point
decrease in rate will result in a percentage price change of 6.217 × .0001 or
.06217%. Since the price of TYU0 at 2.77% is 119.7061, this percentage
change translates into a dollar change of .06217% × 119.7061 or .07442
per basis point, which is, of course, the DV01 of the futures at that rate level.

When speaking about duration, it is conventional to normalize for a 100
basis-point change in rates. In the present case, for example, practitioners
would say that TYU0’s price changes by 6.217% for a 100 basis-point
change in rates. This is a convention of language, not of practice, because
duration, like DV01, changes with the level of rates so that the actual price
change for a move as large as 100 basis points will not be particularly well
approximated by 6.217%.

Duration tends to be more convenient than DV01 in the investing con-
text, as opposed to the trading context. If an institutional investor has funds
to invest when rates are 2.77%, the fact that the duration of TYU0C 120
vastly exceeds that of TYU0 alerts the investor to the far greater risk of
investing money in options. With a duration of 6.215, the funds invested in
TYU0 will change in value by about .62% for a 10-basis point change in
rates. However, with a duration of 201.381, the same funds invested in the
option will gain or lose about 20.1% for the same 10-basis point change
in rates!

By contrast, in a trading or hedging problem percentage changes are not
particularly useful because the dollar amounts of the two sides of the trade
are usually not the same. In the example of the previous section, the market
maker sells options worth about $1.74 million and buys futures with a bond-
equivalent value of $56.38 million. Hence it is much more useful to compute
the dollar sensitivity of each position, as in equations (4.5) and (4.6).

Another difference between DV01 and duration is their behavior as
rates change. Figure 4.3 showed that the DV01 of TYU0C 120 decreases as
rates increase. As it turns out, however, the duration of the option increases
as rates increase because the value of the option, which appears in the
denominator of the definition of duration, decreases rapidly with rates. For
example, at a rate of 2.77%, the option’s DV01 is .0351 (Table 4.1) and
its duration is 201.6 (Table 4.2). At a rate of 3.50%, however, the DV01
(calculated earlier in this chapter) is lower, at .0085, while its duration is
higher, at .0085 × 10,000/.265 or about 321, where .265 is the option price
at 3.50%.
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Like the section on DV01, this section closes with a note on terminology.
As defined in this chapter, duration may be computed for any assumed
change in the term structure of interest rates. This very general definition is
sometimes also called effective duration. In any case, note that when using
the term duration many market participants mean yield-based duration,
which is discussed later in this chapter.

CONVEXITY

As first mentioned in the discussion of Figure 4.3, interest rate sensitivity
changes with the level of rates. Convexity measures this sensitivity. To start
the discussion, Figure 4.4 graphs the DV01 of the adjusted notional amount
of the 4 1

2 s of May 15, 2017, TYU0, and TYU0C 120, all as a function of the
level of rates. The DV01 of the bond declines relatively gently as rates rise.
The DV01 of the futures changes gently as well, although it first declines with
rates, then increases, and then declines again. (This shape is usual for futures
contracts and will be explained in Chapter 14.) Finally, the DV01 of the
futures option declines gradually or steeply, depending on the level of rates.

Mathematically, convexity is defined as

C ≡ 1
P

d2P
dy2

(4.14)
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where the second multiplicand is the second derivative of the price-rate
function. While the first derivative measures how price changes with rates,
the second derivative measures how the first derivative changes with rates.
As with DV01 and duration, if there is an explicit formula for the price-rate
function then (4.14) may be used to compute convexity. Without such a
formula, convexity must be estimated numerically.

Tables 4.3, 4.4, and 4.5 show how to estimate the convexity of the
adjusted notional of the 4 1

2 s, TYU0, and TYU0C 120, respectively, at three
rate levels, namely, 1.77%, 2.77%, and 3.77%. Prices have been recorded
to three decimal places, but calculations have been performed using greater
accuracy. (This does make a difference in the calculations of second deriva-
tives which divide twice by a small number, namely, by the .05% difference
between rates.)

The convexity of the futures contract at 1.77%, as reported in Table 4.4,
is estimated as follows. Start by estimating the first derivative between 1.72%
and 1.77%, i.e., at 1.745%, by dividing the change in price by the change
in rate:

127.172545 − 127.552549
1.77% − 1.72%

= −760.008 (4.15)

Then estimate the derivative between 1.77% and 1.82%, i.e., at 1.795%,
in the same way to get −757.956. Next, estimate the second derivative

TABLE 4.3 Model Convexity Calculations for the Adjusted Notional
Amount of the 4 1

2 s of May 15, 2017, as of May 28, 2010

Rate Price 1st Derivative Convexity

1.72% 129.043
1.745% −755.304
1.77% 128.665 41.5
1.795% −752.637
1.82% 128.289
2.72% 121.737
2.745% −703.902
2.77% 121.385 40.6
2.795% −701.436
2.82% 121.035
3.72% 114.927
3.745% −656.370
3.77% 114.599 39.8
3.795% −654.090
3.82% 114.272
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TABLE 4.4 Model Convexity Calculations for TYU0
as of May 28, 2010

Rate Price 1st Derivative Convexity

1.72% 127.553
1.745% −760.008
1.77% 127.173 32.3
1.795% −757.956
1.82% 126.794
2.72% 120.078
2.745% −743.792
2.77% 119.706 −14.3
2.795% −744.648
2.82% 119.334
3.72% 112.505
3.745% −773.593
3.77% 112.119 −19.2
3.795% −774.669
3.82% 111.731

TABLE 4.5 Model Convexity Calculations for TYU0C
120 as of May 28, 2010

Rate Price 1st Derivative Convexity

1.72% 7.657
1.745% −715.275
1.77% 7.299 2,575.0
1.795% −705.878
1.82% 6.946
2.72% 1.919
2.745% −362.117
2.77% 1.738 26,860.0
2.795% −338.771
2.82% 1.569
3.72% .126
3.745% −41.434
3.77% .105 113,382.0
3.795% −35.480
3.82% .087
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at 1.77% by dividing the change in the first derivative by the change in
rates:

−757.956 + 760.008
1.795% − 1.745%

= 4,104 (4.16)

Finally, to estimate the convexity, divide the estimate of the second derivative
by the price of the futures contract at 1.77%:

1
127.172545

× 4,104 = 32.3 (4.17)

In Tables 4.3 and 4.5 the second derivatives of the bond and option are
always positive so that convexity is always positive. These securities would
be said to exhibit positive convexity. Graphically this means that their price-
rate curves are convex and that, as shown in Figure 4.4, their DV01s fall as
rates increase.

The futures contract, by contrast, is convex over part but not all of its
range: in Table 4.4 TYU0 exhibits positive convexity at 1.77% but negative
convexity at 2.77% and at 3.77%. In terms of Figure 4.4, the DV01 of
the futures contract is falling at 1.77% but is rising at 2.77% and also
at 3.77%.

The convexity values for the option calculated in Table 4.5 are relatively
large. At intermediate rate levels this is certainly due in part to the rapid fall
in DV01 as seen in Figure 4.4. At low and high levels of rates, however, the
relatively large convexity values are mostly due to the relatively low price
of the option. At 3.77%, for example, the change in the first derivative is
about 2.3 for the bond and 6.0 for the option. But because the option price
at 3.77% is .105, compared with 114.599 for the bond, the convexity of
the option is thousands of times bigger. In short, a price factor distinguishes
convexity from the second derivative just as a price factor distinguishes
duration from DV01.

A HEDGING APPLICATION, PART I I : A SHORT
CONVEXITY POSIT ION

In the first part of this hedging application the market maker buys
$47.098 million face amount of TYU0 against a short position of $100 mil-
lion TYU0C 120. Figure 4.5 shows the profit and loss, or P&L, of a long
position of $47.098 million futures and of a long position of $100 mil-
lion options as rates change. Since the market maker is actually short the
options, the P&L of the position at any rate level is the P&L of the long
futures position minus the P&L of the long option position.
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F IGURE 4.5 P&L-Rate Curve for a $100 Million Long in TYU0C 120 and a
DV01-Equivalent Long in TYU0 as of May 28, 2010

By construction, the DV01 of the long futures and option positions are
the same at a rate of 2.77%. In other words, for small rate changes, the
change in the value of one position equals the change in the value of the
other. Graphically, the P&L curves are tangent at 2.77%.

The first part of this hedging application showed that the hedge performs
well in that the market maker neither makes nor loses money after a five-
basis point change in rates. At first glance it may appear from Figure 4.5 that
the hedge works well after moves of 25 or even 50 basis points. The values
on the vertical axis, however, are measured in millions of dollars. After a
move of only 25 basis points the hedge is off by about $150,000, which
is a very large number in light of the approximately $15,625 the market
maker collected in spread. Worse yet, since the P&L of the long option is
always above that of the long futures position, the market maker loses this
$150,000 whether rates rise or fall by 25 basis points.

The hedged position loses whether rates rise or fall because the option
is more convex than the bond. In market jargon, the hedged position is
short convexity. For small rate changes away from 2.77% the values of the
futures and option positions change by the same amount. Due to its greater
convexity, however, the sensitivity of the option changes by more than the
sensitivity of the bond. When rates increase, the DV01 of the option falls
by more. Hence, after further rate increases, the option falls in value less
than the futures, and the P&L of the option position stays above that of the
futures position. Similarly, when rates decline below 2.77%, the DV01 of
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both the futures and option rise, but the DV01 of the option rises by more.
Hence, after further rate declines the option rises in value more than the
futures and the P&L of the option position again stays above that of the
futures position.

This discussion reveals that DV01 hedging is local, that is, valid in a
particular neighborhood of rates. As rates move, the quality of the hedge
deteriorates. Consequently, the market maker will need to re-hedge the
position. If rates rise above 2.77% so that the DV01 of the option position
falls by more than the DV01 of the futures position, the market maker
will have to sell futures to re-equate DV01s at the higher level of rates.
If, on the other hand, rates fall below 2.77% so that the DV01 of the
option position rises by more than the DV01 of the futures position, the
market maker will have to buy futures to re-equate DV01s at the lower level
of rates.

An erroneous conclusion might be drawn at this point. Figure 4.5 shows
that the value of the option position exceeds the value of the futures posi-
tion at any rate level. Nevertheless, it is not correct to conclude that the
option position is a superior holding to the futures position. Anticipating
the discussion in Chapter 8, the market price of an option will be set high
enough relative to the price of the futures to reflect its convexity advantages.
In particular, if rates do not change by very much, then as time passes the
futures will perform better than the option, a disadvantage of the long op-
tion position that is not captured in Figure 4.5. In summary, the long option
position will outperform the long futures position if rates move a lot while
the long futures position will outperform if rates stay about the same. It is in
this sense, by the way, that a long convexity position is long volatility while
a short convexity position is short volatility.

ESTIMATING PRICE CHANGES AND RETURNS
WITH DV 01, DURATION, AND CONVEXITY

Price changes and returns as a result of changes in rates can be estimated
with the measures of price sensitivity used in previous sections. Despite the
abundance of calculating machines that, strictly speaking, makes these ap-
proximations unnecessary, an understanding of these estimation techniques
builds intuition about the behavior of fixed income securities and, with
practice, allows for some rapid mental calculations.

A second-order Taylor approximation of the price-rate function with
respect to rates gives the following approximation for the price of a security
after a small change in rate:

P(y + �y) ≈ P(y) + dP
dy

�y + 1
2

d2P
dy2

�y2 (4.18)
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Equation (4.18) can be rewritten in several useful ways. First, subtracting P
from both sides gives an approximation for the change in price:

�P ≈ dP
dy

�y + 1
2

d2P
dy2

�y2 (4.19)

Sceond, dividing (4.19) by P gives an approximation for the percentage
change in price:

�P
P

≈ 1
P

dP
dy

�y + 1
2

1
P

d2P
dy2

�y2 (4.20)

Third, using the definitions of duration and convexity in equations (4.11)
and (4.14), (4.20) can be rewritten as

�P
P

≈ −D�y + 1
2

C�y2 (4.21)

As an example, given data on the price and interest rate sensitivity of
TYU0C 120 at 2.77% from previous sections, what is an estimate of the
price at 2.50%? Any of equations (4.18) through (4.21) could be applied,
but choose (4.18) for now. Table 4.1 reports that at 2.77% the price of the
option is 1.738 and its DV01 is .03505, which, multiplying by −10,000,
implies a first derivative of −350.5. Table 4.5 reports that at 2.77% the
convexity of the option is 26,860.0, which, multiplied by its price of 1.738,
implies a second derivative of 46,682.7. Substituting all these quantities into
(4.18 ) gives the following price estimate at 2.50%:

P(2.50%) ≈ P(2.77%) + dP
dy

(2.50% − 2.77%) + 1
2

d2P
dy2

(2.50% − 2.77%)2

≈ 1.738 − 350.5 × (−.27%) + 1
2

× 46,682.7 × (−.27%)2

≈ 1.738 + .946 + .170 = 2.854 (4.22)

To three decimals the price of TYU0C 120 at 2.50% is 2.854, so the ap-
proximation given by (4.22) is quite accurate.

Note that the first derivative or DV01-like term of (4.22), .946, is much
larger than the second derivative term, .170. Or, were the approximation
(4.21) used instead, the duration term is much larger than the convexity
term. This is generally true for individual securities because, while convexity
is usually a larger number than duration, the change in rate is so much
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F IGURE 4.6 Price-Rate Curve for TYU0C 120 and its First- and Second-Order
Approximations as of May 28, 2010

larger than the change in rate squared that the duration effect dominates.7

This fact suggests that it may sometimes be safe to drop the convexity
term completely and to use the first-order approximation for the change
in price or the percentage change in price, which follow from (4.19) and
(4.21), respectively:

�P ≈ dP
dy

�y (4.23)

�P
P

≈ −D�y (4.24)

Figure 4.6 graphs the option price along with the first-order and second-
order approximations at a starting rate of 2.77%. Both approximations
work very well for very small changes in rate. For larger changes the second-
order approximation still works well, but for very large changes it eventually
fails. The figure makes clear that approximating price changes with DV01 or
duration alone ignores the curvature or convexity of the price-rate function
while adding the convexity term captures a good deal of this curvature.

In the case of a bond or futures price, with price-rate curves that ex-
hibit much less convexity than that of the option—compare Figure 4.1 with

7This need not be true, of course, for manufactured securities or positions, e.g.,
hedged positions constructed to have zero duration.
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Figure 4.2—both first- and second-order approximations work so well that
they would be difficult to distinguish graphically over a relevant range of
interest rates.

CONVEXITY IN THE INVESTMENT AND
ASSET-L IABIL ITY MANAGEMENT CONTEXTS

It was mentioned earlier in this chapter, in the discussion of Figure 4.5, that
the option, as the more positively convex security, outperforms a DV01-
matched position in futures if rates move a lot. This effect, that convexity
is an exposure to volatility, can be seen directly from the approximation
(4.21). Since �y2 is always positive, positive convexity increases return so
long as interest rates move. The bigger the move in either direction, the
greater the gains from positive convexity. Negative convexity works in the
reverse. If C is negative, then rate moves in either direction reduce returns.
In the investment context, choosing among securities with the same dura-
tion expresses a view on interest rate volatility. Choosing a very positively
convex security would essentially be choosing to be long volatility, while
choosing a negatively convex security would essentially be choosing to be
short volatility.

Figure 4.6 suggests that asset-liability managers (or hedgers, more gener-
ally) can achieve greater protection against interest rate changes by hedging
duration and convexity instead of duration alone. Consider an asset-liability
manager who sets both the duration and convexity of assets equal to those
of liabilities. Since both the first- and second-derivative terms of the asset
and liability price-rate functions match, changes in the value of assets will
more closely resemble changes in the value of liabilities than had their dura-
tions alone been matched. Furthermore, since matching convexity also sets
the initial change in interest rate sensitivity of the assets equal to that of the
liabilities, the sensitivity of the assets will be very close to the sensitivity of
the liabilities even after a small change in rate. Put another way, the asset-
liability manager need not rebalance so often as in the case of matching
duration alone.

MEASURING THE PRICE SENSIT IV ITY
OF PORTFOLIOS

This section shows how measures of a portfolio’s price sensitivity are related
to the measures of its component securities. Computing price sensitivities
can be a time-consuming process, especially when using the term structure
models of Part Three. Since a typical investor or trader focuses on a par-
ticular set of securities at one time and constantly searches for desirable
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portfolios from that set, it is often inefficient to compute the sensitivity of
every portfolio from scratch. A better solution is to compute sensitivity mea-
sures for all the individual securities and then to use the rules of this section
to compute portfolio sensitivity measures.

A price or a measure of sensitivity for security i is indicated by the
superscript i, while quantities without superscripts denote portfolio quanti-
ties. By definition, the value of a portfolio equals the sum of the value of the
individual securities in the portfolio:

P =
∑

Pi (4.25)

Recall that in this chapter y has been a single rate or factor sufficient
to determine the prices of all securities. Therefore, one can compute the
derivative of price with respect to this rate or factor for all securities in the
portfolio and, from (4.25),

dP
dy

=
∑ dPi

dy
(4.26)

Then, dividing both sides by 10,000 and using the definition of DV01 in
(4.1) shows that the DV01 of a portfolio equals the sum of the individual
security DV01s:

DV01 =
∑

DV01i (4.27)

The rule for duration is only a bit more complex. Starting from equation
( 4.26), divide both sides by −P:

− 1
P

dP
dy

=
∑

− 1
P

dPi

dy
(4.28)

Now multiply each term in the summation by one in the form of Pi

Pi .

− 1
P

dP
dy

=
∑

− Pi

P
1
Pi

dPi

dy
(4.29)

Finally, using the definition of duration in (4.11),

D =
∑ Pi

P
Di (4.30)
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In words, the duration of a portfolio equals a weighted sum of individ-
ual durations, where each security’s weight is its value as a percentage of
portfolio value.

Since the formula for the convexity of a portfolio can be derived along
the same lines as the duration of a portfolio, it is given here without proof:

C =
∑ Pi

P
C i (4.31)

YIELD-BASED RISK METRICS

As a special case of the metrics defined so far in this chapter, this section
defines yield-based measures of price sensitivity. These measures have two
important weaknesses. First, they are defined only for securities with fixed
cash flows. Second, as will be seen shortly, their use implicitly assumes paral-
lel shifts in yield, which is not a particularly good assumption. Despite these
weaknesses, however, there are several reasons fixed income professionals
must understand these measures. First, these measures of price sensitivity are
simple to compute, easy to understand, and, in many situations, perfectly
reasonable to use. Second, these measures are widely used in the financial
industry. Third, much of the intuition gained from a full understanding of
these measures carries over to more general measures of price sensitivity.

Yie ld-Based DV 01 and Durat ion

Yield-based DV01 and duration are special cases of the metrics introduced
earlier in this chapter. In particular, these yield-based measures assume that
the yield of a security is the interest rate factor and that the price-rate
relationship is the price-yield function introduced in equations (3.13) and
(3.14). For convenience, these equations are reproduced here for a face
value of 100 and with price written explicitly as a function of that security’s
yield, y:

P(y) = 100c
2

2T∑
t=1

1(
1 + y

2

)t + 100(
1 + y

2

)2T
(4.32)

P(y) = 100c
y

(
1 − 1(

1 + y
2

)2T

)
+ 100(

1 + y
2

)2T
(4.33)

Taking the negative of the derivative of the two pricing expressions,
(4.32) and (4.33), dividing by 10,000, and applying the definition of DV01
in (4.2), gives two expressions for yield-based DV01. Note that, to avoid
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clutter, this section will use the simple notations DV01 and D even when
referring to the special cases of yield-based DV01 and duration.

DV01 = 1
10,000

1
1 + y

2

[
100c

2

2T∑
t=1

t
2

1(
1 + y

2

)t + T
100(

1 + y
2

)2T

]
(4.34)

DV01 = 1
10,000

[
100c

y2

(
1 − 1(

1 + y
2

)2T

)
+ T

(
1 − c

y

)
100(

1 + y
2

)2T+1

]

(4.35)

Similarly, applying the definition of duration in (4.11) to the pricing
equations (4.32) and (4.33) gives the special cases of yield-based duration:

D = 1
P

1
1 + y

2

[
100c

2

2T∑
t=1

t
2

1(
1 + y

2

)t + T
100(

1 + y
2

)2T

]
(4.36)

D = 1
P

[
100c

y2

(
1 − 1(

1 + y
2

)2T

)
+ T

(
1 − c

y

)
100(

1 + y
2

)2T+1

]
(4.37)

These special cases are also known in the industry as modified or adjusted
duration.8

There is a certain structure to equations (4.34) and (4.36). Each term in
the brackets is the present value of a bond payment multiplied by the time
to receipt of that payment, t

2 . The contribution of a payment to the interest
rate risk of a bond varies directly with its present value and with its time to
receipt. In addition, duration can be viewed as a weighted-sum of times to
receipt, with each weight equal to the corresponding present value divided by
the total of the present values, i.e., the price. Viewed this way, duration is a
weighted-sum of times to receipt of payments and can be said to be measured
in years. Hence, practitioners often refer to a duration of six as six years.

Table 4.6 calculates the DV01 and duration of the U.S. Treasury 2 1
8 s

due May 31, 2015, as of May 28, 2010, using equations (4.34) and (4.36)
and the market yield of the bond on that date, namely 2.092%.9 The cash
flow dates and cash flows of the bond are as described in Part One. The

8This terminology is used because the first metric of this sort was Macaulay Duration.
But the definition of the text, which divided Macaulay Duration by 1 + y

2 , became
the industry standard.
9The use of these equations in this case is actually an approximation since the
settlement date is June 1, 2010, and not May 31. See Appendix A in Chapter 3.
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TABLE 4.6 DV01 and Duration Calculations for the 2 1
8 s of May 31, 2015, as of

May 28, 2010, at a Yield of 2.092 Percent

Cash Present Time- % of Wtd.
Date Term Flow Value Wtd. PV Sum

11/30/10 0.5 1.0625 1.0515 .5258 .1%
5/31/11 1.0 1.0625 1.0406 1.0406 .2%
11/30/11 1.5 1.0625 1.0298 1.5448 .3%
5/31/12 2.0 1.0625 1.0192 2.0384 .4%
11/30/12 2.5 1.0625 1.0086 2.5216 .5%
5/31/13 3.0 1.0625 .9982 2.9946 .6%
11/30/13 3.5 1.0625 .9879 3.4575 .7%
5/31/14 4.0 1.0625 .9776 3.9105 .8%
11/30/14 4.5 1.0625 .9675 4.3538 .9%
5/31/15 5.0 101.0625 91.0749 455.3746 95.3%

Total 100.1559 477.7621

DV01 .04728
Duration 4.7208

present value of each payment is computed using the market yield. For
example, the present value of the coupon payment due on May 31, 2014, is

1.0625(
1 + 2.092%

2

)8 = .97763 (4.38)

The time-weighted present value of each cash flow is its present value times
its term. For the cash flow on May 31, 2014, the time-weighted present
value is .97763 × 4.0 or 3.9105.

From equation (4.34), the DV01 of the bond is the sum of the time-
weighted present values divided by one plus half the yield and divided by
10,000. Using the total from the table, this bond’s DV01 is

1
10,000

× 1(
1 + 2.092%

2

) × 477.7621 = .04728 (4.39)

From equation (4.36), the duration of the bond is the sum of the time-
weighted present values divided by one plus half the yield and divided by
the price, the price just being the sum of the present values:

1
100.1559

× 1(
1 + 2.092%

2

) × 477.7621 = 4.7208 (4.40)

The rightmost column of Table 4.6 gives the time-weighted present
value of each cash flow as a percent of the total of these weighted values.
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Given the definitions of DV01 and duration in equations (4.34) and (4.36),
these percentages are also the contribution of each cash flow to the inter-
est rate risk of the bond. Far and away the largest contributor is the large
cash flow at maturity. But considering the coupon flows alone, the contribu-
tion increases with term. Even though the present values of the longer-term
coupon payments decline with term, their contributions to interest rate risk
increase with term. Longer-dated cash flows are more sensitive to interest
rate changes because they are discounted over longer periods of time.

Having defined and illustrated yield-based measures of interest rate sen-
sitivity, an important limitation of their use becomes clear. Constructing
a hedge so that the yield-based DV01 of a bond bought equals the yield-
based DV01 of a bond sold will work as intended only if the two bond
yields change by the same amount, i.e., only if their yields move in par-
allel. Of course, the efficacy of any hedge depends on the validity of its
assumptions. In the examples of the previous sections, an underlying pricing
model was used to relate the prices of the various securities to the seven-year
par rate, and the quality of those hedges depends on that relationship being
valid. Nevertheless, a well-thought-out model along the lines of those in Part
Three, or well-researched empirical relationships along the lines of Chapter
6, are more likely to produce valid pricing relationships and hedges than the
assumption of parallel yield shifts.

Yie ld-Based DV 01 and Durat ion for Zero Coupon
Bonds, Par Bonds, and Perpetu i t ies

Yield-based measures are particularly useful because of the intuition fur-
nished by their easy-to-derive formulas. This and the next several subsec-
tions exploit this usefulness to compare and contrast the risk profiles of
bonds with different cash-flow characteristics.

The yield-based DV01 and duration of a zero coupon bond can be
found by setting the coupon rate c equal to zero in equations (4.35) and
(4.37) and noting for the latter that, for a T-year zero coupon bond with
100 face amount,

P = 100(
1 + y

2

)2T
(4.41)

Hence,

DV01c=0 = T

100
(
1 + y

2

)2T+1 = TP

10,000
(
1 + y

2

) (4.42)

Dc=0 = T(
1 + y

2

) (4.43)
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From (4.43), the duration of a zero coupon bond is its years to maturity
divided by a factor only slightly greater than one. Also, the duration of a
zero, for a fixed yield, always increases with maturity. From (4.42), however,
for long maturity zero coupon bonds, the DV01 may not increase with
maturity because a falling price may outweigh the increase in maturity. This
last point will be illustrated in the next subsection.

The yield-based DV01 and duration of par bonds are useful formulae
as relatively simple approximations for bonds with prices close to par. For
a par bond (see Chapter 3), P = 100 and c = y. Substituting these values
into equations (4.35) and (4.37) shows that

DV01c=y = 1
100y

(
1 − 1(

1 + y
2

)2T

)
(4.44)

Dc=y = 1
y

(
1 − 1(

1 + y
2

)2T

)
(4.45)

The last cases to be considered here are the DV01 and duration of
perpetuities, which are sometimes useful as rough approximations for the
risk of extremely long-term fixed income securities. Letting T approach
infinity in equations (4.35) and (4.37) and recalling from Chapter 3 that the
price of a perpetuity with 100 face amount is 100c

y ,

DV01T=∞ = 1
100

c
y2

(4.46)

DT=∞ = 1
y

(4.47)

Durat ion, DV 01, Maturity , and Coupon:
A Graphica l Analys is

Figure 4.7 uses the equations in this section to show how duration varies
across bonds. For the purposes of this figure, all yields are fixed at 3.50%.
At this yield, the duration of a perpetuity is 28.6. Since a perpetuity has
no maturity, this duration is shown in Figure 4.7 as a horizontal line. Also,
since by equation (4.47) the duration of a perpetuity does not depend on
coupon, this line is a benchmark for the duration of any coupon bond with
a sufficiently long maturity.

From equation (4.43), and as evident from Figure 4.7, the duration of
zero coupon bonds is linear in maturity.

The duration of the par bond in Figure 4.7 increases with maturity.
Inspection of equation (4.45) makes it clear that this is always the case and
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F IGURE 4.7 Duration Across Bonds Yielding 3.50%

that the duration of a par bond rises from zero at a maturity of zero and
steadily approaches the duration of a perpetuity.

Considering all of the curves of Figure 4.7 together reveals that for any
given maturity duration falls as coupon increases. (Recognize that the par
bond in the figure has a coupon equal to the yield of 3.50%.) The intuition
behind this fact is that higher-coupon bonds have a greater fraction of
their value paid earlier. The higher the coupon, the larger the weights on
the duration terms of early years relative to those of later years. Hence,
higher-coupon bonds are effectively shorter-term bonds and therefore have
lower durations.

A little-known fact about duration can be extracted from Figure 4.7.
The duration of a bond with a very low, near zero, coupon would be
just below the zero coupon line of the figure. Furthermore, the coupon
could be set low enough such that the bond’s duration is still just below
the zero coupon line but above the duration of a perpetuity.10 Eventu-
ally, however, as maturity increases, the low coupon bond must approach
the duration of a perpetuity, i.e., its duration must fall with maturity.
This fact is somewhat of a mathematical curiosity if—as at the time of
this writing—yields are low relative to the coupons of outstanding bonds
so that few if any bonds exist with the prerequisite long maturities and
deep discounts.

10 In the example of the text, a bond with a coupon of .5% would have a duration
that peaked above the duration of a perpetuity.
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The next figure will show how DV01 varies across bonds. For this
discussion it is useful to combine explicitly the definitions of DV01 and
duration from (4.2) and (4.11) to write that

DV01 = P × D
10,000

(4.48)

As discussed in the context of Figure 4.7, duration almost always increases
with maturity. According to equation (4.48), however, the effect of maturity
on DV01 is more compex since it depends not only on how duration changes
with maturity but also on how price changes with maturity. What will
be called the duration effect tends to increase DV01 with maturity while
what will be called the price effect can either increase or decrease DV01
with maturity.

Figure 4.8 graphs DV01 as a function of maturity under the same
assumptions used in Figure 4.7. Since the DV01 of a perpetuity, unlike
its duration, depends on the coupon rate, the perpetuity line is removed.

Inspection of equation (4.44) reveals that the DV01 of par bonds always
increases with maturity. Since the price of par bonds is always 100, the price
effect does not come into play, and, as in the case of duration, longer par
bonds have greater price sensitivity. The curve approaches .286, the DV01
of a par perpetuity at a yield of 3.50%.

As discussed in Chapter 3, extending the maturity of a premium bond
increases its price. As a result, the price and duration effects combine so that
the DV01 of a premium bond increases with maturity faster than the DV01
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of a par bond. Of course, at some maturity beyond the range of the graph,
the price of the bond increases very slowly and the price effect becomes
less important. The DV01 of the 7% bonds eventually approaches that of a
perpetuity with a coupon of 7% (i.e., .571).

The DV01 of a zero behaves initially like that of a coupon bond, but
it eventually falls to zero. With no coupon payments the present value of
a zero with a longer and longer maturity approaches zero, and so does
its DV01.

Figure 4.8 also shows that, unlike duration, DV01 rises with coupon.
This fact is immediately evident from equation (4.34).

Durat ion, DV 01, and Yie ld

Inspection of equation (4.34) reveals that increasing yield lowers DV01.
This fact was already introduced when showing that coupon bonds display
positive convexity, that is, that their DV01s fall as interest rates increase.
As it turns out, increasing yield also lowers duration. The intuition behind
this fact is that increasing yield lowers the present value of all payments but
lowers the present value of the longer payments the most. Therefore, the
value of the longer payments falls relative to the value of the whole bond.
But since the duration of these longer payments is greatest, lowering their
corresponding weights in the duration calculation must lower the duration
of the whole bond.

To illustrate the effect of yield on duration, return to the example in
Table 4.6. At a yield of 2.092%, the duration of the 2 1

8 s of May 31, 2015,
is 4.7208. Also, the time-weighted present value of the payment at maturity,
as a percentage of the sum of those values, is 95.3%. Reworking the calcula-
tions at a yield of 6%, the percentage of the sum attributable to the payment
at maturity falls to 95% which, along with the increased relative importance
of the shorter coupon payments, drives the duration down to 3.8375.

Yie ld-Based Convexity

Following the general definition of convexity in (4.14), yield-based convexity
can be derived by taking the second derivative of (4.32) and dividing by price.
The resulting formula is

C = 1
P

1(
1 + y

2

)2

[
100c

2

2T∑
t=1

t
2

t + 1
2

1(
1 + y

2

)t + T (T + .5)
100(

1 + y
2

)2T

]

(4.49)

The structure of this equation is similar to those of the expressions for
yield-based DV01 and duration, but the time weights are t

2 × t+1
2 instead
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of t
2 , or, loosely speaking, more like t2 than like t. With this in mind, the

convexity of the 2 1
8 s due May 31, 2015, can be calculated using the first

four columns of Table 4.6 but then substituting the weighted present value
terms from (4.49) for those appropriate for the duration calculation. Doing
this, the sum of the weighted present values, corresponding to the bracketed
term in (4.49), is about 2,586 and, therefore, the bond’s convexity is

1
100.1559

× 1(
1 + 2.092%

2

)2 × 2,586 = 25.29 (4.50)

For intuition, a useful special case of (4.49) is that of a zero coupon
bond. Setting c = 0 and P = 100

(
1 + y

2

)−2T,

Cc=0 = T (T + .5)(
1 + y

2

)2 (4.51)

Applying (4.51), a five-year zero coupon bond yielding 2.092% would have
a convexity of 5 × 5.5 × (

1 + 2.092%
2

)−2
or 26.93.

This exceeds the convexity of the five-year 21
8 s yielding 2.092%: since

a coupon bond has some of its present value in earlier payments, and since
the convexity contributions of those payments are less than that of the final
payment at maturity, a coupon bond will have a lower convexity than a
maturity- and yield-equivalent zero.

From (4.51) it is clear that longer-maturity zeros have greater convex-
ity. In fact, the convexity of a zero increases with the square of maturity.
Furthermore, thinking of a coupon bond as a portfolio of zeros, longer-
maturity coupon bonds usually have greater convexity than shorter-maturity
coupon bonds.

For easy reference, another useful special case of convexity is presented
here, namely, the convexity of a par bond. This is obtained by differentiating
equation (4.33) twice with respect to yield, evaluating the result at y = c,
and dividing by the price, which, for par bonds is 100:

Cc=y = 2
y2

[
1 − 1(

1 + y
2

)2T

]
− 2T

y
(
1 + y

2

)2T+1 (4.52)

APPLICATION: THE BARBELL VERSUS THE BULLET

On May 28, 2010, a portfolio manager is considering the purchase of
$100 million face amount of the U.S. Treasury 3 3

8 s due November 15,
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TABLE 4.7 Data on Three U.S. Treasury Bonds as of May 28, 2010

Coupon Maturity Price Yield Duration Convexity

2 1
2 3/31/15 102.5954 2.025% 4.520 23.4

3 3
8 11/15/19 100.8590 3.288% 8.033 74.8

4 3
8 11/15/39 102.7802 4.221% 16.611 389.7

2019, at a cost of $100,859,000. After an analysis of the interest rate envi-
ronment, the manager is comfortable with the pricing of the bond at a yield
of 3.288% and with its duration of 8.033. But, after considering the data
on two other Treasury bonds in Table 4.7, the manager wishes to consider
an alternate investment.

The three bonds in the table have maturities of approximately five years,
10 years, and 30 years, respectively. Thus, an alternative to purchasing a
bullet investment in the 10-year 3 3

8 s is to purchase a barbell portfolio of
the shorter maturity, 5-year 2 1

2 s, and the longer maturity, 30-year 4 3
8 s.

In particular, the barbell portfolio would be constructed to cost the same
and have the same duration as the bullet investment. The advantages and
disadvantages of this barbell relative to this bullet will be discussed after
deriving the composition of the barbell portfolio.

Let V5 and V30 be the value in the barbell portfolio of the 5-year and
30-year bonds, respectively. Then, for the barbell to have the same value as
the bullet,

V5 + V30 = 100,859,000 (4.53)

Furthermore, using the data in Table 4.7 and equation (4.30), which de-
scribes how to compute the duration of a portfolio, the duration of the
barbell equals the duration of the bullet if

V5

100,859,000
× 4.520 + V30

100,859,000
× 16.611 = 8.033 (4.54)

Solving equations (4.53) and (4.54) shows that V5 is $71.555 million or
70.95% of the portfolio and that V30 is $29.304 million or 29.05% of the
portfolio. Finally, the convexity of the portfolio, using the data in Table 4.7
and equation (4.31), which describes how to compute the convexity of a
portfolio, is

70.95% × 23.4 + 29.05% × 389.7 = 129.8 (4.55)
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The barbell has greater convexity than the bullet because duration in-
creases linearly with maturity while convexity increases with the square of
maturity. If a combination of short and long durations, essentially matu-
rities, equals the duration of the bullet, that same combination of the two
convexities, essentially maturities squared, must be greater than the convex-
ity of the bullet. In the current context, the particularly high convexity of the
4 3

8 more than compensates for the lower convexity of the 2 1
2 . As a result,

the convexity of the portfolio exceeds the convexity of the 3 3
8 . The general

lesson is that spreading out the cash flows of a portfolio, without changing
duration, raises convexity.

Return now to the decision of the portfolio manager. For the same
amount of duration risk, the barbell portfolio has greater convexity, which
means that its value will increase more than the value of the bullet when rates
rise or fall. This is completely analogous to the price-rate profile of the option
TYU0C 120 relative to the DV01-equivalent position in the futures TYU0
depicted in Figure 4.5: the barbell portfolio benefits more from interest rate
volatility than does the bullet portfolio. What then is the disadvantage of
the barbell portfolio? The weighted yield of the barbell portfolio is

70.95% × 2.025% + 29.05% × 4.221% = 2.663% (4.56)

compared with the yield of the bullet of 3.288%. Hence, the barbell will
not do as well as the bullet portfolio if yields remain at current levels while,
as just argued, the barbell will outperform if rates move sufficiently higher
or lower.

In short, the manager’s work in choosing to bear a level of interest
rate risk consistent with a portfolio duration of about eight is not sufficient
to complete the investment decision. A manager believing that rates will
be particularly volatile will prefer the barbell portfolio while a manager
believing that rates will not be particularly volatile will prefer the bullet
portfolio. Of course, further calculations can establish exactly how volatile
rates have to be for the barbell portfolio to outperform.
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CHAPTER 5
Multi-Factor Risk Metrics

and Hedges

Amajor weakness of the approach in Chapter 4, and of several of the
models of Part Three, is the assumption that movements in the entire

term structure can be described by one interest rate factor. To make the
case in the extreme, because the six-month rate is unrealistically assumed
to predict perfectly the change in the 30-year rate, a (naive) DV01 analysis
leads to hedging a 30-year bond with a six-month bill. In reality, of course,
it is widely recognized that rates in different regions of the term structure
are far from perfectly correlated. Put another way, predicted changes in the
30-year rate relative to changes in the 6-month rate can be wildly off target,
whether these predicted changes come from a model, like the one implicitly
used in the first part of Chapter 4, or from the implicit assumption when
using yield-based DV01 that the two rates move by the same amount. The
risk that rates along the term structure move by different amounts is known
as curve risk.

This chapter discusses how to measure and hedge the risks of a security
or portfolio in terms of several other securities, where each hedging security
is most sensitive to a different part of the term structure. The more securi-
ties used in the hedge, the less important are any assumptions linking the
behavior of one rate with another. At the extreme discussed in the previous
paragraph, hedging with one security requires extremely strong assumptions
about how rates move together. At the other extreme, a hedge that uses one
security for every cash flow being hedged requires no assumptions about
how rates move together because risk will have been immunized against any
and all interest rate scenarios. Such a hedge, however, is almost certainly
to be excessively costly. The methods presented in this chapter have been
found to strike a sensible balance between hedging effectiveness and cost
or practicality.

Key-rate exposures are used for measuring and hedging the risk of bond
portfolios in terms of a relatively small number of the most liquid bonds
available, usually the most recently issued, near-par, government bonds.

153
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TABLE 5.1 Key Rate Duration
Profile of the U.S. Lehman Aggregate
Bond Index as of December 31, 2004

Key Rate Duration

6-Month 0.145
2-Year 0.655
5-Year 1.151
10-Year 1.239
20-Year 0.800
30-Year 0.349

Total 4.339

Source: The Lehman Brothers Global
Risk Model: A Portfolio Manager’s
Guide, April 2005.

Partial ’01s are used for measuring and hedging the risk of portfolios of
swaps or portfolios that contain both bonds and swaps in terms of the most
liquid money market and swap instruments. As these instruments are almost
always those whose prices are used to build a swap curve, the number of
securities used in this methodology is usually greater than the number used
in a key-rate framework. Finally, forward-bucket ’01s, mostly used in the
swap or combined bond and swap contexts as well, measure the risk of
a portfolio not in terms of other securities but in terms of direct changes
in the shape of the term structure. As a result, forward-bucket ’01s are often
the most intuitive way to understand the curve risks of a portfolio, but not
the quickest way to see which hedges are required to neutralize such risks.
This chapter concludes with a comment on the use of these methods to
measure the volatility of a portfolio.

KEY-RATE ’01s AND DURATIONS

Key-rate exposures are designed to describe how the risk of a bond portfolio
is distributed along the term structure and how to implement any desired
hedge, all in terms of some set of benchmark bonds, usuallly the more liquid
government securities.1 Table 5.1, as an example, shows a key-rate exposure
report for the U.S. Lehman Aggregate Bond Index,2 a benchmark portfolio
of U.S. governments, agencies, mortgages, and corporates. The duration of

1The idea was proposed in Thomas Ho, “Key Rate Duration: A Measure of Interest
Rate Risk,” Journal of Fixed Income, September, 1992.
2This set of indexes is now run by Barclays Capital.
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the portfolio with respect to U.S. government rates is 4.339, as reported
in the last row of the table. While this one number certainly quantifies
interest rate risk, along the lines explained in Chapter 4, the rest of the table
adds information about the distribution of this risk across the curve. For
example, more than half of the portfolio’s duration risk is closely related
to—and could be hedged with—5- and 10-year bonds.

Continuing with this example for a moment, consider a portfolio man-
ager whose performance is judged against the performance of this index.
And say in addition that the manager’s portfolio has the same duration as
the index but is concentrated in 30-year bonds. If rates move up or down in
parallel, the manager’s performance will match that of the index. But if the
government bond curve steepens the manager’s portfolio will underperform,
while if it flattens the manager’s portfolio will outperform.3

The next three subsections discuss defining key-rate shifts, computing
key-rate exposures, and then hedging with these exposures.

Key-Rate Shi f ts

The crucial assumption of the key-rate approach is that all rates can be de-
termined as a function of a relatively small number of key rates. Therefore,
the following decisions have to be made in order to implement the method-
ology: the number of key rates, the type of the key rates (e.g., spot rates, par
yields), the terms of the key rates, and the rule for computing all other rates
given the key rates.

In order to cover risk across the term structure, to keep the number of
key rates as few as reasonable, and to rely only on the most liquid govern-
ment securities, one popular choice of key rates for the U.S. Treasury and
related markets are the 2-, 5-, 10-, and 30-year par yields. Then, motivated
mostly by simplicity, the change in the term structure of par yields given
a one-basis point change in each of the key rates is assumed to be as in
Figure 5.1. Each of the four shapes is called a key-rate shift. Each key rate
affects par yields from the term of the previous key rate (or zero) to the term
of the next key rate (or the last term). For example, the 10-year key rate
affects par yields of terms 5 to 30 years only. Furthermore, the impact of
each key rate is normalized to be one basis point at its own maturity and
then assumed to decline linearly, reaching zero at the terms of the adjacent
key rates. For the two-year shift at terms of less than 2 years and for the
30-year shift at terms greater than 30 years, however, the assumed change
is constant at one basis point.

By construction, the four key-rate shifts sum to a constant shift of one
basis point. This allows for the interpretation of key-rate exposures as a

3For a definition of steepening and flattening, see Figure 2.6 and the surrounding
discussion.
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F IGURE 5.1 A Specification of Key-Rate Shifts

decomposition of the total DV01 or duration of a security or a portfolio
into exposures to four different regions of the term structure.

While the key-rate shifts in Figure 5.1 turn out to be very tractable
and useful, they implicitly make quite strong assumptions about the be-
havior of the term structure. Consider the assumption that the rate of a
given term is affected only by its neighboring key rates. The 7-year rate,
for example, is assumed to be a function of changes in the 5- and 10-year
rates only. Empirically, however, were the 2-year rate to change while the
5- and 10-year rates stayed the same, the 7-year rate would probably change
as well so as to maintain reasonable curvature across the term structure.
The linearity of the shifts is also not likely to be an empirically valid as-
sumption. All in all, however, the great tractability of working with the
shifts in Figure 5.1 has been found to compensate for these theoretical and
empirical shortcomings.

Calculat ing Key-Rate ’01s and Durat ions

As a simple introduction to the calculation of key-rate ’01s and duration,
this subsection takes the example of a 30-year zero coupon bond. While the
exposure of a 30-year zero to spot rates is very simple, its exposure to par
yields and, therefore, to key rates (as defined in the previous subsection),
is somewhat complicated. Basically, the risk along the curve of a 30-year
zero is not equivalent to that of a 30-year par bond because of the latter’s
coupon payments.
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TABLE 5.2 Key Rate DV01s and Durations of the May 15, 2040, C-STRIP as of
May 28, 2010

(1) (2) (3)
Value Key-Rate ’01 Key-Rate Duration

Initial Curve 26.22311
2-year Shift 26.22411 −.0010 −.38
5-year Shift 26.22664 −.0035 −1.35
10-year Shift 26.25763 −.0345 −13.16
30-year Shift 26.10121 .1219 46.49

Total .0829 31.60

Table 5.2 illustrates the calculations of key-rate DV01s and durations
for 100 face amount of the C-STRIP due May 15, 2040, as of May 28, 2010.
The C-STRIP curve on that day was taken as the base pricing curve, with
the key-rate shifts of Figure 5.1 superimposed as appropriate.

Column (1) of Table 5.2 gives the initial price of the C-STRIP and its
present value after applying the key-rate one-basis point shifts of Figure 5.1.
Column (2) gives the key-rate ’01s. Denoting the key-rate ’01 with respect
to key rate yk as DV01k, these are defined analogously to DV01 as

DV01k = − 1
10,000

∂ P
∂yk

(5.1)

where ∂ P
∂yk denotes the partial derivative of price with respect to that one

key rate. Applying this defintion to the C-STRIP described in Table 5.2, the
key-rate ’01 with respect to the 5-year shift is

− 1
10,000

26.22664 − 26.22311
.01%

= −.0035 (5.2)

Or, in words, the C-STRIP increases in price by .0035 per 100 face amount
for a positive one-basis-point five-year shift. The intuition behind the sign
of this ’01 will be explained in a moment.

The key-rate durations, denoted here as Dk, are also defined analogously
to duration so that,

Dk = − 1
P

∂ P
∂yk

(5.3)

Continuing with the five-year shift in Table 5.2, the key-rate duration is

− 1
26.22311

26.22664 − 26.22311
.01%

= −1.35 (5.4)
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Turning now to interpreting the results, the key-rate profile in Table 5.2
shows that the interest rate exposure of the 30-year C-STRIPS is equivalent
to that of a long position in a 30-year par bond, a smaller, short position
in a 10-year par bond, and even smaller short positions in 5- and 2-year
par bonds. This accords with the intuition stated at the beginning of this
subsection, that the 30-year par bond’s coupons create exposures at shorter
terms that have to be offset by shorts of short-term par bonds.

In addition to this replicating portfolio intuition, it is useful to under-
stand the precise mechanics by which the shorter-term key-rate ’01s and
durations in Table 5.2 turn out to be negative. To this end, Figure 5.2
graphs the 10-year key-rate (i.e., par yield) shift along with the resulting,
implied shift of spot rates. (An analogous figure could be constructed for the
five- and two-year key-rate shifts.)

From the implied spot rate shift in Figure 5.2 it is immediately apparent
why the 10-year, key-rate sensitivities of the 30-year C-STRIPS in Table 5.2
are negative. By definition, the 30-year par yield is unchanged by the 10-year
key-rate shift. But, according to the figure, the 30-year spot rate declines by
about .45 basis points, meaning the 30-year C-STRIPS increases in value.
Hence, the DV01 or duration of the 30-year STRIPS with respect to the
10-year par yield is negative. Since this spot rate declines by only .45 basis
points per basis-point increase in the 10-year par rate, however, the absolute
magnitude of this sensitivity is relatively small.

As for the intuition behind the shape of the implied spot-rate shift in
Figure 5.2, the interested reader can note that with par yields with from
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zero- to five-year terms remaining unchanged, spot rates of those terms have
to remain unchanged as well. Therefore, any increases in par rates of terms
between 5 and 10 years cannot be spread out across the spot rate curve but
have to be concentrated in spot rates with terms greater than 5 years. But this
implies that spot rates of terms between 5 and 10 years have to increase by
more than par rates. Similarly, as par rates with terms greater than 10 years
decrease, all spot rates with terms up to 10 years have already been fixed,
implying that all of the decrease in par rates with terms greater than 10 years
has to be concentrated in spot rates with terms beyond 10 years. Thus, the
decline in spot rates has to be steeper than the decline in par rates. Finally,
note that it would be impossible for the change in the 30-year par yield to
be zero if all of the spot rates with terms from 5 to 30 years have increased.
Hence, the longest-term spot rates have to decline as part of this key-rate
shift of par yields.

A final technical point should be made about the last row of Table 5.2,
namely, the sum of the key-rate ’01s and durations. Since the sum of the
key-rate shifts is a parallel shift of par yields, the sums of the key-rate ’01s
and durations are, as mentioned earlier, conceptually comparable to the
one-factor, yield-based DV01 and duration metrics, respectively. But key-
rate exposures, which shift par yields, will not exactly match yield-based
metrics, which shift security-specific yields.4

Hedging with Key-Rate Exposures

This subsection illustrates how to hedge with key-rate exposures using a
stylized example of a trader making markets in U.S. Treasury bonds. On
May 28, 2010, the trader executed two large trades:

1. The trader shorted $100 million face amount of a 30-year STRIPS to a
customer, buying about $47 million face of the 30-year bond to hedge
the resulting interest rate risk.

2. The trader facilitated a customer 5s-10s curve trade by shorting $40 mil-
lion face of the 10-year note and buying about $72 million of the 5-year
note.

Table 5.3 lists these trades in column (2), with two hedges, to be dis-
cussed presently, in the other columns. The coupon bonds featured in the
rows of the table are the on-the-run 2-, 5-, 10-, and 30-year U.S. Treasuries,
which, consistent with the motivation of key rates, are used by the trader to

4For example, it turns out that the sum of the changes in the 30-year spot rate
across all the key-rate shifts is 1.08 basis points. Therefore, the sum of the key-rate
exposures of a 30-year zero is about 1.08 times its exposure to the 30-year spot rate,
which is the same as 1.08 times its yield-based exposure.
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TABLE 5.3 Stylized Market Maker Positions and Hedges as of
May 28, 2010

(1) (2) (3) (4)
Face Amount ($ millions)

Alternate
Bond Position Hedge Hedge

.75s of 5/31/12 −5.190
2.125s of 5/31/15 72.446 −80.006 −80.008
3.5s of 5/15/20 −40 −.487
0s of 5/15/40 −100
4.375s of 5/15/40 47.077 22.633 21.806

hedge risk. The other bond in the table is the STRIPS due May 15, 2040,
discussed in the previous subsection. Table 5.4 gives the key-rate ’01 pro-
files for 100 face amount of these bonds in rows (i) through (v) and the ’01
profiles for particular portfolios, again, to be discussed presently, in rows
(vi) through (ix).

If the maturity of a coupon bond were exactly equal to the term of a key
rate and if the price of that bond were exactly par, then that bond’s yield
would be identical to that key rate. By definition, then, that bond’s key-rate
’01 with respect to that key rate would equal its yield-based DV01 while
its key-rate ’01 with respect to all other key rates would be zero. Since the
on-the-run bonds profiled in Table 5.4 are close to 2-, 5-, 10-, and 30-year
maturities, and since they do sell for about par, their key-rate exposures in

TABLE 5.4 Key-Rate 01 Profile of a Stylized Market Maker’s Position and Hedges
as of May 28, 2010

Key-Rate ’01 (per 100 face amount)

Bond 2-year 5-year 10-year 30-year Sum

(i) .75s of 5/31/12 .0199 .0000 .0000 .0000 .0199
(ii) 2.125s of 5/31/15 .0000 .0480 .0000 .0000 .0480

(iii) 3.5s of 5/15/20 .0000 −.0001 .0870 .0000 .0869
(iv) 0s of 5/15/40 −.0010 −.0035 −.0345 .1219 .0829
(v) 4.375s of 5/15/40 .0000 .0001 .0010 .1749 .1760

(vi) Total Position ($) 1,000 38,377 198 −39,578 0
(vii) Hedge ($) −1,000 −38,377 −198 39,578 0
(viii) Alternate Hedge ($) 31 −38,379 217 38,131 0
(ix) Total+Alt. Hedge ($) 1,031 −2 415 −1,447 0
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rows (i), (ii), (iii), and (v) are heavily concentrated in the respective buckets.
In row (iii), for example, the 10-year, key-rate ’01 of the 3.5s of May 15,
2020, is .0870, while the rest of its key-rate ’01s are near zero. Note that
the key-rate profile of the 30-year STRIPS in row (iv) is as presented in
Table 5.2.

The sums of the key-rate ’01s for each of the bonds in rows (i) through
(v) are given in the rightmost column of Table 5.4. The trader uses these
sums for initial hedging, which, as discussed previously, is very much like
single-factor, DV01 hedging. So, the trader bought $72.4 million of the
five-year against the $40mm short of the 10-year because

.0869

.0480
× $40mm = $72.4mm (5.5)

Similarly, the trader bought $47.1 million of 30-year bonds against the
$100 million short of 30-year STRIPS because

.0829

.1760
× $100mm = $47.1mm (5.6)

Row (vi) of Table 5.4 gives the key-rate ’01 profile, in dollars, of the
trader’s position recorded in column (2) of Table 5.3. The five-year key-rate
’01 in millions of dollars, for example, is calculated as

72.446 × .048
100

− 40 ×
(−.0001

100

)
− 100 ×

(−.0035
100

)
+ 47.077 × .0001

100

= .038361 (5.7)

which is $38,361. (The small difference between this number and the
$38,377 in Table 5.4 is due to the rounding of the ’01s and the position
amounts.)

Because the trader’s initial hedges were constructed to be DV01-neutral,
the trader has no net DV01-type exposure, i.e., the sum of the ’01s across
row (vi) of Table 5.4 is zero. As can be seen from the rest of that row,
however, the key-rate profile of the trader’s book is not flat. In fact, the
trader essentially has on a substantial 5s-30s steepener, meaning a position
that will make money if 30-year yields rise relative to 5-year yields but
lose money if the opposite occurs. But this accumulated steepener is a by-
product of market making and not the result of deliberate risk taking. The
trader, therefore, will construct a hedge to flatten out the key-rate profile in
row (vi).

The hedging problem is to find the face amount of each of the key-
rate securities such that the net key-rate ’01s of the overall position are
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all zero. Let the face amount of each of the hedging securities be F2, F 5,
F10, and F 30 for the 2-, 5-, 10-, and 30-year bonds, respectively. Then the
equations for setting the overall 2-, 5-, 10-, and 30-key-rate ’01s to zero
are, respectively,

.0199
100

F 2 + 0 × F 5 + 0 × F 10 + 0 × F 30 + $1,000 = 0 (5.8)

.048
100

× F 5 − .0001
100

× F 10 + .0001
100

× F 30 + $38,377 = 0 (5.9)

.0870
100

× F 10 + .001
100

× F 30 + $198 = 0 (5.10)

.1749
100

× F 30 − $39,578 = 0 (5.11)

Solving equations (5.8) through (5.11) gives the face amounts in column (3)
of Table 5.3. By construction, then, the key-rate profile of the hedging
portfolio, shown in row (vii) of Table 5.4, is the negative of the profile of
row (vi) so that these two rows sum to zero.

This precisely constructed hedge, with its four equations and four un-
knowns, may look somewhat daunting. But this should not obscure the
essentials of the hedge. The five-year key-rate ’01 to be hedged is $38,377
and the five-year key-rate ’01 of the five-year on-the-run bond is .048, so
the approximate face amount of the five-year bond that has to be sold is
$38,377
.048% or about $79.95 million. Similarly, the 30-year ’01 to be hedged is

−39,578 and the 30-year ’01 of the 30-year on-the-run is .1749, so the face
amount of the 30-year bond that has to be bought is about $39,578

.1749% or about
$22.63 million. These results are very close to the precise results reported in
column (3) of Table 5.3.

In practice, a trader might very well recognize that the biggest risk of
the position, from row (vi) of Table 5.4, is the 5s-30s steepener. The trader
might then sell the $80 million of the five-year on-the-run, as computed in
the previous paragraph. Then, to keep a flat overall DV01, the trader might
purchase an amount F30 such that

F 30 .1760
100

= $80mm × .0480
100

(5.12)

And solving, F30 is $21.8 million. This quicker, alternate hedge is recorded in
column (4) of Table 5.3. Its key-rate profile is given in row (viii) of Table 5.4
and the net key-rate profile of the original position and this alternate hedge
is given in row (ix). This net profile is very close to flat, although the residual
is a very small 2s-30s steepener!
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PARTIAL ’01s AND PV01

As mentioned in the introduction to Part One, swaps have become the most
popular interest rate benchmark. Interest rate risk is measured in terms of
swap curves not only by swaps traders, but also by asset managers that
run portfolios that combine bonds and swaps.5 Examples of such managers
include these: a life insurance company or pension fund that selects attractive
corporate credits or mortgage exposures and hedges interest rate risk with
swaps; a manager who supervises several traders or portfolio managers,
some of whom trade bonds and some of whom trade swaps; or a relative
value government bond investor who hedges curve risk with swaps. In any
case, when swaps are taken as the benchmark for interest rates, risk along
the curve is usually measured with Partial ’01s or Partial PV01s rather than
with key-rate ’01s. This section discusses these swap-based methodologies
without introducing additional numerical examples since the underlying
concepts are very similar to those of key-rate exposures.

Swap market participants fit a par swap rate curve every day, if not
more frequently, from a set of traded or observable par swap rates and
shorter-term money market and futures rates. (See Chapter 21.) Leveraging
this curve-fitting machinery, sensitivities of a portfolio or trading book are
measured in terms of changes in the rates of the fitting securities. More
specifically, the partial ’01 with respect to a particular fitted rate is defined
as the change in the value of the portfolio after a one-basis-point decline
in that fitted rate and a refitting of the curve. All other fitted rates are
unchanged. So, for example, if a curve fitting algorithm fits the three-month
London Interbank Offered Rate (LIBOR) rate and par rates at 2-, 5-, 10-,
and 30-year maturities, then the two-year partial ’01 would be the change in
the value of a portfolio for a one-basis point decline in the two-year par rate
and a refitting of the curve, where the three-month LIBOR and the par 5-,
10-, and 30-year rates are kept the same. Note how the details of calculating
partial ’01s are intertwined with the details of constructing the swap curve.

Given the partial ’01 profile of a portfolio, hedges to zero-out this pro-
file are particularly easy to calculate. As pointed out in the previous section,
with key-rate shifts defined in terms of par yields, the key-rate profile of
the 10-year bond, for example, would be its DV01 for the 10-year shift
and zero for all other shifts only if the 10-year bond matured in exactly
10 years and were priced at exactly par. By contrast, in the case of par-
tial ’01s, the shifts are defined precisely in terms of the fitting securities.
Therefore, by construction, all of the ’01 of a fitting security is concentrated
in the partial ’01 calculated by shifting its rate, making calculating hedges

5In addition to managing interest rate risk, these managers must also manage spread
risk, i.e., the risk that spreads between bond and swap rates change.
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particularly easy. Nevertheless, since there are typically many fitting secu-
rities, market practice is to trade enough of the fitting securities so as to
achieve an acceptable profile of partial ’01s rather than trading every single
fitting security so as to zero-out all partial ’01s.

The PV01 of a security is defined as the change in the value of the
security if the rates of all fitting securities decline by one basis point. Hence
PV01 is conceptually equivalent to DV01, where the underlying curve-
fitting methodology defines rates at all terms given the changes in the rates
of the fitting securities. Furthermore, since the sum of all the partial ’01
shifts is the PV01 shift—with one caveat to be raised presently—the partial
’01s may be thought of as a decomposition of the PV01 into risks along
the curve. The technical caveat is that money market rates and swap rates
are quoted under different day-count conventions, namely, actual/360 for
LIBOR-related rates and 30/360 for the fixed side of swaps. So, if money
market rates and swap rates are mixed when fitting swap curves, as they
usually are, changing each market rate by a basis point is not the same
as changing all actual/360 rates by a basis point or all 30/360 rates by
a basis point. To ensure that the sum of the partial ’01s does equal the
PV01, all rates could be converted into a single day-count convention. This
normalization, however, sacrifices the desirable property that the ’01 of each
fitting security equals its ’01 with respect to its own quoted rate.

In passing, it is worth noting that the CV01 of a swap is the change in
value of a swap for a one basis-point decrease in its coupon rate. A moment’s
reflection reveals that this quantity is proportional to the annuity factor to
the swap’s maturity. See equation (2.21). The two metrics, CV01 and PV01,
are sometimes used interchangeably, and sometimes confused, because the
two are essentially equal for par swaps. To see this, note that the expression
for the annuity factor in equation (3.15) is 100 times the expression for the
DV01 of a par swap in equation (4.44).

FORWARD-BUCKET ’01s

While key rates and partial ’01s conveniently express the exposures of a
position in terms of hedging securities, forward-bucket ’01s convey the ex-
posures of a position to different parts of the curve in a much more direct
and intuitive way. Basically, forward-bucket ’01s are computed by shifting
the forward rate over each of several defined regions of the term structure,
one region at a time.

The starting point of the methodology is the division of the term struc-
ture into buckets. For the illustration of this section, the term structure is
divided into five buckets: 0-2 years, 2-5 years, 5-10 years, 10-15 years, and
20-30 years. The best choice of buckets depends, of course, on the applica-
tion at hand. A financing desk that does most of its trading in very short-term
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securities would define many, narrow buckets in the short end and relatively
few, wide buckets in the long end. A swaps market-making desk, with busi-
ness across the curve, might use the buckets defined for this section, although
it would likely prefer a greater number of narrower buckets and, particularly
in Europe, might need buckets to cover maturities beyond 30 years.

Forward-Bucket Shi f ts and ’01 Calcu lat ions

Each forward-bucket ’01 is computed by shifting the forward rates in that
bucket by one basis point. Depending on how rate curves are stored, this may
mean shifting all of a bucket’s semiannual forward rates, quarterly forward
rates, or rates of even shorter term. This section shifts seminannual rates.

As a first example, consider a 2.12% five-year swap as of May 28, 2010.
Table 5.5 lists the cash flows of the fixed side of 100 notional amount of
the swap, the “Current” forward rates as of the pricing date, and the three
shifted forward curves. For the “0-2 Shift,” forward rates of term .5 to 2.0
years are shifted up by one basis point while all other forward rates stay
the same. For the “2-5 Shift,” forward rates in that bucket, and that bucket
only, are shifted. Lastly, for “Shift All,” the entire forward curve is shifted.

The row of Table 5.5 labeled “Present Value” gives the present value
of the cash flows under the initial forward rate curve and under each of the
shifted curves. The forward-bucket ’01 for each shift is then the negative of
the difference between the shifted and initial present values. For the 2-5-year
shift, for example, the ’01 is − (99.9679 − 99.9955), or .0276.

TABLE 5.5 Computation of the Forward-Bucket ’01s of a Five-Year 2.12 Percent
EUR Swap as of May 28, 2010

Forward Rates (%)

Term Cash Flow Current 0-2 Shift 2-5 Shift Shift All

.5 1.06 1.012 1.022 1.012 1.022
1.0 1.06 1.248 1.258 1.248 1.258
1.5 1.06 1.412 1.422 1.412 1.422
2.0 1.06 1.652 1.662 1.652 1.662
2.5 1.06 1.945 1.945 1.955 1.955
3.0 1.06 2.288 2.288 2.298 2.298
3.5 1.06 2.614 2.614 2.624 2.624
4.0 1.06 2.846 2.846 2.856 2.856
4.5 1.06 3.121 3.121 3.131 3.131
5.0 101.06 3.321 3.321 3.331 3.331

Present Value 99.9955 99.9760 99.9679 99.9483
’01 .0196 .0276 .0472
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F IGURE 5.3 An Example of Spot-Starting and Forward-Starting Swaps

The ’01 of the “Shift All” scenario is analogous to a DV01. The forward-
bucket analysis decomposes this total ’01 into .0196 due to the 0-2-year part
of the curve and .0276 due to the 2-5-year part of the curve. The factors that
determine the exact distribution of a total ’01 across buckets are described
in the next section.

Understanding Forward-Bucket ’01s:
a Payer Swapt ion

This subsection analyzes the forward-bucket ’01s of a payer swaption. Swap-
tions are treated in greater detail in Chapter 18, but, for the present, a payer
swaption gives the purchaser the right to pay a fixed rate on a swap at some
time in the future. More specifically, consider an EUR 5x10 payer swaption
struck at 4.044% as of May 28, 2010, which gives the purchaser the right
to pay a fixed rate of 4.044% on a 10-year EUR swap in five years, that is,
at the end of May 2015. The underlying security of this option is a 10-year
swap for settlement in five years, otherwise known as a “5x10” swap. See
Figure 5.3.6 (Forward starting swaps are discussed further in Chapter 13.)
As of May 28, 2010, the rate on the EUR 5x10 swap was 4.044%, so the
swaption of this application was at-the-money.

Table 5.6 gives the forward-bucket ’01s of the EUR 5x10 payer swap-
tion, along with the forward-bucket ’01s of an EUR 5-year swap, 10-year
swap, 15-year swap, and 5x10 swap. The column labeled “All” gives the
’01 from shifting all forward rates.

Computing the ’01s of the swaption requires a pricing model, which is
not covered here.7 The intuition behind the results, however, is straightfor-
ward. The overall ’01 of the payer swaption is negative: as rates increase, the
value of the option to pay a fixed rate of 4.044% in exchange for a floating
side worth par increases. Furthermore, since the swaption gives the right to
pay fixed on a 5x10 swap, the ’01 of the swaption will be most concentrated
in the buckets that determine the value of that 5x10 swap, i.e., the 5-10

6This forward swap is a contract to enter into a 10-year swap in five years. Note
from the figure that, since swaps settle T + 2, the spot-starting swaps begin on June
2, 2010, and the forward starting swap begins on June 2, 2015.
7See Part Three and Chapter 18.
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TABLE 5.6 Forward-Bucket Exposures of Selected EUR-Denominated Securities
as of May 28, 2010

Forward-Bucket Exposures

Security Rate 0-2 2-5 5-10 10-15 20-30 All

5x10 Payer Swaption 4.044% .0010 .0016 −.0218 −.0188 .0000 −.0380
5-Year Swap 2.120% .0196 .0276 .0000 .0000 .0000 .0472
10-Year Swap 2.943% .0194 .0269 .0394 .0000 .0000 .0857
15-Year Swap 3.290% .0194 .0265 .0383 .0323 .0000 .1164
5x10 Swap 4.044% .0000 .0000 .0449 .0366 .0000 .0815

and 10-15 buckets. The swaption has some positive ’01 in the 0-2 and 2-5
buckets, as well, because the forward rates in that part of the curve affect
the present value of the option’s payoff at its expiration in five years’ time.

The bucket ’01 profiles of the 5-, 10-, and 15-year swaps are determined
by several effects. First, and most obvious, each swap is exposed to all parts
of the curve up to, but not past, its maturity. Second, the wider buckets,
which shift the forward curve over a wider range, tend to generate larger
’01s. For example, the 10-year swap’s 5-10 bucket ’01, which shifts forward
rates over five years, is greater than its 2-5 bucket ’01, which shifts rates over
three years. Third, the further a shift is along the curve, the fewer of a swap’s
coupon payments are affected. This tends to lower the ’01s of the longer-term
buckets relative to the shorter-term buckets. Fourth, the larger the forward
rate in a bucket, the lower the ’01, for the same reason that DV01 falls with
rate, as shown in Chapter 4. In Table 5.6 the term structure of forward rates
is, in fact, upward-sloping,8 so this effect, combined with the third, lowers
the 15-year swap’s 10-15 bucket ’01 relative to its 5-10 bucket ’01.

The 5x10 swap has no exposure to forward rates with a term less then
5 years or greater than 15 years, which is easily apparent from Figure 5.3.
Its total ’01 of .0815 is divided between the 5-10 and 10-15-year buckets,
according to the third and fourth effects described in the previous paragraph.

The Appendix in this chapter presents a very simple demonstration of
the third and fourth effects just invoked.

Hedging with Forward-Bucket ’01s:
a Payer Swapt ion

Table 5.7 shows the forward-bucket exposure of the payer swaption hedged
in three different ways: with a 10-year swap, with a 5x10 swap, and with a
combination of 5- and 15-year swaps.

8This follows from the upward-sloping par rates in the table, or, more directly, from
the graph of the EUR forward rates in Figure 2.2.
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TABLE 5.7 Forward-Bucket Exposures of Three Hedges of a Payer Swaption as of
May 28, 2010

Forward-Bucket Exposures

Security or Portfolio 0-2 2-5 5-10 10-15 All

(i) 5x10 Payer Swaption .0010 .0016 −.0218 −.0188 −.0380

Hedge #1:
(ii) Long 44.34% 10-Year Swaps .0086 .0119 .0175 .0000 .0380

(iii) Net Position .0096 .0135 −.0043 −.0188 .0000

Hedge #2:
(iv) Long 46.66% 5x10 Swaps .0209 .0171 .0380
(v) Net Position .0010 .0016 −.0009 −.0017 .0000

Hedge #3:
(vi) Long 57.55% 15-Year Swaps .0112 .0153 .0220 .0186 .0670

(vii) Short 61.55% 5-Year Swaps −.0120 −.0170 −.0290
(viii) Net Position .0002 −.0001 .0002 −.0002 .0000

The full ’01 of the payer swaption and the 10-year swap are, from
Table 5.6, −.0380 and .0857, respectively. Therefore, hedging the payer
swaption requires a long position of .0380

.0857 or approximately 44.34% of the
10-year. Multiplying each of the forward-bucket exposures of the 10-year
swap in Table 5.6 by this face amount gives row (ii) of Table 5.7. Then,
adding the ’01s of this hedge to those of the payer swaption gives the net
bucket exposures in row (iii). So, while buying 10-year swaps in a DV01-
neutral way may be a good first pass at a hedge, that is, a quick way to
neutralize the rate risk of the payer swaption with the most liquid security
available, the net bucket exposures show that the resulting position is at risk
of a flattening.

Hedging the payer swaption by receiving in a DV01-weighted 5x10
swap, depicted in rows (iv) and (v) of Table 5.7, is a better hedge than
receiving in the 10-year swap. This is not particularly surprising since the
swaption is the right to pay fixed on that very swap. In any case, the resulting
hedged position has a very slight exposure to flattening, but, for the most
part, is neutral to rates and the term structure.

Since forward swaps are, in practice, not as easy to execute as par
swaps, the final hedge of Table 5.7 considers hedging the swaption with 5
and 15-year par swaps. This hedge, depicted in rows (vi) through (viii)
of the table, chooses a long face amount of the 15-year swap to neu-
tralize the 5-10 and 10-15 bucket exposures of the payer swaption and
a short face amount of the five-year swap to neutralize the 0-2 and 2-
5 bucket exposures arising in small part from the original payer position
but in large part from the 15-year swap bought as a hedge. The result,
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given in row (viii), shows that this hedge neutralizes the risk of each bucket
quite closely.

MULTI -FACTOR EXPOSURES AND MEASURING
PORTFOLIO VOLATIL ITY

The facts that a portfolio has a DV01 of $10,000 and that interest rates
have a volatility of 100 basis points per year leads to the conclusion that the
portfolio has an annual volatility of $10,000 × 100 or $1 million. But this
measure has the same drawback as one-factor measures of price sensitivity:
the volatility of the entire term structure cannot be adequately summarized
with just one number. As to be discussed in Part Three, just as there is a
term structure of interest rates, there is a term structure of volatility. The
10-year par rate, for example, is usually more volatile than the 30-year
par rate.

In general, portfolios are exposed to interest rates all along the curve
and changes in these rates are not perfectly correlated. The frameworks of
this chapter, therefore, can be used to estimate volatility more precisely.
The presentation here will be in terms of key rates; the discussion would be
similar in terms of partial ’01s or forward bucket ’01s.

First, estimate a volatility for each of the key rates and estimate a cor-
relation for each pair of key rates. Second, compute the key-rate 01s of the
portfolio. Third, compute the variance and volatility of the portfolio. This
computation is quite straightforward given the required inputs. Say that
there are only two key rates, C1 and C2, that the key rates of the portfolio
are KR011 and KR012, that the value of the portfolio is P, and that changes
are denoted by �. Then, by the definition of key rates,

�P = KR011 × �C1 + KR012 × �C2 (5.13)

Furthermore, letting σ 2
P , σ 2

1 , and σ 2
2 denote the variances of the portfolio

and of the key rates and letting ρ denote the correlation of the key rates,
equation (5.13) implies that

σ 2
P = KR012

1σ
2
1 + KR012

2σ
2
2 + 2KR011KR012ρσ1σ2 (5.14)

The standard deviation of the portfolio, of course, is just σP . While, as
mentioned, this reasoning can be applied equally well to partial ’01s or
forward-bucket ’01s, those two frameworks tend to have more reference
rates than a typical key-rate framework and, therefore, would require the
estimation of a greater number of volatilities and a much greater number of
correlation pairs.
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APPENDIX: SELECTED DETERMINANTS OF
FORWARD-BUCKET ’01s

Write the price of a two-year bond or fixed leg of a swap, with its fictional
notional, in terms of forward rates, as

P = c
1 + f1

+ 1 + c
(1 + f1) (1 + f2)

(5.15)

Differentiating with respect to each of the forward rates and multiplying
by −1,

− ∂ P
∂ f1

= c

(1 + f1)2 + 1 + c

(1 + f1)2 (1 + f2)
(5.16)

− ∂ P
∂ f2

= 1 + c

(1 + f1) (1 + f2)2 (5.17)

To consider the effects of the term of the bucket alone, let f1 = f2. Then,

− ∂ P
∂ f1

> − ∂ P
∂ f2

(5.18)

showing that the ’01 of the first bucket, from date 0 to date 1, is greater
than the ’01 of the second bucket, from date 1 to date 2, precisely because
f 1 is used to discount more cash flows than is f 2.

To consider the effects of the term structure alone, let c = 0. Then, the
second bucket risk is less than the first if

− ∂ P
∂ f2

= 1

(1 + f1) (1 + f2)2 < − ∂ P
∂ f1

= 1

(1 + f1)2 (1 + f2)
(5.19)

which simplifies to

f1 < f2 (5.20)

Hence, an upward-sloping term structure, because of discounting, lowers
the second bucket risk relative to the first.
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CHAPTER 6
Empirical Approaches

to Risk Metrics
and Hedging

C entral to the DV01-style metrics and hedges of Chapter 4 and the multi-
factor metrics and hedges of Chapter 5 are implicit assumptions about

how rates of different term structures change relative to one another. In
this chapter, the necessary assumptions are derived directly from data on
rate changes.

The chapter begins with single-variable hedging based on regression
analysis. In the example of the section, a trader tries to hedge the interest
rate risk of U.S. nominal versus real rates. This example shows that em-
pirical models do not always describe the data very precisely and that this
imprecision expresses itself in the volatility of the profit and loss of trades
that depend on the empirical analysis.

The chapter continues with two-factor hedging based on multiple re-
gression. The example for this section is that of an EUR swap market maker
who hedges a customer trade of 20-year swaps with 10- and 30-year swaps.
The quality of this hedge is shown to be quite a bit better than that of
nominal versus real rates. Before concluding the discussion of regression
techniques, the chapter comments on level versus change regressions.

The final section of the chapter introduces principal component analysis,
which is an empirical description of how rates move together across the
curve. In addition to its use as a hedging tool, the analysis provides an
intuitive description of the empirical behavior of the term structure. The
data illustrations for this section are taken from USD, EUR, GBP, and JPY
swap markets. Considerable effort has been made to present this material at
as low a level of mathematics as possible.

A theme across the illustrations of the chapter is that empirical relation-
ships are far from static and that hedges estimated over one period of time
may not work very well over subsequent periods.

171
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SINGLE-VARIABLE REGRESSION-BASED HEDGING

This section considers the construction of a relative value trade in which
a trader sells a U.S. Treasury bond and buys a U.S. Treasury TIPS (Trea-
sury Inflation Protected Securities). As mentioned in the Overview, TIPS
make real or inflation-adjusted payments by regularly indexing their prin-
cipal amount outstanding for inflation. Investors in TIPS, therefore, require
a relatively low real rate of return. By contrast, investors in U.S. Treasury
bonds—called nominal bonds when distinguishing them from TIPS—require
a real rate of return plus compensation for expected inflation plus, per-
haps, an inflation risk premium. Thus the spread between rates of nomi-
nal bonds and TIPS reflects market views about inflation. In the relative
value trade of this section, a trader bets that this inflation-induced spread
will increase.

The trader plans to short $100 million of the (nominal) 3 5
8 s of August

15, 2019, and, against that, to buy some amount of the TIPS 1 7
8 s of July 15,

2019. Table 6.1 shows representative yields and DV01s of the two bonds.
The TIPS sells at a relatively low yield, or high price, because its cash flows
are protected from inflation while the DV01 of the TIPS is relatively high
because its yield is low (see “Duration, DV01, and Yield” in Chapter 4).
In any case, what face amount of the TIPS should be bought so that the
trade is hedged against the level of interest rates, i.e., to both rates moving
up or down together, and exposed only to the spread between nominal and
real rates?

One choice is to make the trade DV01-neutral, i.e., to buy FR face
amount of TIPS such that

FR × .081
100

= 100mm × .067
100

FR = 100mm × .067
.081

= $82.7mm (6.1)

This hedge ensures that if the yield on the TIPS and the nominal bond both
increase or decrease by the same number of basis points, the trade will

TABLE 6.1 Yields and DV01s of a TIPS and a
Nominal U.S. Treasury as of May 28, 2010

Bond Yield (%) DV01

TIPS 1 7
8 s of 7/15/19 1.237 .081

3 5
8 s of 8/15/19 3.275 .067
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F IGURE 6.1 Regression of Changes in the Yield of the Treasury 3 5
8 s of August 15,

2019, on Changes in the Yield of the TIPS 1.875s of July 15, 2019, from August
17, 2009, to July 2, 2010

neither make nor lose money. But the trader has doubts about this choice
because changes in yields on TIPS and nominal bonds may very well not be
one-for-one. To investigate, the trader collects data on daily changes in yield
of these two bonds from August 17, 2009, to July 2, 2010, which are then
graphed in Figure 6.1, along with a regression line, to be discussed shortly. It
is immediately apparent from the graph that, for example, a five basis-point
change in the yield of the TIPS does not imply, with very high confidence,
a unique change in the nominal yield, nor even an average change of five
basis points. In fact, while the daily change in the real yield was about five
basis points several times over the study period, the change in the nominal
yield over those particular days ranged from 2.2 to 8.4 basis points. This
lack of a one-to-one yield relationship calls the DV01 hedge into question.
For context, by the way, it should be noted that graphing the changes in the
yield of one nominal Treasury against changes in the yield of another, of
similar maturity, would result in data points much more tightly surrounding
the regression line.

With respect to improving on the DV01 hedge, there is not much the
trader can do about the dispersion of the change in the nominal yield for
a given change in the real yield. That is part of the risk of the trade and
will be discussed later. But the trader can estimate the average change in the
nominal yield for a given change in the real yield and adjust the DV01 hedge
accordingly. For example, were it to turn out—as it will—that the nominal
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yield in the data changes by 1.0189 basis points per basis-point change in
the real yield, the trader could adjust the hedge such that

FR × .081
100

= 100mm × .067
100

× 1.0189

FR = $100mm × .067
.081

× 1.0189 = $84.3mm (6.2)

Relative to the DV01 hedge of $82.7 million in (6.1), the hedge in (6.2)
increases the amount of TIPS to compensate for the empirical fact that, on
average, the nominal yield changes by more than one basis point for every
basis-point change in the real yield.

The next subsection introduces regression analysis, which is used both
to estimate the coefficient 1.0189, used in equation (6.2), and to assess the
properties of the resulting hedge.

Least-Squares Regression Analys is

Let �yN
t and �yR

t be the changes in the yields of the nominal and real bonds,
respectively, and assume that

�yN
t = α + β�yR

t + εt (6.3)

According to equation (6.3), changes in the real yield, the independent
variable, are used to predict changes in the nominal yield, the dependent
variable. The intercept, α, and the slope, β, need to be estimated from the
data. The error term εt is the deviation of the nominal yield change on
a particular day from the change predicted by the model. Least-squares
estimation of (6.3), to be discussed presently, requires that the model be
a true description of the dynamics in question and that the errors have
the same probability distribution, are independent of each other, and are
uncorrelated with the independent variable.1

1Since the nominal rate is the real rate plus the inflation rate, the error term in
equation (6.3) contains the change in the inflation rate. Therefore, the assumption
that the independent variable be uncorrelated with the error term requires here that
the real rate be uncorrelated with the inflation rate. This is a tolerable, though far
from ideal, assumption: the inflation rate can have effects on the real economy and,
consequently, on the real rate.

If the regression were specified such that the real rate were the dependent variable
and the nominal rate the independent variable, the requirement that the error and the
dependent variable be uncorrelated would certainly not be met. In that case, the error
term contains the inflation rate and there is no credible argument that the nominal
rate is even approximately uncorrelated with the inflation rate. Consequently, a
more advanced estimation procedure would be required, like that of instrumental
variables.
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As an example of the relationship between the nominal and real yields
in (6.3), say that the parameters estimated with the data, denoted α̂ and β̂,
are 0 and 1.02 respectively. Then, if �yR

t is 5 basis points on a particular
day, the predicted change in the nominal yield, written �ŷN

t , is

�ŷN
t = α̂ + β̂�yR

t

= 0 + 1.02 × 5 = 5.1 (6.4)

Furthermore, should it turn out that the nominal yield changes by 5.5 basis
points on that day, then the realized error that day, written ε̂t, following
equation (6.3), is defined as

ε̂t = �yN
t − α̂ − β̂�yR

t

= �yN
t − �ŷN

t (6.5)

In this example,

ε̂t = 5.5 − 5.1 = .4 (6.6)

Least-squares estimation of α and β finds the estimates α̂ and β̂ that
minimize the sum of the squares of the realized error terms over the obser-
vation period,

∑
t

ε̂2
t =

∑
t

(
�yN

t − α̂ − β̂�yR
t

)2
(6.7)

where the equality follows from (6.5). The squaring of the errors ensures that
offsetting positive and negative errors are not considered as acceptable as
zero errors and that large errors in absolute values are penalized substantially
more than smaller errors.

Least-squares estimation is available through many statistical packages
and spreadsheet add-ins. A typical summary of the regression output from
estimating equation (6.3) using the data in Figure 6.1 is given in Table 6.2.
The β̂ reported in the table is 1.0189, which says that, over the sample
period, the nominal yield increases by 1.0189 basis points per basis-point
increase in real yields. The constant term of the regression, α̂, is not very
different from zero, which is typically the case in regressions of changes in
a yield on changes in a comparable yield. The economic interpretation of
this regularity is that a yield does not usually trend up or down while a
comparable yield is not changing.

Table 6.2 reports standard errors of α̂ and β̂ of .2529 and .0525, re-
spectively. Under the assumptions of least squares and the availability of
sufficient data, the parameters α̂ and β̂ are normally distributed with means
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TABLE 6.2 Regression Analysis of Changes in the Yield of the
3 5

8 s of August 15, 2019, on the Changes in Yield of the TIPS
1 7

8 s of July 15, 2019, From August 17, 2009, to July 2, 2010

No. of Observations 229
R-Squared 56.3%
Standard Error 3.82

Regression Coefficients Value Std. Error

Constant (̂α) 0.0503 .2529
Change in Real Yield (β̂) 1.0189 .0595

equal to the true model values, α and β, respectively, and with standard devi-
ations that can be estimated as the standard errors given in the table. There-
fore, relying on the properties of the normal distribution, the confidence
interval .0503 ± 2 × .2529 or (−.4555, .5561) has a 95% chance of falling
around the true value α. And since this confidence interval does include the
value zero, one cannot reject the statistical hypothesis that α = 0. Similarly,
the 95% confidence interval with respect to β is 1.0189 ± 2 × .0595, or
(.8999, 1.1379). So, while regression hedging makes heavy use of the point
estimate β̂ = 1.0189, the true value of β may very well be somewhat higher
or lower.

Substituting the estimated coefficients from Table 6.2 into the predicted
regression equation in the first line of (6.4),

�ŷN
t = α̂ + β̂�yR

t

�ŷN
t = .0503 + 1.0189 × �yR

t (6.8)

This relationship is known as the fitted regression line and is the straight
line through the data that appears in Figure 6.1.

Table 6.2 reports two other useful statistics, the R-squared and the
standard error of the regression. The R-squared in this case is 56.3%, which
means that 56.3% of the variance of changes in the nominal yield can be
explained by the model. In a one-variable regression, the R-squared is just
the square of the correlation of the two changes, so the correlation between
changes in the nominal and real yields is the square root of 56.3% or about
75%. This is a relatively low number compared with typical correlations
between changes in two nominal yields, echoing the comment made in ref-
erence to the relatively wide dispersion of the points around the regression
line in Figure 6.1.

The second useful statistic reported in Table 6.2 is the standard error
of the regression, denoted here by σ̂ and given as 3.82 basis points. Alge-
braically, σ̂ is essentially the standard deviation of the realized error terms
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ε̂t,2 defined in equation (6.5). Graphically, each ε̂t is the vertical line from
a data point directly down or up to the regression line and σ̂ is essentially
the standard deviation of these distances. Either way, σ̂ measures how well
the model fits the data in the same units as the dependent variable, which,
in this case, are basis points.

The Regression Hedge

The use of the regression coefficient in the hedging example of this section
was discussed in the development of equation (6.2). More formally, denoting
the face amounts of the real and nominal bonds by FR and FN and their
DV01s by DV01R and DV01N, the regression-based hedge, characterized
earlier as the DV01 hedge adjusted for the average change of nominal yields
relative to real yields, can be written as follows:

FR = −FN × DV01N

DV01R
× β̂ (6.9)

It turns out, however, that this regression hedge has an even stronger
justification. The profit and loss (P&L) of the hedged position over a day is

−FR × DV01R

100
�yR

t − FN × DV01N

100
�yN

t (6.10)

Appendix A in this chapter shows that the hedge of equation (6.9) minimizes
the variance of the P&L in (6.10) over the data set shown in Figure 6.1 and
used to estimate the regression parameters of Table 6.2.

In the example of this section, FN = −$100mm, β̂ = 1.0189, DV01N =
.067, and DV01R = .081, so, from (6.9), as derived before, FR =
$84.279mm. Because the estimated β happens to be close to one, the
regression hedge of about $84.3 million is not very different from the
DV01 hedge of $82.7 million calculated earlier. In fact, some practition-
ers would describe this hedge in terms of the DV01 hedge. Rearranging the
terms of (6.9),

−FR × DV01R

FN × DV01N
= β̂ = 101.89% (6.11)

2If the number of observations is n, the standard error of the regression is actually

defined as the square root of
∑

t ε̂2
t

(n−2) . The average of the ε̂t in a regression with a
constant is zero by construction, so the standard error of the regression differs from
the standard deviation of the errors only because of the division by n − 2 instead
of n − 1.
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In words, the risk of the (TIPS) hedging portfolio, measured by DV01,

is 101.89% of the risk of the underlying (nominal) position, measured by
DV01. Alternatively, the risk weight of the hedge portfolio is 101.89%. This
terminology does connect the hedge to the common DV01 benchmark but is
somewhat misleading because the whole point of the regression-based hedge
is that the risks of the two securities cannot properly be measured by the
DV01 alone. It should also be noted at this point that the regression-based
and DV01 hedges are certainly not always this close in magnitude, even in
other cases of hedging TIPS versus nominals, as will be illustrated in the
next subsection.

An advantage of the regression framework for hedging is that it au-
tomatically provides an estimate of the volatility of the hedged portfo-
lio. To see this, substitute FR from (6.9) into the P&L expression (6.10)
and rearrange terms to get the following expression for the P&L of the
hedged position:

−FN × DV01N

100

(
�yN

t − β̂�yR
t

)
(6.12)

From the definition of ε̂t in (6.5), the term in parentheses equals ε̂t + α̂. But
since α̂ is typically not very important, the standard error of the regression σ̂

can be used to approximate the standard deviation of �yN
t − β̂�yR

t . Hence,
the standard deviation of the P&L in (6.12) is approximately

FN × DV01N

100
× σ̂ (6.13)

In the present example, recalling that the standard error of the regression
can be found in Table 6.2, the daily volatility of the P&L of the hedged
portfolio is approximately

$100mm × .067
100

× 3.82 = $255,940 (6.14)

The trader would have to compare this volatility with an expected gain to
decide whether or not the risk-return profile of the trade is attractive.

The Stabi l i ty of Regression Coef f ic ients Over Time

An important difficulty in using regression-based hedging in practice is that
the hedger can never be sure that the hedge coefficient, β, is constant over
time. Put another way, the errors around the regression line might be ran-
dom outcomes around a stable relationship, as described by equation (6.3),
or they might be manifestations of a changing relationship. In the former
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situation a hedger can safely continue to use a previously estimated β̂ for
hedging while, in the latter situation, the hedger should re-estimate the hedge
coefficient with more recent data, if available, or with data from a past, more
relevant time period. But how can the hedger know which situation prevails?

A useful start for thinking about the stability of an estimated regression
coefficient is to estimate that coefficient over different periods of time and
then observe if the result is stable or not. To this end, with the same data
as before, Figure 6.2 graphs β̂ for regressions over rolling 30-day windows.
This means that the full data set of changes from August 18, 2009, to July
2, 2010, is used in 30-day increments, as follows: the first β̂ comes from a
regression of changes from August 18, 2009, to September 28, 2009; the
second β̂ from that regression from August 19, 2000, to September 29, 2009,
etc.; and the last β̂ from May 24, 2010, to July 2, 2010. The estimates of
β in the figure certainly do vary over time, but the range of .75 to 1.29
is not extremely surprising given the previously computed 95% confidence
interval with respect to β of (.8999, 1.1379). More troublesome, perhaps, is
the fact that the most recent values of β̂ have been trending up, which may
indicate a change in regime in which even higher values of β characterize
the relationship between nominal and real rates.

For a bit more perspective before closing this subsection, the period
February 15, 2000, to February 15, 2002, when rates were substantially
higher, was characterized by significantly higher levels of β̂ and higher levels
of uncertainty with respect to the regression relationship. The two bonds
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F IGURE 6.2 Rolling 30-Day Regression Coefficient for the Change in Yield of
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TABLE 6.3 Regression Analysis of Changes in the Yield of the 6 1
2 s

of February 15, 2010, on the Changes in Yield of the TIPS 4 1
4 s of

January 15, 2010, From February 15, 2000, to February 15, 2002

No. of Observations 519
R-Squared 43.0%
Standard Error 4.70

Regression Coefficients Value Std. Error

Constant (̂α) −.0267 .2067
Change in Real Yield (β̂) 1.5618 .0790

used in this analysis are the TIPS 4 1
4 s of January 15, 2010, and the Treasury

6 1
2 s of February 15, 2010. Summary statistics for the regression of changes

in yields of the nominal 6 1
2 s on the real 4 1

4 s are given in Table 6.3.
Compared with Table 6.2, the estimated β here is 50% larger and the

precision of this regression, measured by the R-squared or the standard
error of the regression, is substantially worse. The contrast across periods
again emphasizes the potential pitfalls of relying on estimated relationships
persisting over time. This does not imply, of course, that blindly assuming a
β of one, as in DV01 hedging, is a generally superior approach.

TWO-VARIABLE REGRESSION-BASED HEDGING

To illustrate regression hedging with two independent variables, this section
considers the case of a market maker in EUR interest rate swaps. An algebraic
introduction is followed by an empirical analysis.

The market maker in question has bought or received fixed in relatively
illiquid 20-year swaps from a customer and needs to hedge the resulting
interest rate exposure. Immediately paying fixed or selling 20-year swaps
would sacrifice too much if not all of the spread paid by the customer, so
the market maker chooses instead to sell a combination of 10- and 30-year
swaps. Furthermore, the market maker is willing to rely on a two-variable
regression model to describe the relationship between changes in 20-year
swap rates and changes in 10- and 30-year swap rates:

�y20
t = α + β10�y10

t + β30�y30
t + εt (6.15)

Equation (6.15) can be estimated by least squares, analogously to the
single-variable case, by minimizing∑

t

(
�y20

t − α̂ − β̂10�y10
t − β̂30�y30

t

)2
(6.16)
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with respect to the parameters α̂, β̂10, and β̂30. The estimation of these
parameters then provides a predicted change for the 20-year swap rate:

�ŷ20
t = α̂ + β̂10�y10

t + β̂30�y30
t (6.17)

To derive the notional face amount of the 10- and 30-year swaps, F10

and F30, respectively, required to hedge F20 face amount of the 20-year
swaps, generalize the reasoning given in the single-variable case as follows.
Write the P&L of the hedged position as

−F 20 DV0120

100
�y20

t − F 10 DV0110

100
�y10

t − F 30 DV0130

100
�y30

t (6.18)

Then substitute the predicted change in the 20-year rate from (6.17) into
(6.18), retaining only the terms depending on �y10

t and �y30
t , to obtain

[
−F 20 DV0120

100
β̂10 − F 10 DV0110

100

]
�y10

t

+
[
−F 20 DV0120

100
β̂30 − F 30 DV0130

100

]
�y30

t (6.19)

Finally, choose F10 and F30 to set the terms in brackets equal to zero, i.e., to
eliminate the dependence of the predicted P&L on changes in the 10- and
30-year rates. This leads to two equations with the following solutions:

F 10 = −F 20 DV0120

DV0110
β̂10 (6.20)

F 30 = −F 20 DV0120

DV0130
β̂30 (6.21)

As in the single-variable case, this 10s-30s hedge of the 20-year can
be expressed in terms of risk weights. More specifically, the DV01 risk in
the 10-year part of the hedge and the DV01 risk in the 30-year part of
the hedge can both be expressed as a fraction of the DV01 risk of the 20-
year. Mathematically, these risk weights can be found by rearranging (6.20)
and (6.21):

−F 10 × DV0110

F 20 × DV0120
= β̂10 (6.22)

−F 30 × DV0130

F 20 × DV0120
= β̂30 (6.23)
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TABLE 6.4 Regression Analysis of Changes in the Yield of the
20-Year EUR Swap Rate on Changes in the 10- and 30-Year
EUR Swap Rates From July 2, 2001, to July 3, 2006

No. of Observations 1281
R-Squared 99.8%
Standard Error .14

Regression Coefficients Value Std. Error

Constant (̂α) −.0014 .0040
Change in 10-Year Swap Rate (β̂10) .2221 .0034
Change in 30-Year Swap Rate (β̂30) .7765 .0037

Proceeding now to the empirical analysis, the market maker, as of
July 2006, performs an initial regression analysis using data on changes
in the 10-, 20-, and 30-year EUR swap rates from July 2, 2001, to July 3,
2006. Summary statistics for the regression of changes in the 20-year EUR
swap rate on changes in the 10- and 30-year EUR swap rates are given in
Table 6.4. The statistical quality of these results, characteristic of all re-
gressions of like rates, are far superior to those of the nominal against real
yields of the previous section: the R-squared or percent variance explained
by the regression is 99.8%; the standard error of the regression is only
.14 basis points; and the 95% confidence intervals with respect to the two
coefficients are extremely narrow, i.e., (.2153, 2289) for the 10-year and
(.7691, .7839) for the 30-year. Lastly, in a result similar to those of the
regressions of the previous section, the constant is insignificantly different
from zero.

Applying the risk-weight interpretation of the regression coefficients
given in equations (6.22) and (6.23), the results in Table 6.4 say that 22.21%
of the DV01 of the 20-year swap should be hedged with a 10-year swap and
77.65% with a 30-year swap. The sum of these weights, 99.86%, happens
to be very close to one, meaning that the DV01 of the regression hedge very
nearly matches the DV01 of the 20-year swap, although this certainly need
not be the case: minimizing the variance of the P&L of a hedged position,
when rates are not assumed to move in parallel, need not result in a DV01-
neutral portfolio.

Tight as the in-sample regression relationship seems to be, the real test
of the hedge is whether it works out-of-sample.3 To this end, Figure 6.3
tracks the errors of the hedge over time. All of these errors are computed as

3The phrase in-sample refers to behavior within the period of estimation, in this case
July 2, 2001, to July 3, 2006. The phrase out-of-sample refers to behavior outside
the period of estimation, usually after but possibly before that period as well.
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F IGURE 6.3 In- and Out-of-Sample Errors for a Regression of Changes of
20-Year and 10- and 30-Year EUR Swap Rates with Estimation Period July 2,
2001, to July 3, 2006

the realized change in the 20-year yield minus the predicted change for that
yield based on the estimated regression in Table 6.4:

ε̂t = �y20
t − (−.0014 + .2221�y10

t + .7765�y30
t

)
(6.24)

The errors to the left of the vertical dotted line are in-sample in that
the same �y20

t used to compute ε̂t in (6.24) were also used to compute the
coefficient estimates −.0014, .2221, and .7765. In other words, it is not
that surprising that the ε̂t to the left of the dotted line are small because
the regression coefficients were estimated to minimize the sum of squares
of these errors. By contrast, the errors to the right of the dotted line are
out-of-sample: these ε̂t are computed from realizations of �y20

t after July 3,
2006, but using the regression coefficients estimated over the period from
July 2, 2001, to July 3, 2006. It is, therefore, the size and behavior of these
out-of-sample errors that provide evidence as to the stability of the estimated
coefficients over time.

From inspection of Figure 6.3 the out-of-sample errors are indeed small,
for the most part, until August and September 2008, a peak in the financial
crisis of 2007–2009. After then the daily errors ran as high as about four
basis points and as low as about −5.3 basis points. And while the accuracy
of the relationship seems to have recovered somewhat to the far right-end
of the graph, by the summer of 2009, the errors there are not nearly so well
behaved as at the start of the out-of-sample period.
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It is obvious and easy to say that the market maker, during the turbulence
of a financial crisis, should have replaced the regression of Table 6.4 and the
resulting hedging rule. But replace these with what? What does the market
maker do at that time, before there exist sufficient post-crisis data points?
And what does the market maker do after the worst of the crisis: estimate
a regression from data during the crisis or revert to some earlier, more
stable period? These are the kinds of issues that make regression hedging
an art rather than a science. In any case, it should again be emphasized that
avoiding these issues by blindly resorting to a one-security DV01 hedge,
or a two-security DV01 hedge with arbitrarily assigned risk weights, like
50%-50%, is even less satsifying.

LEVEL VERSUS CHANGE REGRESSIONS

When estimating regression-based hedges, some practitioners regress
changes in yields on changes in yields, as in the previous sections, while oth-
ers prefer to regress yields on yields. Mathematically, in the single-variable
case, the level-on-level regression with dependent variable y and independent
variable x is

yt = α + βxt + εt (6.25)

while the change-on-change regression is4

yt − yt−1 = �yt = β�xt + �εt (6.26)

By theory that is beyond the scope of this book, if the error terms εt are
independently and identically distributed random variables with mean zero
and are uncorrelated with the independent variable, then so are the �εt, and
least squares on either (6.25) or (6.26) will result in coefficient estimators
that are unbiased,5 consistent,6 and efficient, i.e., of minimum variance, in
the class of linear estimators. If the error terms of either specification are not
independent of each other, however, then the least-squares coefficients of
that specification are not necessarily efficient, but retain their unbiasedness
and consistency.

4It is usual to include a constant term in the change-on-change regression, but for
the purposes of this section, to maintain consistency across the two specifications,
this constant term is omitted.
5An unbiased estimator of a parameter is such that its expectation equals the true
value of that parameter.
6A consistent estimator of a parameter, with enough data, becomes arbitrarily close
to the true value of the parameter.
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To illustrate the economics behind the assumption that error terms are
independent of each other, say that α = 0, that β = 1, that y is the yield on
a coupon bond, and that x is the yield on another, near-maturity coupon
bond. Say further that the yield on the x-bond was 5% yesterday and 5%
again today while the yield on the y-bond was 1% yesterday. Because the
yield on the x-bond is 5% today, the level equation (6.25) predicts that the
yield on the y-bond will be 5% today, despite its being 1% yesterday. But if
the market yield was so far off yesterday’s prediction, with a realized error
of −4%, then it is more likely that the error today will be not far from −4%
and that the yield of the y-bond yield will be closer to 1% than the 5%
predicted by (6.25). Put another way, the errors in (6.25) are not likely to be
independent of each other, as assumed, but rather persistent, or correlated
over time.

The change regression (6.26) assumes the opposite extreme with respect
to the errors, i.e., that they are completely persistent. Continuing with the
example of the previous paragraph, with the yield on the y-bond at 1%
yesterday and the yield on the x-bond unchanged from yesterday, the change
regression predicts that y-bond will remain at 1%. But, as reasoned above, it
is more likely that the y-bond yield will move some of the way back from 1%
to 5%. Hence, the error terms in (6.26) are also unlikely to be independent
of each other.

The first lesson to be drawn from this discussion is that because the
error terms in both (6.26) and (6.25) are likely to be correlated over time,
i.e., serially correlated, their estimated coefficients are not efficient. But, with
nothing to gainsay the validity of the other assumptions concerning the error
terms, the estimated coefficients of both the level and change specifications
are still unbiased and consistent.

The second lesson to be drawn from the discussion of this section is that
there is a more sensible way to model the relationship between two bond
yields than either (6.26) or (6.25). In particular, model the behavior that
the y-bond’s yield will, on average, move somewhat closer from 1% to 5%.
Mathematically, assume (6.25) with the error dynamics

εt = ρεt−1 + νt (6.27)

for some constant ρ < 1. Assumption (6.27) says that today’s error consists
of some portion of yesterday’s error plus a new random fluctuation. In terms
of the numerical example, if ρ = 75%, then yesterday’s error of −4% would
generate an average error today of 75% × −4% or −3% and, therefore, an
expected y-bond yield of 5% − 3% or 2%. In this way the error structure
(6.27) has the yield of the y-bond converging to its predicted value of 5%
given the yield of the x-bond at 5%. While beyond the scope of this book, the
procedure for estimating (6.25) with the error structure (6.27) is presented
in many statistical texts.
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PRINCIPAL COMPONENTS ANALYSIS

Overview

Regression analysis tries to explain the changes in the yield of one bond
relative to changes in the yields of a small number of other bonds. It is often
useful, however, to have a single, empirical description of the behavior of the
term structure that can be applied across all bonds. Principal Components
(PCs) provide such an empirical description.

To fix ideas, consider the set of swap rates from 1 to 30 years at annual
maturities. One way to describe the time series fluctuations of these rates is
through the variances of the rates and their pairwise covariances or corre-
lations. Another way to describe the data, however, is to create 30 interest
rate factors or components, where each factor describes a change in each of
the 30 rates. So, for example, one factor might be a simultaneous change of
5 basis points in the 1-year rate, 4.9 basis points in the 2-year rate, 4.8 basis
points in the 3-year rate, etc. Principal Components Analysis (PCA) sets up
these 30 such factors with the following properties:

1. The sum of the variances of the PCs equals the sum of the variances of
the individual rates. In this sense the PCs capture the volatility of this
set of interest rates.

2. The PCs are uncorrelated with each other. While changes in the individ-
ual rates are, of course, highly correlated with each other, the PCs are
constructed so that they are uncorrelated.

3. Subject to these two properties or constraints, each PC is chosen to
have the maximum possible variance given all earlier PCs. In other
words, the first PC explains the largest fraction of the sum of the
variances of the rates; the second PC explains the next largest frac-
tion, etc.

PCs of rates are particularly useful because of an empirical regularity:
the sum of the variances of the first three PCs is usually quite close to the
sum of variances of all the rates. Hence, rather than describing movements
in the term structure by describing the variance of each rate and all pairs of
correlation, one can simply describe the structure and volatility of each of
only three PCs.

The next subsections illustrate PCs and their uses in the context of USD
and then global swap markets. For interested readers, Appendix B in this
chapter describes the construction of PCs with slightly more mathematical
detail, using the simpler context of three interest rates and three PCs. Fully
general and more mathematical descriptions are available in numerous other
books and articles.
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PCAs for USD Swap Rates

Figure 6.4 graphs the first three principal components from daily data on
USD swap rates while Table 6.5 provides a selection of the same information
in tabular form. Thirty different data series are used, one series for each
annual maturity from one to 30 years, and the observation period spans
from October 2001 to October 2008. (Data from more recent dates will be
presented and discussed later in this section.)

Columns (2) to (4) in Table 6.5 correspond to the three PC curves in
Figure 6.4. These components can be interpreted as follows. A one standard-
deviation increase in the “Level” PC, given in column (2), is a simultaneous
3.80 basis point increase in the one-year swap rate, a 5.86 basis-point in-
crease in the 2-year, etc., and a 5.38 basis-point increase in the 30-year.
This PC is said to represent a “level” change in rates because rates of all
maturities move up or down together by, very roughly, the same amount.
A one standard-deviation increase in the “Slope” PC, given in column (3),
is a simultaneous 2.74 basis-point drop in the 1-year rate, a 3.09 basis-
point drop in the 2-year rate, etc., and a 6.74 basis-point increase in the
30-year rate. This PC is said to represent a “slope” change in rates be-
cause short-term rates fall while longer-term rates increase, or vice versa.
Finally, a one standard-deviation increase in the “Short Rate” PC, given
in column (4), is made up of simultaneous increases in short-term rates
(e.g., one- and two-year terms), small decreases in intermediate-term rates
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TABLE 6.5 Selected Results of Principal Components for the USD Swap Curve
from October 1, 2001, to October 2, 2008. Units are basis points or percentages

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

PCs % of PC Variance
PC Vol

Short PC Total Short / Total
Term Level Slope Rate Vol Vol Level Slope Rate Vol (%)

1 3.80 −2.74 1.48 4.91 4.96 59.8 31.0 9.1 99.05
2 5.86 −3.09 0.59 6.65 6.67 77.7 21.5 0.8 99.74

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
5 6.85 −1.53 −0.57 7.04 7.06 94.7 4.7 0.7 99.85

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
10 6.35 0.06 −0.34 6.36 6.37 99.7 0.0 0.3 99.83
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
20 5.69 0.82 0.14 5.75 5.75 97.9 2.0 0.1 99.95
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
30 5.38 1.09 0.39 5.51 5.52 95.6 3.9 0.5 99.79

Total 32.47 6.74 2.28 33.25 33.29 95.4 4.1 0.5 99.87

(e.g., 5- and 10-year terms), and small increases in long-term rates (e.g.,
20- and 30-year terms). While this PC is often called a “curvature” change,
because intermediate-term rates move in the opposite direction from short-
and long-term rates, the short-term rates moves dominate. Hence, the third
PC is interpreted here as an additional factor to describe movements in
short-term rates.

One feature of the shape of the level PC warrants additional discussion.
Short-term rates might be expected to be more volatile than longer-term
rates because changes in short-term rates are determined by current eco-
nomic conditions, which are relatively volatile, while longer-term rates are
determined mostly by expectations of future economic conditions, which are
relatively less volatile. But since the Board of Governors of the Federal Re-
serve System, like many other central banks, anchors the very short-term rate
at some desired level, the volatility of very short-term rates is significantly
dampened. The level factor, which, as will be discussed shortly, explains
the vast majority of term structure movements, and reflects this behavior on
the part of central banks: very short-term rates move relatively little. Then,
at longer maturities, the original effect prevails and longer-term rates move
less than intermediate and shorter-term rates.

Column (5) of Table 6.5 gives the combined standard deviation or
volatility of the three principal components for a given rate, and column
(6) gives the total or empirical volatility of that rate. For the one-year rate,
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for example, recalling that the principal components are uncorrelated, the
combined volatility, in basis points, from the three components is

√
3.802 + (−2.74)2 + 1.482 = 4.91 (6.28)

The total or empirical volatility of the one-year rate, however, computed
directly from the time series data, is 4.96 basis points. Column (10) of the
table gives the ratio of columns (5) and (6), which, for the 1-year rate is
4.9099
4.9572 or 99.05%. (For readability, many of the entries of Table 6.5 are
rounded although calculations are carried out to higher precision.)

Columns (7) through (9) of Table 6.5 give the ratios of the variance of
each PC component to the total PC variance. For the 1-year rate, these ratios
are 3.802

4.912 = 59.9%; (−2.74)2

4.912 = 31.1%; and 1.482

4.912 = 9.1%.
Finally, the last row of the table gives statistics on the square root of

the sum of the variances across rates of different maturities. The sum of
the variances is not a particularly interesting economic quantity—it does
not, for example, represent the variance of any interesting portfolio—but,
as mentioned in the overview of PCA, this sum is used to ensure that the
PCs capture all of the volatility of the underlying interest rate series.

Having explained the calculations of Figure 6.4 and Table 6.5, the
text can turn to interpretation. First and foremost, column (10) of Table 6.5
shows that, for rates of all maturities, the three principal components explain
over 99% of rate volatility. And, across all rates, the three PCs explain
99.87% of the sum of the variability of these rates. While these findings
represent relatively recent data on U.S. swap rates, similarly high explanatory
powers characterize the first three components of other kinds of rates, like
U.S. government bond yields and rates in fixed income markets in other
countries. These results provide a great deal of comfort to hedgers: while in
theory many factors (and, therefore, securities) might be required to hedge
the interest rate risk of a particular portfolio, in practice, three factors cover
the vast majority of the risk.

Columns (7) through (9) of Table 6.5 show that the level compo-
nent is far and away the most important in explaining the volatility of
the term structure. The construction of principal components, described
in the overview, does ensure that the first component is the most impor-
tant component, but the extreme dominance of this component is a feature
of the data. This finding is useful for thinking about the costs and bene-
fits of adding a second or third factor to a one-factor hedging framework.
Interestingly too, the dominance of the first factor is significantly muted
in the very short end of the curve. This implies that hedging one short-
term bond with another will not be so effective as hedging one longer-term
bond with another. Or, put another way, relatively more factors or hedging
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securities are needed to hedge portfolios that are concentrated at the short
end of the curve. This makes intuitive sense in the context of the extensive
information market participants have about near-term events and their ef-
fects on rates relative to the information they have on events further into
the future.

Hedging with PCA and an Appl icat ion
to Butterf ly Weights

A PCA-based hedge for a portfolio would proceed along the lines of the
multi-factor approaches described in Chapter 5. Start with the current price
of the portfolio under the current term structure. Then, shift each principal
component in turn to obtain new term structures and new portfolio prices.
Next, calculate an ’01 with respect to each principal component using the
difference between the respective shifted price and the original price. Finally,
using these portfolio ’01s and analogously constructed ’01s for a chosen set
of hedging securities, find the portfolio of hedging securities that neutralizes
the risk of the portfolio to the movement of each PC.

PCA is particularly useful for constructing empirically-based hedges for
large portfolios; it is impractical to perform and assess individual regressions
for every security in a large portfolio. For illustration purposes, however,
this subsection will illustrate how PCA is used, in practice, to hedge a but-
terfly trade. Most typically, butterfly trades use three securities and either
buy the security of intermediate maturity and short the wings or short the
intermediate security and buy the wings.

To take a relatively common butterfly, consider a trader who believes
that the 5-year swap rate is too high relative to the 2- and 10-year swap
rates and is, therefore, planning to receive in the 5-year and pay in the 2-
and 10-year. As of May 28, 2010, the par swap rates and DV01s of the
swaps of relevant terms are listed in Table 6.6. (The 30-year data will be
used shortly.) To calculate the PCA hedge ratios, assume that the trader will
receive on 100 notional amount of 5-year swaps and will trade F2 and F10

notional amount of 2- and 10-year swaps. Using the data from Tables 6.5

TABLE 6.6 Par Swap Rates and DV01s
as of May 28, 2010

Term Rate DV01

2 1.235% .0197
5 2.427% .0468

10 3.388% .0842
30 4.032% .1731
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and 6.6, the equation that neutralizes the overall portfolio’s exposure to the
level PC is

−F 2 .0197
100

× 5.86 − F 10 .0842
100

× 6.35 − 100 × .0468
100

× 6.85 = 0

(6.29)

Similarly, the equation that neutralizes the overall exposure to the slope
PC is

−F 2 .0197
100

× (−3.09) − F 10 .0842
100

× .06 − 100 × .0468
100

× (−1.53) = 0

(6.30)

Solving, F 2 = −120.26 and F 10 = −34.06 or, in terms of risk weights
relative to the DV01 of the five-year swap,

120.26 × .0197
100

.0468
= 50.6% (6.31)

34.06 × .0842
100

.0468
= 61.3% (6.32)

In words, the DV01 of the five-year swap is hedged 50.6% by the two-
year swap and 61.3% by the 10-year swap. Note that the sum of the risk
weights is not 100%: the hedge neutralizes exposures to the level and slope
PCs, not exposures to parallel shifts. To the extent that the term structure
changes as assumed, i.e., as some combination of the first two PCs, then the
hedge will work exactly. On the other hand, to the extent that the actual
change deviates from a combination of these two PCs, the hedge will not,
ex post, have fully hedged interest rate risk.

Hedging the interest rate risk of the five-year swap with two other swaps
in not uncommon, a practice supported by the large fraction of rate variance
explained by the first two PCs. A trader might also decide, however, to hedge
the third PC as well. A hedge against the first three PCs, found by generalizing
the two-security hedge just discussed, gives rise to risk weights of 28.1%,
139.1%, and −67.4% in the 2-, 10-, and 30-year swaps, respectively, i.e.,
pay in the 2- and 10-year, but receive in the 30-year.

Is hedging the third PC worthwhile? The answer depends on the trader’s
risk preferences, but the following analysis is useful. Say that the trader
hedges the first two components alone and then the third component
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experiences a one standard-deviation decrease. The P&L of the trade, per
100 face amount of the 5-year swap, would be[
−120.26 × .0197

100
× .59 + 100 × .0468

100
× (−.57) − 34.06 × .0842

100
× (−.34)

]

= −.031 (6.33)

or, for a two standard-deviation move, a loss of a bit more than 6 cents
per 100 face amount of the 5-year swap. As these two standard deviations
of short rate risk equates to not even 1.5 basis points of convergence of
the 5-year swap, a trader might very well not bother with this third leg of
the hedge.

Principa l Component Analys is of EUR, GBP,
and JPY Swap Rates

Figures 6.5 to 6.7 show the first three PCs for the EUR, GBP, and JPY swap
rate curves over the same sample period as the USD PCs in Figure 6.4. The
striking fact about these graphs is that the shape of the PCs are very much
the same across USD, EUR, and GBP. The only significant difference is in
magnitudes, with the USD level component entailing larger-sized moves than
the level components of EUR and GBP. The PCs of the JPY curve are certainly
similar to those of these other countries, but the level component in JPY does
not have the same hump: in JPY the first PC does not peak at the five-year
maturity point as do the other curves, but increases monotonically with
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F IGURE 6.5 The First Three Principal Components from EUR Swap Rates from
October 2001 to October 2008
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F IGURE 6.6 The First Three Principal Components from GBP Swap Rates
from October 2001 to October 2008

maturity before ultimately leveling off. The significance of this difference in
shape will be discussed in the next subsection.

The Shape of PCs Over Time

As with any empirically based hedging methodology, a decision has to be
made about the relevant time period over which to estimate parameters.
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F IGURE 6.7 The First Three Principal Components from JPY Swap Rates
from October 2001 to October 2008
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F IGURE 6.8 The First Principal Component in USD and EUR Swap Rates
Estimated from October 2001 to October 2008 and from October 2008 to
October 2010

This is an issue for regression-based methods, as discussed in this chapter,
and it is no less an issue for PCA. As will be discussed in this subsection,
the qualitative shapes of PCs have, until very recently, remained remarkably
stable. This does not imply, however, that differences in PCs estimated over
different time periods can be ignored in the sense that they have no important
effects on the quality of hedges. But having made this point, the text focuses
on the relatively recent changes in the shapes of PCs around the world.

Figure 6.4 showed the first three USD PCs computed over the period
2001 to 2008, but, for quite some time, the qualitative shapes of these PCs
was pretty much the same.7 The volatility of rates has changed over time,
and with it the magnitude or height of the PC curves, but the qualitative
shapes have not changed much. Most recently, however, there has been a
qualitative change to the shape of the first PC in USD, EUR, and GBP. In fact,
these shapes have become more like the past shape of the first PC in JPY!

Figures 6.8 and 6.9 contrast the level PC over the historical period Octo-
ber 2001 to October 2008 with that of the post-crisis period, October 2008
to October 2010. Figure 6.8 makes the comparison for USD and EUR while

7See, for example, Figure 2 of Bulent Baygun, Janet Showers, and George Cherpelis,
Salomon Smith Barney, “Principles of Principal Components,” January 31, 2000.
The shapes of the three PCs in that graph, covering the period from January 1989
to February 1998, are qualitatively extremely similar to those of Figure 6.4 in this
chapter.
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F IGURE 6.9 The First Principal Component in GBP and JPY Swap Rates
Estimated from October 2001 to October 2008 and from October 2008 to
October 2010

Figure 6.9 does the same for GBP and JPY. The historical maximum of the
level PC at a term of about five years in USD, EUR, and GBP has been pushed
out dramatically to 10 years and beyond. In fact, these shapes now more
closely resemble the level PC of JPY over the earlier estimation period. One
explanation for this is the increasing certainty that central banks will main-
tain easy monetary conditions and low rates for an extended period of time.
This dampens the volatility of short- and intermediate-term rates relative to
that of longer-term rates, lowers the absolute volatility of short-term rates,
and increases the volatility of long-term rates, reflecting the uncertainty of
the ultimate results of central bank policy. Meanwhile, the level PC for JPY
in the most recent period has become even more pronouncedly upward-
sloping, consistent with an even longer period of central-bank control over
the short-term rate.

APPENDIX A: THE LEAST-SQUARES HEDGE
MINIMIZES THE VARIANCE OF THE P&L
OF THE HEDGED POSIT ION

The P&L of the hedged position, given in (6.10) and repeated here, is

−FR × DV01R

100
�yR

t − FN × DV01N

100
�yN

t (6.34)
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Let V (·) and Cov (·, ·) denote the variance and covariance functions.
The variance of the P&L expression in (6.34) is

(
FR × DV01R

100

)2

V
(
�yR

t

) +
(

FN × DV01N

100

)2

V
(
�yN

t

)

+ 2
(

FR × DV01R

100

)(
FN × DV01N

100

)
Cov

(
�yR

t ,�yN
t

)
(6.35)

To find the face amount FR that minimizes this variance, differentiate
(6.35) with respect to FR and set the result to zero:

2FR
(

DV01R

100

)2

V
(
�yR

t

) + 2FN DV01R

100
DV01N

100
Cov

(
�yR

t ,�yN
t

) = 0

(6.36)

Then, rearranging terms,

FN × DV01N × Cov
(
�yR

t ,�yN
t

)
V

(
�yR

t
) = −FR × DV01R (6.37)

But, by the properties of least squares, not derived in this text,

β̂ ≡ Cov
(
�yR

t ,�yN
t

)
V

(
�yR

t
) (6.38)

Therefore, substituting (6.38) into (6.37) gives the regression hedging rule
(6.9) of the text.

APPENDIX B: CONSTRUCTING PRINCIPAL
COMPONENTS FROM THREE RATES

The goal of this appendix is to demonstrate the construction and properties
of PCs with a minimum of mathematics. To this end, consider three swap
rates, the 10-year, 20-year, and 30-year. Over some sample period, the
volatilities of these rates, in basis points per day, are 4.25, 4.20, and 4.15.
Furthermore, the correlations among these rates are given in the correlation
matrix of Table 6.7.

The combination of data on volatilities and correlations are usefully
combined into a variance-covariance matrix, denoted by V, where the ele-
ment in the ith row and jth column gives the covariance of the rate of term
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TABLE 6.7 Correlation Matrix for Swap
Rate Example

Term 10-Year 20-Year 30-Year

10-Year 1.00 0.95 0.90
20-Year 0.95 1.00 0.99
30-Year 0.90 0.99 1.00

i with the rate of term j, or, the correlation of i and j times the standard
deviation of i times the standard deviation of j. For example, the covariance
of the 20-year swap rate with the 30-year swap rate is .99 × 4.20 × 4.15, or
17.26. The variance-covariance matrix for the example of this appendix is

V =

⎛
⎜⎝

18.06 16.96 15.87
16.96 17.64 17.26
15.87 17.26 17.22

⎞
⎟⎠ (6.39)

One use of a variance-covariance matrix is to write succinctly the vari-
ance of a particular portfolio of the relevant securities. Consider a portfolio
with a total DV01 of .50 in the 10-year swap, −1.0 in the 20-year swap, and
.60 in the 30-year swap. Without matrix notation, then, the dollar variance
of the portfolio, denoted by σ 2 would be given by

σ 2 = .524.252 + (−1)2 4.202 + .624.152

+ 2 × .5 × (−1) × .95 × 4.25 × 4.20

+ 2 × .5 × .6 × .90 × 4.25 × 4.15

+ 2 × (−1) × .6 × .99 × 4.20 × 4.15

= .4642 (6.40)

With matrix notation, letting the transpose of the vector w be w′ =
(.5,−1, .6), the dollar variance of the portfolio is given more compactly by

w′Vw = (
.5 −1 .6

)
⎛
⎜⎝

18.06 16.96 15.87
16.96 17.64 17.26
15.87 17.26 17.22

⎞
⎟⎠

⎛
⎜⎝

.5
−1
.6

⎞
⎟⎠ (6.41)

Finally, note that the sum of the variances of the rates is 4.252 + 4.202 +
4.152 = 52.925, or, for a measure of total volatility, take the square root of
that sum to get 7.27 basis points.
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Returning now to principal components, the idea is to create three
factors that capture the same information as the variance-covariance ma-
trix. The procedure is as follows. Denote the first principal component by
the vector a = (a1, a2, a3)′. Then find the elements of this vector by max-
imizing a′Va such that a′a = 1. As mentioned in the PCA overview, this
maximization ensures that, among the three PCs to be found, the first
PC explains the largest fraction of the variance. The constraint, a′a = 1,
along with a similar constraint placed on the other PCs, will ensure that
the total variance of the PCs equals the total variance of the underlying
data. Performing this maximization, which can be done with the solver in
Excel, a = (.5758, .5866, .5696) . Note that the variance of this first com-
ponent is a′Va =51.041 which is 51.041

52.925 or 96.44% of the total variance of
the rates.

The second principal component, denoted by the vector b = (b1, b2, b3)
is found by maximizing b′Vb such that b′b = 1 and b′a = 0. The max-
imization and the first constraint are analogous to those for finding the
first principal component. The second constraint requires that the PC b is
uncorrelated with the first PC, a. Solving, gives b = (−.7815, .1902, .5941).
Note that b′Vb =1.867 which explains 1.867

52.925 or 3.53% of the total variance
of the rates.

Finally, the third PC, denoted by c = (c1, c2, c3) is found by solv-
ing the three equations, c′c = 1; c′a = 0; and c′b = 0. The solution is
c = (.2402,−.7872, .5680).

As will be clear in a moment, it turns out to be more intuitive to work
with a different scaling of the PCs, namely, by multiplying each by its volatil-
ity. In the example, this means multiplying the first PC by

√
51.041 or 7.14;

the second PC by
√

1.867 or 1.37; and the third by
√

.017 or .13. This gives
the PCs, to be denoted ã, b̃, c̃, as recorded in Table 6.8.

Under this scaling the PCs have a very intuitive interpretation: a one
standard-deviation increase of the first PC or factor is a 4.114 basis-point
increase in the 10-year rate, a 4.191 basis-point increase in the 20-year
rate, and a 4.069 basis-point increase in the 30-year rate. Similarly, a one
standard-deviation increase of the second PC is a 1.068 basis-point drop in
the 10-year rate, a .260 basis-point increase in the 20-year rate, and a .812-
basis point increase in the 30-year rate. Finally, a one standard-deviation

TABLE 6.8 Transformed PCs for the Swap
Rate Example

Term 1st PC 2nd PC 3rd PC

10-Year 4.114 −1.068 .032
20-Year 4.191 .260 −.103
30-Year 4.069 .812 .075
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increase of the third PC constitutes changes of .032, −.103, and .075 basis
points in each of the rates, respectively.

To appreciate the scaling of the PCs in Table 6.8, note the following
implications:

� By construction, the PCs are uncorrelated. Hence, the volatility of the
10-year rate can be recovered from Table 6.8 as

√
4.1142 + (−1.068)2 + .0322 = 4.25 (6.42)

And the volatilities of the 20- and 30-year rates can be recovered equiva-
lently.

� The variance of each PC is the sum of squares of its elements, or, its
volatility is the square root of that sum of squares. For the three PCs,

√
4.1142 + 4.1912 + 4.0692 = 7.14 (6.43)√

(−1.068)2 + .2602 + .8122 = 1.37 (6.44)√
.0322 + (−.103)2 + .0752 = .13 (6.45)

� The square root of the sum of the variances of the PCs is the square
root of the sum of the variances of the rates, which quantity was given
above as 7.27 basis points:

√
7.142 + 1.372 + .132 =

√
52.925 = 7.27 (6.46)

� The volatility of any portfolio can be found by computing its volatil-
ity with respect to each of the PCs and then taking the square root
of the sum of the resulting variances. Returning to the portfolio with
DV01 weights of w′ = (.5,−1, .6), its volatility with respect to each
of the PCs can be computed as in equations (6.47) through (6.49).
Then, adding the sum of these squares and taking the square root, gives
a portfolio volatility of .464, as computed earlier from the variances
and covariances.√

(w′̃a)2 =
√

(.5 × 4.114 − 1 × 4.191 + .6 × 4.069)2 = .3074 (6.47)√
(w′̃b)2 =

√
(.5 × (−1.068) − 1 × .260 + .6 × .812)2 = .3068 (6.48)√

(w′̃c)2 =
√

(.5 × .032 − 1 × (−.103) + .6 × .075)2 = .1640 (6.49)
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In summary, the PCs in Table 6.8 contain the same information as
the variances and covariances, but have the interpretation of one standard-
deviation changes in the level, slope, and short rate factors. Of course, the
power of the methodology is evident not in a simple example like this, but
when, as in the text, changes in 30 rates can be adequately expressed with
changes in three factors.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c07 JWBT539-Tuckman July 22, 2011 14:48 Printer: Courier Westford

PART

Three
Term Structure Models

P art One of this book showed how to price securities with fixed cash flows
relative to the prices of other such securities. Part Two showed how to

measure and hedge the interest rate risk of securities with fixed cash flows,
and also described the hedging of more complex securities, provided that a
pricing model for those securities had been made available. Term structure
models, the subject of Part Three, are used for more general and complex
pricing and hedging problems, including the following:

� Pricing a security with fixed cash flows relative to the prices of other
securities with fixed cash flows when the security in question cannot,
using the methods of Part One, be priced by arbitrage. An interesting
example is pricing a 50-year swap when market swap rates are available
out to only 30 years.

� Pricing a generic interest rate contingent claim relative to the prices of
securities with fixed cash flows, where an interest rate contingent claim
is a security whose cash flows depend on the level of interest rates. An
option to purchase a bond at a fixed price at some future expiration
date would be an example of this application: the value of the option
depends on the price of the underlying bond and, therefore, on interest
rates, as of the expiration date.

� Pricing an exotic derivative relative to the prices of vanilla derivatives.1

An example here would be a derivatives desk pricing a Bermudan-
style swaption (i.e., an option on a swap that may be exercised on a

1Vanilla derivatives typically refer to the relatively liquid and simple LIBOR-based
derivative products. These include caps and floors, European-style swaptions, and
Eurodollar or Euribor futures, all of which are discussed in Part Four.

201
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predetermined set of dates), while market prices are observable only for
European-style swaptions.

� Expressing the risks of portfolios, which include contingent claims, in
a simple and intuitive manner, or, equivalently, determining a practical
way of hedging away the interest rate risk of such portfolios. For exam-
ple, a risk manager responsible for the combined exposures of several
trading desks has to express overall interest rate risk. And as another
example, a relative value hedge fund, which buys securities it believes
are cheap and sells securities it believes are rich, often has to hedge away
any residual exposure to general movements in interest rates.

� Expressing a scenario of changes in fixed income markets in a simple
and intuitive manner. A portfolio manager might want to know how
a particular portfolio would perform should markets behave as they
did in reaction to the Russian debt crisis of 1998. Since it would be
difficult and not particularly instructive to replicate the change in every
security’s value over that historical event, some effective summary of
those market changes is useful.

Pricing a security with fixed cash flows by arbitrage along the lines of
Part One is relatively simple. Find the portfolio that replicates the cash flows
of that security and conclude that the security’s price has to equal the price of
its replicating portfolio. Importantly, no assumptions about future interest
rates have to be made in order to construct this replicating portfolio; since
all cash flows are fixed, a portfolio that replicates a set of cash flows when
rates are 10% also replicates those cash flows when rates are at 2%. And by
the same logic, the composition of these replicating portfolios is static, i.e.,
it does not change over time.

For many securities, however, there does not exist a static, replicating
portfolio. Consider an option on a bond. The cash flows of the option depend
on the level of interest rates, so any replicating portfolio has to match the
option’s cash flows for any possible future evolution of interest rates. As will
be seen in this part, to no surprise of readers who are familiar with the pricing
of equity options, finding such a replicating portfolio typically depends on
some assumptions about the future evolution of interest rates. Furthermore,
the resulting replicating portfolio is dynamic, i.e., its composition changes
over time.

The goal of Part Three is to show how to price contingent claims given
assumptions about the future evolution of interest rates and then to show
how to make reasonable assumptions in the first place. A particular col-
lection of these assumptions is called a term structure model. Models that
postulate only one source of interest rate risk, i.e., that one random variable
determines the entire term structure of interest rates, are called one-factor
models. Models that postulate two or more sources of risk are called multi-
factor models.
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Short-rate models, which can have one or more factors, posit an evo-
lution of the short-term rate which, by arbitrage arguments, allows for the
pricing of interest rate contingent claims. While not suitable or sufficiently
general for many purposes, one-factor short-rate models are perfectly ap-
propriate for certain applications. Also, one-factor models are traditional
and very suitable for pedagogical use. Chapters 7 to 10, therefore, focus on
this class of models.

Chapter 7 lays out the science of short-rate models, that is, how to price
contingent claims by arbitrage once assumptions about the evolution of
rates have been made. This material can be viewed both as a generalization
of the pricing methodology of Part One and as an application to fixed
income securities of the option-pricing methodology originally developed for
equity options.

Chapter 8 uses the short-rate model framework to connect the observed
shape of the term structure with expectations of future rates, the volatility of
rates, and a risk premium on fixed income investments. This is a useful start-
ing point for thinking about the term structure, to which can be added more
sophisticated theories, mentioned briefly ahead, as well as market technicals
that create buying and selling pressures—both persistent and temporary—at
different parts of the curve.

Chapters 9 and 10 focus on the art of short-rate term structure modeling,
that is, how to make reasonable assumptions about the future evolution of
the short rate. The approach of these chapters is to start with the simplest of
models and to generalize the component parts one at a time. These chapters
are useful both for some of the models themselves, which can be used and
implemented where appropriate, as well as for introducing the various model
components that are the building blocks of more elaborate and sophisticated
term structure models.

Chapter 11 leaves the class of one-factor short-rate models to present
significantly more advanced material. The first half of the chapter intro-
duces the Gauss+ model, a multi-factor short-rate model that is particularly
popular among relative value traders as a good compromise between the
goal of capturing the realities of term structure behavior and the goal of
building a model that is intuitive to use and relatively easy to implement.
The purpose of including this model in the book is not only to introduce
multi-factor short-rate models, but also to provide a determined reader with
a useful workhorse for many applications that might arise. To that end,
the presentation includes all necessary formulae along with a suggestion for
empirically estimating the parameters of the model.

The second half of Chapter 11 introduces the (multi-factor) LIBOR
Market Model (LMM). Unlike short-rate models, LMM directly models
the evolution of non-overlapping forward rates in order to price contingent
claims. Because LMM does have many factors, and because the forward rates
themselves are factors, the model automatically matches the term structure
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of interest rates and, by design, is particularly easy to calibrate to the prices
of vanilla derivatives. As a result, LMM is a particular favorite for pricing
and hedging exotic derivatives. Since presentations of LMM tend to be
extremely mathematical and technical, LMM was included in this book so
as to introduce this popular modeling approach in a manner accessible to
a broader audience. While the description here is, in theory, sufficient for a
determined reader to implement a simple version of the model, it must be
noted that vastly more complex specifications are used in practice and that
much research has been done on the calibration and implementation of
these models.

The various pricing models presented in the book can now be linked
to practical problems and applications, including the list at the start of
this introduction:

� Black-Scholes style models, presented in Chapter 18. The Black-Scholes
model can be applied to interest rate contingent claims that have a
relatively simple payoffs and that require calibration only to the price
or rate of the underlying security and to its volatility. For example, the
model is used by market makers and other traders to price and hedge
caplets and floorlets, as well as European-style swaptions, bond options,
and futures options.

� One-factor short-rate models. As will be seen in this part, these models
can be implemented so as to accommodate relatively complex con-
tingent claims. Because of the limitations of a single factor, however,
these models are used only when simplicity of implementation is at a
premium compared with precision, and when calibration to the term
structure might be required but not calibration to more than a handful
of volatility products. One example is the interpolation or extrapola-
tion of prices or rates of liquid bonds or swaps so as to price less liquid
bonds or swaps. Since this approach brings arbitrage pricing discipline
to bear on the problem, some think it superior to purely mathematical
approaches, like cubic splines. Another common application would be
pricing callable bonds (excluding any handling of credit risk). First, the
embedded options in these bonds are relatively complex, with, for ex-
ample, calls that can be exercised on several dates at a declining schedule
of call prices. Second, typical uses, like pricing the embedded call in new
bond issues or assessing the risk of callable bonds in the context of a
large portfolio, do not require great precision. Third, pricing is usually
calibrated to the underlying issuer’s curve and to a small number of
swaptions that most resemble the features of the embedded call.

� Multi-factor short-rate models. These models are used where precision,
ease of interpretation, and consistency of approach across a broad range
of products are all important considerations, but where calibration to
only a relatively small number of securities is required. Examples include
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the following: relative value trading, in which security value is assessed
and positions hedged relative to a fixed number of points on the term
structure and a handful of volatility products; risk management, when
the risk of large, cross-product portfolios is most desirably expressed in
terms of a limited number of risk factors; and scenario analysis, where
historic or hypothesized changes in fixed income markets have to be
summarized in terms of a relatively small number of variables.

� LMM. Consistent with the description above, LMM is used by deriva-
tives market makers and other derivatives traders to price and hedge
exotics. For these applications precision is at a premium, as is calibra-
tion to a relatively large set of vanilla derivatives.

Before concluding this introduction, it should be emphasized that the
models presented in this book are useful for the relative pricing of fixed
income securities, not for determining whether bond or swap rates are, in
some sense, too high or too low. In terms of some of the models presented,
the assumption that the risk premium earned on fixed income investments
is constant means that these models make no interesting predictions about
expected returns. A substantial body of empirical evidence, however, contra-
dicts the assumption of a constant risk premium. Investigators have shown
that the risk premium changes as a function of a combination of interest rate
factors2 or, in addition, as a function of macroeconomic factors that are not
captured by information in the term structure.3 Consequently, models in-
corporating a time-varying risk premium enable predictions about expected
returns based on both interest rates and on other macroeconomic data.
Some practitioners, particularly interest rate strategists, have considered
such models in their work. The approach has not seen much use, however,
for the pricing of contingent claims. In any case, this book makes no further
mention of this promising line of research.

2See, for example, by J. H. Cochrane, and M. Piazzesi, “Bond Risk Premia” American
Economic Review, 95, 2005, pp. 138–60.
3See, for example, by S. C. Ludvigson and S. Ng, “Macro Factors in Bond Risk
Premia,” The Society for Financial Studies, Oxford University Press, 2009.
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CHAPTER 7
The Science of Term

Structure Models

T his chapter uses a very simple setting to show how to price interest rate
contingent claims relative to a set of underlying securities by arbitrage

arguments. Unlike the arbitrage pricing of securities with fixed cash flows in
Part One, the techniques of this chapter require strong assumptions about
how interest rates evolve in the future. This chapter also introduces option-
adjusted spread (OAS) as the most popular measure of deviations of market
prices from those predicted by models.

RATE AND PRICE TREES

Assume that the six-month and one-year spot rates are 5% and 5.15%
respectively. Taking these market rates as given is equivalent to taking the
prices of a six-month bond and a one-year bond as given. Securities with
assumed prices are called underlying securities to distinguish them from the
contingent claims priced by arbitrage arguments.

Next, assume that six months from now the six-month rate will be
either 4.50% or 5.50% with equal probability. This very strong assumption
is depicted by means of a binomial tree, where “binomial” means that only
two future values are possible:

Note that the columns in the tree represent dates. The six-month rate is
5% today, which will be called date 0. On the next date six months from
now, which will be called date 1, there are two possible outcomes or states
of the world. The 5.50% state will be called the up state while the 4.50%
state will be called the down state.

207
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Given the current term structure of spot rates (i.e., the current six-
month and one-year rates), trees for the prices of six month and one-year
zero-coupon bonds may be computed. The price tree for $1,000 face value
of the six-month zero is

since $1,000/
(
1 + .05

2

) = $975.61. (For easy readability, currency symbols
are not included in price trees).

Note that in a tree for the value of a particular security, the maturity of
the security falls with the date. On date 0 of the preceding tree the security
is a six-month zero, while on date 1 the security is a maturing zero.

The price tree for $1,000 face value of a one-year zero is the following:

The three date 2 prices of $1,000 are, of course, the maturity values of
the one-year zero. The two date 1 prices come from discounting this certain
$1,000 at the then-prevailing six-month rate. Hence, the date 1 up-state
price is $1,000/

(
1 + .05

2

)
or $973.2360, and the date 1 down-state price is

$1,000/
(
1 + .045

2

)
or $977.9951. Finally, the date 0 price is computed using

the given date 0 one-year rate of 5.15%: $1,000/
(
1 + .0515

2

)2
or 950.423.

The probabilities of moving up or down the tree may be used to compute
the average or expected values. As of date 0, the expected value of the one-
year zero’s price on date 1 is

1
2

$973.24 + 1
2

$978.00 = $975.62 (7.1)

Discounting this expected value to date 0 at the date 0, six-month rate
gives an expected discounted value1 of

1
2 $973.24 + 1

2 $978.00(
1 + .05

2

) = $951.82 (7.2)

1Over one period, discounting the expected value and taking the expectation of
discounted values are the same. But, as shown in Chapter 13, over many periods the
two are different and, with the approach taken by the short rate models in Part Three,
taking the expectation of discounted values is correct—hence the choice of the term
“expected discounted value.”
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Note that the one-year zero’s expected discounted value of $951.82
does not equal its given market price of $950.42. These two numbers
need not be equal because investors do not price securities by expected dis-
counted value. Over the next six months the one-year zero is a risky security,
worth $973.24 half of the time and $978 the other half of the time for an
average or expected value of $975.62. If investors do not like this price
uncertainty they would prefer a security worth $975.62 on date 1 with cer-
tainty. More specifically, a security worth $975.62 with certainty after six
months would, by the arguments of Part One, sell for $975.62/

(
1 + .05

2

)
or $951.82 as of date 0. By contrast, investors penalize the risky one-
year zero coupon bond with an average price of $975.62 after six months
by pricing it at $950.42. The next chapter elaborates further on investor
risk aversion and how large an impact it might be expected to have on
bond prices.

ARBITRAGE PRIC ING OF DERIVATIVES

The text now turns to the pricing of a derivative security. What is the price
of a call option, maturing in six months, to purchase $1,000 face value of a
then six-month zero at $975? Begin with the price tree for this call option:

If on date 1 the six-month rate is 5.50% and a six-month zero sells
for $973.23, the right to buy that zero at $975 is worthless. On the other
hand, if the six-month rate turns out to be 4.50% and the price of a six-
month zero is $978, then the right to buy the zero at $975 is worth $978 −
$975 or $3. This description of the option’s terminal payoffs emphasizes
the derivative nature of the option: its value depends on the value of an
underlying security.

As shown in Chapter 1, a security is priced by arbitrage by finding and
pricing its replicating portfolio. When, as in that context, cash flows do not
depend on the levels of rates, the construction of the replicating portfolio is
relatively simple. The derivative context is more difficult because cash flows
do depend on the levels of rates, and the replicating portfolio must replicate
the derivative security for any possible interest rate scenario.

To price the option by arbitrage, construct a portfolio on date 0 of
underlying securities, namely six-month and one-year zero coupon bonds,
that will be worth $0 in the up state on date 1 and $3 in the down state.
To solve this problem, let F .5 and F1 be the face values of six-month and
one-year zeros in the replicating portfolio, respectively. Then, these values
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must satisfy the following two equations:

F .5 + .97324F 1 = $0 (7.3)

F .5 + .97800F 1 = $3 (7.4)

Equation (7.3) may be interpreted as follows. In the up state, the value
of the replicating portfolio’s now maturing six-month zero is its face value.
The value of the once one-year zeros, now six-month zeros, is .97324 per
dollar face value. Hence, the left-hand side of equation (7.3) denotes the
value of the replicating portfolio in the up state. This value must equal $0,
the value of the option in the up state. Similarly, equation (7.4) requires that
the value of the replicating portfolio in the down state equal the value of the
option in the down state.

Solving equations (7.3) and (7.4), F .5 = −$613.3866 and F 1 =
$630.2521. In words, on date 0 the option can be replicated by buying
about $630.25 face value of one-year zeros and simultaneously shorting
about $613.39 face amount of six-month zeros. Since this is the case, the
law of one price requires that the price of the option equal the price of the
replicating portfolio. But this portfolio’s price is known and is equal to

.97561F .5 + .95042F 1 = −.97561 × $613.3866 + .95042 × $630.2521

= $.58 (7.5)

Therefore, the price of the option must be $.58.
Recall that pricing based on the law of one price is enforced by arbitrage.

If the price of the option were less than $.58, aribtrageurs could buy the
option, short the replicating portfolio, keep the difference, and have no
future liabilities. Similarly, if the price of the option were greater than $.58,
arbitrageurs could short the option, buy the replicating portfolio, keep the
difference, and, once again, have no future liabilities. Thus, ruling out profits
from riskless arbitrage implies an option price of $.58.

It is important to emphasize that the option cannot be priced by expected
discounted value. Under that method, the option price would appear to be

.5 × $0 + .5 × $3

1 + .05
2

= $1.46 (7.6)

The true option price is less than this value because investors dislike the
risk of the call option and, as a result, will not pay as much as its expected
discounted value. Put another way, the risk penalty implicit in the call option
price is inherited from the risk penalty of the one-year zero, that is, from
the property that the price of the one-year zero is less than its expected
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discounted value. Once again, the magnitude of this effect is discussed in the
next chapter.

This section illustrates arbitrage pricing with a call option, but it should
be clear that arbitrage can be used to price any security with cash flows
that depend on the six-month rate. Consider, for example, a security that,
in six months, requires a payment of $200 in the up state but generates
a payment of $1,000 in the down state. Proceeding as in the option ex-
ample, find the portfolio of six-month and one-year zeros that replicates
these two terminal payoffs, price this replicating portfolio as of date 0, and
conclude that the price of the hypothetical security equals the price of the
replicating portfolio.

A remarkable feature of arbitrage pricing is that the probabilities of
up and down moves never enter into the calculation of the arbitrage price.
See equations (7.3) to (7.5). The explanation for this somewhat surprising
observation follows from the principles of arbitrage. Arbitrage pricing re-
quires that the value of the replicating portfolio matches the value of the
option in both the up and the down states. Therefore, the composition of
the replicating portfolio is the same whether the probability of the up state
is 20%, 50%, or 80%. But if the composition of the portfolio does not
depend directly on the probabilities, and if the prices of the securities in the
portfolio are given, then the price of the replicating portfolio and hence the
price of the option cannot depend directly on the probabilities either.

Despite the fact that the option price does not depend directly on the
probabilities, these probabilities must have some impact on the option price.
After all, as it becomes more and more likely that rates will rise to 5.50% and
that bond prices will be low, the value of options to purchase bonds must
fall. The resolution of this apparent paradox is that the option price depends
indirectly on the probabilities through the price of the one-year zero. Were
the probability of an up move to increase suddenly, the current value of
a one-year zero would decline. And since the replicating portfolio is long
one-year zeros, the value of the option would decline as well. In summary, a
derivative like an option depends on the probabilities only through current
bond prices. Given bond prices, however, probabilities are not needed to
derive arbitrage-free prices.

RISK-NEUTRAL PRIC ING

Risk-neutral pricing is a technique that modifies an assumed interest rate
process, like the one assumed at the start of this chapter, so that any
contingent claim can be priced without having to construct and price its
replicating portfolio. Since the original interest rate process has to be mod-
ified only once, and since this modification requires no more effort than
pricing a single contingent claim by arbitrage, risk-neutral pricing is an
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extremely efficient way to price many contingent claims under the same
assumed rate process.

In the example of this chapter, the price of a one-year zero does not equal
its expected discounted value. The price of the one-year zero is $950.42,
computed from the given one-year spot rate of 5.15%. At the same time,
the expected discounted value of the one-year zero is $951.82, as derived in
equation (7.2) and reproduced here:

1
2 $973.24 + 1

2 $978.00(
1 + .05

2

) = $951.82 (7.7)

The probabilities of 1
2 for the up and down states are the assumed true

or real-world probabilities. But there are other probabilities, called risk-
neutral probabilities, that do cause the expected discounted value to equal
the market price. To find these probabilities, let the risk-neutral probabilities
in the up and down states be p and (1 − p), respectively. Then, solve the
following equation:

$973.24p + $978.00 (1 − p)

1 + .05
2

= $950.42 (7.8)

The solution is p = .8024. In words, under the risk-neutral probabilities
of .8024 and .1976 the expected discounted value equals the market price.

In later chapters the difference between true and risk-neutral prob-
abilities is described in terms of the drift in interest rates. Under the
true probabilities there is a 50% chance that the six-month rate rises
from 5% to 5.50% and a 50% chance that it falls from 5% to 4.50%.
Hence the expected change in the six-month rate, or the drift of the six-
month rate, is zero. Under the risk-neutral probabilities there is an 80.24%
chance of a 50-basis point increase in the six-month rate and a 19.76%
chance of a 50-basis point decline for an expected change of 30.24 basis
points. Hence the drift of the six-month rate under these probabilities is
30.24 basis points.

As pointed out in the previous section, the expected discounted value
of the option payoff is $1.46, while the arbitrage price is $.58. But what if
expected discounted value is computed using the risk-neutral probabilities?
The resulting option value would be

.8024 × $0 + .1976 × $3

1 + .05
2

= $.58 (7.9)

The fact that the arbitrage price of the option equals its expected dis-
counted value under the risk-neutral probabilities is not a coincidence. In
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general, to value contingent claims by risk-neutral pricing, proceed as fol-
lows. First, find the risk-neutral probabilities that equate the price of the
underlying securities with their expected discounted values. (In the simple
example of this chapter the only risky, underlying security is the one-year
zero.) Second, price the contingent claim by expected discounted value under
these risk-neutral probabilities. The remainder of this section will describe
intuitively why risk-neutral pricing works. Since the argument is a bit com-
plex, it is broken up into four steps.

Step 1: Given trees for the underlying securities, the price of a secu-
rity that is priced by arbitrage does not depend on investors’ risk
preferences. This assertion can be supported as follows.

A security is priced by arbitrage if one can construct a portfolio
that replicates its cash flows. Under the assumed process for interest
rates in this chapter, for example, the sample bond option is priced
by arbitrage. By contrast, it is unlikely that a specific common stock
can be priced by arbitrage because no portfolio of underlying secu-
rities can mimic the idiosyncratic fluctuations in a single common
stock’s market value.

If a security is priced by arbitrage and everyone agrees on
the price evolution of the underlying securities, then everyone will
agree on the replicating portfolio. In the option example, both an
extremely risk-averse, retired investor and a professional gambler
would agree that a portfolio of $630.25 face of one-year zeros and
−$613.39 face of six-month zeros replicates the option. And since
they agree on the composition of the replicating portfolio and on
the prices of the underlying securities, they must also agree on the
price of the derivative.

Step 2: Imagine an economy identical to the true economy with respect to
current bond prices and the possible value of the six-month rate over
time but different in that the investors in the imaginary economy
are risk neutral. Unlike investors in the true economy, investors
in the imaginary economy do not penalize securities for risk and,
therefore, price securities by expected discounted value. It follows
that, under the probabilities in the imaginary economy, the expected
discounted value of the one-year zero equals its market price. But
these probabilities satisfy equation (7.8), namely the risk-neutral
probabilities of .8024 and .1976.

Step 3: The price of the option in the imaginary economy, like any other
security in that economy, is computed by expected discounted value.
Since the probability of the up state in that economy is .8024, the
price of the option in that economy is given by equation (7.9) and
is, therefore, $.58.
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Step 4: Step 1 implies that given the prices of the six-month and one-
year zeros, as well as possible values of the six-month rate, the
price of an option does not depend on investor risk preferences. It
follows that since the real and imaginary economies have the same
bond prices and the same possible values for the six-month rate, the
option price must be the same in both economies. In particular, the
option price in the real economy must equal $.58, the option price
in the imaginary economy. More generally, the price of a derivative
in the real economy may be computed by expected discounted value
under the risk-neutral probabilities.

ARBITRAGE PRIC ING IN A MULTI -PERIOD SETTING

Maintaining the binomial assumption, the tree of the previous section might
be extended for another six months as follows:

When, as in this tree, an up move followed by a down move does not
give the same rate as a down move followed by an up move, the tree is
said to be nonrecombining. From an economic perspective, there is nothing
wrong with this kind of tree. To justify this particular tree, for example, one
might argue that when short rates are 5% or higher they tend to change in
increments of 50 basis points. But when rates fall below 5%, the size of the
change starts to decrease. In particular, at a rate of 4.50%, the short rate
may change by only 45 basis points. A volatility process that depends on the
level of rates exhibits state-dependent volatility.

Despite the economic reasonableness of nonrecombining trees, practi-
tioners tend to avoid them because such trees are difficult or even impossible
to implement. After six months there are two possible states, after one year
there are four, and after N seminannual periods there are 2N possibilities.
So, for example, a tree with semiannual steps large enough to price 10-year
securities will, in its rightmost column alone, have over 500,000 nodes,
while a tree used to price 20-year securities will in its rightmost column
have over 500 billion nodes. Furthermore, as discussed later in the chapter,
it is often desirable to reduce substantially the time interval between dates.
In short, even with modern computers, trees that grow this quickly are com-
putationally unwieldy. This doesn’t mean, by the way, that the effects that
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give rise to nonrecombining trees, like state-dependent volatility, have to
be abandoned. It simply means that these effects must be implemented in a
more efficient way.

Trees in which the up-down and down-up states have the same value
are called recombining trees. An example of this type of tree that builds on
the two-date tree of the previous sections is

Note that there are two nodes after six months, three after one year,
and so on. A tree with weekly rather than semiannual steps capable of
pricing a 30-year security would have only 52 × 30 + 1 or 1,561 nodes in its
rightmost column. Evidently, recombining trees are much more manageable
than nonrecombining trees from a computational viewpoint.

As trees grow it becomes convenient to develop a notation with which
to refer to particular nodes. One convention is as follows. The dates, repre-
sented by columns of the tree, are numbered from left to right starting with
0. The states, represented by rows of the tree, are numbered from bottom
to top, also starting from 0. For example, in the preceding tree the six-
month rate on date 2, state 0 is 4%. The six-month rate on state 1 of date 1
is 5.50%.

Continuing where the option example left off, having derived the risk-
neutral tree for the pricing of a one-year zero, the goal is to extend the tree for
the pricing of a 1.5-year zero assuming that the 1.5-year spot rate is 5.25%.
Ignoring the probabilities for a moment, several nodes of the 1.5-year zero
price tree can be written down immediately:

On date 3 the zero with an original term of 1.5 years matures and is
worth its face value of $1,000. On date 2 the value of the then six-month
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zero equals its face value discounted for six months at the then-prevailing
spot rates of 6%, 5%, and 4% in states 2, 1, and 0, respectively:

$1,000

1 + .06
2

= $970.87 (7.10)

$1,000

1 + .05
2

= $975.61 (7.11)

$1,000

1 + .04
2

= $980.39 (7.12)

Finally, on date 0 the 1.5-year zero equals its face value discounted at the
given 1.5-year spot rate:

$1,000(
1 + .0525

2

)3 = $925.21 (7.13)

The prices of the zero on date 1 in states 1 and 0 are denoted P1,1 and
P1,0 respectively. The then one-year zero prices are not known because, at
this point in the development, possible values of the one-year rate in six
months are not available.

The previous section showed that the risk-neutral probability of an up
move on date 0 is .8024. Letting q be the risk-neutral probability of an up
move on date 1,2 the tree becomes

2For simplicity alone this example assumes that the probability of moving up from
state 0 equals the probability of moving up from state 1. Choosing among the many
possible interest rate processes is discussed in Chapters 9 through 11.
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By definition, expected discounted value under risk-neutral probabilities
must produce market prices. With respect to the 1.5-year zero price on date
0, this requires that

.8024P1,1 + .1976P1,0

1 + .05
2

= $925.21 (7.14)

With respect to the prices of a then one-year zero on date 1,

P1,1 = $970.87q + $975.61 (1 − q)

1 + .055
2

(7.15)

P1,0 = $975.61q + $980.39 (1 − q)

1 + .045
2

(7.16)

While equations (7.14) through (7.16) may appear complicated, sub-
stituting (7.15) and (7.16) into (7.14) results in a linear equation in the
one unknown, q. Solving this resulting equation reveals that q = .6489.
Therefore, the risk-neutral interest rate process may be summarized by the
following tree:

Furthermore, any derivative security that depends on the six-month
rate in six months and in one year may be priced by computing its dis-
counted expected value along this tree. An example appears in the next
section.

The difference between the true and risk-neutral probabilities may once
again be described in terms of drift. From dates 1 to 2, the drift under the
true probabilities is zero. Under the risk-neutral probabilities the drift is
computed from a 64.89% chance of a 50-basis point increase in the six-
month rate and a 35.11% chance of a 50-basis point decline in the rate.
These numbers give a drift or expected change of 14.89 basis points.
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Substituting q = .6489 back into equations (7.15) and (7.16 ) completes
the tree for the price of the 1.5-year zero:

It follows immediately from this tree that the one-year spot rate six
months from now may be either 5.5736% or 4.5743% since

$946.51 = $1,000(
1 + 5.5736%

2

)2 (7.17)

$955.78 = $1,000(
1 + 4.5743%

2

)2 (7.18)

The fact that the possible values of the one-year spot rate can be ex-
tracted from the tree is at first surprising. The starting point of the ex-
ample is the date 0 values of the .5-, 1-, and 1.5-year spot rates as well
as an assumption about the evolution of the six-month rate over the next
year. But since this information, in combination with arbitrage or risk-
neutral arguments, is sufficient to determine the price tree of the 1.5-year
zero, it is sufficient to determine the possible values of the one-year spot
rate in six months. Considering this fact from another point of view, hav-
ing specified initial spot rates and the evolution of the six-month rate, a
modeler may not make any further assumptions about the behavior of the
one-year rate.

The six-month rate process completely determines the one-year rate
process because the model presented here has only one factor. Writing down
a tree for the evolution of the six-month rate alone implicitly assumes that
prices of all fixed income securities can be determined by the evolution of
that rate. Multi-factor models for which this is not the case will be introduced
in Chapter 11.
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Just as some replicating portfolio can reproduce the cash flows of a
security from date 0 to date 1, some other replicating portfolios can repro-
duce the cash flows of a security from date 1 to date 2. The composition of
these replicating portfolios depends on the date and state. More specifically,
the replicating portfolios held on date 0, on state 0 of date 1, and on state 1
of date 1 are usually different. From the trading perspective, the replicating
portfolio must be adjusted as time passes and as interest rates change. This
process is known as dynamic replication, in contrast to the static replication
strategies of Part One. As an example of static replication, the portfolio of
zero coupon bonds that replicates a coupon bond does not change over time
nor with the level of rates.

Having built a tree out to date 2 it should be clear how to extend the
tree to any number of dates. Assumptions about the future possible values
of the short-term rate have to be extrapolated further into the future and
risk-neutral probabilities have to be calculated to recover a given set of
bond prices.

EXAMPLE: PRIC ING A CONSTANT-MATURITY
TREASURY SWAP

Equipped with the last tree of interest rates in the previous section, this
section prices a particular derivative security, namely $1,000,000 face value
of a stylized constant-maturity Treasury (CMT) swap struck at 5%. This
swap pays

$1,000,000
yCMT − 5%

2
(7.19)

every six months until it matures, where yCMT is a semiannually compounded
yield, of a predetermined maturity, on the payment date. The text prices a
one-year CMT swap on the six-month yield. In practice, CMT swaps trade
most commonly on the yields of the most liquid maturities, i.e., on 2-, 5-
and 10-year yields.

Since six-month semiannually compounded yields equal six-month spot
rates, rates from the tree of the previous section can be substituted into
(7.19) to calculate the payoffs of the CMT swap. On date 1, the state 1 and
state 0 payoffs are, respectively,

$1,000,000
5.50% − 5%

2
= $2,500 (7.20)

$1,000,000
4.50% − 5%

2
= −$2,500 (7.21)



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c07 JWBT539-Tuckman July 22, 2011 14:48 Printer: Courier Westford

220 TERM STRUCTURE MODELS

Similarly on date 2, the state 2, 1, and 0 payoffs are, respectively,

$1,000,000
6% − 5%

2
= $5,000 (7.22)

$1,000,000
5% − 5%

2
= $0 (7.23)

$1,000,000
4% − 5%

2
= −$5,000 (7.24)

The possible values of the CMT swap at maturity, on date 2, are given
by equations (7.22) through (7.24). The possible values on date 1 are given
by the expected discounted value of the date 2 payoffs under the risk-neutral
probabilities plus the date 1 payoffs given by (7.20) and (7.21). The resulting
date 1 values in states 1 and 0, respectively, are

.6489 × $5,000 + .3511 × $0

1 + .055
2

+ $2,500 = $5,657.66 (7.25)

.6489 × 0 + .3511 × (−$5,000
)

1 + .045
2

− $2,500 = −$4,216.87 (7.26)

Finally, the value of the swap on date 0 is the expected discounted value
of the date-1 payoffs, given by (7.25) and (7.26), under the risk-neutral
probabilities:

.8024 × $5,657.66 + .1976 × (−$4,216.87
)

1 + .05
2

= $3,616.05 (7.27)

The following tree summarizes the value of the stylized CMT swap over
dates and states:

A value of $3,616.05 for the CMT swap might seem surprising at first.
After all, the cash flows of the CMT swap are zero at a rate of 5%, and 5% is,
under the real probabilities, the average rate on each date. The explanation,
of course, is that the risk-neutral probabilities, not the real probabilities,
determine the arbitrage price of the swap. The expected discounted value of
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the swap under the real probabilities can be computed by following the steps
leading to (7.25) through (7.27) but using .5 for all up and down moves. The
result of these calculations does give a value close to zero, namely −$5.80.

The expected cash flow of the CMT swap on both dates 1 and 2, un-
der the real probabilities, is zero. It follows immediately that the discounted
value of these expected cash flows is zero. At the same time, the expected dis-
counted value of the CMT swap is −$5.80. Why are these values different?
The answer to this question is deferred to Chapter 13.

OPTION-ADJUSTED SPREAD

Option-adjusted spread (OAS) is a widely-used measure of the relative value
of a security, that is, of its market price relative to its model value. OAS
is defined as the spread such that the market price of a security equals
its model price when discounted values are computed at risk-neutral rates
plus that spread. To illustrate, say that the market price of the CMT
swap in the previous section is $3,613.25, $2.80 less than the model
price. In that case, the OAS of the CMT swap turns out to be 10 basis
points. To see this, add 10 basis points to the discounting rates of 5.5%
and 4.5% in equations (7.25) and (7.26), respectively, to get new swap
values of

.6489 × $5,000 + .3511 × $0

1 + .056
2

+ $2,500 = $5,656.13 (7.28)

.6489 × 0 + .3511 × (−$5,000
)

1 + .046
2

− $2,500 = −$4,216.03 (7.29)

Note that, when calculating value with an OAS spread, rates are only shifted
for the purpose of discounting. Rates are not shifted for the purposes of com-
puting cash flows. In the CMT swap example, cash flows are still computed
using equations (7.20) through (7.24).

Completing the valuation with an OAS of 10 basis points, use the results
of (7.28) and (7.29) and a discount rate of 5% plus the OAS spread of
10 basis points, or 5.10%, to obtain an initial CMT swap value of

.8024 × $5,656.13 + .1976 × (−$4,216.03
)

1 + .051
2

= $3,613.25 (7.30)

Hence, as claimed, discounting at the risk-neutral rates plus an OAS
of 10 basis points produces a model price equal to the given market price
of $3,613.25.
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If a security’s OAS is positive, its market price is less than its model
price, so the security trades cheap. If the OAS is negative, the security
trades rich.

Another perspective on the relative value implications of an OAS spread
is the fact that the expected return of a security with an OAS, under the risk-
neutral process, is the short-term rate plus the OAS per period. Very simply,
discounting a security’s expected value by a particular rate per period is
equivalent to that security’s earning that rate per period. In the example
of the CMT swap, the expected return of the fairly-priced swap under the
risk-neutral process over the six months from date 0 to date 1 is

.8024 × $5,657.66 − .1976 × $4,216.87 − $3,616.05
$3,616.05

= 2.5% (7.31)

which is six month’s worth of the initial rate of 5%. On the other hand, the
expected return of the cheap swap, with an OAS of 10 basis points, is

.8024 × $5,656.13 − .1976 × $4,216.03 − $3,613.25
$3,613.25

= 2.55% (7.32)

which is six month’s worth of the initial rate of 5% plus the OAS of 10 basis
points, or half of 5.10%.

PROFIT AND LOSS ATTRIBUTION WITH AN OAS

Chapter 3 introduced profit and loss (P&L) attribution. This section gives
a mathematical description of attribution in the context of term structure
models and of securities that trade with an OAS.

By the definition of a one-factor model, and by the definition of OAS,
the market price of a security at time t and a factor value of x can be written
as Pt (x, OAS). Using a first-order Taylor approximation, the change in the
price of the security is

dP = ∂P
∂x

dx + ∂P
∂t

dt + ∂P
∂OAS

dOAS (7.33)

Dividing by the price and taking expectations,

E
[

dP
P

]
= 1

P
∂P
∂x

E [dx] + 1
P

∂P
∂t

dt (7.34)
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Since the OAS calculation assumes that OAS is constant over the life of
the security, moving from (7.33) to (7.34) assumes that the expected change
in the OAS is zero.

As mentioned in the previous section, if expectations are taken with
respect to the risk-neutral process,3 then, for any security priced according
to the model,

E
[

dP
P

]
= rdt (7.35)

But equation (7.35) does not apply to securities that are not priced according
to the model, that is, to securities with an OAS not equal to zero. For these
securities, by definition, the cash flows are discounted not at the short-term
rate but at the short-term rate plus the OAS. Equivalently, as argued in the
previous section, the expected return under the risk-neutral probabilities is
not the short-term rate but the short-term rate plus the OAS. Hence, the
more general form of (7.35), is

E
[

dP
P

]
= (r + OAS) dt (7.36)

Combining these pieces, substitute (7.34) and (7.36) into (7.33) and
rearrange terms to break down the return of a security into its compo-
nent parts:

dP
P

= (r + OAS) dt + 1
P

∂P
∂x

(dx − E [dx]) + 1
P

∂P
∂OAS

dOAS (7.37)

Finally, multiplying through by P,

dP = (r + OAS) Pdt + ∂P
∂x

(dx − E [dx]) + ∂P
∂OAS

dOAS (7.38)

In words, the return of a security or its P&L may be divided into a
component due to the passage of time, a component due to changes in the
factor, and a component due to the change in the OAS. In the language of
Chapter 3, the terms on the right-hand side of (7.38) represent, in order,
carry-roll-down,4 gains or losses from rate changes, and gains or losses from
spread change. For models with predictive power, the OAS converges or

3Taking expected values with respect to the true probabilities would add a risk
premium term to the right-hand side of this equation. See Chapter 8.
4For expositional simplicity no explicit coupon or other direct cash flows have been
included in this discussion.
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tends to zero, or, equivalently, the security price converges or tends toward
its fair value according to the model.

The decompositions (7.37) and (7.38) highlight the usefulness of OAS
as a measure of the value of a security with respect to a particular model.
According to the model, a long position in a cheap security earns superior
returns in two ways. First, it earns the OAS over time intervals in which the
security does not converge to its fair value. Second, it earns its sensitivity to
OAS times the extent of any convergence.

The decomposition equations also provide a framework for thinking
about relative value trading. When a cheap or rich security is identified, a
relative value trader buys or sells the security and hedges out all interest
rate or factor risk. In terms of the decompositions, ∂P

∂x = 0. In that case, the
expected return or P&L depends only on the short-term rate, the OAS, and
any convergence. Furthermore, if the trader finances the trade at the short-
term rate, i.e., borrows P at a rate r to purchase the security, the expected
return is simply equal to the OAS plus any convergence return.

REDUCING THE TIME STEP

To this point this chapter has assumed that the time elapsed between dates of
the tree is six months. The methodology outlined previously, however, can
be easily adapted to any time step of �t years. For monthly time steps, for
example, �t = 1

12 or .0833, and one-month rather than six-month interest
rates appear on the tree. Furthermore, discounting must be done over the
appropriate time interval. If the rate of term �t is r, then discounting means
dividing by 1 + r�t. In the case of monthly time steps, discounting with a
one-month rate of 5% means dividing by 1 + .05

12 .
In practice there are two reasons to choose time steps smaller than six

months. First, a security or portfolio of securities rarely makes all of its
payments in even six-month invervals from the starting date. Reducing the
time step to a month, a week, or even a day can ensure that all cash flows
are sufficiently close in time to some date in the tree. Second, assuming that
the six-month rate can take on only two values in six months, three values
in one year, and so on, produces a tree that is too coarse for many practical
pricing problems. Reducing the step size can fill the tree with enough rates
to price contingent claims with sufficient accuracy. Figure 7.1 illustrates this
point by showing a relatively realistic-looking probability distribution of the
six-month rate in six months from a tree with daily time steps, a drift of
zero, and a horizon standard deviation of 65 basis points.

While smaller time steps generate more realistic interest rate distribu-
tions, it is not the case that smaller time steps are always desirable. First,
the greater the number of computations in pricing a security, the more



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c07 JWBT539-Tuckman July 22, 2011 14:48 Printer: Courier Westford

The Science of Term Structure Models 225

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

3.00% 3.50% 4.00% 4.50% 5.00% 5.50% 6.00% 6.50% 7.00%

Pr
ob

ab
ili

ty

Rate

F IGURE 7.1 Sample Probability Distribution of the Six-Month Rate in
Six Months with Daily Time Steps

attention must be paid to numerical issues like round-off error. Second,
since decreasing the time step increases computation time, practitioners re-
quiring quick results cannot make the time step too small. Customers calling
market makers in options on swaps, or swaptions, for example, expect price
quotations within minutes if not sooner. Hence, the time step in a model
used to price swaptions must be consistent with the market maker’s required
response time.

The best choice of step size ultimately depends on the problem at hand.
When pricing a 30-year callable bond, for example, a model with monthly
time steps may provide a realistic enough interest rate distribution to gen-
erate reliable prices. The same monthly steps, however, will certainly be
inadequate to price a one-month bond option: that tree would imply only
two possible rates on the option expiration date.

While the trees in this chaper assume that the step size is the same
throughout the tree, this need not be the case. Sophisticated implementations
of trees allow step size to vary across dates in order to achieve a balance
bewteen realism and computational concerns.

F IXED INCOME VERSUS EQUITY DERIVATIVES

While the ideas behind pricing fixed income and equity derivatives are similar
in many ways, there are important differences as well. In particular, it is
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worth describing why models created for the stock market cannot be adopted
without modification for use in fixed income markets.

The famous Black-Scholes-Merton pricing analysis of stock options can
be summarized as follows. Under the assumption that the stock price evolves
according to a particular random process and that the short-term interest
rate is constant, it is possible to form a portfolio of stocks and short-
term bonds that replicates the payoffs of an option. Therefore, by arbi-
trage arguments, the price of the option must equal the known price of the
replicating portfolio.

Say that an investor wants to price an option on a five-year bond by a
direct application of this logic. The investor would have to begin by making
an assumption about how the price of the five-year bond evolves over time.
But this is considerably more complicated than making assumptions about
how the price of a stock evolves over time. First, the price of a bond must
converge to its face value at maturity while the random process describing
the stock price need not be constrained in any similar way. Second, because
of the maturity constraint, the volatility of a bond’s price must eventually
get smaller as the bond approaches maturity. The simpler assumption that
the volatility of a stock is constant is not so appropriate for bonds. Third,
since stock volatility is very large relative to short-term rate volatility, it
may be relatively harmless to assume that the short-term rate is constant.
By contrast, it can be difficult to defend the assumption that a bond price
follows some random process while the short-term interest rate is constant.5

These objections led researchers to make assumptions about the ran-
dom evolution of the interest rate rather than of the bond price. In that
way bond prices would naturally approach par, price volatilities would nat-
urally approach zero, and the interest rate would not be assumed to be
constant. But this approach raises another set of questions. Which interest
rate is assumed to evolve in a particular way? Making assumptions about the
5-year rate over time is not particularly helpful for two reasons. First, 5-year
coupon bond prices depend on shorter-term rates as well. Second, pricing an
option on a 5-year bond requires assumptions about the bond’s future pos-
sible prices. But knowing the 5-year rate over time is insufficient because,
in a very short time, the option’s underlying security will no longer be a
5-year bond. Therefore, one must often make assumptions about the evo-
lution of the entire term structure of interest rates to price bond options
and other derivatives. In the one-factor case described in this chapter it has
been shown that modeling the evolution of the short-term rate is sufficient,

5Because these three objections are less important in the case of short-term options
on long-term bonds, practitioners do use stock-like models in this fixed income
context. Also, it is often sufficient to assume, somewhat more satisfactorily, that the
relevant discount factor is uncorrelated with the price of the underlying bond. See
Chapter 18.
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combined with arbitrage arguments, to build a model of the entire term
structure. In short, despite the enormous importance of the Black-Scholes-
Merton analysis, the fixed income context does demand special attention.

Having reached the conclusion at the end of the previous paragraph,
there are some contexts in which practitioners invoke assumptions so that
the Black-Scholes-Merton models can be applied in place of more difficult-
to-implement term structure models. These situations are discussed at length
in Chapter 18.
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CHAPTER 8
The Evolution of Short Rates and
the Shape of the Term Structure

T his chapter presents a framework for understanding the shape of the
term structure. In particular, it is shown how spot or forward rates are

determined by expectations of future short-term rates, the volatility of short-
term rates, and an interest rate risk premium. To conclude the chapter, this
framework is applied to swap curves in the United States and Japan.

INTRODUCTION

From assumptions about the interest rate process for the short-term rate and
from an initial term structure implied by market prices, Chapter 7 showed
how to derive a risk-neutral process that can be used to price all fixed income
securities by arbitrage. Models that follow this approach, i.e., models that
take the initial term structure as given, are called arbitrage-free models. A
different approach, however, is to start with assumptions about the interest
rate process and about the risk premium demanded by the market for bearing
interest rate risk and then derive the risk-neutral process. Models of this sort
do not necessarily match the initial term structure and are called equilibrium
models.1 The strengths and weaknesses of each approach are discussed in
subsequent chapters of Part Three.

This chapter describes how assumptions about the interest rate pro-
cess and about the risk premium determine the level and shape of the
term structure. For equilibrium models, an understanding of the rela-
tionships between the model asssumptions and the shape of the term
structure is important in order to make reasonable assumptions in the

1This nomenclature is somewhat misleading. Equilibrium models, in the context of
their assumptions, which do not include market prices for the initial term structure,
are also arbitrage-free.

229
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first place. For arbitrage-free models, an understanding of these relation-
ships reveals the assumptions implied by the market through the observed
term structure.

Many economists might find this chapter remarkably narrow. An
economist asked about the shape of the term structure would undoubtedly
make reference to such macroeconomic factors as the marginal productivity
of capital, the propensity to save, and expected inflation. The more modest
goal of this chapter is to connect the dynamics of the short-term rate of
interest and the risk premium with the shape of the term structure. While
this goal does fall short of answers that an economist might provide, it is
more ambitious than the derivation of arbitrage restrictions on bond and
derivative prices given underlying bond prices.

EXPECTATIONS

The word expectations implies uncertainty. Investors might expect the one-
year rate to be 10%, but know there is a good chance it will turn out to be
8% or 12%. For the purposes of this section alone the text assumes away
uncertainty so that the statement that investors expect or forecast a rate of
10% means that investors assume that the rate will be 10%. The sections to
follow reintroduce uncertainty.

To highlight the role of interest rate forecasts in determining the shape
of the term structure, consider the following simple example. The one-year
interest rate is currently 10% and all investors forecast that the one-year
interest rate next year and the year after will also be 10%. In that case,
investors will discount cash flows using forward rates of 10%. In particular,
the price of one-, two- and three-year zero coupon bonds per dollar face
value (using annual compounding) will be

P1 = 1
1.10

(8.1)

P2 = 1
(1.10) (1.10)

= 1
1.102

(8.2)

P3 = 1
(1.10) (1.10) (1.10)

= 1
1.103

(8.3)

From inspection of equations (8.1) through (8.3), the term structure of
spot rates in this example is flat at 10%. Very simply, investors are willing
to lock in 10% for two or three years because they assume that the one-year
rate will always be 10%.

Now assume that the one-year rate is still 10%, but that all investors
forecast the one-year rate next year to be 12% and the one-year rate in
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two years to be 14%. In that case, the one-year spot rate is still 10%. The
two-year spot rate, r̂ (2), is such that

P2 = 1
(1.10) (1.12)

= 1

(1 + r̂ (2))2 (8.4)

Solving, r̂ (2) = 10.995%. Similarly, the three-year spot rate, r̂ (3), is
such that

P3 = 1
(1.10) (1.12) (1.14)

= 1

(1 + r̂ (3))3 (8.5)

Solving, r̂ (3) = 11.998%. Hence, the evolution of the one-year rate from
10% to 12% to 14% generates an upward-sloping term structure of spot
rates: 10%, 10.995%, and 11.988%. In this case investors require rates
above 10% when locking up their money for two or three years because they
assume one-year rates will be higher than 10%. No investor, for example,
would buy a two-year zero at a yield of 10% when it is possible to buy a one-
year zero at 10% and, when it matures, buy another one-year zero at 12%.

Finally, assume that the one-year rate is 10%, but that investors forecast
that it will fall to 8% in one year and to 6% in two years. In that case, it is
easy to show that the term structure of spot rates will be downward-sloping.
In particular, r̂ (1) = 10%, r̂ (2) = 8.995%, and r̂ (3) = 7.988%.

These simple examples reveal that expectations can cause the term struc-
ture to take on any of a myriad of shapes. Over short horizons, the financial
community can have very specific views about future short-term rates. Over
longer horizons, however, expectations cannot be so granular. It would be
difficult, for example, to defend the position that the expectation for the one-
year rate 29 years from now is substantially different from the expectation
of the one-year rate 30 years from now. On the other hand, an argument
can be made that the long-run expectation of the short-term rate is 5%: 3%
due to the long-run real rate of interest and 2% due to long-run inflation.
Hence, forecasts can be very useful in describing the shape and level of the
term structure over short-term horizons and the level of rates at very long
horizons. This conclusion has important implications for extracting expec-
tations from observed interest rates (see the application at the end of this
chapter) and for choosing among term structure models.

VOLATIL ITY AND CONVEXITY

This section drops the assumption that investors believe that their forecasts
will be realized and assumes instead that investors understand the volatility
around their expectations. To isolate the implications of volatility on the
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shape of the term structure, this section assumes that investors are risk-
neutral so that they price securities by expected discounted value. The next
section drops this assumption.

Assume that the following tree gives the true process for the one-year
rate:

Note that the expected interest rate on date 1 is .5 × 8% + .5 × 12% or
10% and that the expected rate on date 2 is .25 × 14% + .5 × 10% + .25 ×
6% or 10%. In the previous section, with no volatility around expectations,
flat expectations of 10% imply a flat term structure of spot rates. That is
not the case in the presence of volatility.

The price of a one-year zero is, by definition, 1
1.10 or .909091, implying

a one-year spot rate of 10%. Under the assumption of risk-neutrality, the
price of a two-year zero may be calculated by discounting the terminal cash
flow using the preceding interest rate tree:

Hence, the two-year spot rate is such that .82672 = (1 + r̂ (2))−2, im-
plying that r̂ (2) = 9.982%.

Even though the one-year rate is 10% and the expected one-year rate
in one year is 10%, the two-year spot rate is 9.982%. The 1.8-basis point
difference between the spot rate that would obtain in the absence of uncer-
tainty, 10%, and the spot rate in the presence of volatility, 9.982%, is the
effect of convexity on that spot rate. This convexity effect arises from the
mathematical fact, a special case of Jensen’s Inequality, that

E
[

1
1 + r

]
>

1
E [1 + r ]

= 1
1 + E [r ]

(8.6)
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1/
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+r
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r
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D

F IGURE 8.1 An Illustration of Convexity

Figure 8.1 graphically illustrates this equation. There are two possible
values of r and, consequently, of the function 1

1+r in the figure,2 shown
as points A and D. The height or vertical-axis coordinate of point B is
the average of these two function values. Under the assumption that the two
possible values of r occur with equal probability, this average can be thought
of as E

[ 1
1+r

]
in (8.6). And under the same assumption, the horizontal-axis

coordinates of the points B and C can be thought of as E [r ] so that the
height of point C can be thought of as 1

1+E[r ] . Clearly, the height of B is

greater than that of C, or E
[ 1

1+r

]
> 1

1+E[r ] . To summarize, equation (8.6)

is true because the pricing function of a zero-coupon bond, 1
1+r , is convex

rather than concave.
Returning to the example of this section, equation (8.6) may be used to

show why the one-year spot rate is less than 10%. The spot rate one year
from now may be 12% or 8%. According to (8.6),

.5 × 1
1.12

+ .5 × 1
1.08

>
1

.5 × 1.12 + .5 × 1.08
= 1

1.10
(8.7)

Dividing both sides by 1.10,

1
1.10

[
.5 × 1

1.12
+ .5 × 1

1.08

]
>

1
1.102

(8.8)

2The curve shown is actually a power of 1
1+r ; i.e., the price of a longer-term zero-

coupon bond, so that the curvature is more visible.
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The left-hand side of (8.8) is the price of the two-year zero-coupon bond
today. In words then, equation (8.8) says that the price of the two-year zero
is greater than the result of discounting the terminal cash flow by 10% over
the first period and by the expected rate of 10% over the second period. It
follows immediately that the yield of the two-year zero, or the two-year spot
rate, is less than 10%.

The tree presented at the start of this section may also be used to price
a three-year zero. The resulting price tree is

The three-year spot rate, such that .752309 = (1 + r̂ (3))−3, is 9.952%.
Therefore, the value of convexity in this spot rate is 10% − 9.952% or 4.8
basis points, whereas the value of convexity in the two-year spot rate was
only 1.8 basis points.

It is generally true that, all else equal, the value of convexity increases
with maturity. This will become evident shortly. For now, suffice it to say
that the convexity of the pricing function of a zero maturing in N years,
(1 + r )−N, increases with N. In terms of Figure 8.1, the longer the maturity
of the illustrated pricing function, the more convex the curve.

Chapter 4 showed that securities with greater convexity perform better
when yields change a lot and claimed that they perform worse when yields
do not change by much. The discussion in this section shows that convex-
ity does, in fact, lower bond yields. The mathematical development in a
later section ties these observations together by showing exactly how the
advantages of convexity are offset by lower yields.

The previous section assumes no interest rate volatility and, conse-
quently, yields are completely determined by forecasts. In this section,
with the introduction of volatility, yield is reduced by the value of con-
vexity. So it may be said that the value of convexity arises from volatility.
Furthermore, the value of convexity increases with volatility. In the tree
introduced at the start of the section, the standard deviation of rates is
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F IGURE 8.2 Volatility and the Shape of the Term Structure in Three-Date
Binomial Models

200 basis points a year.3 Now consider a tree with a standard deviation of
400 basis points:

The expected one-year rate in one year and in two years is still 10%.
Spot rates and convexity values for this case may be derived along the same
lines as before. Figure 8.2 graphs three term structures of spot rates: one
with no volatility around the expectation of 10%; one with a volatility
of 200 basis points a year (the tree of the first example); and one with a
volatility of 400 basis points per year (the tree preceding this paragraph).
Note that the value of convexity, measured by the distance between the
rates assuming no volatility and the rates assuming volatility, increases with

3Chapter 9 describes the computation of the standard deviation of rates implied by
an interest rate tree.
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volatility. Figure 8.2 also illustrates that the value of convexity increases
with maturity.

For very short terms and realistic levels of volatility, the value of con-
vexity is quite small. But since simple examples must rely on short terms,
convexity effects would hardly be discernible without raising volatility to un-
realistic levels. Therefore, this section had to make use of unrealistically high
volatility. The application at the end of this chapter uses realistic volatility
levels to present typical convexity values.

RISK PREMIUM

To illustrate the effect of risk premium on the term structure, consider
again the second interest rate tree presented in the preceding section, with a
volatility of 400 basis points per year. Risk-neutral investors would price a
two-year zero by the following calculation:

.827541 = .5
[ 1

1.14 + 1
1.06

]
1.10

= .5 [.877193 + .943396]
1.10

(8.9)

By discounting the expected future price by 10%, equation (8.9) implies
that the expected return from owning the two-year zero over the next year
is 10%. To verify this statement, calculate this expected return directly:

.5
.877193 − .827541

.827541
+ .5

.943396 − .827541
.827541

= .5 × 6% + .5 × 14%

= 10% (8.10)

Would investors really invest in this two-year zero offering an expected
return of 10% over the next year? The return will, in fact, be either 6% or
14%. While these two returns do average to 10%, an investor could, instead,
buy a one-year zero with a certain return of 10%. Presented with this choice,
any risk-averse investor would prefer an investment with a certain return
of 10% to an investment with a risky return that averages 10%. In other
words, investors require compensation for bearing interest rate risk.4

Risk-averse investors demand a return higher than 10% for the two-
year zero over the next year. This return can be effected by pricing the zero

4This is an oversimplification. See the discussion at the end of the section.
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coupon bond one year from now at less than the prices of 1
1.14 and 1

1.06 .
Equivalently, future cash flows could be discounted at rates higher than the
possible rates of 14% and 6%. The next section shows that adding, for
example, 20 basis points to each of these rates is equivalent to assuming
that investors demand an extra 20 basis points for each year of duration
risk. Assuming this is indeed the fair market risk premium, the price of the
two-year zero would be computed as follows:

.826035 = .5
[ 1

1.142 + 1
1.062

]
1.10

(8.11)

The price in (8.11) is below the value obtained in (8.9) which assumes
that investors are risk-neutral. Put another way, the increase in the discount-
ing rates has increased the expected return of the two-year zero. In one year,
if the interest rate is 14%, then the price of a one-year zero will be 1

1.14 or
.877193. If the rate is 6%, then the price will be 1

1.06 or .943396. Therefore,
the expected return of the two-year zero priced at .826035 is

.5 [.877193 + .943396] − .826035
.826035

= 10.20% (8.12)

Hence, recalling that the one-year zero has a certain return of 10%, the
risk-averse investors in this example demand 20 basis points in expected
return to compensate them for the one year of duration risk inherent in the
two-year zero.5

Continuing with the assumption that investors require 20 basis points
for each year of duration risk, the three-year zero, with its approximately
two years of duration risk,6 needs to offer an expected return of 40 basis
points. The next section shows that this return can be effected by pricing
the three-year zero as if rates next year are 20 basis points above their true
values and as if rates the year after next are 40 basis points above their true
values. To summarize, consider trees (a) and (b) below. If tree (a) depicts
the actual or true interest rate process, then pricing with tree (b) provides
investors with a risk premium of 20 basis points for each year of duration

5The reader should keep in mind that a two-year zero has one year of interest rate
risk only in this stylized example: it has been assumed that rates can move only once
a year. In reality rates can move at any time so a two-year zero has two full years of
interest rate risk.
6A three-year zero has two years of interest rate risk only in this stylized example.
See the previous footnote.
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risk. If this risk premium is, in fact, embedded in market prices, then, by
definition, tree (b) is the risk-neutral interest rate process.

The text now verifies that pricing the three-year zero with the risk-
neutral process does offer an expected return of 10.4%, assuming that rates
actually move according to the true process.

The price of the three-year zero can be computed by discounting using
the risk-neutral tree:

To find the expected return of the three-year zero over the next year,
proceed as follows. Two years from now the three-year zero will be a one-
year zero with no interest rate risk.7 Therefore, its price will be determined
by discounting at the actual interest rate at that time: 1

1.18 or .847458, 1
1.10

or .909091, and 1
1.02 or .980392. One year from now, however, the three-

year zero will be a two-year zero with one year of duration risk. Therefore,
its price at that time will be determined by using the risk-neutral rates of

7Once again, this is an artifact of this example in which rates change only once a
year.
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14.20% and 6.20%. In particular, the two possible prices of the three-year
zero in one year are

.769067 = .5 (.847458 + .909091)
1.142

(8.13)

and

.889587 = .5 (.909091 + .980392)
1.062

(8.14)

Finally, then, the expected return of the three-year zero over the next year is

.5 (.769067 + .889587) − .751184
.751184

= 10.40% (8.15)

To summarize, in order to compensate investors for two years of dura-
tion risk, the return on the three-year zero is 40 basis points above a one-year
zero’s certain return of 10%.

Continuing with the assumption of 400-basis-point volatility, Figure 8.3
graphs the term structure of spot rates for three cases: no risk premium;
a risk premium of 20 basis points per year of duration risk; and a risk
premium of 40 basis points. In the case of no risk premium, the term structure
of spot rates is downward-sloping due to convexity. A risk premium of

9.75%

9.80%

9.85%

9.90%

9.95%

10.00%

10.05%

10.10%

10.15%

10.20%

10.25%

1 2 3

Risk Prem. = 40 bps Risk Prem. = 20 bps Risk Prem. = 0 bps

F IGURE 8.3 Volatility, Risk Premium, and the Shape of the Term Structure in
Three-Date Binomial Models
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20 basis points pushes up spot rates while convexity pulls them down. In
the short end the risk premium effect dominates and the term structure is
mildly upward-sloping. In the long end the convexity effect dominates and
the term structure is mildly downward-sloping. The next section clarifies why
risk premium tends to dominate in the short end while convexity tends to
dominate in the long end. Finally, a risk premium as large as 40 basis
points dominates the convexity effect and the term structure of spot rates is
upward-sloping. The convexity effect is still evident, however, from the fact
that the curve increases more rapidly from one to two years than from two
to three years.

Just as the section on volatility uses unrealistically high levels of volatility
to illustrate its effects, this section uses unrealistically high levels of the risk
premium to illustrate its effects. The application at the end of this chapter
focuses on reasonable magnitudes for the various effects in the context of
the USD and JPY swap markets.

Before closing this section, a few remarks on the sources of an interest
rate risk premium are in order. Asset pricing theory (e.g., the Capital Asset
Pricing Model, or CAPM) teaches that assets whose returns are positively
correlated with aggregate wealth or consumption will earn a risk premium.
Consider, for example, a traded stock index. That asset will almost certainly
do well if the economy is doing well and poorly if the economy is doing
poorly. But investors, as a group, already have a lot of exposure to the
economy. To entice them to hold a little more of the economy in the form of
a traded stock index requires the payment of a risk premium; i.e., the index
must offer an expected return greater than the risk-free rate of return. On
the other hand, say that there exists an asset that is negatively correlated
with the economy. Holdings in that asset allow investors to reduce their
exposure to the economy. As a result, investors would accept an expected
return on that asset below the risk-free rate of return. That asset, in other
words, would have a negative risk premium.

This section assumes that bonds with interest rate risk earn a risk pre-
mium. In terms of asset pricing theory, this is equivalent to assuming that
bond returns are positively correlated with the economy or, equivalently,
that falling interest rates are associated with good times. One argument sup-
porting this assumption is that interest rates fall when inflation and expected
inflation fall and that low inflation is correlated with good times.

The concept of a risk premium in fixed income markets has probably
gained favor more for its empirical usefulness than for its theoretical solidity.
On average, over the past 75 years, the term structure of interest rates has
sloped upward.8 While the market may from time to time expect that interest

8See, for example, Homer, S., and Richard Sylla, A History of Interest Rates, 3rd
Edition, Revised, Rutgers University Press, 1996, pp. 394–409.
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rates will rise, it is hard to believe that the market expects interest rates to
rise on average. Therefore, expectations cannot explain a term structure of
interest rates that, on average, slopes upward. Convexity, of course, leads
to a downward-sloping term structure. Hence, of the three effects described
in this chapter, only a positive risk premium can explain a term structure
that, on average, slopes upward.

An uncomfortable fact, however, is that over earlier time periods the
term structure has, on average, been flat.9 Whether this means that an inter-
est rate risk premium is a relatively recent phenomenon that is here to stay
or that the experience of persistently upward-sloping curves is only partially
due to a risk premium is a question beyond the scope of this book. In short,
the theoretical and empirical questions with respect to the existence of an
interest rate risk premium have not been settled.

A MATHEMATICAL DESCRIPTION OF
EXPECTATIONS, CONVEXITY, AND RISK PREMIUM

This section presents a decomposition of return and of rates in fixed income
markets. The level of mathematics of this section is higher than that of most
of this book, but the discussion still aims at intuition.

Assume that all bond prices are determined by a single interest rate
factor, namely the instantaneous rate r taking on the value rt at time t.
Then, let Pt (rt, T) be the price of a T-year zero-coupon bond at time t. By
Ito’s Lemma, a discussion of which is beyond the scope of this book,

dP = ∂P
∂r

dr + ∂P
∂t

dt + 1
2

∂2 P
∂r2

σ 2dt (8.16)

where dP, dr , and dt are the changes in price, rate, and time over the
next instant, respectively, and σ is the volatility of the instantaneous rate
measured in basis points per year. The two first-order partial derivatives ∂P

∂r
and ∂P

∂t denote the change in the bond price for a unit change in the rate
(with time unchanged) and the change in the bond price for a unit change
in time (with yield unchanged), respectively, over the next instant. Finally,
the second order partial derivative, 1

2
∂2 P
∂r2 , gives the change in ∂P

∂r for a unit
change in rate (with time unchanged) over the next instant. Dividing both
sides of (8.16) by price,

dP
P

= 1
P

∂P
∂r

dr + 1
P

∂P
∂t

dt + 1
2

1
P

∂2 P
∂r2

σ 2dt (8.17)

9Ibid.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c08 JWBT539-Tuckman July 21, 2011 10:42 Printer: Courier Westford

242 TERM STRUCTURE MODELS

Thus, equation (8.17) breaks down the return from the zero coupon
bond’s price changes over the next instant, dP

P , into three components. But
this equation can be written in a more intuitive form by invoking several
facts from earlier chapters.

First, the time t price of a T-year zero-coupon bond can be written in
terms of the then T-year continuously compounded spot rate. This spot rate
is a function of both the short-term rate factor rt and T, but will be written
more simply as r̂ c (T):

Pt = e−r̂ c
t (T)T (8.18)

Then, differentiating both sides of (8.18) with respect to t, recognizing that
increasing t decreases T one-for-one,

∂P
∂t

= −∂P
∂T

= ∂

∂T

[
r̂ c

t (T) T
] × Pt (8.19)

But, combining equations (2.37) and (2.41) of Appendix B in Chapter 2,
it can be seen that ∂

∂T [̂r t (T) T] is just the instantaneous forward rate of term
T, written as f c (T). Hence,

∂P
∂t

= f c (T) Pt (8.20)

Second, by the definitions of duration and convexity, D and C,

D ≡ − 1
P

∂P
∂r

(8.21)

C ≡ 1
P

∂2 P
∂r2

(8.22)

Now substitute equations (8.20) through (8.22) into the return break-
down of (8.17), to see that

dP
P

= f c (T) dt − Ddr + 1
2

Cσ 2dt (8.23)

The left-hand side of equation (8.23) is the return of the zero-coupon
bond. The right-hand side gives the three components of return. The first
component equals the return due to the passage of time, which, in this case,
is the forward rate of term T. The second and third components equal the
return due to changes in the rate. The second term says that increases in
rate reduce bond return and that the greater the duration of the bond, the
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greater this effect. This term is perfectly consistent with the discussion of
interest rate sensitivity in Part Two of the book.

The third term on the right-hand side of equation (8.23) is consistent
with the related discussions in Chapter 4. It was shown there that bond
return increases with convexity multiplied by the change in rate squared.
Here, C is multiplied by the volatility of the rate instead of the rate squared.
By the definition of volatility and variance, of course, these quantities are
very closely related: variance equals the expected value of the rate squared
minus the square of the expected rate.

Chapter 4 showed that, holding duration constant, positive convexity
increases the return of a security as rates change, whether they rise or fall.
Equation (8.23) has the same implication: the greater the convexity and the
greater the volatility of the rate, the greater the return. The text turns in a
moment to the cost of this convexity-induced return.

To draw conclusions about the expected returns of bonds with differ-
ent duration and convexity characteristics, it will prove useful to take the
expectation of each side of (8.23), obtaining

E
[

dP
P

]
= f c (T) dt − DE [dr ] + 1

2
Cσ 2dt (8.24)

Equation (8.24) divides expected return into its mathematical compo-
nents. These components are analogous to those in equation (8.23): a return
due to the passage of time, a return due to expected changes in rate, and a
return due to volatility and convexity. To develop equation (8.23) further,
the analysis must incorporate the economics of expected return.

Risk-neutral investors demand that each bond offer an expected re-
turn equal to the short-term rate of interest. The interest rate risk of one
bond relative to another would not affect the required expected returns.
Mathematically,

E
[

dP
P

]
= rtdt (8.25)

Risk-averse investors demand higher expected returns for bonds with
more interest rate risk. The Appendix in this chapter shows that the interest
rate risk of a bond over the next instant may be measured by its duration with
respect to the interest rate factor and that risk-averse investors demand a
risk premium proportional to duration. Letting the risk premium parameter
be λ, the expected return equation for risk-averse investors becomes

E
[

dP
P

]
= rtdt + λDdt (8.26)
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Say, for example, that the short-term rate is 1%, that the duration of a
particular bond is five, and that the risk premium is 10 basis points per year
of duration risk. Then, according to equation (8.26), the expected return of
the bond equals 1% + 5 × .1% or 1.5% per year.

Another useful way to think of the risk premium is in terms of the
Sharpe Ratio of a security, defined as its expected excess return (i.e., its
expected return above the short-term interest rate), divided by the standard
deviation of the return. Since the random part of a bond’s return comes
from its duration times the change in rate, see (8.23), the standard deviation
of the return equals the duration times the standard deviation of the rate.
Therefore, the Sharpe ratio of a bond, S, may be written as

S =
E

[
dP
P

]
− rtdt

σ Ddt
(8.27)

Comparing equations (8.26) and (8.27), one can see that S = λ
σ

. So,
continuing with the numerical example, if the risk premium is 10 basis
points per year and if the standard deviation is 100 basis points per year,
then the Sharpe ratio of a bond investment is 10%.

Equipped with the economic description of expected returns in (8.26),
the text can now draw conclusions about the determination of forward
rates. Equate the right-hand sides of the expected return in (8.26) and the
breakdown of expected return in (8.24) to see that

f c (T) =
{

rt + E
[

dr
dt

]
D

}
+ λD− 1

2
Cσ 2 (8.28)

Equation (8.28) mathematically describes the determinants of forward
rates. The three terms on the right-hand side represent the effects of ex-
pectations, risk premium, and convexity, respectively. The first term says
that the forward rate is composed of the instantaneous interest rate plus
the expected change in that instantaneous rate times the duration of the
zero-coupon bond corresponding to the term of the forward rate. In other
words, the higher the instantaneous rate, the higher the forward rate; the
more rates are expected to increase, the higher the forward rate; and the
greater the corresponding duration, i.e., the greater the term of the forward
rate, the greater the effect of expected instantaneous rate changes on the
forward rate.

The second term on the right-hand side of (8.28) says that the forward
rate increases with the risk premium in proportion to the corresponding
zero coupon bond duration. In other words, the greater the correspond-
ing interest rate risk and the greater the risk premium, the greater the
forward rate.
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Chapter 7 noted that pricing bonds as if the short-term rate drifted
up by a certain amount each year has the same effect as a risk premium
per year of that amount. Inspection of equation (8.28) reveals this equiv-
alence more formally. Increasing the risk premium by a fixed number of
basis points is empirically indistinguishable from increasing the expected
short-term rate, through E

[ dr
dt

]
, by the same number of basis points. This

means that the market term structure at any given time cannot be used to
distinguish between market expectations of rate changes and risk premium.
From a modeling perspective this means that only the risk-neutral process is
relevant for pricing. Dividing the drift into expectations and risk premium
might be very useful in determining whether the model seems economically
reasonable, but this division has no pricing implications.

Finally, the third term of (8.28) shows that the forward rate falls with
interest rate volatility and the corresponding zero-coupon convexity. Equa-
tion (8.24) shows that the expected return of a bond is enhanced by its
convexity in the quantity 1

2Cσ 2dt. But the convexity term in (8.28) shows
that the forward rate and, therefore, the expected return due to the passage
of time in (8.28), are reduced by exactly that amount. Hence, as claimed in
Chapter 7 and as mentioned earlier in this chapter, a bond priced by arbi-
trage offers no advantage in expected return due to its convexity. In fact,
the expected return condition (8.26) ensures that this is so.

APPLICATION: EXPECTATIONS, CONVEXITY, AND
RISK PREMIUM IN USD AND JPY SWAP MARKETS

This section uses the simple framework of the previous section to illustrate
the magnitudes of the effects described in this chapter in the context of USD
and JPY swap markets. EUR and GBP swap markets will be mentioned at
the end of the section.

Figure 8.4 is an example of a decomposition of the term structure of
forward rates in the USD swap market as of May 28, 2010, into expectations,
risk premium, and convexity. This decomposition was achieved by making
assumptions sufficient to apply equation (8.28).

The first challenge in applying equation (8.28) is the convexity effect
on forward rates. This effect equals − 1

2Cσ 2, where C is the convexity of
the matching-maturity zero coupon bond with respect to the short-term
interest rate and σ is the volatility of that rate. This is difficult to apply
precisely without invoking a more specific model, like those presented later
in Part Three, for two reasons. First, the convexity formulas from Chapter
4 are with respect to spot rates or zero coupon yields. Second, in reality
there does not exist one interest rate volatility but rather a term structure
of volatilities. The exact handling of these issues will become clear over
the next few chapters. For the purposes of this application, however, the
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F IGURE 8.4 A Decomposition of the USD Swap Curve as of May 28, 2010, with
a Risk Premium of 9 Basis Points per Year

TABLE 8.1 Spot Rate Volatilities of Selected Terms
from the Swaptions Market as of May 28, 2010

Spot Rate Volatility

Term in Years USD Swaps JPY Swaps

2 105.46 17.23
5 114.45 30.01

10 112.91 45.73
25 91.79 67.02

convexity term in (8.28) is calculated using the convexity with respect to
the spot rate—equation (4.51)—and the variance of that spot rate from the
term structure of volatilities in the swaption market,10 which are shown in
Table 8.1. Hence, the convexity term in (8.28) for a six-month rate 10 years
forward, with a 10-year spot rate of 3.512%, is taken to be

−1
2

10 × 10.5(
1 + 3.512%

2

)2 ×
(

112.91
10,000

)2

= −.646% (8.29)

10 More precisely, the average of the caplet (forward) volatilities over a particular
term is taken to be the spot rate volatility of that term.
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The second challenge in applying equation (8.28) is setting the risk
premium. As mentioned earlier, there is no way of separating expectations
and risk premium from fixed income security prices alone. For the pur-
poses of this illustration, therefore, several strong assumptions were made.
First, consistent with the notation of the previous section, it is assumed
that the risk premium is constant although the risk premium may, in the-
ory, depend on calendar time and the level of rates. Second, rate expec-
tations are relatively flat at longer maturities. As mentioned earlier, while
the market might expect a particular path of rates in the short term, it is
hard to defend any such expectations from 20 to 30 years in the future.
Third, the long-run expectation of the short-term rate is about 5%, cor-
responding to a long-run real rate of 3% and a long-run rate of inflation
of 2%. Fourth, the Sharpe ratio of invesments in bonds is consistent with
historical norms.

As it turns out, a risk premium of 9 basis points per year satisfies
the assumptions of the previous paragraph relatively well. The resulting
expectations curve in Figure 8.4 is relatively flat at 5% at long maturities.
Also, at an interest rate volatility of about 100 basis points, a risk premium
of 9 basis points per year gives a Sharpe ratio of 9%, which is a historically
plausible order of magnitude. In any case, using a risk premium of 9 basis
points per year in (8.28), the risk premium part of a forward rate is just λD,
where D is the duration of the appropriate zero coupon bond. For example,
the risk premium component of the six-month rate 10 years forward, with
a 10-year spot rate of 3.512%, is about 88 basis points:

10

1 + 3.512%
2

× 9
10,000

= .884% (8.30)

Taken as a whole, Figure 8.4 gives an idea of the orders of magnitude
of expectations, convexity, and risk premium on forward rates of different
terms. It so happens that, over the relevant range, the risk premium and con-
vexity effects to a large extent cancel, leaving expected rates approximately
equal to forward rates.

Figure 8.5 performs a similar exercise for JPY swaps. Because the volatil-
ities are lower than for the USD curve, the convexity effect is lower as well.
The risk premium is kept at nine basis points per year, which does result in
relatively flat rate expectations, although the implied Sharpe ratios are much
higher because of the lower volatilities.

Interestingly, a similar decomposition in EUR and GBP does not produce
results that are as reasonable. The significantly downward-sloping forward
rate curves in the long end in those currencies, displayed in Chapter 2, require
a zero if not slightly negative risk premium for long-rate expectations to be
flat. This is understandable in light of the discussion in the Overview that
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F IGURE 8.5 A Decomposition of the JPY Swap Curve as of May 28, 2010, with a
Risk Premium of 9 Basis Points per Year

pension fund and insurance company demand for long-end duration has
distorted the long-end of the term structure in these currencies.

APPENDIX: PROOF OF EQUATION (8.26)

This proof follows that of Ingersoll (1987)11 and assumes some knowledge of
stochastic processes and their associated notation. This notation is described
in Chapters 9 and 10.

Assume that r, the single, instantaneous interest rate factor, follows the
process

dr = μdt + σdw (8.31)

Let P be the full price of some security that depends on r and time. Then,
by Ito’s Lemma,

dP = Pr dr + Ptdt + 1
2

Prrσ
2dt (8.32)

11 Ingersoll, J., Theory of Financial Decision Making, Rowman & Littlefield, 1987.
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where Pr, Pt, and Prr denote the partial first derivatives with respect to r and
t and the second partial derivative with respect to r. Dividing both sides of
(8.32) by P, taking expectations, and defining αP to be the expected return
of the security,

αPdt ≡ E
[

dP
P

]
= Pr

P
μdt + Pt

P
dt + 1

2
Prrσ

2dt (8.33)

Combining (8.31), (8.32) and (8.33),

dP
P

− αPdt = Pr

P
σdw (8.34)

Since equation (8.34) applies to any security, it also applies to some
other security Q:

dQ
Q

− αQdt = Qr

Q
σdw (8.35)

Now consider the strategy of investing $1 in security P and

− Pr Q
P Qr

(8.36)

dollars in security Q. Using equations (8.34) and (8.35), the return on this
portfolio is

dP
P

− Pr Q
P Qr

dQ
Q

= αPdt − Pr Q
P Qr

αQdt (8.37)

Notice that terms with the random variable dw have fallen out of equa-
tion (8.37). This particular portfolio was, in fact, chosen so as to hedge
completely the risk of P with Q. In any case, since the portfolio has no risk
it must earn the instantaneous rate r:

αPdt − Pr Q
P Qr

αQdt =
(

1 − Pr Q
P Qr

)
rdt (8.38)

Rearranging the terms of (8.38),

αP − r

− Pr
P

= αQ − r

− Qr
Q

≡ λ (r, t) (8.39)
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Equation (8.39) says that the expected return of any security above the
instantaneous rate divided by its duration with respect to that rate must equal
some function λ. This function cannot depend on any characteristic of the
security because (8.39) is true for all securities. The function may depend on
the interest rate factor and time although, this book, for simplicity, assumes
that λ is constant. Rewriting (8.39), for each security it must be true that

E
[

dP
P

]
≡ αPdt = rdt + λDdt (8.40)
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CHAPTER 9
The Art of Term Structure

Models: Drift

C hapters 7 and 8 show that assumptions about the true and risk-neutral
short-term rate processes determine the term structure of interest rates

and the prices of fixed income derivatives. The goal of this chapter is to
describe the most common building blocks of short-term rate models. Se-
lecting and rearranging these building blocks to create suitable models for
the purpose at hand is the art of term structure modeling.

This chapter begins with an extremely simple model with no drift and
normally distributed rates. The next sections add and discuss the impli-
cations of alternate specifications of the drift: a constant drift, a time-
deterministic shift, and a mean-reverting drift.

MODEL 1: NORMALLY DISTRIBUTED RATES
AND NO DRIFT

The particularly simple model of this section will be called Model 1. The con-
tinuously compounded, instantaneous rate rt is assumed to evolve according
to the following equation:

dr = σdw (9.1)

The quantity dr denotes the change in the rate over a small time interval,
dt, measured in years; σ denotes the annual basis-point volatility of rate
changes; and dw denotes a normally distributed random variable with a
mean of zero and a standard deviation of

√
dt.1

Say, for example, that the current value of the short-term rate is 6.18%,
that volatility equals 113 basis points per year, and that the time interval

1It is beyond the mathematical scope of the text to explain why the random variable
dw is denoted as a change. But the text uses this notation since it is the convention
of the field.

251
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under consideration is one month or 1
12 years. Mathematically, r0 = 6.18%;

σ = 1.13%; and dt = 1
12 . A month passes and the random variable dw, with

its zero mean and its standard deviation of
√

1
12 or .2887, happens to take

on a value of .15. With these values, the change in the short-term rate given
by (9.1) is

dr = 1.13% × .15 = .17% (9.2)

or 17 basis points. Since the short-term rate started at 6.18%, the short-term
rate after a month is 6.35%.

Since the expected value of dw is zero, (9.1) says that the expected
change in the rate, or the drift, is zero. Since the standard deviation of dw is√

dt, the standard deviation of the change in the rate is σ
√

dt. For the sake
of brevity, the standard deviation of the change in the rate will be referred to
as simply the standard deviation of the rate. Continuing with the numerical
example, the process (9.1) says that the drift is zero and that the standard

deviation of the rate is σ
√

dt, which is 1.13% ×
√

1
12 = .326% or 32.6 basis

points per month.
A rate tree may be used to approximate the process (9.1). A tree over

dates 0 to 2 takes the following form:

In the case of the numerical example, substituting the sample values into
the tree gives the following:
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To understand why these trees are representations of the process (9.1),
consider the transition from date 0 to date 1. The change in the interest
rate in the up state is σ

√
dt and the change in the down state is −σ

√
dt.

Therefore, with the probabilities given in the tree, the expected change in
the rate, often denoted E [dr ], is

E [dr ] = .5 × σ
√

dt + .5 × −σ
√

dt = 0 (9.3)

The variance of the rate, often denoted V [dr ], from date 0 to date 1 is
computed as follows:

V [dr ] = E
[
dr2] − {E [dr ]}2

= .5 ×
(
σ
√

dt
)2

+ .5 ×
(
−σ

√
dt

)2
− 0

= σ 2dt (9.4)

Note that the first line of (9.4) follows from the definition of variance. Since
the variance is σ 2dt, the standard deviation, which is the square root of the
variance, is σ

√
dt.

Equations (9.3) and (9.4) show that the drift and volatility implied
by the tree match the drift and volatility of the interest rate process (9.1).
The process and the tree are not identical because the random variable in
the process, having a normal distribution, can take on any value while a
single step in the tree leads to only two possible values. In the example,
when dw takes on a value of .15, the short rate changes from 6.18% to
6.35%. In the tree, however, the only two possible rates are 6.506% and
5.854%. Nevertheless, as shown in Chapter 7, after a sufficient number of
time steps the branches of the tree used to approximate the process (9.1) will
be numerous enough to approximate a normal distribution. Figure 9.1 shows
the distribution of short rates after one year, or the terminal distribution after
one year, in Model 1 with r0 = 6.18% and σ = 1.13%. The tick marks on
the horizontal axis are one standard deviation apart from one another.

Models in which the terminal distribution of interest rates has a normal
distribution, like Model 1, are called normal or Gaussian models. One
problem with these models is that the short-term rate can become negative.
A negative short-term rate does not make much economic sense because
people would never lend money at a negative rate when they can hold cash
and earn a zero rate instead.2 The distribution in Figure 9.1, drawn to
encompass three standard deviations above and below the mean, shows that

2Actually, the interest rate can be slightly negative if a security or bank account were
safer or more convenient than holding cash.
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F IGURE 9.1 Distribution of Short Rates After One Year, Model 1

over a horizon of one year the interest rate process will almost certainly not
exhibit negative interest rates. The probability that the short-term rate in the
process (9.1) becomes negative, however, increases with the horizon. Over
10 years, for example, the standard deviation of the terminal distribution
in the numerical example is 1.13%×√

10 or 3.573%. Starting with a short-
term rate of 6.18%, a random negative shock of only 6.18%

3.573% or 1.73 standard
deviations would push rates below zero.

The extent to which the possibility of negative rates makes a model
unusable depends on the application. For securities whose value depends
mostly on the average path of the interest rate, like coupon bonds, the
possibility of negative rates typically does not rule out an otherwise desirable
model. For securities that are asymmetrically sensitive to the probability of
low interest rates, however, using a normal model could be dangerous.
Consider the extreme example of a 10-year call option to buy a long-term
coupon bond at a yield of 0%. The model of this section would assign
that option much too high a value because the model assigns too much
probability to negative rates.

The challenge of negative rates for term structure models is much more
acute, of course, when the current level of rates is low, as it is at the time of
this writing. Changing the distribution of interest rates is one solution. To
take but one of many examples, lognormally distributed rates, as will be seen
in Chapter 10, cannot become negative. As will become clear later in that
chapter, however, building a model around a probability distribution that
rules out negative rates or makes them less likely may result in volatilities
that are unacceptable for the purpose at hand.
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F IGURE 9.2 Rate Curves from Model 1 and Selected Market Swap Rates,
February 16, 2001

Another popular method of ruling out negative rates is to construct
rate trees with whatever distribution is desired, as done in this section, and
then simply set all negative rates to zero.3 In this methodology, rates in
the original tree are called the shadow rates of interest while the rates in
the adjusted tree could be called the observed rates of interest. When the
observed rate hits zero, it can remain there for a while until the shadow rate
crosses back to a positive rate. The economic justification for this framework
is that the observed interest rate should be constrained to be positive only
because investors have the alternative of investing in cash. But the shadow
rate, the result of aggregate savings, investment, and consumption decisions,
may very well be negative. Of course, the probability distribution of the
observed interest rate is not the same as that of the originally postulated
shadow rate. The change, however, is localized around zero and negative
rates. By contrast, changing the form of the probability distribution changes
dynamics across the entire range of rates.

Returning now to Model 1, the techniques of Chapter 7 may be used to
price fixed coupon bonds. Figure 9.2 graphs the semiannually compounded
par, spot, and forward rate curves for the numerical example along with data
from U.S. dollar swap par rates. The initial value of the short-term rate in the
example, 6.18%, is set so that the model and market 10-year, semiannually
compounded par rates are equal at 6.086%. All of the other data points
shown are quite different from their model values. The desirability of fitting

3Fischer Black, “Interest Rates as Options,” Journal of Finance, Vol. 50, 1995,
pp. 1371–1376.
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TABLE 9.1 Convexity Effects on Par
Rates in a Parameterization of Model 1

Term Convexity
(years) (bps)

2 −0.8
5 −5.1

10 −18.8
30 −135.3

market data exactly is discussed in its own section, but Figure 9.2 clearly
demonstrates that the simple model of this section does not have enough
flexibility to capture the simplest of term structure shapes.

The model term structure is downward-sloping. As the model has no
drift, rates decline with term solely because of convexity. Table 9.1 shows
the magnitudes of the convexity effect on par rates of selected terms.4 The
numbers are realistic in the sense that a volatility of 113 basis points a year
is reasonable. In fact, the volatility of the 10-year swap rate on the data
date, as implied by options markets, was 113 basis points. The convex-
ity numbers are not necessarily realistic, however, because, as this chap-
ter will demonstrate, the magnitude of the convexity effect depends on
the model and Model 1 is almost certainly not the best model of interest
rate behavior.

The term structure of volatility in Model 1 is constant at 113 basis
points per year. In other words, the standard deviation of changes in the par
rate of any maturity is 113 basis points per year. As shown in Figure 9.3,
this implication fails to capture the implied volatility structure in the market.
The volatility data in Figure 9.3 show that the term structure of volatility is
humped, i.e., that volatility initially rises with term but eventually declines.
As this shape is a feature of fixed income markets, it will be revisited again
in this chapter and in Chapters 10 and 11.

The last aspect of this model to be analyzed is its factor structure.
The model’s only factor is the short-term rate. If this rate increases by
10 semiannually compounded basis points, how would the term struc-
ture change? In this simple model the answer is that all rates would in-
crease by 10 basis points. (See the closed-form solution for spot rates in
Model 1 in the Appendix in Chapter 10). Therefore, Model 1 is a model of
parallel shifts.

4The convexity effect is the difference between the par yield in the model with its
assumed volatility and the par yield in the same structural model but with a volatility
of zero.
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F IGURE 9.3 Par Rate Volatility from Model 1 and Selected Implied Volatilities,
February 16, 2001

MODEL 2: DRIFT AND RISK PREMIUM

The term structures implied by Model 1 always look like Figure 9.2:
relatively flat for early terms and then downward sloping. Chapter 8 pointed
out that the term structure tends to slope upward and that this behav-
ior might be explained by the existence of a risk premium. The model of
this section, to be called Model 2, adds a drift to Model 1, interpreted
as a risk premium, in order to obtain a richer model in an economically
coherent way.

The dynamics of the risk-neutral process in Model 2 are written as

dr = λdt + σdw (9.5)

The process (9.5) differs from that of Model 1 by adding a drift to the short-
term rate equal to λdt. For this section, consider the values r0 = 5.138%,
λ = .229%, and σ = 1.10%. If the realization of the random variable dw is
again .15 over a month, then the change in rate is

dr = .229% × 1
12

+ 1.10% × .15 = .1841% (9.6)

Starting from 5.138%, the new rate is 5.322%.
The drift of the rate is .229% × 1

12 or 1.9 basis points per month,

and the standard deviation is 1.10% ×
√

1
12 or 31.75 basis points per

month. As discussed in Chapter 8, the drift in the risk-neutral process is a
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combination of the true expected change in the interest rate and of a risk
premium. A drift of 1.9 basis points per month may arise because the market
expects the short-term rate to increase by 1.9 basis points a month, because
the short-term rate is expected to increase by one basis point with a risk
premium of .9 basis points, or because the short-term rate is expected to fall
by .1 basis points with a risk premium of two basis points.

The tree approximating this model is

It is easy to verify that the drift and standard deviation of the tree match
those of the process (9.5).

The terminal distribution of the numerical example of this process after
one year is normal with a mean of 5.138% + 1 × .229% or 5.367% and
a standard deviation of 110 basis points. After 10 years, the terminal dis-
tribution is normal with a mean of 5.138% + 10 × .229% or 7.428% and
a standard deviation of 1.10% × √

10 or 347.9 basis points. Note that the
constant drift, by raising the mean of the terminal distribution, makes it less
likely that the risk-neutral process will exhibit negative rates.

Figure 9.4 shows the rate curves in this example along with par swap
rate data. The values of r0 and λ are calibrated to match the 2- and 10-year
par swap rates, while the value of σ is chosen to be the average implied
volatility of the 2- and 10-year par rates. The results are satisfying in that
the resulting curve can match the data much more closely than did the curve
of Model 1 shown in Figure 9.2. Slightly unsatisfying is the relatively high
value of λ required. Interpreted as a risk premium alone, a value of .229%
with a volatility of 110 basis points implies a relatively high Sharpe ratio of
about .21. On the other hand, interpreting λ as a combination of true drift
and risk premium is difficult in the long end where, as argued in Chapter 8,
it is difficult to make a case for rising expected rates. These interpretive
difficulties arise because Model 2 is still not flexible enough to explain the
shape of the term structure in an economically meaningful way. In fact,
the use of r0 and λ to match the 2- and 10-year rates in this relatively
inflexible model may explain why the model curve overshoots the 30-year
par rate by about 25 basis points.
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F IGURE 9.4 Rate Curves from Model 2 and Selected Market Swap Rates,
February 16, 2001

Moving from Model 1 with zero drift to Model 2 with a constant drift
does not qualitatively change the term structure of volatility, the magnitude
of convexity effects, or the parallel-shift nature of the model.

Models 1 and 2 would be called equilibrium models because no effort
has been made to match the initial term structure closely. The next section
presents a generalization of Model 2 that is in the class of arbitrage-free
models.

THE HO-LEE MODEL: T IME-DEPENDENT DRIFT

The dynamics of the risk-neutral process in the Ho-Lee model are written as

dr = λtdt + σdw (9.7)

In contrast to Model 2, the drift here depends on time. In other words, the
drift of the process may change from date to date. It might be an annualized
drift of −20 basis points over the first month, of 20 basis points over the
second month, and so on. A drift that varies with time is called a time-
dependent drift. Just as with a constant drift, the time-dependent drift over
each time period represents some combination of the risk premium and of
expected changes in the short-term rate.
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The flexibility of the Ho-Lee model is easily seen from its correspond-
ing tree:

The free parameters λ1 and λ2 may be used to match the prices of
securities with fixed cash flows. The procedure may be described as follows.
With dt = 1

12 , set r0 equal to the one-month rate. Then find λ1 such that the
model produces a two-month spot rate equal to that in the market. Then
find λ2 such that the model produces a three-month spot rate equal to that
in the market. Continue in this fashion until the tree ends. The procedure
is very much like that used to construct the trees in Chapter 7. The only
difference is that Chapter 7 adjusts the probabilities to match the spot rate
curve while this section adjusts the rates. As it turns out, the two procedures
are equivalent so long as the step size is small enough.

The rate curves resulting from this model match all the rates that are
input into the model. Just as adding a constant drift to Model 1 to obtain
Model 2 does not affect the shape of the term structure of volatility nor the
parallel-shift characteristic of the model, adding a time-dependent drift does
not change these features either.

DESIRABIL ITY OF F ITT ING
TO THE TERM STRUCTURE

The desirability of matching market prices is the central issue in deciding
between arbitrage-free and equilibrium models. Not surprisingly, the choice
depends on the purpose of building the model in the first place.

One important use of arbitrage-free models is for quoting the prices of
securities that are not actively traded based on the prices of more liquid
securities. A customer might ask a swap desk to quote a rate on a swap to a
particular date, say three years and four months away, while liquid market
prices might be observed only for three- and four-year swaps, or sometimes
only for two- and five-year swaps. In this situaion the swap desk may price
the odd-maturity swap using an arbitage-free model essentially as a means
of interpolating between observed market prices.
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Interpolating by means of arbitrage-free models may very well be supe-
rior to other curve-fitting methods, from linear interpolation to more sophis-
ticated approaches. The potential superiority of arbitrage-free models arises
from their being based on economic and financial reasoning. In an arbitrage-
free model the expectations and risk premium built into neighboring swap
rates and the convexity implied by the model’s volatility assumptions are
used to compute, for example, the three-year and four-month swap rate. In
a purely mathematical curve fitting technique, by contrast, the chosen func-
tional form heavily determines the intermediate swap rate. Selecting linear or
quadratic interpolation, for example, results in intermediate swap rates with
no obvious economic or financial justification. This potential superiority of
arbitrage-free models depends crucially on the validity of the assumptions
built into the models. A poor volatility assumption, for example, resulting
in a poor estimate of the effect of convexity, might make an arbitrage-free
model perform worse than a less financially sophisticated technique.

Another important use of arbitrage-free models is to value and hedge
derivative securities for the purpose of making markets or for proprietary
trading. For these purposes many practitioners wish to assume that some
set of underlying securities is priced fairly. For example, when trading an
option on a 10-year bond, many practitioners assume that the 10-year bond
is itself priced fairly. (An analyisis of the fairness of the bond can always
be done separately.) Since arbitrage-free models match the prices of many
traded securities by construction, these models are ideal for the purpose of
pricing derivatives given the prices of underlying securities.

That a model matches market prices does not necessarily imply that it
provides fair values and accurate hedges for derivative securities. The argu-
ment for fitting models to market prices is that a good deal of information
about the future behavior of interest rates is incorporated into market prices,
and, therefore, a model fitted to those prices captures that interest rate be-
havior. While this is a perfectly reasonable argument, two warnings are
appropriate. First, a mediocre or bad model cannot be rescued by calibrat-
ing it to match market prices. If, for example, the parallel shift assumption is
not a good enough description of reality for the application at hand, adding
a time-dependent drift to a parallel shift model so as to match a set of mar-
ket prices will not make the model any more suitable for that application.
Second, the argument for fitting to market prices assumes that those market
prices are fair in the context of the model. In many situations, however,
particular securities, particular classes of securities, or particular maturity
ranges of securities have been distorted due to supply and demand imbal-
ances, taxes, liquidity differences, and other factors unrelated to interest rate
models. In these cases, fitting to market prices will make a model worse by
attributing these outside factors to the interest rate process. If, for example,
a large bank liquidates its portfolio of bonds or swaps with approximately
seven years to maturity and, in the process, depresses prices and raises rates
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around that maturity, it would be incorrect to assume that expectations of
rates seven years in the future have risen. Being careful with the word fair,
the seven-year securities in this example are fair in the sense that liquidity
considerations at a particular time require their prices to be relatively low.
The seven-year securities are not fair, however, with respect to the expected
evolution of interest rates and the market risk premium. For this reason, in
fact, investors and traders might buy these relatively cheap bonds or swaps
and hold them past the liquidity event in the hope of selling at a profit.

Another way to express the problem of fitting the drift to the term
structure is to recognize that the drift of a risk-neutral process arises only
from expectations and risk premium. A model that assumes one drift from
years 15 to 16 and another drift from years 16 to 17 implicitly assumes one of
two things. First the expectation today of the one-year rate in 15 years differs
from the expectation today of the one-year rate in 16 years. Second, the risk
premium in 15 years differs in a particular way from the risk premium in
16 years. Since neither of these assumptions is particularly plausible, a fitted
drift that changes dramatically from one year to the next is likely to be
erroneously attributing non-interest rate effects to the interest rate process.

If the purpose of a model is to value bonds or swaps relative to one
another, then taking a large number of bond or swap prices as given is
clearly inappropriate: arbitrage-free models, by construction, conclude that
all of these bond or swap prices are fair relative to one another. Investors
wanting to choose among securities, market makers looking to pick up value
by strategically selecting hedging securities, or traders looking to profit from
temporary mispricings must, therefore, rely on equilibrium models.

Having starkly contrasted arbitrage-free and equilibrium models, it
should be noted that, in practice, there need not be a clear line between
the two approaches. A model might posit a deterministic drift for a few
years to reflect relatively short-term interest rate forecasts and posit a con-
stant drift from then on. Another model might take the prices of 2-, 5-,
10- and 30-year bond or swap rates as given, thus assuming that the most
liquid securities are fair while allowing the model to value other securities.
The proper blending of the arbitrage-free and equilibrium approaches is an
important part of the art of term structure modeling.

THE VASICEK MODEL: MEAN REVERSION

Assuming that the economy tends toward some equilibrium based on such
fundamental factors as the productivity of capital, long-term monetary pol-
icy, and so on, short-term rates will be characterized by mean reversion.
When the short-term rate is above its long-run equilibrium value, the drift is
negative, driving the rate down toward this long-run value. When the rate is
below its equilibrium value, the drift is positive, driving the rate up toward
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this value. In addition to being a reasonable assumption about short rates,5

mean reversion enables a model to capture several features of term structure
behavior in an economically intuitive way.

The risk-neutral dynamics of the Vasick model6 are written as

dr = k (θ − r ) dt + σdw (9.8)

The constant θ denotes the long-run value or central tendency of the
short-term rate in the risk-neutral process and the positive constant k denotes
the speed of mean reversion. Note that in this specification the greater the
difference between r and θ , the greater the expected change in the short-term
rate toward θ .

Because the process (9.8) is the risk-neutral process, the drift com-
bines both interest rate expectations and risk premium. Furthermore, market
prices do not depend on how the risk-neutral drift is divided between the
two. Nevertheless, in order to understand whether or not the parameters of
a model make sense, it is useful to make assumptions sufficient to separate
the drift and the risk premium. Assuming, for example, that the true interest
rate process exhibits mean reversion to a long-term value r∞ and, as assumed
previously, that the risk premium enters into the risk-neutral process as a
constant drift, the Vasicek model takes the following form:

dr = k (r∞ − r ) dt + λdt + σdw

= k
([

r∞ + λ

k

]
− r

)
dt + σdw (9.9)

The process in (9.8) is identical to that in (9.9) so long as

θ ≡ r∞ + λ

k
(9.10)

5While reasonable, mean reversion is a strong assumption. Long time series of interest
rates from relatively stable markets might display mean reversion because there
happened to be no catastrophe over the time period, that is, precisely because a long
time series exists. Hyperinflation, for example, is not consistent with mean reversion
and results in the destruction of a currency and its associated interest rates. When
mean reversion ends, the time series ends. In short, the most severe critics of mean
reversion would say that interest rates mean revert until they don’t.
6O. Vasicek, “An Equilibrium Characterization of the Term Structure, Journal of
Financial Economics, 5, 1977, pp. 177–188. It is appropriate to add that this paper
started the literature on short-term rate models. The particular dynamics of the
model described in this section, which is commonly known as the Vasicek model, is
a very small part of the contribution of that paper.
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Note that very many combinations of r∞ and λ give the same θ and, through
the risk-neutral process (9.8), the same market prices.

For the purposes of this section, let k = .025, σ = 126 basis points
per year, r0 = 6.179%, and λ = .229%. According to (9.10), then, θ =
15.339%. With these parameters, the process (9.8) says that over the next
month the expected change in the short rate is

.025 × (15.339% − 5.121%)
1

12
= .0213% (9.11)

or 2.13 basis points. The volatility over the next month is 126 ×
√

1
12 or

36.4 basis points.
Representing this process with a tree is not quite so straightforward as

the simpler processes described previously because the most obvious repre-
sentation leads to a nonrecombining tree. Over the first time step,

To extend the tree from date 1 to date 2, start from the up state of
5.5060%. The tree branching from there is

while the tree branching from the date 1 down state of 4.7786% is
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To summarize, the most straightforward tree representation of (9.8 )
takes the following form:

This tree does not recombine since the drift increases with the difference
between the short rate and θ . Since 4.7786% is further from θ than 5.5060%,
the drift from 4.7786% is greater than the drift from 5.5060%. In this
model, the volatility component of an up move followed by a down move
does perfectly cancel the volatility component of a down move followed
by an up move. But since the drift from 4.7786% is greater, the move up
from 4.7786% produces a larger short-term rate than a move down from
5.5060%.

There are many ways to represent the Vasicek model with a recombining
tree. One method is presented here, but it is beyond the scope of this book
to discuss the numerical efficiency of the various possibilities.

The first time step of the tree may be taken as shown previously:

Next, fix the center node of the tree on date 2. Since the expected
perturbation due to volatility over each time step is zero, the drift alone
determines the expected value of the process after each time step. After the
first time step the expected value is

5.121% + .025 (15.339% − 5.121%)
1

12
= 5.1423% (9.12)

After the second time step the expected value is

5.1423% + .025 (15.339% − 5.1423%)
1
12

= 5.1635% (9.13)



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c09 JWBT539-Tuckman July 21, 2011 10:59 Printer: Courier Westford

266 TERM STRUCTURE MODELS

Take this value as the center node on date 2 of the recombining tree:

The parts of the tree to be solved for, namely, the missing probabilities
and interest rate values, are given variable names.

According to the process (9.8) and the parameter values set in this
section, the expected rate and standard deviation of the rate from 5.5060%
are, respectively,

5.5060% + .025 (15.339% − 5.5060%)
1

12
= 5.5265% (9.14)

and

1.26%

√
1

12
= .3637% (9.15)

For the recombining tree to match this expectation and standard deviation,
it must be the case that

p × ruu + (1 − p) × 5.1635% = 5.5265% (9.16)

and, by the definition of standard deviation,√
p (ruu − 5.5265%)2 + (1 − p) (5.1635% − 5.5265%)2 = .3637%

(9.17)

Solving equations (9.16) and (9.17), ruu = 5.8909% and p = .4990.
The same procedure may be followed to compute rdd and q. The ex-

pected rate from 4.7786% is

4.7786% + .025 (15.339% − 4.7786%)
1

12
= 4.8006% (9.18)

and the standard deviation is again 36.37 basis points. Starting from
4.7786%, then, it must be the case that

q × 5.1635% + (1 − q) × rdd = 4.8006% (9.19)
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and

√
q (5.1635% − 4.8006%)2 + (1 − q)

(
rdd − 4.8006%

)2 = .3637%

(9.20)

Solving equations (9.19) and (9.20), rdd = 4.4361% and q = .5011.
Putting the results from the up and down states together, a recombining

tree approximating the process (9.8) with the parameters of this section is

To extend the tree to the next date, begin again at the center. From the
center node of date 2, the expected rate of the process is

5.1635% + .025 × (15.339% − 5.1635%)
1

12
= 5.1847% (9.21)

As in constructing the tree for date 1, adding and subtracting the
standard deviation of .3637% to the average value 5.1847% (obtaining
5.5484% and 4.8210%) and using probabilities of 50% for up and down
movements satisfy the requirements of the process at the center of the tree:
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F IGURE 9.5 Mean Reversion and the Terminal Distribution of Short Rates

The unknown parameters can be solved for in the same manner as
described in building the tree on date 2.

The text now turns to the effects of mean reversion on the term struc-
ture. Figure 9.5 illustrates the impact of mean reversion on the terminal,
risk-neutral distributions of the short rate at different horizons. The expec-
tation or mean of the short-term rate as a function of horizon gradually rises
from its current value of 5.121% toward its limiting value of θ = 15.339%.
Because the mean-reverting parameter k = .025 is relatively small, the hori-
zon expectation rises very slowly toward 15.339%. While mathematically
beyond the scope of this book, it can be shown that the distance betweeen
the current value of a factor and its goal decays exponentially at the mean-
reverting rate. Since the interest rate is currently 15.339% − 5.121% or
10.218% away from its goal, the distance between the expected rate at a
10-year horizon and the goal is

10.2180% × e−.025×10 = 7.9578% (9.22)

Therefore, the expectation of the rate in 10 years is 15.3390% −
7.9578% or 7.3812%.

For completeness, the expectation of the rate in the Vasicek model after
T years is

r0e−kT + θ
(
1 − e−kT)

(9.23)

In words, the expectation is a weighted average of the current short rate
and its long-run value, where the weight on the current short rate decays
exponentially at a speed determined by the mean-reverting parameter.
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The mean-reverting parameter is not a particularly intuitive way of
describing how long it takes a factor to revert to its long-term goal. A more
intuitive quantity is the factor’s half-life, defined as the time it takes the
factor to progress half the distance toward its goal. In the example of this
section, the half-life of the interest rate, τ , is given by the following equation:

(15.339% − 5.121%) e−.025τ = 1
2

(15.339% − 5.121%) (9.24)

Solving,

e−.025τ = 1
2

τ = ln (2)
.025

τ = 27.73 (9.25)

where ln (·) is the natural logarithm function. In words, the interest rate
factor takes 27.73 years to cover half the distance between its starting value
and its goal. This can be seen visually in Figure 9.5 where the expected rate
30 years from now is about halfway between its current value and θ . Larger
mean-reverting parameters produce shorter half lives.

Figure 9.5 also shows one-standard deviation intervals around expecta-
tions both for the mean-reverting process of this section and for a process
with the same expectation and the same σ but without mean reversion (“No
MR”). The standard deviation of the terminal distribution of the short rate
after T years in the Vasicek model is

√
σ 2

2k

(
1 − e−2kT

)
(9.26)

In the numerical example, with a mean-reverting parameter of .025 and
a volatility of 126 basis points, the short rate in 10 years is normally dis-
tributed with an expected value of 7.3812%, derived earlier, and a standard
deviation of

√
.01262

2 × .025

(
1 − e−2×.025×10

)
(9.27)

or 353 basis points. Using the same expected value and σ but no mean
reversion the standard deviation is σ

√
T = 1.26%

√
10 or 398 basis points.
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F IGURE 9.6 Rate Curves from the Vasicek Model and Selected Market Swap
Rates, February 16, 2001

Pulling the interest rate toward a long-term goal dampens volatility relative
to processes without mean reversion, particularly at long horizons.

To avoid confusion in terminology, note that the mean-reverting model
in this section sets volatility equal to 125 basis points “per year.” Because of
mean reversion, however, this does not mean that the standard deviation of
the terminal distribution after T years increases with the square root of time.
Without mean reversion this is the case, as mentioned in the previous para-
graph. With mean reversion, the standard deviation increases with horizon
more slowly than that, producing a standard deviation of only 353 basis
points after 10 years.

Figure 9.6 graphs the rate curves in this parameterization of the
Vasicek model. The values of r0 and θ were calibrated to match the 2- and
10-year par rates in the market. As a result, Figure 9.6 qualitatively resem-
bles Figure 9.4. The mean reversion parameter might have been used to make
the model fit the observed term structure more closely, but, as discussed in
the next paragraph, this parameter was used to produce a particular term
structure of volatility. In conclusion, Figure 9.6 shows that the model as cal-
ibrated in this section is probably not flexible enough to produce the range
of term structures observed in practice.

A model with mean reversion and a model without mean reversion result
in dramatically different term structures of volatility. Figure 9.7 shows that
the volatilities of par rates decline with term in the Vasicek model. In this
example the mean reversion and volatility parameters are chosen to fit the
implied 10- and 30-year volatilities. As a result, the model matches the
market at those two terms but overstates the volatility for shorter terms.
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F IGURE 9.7 Par Rate Volatility from the Vasicek Model and Selected Implied
Volatilities, February 16, 2001

While Figure 9.7 certainly shows an improvement relative to the flat term
structure of volatility shown in Figure 9.3, mean reversion in this model
generates a term structure of volatility that slopes downward everywhere.
Chapter 11 shows that a second factor can produce the humped volatility
structure evident in the market.

Since mean reversion lowers the volatility of longer-term par rates, it
must also lower the impact of convexity on these rates. Table 9.2 reports
the convexity effect at several terms. Recall that the convexity effects listed
in Table 9.1 are generated from a model with no mean reversion and a
volatility of 113 basis points per year. Since this section sets volatility equal
to 126 basis points per year and since mean reversion is relatively slow, the
convexity effects for terms up to 10 years are slightly larger in Table 9.2
than in Table 9.1. But by a term of 30 years the dampening effect of mean
reversion on volatility manifests itself, and the convexity effect in the Vasicek

TABLE 9.2 Convexity Effects on
Par Rates in a Parameterization of
the Vasicek Model

Term (years) Convexity (bps)

2 −1.0
5 −5.8

10 −19.1
30 −74.7
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F IGURE 9.8 Sensitivity of Spot Rates in the Vasicek Model to a 10-Basis-Point
Change in the Factor

model of about 75 basis points is substantially below the 135 basis point in
the model without mean reversion.

Figure 9.8 shows the shape of the interest rate factor in a mean-reverting
model, that is, how the spot rate curve is affected by a 10-basis point increase
in the short-term rate. By definition, short-term rates rise by about 10 basis
points but longer term rates are impacted less. The 30-year spot rate, for
example, rises by only 7 basis points. Hence a model with mean reversion is
not a parallel shift model.

The implications of mean reversion for the term structure of volatility
and factor shape may be better understood by reinterpreting the assumption
that short rates tend toward a long-term goal. Assuming that short rates
move as a result of some news or shock to the economic system, mean
reversion implies that the effect of this shock eventually dissipates. After all,
regardless of the shock, the short rate is assumed to arrive ultimately at the
same long-term goal.

Economic news is said to be long-lived if it changes the market’s view of
the economy many years in the future. For example, news of a technological
innovation that raises productivity would be a relatively long-lived shock to
the system. Economic news is said to be short-lived if it changes the market’s
view of the economy in the near but not far future. An example of this kind
of shock might be news that retail sales were lower than expected due to
excessively cold weather over the holiday season. In this interpretation, mean
reversion measures the length of economic news in a term structure model.
A very low mean reversion parameter, i.e., a very long half-life, implies that
news is long-lived and that it will affect the short rate for many years to
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come. On the other hand, a very high mean reversion parameter, i.e., a
very short half-life, implies that news is short-lived and that it affects the
short rate for a relatively short period of time. In reality, of course, some
news is short-lived while other news is long-lived, a feature captured by
the multi-factor Gauss+ model presented in Chapter 11.

Interpreting mean reversion as the length of economic news explains the
factor structure and the downward-sloping term structure of volatility in the
Vasicek model. Rates of every term are combinations of current economic
conditions, as measured by the short-term rate, and of long-term economic
conditions, as measured by the long-term value of the short rate (i.e., θ ).
In a model with no mean reversion, rates are determined exclusively by
current economic conditions. Shocks to the short-term rate affect all rates
equally, giving rise to parallel shifts and a flat term structure of volatility.
In a model with mean reversion, short-term rates are determined mostly by
current economic conditions while longer-term rates are determined mostly
by long-term economic conditions. As a result, shocks to the short rate affect
short-term rates more than longer-term rates and give rise to a downward-
sloping term structure of volatility and a downward-sloping factor structure.
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CHAPTER 10
The Art of Term Structure

Models: Volatility
and Distribution

T his chapter continues the presentation of the elements of term structure
modeling, focusing on the volatility of interest rates and on models in

which rates are not normally distributed.

TIME-DEPENDENT VOLATIL ITY: MODEL 3

Just as a time-dependent drift may be used to fit many bond or swap rates,
a time-dependent volatility function may be used to fit many option prices.
A particularly simple model with a time-dependent volatility function might
be written as follows:

dr = λ(t) dt + σ (t) dw (10.1)

Unlike the models presented in Chapter 9, the volatility of the short
rate in equation (10.1) depends on time. If, for example, the function σ (t)
were such that σ (1) = 1.26% and σ (2) = 1.20%, then the volatility of the
short rate in one year is 126 basis points per year while the volatility of
the short rate in two years is 120 basis points per year.

To illustrate the features of time-dependent volatility, consider the fol-
lowing special case of (10.1) that will be called Model 3:

dr = λ(t) dt + σe−αtdw (10.2)

In (10.2) the volatility of the short rate starts at the constant σ and
then exponentially declines to zero. Volatility could have easily been de-
signed to decline to another constant instead of zero, but Model 3 serves its
pedagogical purpose well enough.

275
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F IGURE 10.1 Standard Deviation of Terminal Distributions of Short Rates
in Model 3

Setting σ = 126 basis points and α = .025, Figure 10.1 graphs the stan-
dard deviation of the terminal distribution of the short rate at various hori-
zons.1 Note that the standard deviation rises rapidly with horizon at first
but then rises more slowly. The particular shape of the curve depends, of
course, on the volatility function chosen for (10.2), but very many shapes
are possible with the more general volatility specification in (10.1).

Deterministic volatility functions are popular, particularly among mar-
ket makers in interest rate options. Consider the example of caplets. At
expiration, a caplet pays the difference between the short rate and a
strike, if positive, on some notional amount. Furthermore, the value of
a caplet depends on the distribution of the short rate at the caplet’s ex-
piration. Therefore, the flexibility of the deterministic functions λ(t) and
σ (t) may be used to match the market prices of caplets expiring on many
different dates.2

The behavior of standard deviation as a function of horizon in
Figure 10.1 resembles the impact of mean reversion on horizon standard
deviation in Figure 9.5. In fact, setting the initial volatility and decay rate
in Model 3 equal to the volatility and mean reversion rate of the numeri-
cal example of the Vasicek model, the standard deviations of the terminal
distributions from the two models turn out to be identical. Furthermore, if

1This result is presented without derivation.
2For a fuller discussion of caplets see Chapter 18.
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the time-dependent drift in Model 3 matches the average path of rates in
the numerical example of the Vasicek model, then the two models produce
exactly the same terminal distributions.

While these parameterizations of the two models give equivalent ter-
minal distributions, the models remain very different in other ways. As is
the case for any model without mean reversion, Model 3 is a parallel shift
model. Also, the term structure of volatility in Model 3 is flat. Since the
volatility in Model 3 changes over time, the term structure of volatility is
flat at levels that change over time, but it is still always flat.

The arguments for and against using time-dependent volatility resemble
those for and against using a time-dependent drift. If the purpose of the
model is to quote fixed income options prices that are not easily observable,
then a model with time-dependent volatility provides a means of interpolat-
ing from known to unknown option prices. If, however, the purpose of the
model is to value and hedge fixed income securities, including options, then
a model with mean reversion might be preferred for two reasons.

First, while mean reversion is based on the economic intuitions out-
lined earlier, time-dependent volatility relies on the difficult argument that
the market has a forecast of short-term volatility in the distant future. A
modification of the model that addresses this objection, by the way, is to
assume that volatility depends on time in the near future and then settles at
a constant.

Second, the downward-sloping factor structure and term structure of
volatility in mean-reverting models capture the behavior of interest rate
movements better than parallel shifts and a flat term structure of volatility.
(Recall the empirical PCA results in Chapter 6). It may very well be that the
Vasicek model does not capture the behavior of interest rates sufficiently
well to be used for a particular valuation or hedging purpose. But in that
case it is unlikely that a parallel shift model calibrated to match caplet prices
will be better suited for that purpose.

THE COX- INGERSOLL-ROSS AND LOGNORMAL
MODELS: VOLATIL ITY AS A FUNCTION
OF THE SHORT RATE

The models presented so far assume that the basis-point volatility of the short
rate is independent of the level of the short rate. This is almost certainly not
true at extreme levels of the short rate. Periods of high inflation and high
short-term interest rates are inherently unstable and, as a result, the basis-
point volatility of the short rate tends to be high. Also, when the short-term
rate is very low, its basis-point volatility is limited by the fact that interest
rates cannot decline much below zero.
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Economic arguments of this sort have led to specifiying the basis-point
volatility of the short rate as an increasing function of the short rate. The
risk-neutral dynamics of the Cox-Ingersoll-Ross (CIR) model are

dr = k (θ − r ) dt + σ
√

rdw (10.3)

Since the first term on the right-hand side of (10.3) is not a random
variable and since the standard deviation of dw equals

√
dt by definition,

the annualized standard deviation of dr (i.e., the basis-point volatility) is
proportional to the square root of the rate. Put another way, in the CIR
model the parameter σ is constant, but basis-point volatility is not: annu-
alized basis-point volatility equals σ

√
r and increases with the level of the

short rate.
Another popular specification is that the basis-point volatility is pro-

portional to rate. In this case the parameter σ is often called yield volatility.
Two examples of this volatility specification are the Courtadon model,

dr = k (θ − r ) dt + σ rdw (10.4)

and the simplest lognormal model, to be called Model 4, a variation of which
will be discussed in the next section:

dr = ardt + σ rdw (10.5)

In these two specifications, yield volatility is constant but basis-point volatil-
ity equals σr and increases with the level of the rate.

Figure 10.2 graphs the basis-point volatility as a function of rate for
the cases of the constant, square root, and proportional specifications.
For comparison purposes, σ is set in all three cases such that basis-point
volatility equals 100 at a short rate of 8%. Mathematically,

σ bp = .01 (10.6)

σCIR ×
√

8% = 1% =⇒ σCIR = .0354 (10.7)

σ y × 8% = 1% =⇒ σ y = 12.5% (10.8)

Note that the units of these volatility measures are somewhat different.
Basis-point volatility is in the units of an interest rate (e.g., 100 basis
points), while yield volatility is expressed as a percentage of the short rate
(e.g., 12.5%).

As shown in Figure 10.2, the CIR and proportional volatility spec-
ifications have basis-point volatility increasing with rate but at different
speeds. Both models have the basis-point volatility equal to zero at a rate
of zero.
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F IGURE 10.2 Three Volatility Specifications

The property that basis-point volatility equals zero when the short rate
is zero, combined with the condition that the drift is positive when the rate is
zero, guarantees that the short rate cannot become negative. In some respects
this is an improvement over models with constant basis-point volatility that
allow interest rates to become negative. It should be noted again, however,
that choosing a model depends on the purpose at hand. Consider a trader
who believes the following. One, the assumption of constant volatility is
best in the current economic environment. Two, the possibility of negative
rates has a small impact on the pricing of the securities under consideration.
And three, the computational simplicity of constant volatility models has
great value. This trader might very well opt for a model that allows some
probability of negative rates.

Figure 10.3 graphs terminal distributions of the short rate after 10 years
under the CIR, normal, and lognormal volatility specifications. In order to
emphasize the difference in the shape of the three distributions, the parame-
ters have been chosen so that all of the distributions have an expected value
of 5% and a standard deviation of 2.32%. The figure illustrates the advan-
tage of the CIR and lognormal models with respect to not allowing negative
rates. The figure also indicates that out-of-the-money option prices could
differ significantly under the three models. Even if, as in this case, the mean
and volatility of the three distributions are the same, the probability of out-
comes away from the means are different enough to generate significantly
different options prices. (See Chapter 18 for more on these issues.) More
generally, the shape of the distribution used in an interest rate model is an
important determinant of that model’s performance.
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F IGURE 10.3 Terminal Distributions of the Short Rate After Ten Years in CIR,
Normal, and Lognormal Models

TREE FOR THE ORIG INAL SALOMON
BROTHERS MODEL

This section shows how to construct a binomial tree to approximate the dy-
namics for a lognormal model with a deterministic drift, a model attributed
here to researchers at Salomon Brothers in the ’80s. The dynamics of the
model are as follows:

dr = ã (t) rdt + σ rdw (10.9)

By Ito’s Lemma, which is beyond the mathematical scope of this book,

d
[
ln (r )

] = dr
r

− 1
2

σ 2dt (10.10)

Substituting (10.9) into (10.10),

d
[
ln (r )

] =
[̃
a (t) − 1

2
σ 2

]
dt + σdw (10.11)

Redefining the notation of the time-dependent drift so that a(t) = ã(t) − 1
2σ 2,

equation ( 10.11) becomes

d
[
ln (r )

] = a (t) dt + σdw (10.12)
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Equation (10.12) says that the natural logarithm of the short rate is normally
distributed. Furthermore, by definition, a random variable has a lognormal
distribution if its natural logarithm has a normal distribution. Therefore,
(10.12) implies that the short rate has a lognormal distribution.

Equation (10.12) may be described as the Ho-Lee model based on the
natural logarithm of the short rate instead of on the short rate itself. Adapting
the tree for the Ho-Lee model accordingly, the tree for the first three dates is

To express this tree in rate, as opposed to the natural logarithm of the
rate, exponentiate each node:

This tree shows that the perturbations to the short rate in a lognormal
model are multiplicative as opposed to the additive perturbations in normal
models. This observation, in turn, reveals why the short rate in this model
cannot become negative. Since ex is positive for any value of x, so long as r0

is positive every node of the lognormal tree results in a positive rate.
The tree also reveals why volatility in a lognormal model is expressed as

a percentage of the rate. Recall the mathematical fact that, for small values
of x, ex ≈ 1 + x. Setting a1 = 0 and dt = 1, for example, the top node of
date 1 may be approximated as

r0eσ ≈ r0 (1 + σ ) (10.13)
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Volatility is clearly a percentage of the rate in equation (10.13). If, for
example, σ = 12.5%, then the short rate in the up state is 12.5% above the
initial short rate.

As in the Ho-Lee model, the constants that determine the drift (i.e.,
a1 and a2) may be used to match market bond prices.

THE BLACK-KARASINSKI MODEL: A LOGNORMAL
MODEL WITH MEAN REVERSION

The final model to be presented in this chapter is a lognormal model with
mean reversion called the Black-Karasinski model. The model allows volatil-
ity, mean reversion, and the central tendency of the short rate to depend on
time, firmly placing the model in the arbitrage-free class. A user may, of
course, use or remove as much time dependence as desired.

The dynamics of the model are written as

dr = k (t)
(
ln θ̃ (t) − ln r

)
dt + σ (t) rdw (10.14)

or, equivalently,3 as

d
[
ln r

] = k (t)
(
ln θ (t) − ln r

)
dt + σ (t) dw (10.15)

In words, equation (10.15) says that the natural logarithm of the short
rate is normally distributed. It reverts to ln θ (t) at a speed of k(t) with a
volatility of σ (t). Viewed another way, the natural logarithm of the short
rate follows a time-dependent version of the Vasicek model.

As in the previous section, the corresponding tree may be written in
terms of the rate or the natural logarithm of the rate. Choosing the former,
the process over the first date is

The variable r1 is introduced for readability. The natural logarithms of
the rates in the up and down states are

ln r1 + σ (1)
√

dt (10.16)

3This derivation is similar to that of moving from equation (10.9) to equation (10.12).
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and

ln r1 − σ (1)
√

dt (10.17)

respectively. It follows that the step down from the up state requires a
rate of

r1eσ(1)
√

dtek(2)[ln θ(2)−{ln r1+σ(1)
√

dt}]dt−σ(2)
√

dt (10.18)

while the step up from the down state requires a rate of

r1e−σ(1)
√

dtek(2)[ln θ(2)−{ln r1−σ(1)
√

dt}]dt+σ(2)
√

dt (10.19)

A little algebra shows that the tree recombines only if

k (2) = σ (1) − σ (2)
σ (1) dt

(10.20)

Imposing the restriction (10.20) would require that the mean reversion
speed be completely determined by the time-dependent volatility function.
But these elements of a term structure model serve two distinct purposes. As
demonstrated in this chapter, mean reversion controls the term structure of
volatility while time-dependent volatility controls the future volatility of the
short-term rate (and the prices of options that expire at different times). To
create a model flexible enough to control mean reversion and time-dependent
volatility separately, the model has to construct a recombining tree without
imposing (10.20). To do so it allows the length of the time step, dt, to change
over time.

Rewriting equations (10.18) and (10.19) with the time steps labeled dt1

and dt2 gives the following values for the up-down and down-up rates:

r1eσ(1)
√

dt1ek(2)[ln θ(2)−{ln r1+σ(1)
√

dt1}]dt2−σ(2)
√

dt2 (10.21)

r1e−σ(1)
√

dt1ek(2)[ln θ(2)−{ln r1−σ(1)
√

dt1}]dt2+σ(2)
√

dt2 (10.22)

A little algebra now shows that the tree recombines if

k (2) = 1
dt2

[
1 − σ (2)

√
dt2

σ (1)
√

dt1

]
(10.23)
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The length of the first time step can be set arbitrarily. The length of
the second time step is set to satisfy (10.23), allowing the user freedom in
choosing the mean reversion and volatility functions independently.

APPENDIX: CLOSED-FORM SOLUTIONS
FOR SPOT RATES

This appendix lists formulas for spot rates, without derivation, in various
models mentioned in the text. These can be useful for some applications and
also to gain intuition about applying term structure models. The spot rates
of term T, r̂ (T), are continuously compounded rates. The discount factors
and forward rates can be derived by the formulas developed in Part One.

Model 1

r̂ (T) = r0 − σ 2T2

6
(10.24)

Model 2

r̂ (T) = r0 + λT
2

− σ 2T2

6
(10.25)

Vasicek

r̂ (T) = θ + 1 − e−kT

kT
(r0 − θ )

− σ 2

2k2

(
1 + 1 − e−2kT

2kT
− 2

1 − e−kT

kT

)
(10.26)

Model 3 with λ(t) = λ

r̂ (T) = r0 + λT
2

− σ 2 2α2T2 − 2αT + 1 − e−2αT

8α3T
(10.27)
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Cox- Ingersol l -Ross

Let P(T) be the price of a zero coupon bond maturing at time T (from which
the spot rate can be easily calculated). Then,

P(T) = A(T) e−B(T)r0 (10.28)

where

A(T) =
[

2he(k+h)T/2

2h + (k + h)
(
ehT − 1

)
]2kθ/σ 2

(10.29)

B(T) = 2
(
ehT − 1

)
2h + (k + h)

(
ehT − 1

) (10.30)

h =
√

k2 + 2σ 2 (10.31)
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CHAPTER 11
The Gauss+ and LIBOR

Market Models

T he previous chapters in Part Three are extremely useful for learning
about term structure models and for basic applications. Most mod-

els used in practice, however, are much more complex. This chapter
presents two models that can be and that are used in practice. The first,
the Gauss+ model, is a multi-factor generalization of the short-rate mod-
els presented in previous chapters. The second, the LIBOR market model
(LMM), is in a different family of models: its factors are market observable
forward rates.

The mathematical sophistication required to understand and apply this
chapter is higher than that required to understand most of the rest of the
book. In exchange, however, the reader will understand the key concepts be-
hind many state-of-the-art models, be able to implement the Gauss+ model
and a simple version of the LMM model, and certainly be well prepared for
further study in this field.

THE GAUSS+ MODEL

The Gauss+ model is well-known among practitioners for use in relative
value trading and hedging. The assumptions of the model are intuitively ap-
pealing and lead to a reasonable balance between tractability and capturing
the empirical complexity of term structure dynamics. The goal of this chap-
ter is to enable a determined reader to implement the model and estimate
its parameters. Sample results from the USD and EUR swap markets are
provided as well.

The dynamics of the cascade form of the model are given in equa-
tions (11.1) through (11.4). The rates r (t), m (t), and l (t) denote the
short-term rate of interest, a medium-term factor, and a long-term factor,

287
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respectively.

dr = −αr (r − m) dt (11.1)

dm = −αm (m − l) dt + σm

(
ρdw1 +

√
1 − ρ2dw2

)
(11.2)

dl = −αl (l − θ ) dt + σldw1 (11.3)

E [dw1dw2] = 0 (11.4)

The long-term factor l (t) is meant to reflect long-term trends in demo-
graphics, production technology, etc. It is assumed to mean revert at a speed
αl to some very long-term constant, θ , but to fluctuate around that trend
with a volatility σldw1. Consistent with the notation of previous chapters, σl

is a constant and dw1 is a normally distributed random variable with mean
0 and standard deviation

√
dt. Recalling the introduction of mean reversion

in the context of the Vasicek model (see Chapter 9), the parameter θ can
be thought of as including both long-term expectations and a risk premium.
Also, as in that model, the parameter σl is in units of annual basis-point
volatility even though the annual volatility of the factor, due to mean rever-
sion, is less than σl . Finally, the speed of mean reversion of the long-term
factor to θ is expected to be relatively slow. In the USD sample results to
follow, θ is 8%, the speed of mean reversion corresponds to a half-life of
67 years, and σl is 105 basis points.

The medium-term factor m (t) mean reverts to the long-term factor and
is meant to capture monetary or business cycles around the long-term eco-
nomic trend. The mean-reversion and volatility parameters are αm and σm,
respectively. Given the interpretation of m relative to that of l, m reverts to
its mean more quickly than l reverts to its mean, implying that αm > αl .

Like dw1, dw2 is normally distributed with mean zero and standard
deviation

√
dt. Furthermore, by (11.4), dw1 and dw2 are uncorrelated. The

specification of the volatility of dm in equation (11.2) is a convenient way
to set its volatility to σm

√
dt and its correlation with dl to ρ. To see this,

under the assumptions made, the standard deviation of dm is

√
σ 2

m

(
ρ2dt + [

1 − ρ2
]

dt
) = σm

√
dt (11.5)

Also, the covariance of dm and dl is

Cov
[
σm

(
ρdw1 +

√
1 − ρ2dw2

)
,σldw1

]
= ρσmσldt (11.6)
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so the correlation of dm and dl is

ρσmσldt

σm
√

dt × σl
√

dt
= ρ (11.7)

Returning to the structure of the Gauss+ model, the short-term rate
r (t) is meant to reflect the activity of a central bank that pegs the short-
term rate at its current level and adjusts it, relatively rapidly, toward a level
appropriate for the state of the business-cycle. The specification (11.1) cap-
tures this in two ways. First, the short-term rate mean reverts to the model’s
representation of the state of the business cycle, namely, m (t). Second, the
instantaneous volatility of the short-term is zero since, as a matter of central
bank policy, the short rate is pegged at some level. Of course, the short-term
rate will exhibit volatility over time through its direct tracking of m (t) and
its indirect tracking of l (t).

The lack of a volatility term in (11.1) is an important feature of the
Gauss+ model. Chapter 9 pointed out that mean-reverting models generate
a downward-sloping term structure of volatility. Largely because of the
activity of central banks, however, empirical and implied term structures
of volatility tend to have a hump, i.e., volatility is low for very short-term
rates, increases to a peak at intermediate-term rates, and then declines.1

The term structure of volatility in the Gauss+ model matches this observed
market behavior. The lack of an independent volatility term in the dynamics
of r (t) keeps short-term rate volatility low. The volatility of m (t) and l (t)
significantly impact the distribution of the short-term rate at longer horizons
and, therefore, the volatility of longer-term rates. The mean reversion of
both m (t) and l (t), however, eventually result in a downward-sloping term
structure of volatility, just as in the Vasicek model. The humped-shape term
structure of volatility in the Gauss+ model will be illustrated in the sample
results to follow.

In passing, the Gauss+ model gets its name from the lack of a volatility
term in (11.1). The “Gauss” part of the name indicates that interest rates
have a normal or Gaussian distribution. But while most one-, two-, or three-
factor normal models have one, two, or three sources of risk, respectively, the
Gauss+ model, strictly speaking, has three state variables and two sources of
risk. It has three state variables in the sense that the state of the world in the
model is described by the levels of r (t), m (t), and l (t) or, equivalently, that
bond prices or spot rates depend on the values of all three of these rates. (This
point is obvious from the expression for the spot rate in equation (11.16)
below.) There are, however, only two sources of risk in the model: dw1 and

1See the empirical evidence in Chapter 6 and representative data on implied volatili-
ties in Table 18.4.
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dw2. The “+” in the name indicates the somewhat unusual presence of a
factor that is not also a source of risk.

As a final comment on the structure of the cascade form, there is no
constant or drift term in the dynamics of r (t) or m (t) that can represent
an implicit risk premium in these risk-neutral processes as is the case, for
example, in the mean reverting process of the Vasicek model in Chapter 9.
The idea is that the horizons of investors are long enough so that no risk
premium is earned on a central bank’s deciding to raise or lower rates
somewhat later or sooner nor on other short-lived news. This assumption,
that a risk premium is earned only on the long-term factor in a multi-factor
model, has characterized industry practice and has been supported by recent
empirical work.2

The cascade form of the model and its parameters are very useful for
intuition about the workings of the model. To solve for prices and rates,
however, it is easier to work with a reduced form of the model. Appendix
A in this chapter shows that the parameters of the cascade form can be
recovered from the parameters of the reduced form in equations (11.8)
through (11.12). In other words, the parameters θ , αr , αm, αl , σm, σl , and
ρ of the cascade form can be recovered from the parameters θ , αr , αm, αl ,
σ11, σ12, and σ21 of the reduced form. The first four parameters in each of
the models are the same, and the relationships between σm, σl , and ρ of
the cascade form and σ11, σ12, and σ21 of the reduced form are given in
equations (11.13) through (11.15) below.

r = θ + x1 + x2 + x3 (11.8)

dx1 = −αr x1dt + σ11dw1 + σ12dw2 (11.9)

dx2 = −αmx2dt + σ21dw1 − σ12dw2 (11.10)

dx3 = −αl x3dt − (σ11 + σ21) dw1 (11.11)

E (dw1dw2) = 0 (11.12)

σ11 = αrαm

(αr − αm) (αr − αl )
σl − αr

(αr − αm)
ρσm (11.13)

σ21 = αr

(αr − αm)
ρσm − αrαm

(αr − αm) (αm − αl )
σl (11.14)

σ12 = − αr

(αr − αm)
σm

√
1 − ρ2 (11.15)

2See, for example, J. Cochrane and M. Piazzesi, “Decomposing the Yield Curve,”
Working paper, March 13, 2008.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c11 JWBT539-Tuckman July 22, 2011 14:19 Printer: Courier Westford

The Gauss+ and LIBOR Market Models 291

SOLUTION AND ESTIMATION

The reduced form model in equations (11.8) through (11.12) can be solved
for zero coupon bond prices or spot rates. Letting r̂ (T) be the T-year spot
rate,

r̂ (T) = θ + x1
1 − e−αr T

αr T
+ x2

1 − e−αmT

αmT
+ x3

1 − e−αl T

αl T
+ ϒ (T) (11.16)

where x1, x2, and x3 are the initial values of the factors and ϒ (T) is a func-
tion, given in Appendix B in this chapter, that depends on all the parameters
of the reduced form of the model and on T but not on the initial values of
the factors.

Given parameters of the reduced form of the Gauss+ model, equation
(11.16) can be used to price any security with fixed cash flows, along the
lines of Chapters 1 and 2 of this book. Furthermore, as mentioned later,
some contingent claims can be priced directly in this framework as well,
i.e., without having first to capture the dynamics of the Gauss+ model in a
tree or some other numerical method. But how should the parameters of the
model be set? One popular starting point is to choose parameters so that the
two principal components (PCs) implied by the model—there are only two
sources of risk in the Gauss+ model—approximate the first two PCs from
interest rate data.

Appendix C in this chapter shows that there are two functions of ma-
turity T and of the parameters αr , αm, αl , σm, σl , and ρ of the cascade form,
namely �1 (T) and �2 (T), such that

∂ r̂ (T)
∂z1

= �1 (T) (11.17)

∂ r̂ (T)
∂z2

= �2 (T) (11.18)

where z1 and z2 are uncorrelated normally distributed random variables
with unit variance. This result implies that the functions �1 (T) and �2 (T)
give the two PCs of spot rates in the Gauss+ model. A change in the factor z1

changes the one-year spot rate by �1 (1), the two-year spot rate by �1 (2), the
three-year spot rate by �1 (3), etc., while a change in the factor z2 changes the
one-year spot rate by �2 (1), etc. An estimation procedure for the parameters
αr , αm, αl , σm, σl , and ρ, therefore, is to find the parameters that minimize
the distance, e.g., sum of squared errors, between the functions �1 (T) and
�2 (T) and the first two empirical principal components. Sample results from
this estimation procedure are given in the next section.
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The initial values of the factors, x1, x2, and x3 are typically implied each
day from market prices. Just as the initial value of the single factor in the one-
factor models of Chapters 9 and 10 might be chosen to match the market
10-year par rate, the initial factors in the Gauss+ model might be chosen
to match the market 2-year, 10-year, and 30-year par rates. Alternatively,
the three initial values might be used to minimize the sum of squared errors
between model and market prices across the curve. The daily fitting of initial
factor values is illustrated in the next section as well.

With the parameters αr , αm, αl , σm, σl , and ρ fixed from the PCs, and
with the initial factor values set each day based on prevailing market prices,
the parameter θ is still free. It can be chosen based on a priori views about
the long-term rate of interest and the risk premium or it can be used so
that model and market prices over a particular sample period match as
closely as possible. Some practitioners change θ every day so as to be able
to fit an additional market price each day or so as to improve the match
between model and market prices each day, even though this is an internally
inconsistent use of the model since, in the model, θ is a constant.

USD AND EUR SAMPLE RESULTS

The mean reversion, volatility, and correlation parameters of the Gauss+
model were estimated, along the lines of the previous section, from principal
components of USD and EUR swap rates over the period August 1, 2001,
to December 9, 2010.3 The parameter θ was chosen to improve the overall
in-sample fit of market to model rates, one of the choices mentioned in the
previous section. Table 11.1 reports the estimated parameters of the cascade
form of the model. The half-lives corresponding to the long-term factors are,
as expected, considerably longer than those corresponding to the short-term
rates and the intermediate-term factors. The difference in half-life between
the latter is less impressive. In fact, it is often difficult in the Gauss+ model
to pin down these coefficients very accurately. The orders of magnitudes
of the volatility parameters are quite reasonable, ranging from 105 to 258
basis points. These volatilities, dampened by mean reversion, generate the
term structure of volatility, discussed below. For the present, however, note
that the relatively high volatilities of the medium-term factors are offset by
relatively high mean reversion parameters.

Figures 11.1 and 11.2 show the USD and EUR first and second PCs,
respectively, both estimated from the data and from the fitted model.
The Gauss+ model clearly has enough flexibility to match these shapes.

3The empirical PCs were estimated with an exponential decay rate of .5. This means
that data from one year ago are weighted by about half as much as current data.
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TABLE 11.1 Parameter Estimates of the Gauss+ Model for USD and EUR Swaps
from August 1, 2001, to December 9, 2010

USD EUR

Mean Reversion Mean Reversion
Parameter Value Half-Life (years) Value Half-Life (years)

αr .729 1.0 .719 1.0
αm .629 1.1 .619 1.1
αl .038 18.4 .01 66.7
σm 2.58% 1.78%
σl 1.79% 1.05%
ρ .15 −.05
θ 9.04% 8.00%

To the extent that the shapes of the empirical PCs are expected to persist,
this is a powerful argument in support of this term structure model and the
associated approach to estimation.

Figure 11.3 shows the term structure of volatility of swap rates in the
estimated Gauss+ models for both USD and EUR. The Gauss+ model is
able to capture the feature that volatility is particularly low at short terms,
increases with term, and then eventually decays, although in this estimation
the term structure of volatility in EUR increases over the whole of the
range. In any case, the shapes in Figure 11.3 are much more realistic than
those produced by the one-factor models without the “+” described earlier;
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F IGURE 11.2 Historical PCs from the EUR Swap Curve from August 1, 2001, to
December 9, 2010, along with PCs from a Calibrated Gauss+ Model

recall, for example, the monotonically downward-sloping term structure of
volatility in Figure 9.7 produced by the Vasicek model. Despite this success,
however, for some applications, like market making in derivatives, much
more detailed specifications of volatility are required. This and a related
extension of the model is discussed in the next section.

The final graph of this section, Figure 11.4, illustrates the fitting of the
initial factors on a particular day, namely, February 11, 2011. The graph
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F IGURE 11.3 Term Structure of Swap Rate Volatility from Gauss+ Models of
USD and EUR Swap Rates Estimated from August 1, 2001, to December 9, 2010
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F IGURE 11.4 Fitting to the Term Structure of USD Spot Rates with the Gauss+
Model as of February 11, 2011

shows three USD spot rate curves, corresponding to the left axis, and two
error curves, corresponding to the right axis. The three rate curves depict
spot rates from the market; from the model with initial factors chosen to fit
the 2-, 10-, and 30-year benchmark rates exactly; and from the model with
initial factors chosen by least squares to fit the entire curve reasonably well.
The two error curves show the difference, in basis points, between market
rates and the curves from the two fitting approaches. Both model curves
are relatively close to the market, with almost all of the absolute errors
less than 20 basis points, but neither approach dominates the other. The
benchmark curve matches the most liquid parts of the curve exactly,4 but
the least-squares approach gives the better overall fit. In any case, fit either
way, the model indicates that the 5-year sector is cheap (market rates above
model rates) and the 20-year sector rich (market rates below model rates).
Presenting this as a possible trading or investment opportunity is, of course,
one of the reasons for building term structure models.

MODEL EXTENSIONS

Chapters 9 and 10 made the point that, in certain applications, it is desirable
for the model to match the entire initial market term structure of rates. This
can be done in the Gauss+ model in the same way as in the Ho-Lee and the

4Trading desks typically fit benchmark par swap rates, which are by far the most
traded, rather than spot rates as in this illustration.
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original Salomon Brothers models, i.e., by making the drift time dependent.
Mathematically, equation (11.8) of the reduced form becomes

r∗ = θ (t) + x1 + x2 + x3 (11.19)

Appendix D in this chapter shows that, given an initial estimate of the
Gauss+ model with the constant θ set to zero, finding the function θ (t) that
fits the initial term structure is very simple: set θ (t) equal to the difference
between the continuously compounded forward rates in the market and in
the initial model. Put another way, the forward rates in the initial model
plus θ (t) equal the forward rates in the model defined by (11.19) which, by
construction, match the forward rates in the market.

Another extension of the model is to match implied market volatilities
in order to capture convexity properly when interpolating between observed
market rates or to price interest rate derivatives. The estimation methodology
presented in the previous section is designed to capture historical dynamics,
including volatilities and correlations, but this in no way means that implied
volatilities of options, e.g., swaptions, will be priced correctly by the model.5

The Gauss+ model can be modified to fit traded volatilities in the same
way as Model 3 or the Black-Karasinski model of Chapter 10, namely, by
changing volatility constants to be functions of time. A simple and popular
way to do this for the Gauss+ model is to multiply each of the volatility
parameters in (11.9) through (11.11) by a function of time, denoted here as
η (t). The special case of η (t) = 1 for all t is the original Gauss+ model.

One use of η (t) is to match swaption prices with a fixed underlying
swap maturity at various expiration dates. A practitioner might decide, for
example, to match the market prices of options on a 10-year swap at the
well-traded expirations of three months, six months, one year, three years,
five years, and 10 years. In that case η (t) would be a step function, with
a value between 0 and .25 set to match the three-month option price, a
value between .25 and .5 that, together with the value of η (t) from 0 to .25,
matches the six-month option, etc. It should be emphasized once again that
the desirability and usefulness of matching market quantities depends on the
application at hand. Such calibration is certainly appropriate, for example,
when pricing and making markets in exotic derivatives or when making con-
vexity corrections to Eurodollar futures rates (see Chapter 15). By contrast,
for relative value trading in swaps themselves, precise calibration to many
volatility products is normally not worth the effort.

Table 11.2 illustrates a function η (t) fitted on February 11, 2011, and
appended to the Gauss+ model estimated in the previous section. Swaption

5A swaption is the option to receive or pay fixed in a swap at a preset rate at some
time in the future. See Chapter 18.
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TABLE 11.2 A Time-Dependent Volatility Factor in
the Gauss+ Model Fitted to Swaption Prices on 10-Year
Swaps at Various Expiries as of February 11, 2011

Option Implied
Expiry Volatility η (t)
(years) (bps per day)

.25 6.9 .87

.50 7.0 .86
1 7.1 .82
2 7.1 .75
3 7.0 .68
4 6.9 .63
5 6.7 .61

prices are for at-the-money options and are given in terms of implied volatil-
ity in basis points per day. The relatively low values of η (t) indicate that
the implied volatilities of swaptions are low relative to the historical volatil-
ity built into the initial calibration of the Gauss+ model. Or, taking the
time-dependent model literally, swaption prices indicate that the volatility
of the 10-year swap rate will fall in the future.

Figure 11.5 shows the term structure of swap rate volatility at various
points in the future in the time-dependent USD model. The fall in volatility
from one curve to the next is not so dramatic as the decline of η (t) itself
since the volatility of a term rate is, qualitatively, an average of volatilities
over the relevant time horizon.

Strictly speaking, pricing European swaptions in the Gauss+ model
requires some numerical implementation of the model, in sharp contrast
with the closed-form solutions available for discount factors, spot rates, and
forward rates. In practice, however, there exist good closed-form approxi-
mations that make use of Black-Scholes style option pricing models.6

6Using equation (13.11), write the forward swap rate from t to T in terms of discount
factors and the annuity factor as (d (t) − d (t + T))/A(t, t + T). Since discount factors
are exponential functions of the factors in the Gauss+ model, this expression links
swap rates to the underlying factors. Take derivatives, then, with respect to the
factors to approximate the change in the swap rate as its partial derivatives with
respect to the factors times the change in the factors. As it turns out, these partial
derivatives are typically close to constant so that the change in the swap rate can
be approximated as a linear function of the changes in the factors. Since the factors
are normally distributed with a known variance-covariance matrix, the swap rate is
approximately normal and its term volatility can be easily computed. The techniques
of Chapter 18 can then be used to price swaptions in a Black-Scholes context.
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F IGURE 11.5 Term Structures of USD Swap Rate Volatility Over Time with a
Time-Dependent Volatility Factor in the Gauss+ Model Calibrated to Swaption
Prices as of February 11, 2011

THE L IBOR MARKET MODEL

The LIBOR Market Model7 (LMM) differs from the models of Chapters 9
and 10 and from the Gauss+ model of this chapter. Instead of positing the
form of one or several somewhat abstract factors, the factors of LMM can be
understood as observable forward rates, which together describe the entire
term structure. To take a simple example, the factors of an implementation
of LMM might be 30 one-year forward rates, starting with the forward rate
from today to the end of the year and ending with the forward rate from
year 29 to year 30. Also, in another contrast with short-rate models, LMM
does not require the specification of drift functions; its key inputs turn out
to be the volatilities and correlations of the chosen forward rates.

The LMM framework is particularly appealing when the objective is to
price and hedge derivatives, particularly “exotics,” given the prices of other,
more liquidly traded derivatives. First, since the initial values of the factors
are the forward rates themselves, LMM automatically ensures that the initial
model and market term structures are the same. Second, since there are many
factors, the model is flexible enough to capture volatilities and correlations
of rates across the term structure. Third, since the volatilities of forward rates
are relatively easily connected to the prices of the most liquid derivatives,
the calibration of LMM to derivatives prices is relatively straightforward.

7A. Brace, D. Gatarek and M. Musiela, “The Market Model of Interest Rate Dy-
namics,” Mathematical Finance 1997, 7(2) pp. 127–154.
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Presentations of the LMM model tend to be highly mathematical. The
discussion here aims to convey the essential ideas with a minimum amount of
mathematics. As a result, the interested reader should consult other sources
for more general and theoretically rigorous presentations.8

Notat ion and Introduct ion

To introduce LMM, consider the simple context of three factors that are
adjacent τ -year forward rates. Most commonly, τ = .25 for three-month
forwards, although τ might also be 1

2 or 1
12 for semiannual or monthly

forwards. In any case, the simple setup here requires only four fixed points
in time: T0; T1 = T0 + τ ; T2 = T1 + τ ; and T3 = T2 + τ . Then, denote the
forward rates and discount factors as follows:

� ft (T0, T1) = ft (T0, T0 + τ ): the forward rate from T0 to T1 = T0 + τ as
of t ≤ T0

� ft (T1, T2) = ft (T1, T1 + τ ): the forward rate from T1 to T2 = T1 + τ as
of t ≤ T1

� ft (T2, T3) = ft (T2, T2 + τ ): the forward rate from T2 to T3 = T2 + τ as
of t ≤ T2

� dt (T): the discount factor to time T as of t ≤ T

A contingent claim makes payments on any or all of the dates T0, T1,
T2, and T3, where each payment can depend on any or all of the forward
rates at the time the payment is made. Since the term structure of interest
rates to a particular maturity is defined by the set of adjacent forward rates
to that maturity, this description of a claim is very general. A simple example
would be a derivative on a bond or swap, since bonds and swaps depend on
all forward rates to their maturity dates. A more exotic example, a special
case of which will be used as an illustration in a later subsection, would be a
derivative making a payment that is a function of current and past forward
rates. Note that an exotic derivative’s payments can easily depend on past
values of forward rates. For instance, for t ≥ T1 the forward rate ft (T1, T2)
is fixed at fT1 (T1, T2), but the payment of a contingent claim at times T1,
T2, or T3 can depend on the value of that realized forward rate.

As was the case for the short-rate models, the pricing of contingent
claims in the LMM framework begins with assumptions about the prob-
ability distributions of the factors. For present purposes, to present ideas

8See L. Andersen and V. Piterbarg, Interest Rate Modeling, Volume II, Atlantic
Financial Press, 2010; D. Brigo and F. Mercurio, Interest Rate Models: Theory and
Practice, Springer, 2001; R. Rebonato, Modern Pricing of Interest Rate Derivatives:
The LMM and Beyond, Princeton University Press, 2002.
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simply and without the complexities of continuous time notation, assume
that local changes in the three forward rates, i.e., changes over short time
intervals, follow a multivariate normal distribution.9 Notationally, let the
local change of the forward rate ft (Ti−1, Ti ) be normally distributed with
mean μi (t) and volatility σi (t) and let the local correlation of the forward
rates ft (Ti−1, Ti ) and ft

(
Tj−1, Tj

)
be denoted ρi, j (t). Borrowing terminol-

ogy from continuous time models, these quantities will be referred to here as
the instantaneous drifts, volatilities, and correlations of the forward rates.
In any case, the next step in building the short-rate models was to transform
the drift of the factors so as to obtain the risk-neutral process for the short
rate, which, in turn, was used to price contingent claims. LMM also trans-
forms the drifts of the factors so that contingent claims can be priced, but
the transformations are different.

Developing the appropriate transformations in LMM requires the fol-
lowing result, which is proved in Chapter 18. There exist probabilities,
called the “T + τ forward measure,” such that two conditions hold. First,
with ET+τ

t [·] denoting the time-t expectation under these probabilities and
with s denoting some time after t,

ft (T, T + τ ) = ET+τ
t [ fs (T, T + τ )] (11.20)

In words, the forward rate from T to T + τ is a martingale in that its time-t
value equals the expectation of its future realization at time s.

Second, let Vt denote the arbitrage-free time-t value of a contingent claim
that makes a payout at time T + τ . Then, Vt and Vs are related through the
expectation ET+τ

t [·] as follows:

Vt

dt (T + τ )
= ET+τ

t

[
Vs

ds (T + τ )

]
(11.21)

And, in the special case s = T + τ , equation (11.21) reduces to

Vt = dt (T + τ ) × ET+τ
t [VT+τ ] (11.22)

so that the value of the contingent claim at time T + τ equals its expected
payout discounted back to time t.

The probabilities implicit in the T + τ forward measure are analogous
to the risk-neutral probabilities used in the context of short-rate models.
Equation (11.22) says that the T + τ forward measure probabilities can be

9The probability distribution of a set of random variables is mulitvariate normal if
each random variable, given the values of all the others, is normally distributed.
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used to price contingent claims by taking expectations under those prob-
abilities and then discounting. Risk-neutral probabilities are used to price
contingent claims by taking expectations of discounted payoffs under those
probabilities. A more formal connection between the T + τ forward measure
and the risk-neutral measure will be made in Chapter 18.

Pric ing Cont ingent Cla ims and
the Choice of Measure

The exposition of LMM to this point can be summarized as follows. First,
changes in the three forward rate factors follow a multivariate normal dis-
tribution, but the drifts or means of the factors to be used for pricing are as
yet to be determined. Second, for a particular T + τ forward measure, the
drift of the forward rate ft (T, T + τ ) is zero and contingent claims can be
priced using equation (11.21).

Consistent with typical applications of LMM, fix the forward measure
to match the last possible payment date, which is called the terminal measure
and, in this case, is the T3 forward measure. Under this measure contingent
claims can be priced and ft (T2, T3) has no drift. Therefore, for contingent
claims such that the expectation in (11.21) can be computed knowing only
ft (T2, T3), the model is complete. In the more general and usual case, how-
ever, when the valuation of the contingent claim depends on all of the
forward rates, (11.21) cannot be applied without knowing the drift of these
other forward rates under the T3 measure. Note, of course, that if another
measure, like the T2 measure, had been fixed instead, then (11.21) could be
applied to price claims that require knowing only ft (T1, T2), which, under
the T2 measure, has no drift. Claims with values that depended on the dy-
namics of ft (T2, T3) and ft (T0, T1), however, could not be priced without
knowing their drifts under the T2 measure.

Returning to the T3 forward measure, the rest of this subsection develops
the methodology for pricing contingent claims. First, the text expands on the
pricing of claims that can be computed knowing only ft (T2, T3). Second, the
drift of ft (T1, T2) under the T3 forward measure is derived. Third, the drift of
ft (T0, T1) under the T3 forward measure is derived. Together, these results
completely describe the pricing of contingent claims in this three-factor
version of LMM. Fourth, for use beyond the exposition in this chapter,
general expressions for forward rates drifts under various forward measures
are presented.

Pric ing Cla ims Requir ing the Dynamics of f t (T2, T3) Alone Say that a
derivative makes a single payment at time T3 that is a function of the
forward rate fT2 (T2, T3). Pricing this contingent claim is straightforward
given the assumptions made so far. According to equation (11.20), the
probabilities of the T3 forward measure are such that ft (T2, T3) has no drift.
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Also, according to (11.22), the value of a contingent claim on fT2 (T2, T3)
making a payment at time T3 is equal to the discounted value of the expected
value of that payoff under the T3 forward measure. Hence, to price the
claim, invoke the assumption made earlier that local changes in ft (T2, T3)
are normally distributed with volatility σ3 (t), impose a mean of zero as
the local transformation to the T3 forward measure, and then calculate the
discounted expected value of the payment.

While closed-form solutions and very good approximations exist for the
prices of some contingent claims in the LMM framework, valuation usually
relies on Monte Carlo simulation.10 To simulate one path of the forward
rate ft (T2, T3), start at time 0 with the initial forward rate f0 (T2, T3). Then,
for a step of size �t, set the change in the forward rate, � f0 (T2, T3), to the
draw of a normal random variable with mean zero and standard deviation
σ3 (0)

√
�t. Add this realized change to the initial forward rate to get the

forward rate at time �t, i.e., f�t (T2, T3). Then compute the next change in
the forward rate as a normal random variable with mean zero and standard
deviation σ3 (�t)

√
�t, etc. Continue in this manner to obtain eventually the

value of fT2 (T2, T3) for this particular path from which the payment of the
contingent claim at time T3 can be calculated. Other paths can be simulated
in the same way, with each generating an observation of the payment of
the contingent claim. Finally, when it has been judged that sufficiently many
realizations have been observed, average all the realized contingent-claim
payments across paths as an estimate of ET3

t
[
VT3

]
in (11.22) and discount

to time t as an estimate of the time-t value of the contingent claim.
The approach just described for pricing a single payment at time T3 that

is contingent on the value of fT2 (T2, T3) also works for a payment made at
time T2. To see this, note that by equation (11.21),

Vt

dt (T3)
= ET3

t

[
VT2

dT2 (T3)

]

Vt = dt (T3) ×
ET3

t
[
VT2

(
1 + τ fT2 (T2, T3)

)]
(11.23)

where the second line of (11.23) follows from the definitions of discount
factors and forward rates. To value this time-T2 claim, therefore, simulate
paths as before to obtain values for fT2 (T2, T3) at time T2. From these values
compute the future value of the time-T2 claim to time T3, i.e., the term
VT2

(
1 + τ fT2 (T2, T3)

)
, which is inside the expectation in (11.23). Finally,

average these future values across paths and discount the result to time t.

10 For a book-length treatment, see Paul Glasserman, Monte Carlo Methods in Fi-
nancial Engineering, 2003. Also, Chapter 20 discusses Monte Carlo simulation in
more detail.
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In contrast to claims on fT2 (T2, T3) paid at time T2 or T3, a claim on
ft (T2, T3) that pays at time T1 or T0 cannot be valued along the lines just
described. Consider a claim on fT1 (T2, T3) paying at time T1. According
to (11.21),

Vt

dt (T3)
= ET3

t

[
VT1

dT1 (T3)

]

Vt = dt (T3) ET3
t

[
VT1

(
1 + τ fT1 (T1, T2)

) (
1 + τ fT1 (T2, T3)

)]
(11.24)

where the second line of (11.24) again follows from the definitions of dis-
count factors and forward rates. Since (11.24) depends on fT1 (T1, T2), this
claim cannot be priced without knowing the drift of fT1 (T1, T2) under the
T3 measure. The text now turns to the calculation of that drift, which, of
course, is also required to price any claim that depends on ft (T1, T2) and
that is to be valued under the T3 measure.

The Dri f t of f t (T1, T2) Under the T 3 Forward Measure Consider an agree-
ment as of time t to pay f and to receive fs (T1, T2) at time T2 for some
t ≤ s ≤ T1. The fair value of f can be quickly computed using the T2 for-
ward measure. Since the value of the agreement today is 0, it follows from
(11.22) that

0 = dt (T2) × ET2
t

[
fs (T1, T2) − f

]
(11.25)

Invoking (11.20), the fact that ft (T1, T2) is a martingale under the T2 mea-
sure, (11.25) can be solved for f :

f = ET2
t [ fs (T1, T2)]

= ft (T1, T2) (11.26)

The drift of ft (T1, T2) under the T3 measure will now be calculated by
finding the fair value of f using the T3 measure and equating the result with
that of (11.26). Applying (11.21) here,

0 = ET3
t

[
fs (T1, T2) − f

dT2 (T3)

]

= ET3
t

[(
fs (T1, T2) − f

) (
1 + τ fT2 (T2, T3)

)]
f ET3

t
[(

1 + τ fT2 (T2, T3)
)] = ET3

t
[

fs (T1, T2)
(
1 + τ fT2 (T2, T3)

)]
(11.27)
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Making use of a fact about the covariance of two random variables X1

and X2, i.e., that Cov (X1, X2) = E (X1 X2) − E (X1) E (X2), the right-hand
side of (11.27) can be rewritten so that

f ET3
t

[(
1 + τ fT2 (T2, T3)

)] = Covt
[

fs (T1, T2) ,
(
1 + τ fT2 (T2, T3)

)]
+ET3

t [ fs (T1, T2)] ET3
t

[
1 + τ fT2 (T2, T3)

]
f = τCovt

[
fs (T1, T2) , fT2 (T2, T3)

]
ET3

t
[(

1 + τ fT2 (T2, T3)
)]

+ET3
t [ fs (T1, T2)] (11.28)

Since fs (T1, T2) does not change from s to T2, the covariance of
fs (T1, T2) and fT2 (T2, T3) is equal to the covariance of fs (T1, T2) and
fs (T2, T3). Also, using the value for f computed in (11.26) and the fact
that ft (T2, T3) is a martingale under the T3 measure, (11.28) becomes

ET3
t [ fs (T1, T2)] − ft (T1, T2) = −τCovt [ fs (T1, T2) , fs (T2, T3)]

1 + τ ft (T2, T3)
(11.29)

To take the last step, use the (annualized) instantaneous volatility and
correlation notation given earlier to write the numerator of the right-hand
side of (11.29) as τρ2,3 (t) σ2 (t) σ3 (t) × (s − t). Then, divide both sides of
(11.29) by s−t and let s approach t so that the left-hand side of (11.29)
becomes the instantaneous drift of ft (T1, T2):

μ2 (t) ≡ −τρ2,3 (t) σ2 (t) σ3 (t)
1 + τ ft (T2, T3)

(11.30)

Equation (11.30) defines the drift of ft (T1, T2) under the T3 measure,
as desired. To review its use, consider applying (11.21) to a claim that pays
some function of both fT1 (T1, T2) and fT1 (T2, T3) at time T1. Starting at
the initial values of the forward rates, ft (T1, T2) and ft (T2, T3), simulate
paths for the two rates under the T3 measure from time t to time T1. More
specifically, taking a small step from time t to time t + �t, the changes in
the two forward rates are found by drawing two random variables from
a bivariate normal distribution with means μ2 (t) �t and zero, volatilities
σ2 (t)

√
�t and σ3 (t)

√
�t, and correlation ρ2,3 (t). Then, from the terminal

values of fT1 (T1, T2) and fT1 (T2, T3) along each path compute the payoff of
the claim at time T1 divided by the discount factor dT1 (T3), i.e., multiplied
by

(
1 + τ fT1 (T1, T2)

) (
1 + τ fT1 (T2, T3)

)
. Finally, compute the value of the

claim by averaging these results across paths and multiplying by dt (T3).
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To summarize the exposition to this point, the three forward rates were
assumed to follow a multivariate normal distribution with given instan-
taneous volatilities and correlations. Drifts of the forward rates that can
be used for pricing, i.e., those under the T3 measure, are now known for
ft (T1, T2) and ft (T2, T3). Once the drift for ft (T0, T1) under the T3 mea-
sure is found, the model will be complete in that it can be used to price
any contingent claim making payments that depend on any of the three
forward rates.

The Dri f t of f t (T0, T1) Under the T 3 Forward Measure Consider an agree-
ment as of time t to pay f ∗ and to receive fs (T0, T1) at time T2 for some
t ≤ s ≤ T0. Since the value of the agreement today is 0, the fair value of f ∗

under the T2 forward measure is, by (11.22),

0 = dt (T2) × ET2
t [ fs (T0, T1) − f ∗]

f ∗ = ET2
t [ fs (T0, T1)] (11.31)

Since ft (T0, T1) is not a martingale under the T2 measure, equation (11.31)
cannot be simplified immediately, but will be expressed more usefully in a
moment. For now, find the fair value of f ∗ under the T3 measure and equate
the result to the right-hand side of (11.31). Applying (11.21) to the claim
now under consideration,

0 = ET3
t

[
fs (T0, T1) − f ∗

dT2 (T3)

]
(11.32)

Proceeding just as in (11.27) through (11.29), but using f ∗ from (11.31),
equation (11.32) becomes

ET3
t [ fs (T0, T1)] − ET2

t [ fs (T0, T1)] = −τCov [ fs (T0, T1) , fs (T2, T3)]
1 + τ ft (T2, T3)

(11.33)

To express ET3
t [ fs (T0, T1)] more simply, the text now returns to sim-

plifying the right-hand side of (11.31), namely, ET2
t [ fs (T0, T1)]. Consider a

claim that pays f ∗∗ to receive fs (T0, T1) at time T1. By (11.22), combined
with the facts that the value of the claim today is zero and that ft (T0, T1) is
a martingale under the T1 measure,

0 = dt (T1) × ET1
t [ fs (T0, T1) − f ∗∗]

f ∗∗ = ft (T0, T1) (11.34)
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Pricing the claim under the T2 measure, however, using (11.21), gives
that

0 = ET2
t

[
fs (T0, T1) − f ∗∗

dT1 (T2)

]
(11.35)

Proceeding once again as in (11.27) through (11.29), but using f ∗∗ from
(11.34), equation (11.35) becomes

ET2
t [ fs (T0, T1)] − ft (T0, T1) = −τCov [ fs (T0, T1) , fs (T1, T2)]

1 + τ ft (T1, T2)
(11.36)

Then, substituting ET2
t [ fs (T0, T1)] from (11.36) into (11.33),

ET3
t [ fs (T0, T1)] − ft (T0, T1) = −τCov [ fs (T0, T1) , fs (T1, T2)]

1 + τ ft (T1, T2)

−τCov [ fs (T0, T1) , fs (T2, T3)]
1 + τ ft (T2, T3)

(11.37)

Finally, using the established notation and letting s approach t,

μ1 (t) = −τρ1,2 (t) σ1 (t) σ2 (t)
1 + τ ft (T1, T2)

− τρ1,3 (t) σ1 (t) σ3 (t)
1 + τ ft (T2, T3)

(11.38)

With this drift, this simple version of LMM is complete. To summarize,
to price any contingent claim that depends on the three forwards and makes
all of its payments at T0, T1, T2, and T3, follow these three steps:

1. Simulate paths for the three forward rates. For each step of size �t from
time t, draw three random variables from a multivariate normal distribu-
tion with means μ1 (t) �t, μ2 (t) �t, and 0; with volatilities σ1 (t)

√
�t,

σ2 (t)
√

�t, and σ3 (t)
√

�t; and with correlations ρ1,2 (t), ρ1,3 (t), and
ρ2,3 (t).

2. Along each path, calculate the future value to time T3 of the payments
from the claim.

3. Average the results across paths and discount to the present.

The General Expression for Dri f t Changes The simple version of LMM
developed here, with three forward rate factors and with the T3 forward
measure fixed as the pricing measure, required the computation of the drifts
of ft (T0, T1) and ft (T1, T2) under the T3 measure. In general, in a model with
many more forward rates, use of LMM might require the drift of the forward
rate ft (Tk−1, Tk) under the Ti forward measure. The general expression for
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these drifts can be derived along the lines of this subsection, but is presented
here without proof:11

i > k : μk (t) = −
i∑

j=k+1

τρk, j (t) σk (t) σ j (t)
1 + τ ft

(
Tj−1, Tj

) (11.39)

i = k : μk (t) = 0 (11.40)

i < k : μk (t) =
k∑

j=i+1

τρk, j (t) σk (t) σ j (t)
1 + τ ft

(
Tj−1, Tj

) (11.41)

If, as in the simple model here, the LMM pricing measure is taken as
the terminal measure, then the drifts that have to be computed, like those
derived in (11.30) and (11.38), all fall into the category i > k.

Cal ibrat ing the Instantaneous Volat i l i ty and
Correlat ion Funct ions

The previous subsection took the instantaneous volatility and correlation
functions of the forward rates, i.e., σi (t) and ρi, j (t), as given. This sub-
section discusses how practitioners typically set these functions. In short,
after assuming some functional form, parameters are set by a combination
of calibrating to the market prices of volatility products and estimating the
historical behavior of forward rates. With respect to volatility products,12

short-term rate futures options and caplets are essentially options on for-
ward rates, and caps are portfolios of caplets. As such, these derivatives
provide direct information on the volatilities of forward rates. Swaptions
are options on swaps. Since the value of a given swap depends on many
forward rates simultaneously, swaptions depend not only on the volatilities
of forward rates but also on the correlations across forward rates.

It might seem at first that the prices of options on forward rates should
be used to calibrate the instantaneous volatility functions while swaption
prices should be used to calibrate the correlation functions. In practice,
however, this turns out to be too cumbersome a procedure. Basically, the
pricing of swaptions depends on the term correlations, i.e., on the cor-
relations of forward rates at option expiration, not on the instantaneous
correlations of changes in forward rates, which are the building blocks of

11 For a more rigorous treatment, see, for example, L. Andersen and V. Piterbarg,
Interest Rate Modeling, Volume II, 2010; and D. Brigo and F. Mercurio, Interest
Rate Models: Theory and Practice, Springer, 2001, Chapter 6.
12 All of the products mentioned here are described in detail in Chapter 18.
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LMM. Furthermore, because both volatilities and correlations are time de-
pendent, the relationship between correlations of forward rates at expiration
and instantaneous correlations is particularly complex.13

In light of the discussion of the previous paragraph, a popular method-
ology for calibrating the LMM model is to use historical data to calibrate
the correlation functions and to use some subset of volatility products to
calibrate the volatility functions. This procedure also happens to have the
advantage of providing relative value indicators across volatility products.
For example, if the cap market is used to calibrate volatilities, then the
prices of swaptions using that calibrated model are indicators of the relative
value of swaptions versus caps. In any case, the text continues by describing
popular specifications and calibrations of the correlation functions and then
moves on to the same for the volatility functions.

Speci f icat ion and Cal ibrat ion of the Instantaneous Correlat ion Funct ions
An appealing specification of the instantaneous correlation of ft (Ti−1, Ti )
and ft

(
Tj−1, Tj

)
, i.e., ρi, j (t), is the following, where Ti > Tj :14

ρi, j (t) = ρ∞ + (1 − ρ∞) e−κ[Tj −t]×(Ti −Tj) (11.42)

where

κ [T − t] = a∞ + (a0 − a∞) e−β(T−t) (11.43)

The specification of (11.42) and (11.43) captures two important features
of the correlation structure of forward rates so long as 1 − ρ∞ > ρ∞ and
a0 > a∞. First, the instantaneous correlation between two forward rates
should decrease with the distance between the forward rates, i.e., with Ti −
Tj . For example, the three-month rates 2 and 5 years forward should be more
correlated than the three-month rates 2 and 10 years forward. Second, for a
given difference between the maturities of forward rates, the instantaneous
correlation between two forward rates should increase with the maturity
of the earlier forward, i.e., with Tj − t for a fixed Ti − Tj . For example,
the three-month rates 2 and 3 years forward should be less correlated than
the three-month rates 9 and 10 years forward. Economically, while the
market may have views of the future that distinguish between short-term

13 Spread options, which make payments based on the difference between rates at
expiration, are more suitable for extracting correlations across forward rates. These
options, however, are not traded with enough liquidity across terms to drive term
structure model calibrations.
14 See L. Andersen and V. Piterbarg, Interest Rate Modeling, Volume II, by Atlantic
Financial Press, 2010.
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TABLE 11.3 Selected Model Correlations for USD
Three-Month Forward Rates of Different Forward Times, in
Years, Estimated from February 6, 2002, to March 27, 2011

.25 2 5 10 30

.25 1.00 .63 .37 .27 .25
2 .63 1.00 .91 .78 .47
5 .37 .91 1.00 .90 .61
10 .27 .78 .90 1.00 .66
30 .25 .47 .61 .66 1.00

rates two and three years forward, it is much less likely to have views that
can distinguish between short-term rates nine and 10 years forward.

Calibrating the functions (11.42) and (11.43) to changes in USD three-
month forward rates from February 6, 2002, to March 27, 2011, gives
the following parameters: ρ∞ = .25, a0 = .610029, a∞ = .029683, and β =
1.861247. Table 11.3 gives a selection of the estimated model correlations;
the empirical correlations very closely match these model quantities. Note
that, as supposed, 1 − ρ∞ > ρ∞ and a0 > a∞, so that the correlations do
exhibit the desired properties mentioned earlier. For example, the correlation
between the three-month rates 2 and 5 years forward, at 91%, exceeds that
of the more separated three-month rates 2 and 10 years forward, at 78%.
Also, the correlation of the three-month rates .25 and 5 years forward,
at 37%, is less than that of the more distant but almost equally separate
three-month rates 5 and 10 years forward, at 90%.

Speci f icat ion and Cal ibrat ion of the Instantaneous Volat i l i ty Funct ions A
reasonable but relatively simple specification of the instantaneous volatility
of the forward rate ft (Ti−1, Ti ) is the following:

σi (t) = l∞ + (l0 − l∞ + a(Ti−1 − t)) e−b(Ti−1−t) (11.44)

The specification of σi (t) in (11.44) is relatively simple for a few reasons.
First, the volatility function is time homogeneous in that volatility depends
only on the difference between the forward time Ti−1 and the calendar time
t, i.e., only on the term of the forward rate. This means, for example, that the
volatility of the three-month rate three months forward now is assumed to
be the same as the volatility of the three-month rate three months forward in
five years. This is not necessarily realistic, however, particularly in the short
end: when, for example, central banks are keeping rates low for an extended
period, it is likely that volatilities of fixed-term forwards will increase in the
medium term.
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In any case, that volatility in (11.44) depending only on the term of the
forward rate makes the functional form particularly easy to interpret. At a
term of zero, volatility is l0; at a term of infinity, volatility is l∞; and, it is
easy to show that volatility reaches a peak at a term of 1

b + l∞−l0
a .

A second reason that the functional form of (11.44) is relatively simple
is that the volatility of the forward rate does not depend on the level of the
forward rate. As discussed in Chapter 10, this sort of dependence is partic-
ularly useful for establishing the shape of the probability distribution of the
interest rate. Third, volatility is deterministic in equation (11.44); even apart
from the possibility of a dependence on rates, there is no randomness to the
level of volatility. This assumption is particularly restrictive when modeling
derivatives prices because implied volatility levels are constantly changing. In
short, the specifications of volatility functions in the version of LMM used
in practice are substantially more complex in order to model the volatil-
ity skew, discussed in Chapter 18, in a tractable manner. For pedagogical
purposes, however, (11.44) will be used throughout this chapter.

As mentioned previously, the parameters of a specification such as
(11.44) are calibrated so as to fit the market prices of volatility products.
Consider first using caplets. Since a caplet maturing at time Ti−1 is essen-
tially an option on fTi−1 (Ti−1, Ti ), it turns out that, if the forward rate is
normally distributed, a caplet can be priced using the normal Black-Scholes
formula (see Chapter 18). Furthermore, since the instantaneous volatility of
the forward rate changes over time as, for example, in (11.44), the appro-
priate implied volatility to use in the Black-Scholes formula is the average of
that instantaneous volatility from the present time t to time Ti−1. In particu-
lar, letting σ̂i denote the implied volatility of the caplet with the underlying
forward ft (Ti−1, Ti ),

σ̂i =
√

1
Ti−1 − t

∫ Ti−1

t
σ 2

i (t) ds (11.45)

Fitting the volatility specification (11.44) to USD caplet prices as of
July 6, 2006, results in the following parameters values: l∞ = .508%,
l0 = .602%, a = .00398, and b = .29773. Figure 11.6 shows the result-
ing instantaneous volatility function along with the resulting model caplet
volatilities. The humped shape of these volatility functions is typical of
market-implied volatilities and is easily captured by the functional form
(11.44). By the way, note that, using the expression given earlier, the instan-
taneous volatility function peaks at a term of 3.12 years.

Table 11.4 explores the difference between market and model caplet
volatilities. Column (3) of the table shows selected model caplet volatilities,
which match those in Figure 11.6. Column (2) gives the respective mar-
ket volatilities and Column (4) gives the difference between the two. The
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F IGURE 11.6 Model Instantaneous and Caplet Volatilities Fit to USD Caplet
Prices as of July 6, 2006

volatility function is able to fit the market relatively well, although there are
oscillations of richness and cheapness across terms.

If a closer fit is required, the volatility function (11.44) can be general-
ized, e.g., by multiplying σi (t) by a different constant for each forward rate,
ft(Ti−1, Ti ), and using these constants to match caplet volatilities exactly.
Note that, since each constant depends on Ti−1 but not on t, their inclusion
breaks the time homogeneity of the volatility specification. As mentioned
in the earlier discussion of the time homogeneity property, however, it may
very well be desirable to introduce calendar effects in volatility, particularly
for near-dated forwards.

Before turning to calibrating the volatility functions with swaptions
rather than caplets, it is worth noting that the caplet calibration is, in

TABLE 11.4 Selected Market vs. Model Caplet Volatilities for Calibrations Using
Caplet and Swaption Prices, as of July 6, 2006

(1) (2) (3) (4) (5) (6)

Caplet Caplet Calibration Swaption Calibration
Expiration Vol Model Mkt-Model Model Mkt-Model

.5 59.48 60.91 −1.42 68.69 −9.21
2 86.26 84.13 2.13 85.66 .61
5 92.09 96.46 −4.37 95.68 −3.59

10 87.35 86.15 1.20 90.27 −2.91
20 69.84 64.74 5.10 76.45 −6.60
30 45.61 53.52 −7.91 69.16 −23.55
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practice, not so straightforward as presented to this point. Caps, i.e., port-
folios of caplets, are much more liquid than caplets themselves. But, as
discussed in Chapter 18, extracting at-the-money caplet volatilities from
at-the-money caps is a challenging exercise in its own right. As a result,
Eurodollar or Euribor futures options, also discussed in Chapter 18, are
sometimes substituted for caplets. In fact, using options from these markets
actually presents an additional opportunity for pinning down the volatility
functions. The quarterly rate futures options are like caplets in that they are
options, that mature at time Ti−1, on a forward from Ti−1 to Ti . Put another
way, both caplets and these options provide information about the average
volatility of the forward rate from the present to Ti−1. Mid-curve futures
options, or mid-curves, however, are options on a forward from Ti−1 to Ti

that mature at some earlier time, before Ti−1. Therefore, mid-curves provide
information about the average volatility of the forward rate to that earlier
date, which is information that is not available from caplets.

The discussion now turns to calibrating the instantaneous volatility
functions from swaptions. In fact, swaptions are more liquid than caps,
especially at longer maturities. The difficulty is that, also as mentioned pre-
viously, calibrating to swaptions is not so straightforward as calibrating to
caplets because swaption prices are complicated functions of forward rate
volatilities and correlations. As it turns out, however, there is an approxima-
tion that facilitates the calibration of (11.44) to swaption prices. Swap rates
can be reasonably approximated as a linear combination of forward rates
with fixed weights. But linear combinations of normally distributed random
variables are themselves normal. Hence, when forward rates are assumed
to be jointly normal, as they have been here, swap rates are approximately
normal with volatilities that can be calculated from the volatilities and cor-
relations of the forward rates. These swap rate volatilities can then be com-
pared with market implied volatilities of swaptions. In short, specifications
like (11.44) can and are commonly calibrated to the swaption market.

Table 11.5 shows the results of calibrating LMM to the USD swaption
market as of July 6, 2006, using the volatility specification (11.44) and the
correlation specification (11.42) and (11.43) calibrated to historical data, as
described previously. Swaptions will be discussed in detail in Chapter 18,
but, for now, Table 11.5 is read as saying that the swaption to enter into
a five-year swap (swap tenor) in two years (option maturity) trades at a
volatility of 87.8 basis points. According to the panel giving the difference
between market and model volatilities, LMM does fit swaption volatilities
rather well, although there are regions of over- and under-pricing. By the
way, as with the caplet calibration, constants can be added to the specifica-
tion of the volatility functions so that selected swaption volatilities can be
fitted exactly.

To conclude the discussion of the calibration of volatilities, return to
Table 11.4. As discussed previously, columns (2), (3), and (4) of this table
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TABLE 11.5 Market and Fitted USD Swaption Volatilities, in Basis Points, from
the LMM Model Calibrated to Swaption Prices as of July 6, 2006

Swap Tenor 1 2 3 4 5 10 30

Option Maturity Market Implied Volatility

.5 68.4 74.5 76.2 77.0 77.8 76.8 74.3
2 87.8 88.6 88.3 88.1 87.8 86.0 79.2
5 93.6 93.2 92.2 91.5 90.8 87.6 76.6

10 88.1 87.1 86.2 85.4 84.5 79.7
30 64.0 62.8 62.2 61.7 61.2 57.5

Model Implied Volatility

.5 73.6 77.3 79.6 80.9 81.6 81.4 77.7
2 88.0 88.6 88.7 88.4 87.8 84.6 79.2
5 95.8 94.1 92.4 90.9 89.6 84.6 78.8

10 89.9 88.0 86.3 84.8 83.6 79.5
30 69.6 69.0 68.5 68.0 67.7 66.4

Market-Model Volatility

.5 −5.3 −2.7 −3.4 −3.9 −3.8 −4.6 −3.4
2 −.2 0 −.4 −.3 0 1.4 0
5 −2.2 −.9 −.2 .6 1.2 3.0 −2.2

10 −1.8 −.9 −.1 .5 .9 .2
30 −5.6 −6.2 −6.2 −6.3 −6.5 −8.9

compare market and model caplet volatilities in an LMM model calibrated
to caplet prices. Columns (2), (5), and (6) compare market and model caplet
volatilities in an LMM model calibrated to swaption prices, in particular,
the calibration used in Table 11.5. Column (6), therefore, is a report on the
volatilities of caplets relative to swaptions. As of July 6, 2006, market caplet
volatilities are significantly lower than would be consistent with volatilities
in the swaption market. In fact, swaptions and caplets, or equivalently caps,
do usually trade rich or cheap relative to one another. Caps tend to be used
by floating-rate borrowers to hedge the risks of rising rates while swaptions
are used by participants in the mortgage-backed securities market to hedge
prepayments that accelerate when rates fall. (See Chapter 20.) Hence, when
fears of rising rates dominate, caps tend to trade rich while, when fears
of falling rates dominate, swaptions tend to trade rich. At the time of the
calibrations reported here, in July 2006, it was widely believed that the
Board of Governors of the Federal Reserve System had finished increasing
rates in the monetary tightening cycle that had begun in the summer of
2004. As a result, the demand for caps fell and they traded cheap relative to
swaptions.
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Pric ing an Interest Rate Exot ic

This subsection illustrates the use of LMM in pricing an illustrative exotic
derivative as of July 6, 2006. This exotic makes one payment on March
21, 2007, which is determined as a function of the history of both the
three-month rate forward to December 20, 2006, and the three-month rate
forward to March 21, 2007. In particular, calculate the geometric average
of the three-month rate forward to December 20, 2006, as observed on July
6, 2006, September 20, 2006, and December 20, 2006. Then calculate the
geometric average of the three-month rate forward to March 21, 2007, as
observed on the same three dates. Finally, subtract the second geometric
average from the first. That is the payoff of the exotic per unit face value. As
of July 6, 2006, the three-month rate forward to December 20, 2006, was
5.68% while the three-month rate forward to March 21, 2007, was 5.65%.

To place this problem in the LMM framework, let time 0 be July 6,
2006, and define other times and forward rates as in Table 11.6. Using the
notation in this table, the payoff of the exotic on May 21, 2007, is equal to

[
f0 (T1, T2) × fT0 (T1, T2) × fT1 (T1, T2)

]1/3

− [
f0 (T2, T3) × fT0 (T2, T3) × fT1 (T2, T3)

]1/3 (11.46)

The strategy for valuing the exotic will be to simulate the forward rates
ft (T1, T2) and ft (T2, T3). Since the last and only cash flow of the exotic
is on March 21, 2007, i.e., at time T2, set the pricing measure as the T2

forward measure. This means that ft (T1, T2) has no drift under the pricing
measure. The drift of the other required forward, namely ft (T2, T3), has an
instantaneous drift under the T2 measure given by (11.41) with i = 2 and
k = 3, that is,

μ3 (t) = τρ3,3 (t) σ3 (t) σ3 (t)
1 + τ ft (T2, T3)

= .25σ 2
3 (t)

1 + .25 ft (T2, T3)
(11.47)

TABLE 11.6 Notation for the Exotic Derivative Pricing Example

Start End Forward
Date Time Date Time Rate

9/20/06 T0 12/20/06 T1 ft (T0, T1)
12/20/06 T1 3/21/07 T2 ft (T1, T2)
3/21/07 T2 6/21/07 T3 ft (T2, T3)
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To simulate the first path, start at the given initial value of the forwards,
f0 (T1, T2) = 5.68% and f0 (T2, T3) = 5.65%. Then take a step from time
0 to time T0, which, in years, is a step size equal to the number of days be-
tween July 6, 2006, and September 20, 2006, i.e., 76, divided by 365, or .208.

To take the step from time 0 to time T0, begin by drawing the changes
in the two forward rates, � f0 (T1, T2) and � f0 (T2, T3), as two random
variables that are bivariate normal with means 0 and μ3 (0) × .208, with
volatilities σ2 (0)

√
.208 and σ3 (0)

√
.208, and with correlation ρ2,3 (0). Ac-

cording to Appendix E in this chapter this is accomplished by drawing and
transforming two independent standard normal variables, say z2 = −.506
and z3 = −.923, so that

� f0 (T1, T2) = σ2 (0)
√

.208 × z2 (11.48)

� f0 (T2, T3) = μ3 (0) × .208

+σ3 (0)
√

.208
(

z1ρ2,3 (0) + z2

√
1 − ρ2,3 (0)2

)
(11.49)

To compute the numerical values of the changes in (11.48) and (11.49),
use the specifications and parameters given in the text to compute that
σ2 (0) = .7489%, σ3 (0) = .8121%, and ρ2,3 (0) = .9499. Then compute
that μ3 (0) = .034 from (11.47) using the value of σ3 (0) just given and
the initial value f0 (T2, T3) = 5.65%. Finally, return to (11.48) and (11.49)
with all of these values, including the given draws of the two independent
standard normal random variables, to find that � f0 (T1, T2) = −.173% and
� f0 (T2, T3) = −.285%.

Adding the increments just computed to the initial value of the two
forward rates gives the value of these forwards at time T0: fT0 (T1, T2) =
5.507% and fT0 (T2, T3) = 5.365%.

The simulation continues with a step of .249 years, from T0 or Septem-
ber 20, 2006, to T1 or December 20, 2006. This is accomplished as was the
step from 0 to T0. Use the functional forms and parameters given in the text
to compute that σ2 (T0) = .6874%, σ3 (T0) = .7601%, and ρ2,3 (T0) = .9297.
Then use σ3 (T0), fT0 (T2, T3), and (11.47) to compute that μ3 (T0) = .036.
Draw another two independent standard normal variables, say z2 = −.605
and z3 = .783, and write down the changes in the forward rates from T0

to T1:

� fT0 (T1, T2) = σ2 (T0)
√

.249 × z2 (11.50)

� fT0 (T2, T3) = μ3 (T0) × .249 + σ3 (T0)
√

.249

×
(

z1ρ2,3 (T0) + z2

√
1 − ρ2,3 (T0)2

)
(11.51)
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Filling in the values now available, � fT0 (T1, T2) = −.208% and
� fT0 (T2, T3) = −.104%. Adding these increments to the values of the for-
ward rates at time T0 gives the two forward rates at time T1: fT1 (T1, T2) =
5.299% and fT1 (T2, T3) = 5.262%.

All of the forward rates are now known to compute the payoff of the
claim on March 21, 2007, from (11.46):

[5.680% × 5.507% × 5.299%]1/3 − [5.650% × 5.365% × 5.262%]1/3

(11.52)
= 5.493% − 5.423%

= .070% (11.53)

Dividing this by dT2 (T2) = 1, as required by (11.21), gives the same seven
basis points.

To value the exotic derivative in this example, repeat this process for
many paths, average the result, and multiply by the discount factor d0 (T2).

APPENDIX A: EQUIVALENCE OF THE CASCADE
AND REDUCED FORMS OF THE GAUSS+ MODEL

Begin with equations (11.9), (11.10), (11.11) of the reduced form of the
model. In matrix form:⎛

⎝dx1

dx2

dx3

⎞
⎠ = −

⎛
⎝αr 0 0

0 αm 0
0 0 αl

⎞
⎠

⎛
⎝ x1

x2

x3

⎞
⎠ dt

+
⎛
⎝ σ11 σ12 0

σ21 −σ12 0
− (σ11 + σ21) 0 0

⎞
⎠

⎛
⎝dw1

dw2

0

⎞
⎠ (11.54)

where E (dw1dw2) = 0 as in (11.12). More compactly,

dx = −αxdt+�dw (11.55)

Now define the matrix A to be

A =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1

0
αr − αm

αr

αr − αl

αr

0 0
(αr − αl ) (αm − αl)

αrαm

⎞
⎟⎟⎟⎟⎟⎠ (11.56)
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Let u = (u1, u2, u3)′ be a transformation of the variables x such that

u = Ax + θ (11.57)

where θ = (θ,θ,θ )′. Premultiply both sides of (11.57) by the inverse of A and
solve for x:

x = A−1 (u − θ) (11.58)

Next, take the differential of both sides of (11.57):

du = Adx (11.59)

Putting the pieces together, substitute (11.55) into (11.59)

du = A [−αxdt+�dw] (11.60)

and then substitute (11.58) into (11.60):

du = A
[−α

{
A−1 (u − θ ) dt

} + �dw
]

du = −AαA−1 (u − θ ) dt + A�dw (11.61)

Given the definitions of A and α, it is straightforward, although tedious,
to show that

A−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − αr

αr − αm

αrαm

(αr − αm) (αr − αl)

0
αr

αr − αm
− αrαm

(αr − αm) (αm − αl )

0 0
αrαm

(αr − αl) (αm − αl)

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.62)

−AαA−1 =
⎛
⎝−αr αr 0

0 −αm αm

−αl

⎞
⎠ (11.63)

−AαA−1 (u − θ ) dt =
⎛
⎝−αr αr 0

0 −αm αm

−αl

⎞
⎠

⎛
⎝u1 − θ

u2 − θ

u3 − θ

⎞
⎠ dt

=
⎛
⎝ −αr (u1 − u2) dt

−αm (u2 − u3) dt
−αl (u3 − θ ) dt

⎞
⎠ (11.64)
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Also, given the definitions of A and � it can be shown that

A� =
⎛
⎝ 0 0 0

ρσm

√
1 − ρ2σm 0

σl 0 0

⎞
⎠ (11.65)

Having performed these computations, substitute (11.64) and (11.65)
into (11.61) to see that

du1 = −αr (u1 − u2) dt (11.66)

du2 = −αm (u2 − u3) dt + ρσmdw1 +
√

1 − ρ2σmdw2 (11.67)

du3 = −αl (u3 − θ ) dt + σldw1 (11.68)

But with u1 = r , u2 = m, and u3 = l, equations (11.66) through (11.68)
are identical to (11.1) through (11.3). Hence the transformations (11.57)
and (11.58) can be used to move from the reduced form to the cascade form
and back again.

APPENDIX B: THE FUNCTION ϒ (T) FOR
THE GAUSS+ MODEL

This appendix presents the function ϒ (T) without derivation. The spot rate
in the model is given by (11.16), which is reproduced here as (11.69):

r̂ (T) = θ + x1
1 − e−αr T

αr T
+ x2

1 − e−αmT

αmT
+ x3

1 − e−αl T

αl T
+ ϒ (T) (11.69)

where

ϒ (T) = −1
2

(
G2

1 + G2
2

) + (σ11G1 + σ12G2)
1 − e−αr T

α2
r T

+ (σ21G1 − σ12G2)
1 − e−αmT

α2
mT

− (σ11 + σ21) G1
1 − e−αl T

α2
l T

− (
σ11σ21 − σ 2

12

) 1 − e−(αr +αm)T

αrαm (αr + αm) T
+ σ11 (σ11 + σ21)

1 − e−(αr +αl )T

αrαl (αr + αl) T

+ σ21 (σ11 + σ21)
1 − e−(αm+αl )T

αmαl (αm + αl) T
− (

σ 2
11 + σ 2

12

) 1 − e−2αr T

4α3
r T

− (
σ 2

12 + σ 2
21

) 1 − e−2αmT

4α3
mT

− (σ11 + σ21)2 1 − e−2αl T

4α3
l T

(11.70)



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c11 JWBT539-Tuckman July 22, 2011 14:19 Printer: Courier Westford

The Gauss+ and LIBOR Market Models 319

and

G1 = σ11

αr
+ σ21

αm
− σ11 + σ21

αl
(11.71)

G2 = σ12

αr
− σ12

αm
(11.72)

APPENDIX C: ESTIMATING THE PARAMETERS
OF THE GAUSS+ MODEL

This appendix describes how to define �1 (T) and �2 (T) in equations (11.17)
and (11.18) of the text. The notation of Appendix A is continued here.

Define the 3x1 vector b such that

b =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − e−αr T

αr T
1 − e−αmT

αmT
1 − e−αl T

αl T

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.73)

Then, equation (11.16) can be rewritten as

r̂ (T) = θ + ϒ (T) + b′x (11.74)

Substituting for x from equation (11.58),

r̂ (T) = θ + ϒ (T) + b′A−1 (u − θ)

= θ + ϒ (T) − b′A−1θ + b′A−1u (11.75)

As shown toward the end of Appendix A in this chapter, u1 = r , u2 = m,
and u3 = l. So, partitioning the 1x3 vector b′A−1 into its first element, br,
and a 1x2 vector, b′

ml , of its other two elements, (11.75) can be further
rewritten as

r̂ (T) = θ + ϒ (T) − b′A−1θ + brr + b′
ml

(
m
l

)
(11.76)

The partials of r̂ (T) with respect to m and l are given by (11.76), but,
since m and l are correlated, these partials cannot be equated to principal
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components. The final step, therefore, is to transform the variables m and l
into uncorrelated variables. Define the matrix S such that

S =
(

ρσm σm

√
1 − ρ2

σl 0

)
(11.77)

It follows that

S−1 = 1

σmσl

√
1 − ρ2

(
0 σm

√
1 − ρ2

σl ρσm

)
(11.78)

and that

S−1
(

m
l

)
= 1

σmσl

√
1 − ρ2

(
0 σm

√
1 − ρ2

σl ρσm

)(
m
l

)

=
⎛
⎝ l

σl

1√
1−ρ2

[
m
σm

− ρl
σl

]⎞
⎠ (11.79)

It is easily verified that the variance-covariance matrix of (11.79) is the
identity matrix.

Returning now to equation (11.76), insert a multiplication by the iden-
tity matrix written as SS−1:

r̂ (T) = θ + ϒ (T) − b′A−1θ + brr + b′
mlSS−1

(
m
l

)
(11.80)

and then define the random variables z1 and z2 such that

(
z1

z2

)
= S−1

(
m
l

)
(11.81)

But, as just discussed, the variance-covariance of the right-hand side of
(11.81) and, therefore, of z1 and z2 is the identity matrix. Hence, z1and z2 are
uncorrelated with unit variance. They are, of course, normally distributed,
since m and l are normally distributed.

Finally, substituting (11.81) into (11.80),

r̂ (T) = θ + ϒ (T) − b′A−1θ + brr + b′
mlS

(
z1

z2

)
(11.82)
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which means that the functions �1 (T) and �2 (T) of the text are defined
such that

[�1 (T) ,�2 (T)] = b′
mlS (11.83)

Note that b and A−1, which determine b′
ml , depend only on the mean

reversion coefficients of the cascade form of the Gauss+ model and S depends
on the two volatilities and the correlation. Hence, by (11.83), �1 (T) and
�2 (T) depend only on these parameters as well, i.e., not on θ nor on the
initial values of the factors.

APPENDIX D: F ITT ING THE INIT IAL TERM
STRUCTURE IN THE GAUSS+ MODEL

Zero coupon bond prices in the model defined by (11.19) are given by

P∗ (T) = E
[
exp

(
−

∫ T

0
r∗ (t) dt

)]

= exp
(

−
∫ T

0
θ (t) dt

)
E

[
exp

(
−

∫ T

0
r (t) dt

)]

= exp
(

−
∫ T

0
θ (t) dt

)
P (T) (11.84)

where P and r are the zero coupon bond prices and the short-term rate
in the original formulation of the Gauss+ model (11.8) with the constant
θ set equal to zero. Taking the derivative of both sides of (11.84) with
respect to T,

dP∗

dT
= exp

(
−

∫ T

0
θ (t) dt

)
dP
dT

− θ (T) exp
(

−
∫ T

0
θ (t) dt

)
P(T)

dP∗

dT
= P∗ (T)

P (T)
dP
dT

− θ (T) P∗ (T)

θ (T) = 1
P∗ (T)

dP∗

dT
− 1

P (T)
dP
dT

(11.85)

By the defintion of forward rates, see equation (2.41), the two terms
on the right-hand side of (11.85) are the forward rates in these respective
models. Let f ∗ (t) denote the continuously compounded forward rates in
the market, or equivalently, in the adjusted Gauss+ model, and let f (t)
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denote the initial Gauss+ model with θ equal to zero. Equation (11.85) then
becomes

θ (T) = f ∗ (T) − f (T) (11.86)

as was to be shown.

APPENDIX E: DRAWING RANDOM NUMBERS FROM
A MULTIVARIATE NORMAL DISTRIBUTION

The problem is to draw N random variables from a multivariate normal
distribution with means given by the N × 1 vector μ and variances and
covariances given by the N × N matrix �.

Software is widely available for drawing random variables from a stan-
dard normal distribution, i.e., with mean 0 and volatility 1, it is assumed
here that the starting point is an N × 1 vector z with each element a draw
from a standard normal distribution.

Software is also widely available to perform a Choleski decomposition,
i.e., to decompose a positive definite matrix, like the variance-covariance
matrix �, into the product of a (lower triangular) matrix, A and its
transpose A′:

AA′ = � (11.87)

Then, using the draws from the standard normal distribution in the
vector z, define the N × 1 vector x such that

x = μ + Az (11.88)

This vector x is a draw from the desired multivariate normal distribu-
tion. To see this, note that

E [x] = μ + AE [z]

= μ (11.89)

and that

V [x] = V [Az]

= AV
[
zz′] A′ (11.90)

= AA′ (11.91)

= � (11.92)
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where V [zz′] is the identity matrix since z is a vector of standard normal
variables.

For convenience, it is easily verified that, in the two-dimensional case,

� =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
(11.93)

and

A =
(

σ1 0
ρσ2 σ2

√
1 − ρ2

)
(11.94)
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PART

Four
Selected Securities

and Topics

P arts One, Two, and Three provided the basic tools with which to price
and measure the risk of fixed income securities and portfolios. This part

can now apply these tools to the details of various products and markets.
The chapter titles are for the most part explanation enough for the purposes
of introduction. A few additional comments are warranted, however, and
are made here.

Chapter 12 covers repo markets and financing. This is an important
subject in its own right, both under normal conditions and particularly
under conditions of financial stress. But financing is a crucial part of many
other valuation and risk problems. Forward and futures prices in bond
markets, for example, depend directly on financing rates. And even more
fundamentally, as argued in Chapter 17, the foundations of arbitrage pricing
depend on financing arrangements and on the relationships of financing rates
across securities.

Chapter 13 presents preliminaries on forward and futures contracts.
The preliminary subject matter necessary to understand these contracts is
substantial enough to distract from the narrative flow of chapters about
individual products. Hence, this material is collected here and applied in the
rest of Part Four, particularly in the chapters on note and bond futures and
on short-term rate derivatives.

Chapter 17 presents material that may be completely new to many
readers. First, it revisits the fundamentals of arbitrage pricing under realis-
tic financing arrangements, deriving more realistic conditions under which
portfolios of bonds or swaps can be found to replicate other bonds or swaps.
Second, the chapter revisits the pricing of swaps when the riskless investable

325
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rate and the rate earned on posted collateral (e.g., federal (fed) funds) does
not equal the floating rate index (e.g., LIBOR). The result is a two-curve
swap pricing methodology that, since the financial crisis of 2007–2009, has
rapidly become the industry standard.

Most of Chapter 18 describes fixed income option products and as-
sociated valuation methodologies. The final part of the chapter, however,
in justifying the use of the Black-Scholes model in certain fixed income
contexts, introduces concepts and techniques that have become staples in
finance, i.e., numeraires and martingale pricing. The presentation is done
with a minimum of mathematics so that a broader audience has access to
these important topics.
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CHAPTER 12
Repurchase Agreements

and Financing

T his chapter is about repurchase agreements or repos, which were intro-
duced in the Overview. Repos are short-term contracts that are used to

lend money on the security of usually high-grade collateral, to finance the
purchase of bonds, and to borrow bonds to be sold short.

Financial institutions have traditionally relied on repos to finance some
portion of fixed income inventory. Repo financing, as secured, short-term
borrowing, is typically a relatively inexpensive way to borrow money. The
practice can leave firms in a perilous situation, however, should lenders of
cash through repos, in times of trouble, fail to renew their loans. This turned
out to be an issue in the financial crisis of 2007–2009, which is illustrated in
this chapter by two cases, one about liquidity management at Bear Stearns
and one about the financing relationship between Lehman Brothers and
JPMorgan Chase.

The last part of the chapter focuses on repo rates and, in particular,
on the specials market in the United States, where market participants lend
money at relatively low rates predominantly in order to borrow the most-
recently issued and most liquid U.S. Treasury bonds. The behavior of these
rates is examined in some detail and linked empirically to the auction cycle
of U.S. government bonds.

REPURCHASE AGREEMENTS: STRUCTURE AND USES

A repurchase agreement or repo is a contract in which a security is traded at
some initial price with the understanding that the trade will be reversed at
some future date at some fixed price. Repos are used by several different types
of market participants for different purposes; figures 12.1 and 12.2 begin the
discussion by illustrating a simplified trade between generic counterparties.

At initiation of the repo, depicted in Figure 12.1, counterparty A sells
€100 million face amount of the DBR 4s of January 4, 2037, to counterparty

327
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F IGURE 12.1 The Initiation of a Repo Trade

B, for settlement on May 31, 2010, at an invoice price of €111.772 million.
At the same time, counterparty A agrees to repurchase that €100 million face
amount three months later, for settlement on August 31, 2010, at a purchase
price equal to the original invoice price plus interest at a repo rate of .23%.
Using the actual/360 convention of most money market instruments, and
noting that there are 92 days between May 31, 2010, and August 31, 2010
the repurchase price is

€111,772,000
(

1 + .23% × 92
360

)
= €111,837,697.10 (12.1)

Hence, at the termination or unwind of the repo, depicted in Figure 12.2,
counterparty A repurchases the €100 million face amount of the bund
from counterparty B for about €111.838 million. (Bund is another name
for a DBR.)

F IGURE 12.2 The Unwinding of a Repo Trade
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The next three subsections describe the three reasons to do repo: to lend
funds short-term on a secured basis, to finance a long position in a security,
and to borrow a security in order to sell it short.

Repos and Cash Management

Investors holding cash for liquidity or safekeeping purposes often find in-
vesting in repo to be an ideal solution. The most significant example of this is
the money market mutual fund industry, which invests on behalf of investors
willing to accept relatively low returns in exchange for liquidity and safety.
In terms of Figures 12.1 and 12.2, a money market fund would be in the
position of counterparty B, lending money while taking collateral and then,
at maturity, collecting the loan plus interest and returning the collateral.
Holding collateral makes the lender less vulnerable to the creditworthiness
of a counterparty because, in the event of a default by counterparty A, coun-
terparty B, in this case the money market fund, can sell the repo collateral
to recover any amounts owed. In summary, relative to super-safe and liquid
non-interest-bearing bank deposits, repo investments pay a short-term rate
without sacrificing much liquidity or incurring significant default risk.

Municipalities constitute another significant category of repo investors.
As the timing of tax receipts has little to do with the schedule of public
expenditures, municipalities tend to run cash surpluses from tax receipts so
as to have money on hand to meet expenditures. These tax revenues cannot
be invested in risky securities, but neither should the cash collected lie idle.
Short-term loans backed by collateral, like repos, again satisfy both revenue
and safety considerations. Other institutions with similar cash management
issues that choose to invest in repo are mutual funds, insurance companies,
pension funds, and even some nonfinancial corporations. It is worth noting,
however, that many lenders in the repo market during the recent financial
crisis realized that they were not well positioned, either in expertise or
operational ability, to take possession of and liquidate repo collateral.

Since repo investors place a premium on liquidity, they tend to lend
overnight, rather than for term, which refers to any maturity longer than
one day. Many investors planning to lend cash through the repo market for
an extended period of time will, rather than lend for term, engage in an
open repo, i.e., a one-day repo that renews itself day-to-day until cancelled
by either party. Nevertheless, investors willing to take on some additional
liquidity and counterparty risk, in addition to interest rate risk, do lend
through term repos. These are available at various maturities, out to several
months, although demand declines rapidly with term.

Since safety is the other key consideration of investors in repo, only se-
curities of the highest credit quality are typically accepted as collateral. The
most common choices are government securities, debt issues of government-
sponsored entities (GSEs), and mortgage-backed securities guaranteed by
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the government or the GSEs. (See the Overview for institutional descrip-
tions.) Even taking high-quality securities as collateral, however, a lender of
cash faces the risk that a borrower defaults at the same time those securities
decline in value.1 In that eventuality, selling the collateral might not fully
cover the loss of the loan amount. Therefore, repo agreements often pro-
vide haircuts through which investors require borrowers to deliver securities
worth more than the amount of the loan. In the example of this section,
counterparty B might lend only €106 million against the €111.772 million
of securities and, of course, collect only €106 million plus interest at ma-
turity. In addition, repo agreements are normally subject to margin calls,
through which the borrower of cash supplies extra collateral in declining
markets but may withdraw collateral in advancing markets. Again using
the example of this section, should the value of the bund collateral decline
from its initial value of €111.772 million to €110 million, the borrower
would have to put up the €1.772 million difference in additional collateral
to protect the investor’s loan. Combining the haircut and repricing features,
after the drop in bund value the investor would still have €111.772 million
of collateral against the outstanding loan of €106 million.

While repo investors care about the quality of the collateral they ac-
cept, they do not usually care about which particular bond they accept.
Hence, while repo investors can be very particular about which classes of
securities they will take as collateral, e.g., Euro-area government bonds
with less than five years to maturity, they will not insist on receiving any
particular security within that delineated class. For this reason these in-
vestors are said to accept general collateral, which trades at general collateral
repo rates. The types and determination of repo rates are discussed later in
this chapter.

Repos and Long F inancing

Financial institutions are the typical borrowers of cash in repo markets. Say
that a client wants to sell €100 million face amount of the DBR 4s of January
4, 2037, to the trading desk of a financial institution. The desk will buy the
bonds and eventually sell them to another client. Until that buyer is found,
however, the trading desk needs to raise money to pay the client. Put another
way, it needs to finance the purchase of the bunds. Rather than draw on the
scarce capital of the financial institution for this purpose, the trading desk
will repo or repo out the securities, or sell the repo. This means that it will

1In risk management parlance, however, this is called a right-way risk. If a repo bor-
rower, typically a well-established financial institution, were to default, the market
response would probably be a “flight-to-quality trade” in which securities of the
most creditworthy governments increase in value.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c12 JWBT539-Tuckman July 21, 2011 16:44 Printer: Courier Westford

Repurchase Agreements and Financing 331

FIGURE 12.3 Back-to-Back Repo Trades

borrow the purchase amount from someone, like a money market fund, and
use the DBR 4s, which it just bought, as collateral. Thus, the trading desk
acts as counterparty A in Figure 12.1. Of course, any haircuts applied will
require the trading desk to use some of its capital to make up the difference
between the purchase price of the securities and the amount borrowed from
the repo counterparty.

When the bunds are ultimately sold to some buyer, the desk will, still as
counterparty A but now in Figure 12.2, unwind the repo, using the proceeds
from the sale of the bunds to repay the repo loan and using the returned
collateral to make delivery of those bunds to that buyer. If no buyer is found
before the expiration of the repo, the trading desk will have to roll or renew
the repo for another period with the same counterparty or unwind that repo
and find a different counterparty to finance the bond. This latter option
is illustrated in Figure 12.3. The trading desk, still as counterparty A, will
repay counterparty B the approximately €111.838 million due and take
back the bunds; then borrow funds from counterparty C and deliver the
bunds as collateral. Note that since the cash obtainable from counterparty
C depends on the price of the bond at the time of the roll, while the cash
due to counterparty B depends on the amount owed from the previously
agreed-upon transaction, this renewal of the repo may leave counterparty
A, the trading desk, with a cash surplus or deficit. Of course, had the trading
desk hedged the price risk of its inventory, the profit and loss from the hedge
would offset this cash surplus or deficit.

In the example of this subsection, the financial institution used the repo
market to finance its inventory for the purpose of making markets. Other
uses include financing its proprietary positions2 and positions for customers.
Repo for proprietary positions can be described by Figures 12.1 and 12.2,

2Currently, the “Volcker rule” is envisioned as limiting the magnitude of proprietary
positions held by financial institutions.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c12 JWBT539-Tuckman July 21, 2011 16:44 Printer: Courier Westford

332 SELECTED SECURITIES AND TOPICS

with the relevant trading desk again as counterparty A, but with internal
rather than customer motivations for purchasing and then selling the bunds.
Repo for financing customer positions, at initiation, can be described in
terms of Figure 12.3. This time a customer, e.g., a hedge fund, is counterparty
B, who wants to finance the purchase of the DBR 4s. The trading desk of the
financial institution, counterparty A, does a repo with the customer, lending
cash and taking the DBR 4s as collateral. The trading desk then does a
back-to-back repo with counterparty C, who provides the cash and takes the
collateral originally supplied by the hedge fund. Without haircuts the cash
amounts shown would be the same, but, in practice, the haircuts charged on
each leg of the trade depend on the creditworthiness and negotiating power
of the relevant counterparties.

The issues surrounding financial institutions’ use of repo to finance their
businesses are discussed later in this chapter.

Reverse Repos and Short Posit ions

Professional investors often want to short a bond, either as an outright bet
that interest rates will rise, as a hedge, or as part of a relative value bet that
the price of another security will rise relative to the price of the security being
sold short. Say that a hedge fund wants to short the DBR 4s of January 4,
2037. It sells the bund, but then needs to borrow it from somewhere in order
to make delivery. In terms of Figure 12.1, the hedge fund is counterparty
B, initiating the transaction not because it wants to lend cash but because it
wants to borrow the bund. From the point of view of the hedge fund, it will
do a reverse repurchase agreement,3 will reverse or reverse in the securities,
or will buy the repo.

After initiating the reverse, the hedge fund will, at some point in time,
be ready to cover its short, i.e., to neutralize its economic exposure to the
bund by buying that bund back. At that time the hedge fund will buy the
bund and then unwind its reverse as in Figure 12.2. Specifically, the hedge
fund, as counterparty B, will buy the bund at market and then deliver it to
counterparty A, who, in exchange, will return the hedge fund’s cash with
interest. If the return on the bund has been less than the repo rate of interest,
the hedge fund will have made money on an outright short position, while
if the return on the bund has been greater than the repo rate of interest, the
hedge fund will have lost money on an outright short. Of course, the short
might very well have been part of a larger trade in which case the profit and
loss (P&L) has more components.

3The practice of calling the trade a reverse repo is particularly confusing because
the same trade that is a reverse repo for the borrower of a security is a repo for the
lender of that security.
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While Figures 12.1 and 12.2 were used to explain both repo investment
and reverse repos, it is important to keep in mind that the former are initiated
in order to invest cash while the latter are initiated to borrow a bond. So
while repo investors are willing to accept general collateral, reverses require
the delivery of a particular bond. Repo transactions that require the delivery
of a particular bond are called special trades and they take place at special
collateral rates. The specials market is discussed further later in this chapter.

REPO, L IQUID ITY MANAGEMENT, AND
THE F INANCIAL CRIS IS OF 2007–2009

The Overview introduced liquidity risk and noted that broker-dealers rely
less on repo financing currently than they did before the 2007–2009 cri-
sis. A financial institution can borrow funds in many ways, some of which
are more stable than others, i.e., some of which can be easily maintained
under conditions of financial stress and some of which cannot be so easily
maintained. The most stable source of funds is equity capital because eq-
uity holders do not have to be paid according to any particular schedule
and because they cannot compel a redemption of their shares. Slightly less
stable is long-term debt because bondholders have to be paid interest and
principal as set out in bond indentures. At the other extreme of funding
stability is short-term unsecured funding, like commercial paper: these bor-
rowings have to be repaid in a matter of weeks or months, as they mature,
when the institution, under adverse conditions, might not be able to bor-
row money elsewhere. Not surprisingly, the more stable sources of funds
are usually more expensive in terms of the expected return required by the
providers of funds. Through liquidity management, firms balance the costs
of funding against the risks of being caught without the financing necessary
to survive.

In the spectrum of financing choices, repo markets are relatively liquid
and repo borrowing rates relatively low. Though, by nature of its short
maturities, repo is on the less stable side of the funding spectrum, although
more stable than short-term, unsecured borrowing. After all, repo collateral
should prevent repo lenders from bolting too quickly in response to unfa-
vorable rumors or news. Nevertheless, if repo investors do lose confidence
in a financial institution, that institution’s repo financing can disappear as
fast as the repos mature, which is mostly overnight. The beleaguered in-
stitution would no longer be able to facilitate customer trades by holding
inventory, would not be able to facilitate customer financing, and might
not remain an acceptable counterparty for derivative and even spot security
transactions. Furthermore, the institution would have to sell inventory and
proprietary positions to repay repo lenders, which sales, given their size and
public nature, would likely turn into fire sales and result in significant losses.
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Essentially then, while significant business losses rather than financing are
the usual cause of a financial institution’s difficulties, the loss of financing
is often the killing blow. The same argument, of course, applies to all lever-
aged investors, like part of the hedge fund world. To the extent that a firm
borrows money to finance positions, losing the confidence of repo and other
secured financing counterparties can result in fire sales, substantial losses,
and possible bankruptcy.

The risks of repo funding juxtaposed with those of repo investing create
tensions between borrowers and lenders of cash as well as difficulties for
regulators. Borrowers want to extend the term of their repo borrowings,4

sometimes at the encouragement of their regulators, so as to have more time,
should conditions for refinancing deteriorate, to arrange alternate financing,
to raise capital, or even to sell corporate entities. Lenders, on the other
hand, want to shorten the term of their repo lendings, sometimes at the
encouragement of their regulators, so as to minimize exposure to borrower
defaults. Prices, in this case repo rates, allocate repos of various terms across
borrowers and lenders, but the financial system as a whole cannot both
extend the maturities of secured financing and contract the maturities of
secured lending.

In the run-up to the financial crisis of 2007–2009, borrowers financed
lower-quality collateral, like lower-quality corporate bonds and lower-
quality mortgage-backed securities, at the relatively low rates and haircuts
available in the repo market. Lenders, for their part, accepted this collateral
in exchange for rates somewhat higher than those available when lending
on higher-quality collateral. The resulting expansion of collateral accepted
for repo did not work out well during the crisis, particularly for borrowers
who were unable to meet margin calls caused by declining security values,
who were unable to post sufficient collateral in response to lenders’ rais-
ing haircuts, or who were unable to replace lost financing arrangements
when lower-quality collateral found fewer and fewer takers. The worst-
hit borrowers suffered collateral liquidations, losses, capital depletion, and
business failure.

Case Study: Repo F inancing and the Col lapse
of Bear Stearns

This is an excerpt from the testimony of Paul Friedman before the Finan-
cial Crisis Inquiry Commission on May 5, 2010.5 Mr. Friedman, a Senior

4As an operational aside, the term repo financing usually includes rights of substi-
tution that enable the borrower of cash who needs to sell a particular bond being
financed to replace that bond as collateral with other bonds of comparable value
and quality.
5Source: http://fcic.gov/hearings/pdfs/2010-0505-Friedman.pdf
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Managing Director at Bear Stearns, was responsible for its fixed income repo
desk at the time of the firm’s demise in March 2008.

Bear Stearns generally financed its business by borrowing funds on
a secured and unsecured basis and through the use of equity cap-
ital. During 2006, Bear Stearns decided to reduce the amount of
short-term unsecured funding, primarily commercial paper, that it
borrowed. The firm made this decision primarily based on its belief,
which I shared, that commercial paper tended to be confidence-
sensitive, and could become unavailable at a time of market stress,
while secured borrowing based on high-quality collateral is gener-
ally less credit sensitive and therefore more stable.

Bear Stearns implemented this strategy in late 2006 and 2007,
and succeeded in reducing its short-term unsecured financing from
$25.8 billion at the end of fiscal 2006 to $11.6 billion at the end of
fiscal 2007, and specifically reduced its commercial paper borrowing
from $20.7 billion to $3.9 billion. That funding was replaced by
secured funding, principally repo borrowing. . .

As part of the firm’s transition away from unsecured borrowing,
Bear Stearns also substantially increased the average term of its
secured funding during the first half of 2007. Bear Stearns was
able to obtain longer term repo facilities of six months or more
to finance assets such as whole loans and non-agency mortgage-
backed securities, and generally limit its use of short-term secured
funding to finance Treasury or agency securities. By increasing the
amount of its long-term secured funding, the firm believed that it
could better withstand a liquidity event.

From approximately August 2007 to the beginning of 2008,
however, the fixed income repo markets started experiencing in-
stability, in which fixed income repo lenders began shortening the
duration of their loans and asking all borrowers to post higher
quality collateral to support those loans. Although the firm was
successful in obtaining some long-term fixed income repo facilities,
by late 2007 many lenders, both traditional and nontraditional,
were showing a diminished willingness to enter into such facilities.

During the week of March 10, 2008, Bear Stearns suffered
from a run on the bank that resulted, in my view, from an unwar-
ranted loss of confidence in the firm by certain of its customers,
lenders, and counterparties. In part, this loss of confidence was
prompted by market rumors, which I believe were unsubstantiated
and untrue, about Bear Stearns’ liquidity position. Nevertheless,
the loss of confidence had three related consequences: prime bro-
kerage clients withdrew their cash and unencumbered securities at
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a rapid and increasing rate;6 repo market lenders declined to roll
over or renew repo loans, even when the loans were supported by
high-quality collateral such as agency securities; and counterparties
to non-simultaneous settlements of foreign exchange trades refused
to pay until Bear Stearns paid first . . . [T]his loss of confidence in
Bear Stearns . . . resulted in a rapid flight of capital from the firm
that could not be survived.

Case Study: JPMorgan Chase’s Repo Exposure
to Lehman Brothers

The counterparty risk of lending money through a repo is that the borrower
defaults and the value of the collateral turns out to be insufficient to cover
the loan amount. Any sterile discussion of the topic cannot do justice to the
bare-knuckle fighting over collateral that takes place when a counterparty
is at risk of default. A striking and well-publicized example of this through
2008 was the repo exposure of JPMorgan Chase (JPM) to Lehman Brothers.

JPM was Lehman’s tri-party repo clearing agent. When repo investors
lend money to a financial institution through the tri-party repo system,7

taking collateral as security, their loans are, literally, overnight.8 During
the day, however, the tri-party repo agent is lending this money to the
financial institution on a secured basis.9 Furthermore, given the operational
structure of the industry, a broker-dealer could not stay in business without
its tri-party agent performing this function. Returning to JPM and Lehman,
before Lehman’s final week, JPM’s tri-party lending to Lehman typically
exceeded $100 billion.10 Furthermore, JPM had historically not taken any
haircuts on its tri-party, intraday advances, but began to do so in early 2008.
In Lehman’s case, JPM phased in haircuts so as to match, by mid-August
2008, the haircuts posted to overnight repo investors.

6Unencumbered securities are securities that have not been posted as collateral or
otherwise committed. This part of the testimony seems to imply that Bear Stearns re-
lied on customer cash and customer securities (the latter could be posted as collateral
to raise funds) to finance other businesses of the firm. In the spectrum of financing
stability, customer cash and unencumbered securities are extremely unstable sources
of funding as they can be withdrawn without notice at any time.
7For a more complete description, see Bruce Tuckman, “Systemic Risk and the Tri-
Party Repo Clearing Banks,” Center for Financial Stability Policy Paper, February
2010. www.centerforfinancialstability.org/research/Tri-Party-Repo20100203.pdf
8This is the reason that overnight repo trades are called that and not one-day trades.
9As of the time of this writing, an industry task force is working to eliminate this
transfer of intraday risk from repo lenders to the tri-party repo agents.
10 See “Written Statement of Barry Zubrow Before the Financial Crisis Inquiry
Commission,” September 1, 2010, p. 2. fcic-static.law.stanford.edu/cdn_media/fcic-
testimony/2010-0901-Zubrow.pdf
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Against this background, the following two excerpts describe differing
viewpoints of the events of September 2008, the first from a lawsuit filed
by the estate of Lehman Brothers Holdings Inc. (LBHI) against JPM11 and
the second from the testimony of Barry Zubrow, Chief Risk Officer of JPM,
before the Financial Crisis Inquiry Commission.

First, from Lehman’s estate:

On the brink of LBHI’s bankruptcy, JPMorgan leveraged its life
and death power as the brokerage firm’s primary clearing bank to
force LBHI into a series of one-sided agreements and to siphon
billions of dollars in critically-needed assets. The purpose of these
last-minute maneuvers was to leapfrog JPMorgan over other credi-
tors by putting itself in the position of an overcollateralized creditor,
not just for clearing obligations, but for any and all possible obli-
gations of LBHI or any of its subsidiaries that JPMorgan believed
could result from an LBHI bankruptcy. The effect of JPMorgan’s
actions—taken with the benefit of unparalleled inside knowledge—
was devastating. JPMorgan not only took billions of dollars more
than it needed from LBHI, but it also accelerated LBHI’s freefall
into bankruptcy by denying it an opportunity for a more orderly
wind-down, costing the LBHI estate tens of billions of dollars in
lost value. . .

In the weeks preceding LBHI’s bankruptcy filing, JPMorgan’s
top management were the ultimate insiders to the evolving crisis,
enjoying real-time access to the key decision-makers at the United
States Treasury and the Federal Reserve Bank of New York. JPMor-
gan’s investment bankers were also attempting to assist Lehman’s
primary potential bidder, the Korea Development Bank, and con-
sequently had first-hand knowledge of its intentions regarding a
potential acquisition. JPMorgan also had direct access to internal
financial information about Lehman, including an opportunity to
review and comment on Lehman’s presentation to the rating agen-
cies. At one crucial point, JPMorgan was invited to a meeting with
Lehman to consider rescue financing proposals, but instead used
it as an opportunity to probe Lehman’s financial condition and
business plans from a risk management perspective. With all of the
bank’s tentacles encircling the financial crisis at Lehman, JPMorgan
was uniquely positioned to capitalize on the opportunities that crisis
presented. . . .

11 Lehman Brothers Holdings Inc., and Official Committee of Unsecured Creditors
of Lehman Brothers Holdings Inc., against JPMorgan Chase Bank, N.A.
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JPMorgan . . . drained LBHI of desperately needed cash by mak-
ing repeated demands that LBHI increase the amount of collateral
payments it posted. In the last four business days before LBHI’s
Chapter 11 filing, JPMorgan seized $8.6 billion of cash collateral,
including over $5 billion in cash on the final business day. All the
while that JPMorgan was aggressively leveraging its position to grab
increasingly more collateral, JPMorgan knew that it was already
overcollateralized by billions of dollars.

JPMorgan’s . . . unjustified demands for billions in additional
collateral, and its refusal to return that collateral in the critical
days before LBHI’s bankruptcy filing, severely constrained LBHI’s
liquidity and impeded its ability to pursue and implement alterna-
tives and initiatives that would have resulted in the preservation of
billions in value. . . .

Next, from Barry Zubrow of JPM:

Increasing margin requirements [during the course of 2008] . . . did
not protect JPMorgan fully from the risks it faced in extending tens
of billions of dollars of credit to broker-dealers each morning . . .

JPMorgan, unlike any single tri-party investor, took on a broker-
dealer’s entire tri-party repo book each day. This meant it would
face far greater risks in a liquidation scenario. Furthermore, JP-
Morgan had no assurance that investors would return to fund the
broker-dealer in the evening . . . with the cash necessary to repay
JPMorgan’s intraday advances. Moreover, the haircuts negotiated
between investors and the broker-dealers did not, in many cases,
fully reflect the liquidation risk for the increasingly large amount
of structured, difficult-to-value securities that were being financed
through the tri-party repo program. . . .

By late August and early September 2008, Lehman’s deteriorat-
ing financing condition was becoming increasingly apparent. . . . In
addition, it came to light that many of the securities Lehman had
pledged to JPMorgan in June were illiquid, structured debt in-
struments that appeared to have been assigned overstated values.
Nevertheless, JPMorgan . . . continued to . . . act on a business-as-
usual basis.

But JPMorgan’s exposure to Lehman was growing. This
included exposure in areas unrelated to tri-party repo clearing. . . .
JPMorgan searched for a way to protect itself without triggering
a run on Lehman. . . . JPMorgan determined that it could continue
to face Lehman in the market if it had $5 billion in additional col-
lateral . . . [This] was far from sufficient to cover all of JPMorgan’s
potential exposures to Lehman . . . but JPMorgan believed that it
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was an amount that Lehman could reasonably provide . . . . Lehman
executives agreed to pledge additional collateral, and . . . did not
indicate that JPMorgan’s request was putting undue pressure
on Lehman. . . .

During the second week of September 2008 . . . a broad re-
view of Lehman’s collateral securities . . . indicated that some of
the largest pieces of collateral pledged to JPMorgan were illiquid,
could not reasonably be valued, and were supported largely by
Lehman’s own credit. . . . When the true nature of Lehman’s collat-
eral came to light on September 11, 2008, it became apparent that
JPMorgan . . . would need additional collateral if it were to con-
tinue supporting Lehman. JPMorgan decided that $5 billion in cash
was . . . appropriate . . . even though its potential collateral shortfall
was greater, as it was a number that JPMorgan believed Lehman
could handle. . . . Later that night, JPMorgan sent Lehman a letter
stating that, if Lehman did not post the collateral by the open of
business the next day, JPMorgan would exercise its right to decline
to extend credit to Lehman . . . . Lehman delivered $5 billion of cash
collateral during the morning and early afternoon [of September
12]. . . .

Throughout all of this . . . JPMorgan continued to make
enormous—discretionary—extensions of credit to the ailing bank,
and it continued to trade with Lehman. . . .

GENERAL AND SPECIAL REPO RATES

As mentioned earlier in this chapter, repo trades can be divided into those
using general collateral (GC) and those using special collateral or specials.
In the former, the lender of cash is willing to take any particular security,
although the broad categories of acceptable securities might be specified with
some precision. In specials trading, the lender of cash initiates the repo in
order to take possession of a particular security. For these trades, therefore,
it makes more sense to say that “counterparty A is lending a security to
counterparty B and taking cash as collateral” as opposed to saying that
“counterparty B is lending cash and taking a security as collateral,” although
the two statements are economically equivalent. For this reason, by the way,
when using the words “borrow” or “lend” in the repo context, it is best
to specify whether cash or securities are being borrowed or lent. Also, as
another note on market terminology, bonds most in demand to be borrowed
are said to be trading special, although any request for specific collateral is
a specials trade.

Each day there is a GC rate for each bucket of collateral and each repo
term. The most commonly cited GC rates are for repos where any U.S.
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Treasury collateral is acceptable, and “the” GC rate refers to the overnight
rate for U.S. Treasury collateral. With respect to special rates, there can be
one for each security for each term, e.g., the 3 5

8 s of August 15, 2019, to
September 30, 2010. But every special rate is typically less than the GC rate:
being able to borrow cash at a relatively low rate induces holders of securities
that are in great demand to lend those securities, while being forced to lend
cash at a relatively low rate allocates securities that are in great demand to
potential borrowers of that security. Differences between the GC rate and the
specials rates for particular securities and terms are called special spreads.

Relating GC and specials trades to the market participants discussed
earlier in this chapter, GC trades suit repo investors: they obtain the highest
rate for the collateral they are willing to accept. Traders intending to short
particular securities have to do specials trades and must decide whether they
are willing to lend money at rates below GC rates in order to borrow those
securities. Funding trades are predominantly GC. Should an institution find
itself wanting to borrow money against a security that is trading special,
however, it will lend that security in the specials market and borrow cash at
a rate below GC, rather than financing that security as part of a GC trade.

In the United States the GC rate is typically close to, but below, the fed-
eral funds rate. The latter, discussed further in Chapter 15, is the unsecured
rate for overnight loans between banks in the Federal Reserve system. By
contrast, repo loans secured by U.S. Treasury collateral are safer and should
trade at a lower rate of interest. From October 23 through July 1, 2010,
for example, the GC rate was, on average, about 16 basis points below
the fed funds rate. This fed funds–GC spread can vary, however, with the
demand for Treasury collateral. When the U.S. government was running sur-
pluses and paying down debt in the late 1990s and early 2000s, so that U.S.
Treasuries were becoming scarcer and expected to become scarcer still, the
fed funds–GC spread widened to reflect the decreasing supply of Treasury
collateral.

The fed funds–GC spread also widens during times of financial stress. At
such times the demand to hold Treasury bonds and to lend cash on Treasury
collateral increases as part of flight-to-quality trades. In addition, willingness
to lend Treasury bonds in repo declines as market participants fear that
collateral may not be returned, either because a counterparty will fail to
return collateral or because a counterparty’s counterparty will fail to do so.
Shortly after the collapse of Bear Stearns, for example, after the Board of
Governors of the Federal Reserve System had hurriedly lowered its target for
the fed funds rate to 2.25%, GC traded at below .50%. Similarly, extremely
wide spreads prevailed in the months after the failure of Lehman Brothers.

Special rates for a particular issue to a particular date are determined
by the demand of borrowing that issue to that date relative to the supply
available. This statment is obvious in some ways, but the important point is
that the demand and supply to borrow and lend issues is not the same as the
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demand and supply to buy and sell issues. In fact, because some owners of
U.S. Treasuries, for institutional reasons, do not lend bonds in repo markets,
the amount of a particular issue available for borrow might be somewhat
less or very much less than the amount outstanding, depending on the dis-
tribution of ownership of that issue across various types of institutions. Put
another way, a bond that trades rich relative to neighboring bonds, in the
sense of the metrics of Part One, implies a high demand to own that bond
relative to the outstanding supply. But the bond may or may not trade very
special in repo depending on the extent traders want to short it relative to
the supply available for borrow. Given this reasoning, predicting the spe-
cial spreads of individual bonds is quite difficult. Having said that, there is
one predominant explanatory factor for special spreads in the United States,
namely, the auction cycle: the most recently issued bonds of each maturity
trade special. This is the topic of the next subsection.

Specia l Spreads in the United States
and the Auct ion Cycle

As mentioned in Chapter 1, the U.S. government sells bonds of different
maturities according to a fixed schedule. As of this writing, for example, a
new 10-year issue is sold every three months. The most recently issued bond
of a given maturity is called the on-the-run (OTR) or current issue while all
other issues are called off-the-run (OFR). However, the second most recently
issued bond of a given maturity does have its own designation as the old
issue; the third most recent as the double-old issue; etc. As a general rule,
at each maturity, the OTR trades the most special, followed by the old,
followed by the double-old, etc. Table 12.1 lists the more recent 10- and
30-year U.S. Treasury bonds along with representative overnight repo rates
and spreads as of May 28, 2010. The special spreads equal the GC rate
minus the respective bond repo rates.

Table 12.1 illustrates how the more recently issued bonds at each ma-
turity trade more special. The table also shows that the OTR 10-year trades
more special than the OTR 30-year, a regularity that has been true for
some time. The discussion now turns to why special rates are related to the
auction cycle.

Current issues tend to be the most liquid.12 This means that their bid-ask
spreads are particularly low and that trades of large size can be conducted

12 This effect is particularly pronounced in the United States. In Germany, the de-
liverability of a bond into highly liquid futures contracts is the best determinant of
liquidity. See Jacob W. Ejsing and Jukka Sihvonen, “Liquidity Premia in German
Government Bonds,” European Central Bank Working Paper Series, no. 1081, Au-
gust 2009. In Japan, liquidity characteristics develop from a mix of the auction cycle
and futures contract deliverability.
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TABLE 12.1 Special Repo Spreads for Selected, Recently Issued U.S. Treasury
Bonds as of May 28, 2010

General Collateral Rate .23%

Coupon Maturity Issue Date Designation Repo Rate Spread

3 1
2 % 5/15/20 5/17/10 OTR 10yr .09% .14%

3 5
8 % 2/15/20 2/16/10 Old 10yr .21% .02%

3 3
8 % 11/15/19 11/16/09 Dbl-Old 10yr .21% .02%

4 3
8 % 5/15/40 5/17/10 OTR 30yr .18% .05%

4 5
8 % 2/15/40 2/16/10 Old 30yr .20% .03%

4 3
8 % 11/15/39 11/16/09 Dbl-Old 30yr .21% .02%

relatively quickly. This phenomenon is partly self-fulfilling. Since everyone
expects a recent issue to be liquid, investors and traders who require liquidity
flock to that issue and thus endow it with the anticipated liquidity. Also, the
dealer community, which trades as part of its business, tends to own a lot
of a new issue until it seasons and is distributed to buy-and-hold investors.
As a matter of historical interest, the OTR 30-year bond had been such a
dominant issue in terms of liquidity that traders called it “the bond.” This
nickname persists to this day despite the decline of the bond’s importance
relative to that of shorter maturities, in particular of the 10-year.

The extra liquidity of newly issued Treasuries makes them ideal can-
didates not only for long positions but for shorts as well. Most shorts in
Treasuries are for relatively brief holding periods: a trading desk hedging
the interest rate risk of its current position; a corporation or its underwriter
hedging an upcoming sale of its own bonds; or an investor betting that in-
terest rates will rise. All else being equal, holders of these relatively brief
short positions prefer to sell particularly liquid Treasuries so that, when
necessary, they can cover their short positions quickly and at relatively low
transaction costs.

Investors and traders who are long an OTR bond for liquidity reasons
require compensation if they are to sacrifice that liquidity by lending that
bond in the repo market. At the same time, investors and traders wanting
to short the OTR securities are willing to pay for the liquidity of shorting
these particular bonds when borrowing them in the repo market. As a result,
OTR securities tend to trade special.

The auction cycle is an important determinant not only of which bonds
trade special, but also of how special individual bonds trade over the course
of the auction cycle. This will be illustrated first by examining the history
of special spreads for the OTR 10-year Treasury and then by examining the
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FIGURE 12.4 OTR 10-Year Special Spread, July 1997 to July 2010, Part I

F IGURE 12.5 OTR 10-Year Special Spread, July 1997 to July 2010, Part II

term structure of special spreads for the OTR 10-year Treasury as of May
28, 2010.

Figures 12.4 through 12.6 show the history of the OTR 10-year Trea-
sury special spread from July 1997 to July 2010: the 13-year history is bro-
ken up into three graphs for better readability.13 The vertical lines indicate

13 Note that data from the aftermath of the Lehman bankruptcy, from November
2008 to February 2009, is missing from Figure 12.5. Events at that time will be
discussed in the next subsection.
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F IGURE 12.6 OTR 10-Year Special Spread, July 1997 to July 2010, Part III

10-year Treasury auctions. These are either auctions of new OTR securities,
in which case the OTR security changes over the vertical line, or re-openings
of existing OTR securities (i.e., auctions that increase the size of an already
existing issue), in which case the same security is featured on both sides of
the vertical line.

Several lessons may be drawn from these graphs. First, special spreads
are quite volatile on a daily basis, reflecting supply and demand for special
collateral each day. Second, special spreads can be quite large: spreads of
hundreds of basis points are quite common. Third, special spreads do attain
higher levels over some periods rather than others, a feature that will be
discussed in the next subsection. Fourth, and the main theme of this sub-
section, while the cycle of OTR special spreads is far from regular, these
spreads tend to be small immediately after auctions and to peak before auc-
tions. It takes some time for a short base to develop. Immediately after an
auction of a new OTR security, shorts can stay in the previous OTR secu-
rity or shift to the new OTR. This substitutability tends to depress special
spreads. Also, the extra supply of the OTR security immediately following a
re-opening auction tends to depress special spreads. In fact, a more detailed
examination of special spreads indicates that re-opened issues do not get
as special as do new issues. In any case, as time passes after an auction,
shorts tend to migrate toward the OTR security, and its special spread tends
to rise. Furthermore, as many market participants short the OTR to hedge
purchases of the to-be-issued next OTR, the demand to short the OTR and,
therefore, its special spread, can increase dramatically or spike going into the
subsequent auction.
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F IGURE 12.7 Average OTR 10-Year Special Spread as a Function of the
Auction Cycle, July 1997 to July 2010

While not shown in these figures, the special spread of the 5-year OTR
behaves quite similarly to the 10-year. The pattern of spreads of shorter-
maturity OTRs is similar although these spreads tend not to be nearly so
wide. This difference is primarily due to the more frequent issuance of
shorter-maturity Treasuries that prevents a particular issue from becom-
ing far and away the most liquid bond or most-favored short. Finally, the
30-year had historically been as liquid and its special spreads as large and
volatile as that of the 10-year, but this has not been the case since the
years leading up to a discontinuation of 30-year bond issuance in 2001.
Subsequently, apart from some very active specials trading surrounding the
announcement of the re-introduction of “the bond” in 2005 and its sale in
2006, the specials spread of the OTR 30-year has been quite muted relative
to those of shorter maturities.

Because special spreads in Figures 12.4 through 12.6 are so volatile,
Figure 12.7 reports the average special spread as a function of the auction
cycle. The horizontal axis represents time into an auction cycle, measured as
the days since the issue of the 10-year OTR divided by the total number of
days between issue dates. The curve gives the average of the special spread
across cycles of the 13-year history depicted in Figures 12.4 through 12.6.
As expected, the average special spread increases over the cycle, spiking as
the subsequent auction approaches.

The auction-driven pattern of special spreads can be seen not only from
historical data but also from the term structure of special spreads of an
individual issue. Table 12.2 gives the spot and forward term structure of
special spreads for the OTR 10-year Treasury as of May 28, 2010. The terms
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TABLE 12.2 Term Structure of Special Rates and Spreads for the 10-Year, OTR
U.S. Treasury as of May 28, 2010. TYM0, TYU0, and TYZ0 Are the Tickers of the
Relevant 10-Year Futures Contracts

Term Term Term Term Term Forward
Term Date Days Rate GC Spread Spread

Overnight 6/1/10 4 .09% .23% .14% .14%
1 Week 6/4/10 7 .00% .23% .23% .35%
TYM0 6/30/10 33 −.10% .22% .32% .34%
2 Months 7/28/10 61 −.05% .23% .28% .23%
3 Months 8/30/10 94 .00% .25% .25% .20%
TYU0 9/30/10 125 .04% .26% .22% .13%
TYZ0 12/31/10 217 .17% .30% .13% .01%

listed are representative of commonly-traded terms for OTR issues. These
typically include fixed terms from the pricing date (e.g., one month) and
expiration dates of the relevant futures contracts. The latter trade because
many market participants are interested in OTR basis trades, i.e., trading the
OTR against the futures contract into which it is deliverable. (See Chapter
14.) Note that the overnight rate is the business day following the pricing
date.

The term spreads in Table 12.2 are simply the differences between the
term GC rates and the respective term special rates. For this table the forward
spreads are computed from the term spreads, but forward repo trades do
exist. In any case, to illustrate the calculation, the forward special spread
from June 30, 2010, to July 28, 2010, is such that investing at the spread to
June 30 and then at forward spread from June 30 to July 28 is equivalent
to investing to July 28. Let sfwd be this forward spread. Then, using the
numbers supplied in the table, sfwd is approximated (see “Characteristics of
Spot, Forward, and Par Rates” in Chapter 2) by

33 × .32% + (61 − 33) × sfwd ≈ 61 × .28%

sfwd ≈ .23% (12.2)

The projected (and realized) 10-year auction schedule as of May 28,
2010, was a re-opening of the current 3 1

2 s of May 15, 2020, both in the
middle of June and July, to be followed by the issue of a new OTR in the
middle of August 2010. In light of the discussion in this subsection and
the historical evidence, the special spread would be expected to increase
into these auctions. According to the implied forward spreads, the spread is
projected to increase into the June re-opening. The 31

2 s are projected to stay
special into and somewhat past the July and August auctions as well, but,
for the period September 30 to December 31, the forward special spread is
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only one basis point. In other words, by the time the then-current 10-year
has been around for a month, the specialness of the 3 1

2 s is projected to
have dissipated.

Specia l Spreads in the United States
and the Level of Rates

By graphing special spreads rather than special rates, Figures 12.4 through
12.6 hide a factor that has historically limited special spreads. Until very
recently, there was no explicit penalty for a fail, i.e., for failing to deliver
a bond that had been sold. This has implied that the special rate could not
fall below 0%. Reason is as follows. If a trader had shorted the OTR 10-
year and failed to deliver upon settlement, the trader would not receive the
cash from the sale and, consequently, would lose one day of interest on that
cash. But what if the trader could borrow the bond overnight in the repo
market at 0%, i.e., lend money at 0%, so as to be able to make delivery?
The economics of that borrow to the trader is the same as failing: in both
cases no interest is earned on the proceeds from selling the bond. Therefore,
because no trader would borrow the bond if the special rate were 0% or
less, the special rate should never be less than 0%. Equivalently, the special
spread should not exceed the GC rate.14

Figure 12.8 superimposes the Fed’s target rate for fed funds on the
overnight, 10-year special spread. Clearly, over all but the most recent pe-
riod, the special spread has been limited by the level of rates. The level of
rates, therefore, is part of the explanation for the periods of relatively high
and relatively low special spreads observed in this figure and in Figures 12.4
through 12.6.

In 2009, however, the treatment of fails changed. In October and
November 2008, as part of the reaction to the Lehman bankruptcy that
September, fails to deliver the 10-year OTR climbed to record levels, $5.311
trillion in the week ending October 22, relative to a pre-crisis average of
$165 billion.15 Regulators were extremely unhappy with the situation as it
was viewed as a threat to the liquidity and efficiency of the U.S. Treasury
market. With their prodding, an industry group called the Treasury Market
Practices Group adopted a penalty rate for fails, which took effect on May

14 This is not strictly true because there are such non-monetary costs of fails as
regulatory capital requirements. For a case study on negative OTR 10-year special
rates in the second half of 2003, see “Repurchase Agreements with Negative Interest
Rates,” by Michael Fleming and Kenneth Garbade, Current Issues in Economics and
Finance, Volume 10, Number 5, April 2004. www.newyorkfed.org/research/current_
issues/ci10-5/ci10-5.html
15 Liz Capo McCormick, “Treasury Traders Paid to Borrow as Fed Examines Repos,”
Bloomberg, November 24, 2008.
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F IGURE 12.8 OTR 10-Year Special Spread and the Fed Funds Target Rate, July
1997 to July 2010

1, 2009, equal to the greater of 3% minus the fed funds target rate or zero.
Essentially, when the fed funds rate is near zero, the penalty is near 3%, i.e.,
failing to deliver $100 million of a bond costs $100mm × 3%

360 or $8,333 per
day. As the fed funds rate increases, the penalty falls. The logic there is that
since higher interest rates are typically associated with higher opportunity
costs of failing, high penalties are not necessary in high-rate environments
to prevent episodes of system-wide fails.

In light of the imposition of a penalty for failing to deliver, the new
upper limit for the special spread is the penalty rate rather than the GC rate.
In fact, soon after the imposition of the penalty, demand to short the OTR
Treasury in June 2009 drove the special spread up to this limit. This episode
can be seen to the far right of Figure 12.8.

Valu ing the F inancing Advantage of a Bond Trading
Specia l in Repo

Chapter 1 showed that the OTR 10-year, the 3 1
2 s of May 15, 2020, was

trading extremely rich on May 28, 2010, slightly more than 2 per 100 face
value, relative to the C-STRIPS curve. OTR bonds often trade at a premium
that is in part due to their liquidity advantages, i.e., the ability to turn
positions in these bonds back into cash with minimum effort, even in a
crisis, and in part due to their financing advantages, i.e., the ability to lend
these bonds and borrow cash at a relatively low rate. It is obvious from
Table 12.2 that, in the case of the 3 1

2 s, almost all of the premium is due to
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liquidity. Nevertheless, it is useful here and even more so in other situations
to translate special spreads into price or yield premiums.

The financing value of a bond is the value, over the entire life of the bond,
of lending it in repo, borrowing cash at its special rate, and investing that
cash at the higher GC rate. The key assumption then, is how special the bond
will trade and for how long. Professional repo traders have an opinion about
how the special spreads of particular issues will evolve over time that can
be used in this analysis. Another approach is to accept the market’s view as
expressed in the term structure of special spreads. According to Table 12.2,
it is reasonable to assume that the 3 1

2 s will trade as GC past September 30,
2010: the forward special rate from then to December 31 is only one basis
point. Also, there is no reason to expect that the issue will ever in its life
trade special again. Hence, the financing value of the bond is its financing
value over the 125 days from the pricing date, May 28, 2010, to September
30, 2010. But, as will now be shown, this financing value can be easily
calculated from the term special spread of .22% to September 30, 2010.

The value of lending 100 of cash at a spread of .22% for 125 days
is simply

100 × 125 × .22%
360

= .076 (12.3)

or 7.6 cents per 100 market value of the bond. At a price of 101.90, therefore,
assuming no haircuts, the financing advantage of the 3 1

2 s is worth only about
7.7 cents per 100 face amount, a very small part of its total premium of over
2 dollars. Finally, to translate the dollar value of specialness into a yield
value, simply divide by the DV01. In this case, with the DV01 of the 3 1

2 s
approximately equal to .085, the value of the special spread is .077

.085 or only
about .9 basis points.
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CHAPTER 13
Forwards and Futures:

Preliminaries

C hapter 1 described the determination of a price for spot settlement,
that is, for the immediate exchange of an asset for cash. This chap-

ter begins by describing the determination of a price for forward set-
tlement, that is, for the exchange of an asset for cash at some fu-
ture date. In swap markets, explicit forward agreements are common. In
bond markets—with one caveat to be made in a moment—explicit for-
ward contracts are rare but understanding them is important nonetheless.
First, spot and repo positions are very commonly combined to create the
economic equivalent of a forward contract on a bond. Second, futures con-
tracts on bonds and rates, which are enormously important in fixed in-
come markets (and the subjects of Chapters 14 and 15, respectively), are
best understood as variants of forward contracts. Third, it is often useful
for technical reasons to think of a fixed income option as an option on
an appropriately defined forward position rather than as an option on a
spot position.

Having said that explicit forward contracts are rare in bond markets,
it must be noted that in one sense this is not true at all. Almost all bond
trades that are thought of as spot transactions are actually for settlement
one or two days after the trade date. Strictly speaking then, almost all bond
trades are forward trades! In practice (and in Chapter 1), however, discount
factors extracted from the market prices of normally settled trades are simply
defined as spot discount factors.

After discussing forward prices, forward swap rates, and forward yields,
this chapter continues the preparation for Chapters 14 and 15 by describing
the daily resettlement feature of futures contracts and by showing why and
how daily resettlement differentiates futures contracts and futures prices
from forward contracts and forward prices.

351
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FORWARD CONTRACTS AND FORWARD PRICES

Forward contracts are agreements to settle the trade of an asset at some
date in the future so that the purchase price and the asset change hands
at that future date. Importantly, however, the price at which future settle-
ment takes place is fixed at the initiation of the forward contract. Looking
ahead to the example of this section, on May 28, 2010, a trader might com-
mit to purchase the U.S. Treasury 3 5

8 s due August 15, 2019, on September
30, 2010, at a price of 101.71. In this example, the initiation or trade date
of the forward contract is May 28, 2010; the underlying security is the 3 5

8 %
Treasury bond; the forward date, expiration date, delivery date, or contract
maturity date is September 30, 2010; and the forward price is 101.71. A
trader committing to purchase the bond on the forward date is the buyer of
the contract and is long the forward, while the trader on the other side of
the transaction is the seller of the contract and is short the forward.

By definition, the forward price is such that the buyer and seller are
willing to enter into the forward agreement without any initial exchange
of cash. This implies that the initial value of the forward contract is zero.
Over time, however, the value of the forward position may rise or fall. Any
increase in the price of the underlying security benefits the buyer of the
forward contract, who has committed to purchase the security at a price
that, in retrospect, seems relatively low. In this situation, the value of the
forward contract to the buyer would be positive, meaning that the seller
would have to pay the buyer to exit the contract. Conversely, the seller of
the forward contract would benefit from any decrease in the price of the
underlying security, after which the value of the forward would be negative
and the buyer would have to pay the seller to exit the contract. It is important
to emphasize that the value of a forward contract is conceptually different
from the forward price: the former is the current market value of an existing
contract while the latter is the forward settlement price at which a new
contract can be struck without any initial exchange of cash.

The forward price of a bond to a particular settlement date, relative to
its spot price and its repo rate to that settlement date, can be determined
by an arbitrage argument. Specifically, the following two strategies both
result in the purchase of the bond on the forward settlement date with no
other exchange of cash: 1) buying a forward; 2) purchasing the bond for spot
settlement and selling its repo to the forward settlement date, i.e., borrowing
its purchase price through that date. By arbitrage, then, the forward price
must be such that the cost of purchasing the bond on the forward settlement
date is the same in strategies 1) and 2).

This arbitrage argument will be illustrated with a forward agreement
to purchase the U.S. Treasury 3 5

8 s of August 15, 2019, as of May 28,
2010, for delivery on September 30, 2010. This particular example appears
again in Chapter 14 since the 3 5

8 s are deliverable into the ten-year note
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FIGURE 13.1 Forward Agreement on May 28, 2010, to Purchase the U.S.
Treasury 3 5

8 s of August 15, 2019, for Delivery on September 30, 2010

futures contract expiring on September 30, 2010. In any case, the necessary
background information is supplied in Figure 13.1 and Table 13.1. (Note
that the accrued interest calculation of this bond as of spot settlement was
worked out in Chapter 1.)

Consider the following set of trades which, as will soon be apparent,
are equivalent to a forward agreement:

On May 28, 2010 (for settlement on June 1, 2010):

� Buy the 3 5
8 s of August 15, 2019.

� Sell the repo:
� Borrow the full price of the bond, 102.8125 + 1.0615 or 103.8740.
� Deliver the bond as collateral against the loan.

� No cash is generated or required.

On August 15, 2010:

� Repo loan balance has grown to 103.8740
(
1 + .3%×75

360

)
or 103.9389.

� Apply the bond’s coupon payment of 1
2 × 3 5

8 or 1.8125 to reduce this
loan balance to 102.1264.

� No cash is generated or required.

TABLE 13.1 Selected Data for Calculating the Forward Price of
the 3 5

8 s of August 15, 2019, as of May 28, 2010, for Delivery on
September 30, 2010

Bond 3 5
8 s of 8/15/19

Spot Price: 102.8125
Repo Rate to Fwd Settlement: .3%
Accrued Interest as of Spot Settlement: 1.0615
Accrued Interest as of Fwd Settlement: .4531
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On September 30, 2010:

� Pay off the loan balance of 102.1264
(
1 + .3%×46

360

)
or 102.1655.

� Take back the bond given as collateral.
� Effectively, buy the bond on the forward settlement date for a full price

of 102.1655 or, equivalently, for a flat price of 101.7124 plus accrued
interest of .4531.

Note that all of the quantities in these trades are known as of the pricing
and trade date, May 28, 2010. In summary then, by buying the 3 5

8 s for
spot settlement and selling the repo to the forward settlement date, a trader
locks in a price of 101.7124 for buying the bond on the forward settlement
of September 30, 2010. In other words, the arbitrage-free forward price
is 101.7124.

Let p0 (d) denote the (flat) forward price of the bond where spot transac-
tions settle on date 0 and forward settlement is d days later. In the example,
date 0 is June 1, 2010, and delivery, on September 30, 2010, is 121 days
later. Algebraically, then, the forward price in the example can be written
as follows:

p0(121) =
[
(102.8125 + 1.0615)

(
1 + .3% × 75

360

)
− 3 5

8

2

] (
1 + .3% × 46

360

)

−.4531 (13.1)

The derivation of the arbitrage forward price can, of course, be made
more general. To this end, define the following variables:

� p0: price for 100 face amount for spot settlement on date 0
� c: coupon rate, so 100c is the coupon payment per 100 face amount
� d1: the number of days from spot settlement to the coupon date
� d2: the number of days from the coupon date to forward settlement
� d = d1 + d2: the number of days from spot to forward settlement
� AI (·): accrued interest for 100 face amount as a function of days from

spot settlement.1
� r: the repo rate from the spot to forward settlement dates

1Defined this way, implicit in the accrued interest function, AI (·), is the coupon
schedule of the bond. For illustration, in the example of the text, AI (0) = 1.0615
and AI (121) = .4531.
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Then, the forward price is

p0 (d) =
[
{p0 + AI (0)}

(
1 + rd1

360

)
− 100c

2

] (
1 + rd2

360

)
− AI (d) (13.2)

The interpretation of the forward price is a bit easier to see in terms
of full prices. Denote the full forward and spot prices as P0 (d) = p0 (d) +
AI (d) and P0 = p0 + AI (0), respectively, to rewrite equation (13.2) as

P0 (d) =
[

P0 −
100c

2

1 + rd1
360

] (
1 + rd1

360

)(
1 + rd2

360

)

≈
[

P0 −
100c

2

1 + rd1
360

] (
1 + rd

360

)
(13.3)

where the second line of (13.3) neglects the very small interest on interest
term. In words, the full forward price is the future value, to the delivery date,
of the full spot price less the present value of the interim coupon payment.

If there are several coupon payments between the spot and forward
settlement dates, the sum of the present value of these coupon payments
has to be deducted from the full spot price in equation (13.3). If there is
no coupon payment between spot and forward settlement, the full forward
price is just the future value of the full spot price. The arbitrage proof of
these cases is left as an exercise. For convenience, though, the full forward
price with no intermediate coupon is given here:

P0 (d) = P0

(
1 + rd

360

)
(13.4)

A final special case worth mentioning is that, on the delivery date, spot
and forward delivery mean the same thing so the forward price equals the
spot price. Mathematically, in (13.4), when d = 0, P0 (0) = P0.

Turning from the determination of a forward price to the calculation of
the value of a forward contract, suppose that the spot price of the 3 5

8 s jumped
from 102.8125 to 103 immediately after a long bought the bond forward at
the forward price just computed, 101.7124. Since nothing but the spot price
has changed, replace the old with the new spot price in equation (13.1) to
get a new market forward price of 101.9002. This means that the value of
the long’s existing contract, with its forward contract price of 101.7124, is
worth 101.9002 − 101.7124 or .1878 as of the delivery date. To see this,
note that as of the forward delivery date new longs in the forward contract
have to pay 101.9002 while the existing long has to pay only 101.7124.
Alternatively, imagine that the existing long sells a forward contract after
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the price jumps to its new level. Then, on the forward settlement date, that
long will have to sell one bond at a price of 101.9002 and buy one bond
at a price of 101.7124, for a profit on that date of the .1878 difference. In
any case, given the value of the existing forward contract as of the forward
delivery date, simply discount to the present to get the value of the existing
contract as of spot settlement. In the example at hand it makes sense to
discount the forward delivery date contract value of .1878 by the .3% repo
rate for 121 days to get a present value of .1876.

More generally, denoting the forward price of an existing contract by
P, and preserving the notation P0 (d) for the current market forward price
for delivery in d days, the value of the existing contract to the long as of the
spot settlement date is

P0 (d) − P

1 + rd
360

(13.5)

THE FORWARD DROP AND CASH CARRY

In the example of the previous section, the forward price of 101.7124 is
less than the spot price of 102.8125. As it turns out, forward prices are
usually less than spot prices and the phenomenon is commonly known as
the forward drop.

To understand the intuition behind the forward drop, imagine that a
trader has funds equal to the spot price and wants to own the bond as of
the forward settlement date. There are two possible strategies, which, by ar-
bitrage, have to be equally appealing: 1) use the funds to buy the bond spot
and accrue coupon interest to the forward date; 2) enter into an agreement to
buy the bond forward and invest the funds at the repo rate until forward set-
tlement. If the coupon interest from strategy 1), the spot-purchase strategy,
exceeds the repo interest from strategy 2), the forward-purchase strategy,
then the two strategies will be equally appealing only if the forward price
is less than the spot price. Conversely, if the repo interest from strategy 2)
exceeds the coupon interest from strategy 1), then the two strategies will be
equally appealing only if the forward price is greater than the spot price.

In theory, then, there is a forward drop when the coupon is high relative
to the repo rate but not when the coupon is low relative to the repo rate.
Since the term structure of interest rates is usually upward-sloping, however,
coupon rates are usually significantly above short-term repo rates. Therefore,
in practice, there is usually a forward drop. Put another way, it is usually the
case that the spot-purchase strategy has the advantage of earning relatively
high coupon income, while the forward-purchase strategy has the advantage
of a relatively low purchase price.
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This section concludes with a note about cash carry, which, in bond
forward and futures markets, is called carry. As introduced in Chapter 3,
cash carry in the context of coupon bonds denotes the direct cash flows from
holding a bond, namely, coupon interest minus the cost of financing. But
rearranging (13.2), and neglecting higher-order terms,

p0 − p0 (d) ≈ 100c
2

+ AI (d) − AI (0) − {p0 + AI (0)} rd
360

(13.6)

In words, the forward drop is equal to coupon interest minus financing costs
and, therefore, equal to cash carry. See expression (3.36). Hence, denoting
carry for the d days between spot and forward settlements by κ (d),

κ(d) ≡ p0 − p0 (d) (13.7)

FORWARD BOND YIELDS

A bond’s forward yield is defined as the single rate such that discounting the
bond’s cash flows from the forward settlement date to maturity gives that
bond’s (full) forward price. To illustrate, continue with the 3 5

8 s of August
15, 2019, and the accompanying data from the first section of this chapter.
With a full forward price of 102.1655, the forward yield, y , for delivery on
September 30, 2010, is2

102.1655 =
(
1 + y

2

)1− 138
184

[
3.625

y

(
1 − 1(

1 + y
2

)18

)
+ 100(

1 + y
2

)18

]
(13.8)

Solving, y = 3.399%. The intuition relating forward bond yields to spot
yields is omitted as it is analogous to that relating forward swap rates to par
spot rates, which is discussed in the next section.

FORWARD SWAP RATES

As mentioned in the introduction, much of the material about forward
contracts in this chapter is preliminary to the material to follow on futures.
This section stands on its own, however, because forward contracts, rather
than futures contracts, trade in the swap market.

Chapter 2 introduced swap contracts for spot delivery, meaning that
interest on both legs starts to accrue at the spot settlement date. By contrast,

2The reader may find it useful to refer to Appendix A in Chapter 3.
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forward-starting swaps begin accruing interest at some time further in the
future. Consider a two-year swap that starts in one year, called a “1-year
2-year swap” or a “1- into 2-year swap” and written as a “1yr2yr swap” or
as a “1x2 swap.” The fixed leg of this swap, including its fictional notional
payment (see Chapter 2), is analogous to a forward agreement to trade a
three-year bond in one year, when it will have become a two-year bond. But
in the bond market, where a specific bond is bought or sold for forward
settlement, traders speak of trading a three-year bond for settlement in one
year. In the swap market, by contrast, where forward starting swaps are
created whenever two counterparties elect to do so, there is no need to refer
to a spot starting swap and traders speak directly of a two-year swap starting
in one year.

As argued in Part One, swaps—unlike bonds—are extremely well priced
by arbitrage: because swaps can be created in unlimited supply, there is
nothing unique about any particular swap and, therefore, only cash flows
matter for pricing. To price a forward swap, then, simply discount the
appropriate cash flows, as shown below, and rely on the equivalence of
arbitrage and discounting demonstrated in Chapter 1.

Denote the forward price of a T-year swap starting in t years with fixed
rate c by P(t, t + T; c), which notation emphasizes that the swap starts at
time t and matures at time t + T. The forward price is such that both
counterparties will agree today to enter into the forward swap at time t
without any other exchange of cash. This will be the case only if the present
value of the transaction is zero. Mathematically,

−P (t, t + T; c) d (t) + c
2

[d (t + .5) + · · · + d (t + T)] + d (t + T) = 0

(13.9)

In words, there is no net present value to paying the price P (t, t + T; c)
on date t and receiving the swap cash flows, which start at time t + .5 and
end at time t + T. Solving,

P (t, t + T; c) = 1
d (t)

{ c
2

[d (t + .5) + · · · + d (t + T)] + d (t + T)
}

(13.10)

In principle, a forward swap with any rate c could trade in the market
so long as the forward price is set as in (13.10). In practice, however, for-
ward swap rates almost always mean forward par swap rates, i.e., forward
swap rates that correspond to a forward swap price of par. Denoting the
txT forward par swap rate by C (t, t + T) and setting P (t, t + T; c) = 1, it
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follows from (13.10), that

1 = 1
d (t)

{
C (t, t + T)

2
[d (t + .5) + · · · + d (t + T)] + d (t + T)

}
(13.11)

For a sample calculation, consider a USD 1x1.5 forward par swap rate,
C (1, 2.5), as of May 28, 2010. With t = 1 and T = 1.5, equation (13.11)
becomes

1 = 1
d (1)

{
1
2

C (1, 2.5) [d (1.5) + d (2) + d (2.5)] + d (2.5)
}

(13.12)

Then, substituting the discount factors given in Table 2.1 into equation
(13.12), C (1, 2.5) = 1.832%.

INTEREST RATE SENSIT IV ITY OF FORWARDS

What is the interest rate sensitivity or DV01 of a forward contract on a bond?
Focusing for the moment on yield-based DV01, a question practitioners
often pose is whether the DV01 should be computed with respect to a
change in the spot yield or with respect to a change in the forward yield.
Figure 13.2 describes this question in terms of the example of this chapter,
a forward on the 3 5

8 s of August 15, 2019, for delivery on September 30,
2010, with spot settlement on June 1, 2010. Shifting the spot yield shifts
the interest rate used for discounting over the period from June 1, 2010, to
August 15, 2019. Shifting the forward yield shifts the interest rate used for
discounting over the period September 30, 2010, to August 15, 2019. The
difference between the two shifts is that the spot yield shift essentially shifts
the repo rate by the same amount as the rest of the curve while the forward
yield shift essentially leaves the repo rate unchanged.

Before discussing the choice between the two shifts, it will be useful to
calculate the two DV01 alternatives in this example. Bumping the forward
yield on the right-hand side of equation (13.8) down by one basis point

F IGURE 13.2 Various Rate Shifts for the 3 5
8 s of August 15, 2019, for Spot and

Forward Delivery
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gives a new forward price of 102.2424 and, therefore, a forward DV01 of
102.2424 − 102.1655 or .0769.3

To compute the spot DV01, first use the information in Figure 13.1 and
Table 13.1 to write the spot price-yield equation for this example:

103.8740 =
(
1 + y

2

)1− 75
181

[
3.625

y

(
1 − 1(

1 + y
2

)19

)
+ 100(

1 + y
2

)19

]

(13.13)

Solving, y = 3.268%. Then, bump the yield on the right-hand side of 13.13
down by one basis point to get a new spot price of 103.9543 and a DV01
of 103.9543 − 103.8740 or .0803.

The spot DV01 at .0803 is larger than the forward DV01 at .0769
because, as just explained, the spot DV01 essentially shifts the repo rate as
well. In fact, the difference between the spot DV01 and the forward DV01,
.0803 − .0769 or .0034, is exactly the DV01 of the repo: from equation
(4.42), the DV01 of a zero coupon bond of short maturity is approximately
equal to its maturity, in years, divided by 100, which, in the case of this
repo, is 1

100 × 121
360 or .0034.

Returning to the question of which DV01 should be used, the deter-
minant of the choice is now clear. If one believes that the repo rate moves
one-for-one with the rest of the curve, then a shift of the spot yield makes
sense; if one believes that the repo rate stays constant, a shift of the forward
yield makes sense. While it is certainly true that the repo rate is less volatile
than longer term rates, it is an exaggeration to say that it remains constant.
As a result, some practitioners would hedge a forward by assuming that
the repo rate changes by a fixed fraction of the yield change. For example,
assuming that the repo rate moves 40% as much as the forward yield, this
approach would give a DV01 estimate for the forward contract equal to the
DV01 of the forward (i.e., .0769) plus 40% of the DV01 of the repo (i.e.,
40% × .0034 = .0014) or .0783.

The weakness of any of these solutions, that is, using the spot DV01,
the forward DV01, or a blend of the forward and repo DV01s, is that they
all assume a fixed relationship between changes in long-term yields and the
repo rate. The situation, however, really calls for a two-factor approach:
allow the long-term rates to move independently of the repo rate. To see
that this is a better approach, consider the practicalities of hedging with
one of the three approaches. Assume, for example, that a practitioner has
decided to use the blended DV01 of .0783 to hedge a long forward on

3Note that computing DV01s with respect to full prices gives the same result as with
respect to spot prices since accrued interest does not change as yield changes.
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the 3 5
8 s due August 15, 2019, a bond with slightly more than nine years

remaining to maturity. The practitioner would then probably choose to sell
an appropriate face amount of liquid 10-year bonds. But this means that
the exposure to extremely short-term repo rates is being hedged by 10-year
rates. Much more sensible would be to hedge the forward yield with the
liquid 10-year bond and to hedge the repo risk separately with short-term
futures contracts. Chapter 15 describes the latter hedge in detail.

DAILY SETTLEMENT OF FUTURES CONTRACTS

Chapters 14 and 15 will present and analyze bond and note futures and
short-term interest rate futures, respectively. The purpose of this and the
next two sections is to describe the difference between forward and fu-
tures contracts in a more theoretical way, as preparation for the material in
those chapters.

The first section in this chapter explained the value of a forward contract
over time, using the example of buying a forward on May 28, 2010, to
purchase the 3 5

8 s of August 15, 2019, on September 30, 2010, at a price
of 101.7124. It was then pointed out that should the forward price jump
to 101.9002 immediately after that transaction, the profit to the buyer,
as of September 30, 2010, is 101.9002 − 101.7124 or .1878. And should
the forward price rise, over time, to a price of 105, the profit would be
105 − 101.7124 or 3.2876, again, as of the delivery date.

A futures contract is similar to a forward agreement at initiation in that
the futures price is such that the buyer and seller are willing to enter into
the futures contract without any exchange of cash. But futures and forwards
differ with respect to subsequent cash flows in that futures contracts are
subject to daily settlement. This means two things. First, at the end of each
day, the losing counterparty pays the change in the value of the futures
contract to the winning counterparty. Second, the counterparties tear up
their prior contract, at the prior futures price, and enter into a new contract
at that day’s closing futures price. Returning to the example, assume for the
moment (though this will be corrected in the next two sections) that forward
and futures prices are the same. At the end of the day in which the futures
price jumps from 101.7124 to 101.9002, the seller of the contract pays the
buyer the difference of .1878. Also, the two counterparties roll their contract
into a new contract with a futures price of 101.9002.

The essential difference between forwards and futures contracts then,
from a cash flow perspective, is that the profit or loss from a forward contract
is realized at the delivery date while the profit or loss from a futures contract
is realized over time. If, in the example, the price for forward delivery
eventually rises from 101.7124 to 105, the buyer of a forward contract will
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buy the bond for 101.7124 on September 30, 2010, and sell it in the market
for 105 at a profit, on that date, of 3.2876. The buyer of a futures contract,
by contrast, will have collected that 3.2786 over time, as the futures price
rose. On the delivery date, after the last daily settlement payment, the buyer
of the futures contract has a contract to buy the bond at 105. Doing so, and
selling the bond at market for 105, generates no extra profit or loss.

The flip-side of the cash flow perspective is the perspective with respect
to contract value. A forward contract accumulates or loses value over time
while the value of a futures contract, after each daily settlement, is zero.
After the first day in the example, with the forward price increasing from
101.7124 to 101.9002, a long position in the forward contract is, as of the
delivery date, worth the difference of .1878. After the same change in a
futures price, however, the buyer collects .1878 through the daily settlement
payment and is put into a new contract at the prevailing market futures
price of 101.9002, which, as a contract at the prevailing market price, is
worth zero.

While this and the next two sections describe the cash flow implica-
tions of daily settlement, there are also implications for counterparty risk.
These implications, however, are confounded by the fact that futures nor-
mally trade through a central counterparty while forward contracts normally
trade over-the-counter. In any case, since the counterparty risk of derivative
contracts is a broader issue than the difference between forwards and fu-
tures, the relevant issues are collected and discussed in Chapter 16, in the
context of interest rate swaps.

This section closes with some comments on terminology. Two terms are
often used interchangeably, although somewhat confusingly, with the term
daily settlement. The first such term is mark-to-market. Strictly speaking,
mark-to-market is the process of adjusting security prices in some accounting
framework to match market values. For example, securities in the trading
books of a bank have to be marked-to-market when reported on its balance
sheet while securities in its “held-to-account” ledgers might be carried at
cost. But the term mark-to-market, strictly speaking, does not necessarily
refer to any transaction or to any exchange of cash flows between parties to
a transaction.

The second term used interchangeably and somewhat confusingly with
daily settlement is variation margin. Margin refers most generally to cash
or security collateral that is posted in order to secure obligations under a
contract, meaning that the collateral can be seized in the event of a default.
Variation margin, then, refers most generally to collateral given or returned
as an adjustment to the collateral already pledged, most usually in response
to increased or decreased exposures under a contract. The margin calls de-
scribed in Chapter 12, which require repo borrowers to post more collateral
as the value of existing collateral declines, is an example of variation margin.
In any case, in this general meaning of margin, counterparties taking cash
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collateral have to pay interest on the amount posted and, when all contract
obligations have been fulfilled, have to return collateral to its original owner.
By contrast, daily settlement payments of futures are the gains and losses
of the economic contract. They are paid irrevocably and no interest is ever
paid by a receiving counterparty. Nevertheless, daily settlement payments
are often referred to as variation margin. The usage probably arises from
the fact that paying futures losses as they occur reduces exposure to trading
counterparties, as does the posting of margin.

FORWARD AND FUTURES PRICES IN A TERM
STRUCTURE MODEL

For ease of exposition in this section, focus on the case of a forward or
futures on a bond with no intermediate coupon payments so that equation
(13.4) obtains for the forward price. Also, to allow for a more general
presentation, replace the number of days in earlier sections with n periods
of unspecified length. Finally, write the discount factor over those n periods
as d (n). Then, the forward price in (13.4) becomes

P0 (n) = P0

d (n)
(13.14)

Begin the analysis of pricing forwards and futures in a term structure
model in the context of a binomial tree, along the lines of Part Three. Let
there be three dates, labeled 0, 1, and 2, and let the forward and futures
delivery dates be on date 2 so that n = 2 in (13.14). As in the notation of
Part Three, let r0 denote the initial short-term rate and let r s

i denote the
short-term rate on date i, state s. Finally, let the probability of an up move
from date 0 to date 1 be .6 and the probability of an up move from date 1
to date 2 (from any date 1 state) be .5.

Take as given that the prices of a particular security in the three states
of date 2 have been computed using the later dates of a risk-neutral process,
not described here. These three prices depend, of course, on the different
values of the short-term rate on date 2 and are denoted Puu

2 , Pud
2 , and Pdd

2 .
Using the methods of Part Three, the prices of the security today, P0, may be
computed backward along the three-date tree, starting from the given prices
on date 2. Algebraically,

P0 = 1
1 + r0

[
.6 × .5Puu

2 + .5Pud
2

1 + ru
1

+ .4 × .5Pud
2 + .5Pdd

2

1 + rd
1

]
(13.15)
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or, rearranging terms,

P0 = .3
Puu

2

(1 + r0)
(
1 + ru

1

) + .3
Pud

2

(1 + r0)
(
1 + ru

1

)
+.2

Pud
2

(1 + r0)
(
1 + rd

1

) + .2
Pdd

2

(1 + r0)
(
1 + rd

1

) (13.16)

Each term of equation (13.16) is the product of a price times the prob-
ability of reaching that price all discounted along the path to that price. In
the first term, for example, the probability of moving up and then up again
to the price of Puu

2 is .6 × .5 or .3. Discounting Puu
2 along that path means

discounting using r0 and ru
1 . More generally, consider a security worth Pn

in period n when short-term rates take on the values r0, r1, . . . , rn−1 from
date 0 to date n − 1. By the logic of (13.16), the price of the security today
is given by the following expectation:

P0 = E

[
Pn

�n−1
i=0 (1 + ri )

]
(13.17)

where � is the standard product notation so that �n−1
i=0 (1 + ri ) is equal to

the product of the terms (1 + ri ) from i = 0 to n − 1.
In words, equation (13.17) says that the price today equals the expected

discounted value of its future value—in particular, of its value on date n.
This equation also reveals the reason for using the term expected discounted
value rather than discounted expected value.

The discount factor to date 2 implied by the tree is the same, of course,
as the price of a zero-coupon bond maturing on date 2. But a zero-coupon
bond maturing on date 2 is worth 1 in every state, or, making this a special
case of (13.17), Pn = 1 for all states. Therefore,

d (n) = E

[
1

�n−1
i=0 (1 + ri )

]
(13.18)

This completes the derivation of forward rates in a term structure model
because, by (13.14), the forward price is the right-hand side of (13.17)
divided by the right-hand side of (13.18).

Turning to the derivation of a futures price in a term structure model,
continue with the same three-date tree described at the start of this section
and with the same bond prices on date 2. Let F s

i denote the futures price
on date i, state s, immediately after the daily settlement of date i. Let F0



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c13 JWBT539-Tuckman July 27, 2011 19:2 Printer: Courier Westford

Forwards and Futures: Preliminaries 365

denote the futures price today. Then, to begin, recall that the futures price
for immediate delivery is, by definition, the same as the spot price of the
security. Hence, at expiration of a futures contract, the futures price equals
the spot price at that time and state. Hence, F uu

2 = Puu
2 , F ud

2 = Pud
2 , and

F dd
2 = Pdd

2 .
As of the up state on date 1, the futures price is F u

1 . If the price of
the underlying bond moves to Puu

2 on date 2, then that will be the date 2
futures price, and the daily settlement payment on a long position of one
contract will be Puu

2 − F u
1 . Similarly, if the price moves to Pud

2 on date 2,
then the settlement payment will be Pud

2 − F u
1 . Since the tree has been as-

sumed to be the risk-neutral pricing tree, the value of the contract in the up
state of date 1 must equal the expected discounted value of its cash flows.
But, by the definition of futures contracts, the value of a futures contract
after its daily settlement payment must equal zero. Putting these two facts
together,

.5 × (
Puu

2 − F u
1

) + .5 × (
Pud

2 − F u
1

)
1 + ru

1
= 0 (13.19)

Then, solving for the unknown futures price,

F u
1 = .5 × Puu

2 + .5 × Pud
2 (13.20)

Applying the same logic to the down state of date 1 gives

F d
1 = .5 × Pud

2 + .5 × Pdd
2 (13.21)

Moving to date 0, setting the expected discounted settlement payment
equal to zero implies that

.6 × (
F u

1 − F0
) + .4 × (

F d
1 − F0

)
1 + r0

(13.22)

Or,

F0 = .6 × F u
1 + .4 × F d

1 (13.23)
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Finally, substituting (13.20) and (13.21) into (13.23),

F0 = .3 × Puu
2 + .3 × Pud

2 + .2 × Pud
2 + .2 × Pdd

2

= .3 × Puu
2 + .5 × Pud

2 + .2 × Pdd
2 (13.24)

In words, under the risk-neutral process the futures price equals the
expected price of the underlying security as of the delivery date. More gen-
erally,

F0 = E [Pn] (13.25)

THE FUTURES-FORWARD DIFFERENCE

This section derives a formula for the difference between a forward price
and a futures price to deliver the same bond on the same settlement date.
Recall that for any random variables, X and W, their covariance can be
written as follows:

Cov (X, W) = E [XW] − E [X] E [W] (13.26)

Letting X = Pn, be the price of the underlying security on the delivery
date, and let W = [�n−1

i=0 (1 + ri )]−1, represent the realized discount factor
from spot to forward settlement, then (13.26) becomes

Cov

(
Pn,

1

�n−1
i=0 (1 + ri )

)
= E

[
Pn

�n−1
i=0 (1 + ri )

]
− E [Pn] E

[
1

�n−1
i=0 (1 + ri )

]

(13.27)

In words, this covariance equals the expected discounted value of the
price of the underlying minus the discounted expected value of that price.
These two quantities are not the same! In any case, substituting the defini-
tions of P0, d (n), and F0, from (13.17), (13.18), and (13.25), respectively,
into (13.27),

Cov

(
Pn,

1

�n−1
i=0 (1 + ri )

)
= P0 − F0d (n) (13.28)
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Rearranging terms and then using the definition of the forward price
from ( 13.14),

F0 = P0

d (n)
− 1

d (n)
Cov

(
Pn,

1

�n−1
i=0 (1 + ri )

)

= P0 (n) − 1
d (n)

Cov

(
Pn,

1

�n−1
i=0 (1 + ri )

)
(13.29)

Since the price of the underlying security on the delivery date is likely to
be relatively low if rates from now to then are relatively high and vice versa,
the covariance term in (13.29) is likely to be positive.4 And, if this is indeed
the case, it follows that

F0 < P0 (n) (13.30)

The intuition behind bond futures prices being lower than their forward
prices is as follows. Assume for a moment that futures and forward prices
were the same. Daily changes in the value of the forward contract generate
no cash flows while daily changes in the value of the futures contract generate
daily settlement payments. Daily settlement gains can be invested and losses
must be financed, but, on average these effects do not cancel. Bond prices
tend to be high when short rates are low, and vice versa , so daily settlement
gains are invested at low rates while daily settlement losses are financed at
high rates. But this means that, at equal prices, the futures contract would
be worth less than the forward contract. Therefore, priced properly relative
to one another, the futures price is less than the forward price, as in (13.30).

Having completed this analysis, it can now be argued that for commonly
traded bond futures contracts, like those discussed in Chapter 14, the size of
the futures-forward difference is quite small. The reason for this is that the
covariance in (13.29) applies to the period from spot to forward settlement.
But as this time period is quite short for the most actively traded contracts,
usually from zero to four months, the covariance is small as well. For a very
rough order of magnitude calculation, consider the following parameters:
an underlying bond with a DV01 of .08, like that of a 10-year bond; an
annual interest rate volatility of 100 basis points across the term structure
(though this overstates the likely volatility of the short-term rate); a contract
maturity date of three months, so that the DV01 of the discount factor to the

4This discussion does not necessarily apply to forwards and futures on securities
outside the fixed income context. Consider, for example, a forward and a futures
on oil. In this case it is more difficult to determine the covariance between the
discounting factor and the underlying security.
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delivery date is approximately .0025%; and a correlation of one between the
price of the bond and the discount factor (though this overstates the likely
correlation). With these parameters, the volatility of the bond price to the
delivery date is .08 × 100 × √

.25 or 4. The volatility of the discount factor is
.0025% × 100 × √

.25 or .125%. Finally, since the correlation is assumed to
be one, the relevant covariance is just the product of the standard deviations,
4 × .125% or .005. Dividing this covariance by the three-month discount
factor gives a futures-forward effect of about half a cent on a bond price of
100 or, in terms of a bond with a DV01 of .08, about 1

16 of a basis point.
While the futures-forward effect is small for commonly traded bond fu-

tures, it is not so small for commonly traded rate futures, since the maturities
of the latter can be signficantly longer. The next section, therefore, applies
the analysis of this section to rate futures.

FORWARD RATES VERSUS FUTURES ON RATES

As will become clear in Chapter 15, money market futures are really futures
on rates, not on bond prices. Consider Eurodollar (ED) futures contracts,
which are discussed in detail in that chapter. Let Ln be the three-month
LIBOR, the interest rate referenced by the ED futures contracts as of the
delivery date n. Then, the terminal settlement price of the futures, F R

0 , is
defined as

FR
n = 100 − 100 × Ln (13.31)

Note that this futures price is not a price in the sense of discounting
some payment at some interest rate; it is simply a way of expressing an
interest rate.

Following the development of the previous section, the ED futures price
as of date 0 is

FR
0 = E [100 − 100 × Ln] = 100 − 100 × E [Ln] (13.32)

Since the 100 terms exist just to make the futures price look like a price,
it is more natural to focus on the futures rate, rfut, defined as

r fut ≡ 100 − F R
0

100
= E [Ln] (13.33)

where the second equality follows from (13.32). It is also more natural, then,
to express the difference between futures and forward contracts not in terms
of prices but in terms of the difference between the futures rate, rfut, and the
forward rate, rfwd, to be defined presently.
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Continuing with the ED futures contract, the underlying security is a
90-day deposit or, equivalently, a zero-coupon bond, under the actual/360
convention. Hence, by definition, the forward price of that zero is related to
the forward rate, rfwd, by the pricing equation

P0 (n) = 1

1 + 90r fwd

360

(13.34)

The ED futures rate in terms of the underlying interest rate dynamics is
given by (13.33). To compare the futures and forward rates, note that the
futures on the zero coupon price, F0, by the logic of the previous section, is

F0 = E [Pn] = E

[
1

1 + 90Ln
360

]
(13.35)

By an application of Jensen’s inequality,

E

[
1

1 + 90Ln
360

]
>

1

1 + 90E[Ln]
360

(13.36)

Finally, combining (13.30) and (13.33) through (13.36 ),

P0 (n) = 1

1 + 90r fwd

360

> F0 >
1

1 + 90r fut

360

(13.37)

This equation shows that the difference between forwards and futures
on rates has two separate effects. The first inequality represents the differ-
ence between the forward price and the futures on a price. This difference
is properly called the futures-forward effect since it arises from the daily
settlement of futures contracts. The second inequality represents the dif-
ference between a futures on a price and a futures on a rate which, as
evident from (13.36), is a convexity effect. The combination of the two
effects, expressed as the difference between the observed forward rates
on deposits and Eurodollar futures rates, will be referred to as the total
futures-forward effect.

It follows immediately from (13.37) that

r fut > r fwd (13.38)

Accordingly, the futures rate exceeds the forward rate or, equivalently, the
total futures-forward difference is positive.
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To illustrate the magnitude of the futures-forward effect in rate futures,
the text now presents, without proof, a closed-form expression for futures
and forward rates from a term structure model. The model used is a normal
model with initial rate r0, drift λ, and short-rate annual basis-point volatility
σ . The rates rfut and rfwd are taken to be the continuously compounded
futures and forward rates, respectively, of a β-year zero-coupon bond for
delivery in t years. Then, in this special case,

r fut = r0 + λ
(t + β)2 − t2

2β
− σ 2β2

6
(13.39)

r fwd = r0 + λ
(t + β)2 − t2

2β
− σ 2

6

[
(t + β)3 − t3

β

]
(13.40)

Subtracting (13.40) from (13.39),

r fut − r fwd = σ 2t2

2
+ σ 2βt

2
(13.41)

Equation (13.41) supports the comment at the end of the previous sec-
tion that the futures-forward difference can be large for commonly-traded
rate futures. Continuing with the example of ED contracts, the deposit is
90 days, so that β is approximately .25 years, and the impact of the second
term is limited. Unlike note and bond futures contracts, however, ED con-
tracts have maturities that extend to 10 years, although only the first two
or so years are particularly liquid. Table 13.2 uses β = .25 and an annual
volatility of 100 basis points to compute numerical values of (13.41) at se-
lected maturities. The resulting differences can be quite large, in contrast to

TABLE 13.2 Futures-Forward Difference for Rate Futures
on 3-Month Deposits at Selected Maturities calculated under
a Normal Term Structure Model with Constant Drift and an
Annual Volatility of 100 Basis Points

Expiration Futures-Forward Difference
Years Basis Points

.25 .0625

.5 .1875
1 .6250
2 2.2500
5 13.1250

10 51.2500
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the order of magnitude of commonly-traded note and bond futures derived
in the previous section.

Equation (13.41) also shows explicitly that the total futures-forward
effect increases with interest rate volatility. The pure futures-forward effect
arises becuse daily settlement gains are invested at low rates while daily set-
tlement losses are financed at high rates. With no interest rate volatility there
are no daily settlement cash flows and no investment or financing of those
flows. The convexity effect depends on volatility as well, as demonstrated in
Chapter 8.

TAILS

In several important contexts market participants need to hedge forward
contracts with futures contracts. In Chapter 14, this problem surfaces in
the construction of basis trades; in Chapter 15 it surfaces when a liquid
futures contract is chosen as the hedge for a forward loan. The purpose of
this section is to present an approximation, which is commonly used in the
industry, for calculating the number of futures contracts required to hedge
an otherwise identical forward contract.

Consider a forward and futures contract on the same underlying security
for delivery in d days with a term repo rate of r. To develop the approximate
hedge of this section, assume that the forward and futures prices change,
but that short-term rates, to the term of the delivery date, do not change.
Then, by equation (13.29), the forward and futures prices change by the
same amount, say �. The futures contract, with its daily settlement feature,
pays � immediately to the long. The change benefits a long in the forward
contract only as of the delivery date, so, by (13.5), the value of the forward
contract changes by

�

1 + rd
360

(13.42)

Hence, less than one futures contract is needed to hedge the change
in value of one forward contract. More precisely, to hedge Nfwd forward
contracts, with Nfut futures contracts, set

Nfut = Nfwd

1 + rd
360

(13.43)

The difference between Nfwd and Nfut is known as the tail of the hedge,
and taking account of this difference when hedging is known as tailing
the hedge.
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CHAPTER 14
Note and Bond Futures

F utures contracts on government bonds are liquid and require relatively
little capital to establish sizable positions. Consequently, these contracts

are often the instruments of choice for hedging longer-term interest rate risk
and for speculating on the direction of these rates.1

With the theoretical preliminaries of futures contracts and the differ-
ences between futures and forward contracts established in Chapter 13, this
chapter focuses on the mechanics of U.S. Treasury futures and, in particular,
on how the options embedded in these contracts affect valuation and risk.
The chapter concludes with a case study that critiques a once-popular trade
of a futures contract against an underlying Treasury note.

Futures contracts that trade in Europe and Japan embed only one of the
options present in U.S. futures contracts. Therefore, while focused on U.S.
Treasury futures, the treatment of this chapter can easily be applied to these
international markets.

MECHANICS

This section and the next describe the workings of U.S. note and bond
futures contracts. The motivations behind the design of these contracts are
explained later in this chapter.

Futures contracts on U.S. government bonds do not have one underlying
security. Instead, there is a basket of underlying securities defined by some
set of rules. The 10-year note contract expiring in September, 2010, for
example, with the ticker TYU0, includes as an underlying security any U.S.
Treasury note that matures in 6.5 to 10 years as of September 1, 2010. As
of May 28, 2010, this rule included all of the securities listed in Table 14.1.
The conversion factors listed in the table, as well as the chosen order of the
securities, are discussed presently.

1For a book-length treatment of the subject, see Burghardt and Belton, The Treasury
Bond Basis, Third Edition, McGraw-Hill, 2005.

373
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TABLE 14.1 The Deliverable Basket into TYU0

Conversion
Rate Maturity Factor

3 1
4 3/31/17 .8538

4 1
2 5/15/17 .9202

3 1
8 4/30/17 .8471

2 3
4 5/31/17 .8272

4 3
4 8/15/17 .9314

4 1
4 11/15/17 .9012

3 7
8 5/15/18 .8732

4 8/15/18 .8774
3 1

2 2/15/18 .8547

3 3
4 11/15/18 .8587

3 5
8 8/15/19 .8401

3 1
8 5/15/19 .8107

2 3
4 2/15/19 .7909

3 3
8 11/15/19 .8195

3 5
8 2/15/20 .8332

3 1
2 5/15/20 .8210

The seller of a futures contract, or the short, commits to deliver a set
quantity of a bond in that contract’s basket during the delivery month. The
seller may choose which bond to deliver and when to deliver during the
delivery month. These options are called the quality option and the timing
option, respectively. The buyer of the futures contract, or the long, commits
to buy or take delivery of the bonds chosen by the seller at the time chosen
by the seller. In the case of TYU0, with a contract size of $100,000, each
contract requires the delivery of $100,000 face amount of bonds during
the delivery month of September 2010. Delivery must take place between
the first delivery date of September 1, 2010, and the last delivery date of
September 30, 2010.

Throughout the trading day, market forces determine futures prices.
And at the end of each day, the exchange on which the futures trade, deter-
mines a settlement price that is designed to reflect the price of the last trade
of the day. The daily settlement process, described in Chapter 13, is based on
daily changes in this settlement price. Table 14.2 lists the settlement prices
of TYU0 from May 17 to May 28, 2010, along with the daily settlement
payments arising from a long position of one contract. To illustrate, the
settlement price falls from May 21 to May 24 by 4 ticks or 32nds per 100
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TABLE 14.2 Settlement Prices of TYU0 and Daily Settlement
Payments from a Long Position of One Contract

Change Daily
Date Price (ticks) Settlement

5/17/10 118-16+
5/18/10 119-05 20.5 $641
5/19/10 119-08 3 $ 94
5/20/10 119-31+ 23.5 $734
5/21/10 120-14+ 15 $469
5/24/10 120-10+ −4 −$125
5/25/10 120-28+ 18 $563
5/26/10 120-10+ −18 −$563
5/27/10 119-16 −26.5 −$828
5/28/10 119-28 12 $375

face amount. Therefore, on a contract’s $100,000 face amount, the loss to
a long position is $100,000 × 4

32 % or $125.
The price at which a seller delivers a particular bond to a buyer is deter-

mined by the settlement price of the futures contract and by the conversion
factor of that particular bond. Let the settlement price of the futures con-
tract at time t be Ft and let the conversion factor of bond i be cf i. Then the
delivery price is cf i × Ft and the invoice price for delivery is this delivery
price plus accrued interest: cf i × Ft + AIi

t . The conversion factors for TYU0
are listed in Table 14.1. Since the conversion factor for the 4 1

2 s of May 15,
2017 is .9202, if the futures settlement price is 100, any delivery of the 4 1

2 s
occurs at a flat price of .9202 × 100 or 92.02.

Each contract trades until the last trade date. The settlement price at
the end of that day is the final settlement price. This final settlement price is
used for the daily settlement payment and for any deliveries that have not
yet been made. The last trade date of TYU0 is September 21, 2010. Any
delivery from then on, through the last delivery date of September 30, 2010,
is based on the final settlement price determined on September 21, 2010.
This feature of U.S. futures contracts gives rise to the end-of-month option,
which is discussed later in this chapter.

The quality option is the most significant embedded option in futures
contracts. To simplify the presentation, the timing and end-of-month op-
tions are ignored until discussed explicitly. Ignoring these two options is
equivalent to assuming that the first delivery date, the last trade date,
and the last delivery date are all the same. In fact, this simplification
does describe the government bond futures contracts that trade in Europe
and Japan.
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COST OF DEL IVERY AND THE DETERMINATION
OF THE F INAL SETTLEMENT PRICE

The cost of delivery measures how much it costs a short to fulfill the com-
mitment to deliver a bond through a futures contract. Having decided to
deliver bond i, the short has to buy the bond at its market price and then
deliver it at the futures price. If the price of bond i at time t is pi

t , then the
cost of delivery is

pi
t + AIi

t −
(
cf i × Ft + AIi

t

)
= pi

t − cf i × Ft (14.1)

The short will minimize the cost of delivery by choosing which bond to de-
liver from among the bonds in the delivery basket. The bond that minimizes
the cost of delivery is called the cheapest-to-deliver or the CTD.

To illustrate the pricing and interest rate sensitivity of futures contracts,
this chapter uses a Vasicek-style term structure model calibrated to market
quantities as of May 28, 2010. For the purposes of this section, a particular
realization of the model as of TYU0’s delivery date, September 30, 2010,
has been selected. At that realization, the seven-year par rate is 2.77%, the
futures price is 121.2039, and bond prices are as given in Table 14.3. With
this data and the contract’s conversion factors, the table calculates the costs
of delivery across bonds.

As an example of the calculations in the table, the cost of delivering the
3 5

8 s of August 15, 2019, is found by applying (14.1) as follows:

103.1007 − .8401 × 121.2039 = 1.277 (14.2)

According to Table 14.3, the 4 1
2 s of May 15, 2017, is the CTD since it

has the lowest cost of delivery, which in this case is zero. The next to CTD is
the 3 1

4 s of March 31, 2017, with a cost of delivery of .013. Mathematically,
since the CTD is chosen so as to minimize the cost of delivery (14.1), it
follows that, for any bond i,

pi
t − cf i × Ft ≥ pCTD

t − cf CTD × Ft (14.3)

where equality holds only for any jointly-CTD bond.
Since this section ignores the timing and end-of-month options, the

determination of the final settlement price is quite simple:

FT = pCTD
T

cf CTD
(14.4)

where T denotes the last delivery date.
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TABLE 14.3 Cost of Delivery Calculations Using a September 30, 2010,
Realization of Prices from a Vasicek-Style Model Calibrated as of May 28, 2010

Futures Price: 121.2039

Conv. Cost of Price ÷
Coupon Maturity Price Factor Delivery Factor

3 1
4 3/31/17 103.4967 .8538 .013 121.2189

4 1
2 5/15/17 111.5318 .9202 .000 121.2039

3 1
8 4/30/17 102.7042 .8471 .032 121.2421

2 3
4 5/31/17 100.3229 .8272 .063 121.2802

4 3
4 8/15/17 113.0395 .9314 .150 121.3651

4 1
4 11/15/17 109.7547 .9012 .526 121.7873

3 7
8 5/15/18 106.5626 .8732 .727 122.0369

4 8/15/18 107.1652 .8774 .821 122.1395

3 1
2 2/15/18 104.3789 .8547 .786 122.1234

3 3
4 11/15/18 105.0173 .8587 .940 122.2981

3 5
8 8/15/19 103.1007 .8401 1.277 122.7243

3 1
8 5/15/19 99.5649 .8107 1.305 122.8135

2 3
4 2/15/19 97.2761 .7909 1.416 122.9941

3 3
8 11/15/19 101.0901 .8195 1.763 123.3558

3 5
8 2/15/20 102.9906 .8332 2.003 123.6084

3 1
2 5/15/20 102.0509 .8210 2.543 123.3008

Equation (14.4) is proved by showing that there is an arbitrage oppor-

tunity if that equation does not hold. First assume that FT >
pCTD

T

cf CTD . In this

case a trader could buy the CTD, sell the contract, and deliver the CTD for
a profit of

cf CTD × FT − pCTD
T (14.5)

But the quantity (14.5) is positive by assumption, implying that the trade
described constitutes a riskless arbitrage opportunity. Hence it cannot be

the case that FT >
pCTD

T

cf CTD .

Next assume the reverse inequality, that FT <
pCTD

T

cf CTD . In this case a trader

could sell the CTD, buy the contract, and take delivery of the bond delivered
by the short. If the short delivers the CTD, the profit from this strategy is

pCTD
T − cf CTD × FT (14.6)
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which, by the current assumption, is positive. If the short delivers some other
bond j, the trader would buy back the CTD just sold and sell bond j instead,
for a total profit of

pj
T − cf j × FT ≥ pCTD

T − cf CTD × FT (14.7)

where the inequality follows from (14.3). But by the current assumption
the right-hand side of (14.7) is positive, so the left-hand side is as well.
Therefore, whatever bond is delivered by the short, there exists a riskless

arbitrage opportunity. Hence it cannot be the case that FT <
pCTD

T

cf CTD either.

And ruling out both of these strict inequalities establishes the validity of
(14.4), as desired.

Having determined the final settlement price in (14.4), the relationships
among all the bonds in the basket, the CTD, and the futures price as of the
last delivery date can be summarized neatly. First, it follows immediately
from (14.4) that

pCTD
T − cf CTD × FT = 0 (14.8)

In words, the cost of delivering the CTD on the last delivery date is zero.
Second, combining (14.4) with the CTD condition (14.3) and rearrang-

ing terms,

pi
T

cf i ≥ pCTD
T

cf CTD
= FT (14.9)

for any bond i, where equality holds only for any jointly-CTD bond. In
words, the CTD is the bond with the smallest ratio of price to conversion
factor and the futures price equals this minimum ratio. The last column of
Table 14.3 illustrates the workings of equation (14.9) in the example of
this section.

MOTIVATIONS FOR A DEL IVERY BASKET
AND CONVERSION FACTORS

The design of bond futures contracts purposely avoids a single underlying
security. One reason is to ensure that the liquidity of the futures contract does
not depend on the liquidity of a single, underlying bond, which might lose its
liquidity for idiosyncratic reasons, e.g., being accumulated by a few large,
buy-and-hold investors. Another reason for avoiding a single underlying
bond is to avoid losing liquidity to the threat of a squeeze. A trader squeezes
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a contract by simultaneously purchasing many contracts and a large fraction
of a deliverable bond issue, hoping to sell the position at a profit as traders
who had sold the contract scramble to buy the bond to make delivery or,
failing that, to buy back the contracts they had sold.2 The threat of a squeeze
can prevent a contract from attracting volume and liquidity by making shorts
hesitant to take positions.

The existence of a basket of securities effectively avoids the problems
of a single deliverable if the cost of delivering the next to CTD is not that
much higher than the cost of delivering the CTD. In Table 14.3, for example,
the difference between the cost of delivering the next to CTD and the cost
of delivering the CTD (i.e., zero) is only 1.3 cents per 100 face amount.
Therefore, if the 4 1

2 s of May 15, 2017, cannot be economically purchased,
because they have lost liquidity or because they are the target of a squeeze,
the harm to shorts is limited to 1.3 cents: for any larger cost of acquiring the
4 1

2 s, shorts would purchase and deliver the 3 1
4 s of March 31, 2017, instead.

The difference between the cost of delivering the CTD and the cost of
delivering the next to CTD is as small as it is because of the conversion fac-
tors. If the contract did not provide for conversion factors, or, equivalently,
if all conversion factors were one, the CTD in Table 14.3 would be the one
with the lowest price, namely, the 2 3

4 s of February 15, 2019, with a price
of 97.28, and the futures price would settle at that same 97.28. But then
the next to CTD would be the 3 1

8 s of May 15, 2019, with a price of 99.56,
implying a cost of delivery of 2.28. This cost of delivering the next to CTD is
very large compared with the actual cost of delivering the next to CTD, that
is, 1.3 cents. The problem here with not having conversion factors is that
delivery of $100,000 face amount of the 2 3

4 s of February 15, 2019, with
its relatively low coupon of 2 3

4 %, is considered just as good as delivering
$100,000 of any of the other, higher-coupon bonds.

Conversion factors in futures contracts reduce the difference in deliv-
ery costs across bonds by adjusting delivery prices for coupon rates. For
TYU0 the notional coupon of the contract is 6%. The precise role of this
coupon is discussed shortly, but the basic idea is to set the conversion fac-
tor of a bond with a coupon rate of 6% equal to 1 so that its delivery
price, i.e., conversion factor times the futures price, equals the futures price.
Bonds with a coupon rate below 6%, typically worth less than a bond
with a coupon equal to 6%, are asssigned conversion factors less than 1
so that their delivery prices are below the futures price. Finally, bonds with
a coupon rate above 6%, typically worth more than bonds with a coupon
rate of 6%, are assigned conversion factors greater than 1. The conversion
factors in Table 14.3 clearly increase with coupon, although there are no

2Futures exchanges can assess severe penalties for failing to deliver on the obligations
of a contract.
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conversion factors greater than 1 because, in the low-rate environment of the
preceding several years, no U.S. Treasuries have been issued with coupons
at or above 6%.

Conversion factors are computed by the futures exchanges and are easily
available. The precise rule for computing conversion factors is not partic-
ularly intuitive, but there is a fairly good approximation that is useful for
intuition about futures contracts: the conversion factor of a bond is ap-
proximately equal to its price per dollar face amount as of the last delivery
date with a yield equal to the notional coupon rate. An easy illustration is
the 3 1

4 s of March 31, 2017, which mature in exactly 6.5 years from the
delivery date of September 30, 2010. In this particular case the conversion
factor of .8538 is very precisely estimated using the price-yield relationship
of equation (3.14):

3.25%
6%

(
1 − 1(

1 + 6%
2

)2×6.5

)
+ 1(

1 + 6%
2

)2×6.5 = .8538 (14.10)

To understand why conversion factors set according to this rule reduce
the differences in delivery costs across bonds, assume that the approximation
just discussed holds exactly and that term structure is flat at the notional
coupon rate. In this case, the price of each bond is the value of 100 face
amount at a yield of 6% while the conversion factor is the value of a unit
face amount at a yield of 6%. Hence, the ratio of price to conversion factor
is 100 for every bond. Furthermore, by the logic of the previous section, the
futures price is 100; the cost of delivery of each bond is zero; and all bonds are
jointly CTD. To summarize, if the conversion-factor approximation holds
exactly and if the term structure is flat at the notional coupon rate, then
conversion factors perfectly adjust delivery prices. No bond is preferable to
any other with respect to delivery.

IMPERFECTION OF CONVERSION FACTORS AND
THE DEL IVERY OPTION AT EXPIRATION

Most of the time—that is, whenever the term structure is not flat at the
notional coupon rate—conversion factors used in futures contracts do not
adjust delivery prices nearly so well. Figure 14.1 illustrates this point by
graphing the price divided by conversion factor for three bonds in the TYU0
basket against yield, assuming a flat term structure. As discussed in the
previous section, when conversion factors are the prices of unit face amounts
of bonds at a yield of 6% and the term structure is flat at 6%, conversion
factors adjust prices perfectly and the ratio of price to conversion factor is
near 100 for all bonds. But since actual conversion factors are not exactly
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F IGURE 14.1 CTD Analysis for TYU0 at Delivery: A Flat Term Structure of Yields

equal to prices of unit face amounts, it turns out that, at a flat term structure
of 6%, the 2 3

4 s of May 31, 2017, has a very slightly smaller ratio of price to
conversion factor than the other bonds, making it the CTD.

Figure 14.1 shows that the ratios of price to conversion factor differ
across bonds to a greater extent as yields move away from 6%. From yields
above about 6.15%, the 3 1

2 s of May 15, 2020, becomes markedly CTD. For
rates lower than about 5%, the 4 1

2 s of May 15, 2017, is only marginally
CTD relative to the 2 3

4 s, but is pronouncedly CTD relative to the 3 1
2 s. The

CTD changes noticeably with yield because, as yield moves away from the
notional coupon, conversion factors adjust delivery prices less and less well.
To understand why this is so, consider the slope of the converted price-yield
curves in Figure 14.1. The slope for bond i is

1

cf i

dPi

dy
(14.11)

But at a yield of 6% the conversion factor bond i is approximately equal to
its price per dollar face value. Hence, apart from a missing 100 in the de-
nominator, the slope of the converted price-yield curve in expression (14.11)
at a yield of 6% equals the negative of the duration of bond i.

As yield increases in Figure 14.1, the prices of all bonds fall, but the price
of the bond with the largest negative slope, which was just shown to be the
bond with the largest duration, falls the most. In this case, the 31

2 s have the
highest duration and fall the most in price. But because conversion factors
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are fixed, the delivery price of the 3 1
2 s stays the same relative to those of the

other bonds. In other words, as yields increase above the notional coupon
rate, the cost of delivering the 3 1

2 s falls more than that of any other bond.
Therefore, while all bonds are about equally attractive to deliver at a yield
of 6%, as yield increases the 3 1

2 s become CTD. Graphically, the ratio of the
price to conversion factor of the 3 1

2 s falls below that of the other bonds.
As yield falls below the notional coupon rate, the prices of all the bonds

increase but the price of the bond with the lowest duration, namely the
4 1

2 s, increases the least.3 But, since conversion factors are fixed, the delivery
price of the 4 1

2 s stays the same relative to other bonds. Therefore, while all
the bonds are about equally attractive to deliver at a yield of 6%, as yield
decreases the 4 1

2 s become CTD.
Figure 14.1 is a stylized example in that it assumes a flat term structure,

which makes the CTD analysis relatively straightforward. In reality, the
term structure can take on a wide variety of shapes that will affect the de-
termination of the CTD. In general, anything that cheapens a bond relative
to others makes it more likely to be CTD. If the curve steepens, for exam-
ple, long-maturity bonds cheapen on a relative basis and are more likely
to be CTD. If the curve flattens, shorter-maturity bonds are more likely to
become CTD. And if any bond-idiosyncratic factors cause a particular bond
to cheapen or to richen, that bond is more likely, or less likely, respectively,
to be CTD.

According to (14.9), the futures price is equal to the smallest ratio of
price to conversion factor across bonds. Graphically, the futures price is the
lower envelope of all the converted price-yield curves. Figure 14.2 graphs
the futures price as the lower envelope of the converted price-yield curves
of Figure 14.1. Note that the futures price at delivery is negatively convex
in that its slope falls as yield falls: as yield decreases the slope of the futures
price moves from resembling that of the relatively high duration 3 1

2 s of May
15, 2020, to the intermediate duration 2 3

4 s of May 31, 2017, and then,
ultimately, to the lower duration 4 1

2 s of May 15, 2017.
One way to think about the quality option at expiration is as the value

of the option to switch from delivering one particular bond in the basket
to delivering another. Consider a trader who owned and was planning to
deliver the 3 1

2 s of May 15, 2020. In Figure 14.2, the value of switching
deliverables at a given yield is the difference between the converted price
of the 3 1

2 s and the futures price at that yield. When yield is relatively high
and the 3 1

2 s are CTD, this difference is zero and the option to switch has
no value. The value of the option is higher when yield is in the intermediate

3The 4 1
2 s of May 15, 2017, have a lower duration than the 2 3

4 s of May 31, 2017,
because of a higher coupon rate and a slightly earlier maturity date.
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F IGURE 14.2 Futures Price for TYU0 at Delivery: A Flat Term Structure of Yields

range and the CTD is the 2 3
4 s. Finally, the value of the option is highest

when yield is relatively low and the CTD has moved all the way to the 4 1
2 s.

The quality option at expiration may also be expressed using another
bond as benchmark, like the 2 3

4 s. Then, at expiration, the option is worth
nothing in the intermediate range of yield but has value for relatively high
or relatively low levels of yield.

GROSS AND NET BASIS

Transactions in futures are usually either outright (i.e., buying or selling
futures alone) or against bond or forward bond positions in the form of
basis trades. Basis trades take a view on the cheapness or richness of the
futures contract relative to the prices of the bonds in the delivery basket.
These trades are important to arbitrageurs who profit from these trades but,
from a market perspective, the activity of these arbitrageurs keeps the price
of a futures contract near its fair value relative to cash bonds. This section
defines basis trades, defines the terms gross and net basis, and then relates
the profit and loss (P&L) from basis trades to changes in the net basis.

Before delving into details, it is useful to make the following point about
hedging bonds with futures. By equation (14.4), the change in the price of
the futures contract at expiration is the change in the price of the CTD
divided by its conversion factor. Therefore, the change in the price of cf CTD

contracts equals the change in the price of the bond or, equivalently, for a
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TABLE 14.4 Definition of Long and Short Basis Trades

Long Basis of Bond i
In terms of repo Buy Gi face amount of bond i;

Sell repo of bond i to the last delivery date;
Sell cf i × Gi face amount of futures contracts.

In terms of forwards Buy Gi of bond i forward to the last delivery date;
Sell cf i × Gi face amount of futures contracts.

Short Basis of Bond i
In terms of repo Sell Gi face amount of bond i;

Buy repo of bond i to the last delivery date;
Buy cf i × Gi face amount of futures contracts.

In terms of forwards Sell Gi of bond i forward to the last delivery date;
Buy cf i × Gi face amount of futures contracts.

fixed CTD, a long position in a contract-sized face amount of the bond is
hedged by selling not one contract but cf CTD contracts. With this in mind,
basis trades are as defined in Table 14.4.4 Note that buying or selling the
basis as described here involves no cash outlay: repo finances the purchase
of a bond or invests the proceeds of its sale, and the forward and futures
trades, by definition, require no cash.5

Let pi
t be the spot price of bond i at time t, pi

t (T) be its forward price
to the last delivery date T at time t, and let Ft be the futures price at time
t. Then the gross basis and net basis of bond i at time t, GBi

t and NBi
t,

respectively, are defined as

GBi
t ≡ pi

t − cf i × Ft (14.12)

NBi
t ≡ pi

t (T) − cf i × Ft (14.13)

As discussed in Chapter 13, the forward drop is synonymous with cash
carry or, more simply, carry. Generalizing the notation of equation (13.7)
for any deliverable bond, let the carry of bond i to the last delivery date T
be κ i (T). Then

pi
t (T) = pi

t − κ(T) (14.14)

4This text defines basis trades as futures versus forward bond positions. Practitioners
also use the term for futures versus spot bond positions.
5This discussion, of course, abstracts from futures margin requirements and repo
haircuts.
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and the definition of net basis in (14.13) can be rewritten as

NBi
t ≡ pi

t − κ(T) − cf i × Ft = GBi
t − κ(T) (14.15)

The right-hand side of (14.15) explains the terminology of net basis: it is the
gross basis net of carry.

As pointed out in Chapter 13, the forward price equals the spot price at
delivery, or, equivalently, carry equals zero. This has two implications for
the basis quantities at delivery. First, from (14.15), gross basis equals net
basis. Second, from (14.1), both measures also equal the cost of delivery.

Table 14.5 calculates the gross and net basis for all of the bonds in the
TYU0 basket as of May 28, 2010. Note that the spot price, carry, gross
basis, and net basis are, by common practice, quoted in ticks or 32nds. As
an example, consider the 4 1

2 s of May 15, 2017. According to (14.12), the

TABLE 14.5 TYU0 and Its Deliverable Basket as of May 28, 2010

Futures Price: 119–28

Repo to Delivery: .30%, except .04% for the 3 1
2 s of 5/15/20

Conv. Spot Gross Fwd Net
Rate Maturity Factor Price Basis Price Carry Basis

3 1
4 3/31/17 .8538 103-10+ 31.3 102.3584 31.0 .3

4 1
2 5/15/17 .9202 111-22 44.1 110.3207 43.7 .4

3 1
8 4/30/17 .8471 102-15+ 30.0 101.5605 29.6 .5

2 3
4 5/31/17 .8272 100-00 26.9 99.1917 25.9 1.0

4 3
4 8/15/17 .9314 113-08 51.1 111.7868 46.8 4.3

4 1
4 11/15/17 .9012 109-25 56.0 108.4947 41.2 14.8

3 7
8 5/15/18 .8732 106-14 56.4 105.2709 37.3 19.1

4 8/15/18 .8774 107-02 60.3 105.8421 39.1 21.2

3 1
2 2/15/18 .8547 104-06 55.4 103.1303 33.8 21.5

3 3
4 11/15/18 .8587 104-26 60.0 103.6853 36.1 24.0

3 5
8 8/15/19 .8401 102-26 67.4 101.7124 35.2 32.2

3 1
8 5/15/19 .8107 99-05 63.2 98.2289 29.7 33.5

2 3
4 2/15/19 .7909 96-25+ 63.6 95.9813 26.1 37.5

3 3
8 11/15/19 .8195 100-22+ 78.9 99.6951 32.3 46.6

3 5
8 2/15/20 .8332 102-21 88.8 101.5560 35.2 53.6

3 1
2 5/15/20 .8210 101-23+ 106.1 100.5973 36.4 69.8
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gross basis is
(
111 + 22

32

) − .9202 × (
119 + 28

32

)
which equals about 1.379

or 1.379 × 32 = 44.1 ticks. The forward price is calculated along the lines
described in Chapter 13. By (14.14), carry equals

(
111 + 22

32 − 110.3207
)
,

which is 1.367 or 43.7 ticks. And finally, by (14.15) the net basis is 44.1 −
43.7 or .4 ticks.

Chapter 13 showed that the P&L of a futures position can be considered
as realized at delivery, like a forward position, after adjusting the futures
position for the tail. For ease of exposition, it is now assumed that all basis
positions are properly tailed so that the text can treat a futures position as if
its profit were realized at expiration. In other words, in the background of
the discussion is an unmentioned tail adjustment. The case study at the end
of the chapter explicitly describes this adjustment.

Given the tail adjustment, the P&L on the delivery date from a long
basis trade in bond i initiated at time t and taken off at time s is the profit of
the long forward position in bond i to the delivery date T minus the profit
of the long futures position. Mathematically, this P&L is

Gi × [
Pi

s (T) − Pi
t (T)

] − Gi × cf i × [Fs − Ft] (14.16)

And using the definition of net basis in (14.13), this P&L becomes

Gi × [
NBi

s − NBi
t

]
(14.17)

In words, expression (14.17) says that the delivery-date P&L from a
long basis position in a bond equals the size of the bond position times the
change in that bond’s net basis.

Before concluding this section, it is noted that net basis is far more useful
than gross basis in analyzing basis trades. However, because it is particularly
easy to observe, gross basis is very commonly used in practice, especially to
quote bond prices relative to futures prices. In fact, traders buy and sell
packages of a bond and its conversion factor-weighted number of futures
contracts at that bond’s quoted gross basis.

THE QUALITY OPTION BEFORE DEL IVERY

This section describes the quality option before the delivery date and relates
the value of this option to net basis, both algebraically and graphically.

Continuing to assume that futures positions are properly tailed, selling
futures can be viewed as selling a bond forward and buying the option to
switch and deliver another bond. Therefore, combining a futures contract
with buying a particular bond forward, i.e., buying that bond’s basis, can
be viewed as a pure purchase of the option to switch away from that bond.
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Similarly, selling a bond’s basis can be viewed as the pure sale of the option
to switch away from that bond. Finally, because the net basis of a bond is
the price of buying or selling its basis, the net basis can be viewed as the
price of the quality option with respect to that bond.

One immediate implication of this reasoning is that if the net basis of any
bond is zero, then the quality option with respect to that bond is worthless
and selling that bond forward is the same, again assuming proper tailing, as
selling the futures contract. Mathematicallly, when the net basis of bond i
equals zero in (14.13), Ft = Pi

t (T)
cf i .

The bonds in Table 14.5 are in order of ascending net basis, which order
has been preserved throughout the tables in this chapter. The bond with the
lowest net basis, in this case the 3 1

4 s of March 31, 2017, is usually called
the CTD. Strictly speaking, it is not correct to call any bond the CTD before
the first delivery date. The smaller a bond’s net basis, however, the lower the
value of the option to switch away from it, and the closer it is to being the
CTD. In the same sense, then, the 4 1

2 s of May 15, 2017, and the 3 1
8 s of April

30, 2017, with net bases within .1 or .2 ticks of the 3 1
4 s of March 31, 2017,

are essentially jointly CTD. In any case, under both the flat term structure
scenarios detailed earlier in this chapter and the Vasicek-style model results
to follow, the 4 1

2 s of May 15, 2017, turn out to be the most likely CTD at
rate levels prevailing as of the pricing date.

Figure 14.3 uses the data in Table 14.5 and a Vasicek-style model to
illustrate the value of the quality option and the concept of CTD before
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delivery. On the vertical axis is the forward price divided by the conversion
factor. On the horizontal axis is the interest rate factor in the model ex-
pressed as a seven-year par U.S. Treasury rate. Unlike Figure 14.2, which
depicts the futures price on the delivery date, the futures price in Figure 14.3
is not equal to the minimum of the converted prices. In fact, the futures price
is strictly less than this price for each bond. Intuitively, before expiration the
value of the quality option is positive and the minimum net basis is positive.
At the current level of the 7-year par rate, 2.77%, the futures price is closest
to the converted price of the 4 1

2 s of May 15, 2017, so that, of the two bonds
portrayed, it is the CTD. At sufficiently higher rates, the 3 5

8 s of August 15,
2019, would be CTD in this sense.

Figure 14.4 graphs the net basis for three bonds in the TYU0 basket
using the same data and model as those used to derive Figure 14.3. The net
basis graphs behave like the quality options they represent. The net basis
of the 4 1

2 s of May 15, 2017, increases with rates: this bond is firmly CTD
at low rates but moves away from being CTD as rates increase. In option
parlance, the net basis of the 4 1

2 s behaves like a call on rates or, equivalently,
like a put on bond prices. The 3 5

8 s of August 15, 2019, is or is close to being
CTD at high rates but moves away from CTD status as rates fall. This net
basis, therefore, behaves like a put on rates or a call on bond prices. Finally,
the 4 1

4 s of November 15, 2017, is as close as it will ever be to CTD when
rates are near the level of the pricing date, i.e., 2.77%, but moves further
from CTD status as rates fall or rise. Thus, the net basis of this bond behaves
like a straddle on rates or prices.
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Figure 14.5 graphs the DV01 of the futures contract and of two bonds
in the basket in the same data and model framework as the other figures.
The intuition behind the regions of negative convexity of the futures contract
follows from a discussion earlier in this chapter. At high rates the futures
contract resembles the relatively high duration 3 5

8 s of August 15, 2019, while
at low rates the contract resembles the relatively low duration 4 1

2 s of May
15, 2017. The interest rate behavior of a futures contract is, therefore, quite
different from that of a coupon bond and, for this reason, when hedging
bonds with futures or vice versa, the hedge may very well need rebalancing
as rates change.

While excellent for intuition and for understanding the interest rate
risk of futures, Figures 14.3 to 14.5 should not be taken too literally. As
mentioned earlier in this chapter, the slope of the term structure as well as
idiosyncratic changes in bond prices also determine the CTD, the price of
the futures contract, and its interest rate sensitivity. Put another way, Fig-
ures 14.3 to 14.5 rely heavily on the assumption of one factor. In fact, the
case study at the end of this chapter describes a trade that does not go so
well as anticipated because of changes in the slope of the term structure. In
practice then, a one-factor model may not be sufficient for futures applica-
tions. One obvious solution is to use a two-factor model for both pricing
and hedging. Another solution is to use a one-factor model for pricing and,
for safety, to compute a derivative with respect to some measure of the slope
of the term structure. Furthermore, to ensure that a futures position is not
too exposed to the idiosyncratic risk of a particular bond, it is prudent to
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compute futures price sensitivities with respect to changes in individual bond
yields.

Before closing this section it is worth noting that, with rates as low as
they are as of the pricing date, the value of optionality in futures contracts
is relatively low. This can be seen from the example of this chapter. First, in
Table 14.5, the net bases of the bonds close to CTD are very low, implying
that the quality option is not worth very much even though the pricing date
of May 28, 2010, is a full four months before the last delivery date. Second,
the range of rates used in the figures to illustrate the behavior of futures
contracts is wider than the range of rates likely to be realized over the four
months to delivery. The futures exchange could, as it has done in the past,
lower the notional coupon so that conversion factors adjust delivery prices
more accurately and, in the process, increase the value of the quality option.
But for some time now, the exchange has opted not to do so.

SOME NOTES ON PRIC ING THE QUALITY OPTION
IN TERM STRUCTURE MODELS

Having set up a term structure model in the form of a tree, pricing the quality
option is straightforward. Start at the delivery date. At each node compute
the ratio of price to conversion factor for each bond. Find the bond with the
minimum ratio and set the futures price equal to that ratio. This is the tree
equivalent of the lower envelope in Figure 14.3. Then, given these terminal
values of the futures price, prices on earlier dates can be computed along the
lines described in Chapter 13.

The algorithm described in the previous paragraph assumes that the
prices of the bonds are available on the last delivery date. These bond prices
can be computed in one of two ways. If a model with a closed-form solution
for spot rates is being used, these rates can be used to compute bond prices
as of the delivery date. Otherwise, the tree has to be extended to the maturity
date of the longest bond in the basket and bond prices have to be computed
using the usual tree methodology. Obviously the first solution is faster and
less subject to numerical error, but each user must decide if a model with a
closed-form solution is suitable for the purpose at hand.

As discussed in Part Three, pricing models usually assume that some set
of securities is fairly priced. In the case of futures the standard assumption
is that the forward prices of all the bonds in the deliverable basket are fair.
This was done in the Vasicek-style model used to generate the analysis of this
chapter. Technically this calibration can be accomplished by attaching an
option adjusted spread (OAS) to each bond such that its forward price in the
model matches the forward price in the market. The assumption that bond
prices are fair is popular because many market participants first uncover
an investment or trade opportunity in bonds and then determine whether
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futures contracts should replace some or all of the bonds in the trade. This
is the case because futures can be complex securities and, as a result, many
investors and traders use futures only when they offer advantages in value,
liquidity, or both. Separating the value of futures relative to bonds from the
relative value of the bonds themselves allows for a clean consideration of
the costs and benefits of using futures.

Term structure models commonly used for pricing futures contracts fall
into two main categories. First are one- or two-factor short-rate models like
those described in Part Three. The advantage of these models is that they
are relatively easy to implement and, for the most part, flexible enough to
capture the yield curve dynamics driving futures prices. With only one or
even two factors, however, these models cannot capture the idiosyncratic
price movements of any particular bond relative to its near neighbors in the
deliverable basket.

The second type of model used in practice allows for a richer set of
relative price movements across the deliverable basket. These models essen-
tially allow each bond to follow its own price or yield process. The cost of
this flexibility is model complexity of two types. First, ensuring that these
models are arbitrage free takes some effort. Second, the user must specify
the parameters that describe the stochastic behavior of all bond prices in
the basket. For TYU0, for example, a user might have to specify a volatil-
ity for each of the 16 bonds in the basket along with their 120 correlation
coefficients.

Futures traders often describe their models in terms of the beta of each
bond in the basket relative to a benchmark bond in the basket. The beta
of a bond represents the expected change in the yield of that bond given a
one-basis point change in the yield of the benchmark. A bond with a beta of
1.02, for example, implies that the bond’s yield is expected to change 2%
more than the yield of the benchmark bond. The beta of a particular bond
can be thought of as the coefficient from a regression of changes in its yield
on changes in the benchmark’s yield. Note that in a one-factor model the
beta of a bond is simply the ratio of the volatility of that bond yield to the
volatility of the benchmark’s yield.

THE TIMING OPTION

The party short the futures contract may deliver at any time during the
delivery month. The delivery period of TYU0, for example, extends from
September 1 to September 30, 2010. To understand whether delivery should
be made early or late, consider a trader who is short the futures contract
and wants to be short the CTD at the end of the delivery month. In an
early delivery strategy, the trader would buy the CTD repo, deliver the CTD
early, and stay short the CTD to the futures expiration date. In a late delivery
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strategy, the trader would stay short the futures contract until the expiration
date. The determinants of the best policy are carry and option value. Under
the early delivery strategy, the trader pays carry on the CTD and sacrifices
any value left in the quality option. Under the late delivery strategy, the
trader pays no carry and can switch bonds if the CTD changes. Clearly, if
carry is positive, it is optimal to delay delivery. If carry is negative, however,
the carry advantage of delivering early must be weighed against the sacrifice
of the quality option.

Having described the timing option in theory, recall from Chapter 13
that the carry of bonds in the deliverable basket is usually positive. Therefore,
while the timing option does exist, it is usually optimal to delay delivery.

THE END-OF-MONTH OPTION

At the last trading date, the final settlement price is set. An immediate
implication is that the hedging argument made previously in this chapter no
longer applies: a position in bond i versus a conversion-weighted amount
of futures contract is no longer hedged against bond price changes. Denote
the final settlement price by FS. With the futures price fixed at FS, delivery
proceeds do not change as the price of the bond changes. Therefore, the
hedged position is to be short one futures contract against a contract-sized
amount of the bonds. Regardless of market price changes, this position can
always be liquidated by selling the bonds through the contract for the fixed
amount cf i × FS. 6

Turning now to the end-of-month option, it has just been established
that a position long bond i and short a matching face amount of futures
contracts is worth cf i × FS. If bond i is the current CTD, then its price can
rise or fall, but, so long as it remains CTD, the value of the position can
be worth no more or less than cf i × FS. If bond prices change such that the
CTD changes, however, so that for some new CTD

PCTD − cf CTD × FS < Pi − cf i × FS (14.18)

then a trader holding the long bond-short futures package can sell bond i,
buy the new CTD, and deliver the new CTD instead of bond i. This option

6To avoid confusion, the reader should note that the difference between the conver-
sion factor-weighted futures hedge and the one-to-one futures hedge as of the last
trading date is known by practitioners as a tail. This tail, however, has no connection
with the term as defined in Chapter 13, namely, as the correction applied to hedges
so that the payoffs of futures positions resemble those of otherwise identical forward
positions.
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to switch bonds after the last trading date is what is called the end-of-month
option. The P&L from the switch is

Pi − PCTD +
(
cf CTD − cf i

)
× FS (14.19)

Before the last trade date, the futures price reflects any cheapening of
the CTD. After the last trade date, however, equation (14.19) shows that
any cheapening of the CTD leads to greater and greater profits.

Despite this potential for great value, the end-of-month option does not
turn out to be worth much in practice. First, since the end-of-month period
is short, fewer than seven business days, for example, for TYU0,7 bond
prices do not have time to move very much. Second, traders who are long
bonds and short futures actively seek opportunities to profit by switching
bond positions against futures. This attention tends to dominate the trading
of bonds in the deliverable basket after the last trading date. As a result, any
time a bond begins to cheapen, all the shorts express an interest in switching
and the cheapening of the bond comes to an abrupt halt.

TRADING CASE STUDY: NOVEMBER ’08 BASIS
INTO TYM0 (JUNE 2000)

On February 28, 2000, the 10-year note contract expiring in June 2000,
TYM0,8 appeared cheap relative to the prices of the bonds in the delivery
basket according to most models used by the industry. Table 14.6 gives some
background information about the contract and prices at the time.

To take advantage of the perceived cheapness of the contract, many
traders sold the 4 3

4 s of November 15, 2008, net basis at 7.45 ticks, hoping
that the 4 3

4 s would remain CTD and, therefore, that its net basis would go to
zero. Table 14.7 illustrates why many traders thought this was a good trade.
The table is constructed using a horizon date of May 19, 2000. (The reason
for this choice will become clear shortly.) The rows of the table give scenarios
of parallel shifts in forward yields for delivery on the last delivery date of
TYM0 (i.e., June 30, 2000). For example, the scenario of +20 basis points
is the scenario in which forward yields of all bonds for delivery on June 30,
2000, increase 20 basis points from the trade date of February 28, 2000, to
the horizon date of May 19, 2000. The table also gives the futures price and
the net basis of the 4 3

4 s in the various scenarios according to a particular

7The last trading day is seven business days before the last delivery day, but the short
has to give notice of the bond to be delivered before the last delivery day.
8The tickers cycle over a period of 10 years, so TYM0 is also the ticker for the
contract expiring in June 2010.
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TABLE 14.6 TYM0 and Its Deliverable Basket as of February 28, 2000

Pricing Date: 2/28/00

Last Delivery Date: 6/30/00

Futures Price: 95-9

Conv. Gross Term Fwd Net
Bond Factor Price Basis Repo Yield Carry Basis

4 3
4 11/15/08 .9195 87-24 5

8 5.1 5.55% 6.667% −2.4 7.5

6 8/15/09 1.0000 96-3 26.0 4.90% 6.637% 13.2 12.8

5 1
2 5/15/09 .9662 92-16 7

8 14.9 5.70% 6.632% 1.2 13.7

5 1
2 2/15/08 .9702 92-31 5

8 17.5 5.75% 6.692% 0.9 16.6

5 5
8 5/15/08 .9769 93-20 1

8 17.6 5.80% 6.681% 0.8 16.7

6 1
8 8/15/07 1.0071 96-26 1

4 27.6 5.84% 6.716% 4.2 23.4

6 5
8 5/15/07 1.0342 99-19 7

8 34.6 5.84% 6.734% 7.2 27.4

6 1
4 2/15/07 1.0133 97-20 3

4 35.2 5.84% 6.723% 5.0 30.2

5 2/15/10 1.0358 100-16 57.9 3.85% 6.550% 27.7 30.2

pricing model which, in addition to other assumptions, has the cheapness of
the futures contract converging to zero by the horizon date. Column (4) of
the table gives the predicted P&L from being short $100,000,000 November
’08 net basis from February 28, 2000, to the horizon date. To calculate these
numbers, recall from (14.17) that the P&L of a basis trade equals the change
in the net basis times the face amount of bonds.9 So, for example, in the
+20 scenario, the P&L of the short basis position is

$100,000,000 ×
1

32 (7.45 − .9)

100
= $204,688 (14.20)

Many traders thought that selling the November ’08 basis was a good
trade based on data like that presented in column (4) of Table 14.7. The sce-
narios cover the most likely outcomes. There are 77 days from the trade date
to the horizon date. Assuming an interest rate volatility of 100 basis points

per year, the volatility over 77 days is 100 ×
√

77
365 or 46 basis points, so a

scenario span from −80 to +80 covers −1.74 to 1.74 standard deviations.
The trade starts to lose money in a bond price rally of a bit more than 60 basis
points, but makes money for any smaller rally and any sell-off. In the context
of the table, personal preference determines whether the potential gains are
large enough relative to the risks borne. In any case, it should be noted in

9The tail held to realize this P&L is discussed at the end of the case study.
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TABLE 14.7 Parallel Shift Scenario Analysis of Selling USD 100mm November
’08 Basis into TYM0 as of February 28, 2000

Initial Nov. ’08 Net Basis: 7.45

Horizon Date: 5/19/00

Futures Option Strike: 95

Futures Option Price: 1 − 16.5
32

Number of Options: 47

(1) (2) (3) (4) (5) (6)

Futures Nov. ’08 Basis Call P&L Total
Shift Price Net Basis P&L 100 Face P&L
(bps) (32nds) ($) ($)

−80 100.3666 13.2 −179,688 3.851 1,308
−60 99.2198 7.1 10,938 2.704 138,034
−40 98.0200 3.2 132,813 1.504 203,518
−20 96.7683 1.5 185,938 0.253 197,813

0 95.4937 1.0 201,563 −1.022 153,532
+20 94.2260 0.9 204,688 −1.516 133,453
+40 92.9756 0.9 204,688 −1.516 133,453
+60 91.7426 0.9 204,688 −1.516 133,453
+80 90.5241 1.1 198,438 −1.516 127,203

passing that the attractiveness of the computed P&L profile is very much re-
lated to the computed initial cheapness of the contract: had the contract not
been so cheap, the computed P&L profile would have been less attractive.

A criticism of making a trading decision based on Table 14.7 is that the
table does not really describe all of the risks involved in the basis trade. If
the curve flattens, then one of the shortest bonds in the basket will become
CTD and the net basis of the 4 3

4 s will rise. If the curve steepens, then one of
the longer bonds in the basket will become CTD and the net basis of the 4 3

4 s
will rise. Also, if the 4 3

4 s for some reason richens relative to the other bonds
in the basket, then its net basis will rise. None of these risks is included
in Table 14.7.

Some traders looking at the payoff profile of the basis in Table 14.7 did
not like the dramatically falling and ultimately negative P&L after a rally
of between 40 and 80 basis points. To make the P&L profile look better,
many traders bought 95 strike call options on TYM0 expiring on May 19,
2000, for 1.51 per 100 face amount of futures. The payoff from calls on 100
face of futures is given in column (5) of the table. With a rally of 60 basis
points, for example, the payoff is 99.2198 − 95 − 1.516 or 2.704. Choos-
ing to purchase 47 calls (i.e., calls on 47 contracts covering 47 × $100,000
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or $4.7 million face) evens out the payoff profile nicely, as shown in col-
umn (6) of Table 14.7. In a rally of 60 basis points, for example, the 47 calls
are worth

$4,700,000 × 2.704
100

= $127,088 (14.21)

Adding this to the P&L of $10,938 from the net basis position alone gives a
total P&L of $138,034. In any case, it is understandable that some traders
would choose to sacrifice some upside in a sell-off to limit the loss in a
large rally.

The option position also reduces risk in a way not shown in Table 14.7.
If volatility were to rise over the trading horizon, the value of the quality
option and therefore the net basis would rise, and the short basis position
would suffer losses. But the long option position’s value would increase as
well and at least partially offset these losses. Of course, this protection lasts
only to the option expiration date while the short basis position is priced
to delivery. Nevertheless, as the case will show, preventing losses over the
course of the trade can be as important as the final P&L profile.

It should now be clear that the P&L analysis was done to a May 19,
2000, horizon because the option on TYM0 expires on that date. Options
on futures are set to expire before the first delivery date so that they cannot
expire after delivery has taken place. This convention often makes basis
trading difficult because delivery usually occurs on the last delivery date,
more than a month after the relevant option has expired. A trader can try to
correct for this mismatch by using less liquid over-the-counter bond options,
available at any maturity, or, at the risk of another kind of mismatch, by
using options on the next futures contract (in this case, TYU0, which expires
in September, 2000).

Tables 14.8, 14.9, and 14.10 show how the trade worked out. Ta-
ble 14.8 reports the forward yields to June 30, 2000, of each bond in the
basket on the initial trade date (February 28, 2000), on two intermediate
dates of interest (April 3 and April 10), and on the option expiration date
(May 19). In addition, columns (5), (7), and (9) report changes in forward
yields over the indicated periods. Table 14.9 reports the futures price, the
net basis of each bond, and the option price on these same four dates.
Table 14.10 reports the components of the cumulative P&L of the trade.

As evident from column (5) of Table 14.8, from the initiation of the
trade to April 3, forward yields fell approximately in parallel by 47 basis
points. As a result, as can be seen from the net bases in Table 14.9, the CTD
moved toward the shorter end of the basket, to the 6 1

8 s of August 15, 2007,
and the 5 1

2 s of February 15, 2008. The P&L implications of the changes in
market yields are in Table 14.10. The November ’08 basis rose to 11.06 for
a loss of $112,813. The option position, however, gained $87,391, making
the total loss only $25,422. It should also be noted that, as of April 3, 2000,
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TABLE 14.8 Forward Yields to June 30, 2000, Delivery as of Selected Dates

Forward Yields and Changes

(1) (2) (3) (4) (5) (6) (7) (8) (9)

� 4/3 � 4/10 � 5/19
Bond 2/28 4/3 v. 2/28 4/10 v. 4/3 5/19 v. 2/28

6 1
4 2/15/07 6.7234 6.2505 −47.3 6.0814 −16.9 6.7656 4.2

6 5
8 5/15/07 6.7344 6.2637 −47.1 6.1002 −16.4 6.7668 3.2

6 1
8 8/15/07 6.7155 6.2514 −46.4 6.0915 −16.0 6.7530 3.8

5 1
2 2/15/08 6.6920 6.2253 −46.7 6.0467 −17.9 6.7175 2.6

5 5
8 5/15/08 6.6814 6.2035 −47.8 6.0144 −18.9 6.7083 2.7

4 3
4 11/15/08 6.6670 6.1885 −47.9 5.9924 −19.6 6.6851 1.8

5 1
2 5/15/09 6.6319 6.1579 −47.4 5.9584 −20.0 6.6354 .3

6 8/15/09 6.6370 6.1464 −49.1 5.9485 −19.8 6.6033 −3.4

6 1
2 2/15/10 6.5502 6.0468 −50.3 5.8481 −19.9 6.5159 −3.4

the value of the contract lost about 1.5 ticks of its cheapness, i.e., it had
converged somewhat closer to a model-based fair value. This implies that
the P&L loss to that date would have been about $100mm

100 × 1.5
32 or $46,875

larger had the value of the futures contract not richened at all.
From April 3 to April 10, 2000, column (7) of Table 14.8 reports that the

forward yields continued to fall by between 16 and 20 basis points. Over
this period, however, the forward yield curve flattened by about 3 basis
points. In addition, the futures contract had cheapened by about 2.5 ticks
over these few days. The combination of these effects was disastrous for the
trade. As can be seen from Table 14.9, the flattening rally moved all the
shorter-term bonds closer to CTD. The net basis of every bond from the 6 1

4 s
of February 15, 2007, to the 5 5

8 s of May 15, 2008, fell below that of the
4 3

4 s of November 15, 2008. As for P&L, Table 14.10 shows that the net
basis of the 4 3

4 s increased to over 22 for a loss on the net basis position of
$455,000. The option position gained $127,781, mitigating the damage to
a loss of $327,219.

Note that the loss of $327,219 is greater than any number in the pre-
dicted P&L of Table 14.7. Part of this is due to the steepening of the forward
yield curve and part is due to the additional cheapening of the futures con-
tract. In any case, the trading lesson is that intermediate losses can be much
greater than horizon losses. In other words, even if the analysis of Table 14.7
turned out to be correct, the losses in the interim could be great and perhaps
too great to bear. In particular, a trader showing a loss of $455,000 or
$327,291 on this trade might have been ordered to reduce or close the posi-
tion. In that situation the trader would never see the results of Table 14.7. In
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TABLE 14.9 TYM0 Futures Price, Futures Option Price, and Net Basis Values as
of Selected Dates

2/28 4/3 4/10 5/19

Futures Price: 95-9 98-8 1
2 99-6 1

2 95-9 1
2

95 Calls Price: 1.516 3.375 4.234 .297

Bond Net Basis

6 1
4 2/15/07 30.2 13.3 12.1 22.7

6 5
8 5/15/07 27.4 11.5 9.8 21.3

6 1
8 8/15/07 23.4 9.9 8.8 16.3

5 1
2 2/15/08 16.6 9.7 14.2 11.5

5 5
8 5/15/08 16.7 13.9 21.3 11.3

4 3
4 11/15/08 7.5 11.1 22.0 3.5

5 1
2 5/15/09 13.7 19.2 32.6 12.5

6 8/15/09 12.8 22.9 36.7 19.4

6 1
2 2/15/10 30.2 47.3 63.5 37.4

fact, one explanation at the time for the cheapening of the futures contract
from April 3 to April 10, was that many traders were forced to liquidate
short basis positions in this contract. Since such liquidations entail selling fu-
tures and buying bonds, enough activity of this sort could certainly cheapen
the contract relative to bonds.

Column (9) of Table 14.8 reports that by May 19 the forward yield curve
had returned to the levels existing at the start of the trade, on February 28,
but had flattened by between 3 and 4 basis points. Table 14.9 reveals that

TABLE 14.10 Cumulative Profit and Loss from the November ’08 Basis Trade,
With and Without Futures Options

Face amount basis: −100 mm

Face amount calls: 4.7 mm

Nov ’08 Option P&L from P&L from Total
Date Net Basis Price Net Basis Options P&L

2/28/00 7.45 1.516
4/3/00 11.06 3.375 −112,813 87,391 −25,422
4/10/00 22.01 4.234 −455,000 127,781 −327,219
5/19/00 3.51 .297 123,125 −57,281 65,844
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this yield curve restored the 4 3
4 s to CTD and reduced its net basis to 3.51.

With respect to the P&L, in Table 14.10, the futures contract returned to
its original level, but the options lost most of their time value. The total
P&L of the trade to its horizon turned out to be $65,844. Note that this
profit is substantially below the predicted P&L of about $153,532. First, the
forward yield curve did flatten, making the shorter-maturity bonds closer to
CTD than predicted by the parallel shift scenarios. Second, while the model
assumed that the futures contract would be fair relative to the bonds on
May 19, it turned out that the contract was still somewhat cheap to bonds
on that date. A quick way to quantify these effects is to notice that the net
basis of the 4 3

4 s on the horizon date was 3.51 while it had been predicted to
be close to 1. This difference of 2.51 ticks is worth $100mm

100 × 2.51
32 or $78,438

in P&L. Adding this to the actual P&L of $65,844 would bring the total to
$144,282, much closer to the predicted number. By the way, a trader can,
at least in theory, capture any P&L shortfall due to the cheapness of the
futures contract on the horizon date by subsequent trading.

By working with the net basis directly this case implicitly assumes that
the tail was being managed. So, before concluding the case, some of the
relevant calculations are described. The conversion factor of the 4 3

4 s was
.9195, so, without the tail, the trade would have purchased about 920
contracts against the sale of $100mm bonds. On February 28, 2000, there
were 122 days to the last delivery date and the repo rate for the 43

4 s to that
date was 5.55%. Hence, using the rule of Chapter 13, the tail was

920 × 5.55% × 122
360

= 17 (14.22)

contracts. In other words, 920 minus 17 or 903 contracts should have been
bought against the bond position. On April 3, 2000, the required tail had
fallen to 13 contracts, or, equivalently, the futures position should have
increased to 920 minus 13 or 907 contracts.

To estimate the order of magnitude of the tail on P&L, note that the
futures price rose from 95-9 to 98-8 1

2 over that time period, making the tail
worth about 2.98 per 100 face amount of contracts. Using an average tail
of 15 contracts over the period, i.e., $1.5 million face, the tail in this trade
turned out to be worth

$1.5mm × 2.98
100

= $44,700 (14.23)

In other words, had the the tail not been managed, the difference between
the P&L of the basis trade and the bond position times the change in net
basis would have been a significant $44,700.
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CHAPTER 15
Short-Term Rates

and Their Derivatives

S hort-term borrowing and lending, whether through marketable securities
or loans, is a large and important segment of financial markets. While

these short-term transactions occur at very many different rates, most of
these rates are actually spreads off a smaller number of benchmark rates. For
example, a bank will charge a customer whatever rate it thinks appropriate
for a one-month loan, but will probably start with the current level of
one-month London Interbank Offered Rate (LIBOR) and add a spread
appropriate for the credit risk of a loan to that customer.

This chapter covers two of the most widely used short-term rate bench-
marks, namely the set of LIBOR indexes and the federal (fed) funds rate.
In addition to defining and discussing the rates themselves, this chapter
presents the securities used to hedge exposures to those rates, Forward Rate
Agreements (FRAs) and Eurodollar futures in the case of LIBOR and fed
funds futures and Overnight Indexed Swap (OIS) in the case of the fed funds
rate. In addition to the basic material, this chapter includes an application
showing how to extract implied probabilities of the Board of Governors of
the Federal Reserve System policy changes from fed fund futures prices, a
case study of shorting the Treasury Eurodollar (TED) spread of a particular
U.S. Treasury bond, and a discussion of the LIBOR-OIS spread as a leading
indicator of system-wide financial stress.

A final point to be made here is that this chapter ignores the counter-
party risk of derivative contracts, i.e., the risk that a counterparty, including
a futures exchange, fails to fulfill its obligations under a contract. The jus-
tification for this treatment is that collateral agreements are often arranged
so as to allay these concerns. This will be discussed further in Chapter 16.

L IBOR AND LIBOR-RELATED SECURIT IES

LIBOR Fix ings

LIBOR, is the generic name for a set of short-term rate indexes. The British
Bankers Association (BBA) surveys banks each day with the following

401
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TABLE 15.1 BBA Survey of Banks and the Fixing of 3-Month LIBOR as of July 2,
2010

Bank EUR USD GBP JPY

Abbey National .700 .770
Barclays .750 .530 .720 .240
BNP Paribas .730
Bank of America .490 .730 .250
Bank of Tokyo-Mitsubishi UFJ .740 .600 .780 .250
Citibank .740 .500 .750 .230
Credit Suisse .800 .530
Deutsche Bank .700 .500 .740 .210
HSBC .690 .480 .690 .250
JPMorgan Chase .700 .510 .700 .240
Lloyds .740 .530 .760 .250
Mizuho Corporate Bank .770 .780 .250
Norinchukin Bank .600 .250
Royal Bank of Scotland .630 .590 .690 .240
Rabobank .730 .510 .720 .220
Royal Bank of Canada .735 .565 .7325
Sumitomo Mitsui Banking Corp Europe .250
Societe Generale .730 .565 .730 .240
UBS AG .565 .529 .700 .230
WestLB AG .790 .590 .290

3-Month LIBOR Fixing .72688 .53363 .73156 .24500

question: “At what rate could you borrow funds, were you to do so by
asking for and then accepting inter-bank offers in a reasonable size just
prior to 11 A.M. (London time)?” The BBA polls 16 banks for each of sev-
eral currencies, and includes rates with terms ranging from overnight to 12
months, although most market attention is focused on the three-month rate.
Then, for each currency and term, the BBA drops the four highest rates and
the four lowest rates and computes the average of the remaining eight rates.
This average is the LIBOR fixing for that currency, term, and day. Table
15.1 shows the process for the three-month fixing in EUR, USD, GBP, and
JPY as of July 2, 2010. The non-bold entries were dropped before averaging
the eight entries in bold type to obtain the fixing.1

1There is no significance to the table’s dropping one of several equal rates rather
than another, e.g. dropping the JPY quotes of .25% by Mizuho, Norinchukin, and
Sumitomo and keeping the .25% quotes of Bank of America, Bank of Tokyo, HSBC,
and Lloyds.
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LIBOR rates are particularly important in financial markets because
many other rates are keyed off LIBOR. For example, many borrowing rates
are quoted as a spread to LIBOR, so that a company might be given the
opportunity to borrow money at LIBOR+150, that is, at 150 bps above
LIBOR. Also, Eurodollar futures, discussed in this section, and the floating
leg of interest rate swaps, discussed in Chapter 16, are set off LIBOR rates.
LIBOR is quoted on an actual/360 basis and assumes T + 2 settlement. This
means, for example, that a $1 million three-month LIBOR deposit set at
.53363% on July 2, 2010, would pay interest from two business days after
the trade, i.e., on July 6, 2010, to three months after that, i.e., on October
6, 2010. The proceeds of this 92-day deposit on October 6, 2010, would be

$1,000,000
(

1 + .53363% × 92
360

)
= $1,001,364 (15.1)

Forward Rate Agreements

FRAs are over-the-counter derivatives that allow market participants to
lock in the forward rates of the swap curve, as defined in Chapter 2. To
see this, first consider the forward three-month swap agreement depicted
in the second column of Table 15.2. On May 28, 2010, party A agrees
to pay party B a fixed rate of 2% on $100 million for the three months
settling on March 14, 2012. At the same time, party B agrees to pay party
A three-month LIBOR on the $100mm over those three months. Note from
the table that the LIBOR used to compute the floating rate payment is the
rate observed on March 12, 2012, two business days before the start of
the loan. Denoting LIBOR on that observation date as L, noting that there
are 92 days between March 14, 2012, and June 14, 2012, and applying
the money market actual/360 day-count convention for both the fixed and
floating legs of the swap, on June 14, 2012, A has to make a new payment

TABLE 15.2 Cash Flows of a Forward 3-Month Swap
vs. a FRA

Date Forward Swap FRA

5/28/10 trade date
3/12/12 3-month LIBOR observed to be L
3/14/12 interest accrual begins A pays net of:

$100mm× 92
360 (2%−L)

1+ 92
360 L

6/14/12 A pays net of:
$100mm × 92

360 × (
2% − L

)
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of $100mm × 92
360 × (

2% − L
)
. (Of course, if L > 2%, then A receives a

payment on that date.)
A FRA is very much like the forward swap just described, except that

instead of the net payment being made on the maturity date, the present
value of that net payment is exchanged on the settlement date. Furthermore,
this present value is calculated using the same LIBOR fixing. Hence, in the
example, as recorded in the third column of Table 15.2, party A pays party
B a net of

$100mm × 92
360

(
2% − L

)
1 + 92

360 L
(15.2)

To see how FRAs can be used to lock in forward rates, consider a
corporation that will be receiving $100 million on March 14, 2012, and,
knowing that the money will not be spent until June 14, 2012, would like
to lock in a rate of return over that period. To do so, the corporation can
agree to receive fixed on the FRA just described. For whatever L is realized,
on March 14, 2012, the corporation will have its $100 million plus the net
payment from the FRA given in (15.2). If the corporation rolls this total
amount, which could be greater or less than $100 million, at the realized
three-month LIBOR rate for three months, its proceeds on June 14, 2012,
would be

(
$100mm + $100mm × 92

360

(
2% − L

)
1 + 92

360 L

) (
1 + 92

360
L
)

(15.3)

= $100mm
(

1 + 92
360

L + 92
360

(
2% − L

))
(15.4)

= $100mm
(

1 + 92
360

× 2%
)

(15.5)

Hence, the FRA position has enabled the corporation to lock in the FRA
rate of 2% on a forward loan. But this implies that the FRA rate is exactly
the forward rate defined in Chapter 2.

While not so liquid as Eurodollar futures, to be discussed in the next
section, FRA dates can be customized to the needs of the user. While the most
liquid FRAs reference three-month LIBOR, so that the maturity date is three
months after the settlement date, users can customize that settlement date. By
contrast, 90-day Eurodollar futures contracts trade at only four settlement
or expiration dates per year. Both FRAs and Eurodollar futures contracts
do trade for different forward loan intervals, like one month instead of the
three in the example, but at significant sacrifices of liquidity.
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TABLE 15.3 Selected Eurodollar Futures Prices as of May 28, 2010

Ticker Expiration Price Rate (%)

EDM0 6/14/10 99.400 .600
EDU0 9/13/10 99.155 .845
EDZ0 12/13/10 99.005 .995
EDH1 3/14/11 98.875 1.125
EDM1 6/13/11 98.705 1.295
EDU1 9/19/11 98.495 1.505
EDZ1 12/19/11 98.245 1.755
EDH2 3/19/12 98.010 1.990

Eurodol lar Futures

Eurodollar (ED) futures allow investors and traders to manage their expo-
sures to short-term interest rates. The most liquid of these are quarterly
futures designed to hedge $1 million 90-day LIBOR deposits that mature in
March, June, September, and December over the next 10 years. As of May
28, 2010, for example, the first contract matures in June 2010 and the last
in March 2020. And, of these contracts, the very most liquid mature in the
first few years. The first two columns of Table 15.3 list the tickers and ex-
piration dates of the first eight contracts. The tickers are a concatenation of
“ED” for a 90-day Eurodollar contract, a month (H for March, M for June,
U for September, and Z for December), and a year. Hence, EDH2 is a 90-day
Eurodollar futures contract expiring in March 2012.2 The expiration dates
of the contracts are two London business days before the third Wednesday
of the contract month. The Wednesdays of these contract months, by the
way, are known as IMM (International Money Market) dates.

The third column of Table 15.3 gives futures prices as of May 28, 2010,
while the fourth gives futures rates in percent, defined as 100 minus the
corresponding prices. The first four contracts are also known as “fronts.”
Subsequent groups of four contracts are traditionally referred to by colors,
in the following sequence: reds, greens, blues, golds, purples, oranges, pinks,
silvers, and coppers.

To describe how ED futures work, focus on EDH2. On its expira-
tion date of March 19, 2012, the contract price is set at 100 minus
100 times the fixing of three-month LIBOR on that date. So, for exam-
ple, if the fixing is 1.75%, the final contract price is 100 − 100 × 1.75% or
98.25. It is important to emphasize that the contract price is only a conven-
tion for quoting a 90-day rate: a price of 98.25 means only that the 90-day

2When a contract expires, a new contract with the same ticker is added to the end
of the contract list. For example, when EDM0 expired in June 2010, a new EDM0
was listed, which expires in June 2020.
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rate is 1.75%. The contract price is not the price of a 90-day zero at the
contract rate.

Defining the security underlying ED futures contracts to be a $1,000,000
90-day deposit is another way of defining the ’01 of the contract, i.e., the
change in the value of the contract for a one basis-point change in rate, as
$25. To see this, note that the proceeds of a 90-day deposit at EDH2’s rate
of 1.99% are

$1,000,000 ×
(

1 + 1.99% × 90
360

)
= $1,004,975 (15.6)

while, if the rate increased by one basis point, to 2%, the proceeds would
be

$1,000,000 ×
(

1 + 2.00% × 90
360

)
= $1,005,000 (15.7)

or $25 higher.3

Throughout the trading day, market forces determine the prices of fu-
tures contracts. At the end of each day, the futures exchange determines a
settlement price that is designed to reflect the last trade price of the day.
For EDH2 Table 15.4 gives the prices, rates, changes, and daily settlement
amounts for a long position in one contract from May 28, 2010, to June
11, 2010. The daily settlement process, in general terms, was discussed in
Chapter 13. In the current context, however, it might be added that, with
a contract ’01 of $25, the daily settlement amount is simply $25 times the
change in rate in basis points. So, for example, with the price of EDH2
increasing from 97.93 on June 3 to 98.09 on June 4, an increase of 16 basis
points, the daily settlement amount for a long of one contract on June 4
is 16 × $25, or $400. It is also useful to add that this profit comes about
because the long, on June 3, had committed to buy a deposit, i.e., to lend
money, at a rate of 2.07%. When the rate falls to 1.91% on June 4, this
commitment is worth the difference of 16 basis points as of the delivery
date. The daily settlement feature of futures contracts, however, pays out
this profit immediately rather than on the delivery date.

3Note that there are two small inconsistencies in using three-month LIBOR to settle
ED contracts. First, the underlying security of an ED contract is a 90-day deposit even
though three-month LIBOR need not be a 90-day rate, as illustrated in the example
of the previous section. Second, the LIBOR rate used to settle an ED contract at
expiration is really the rate on a deposit for settlement two business days later.
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TABLE 15.4 Daily Settlement Payments on One Long EDH2 Contract from June
1 to June 11, 2010

Date EDH2 Price EDH2 Rate Change Daily Settlement

(%) (bps) ($)

5/28/2010 98.010 1.990
6/1/2010 98.010 1.990 0.0 0.00
6/2/2010 97.975 2.025 −3.5 −87.50
6/3/2010 97.930 2.070 −4.5 −112.50
6/4/2010 98.090 1.910 16.0 400.00
6/7/2010 98.105 1.895 1.5 37.50
6/8/2010 98.100 1.900 −0.5 −12.50
6/9/2010 98.130 1.870 3.0 75.00
6/10/2010 98.050 1.950 −8.0 −200.00
6/11/2010 98.155 1.845 10.5 262.50

A final comment to make about the daily settlement process in the
context of ED futures is that when these contracts expire and the last daily
settlement payments are paid and received, the longs and shorts have no
further obligations. In particular, longs do not have to buy a 90-day deposit
from shorts at the rates implied by final settlement prices. Futures contracts
that do not require delivery of the underlying security at expiration are
said to be cash settled.4 Futures contracts that do require delivery of an
underlying security, like the note and bond futures discussed in Chapter 14,
are said to be physically settled.

Euribor and TIBOR Futures

Euribor futures, EUR-denominated interest rate futures, are extremely liquid
contracts and are structured very much like Eurodollar futures. The under-
lying rate is three-month Euribor, which is not the same as three-month
Euro LIBOR. Euribor of various maturities come from surveys in the same
spirit as LIBOR, but are produced by the European Banking Federation. The
survey of over 50 European banks is larger than the LIBOR survey, the top
and bottom 15% of responses are discarded, and the results are published
at 11 A.M. Central European time.

The yen-denominated interest rate futures contract is based on three-
month TIBOR (Tokyo Interbank Offered Rate). The TIBOR survey, con-
ducted by the Japanese Bankers Association, is an average of rates supplied

4Note that the phrase “cash settlement” is sometimes used, in an entirely different
context, to mean same-day settlement, e.g., buying a U.S. Treasury for cash settlement
means that the trade settles the same day as opposed to normal T + 1 settlement.
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by 18 banks, mostly Japanese, with the highest and lowest pair discarded.
Banks in the Yen LIBOR survey, by contrast, are much more geographically
diverse, as can be seen from Table 15.1. This difference between the survey
panels has led to positive TIBOR-LIBOR spreads, as TIBOR panel banks
have been perceived as riskier and facing more difficult funding conditions
than the broader set of banks in the Yen LIBOR panel.

Hedging Lending or Borrowing
with Eurodol lar Futures

This subsection presents an example to illustrate how ED futures are used
to hedge future lending. To make the important points clear, the dates of
the example are contrived to match exactly the dates of ED contracts. More
realistic settings are dealt with in the next subsection.

Consider the case of a corporation that, as of May 28, 2010, has plans
to retain earnings over the near future to finance an expenditure on June
17, 2012. One of its earnings distributions will be $100,000,000 paid on
March 19, 2012. This subsection focuses on the corporation’s desire to lock
in a return on that $100,000,000 over the 90 days from March 19, 2012,
through June 17, 2012.

If the 90-day rate on March 19, 2012, turns out to be .49%, the corpo-
ration will have proceeds on June 17, 2012, of

$100,000,000
(

1 + .49% × 90
360

)
= $100,122,500 (15.8)

On the other hand, if the 90-day rate turns out to be 3.49% on March 19,
2012, the proceeds available would be

$100,000,000
(

1 + 3.49% × 90
360

)
= $100,872,500 (15.9)

Rather than face this uncertainty, the corporation might very well prefer
to buy a forward contract on May 28, 2010, to lend money at 1.99% on
March 19, 2012, for 90 days. In that case, regardless of the 90-day rate that
actually obtains on March 19, 2012, the corporation will have locked in
proceeds of

$100,000,000
(

1 + 1.99% × 90
360

)
= $100,497,500 (15.10)

While this is a perfectly good hedge in theory, it is usually harder and
more expensive to find a suitable counterparty to write a customized forward
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TABLE 15.5 Hedge Results from Buying 100 EDH2 at a Rate of 1.99% If All
EDH2 Profit and Loss were Realized at Expiration

90-Day ED P&L ED P&L Investment Total
LIBOR 3/19 6/17 Proceeds 6/17 6/17

.49% $375,000 $375,459 $100,122,500 $100,497,959
1.99% $0 $0 $100,497,500 $100,497,500
3.49% −$375,000 −$378,272 $100,872,500 $100,494,228

contract than to hedge in the ED futures market. Recalling that EDH2
expires on March 19, 2012, and that its underlying security is a $1 million
90-day deposit, a first pass at a hedge would be for the corporation to buy
100 EDH2 contracts on May 28, 2010, at the rate given in Table 15.3,
i.e., 1.99%. If all of the P&L (profit and loss) of EDH2 were realized at its
expiration, the hedge would work very well, as shown in Table 15.5. If, at
expiration, EDH2 is settled at a 90-day LIBOR of .49%, 150 basis points
below 1.99%, the P&L on the 100 contracts would be 100 × 150 × $25
or $375,000, which could be invested at .49% through June 17, 2012, for
a total of $375,459. Furthermore, at .49%, the proceeds of investing the
$100 million of retained earnings are $100,122,500, as given by (15.8).
Hence, the total available to the corporation on June 17, 2012, would be
$100,497,959. Similarly, in the case that 90-day LIBOR at expiration is
150 basis points above 1.99%, at 3.49%, the 100 contracts would lose
$375,000, growing to a loss of $378,272 by June 17, 2012. Combining this
with proceeds of $100,872,500, given by (15.9), results in an available total
of $100,494,228. Hence, for a wide range of values for 90-day LIBOR on
March 19, 2012, the corporation has successfully locked in approximately
$100,497,500 on June 17, 2012.5

Table 15.5 is not a perfectly accurate representation of the hedge, how-
ever, because ED contracts are subject to daily settlement: the $375,000
profit or loss is paid not on March 19, 2012, but over time, from the trade
date on May 28, 2010, to expiration on March 19, 2012. To see the poten-
tial impact of daily settlement in this example, consider the extreme example
in which 90-day LIBOR jumps or falls immediately, on May 28, 2010, to
each of the scenario levels of Table 15.5 and remains at that level until
the expiration of EDH2. Table 15.6 shows the results. With 90-day LIBOR
falling immediately to and remaining at .49%, the daily settlement payment
of $375,000 would be made immediately and invested for 751 days to June
17, 2012, at .49%, growing to $378,833.6 Adding this to the investment

5Note that the total would be exactly $100,497,500 in each of the scenarios were it
not for the 90 days of interest on the ED P&L.
6For simplicity, this example assumes simple interest for these scenarios.
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TABLE 15.6 Hedge Results from Buying 100 EDH2 at a Rate of 1.99% If,
on May 28, 2010, Rates Changed to and Remained at Their Terminal Levels of
March 19, 2012

90-Day ED P&L ED P&L Investment Total
LIBOR 5/28 6/17 Proceeds 6/17 6/17

.49% $375,000 $378,833 $100,122,500 $100,501,333
1.99% $0 $0 $100,497,500 $100,497,500
3.49% −$375,000 −$402,302 $100,872,500 $100,470,198

proceeds gives a total of $100,501,333 in this scenario. However, if 90-day
LIBOR jumps to 3.49%, the immediate daily settlement loss of $375,000
has to be financed at 3.49% for 751 days, where financing may be explicit
borrowing or the opportunity cost of not being able to invest the fore-
gone funds. Through June 17, 2012, the loss grows to $402,302. Note, as
pointed out in Chapter 13, that the cost of financing the loss of $375,000
(i.e., $27,302) exceeds the earnings from investing gains of $375,000 (i.e.,
$3,833) because the loss occurs when rates are relatively high while the gain
occurs when rates are relatively low. In any case, the total proceeds from
the 3.49% scenario comes to $100,470,198.

The more accurate depiction of the hedge in Table 15.6 performs rel-
atively well in percentage terms, but the outcome in the 3.49% scenario is
noticeably worse than in the .49% scenario. Furthermore, the daily settle-
ment effect would be worse if rates were higher and if the dates in question
were further in the future. Therefore, as discussed in Chapter 13, practition-
ers tend to tail the hedge. Applying the rule developed in that section, ac-
counting for daily settlement reduces the number of contracts by the present
value factor to the delivery date. Although it would be more accurate to
discount by the rate appropriate from the trade date to the delivery date, for
the purposes of this example discounting will be done at 1.99%. Therefore,
noting that there are 661 days from the trade date to the delivery date in
this example, the recommended hedge is to buy

100(
1 + 1.99%×661

360

) = 96.47 (15.11)

contracts instead of 100. In industry jargon, the tail is 3.53 contracts. Round-
ing to a whole number of 96 contracts, Table 15.7 displays the results. As
planned, this tailed hedge exhibits less variance in terminal proceeds than
the unadjusted hedge in Table 15.6.

Before closing the discussion of the tail, it should be noted that the tail
has to be adjusted over time. As time to delivery approaches, the present
value factor gradually increases to one and the number of contracts in the



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c15 JWBT539-Tuckman July 25, 2011 20:5 Printer: Courier Westford

Short-Term Rates and Their Derivatives 411

TABLE 15.7 Hedge Results from Buying 100 EDH2 at a Rate of 1.99% If,
on May 28, 2010, Rates Changed to and Remained at Their Terminal Levels of
March 19, 2012

90-Day ED P&L ED P&L Investment Total
LIBOR 5/28 6/17 Proceeds 6/17 6/17

.49% $360,000 $363,680 $100,122,500 $100,486,180
1.99% $0 $0 $100,497,500 $100,497,500
3.49% −$360,000 −$386,210 $100,872,500 $100,486,290

tailed hedge approaches the unadjusted hedge. In the example, the tail of
four declines to zero, or, equivalently, the tailed hedge increases from 96 to
100.7

TED Spreads

The value of a security relative to other securities depends on the choice
of a benchmark set of securities that are assumed to be priced fairly. At
the short-end of the term structure, ED futures are often thought of as
fairly priced for two somewhat related reasons. First, they are quite liquid
relative to many other short-term fixed income securities. Second, they are
immune to individual security effects that complicate the determination of
fair value. This second point is perfectly analogous to the argument, made
in the introduction to Part One, that swaps are commodities while bonds
have idiosyncratic characteristics.

TED spreads8 use rates implied by ED futures to assess the value of
a short-term security relative to ED futures rates or to assess the value of
one security relative to another. The idea is to find the spread such that
discounting a security’s cash flows at ED futures rates minus that spread
gives that security’s market price. This is analogous to spread defined in
Chapter 3 (with some important caveats to be discussed later), but the TED
spread is subtracted from rather than added to the base curve. This sign
convention is chosen so that TED spreads of U.S. Treasuries turn out to
be positive: since Treasury rates are almost always below LIBOR rates,
subtracting a positive spread from ED futures rates can equate discounted
Treasury cash flows with Treasury prices.

7Note that the numerical example of this subsection happens not to be affected by
changing the tail over time since all of the ED P&L was assumed to occur on May
28, 2010.
8TED spreads originally compared rates on T-bill futures, which are no longer ac-
tively traded, with rates on Eurodollar futures. The name is a concatenation of T for
Treasury and ED for Eurodollar.
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F IGURE 15.1 Eurodollar Futures Contracts Used for Computing the TED Spreads
of the 1 3

8 s of March 15, 2012, and the 4 1
2 s of March 31, 2012

To illustrate the computation of TED spreads, consider two U.S. Trea-
sury bonds as of May 28, 2010, for settlement on June 1, 2010: the 13

8 s due
March 15, 2012, and the 4 1

2 s due March 31, 2012. Figure 15.1 illustrates the
discounting approach. The top line highlights the coupon dates of the 1 3

8 s
while the bottom line highlights the coupon dates of the 4 1

2 s. The center line
shows the division of time into periods covered by the various ED contracts.
The first period is the stub, the time period from the settlement date to the
start date of the LIBOR deposit underlying the first ED contract, in this case
EDM0. The base curve, from which the TED spread will be subtracted, is
made up of the collection of ED futures rates, each applied over the region
indicated in Figure 15.1.

Table 15.8 presents the same date information as Figure 15.1, together
with the relevant ED rates. The start dates of the periods are the settlement
dates of the LIBOR deposits underlying the respective futures contracts.
EDM0, for example, expires on June 14, 2010, so its underlying deposit
starts two business days later, on June 16. The end dates are simply the start
dates of the next ED contract. Defining the dates and rates in this way is
somewhat problematic, but discussion of this point is deferred until the end
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TABLE 15.8 Relevant Dates and Rates for two TED Spread Calculations as of
May 28, 2010

Start Date End Date Contract Rate Days

6/1/2010 6/16/2010 STUB .3407% 15
6/16/2010 9/15/2010 EDM0 .6000% 91
9/15/2010 12/15/2010 EDU0 .8450% 91
12/15/2010 3/16/2011 EDZ0 .9950% 91
3/16/2011 6/15/2011 EDH1 1.1250% 91
6/15/2011 9/21/2011 EDM1 1.2950% 98
9/21/2011 12/21/2011 EDU1 1.5050% 91
12/21/2011 3/21/2012 EDZ1 1.7550% 91
3/21/2012 3/31/2012 EDH2 1.9900% 10

of this subsection. Turning to the rates in Table 15.8, since the stub period
is 15 days, a rate close to two-week LIBOR is chosen for that rate. The
remaining rates are just the respective ED futures rates from Table 15.3.

Having explained the base rate curve to be used, Table 15.9 describes the
calculation of the TED spread for 1 3

8 s of March 15, 2012. Let s be the TED
spread, which, to repeat, is the single spread such that discounting a bond’s
cash flows at ED futures rates minus that spread gives the bond’s price.9

The last row of Table 15.9 shows the bond’s flat price, accrued interest,
and full price. The main body of rows shows the reciprocal of the discount
factor used for the bond’s cash flow dates. (The reciprocal is displayed for
easier readability.) For example, the discount factor to March 15, 2011, is
determined by discounting over the 15 days of the stub period at the stub
rate of .3407% minus the spread; over the 91 days from June 16, 2010, to
September 15, 2010, at the EDM0 rate of .6% minus the spread; over the
91 days from September 15, 2010, to December 15, 2010, at the EDU0 rate
of .845% minus the spread; and over the 90 days from December 15, 2010,
to March 15, 2011, at the EDZ0 rate of .995% minus the spread. These
particular day counts are shown in Figure 15.1.

Solving for the value of the spread so that the present value of the cash
flows of the 1 3

8 s equals its full price gives s = .500%. In words, the 1 3
8 s trade

50 basis points below the LIBOR curve as expressed through the stub and
ED contracts in Table 15.8. The TED spread of the 4 1

2 s can be computed in a
similar manner, with its full price of 107.809170 as of May 28, 2010, to give
a spread of 53.4 basis points. A trader or investor could use these spreads to
decide if Treasuries in this maturity range are priced appropriately relative

9The definition in this text corresponds to the Spread Adjusted TED on the
Bloomberg TED screen.
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TABLE 15.9 Discount Factors for TED Spread Calculation for the 1 3
8 s of March

15, 2012, as of May 28, 2010
Flat Price: 101-9.5; Accrued Interest: .291440; Full Price: 101.588315

Date Reciprocal of Discount Factor

9/15/10
(
1 + (.3407%−s)×15

360

) (
1 + (.6%−s)×91

360

)
3/15/11

(
1 + (.3407%−s)×15

360

) (
1 + (.6%−s)×91

360

) (
1 + (.845%−s)×91

360

) (
1 + (.995%−s)×90

360

)
9/15/11

(
1 + (.3407%−s)×15

360

)
· · ·

(
1 + (1.125%−s)×91

360

) (
1 + (1.295%−s)×92

360

)
3/15/12

(
1 + (.3407%−s)×15

360

)
· · ·

(
1 + (1.505%−s)×91

360

) (
1 + (1.755%−s)×85

360

)

to LIBOR and if they are priced appropriately relative to one another. The
mechanics of such trades are discussed in the next subsection.

The TED spread methodology described in this subsection is commonly
used for computing spreads for short-term securities. The methodology,
however, does have several conceptual problems. First, cash flows should
be discounted at forward rates, not futures rates. This is not too much of
a worry in practice since futures-forward differences are relatively small at
shorter maturities, when TED spreads are used. Also, when comparing the
TED spreads of two bonds, the futures-forward effect is present in both
bonds and, therefore, will be even less important. Second, using the futures
rates as described in this subsection does not use the right interest rate over
partial periods. In computing the TED spread for the 4 1

2 s, for example, as
shown in Figure 15.1, the EDH2 rate of 1.99%, which is the futures rate
over the three months starting March 21, 2012, is applied to the period
from March 21, 2012, to March 31, 2012. But with an upward-sloping
term structure, the rate over just those 10 days is less than 1.99%. Third,
the rates and dates in Table 15.8 do not really line up with each other. For
example, the LIBOR deposit underlying EDM1 is from June 15, 2011, to
September 15, 2011, and the market, presumably, prices EDM1 accordingly.
Nevertheless, Table 15.8 uses the EDM1 rate of 1.295% from June 15, 2011,
all the way through to September 21, 2011, because the underyling deposit
for the next contract, EDU1, does not start until September 21, 2011.

TED spreads are widely used despite the problems listed in the previous
paragraph. The great transparency and liquidity of futures contracts, com-
bined with the simplicity of the TED spread, outweighs the relatively minor
futures-forward differences and the rate-date discrepancies. Practitioners
not willing to make this trade-off have to compute spreads by discount-
ing with rates from a rigorous curve-fitting methodology, as described in
Chapter 21.
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TABLE 15.10 ED Futures Hedges and Forward Bucket ’01s for USD 100 Million
Face Amount of the 1 3

8 s due March 15, 2012, and the 4 1
2 s due March 31, 2012, as

of May 28, 2010

1 3
8 s of 3/15/2012 4 1

2 s of 3/31/2012

Contract Bucket ’01 Contracts Bucket ’01 Contracts

Ticker ($) ($)

STUB 423 17 449 18
EDM0 2,567 103 2,725 109
EDU0 2,548 102 2,676 107
EDZ0 2,547 102 2,665 107
EDH1 2,529 101 2,617 105
EDM1 2,721 109 2,807 112
EDU1 2,510 100 2,554 102
EDZ1 2,343 94 2,547 102
EDH2 0 0 281 11

Total 18,190 728 19,321 773

Hedging Bonds with ED Futures

Suppose a trader believes that a TED spread is too wide, e.g., that the
appropriate spread between the 1 3

8 s and the LIBOR curve is less than 50
basis points, or alternatively, that the Treasury bond is too rich in price
relative to the LIBOR curve. The trade would then be to short the 1 3

8 s and
buy some portfolio of ED futures. What is the right hedging portfolio?

Relying on the pricing methodology used to compute TED spreads,
computing hedge portfolios is quite straightforward:

1. Decrease a particular futures (or stub) rate by one basis point.
2. Keeping the TED spread unchanged, calculate the resulting change in

the value of the bond, i.e., calculate the bucket ’01 with respect to that
futures rate.10

3. Divide the change by $25, the basis-point value of all ED futures con-
tracts, to get the number of contracts that will hedge that bucket risk.

4. Repeat steps 1 to 3 for all pertinent futures rates.

Table 15.10 shows the hedge calculations for $100 million face amount
of the 1 3

8 s and 4 1
2 s. To describe the order of magnitude of these results, focus

first on the 1 3
8 s. Since the full price of the bonds is about $101.6 million

and since each ED contract has $1 million face amount, the rough order of

10This step results in the spread-adjusted hedge of the Bloomberg TED screen.
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magnitude of the hedge should be 101.6 of each of the contracts, or 102
to the nearest contract. The number of contracts assigned to the stub and
to EDZ1 will be less than this, of course, because the stub period covers
only 15 days of risk and the bond’s maturity of March 15, 2012, means
that protection is not required for the full EDZ1 period. See Figure 15.1.
Note, by the way, that the stub period has to be hedged with securities other
than 90-day ED contracts, like fed fund futures, which are discussed later
in this chapter. But returning to orders of magnitude, the number of EDM1
contracts in the hedge will be higher than 102 since the period assigned to
it in Table 15.8, from June 15, 2011, to September 21, 2011, is 98 days,
longer than the 91 days assigned to the other contracts.

It should be pointed out that the hedging results in Table 15.10 auto-
matically account for the tail: setting the change in the present value of the
bond equal to the change in the daily settlement payment of the hedge is
the whole point of the tail. See Chapter 13. To show this is the case with
an example, consider the EDU1 holding against the 1 3

8 s. The tail approxi-
mation sets the number of contracts in the hedge equal to the present value
of the unadjusted hedge of 101.6 contracts. With 477 days between bond
settlement and the expiration of EDU1 on September 21, 2011, and using
the weighted average of rates in Table 15.8 over that period, which comes
to .9569%, the tailed hedge would be

101.6(
1 + .9569%×477

360

) = 100.3 (15.12)

or about the 100 contracts given through the more careful methodology of
Table 15.10. More generally, the tail effect causes the number of contracts
in the hedge to fall with their terms to expiration, an effect clearly seen in
Table 15.10.

Rough numbers for the contracts hedging the 4 1
2 s can be understood

similarly. With a full price of 107.8, the roughest approximation is a hedge
of about 108 of each contract. The actual number will be much lower for
the stub, higher for EDM1, and much lower for EDH2, due to the relative
number of days covered by each of those contracts. And because of the tail,
the general trend is for the number of contracts to decline with the terms of
the contracts.

The bucket ’01s in Table 15.10 are very similar to the forward bucket
’01s presented in Chapter 5, except that the ’01s here are with respect to
futures rather than forward rates. To take an example, the price of the
1 3

8 s increases by $2,529 per $100 million face amount of the 1 3
8 s for every

basis-point decline in EDH1’s rate.
The last row of Table 15.10 gives the totals of the rows. The $18,190

and $19,321 sums of the bucket ’01s for the 1 3
8 s and the 4 1

2 s, each per
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$100 million face amount, are DV01-equivalents of .018190 and .019321
per 100 face amount with respect to a parallel shift of ED rates.

The focus of this subsection has been hedging a position in one bond
with ED futures. The analysis can easily be extended to hedge the residual
risk from trading of one bond versus another. For example, were a trader
to sell $100mm of the 4 1

2 s and buy a DV01-neutral face amount of the 1 3
8 s,

the differences between the contracts required to hedge each of the indi-
vidual bond positions would hedge the residual curve risk of the combined
bond position.

FED FUNDS AND RELATED SECURIT IES

The Fed Funds Rate

Banks are required to keep a minimum level of reserves at the Fed to
support their deposit liabilities. At any particular time, however, individ-
ual banks may find that they have excess cash that can be invested more
profitably elsewhere or that they have a cash deficit and need to borrow
to meet minimum reserve requirements. The market in which banks trade
funds overnight is called the federal funds or fed funds market. While only
banks can borrow or lend in the fed funds market, the central position
of banks in the financial system causes other short-term interest rates to
move together with the fed funds rate. To take just one example, repo rates,
which were introduced in Chapter 12, are particularly correlated with fed
funds rates.

The Fed or, more specifically, the Federal Open Market Committee
(FOMC), sets monetary policy in the United States. An important compo-
nent of this policy is the targeting or pegging of the fed funds rate at a
rate deemed consistent with the goals of price stability and full employ-
ment. Since banks trade freely in the fed funds market, the Fed does not
directly set the fed funds rate. By using the tools at its disposal, how-
ever, including buying and selling securities in its open market operations,
mostly through repo, the Fed has enormous power to keep the fed funds
rate close to the desired target. The bold line in Figure 15.2 shows the
time series of the target rate, along with the realized rate, to be discussed
in a moment.

In an effort to make its workings more transparent, the Fed began to
announce its target level for the fed funds rate in 1995. Furthermore, starting
in 2000, the FOMC began issuing statements about its deliberations and
decisions. While often taken for granted today, this level of transparency is
quite different from that in the past, where “Fed watchers” had to observe
and analyze open market operations to figure out what the Fed was trying
to accomplish.
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F IGURE 15.2 Effective vs. Target Fed Funds Rate

The schedule of FOMC meetings is announced well in advance. And
while the Fed may change its target rate between meetings, such changes are
being reserved more and more for extraordinary circumstances. As of this
writing, the last intra-meeting change to the target rate was on October 8,
2008, when the Fed lowered the rate from 2% to 1.50% in reaction to the
events surrounding the bankruptcy of Lehman Brothers. The intra-meeting
changes before that were in 2007 (September 17, April 18, and January 3).11

Each business day the Fed calculates and publishes the weighted average
rate at which banks borrow and lend money in the fed funds market, a rate
called the fed funds effective rate. Figure 15.2 shows the time series of the
effective rate against the target from May 1997 to November 2010. For
the most part, the Fed does keep the fed funds rate close to the target rate.
From the start of the sample period to December 15, 2010, the effective
rate, on average, was less than two basis points below the target rate. From
December 16, 2010, to the end of the sample, with the target rate not a
single rate but a range from 0 to 25 basis points, the effective rate averaged
about 17 basis points.

The relatively isolated and large deviations of effective from target, vis-
ible in Figure 15.2, are due to particular pressures in financial markets.

11In an intra-meeting policy change at the onset of the subprime crisis, on August
17, 2007, the Fed lowered its discount rate, which is the rate at which banks can, in
case of need, borrow directly from the Fed. The fed funds target rate, however, was
not reduced until the subsequent scheduled meeting in September.
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Examples include the Russian debt crisis (when the effective rate spiked to
over 80 basis points above target at one time and to over 150 basis points at
another) and the bankruptcy of Lehman Brothers (when fed funds effective
spiked from 60 to 80 basis points above target). The reason for these spikes
is that, during times of financial upheaval, the value of liquidity or cash
rises dramatically; individuals might rush to withdraw cash from vehicles
not considered completely safe while banks, other financial institutions, and
corporations might become reluctant to lend cash, even when secured by col-
lateral. (See the cases of Bear Stearns and Lehman Brothers in Chapter 12.)

At times of financial uncertainty, the Fed tries to stabilize conditions by
“injecting liquidity into the system,” that is, by lending cash on acceptable
collateral. In fact, as a result of these policy responses, most significant
deviations of the effective rate from target in recent years have been for the
effective rate to be significantly below target. At the earliest signs of crisis,
in August 2007, the effective rate fell to 50 to 70 basis points below target;
in the weeks after Lehman’s bankruptcy, it fell to 133 below target and,
slightly later, fluctuated between 50 and 90 basis points below target; and
finally, following the market disruption in the wake of September 11, 2001,
the effective rate traded from about 80 to 180 basis points below target.

Another example of fed funds effective differing from target is the year-
end effect. Historically, significant excess demand by banks to borrow funds
at the end of a calendar year, largely for accounting reasons, caused fed funds
to trade significantly above target over the “turn” or year-end. One of the
last instances of this can be seen in Figure 15.2, as effective traded about 50
basis points above target at year-end 1997. In subsequent years, however,
due to a slackening demand for year-end funds or more aggressive compen-
sation by the Fed, the effective rate traded below target over the turn: about
70 basis points below at year-end 1998, 150 below at year-end 1999 (a turn
compounded by “Y2K” concerns), and over 100 below at year-end 2000.
Since then, however, the turn has become mostly a non-event, with effective
trading at about target, although there are occasional suprises, e.g., year-end
2007, when effective traded at about 120 basis points below target.

Fed Fund Futures

Just as ED futures are used to hedge exposure to short-term LIBOR rates,
fed fund futures are used to hedge exposure to fed funds rates. Table 15.11
lists the first several fed fund contracts as of May 28, 2010. Note that the
tickers are a concatenation of “FF” for fed funds, a letter indicating the
month of the contract’s expiration, and a single digit for the year of the
contract. Each contract expires on the last day of the month, but, as in any
futures contract, changes in contract value are settled daily.

The fed funds futures contract is designed as a hedge to a $5,000,000
30-day deposit in fed funds. First, the daily settlement payment of a contract
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TABLE 15.11 Selected Fed Funds Futures Prices and Rates as of
May 28, 2010

Ticker Month Price Rate

FFM0 June 99.780 .220
FFN0 July 99.770 .230
FFQ0 August 99.760 .240
FFU0 September 99.750 .250
FFV0 October 99.735 .265
FFX0 November 99.705 .295

is set at $41.67 per basis point since changing the rate of a $5,000,000 30-
day loan by one basis point changes the interest payment by $41.67:

$5,000,000 × .0001 × 30
360

= $41.67 (15.13)

Second, the final settlement price of a fed funds contract in a particular
month is set to 100 minus 100 times the average of the daily effective
fed funds rates over that month. Table 15.12 illustrates this calculation: in
June 2010 average effective was .177% implying a final settlement price for
the June contract of 100 − 100 × .177% or 99.823. Note that nonbusiness
days, indicated by italics in the table, are included in the average with rates
of the previous business day, consistent with the market convention that an
investor earns Friday’s rate for Friday, Saturday, and Sunday. Note too that

TABLE 15.12 Calculation of the Settlement Price of FFM0, the 30-Day Fed Fund
Futures Contract That Matured in June 2010

Date Rate Date Rate Date Rate

6/1/2010 .20 6/11/2010 .18 6/21/2010 .17
6/2/2010 .20 6/12/2010 .18 6/22/2010 .18
6/3/2010 .19 6/13/2010 .18 6/23/2010 .17
6/4/2010 .19 6/14/2010 .18 6/24/2010 .16
6/5/2010 .19 6/15/2010 .19 6/25/2010 .16
6/6/2010 .19 6/16/2010 .19 6/26/2010 .16
6/7/2010 .19 6/17/2010 .19 6/27/2010 .16
6/8/2010 .19 6/18/2010 .18 6/28/2010 .17
6/9/2010 .18 6/19/2010 .18 6/29/2010 .15
6/10/2010 .18 6/20/2010 .18 6/30/2010 .09

Average rate .176

Average to nearest tenth of a basis point: .177

Settlement Price 99.823
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the average is rounded to the nearest tenth of a basis point before being used
to calculate the futures settlement price.

Hedging Borrowing and Lending with Fed Fund
Futures over 30-Day Months

To see how fed funds futures contracts works as a hedge, consider the case of
a small regional bank that has surplus cash of $5 million over the month of
June 2010. The bank plans to lend this $5 million overnight in the fed funds
market over the month but wants to hedge the risk that a falling effective
fed funds rate will reduce the interest it earns. Therefore, the bank buys one
June fed fund futures contract for 99.780 at the end of the last trading day
in May, corresponding to a rate of .220%. See Table 15.11.

Assume for the moment that the bank earns simple interest on its fed
funds lending. Then, given the realized effective rates in Table 15.12, the
bank would earn interest in the fed funds market of

$5,000,000 × 30 × .176%
360

= $736.11 (15.14)

In addition, the sum of the daily settlements from having bought the June
contract at 99.780 (or a rate of .22%) and held it to expiration at a final
settlement price of 99.823 (or a rate of .177%) is

$5,000,000 × 30 × (.22% − .177%)
360

= $41.67 × 4.3 (15.15)

= $179.18 (15.16)

The direct investment proceeds of $736.11 plus the hedge profit of $179.18
equals $915.29. Were it not for the rounding of the rate for the determination
of the final settlement price, the sum of the left-hand sides of equation (15.14)
and (15.16) would identically equal interest earned for 30 days at .22%, i.e.,
at the rate to be locked in by hedging with the June futures contract:

$5,000,000 × 30 × .22%
360

= $916.67 (15.17)

This fed fund futures hedge is less than perfect for two other reasons.
First, the bank does not really earn simple interest on its fed funds invest-
ments over the month: it can compound the interest it earns daily. Second,
since the fed fund futures contract is settled daily, its profit or loss depends
on the financing of daily settlement payments. These two effects are typically
small given the short maturity of liquid futures contracts, but would become
more significant at much higher levels of rates.
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A bank is the subject of the hedging example of this subsection because
only banks can participate in the fed funds market. But, as mentioned earlier,
because many short-term rates are highly correlated with the fed funds rate,
other financial institutions, corporations, and investors use fed funds futures
to hedge other short-term rate risks. For example, a corporation that needs
to borrow money over the month of June might hedge against the risk that
rising rates increase the cost of that borrowing by selling June fed funds
futures. In this context, however, it is important to note that this hedge will
insulate the corporation’s borrowing costs from changes in the general level
of interest rates, but not from changes in the spread of general corporate
borrowing rates over fed funds nor, of course, from changes in the spread of
that particular corporation’s borrowing rate over fed funds. The difference
between the actual risk (e.g., changes in a corporation’s borrowing rate) and
the risk reduced by the hedge (e.g., changes in the fed funds rate) is known
as basis risk.

Hedging Borrowing and Lending with Fed Fund
Futures over Horizons Other than 30 Days

When fed funds futures are used to hedge interest rate risk over horizons
other than full 30-day calendar months, buying or selling one contract per
$5 million face amount is not the correct hedge. This subsection is a detail
of trading, but its results will be used in the TED spread trading case study
later in this chapter.

To put the hedging issues of this subsection in a context, consider the
ED hedges of the 1 3

8 s of March 15, 2012, in Table 15.10. On June 14, 2010,
EDM0 expires and the bond position is again exposed to interest rate risk
from that date up to September 15, 2010, when protection from the EDU0
position kicks in. (See Table 15.8.)

Figure 15.3 shows the regions to be hedged and their corresponding
hedging instruments. June fed fund futures are needed to hedge the risk over
the remainder of that month; July and August fed fund futures are needed
to hedge the risk over 31-day months, and September fed fund futures are
needed to hedge the risk from the start of September up to September 15.
The correct hedges in each of these situations are now considered in turn.

F IGURE 15.3 Hedging the 1 3
8 s of March 15, 2012, as of June 14, 2010, with Fed

Fund and ED Futures



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c15 JWBT539-Tuckman July 25, 2011 20:5 Printer: Courier Westford

Short-Term Rates and Their Derivatives 423

Hedging from With in a 30-Day Month to the End of the Month In Figure
15.3, June fed fund futures are used to hedge the interest rate risk of the 1 3

8 s
from the expiration of EDM0 on June 14 to June 30. The risk of a one basis-
point decline in rates over those 17 days, June 14 to June 30, inclusive,12

is

$101,600,000 × 17 × .01%
360

(15.18)

What is the risk of the June fed funds contract over the same holding
period? Since the contract settles based on the average of the effective rate
over the month, a one basis-point change in the rate over the last 17 days of
June will not change the average or the final settlement rate by a full basis
point but only by 17

30 of a basis point. Hence, the change in the settlement
value of the 30-day fed fund contract is

$5,000,000 × 30 × 17
30 .01%

360
= $5,000,000 × 17 × .01%

360
(15.19)

which, adjusting for notional amount, is exactly the exposure to be hedged
in (15.18). Hence, hedging the long position in the 1 3

8 s requires the sale
of 101.6

5 or approximately 20 contracts. More generally, within a 30-day
month, the number of required contracts is one per $5 million face amount.
Furthermore, it follows that if a fed fund hedge of one contract per $5 million
of face amount is put on at or before the start of a 30-day month, the hedge
rolls off appropriately during the month. In other words, the hedge is valid
within the month as well and does not have to be adjusted during the month.

Months with 31, 28, or 29 Days In Figure 15.3, the interest rate risk of
July 2010 and August 2010 is to be hedged with July and August fed fund
futures, respectively. How many contracts of each should be sold against
the $101.6 million of the 1 3

8 s? Over a month with 31 days, the risk of a
one-basis point change in the simple rate of interest over the entire month is

$5,000,000 × 31 × .01%
360

= $43.06 (15.20)

But, by construction, fed fund futures contracts are designed to hedge
30-day deposits with an exposure of $41.67 per basis point. Hence, to
hedge the interest rate risk of a $5,000,000 loan over a 31-day month re-
quires 43.06

41.67 = 31
30 or 1.033 contracts. Similarly, hedging the interest risk of a

12These contracts expire at 11 A.M. London time, so a U.S. trader is exposed to the
rate risk of the 14th as well.
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28- or 29-day month requires 28
30 = .933 or 29

30 = .967 contracts, respectively,
per $5 million loan amount.

As time passes, hedges for 31-, 29-, or 28-day months do not need to be
adjusted, just as argued in the case of 30-day months.

Hedging from the Start of a Month to Somet ime During the Month In
Figure 15.3, the interest rate risk from September 1 to September 14, inclu-
sive,13 is to be hedged with September fed fund futures. At any time before
the start of September, there are 14 days of interest rate risk and 30 days
of a 30-day month at risk in a 30-day contract. Hence, each $5 million face
amount can be hedged with 14

360 ÷ [( 30
30

) × 30
360

]
or .467 contracts.

During the month of September, however, the problem is a bit more
complicated. Consider the close of business of September 4. There are
10 days of risk left to be hedged and 26 days of a 30-day month at risk in a
30-day contract, implying a hedge of 10

360 ÷ [( 26
30

) × 30
360

]
or .385 contracts per

$5 million face amount. But this means that the .467 contracts per
$5 million that were correct before September decline to .385 by September
4. In other words, the correct number of contracts in the hedge declines as
time passes. Somewhat more generally, as of the close of business of the
mth day of September, 1 ≤ m ≤ 14, the correct hedge is 14−m

30−m contracts per
$5 million face amount.

Appl icat ion: Market Expectat ions of
Fed Pol icy Changes at the Start of the 2004–2006
Tightening Cycle

In deciding whether to buy or sell fed fund futures, market participants
certainly consider their expectations of the fed funds effective rate that will
prevail in the future and, by implication, the target rates that will be set by the
FOMC at its upcoming policy meetings. Making the simplifying assumption
that fed funds futures rates are determined solely by consensus expectations,
market analysts commonly extract the expectations implied by market rates.
Traders and investors then compare these implied expectations with their
individual views about future rates to determine how to trade short-term
rate products. Examples would include a trader who sells fed fund futures,
thinking that market rate expectations are too low (and futures prices too
high), and a portfolio manager who decides not to sell futures to hedge an

13EDU0 expires on September 13 at 11 A.M. London time. Its underlying three-
month LIBOR deposit settles on September 15 at a rate determined on the morning
of the 15th. Hence it is reasonable to use EDU0 to cover the risk on the 15th. Most
important, however, is to make sure that the total number of days covered by the
combination of fed funds and ED contracts is correct.
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TABLE 15.13 Fed Fund Futures Rates as of April 15, 2004

Ticker Month Rate

FFK4 May 1.020%
FFM4 June 1.030%
FFN4 July 1.105%
FFQ4 August 1.220%
FFU4 September 1.315%
FFV4 October 1.415%
FFX4 November 1.550%
FFZ4 December 1.665%
FFF5 January ’05 1.745%

exposure to short-term interest rates, thinking that the cost of such insurance
is too high, i.e., market rate expectations are too high (and futures prices too
low). The question of whether market expectations are the sole determinants
of fed funds futures prices will be discussed at the end of this application.

In late 2010 and early 2011, expectations of FOMC decisions with
respect to the target rate were not particularly interesting: the overwhelming
consensus was that the FOMC would keep the target rate at 0 to 25 basis
points for an extended period of time. A more interesting application is
market expectations as of April 15, 2004, when it was commonly believed
that the FOMC would start a tightening cycle, gradually increasing the target
rate from its then-current level of 1%. That this was indeed the beginning
of a tightening cycle is clearly evident from Figure 15.2.

Table 15.13 gives the first 10 fed fund futures contracts and their rates
as of April 15, 2004. Table 15.14 lists the relevant FOMC meeting dates,14

implied market expectations of FOMC rate increases, the calculations of
which will be described presently, and, in the last column, the target rates
actually chosen at the respective FOMC meetings. Figure 15.4 presents the
same information as this table in a picture; note that rates jump in this figure
the day after the meeting dates.

As of April 15, 2004, the market assigned a small probability, only
9.2%, that the FOMC would increase the target rate and start the tightening
cycle at its May 4 meeting. And, as it turned out, the FOMC did not change
the target rate at that meeting. But the market on April 15 did not do so
well in predicting the outcome of subsequent meetings. At each of the next
five meetings the FOMC increased the target rate by 25 basis points, while
the market had expected a significantly slower increase in the target rate, or

14Some meetings last for two days, in which case the announcement of the target
rate decision is made on the second day. Therefore, Table 15.14 lists the dates of the
one-day meetings or of the second day of the two-day meetings.
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TABLE 15.14 A Set of Expectations of FOMC Target Rates from Fed Fund
Futures Prices as of April 15, 2004

FOMC
Meeting Date

Market-Implied Probability
of a 25bp Tightening

Expected Rate
Path

Rate
After

Meeting

3/16/04 1.00%
5/4/04 9.2% 1.023% 1.00%
6/30/04 32.8% 1.105% 1.25%
8/10/04 67.9% 1.275% 1.50%
9/21/04 56.1% 1.415% 1.75%
11/10/04 81.0% 1.617% 2.00%
12/14/04 51.0% 1.745% 2.25%

equivalently, had assigned probabilities significantly less than 100% to each
of these 25-basis point increases.

The discussion now turns to the calculation of the implied probabili-
ties and expected rates reported in Table 15.14. The target rate on April
15, 2004, is 1% and, according to Table 15.13, the May fed funds futures
rate is 1.02%. To extract market expectations about the next FOMC meet-
ing, on May 4, make the following five assumptions, which will be discussed
further below: 1) the FOMC will change the target rate only on a meeting
date; 2) on a meeting date the FOMC will either increase the target rate
by 25 basis points, with probability p, or leave the rate unchanged with
probability 1 − p; 3) the change in the target rate moves fed funds

0.75%
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1.25%
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1.75%
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2.25%

2.50%
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F IGURE 15.4 An Expected Path for the Fed Funds Target Rate as of April 15,
2004 vs. the Realized Path
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effective the day after the meeting; 4) the average difference between fed
funds effective and the fed funds target rate is zero over contract months;
and 5) futures prices are determined solely by expectations.

Under the assumptions just made, the fed funds target rate from May 1
to May 4, inclusive, is 1%, while the rate from May 5 to May 31, inclusive,
is 1% with probability 1 − p and 1.25% with probability p. Hence, for the
average fed funds rate over the May contract month to equal its market rate
of 1.02%, it must be that

4 × 1% + 27 × [(1 − p) × 1% + p × 1.25%]
31

= 1.02%

1% + 27
31

× p × .25% = 1.02% (15.21)

Solving, p = 9.185%, which also means that the expected rate after the
meeting is (1 − p) × 1% + p × 1.25% or 1.023%.

To take one more example, Table 15.14 reports that the expected rate
after the June 30 meeting is 1.105%. What probability of a 25 basis-point
increase at the August 10 meeting, to an expectation of 1.105% + .25%, or
1.355%, correctly prices the August futures contract? Proceeding as before,
solve for p such that

10 × 1.105% + 21 [(1 − p) 1.105% + p × 1.355%]
31

= 1.22%

1.105% + 21
31

× p × .25% = 1.22% (15.22)

Solving, p = 67.905%.
The rest of the results in Table 15.14 are calculated along the same

lines. It is worth pointing out, however, that there are more fed fund futures
contracts than there are FOMC meetings. This has two implications. One,
an analyst has to select which contracts are to be used to calibrate which
probabilities. Two, prices of contracts not used will not necessarily be priced
correctly by these calibrated probabilities. For example, with FOMC meet-
ings on May 4 and June 30, and with an expected rate of 1.023% after the
May meeting determined by the May futures price, the June futures price
should be 1.023% as well. But the market price of that contract, given in
Table 15.13, implies a rate of 1.03%.15 A different approach, by the way, is

15For completeness, note that the calculations behind Table 15.14 use the October
contract to imply the probability of a tightening at the September 21 meeting and the
January contract to imply the result of the December 14 meeting. These choices mean
that the resulting expected path of rates will not necessarily price the September and
December contracts correctly.
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to solve for the expected path that minimizes some measure of the discrep-
ancy between the monthly averages of rates along that path and all market
futures prices.

This subsection concludes by discussing the assumptions made at the
beginning of the application. Support for the assumption that the FOMC
will change the target rate only on meeting dates has been presented earlier
in this chapter. Except in extraordinary times, the complexity of a model
that incorporates the possibility of inter–meeting changes is probably not
worth the trouble. The assumption that the FOMC changes rates by zero
or 25 basis points was particularly suited to the anticipated tightening cycle
as of April 2004. The prevailing view was that the FOMC would increase
rates gradually, which was in fact the case: no single meeting increased
the target rate by more than 25 basis points over the entire tightening cy-
cle. In other macroeconomic situations, however, changes of more than
25 basis points per meeting might well require consideration. An obvious
difficulty from the modeling perspective is that one fed fund futures price
can imply only one probability, not a full distribution of probabilities, i.e.,
the probability of no move, of a 25 basis-point move, of a 50 basis-point
move, etc. Possible solutions include making somewhat arbitrary assump-
tions about this probability distribution or using the prices of other short-
term securities, like options on ED futures,16 to infer a richer set of market
probabilities.

The assumption that changes in the fed funds target rate affect fed funds
effective the day after the meeting stems from the fact that most fed funds
trading takes place early in the day. By the time the FOMC announces its
decision in the afternoon of a meeting day, most trading for that day has
finished so that fed funds effective has, for the most part, been already de-
termined. The assumption that fed funds effective averages to the target
rate is made here purely for convenience. Any additional information that
market professionals have about the difference between effective and tar-
get, e.g., year-end effects or other calendar regularities, should certainly be
incorporated into the analysis.

The last and far from least important assumption made above is that
futures prices are determined solely by expectations. Chapter 8 discussed the
interest rate risk premium, which tends to cause forward rates to exceed the
expectation of future rates,17 and there is no reason to believe that this risk

16Using ED futures options for this purpose requires adjustments to account for the
spread between LIBOR and fed funds. Making such adjustments is not difficult,
however, given the existence of LIBOR-fed funds basis swaps. See Chapter 16.
17Chapter 8 also showed that convexity tends to lower forward rates relative to
expectations but, in the context of this chapter, which focuses on very short-term
rates, the convexity effect is very small.
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premium is zero at the short end of the curve. It is not difficult to incorporate
a known risk premium into the calculations of this application, although,
as explained in Chapter 8, it is difficult to estimate the risk premium in the
first place.

Overnight Index Swaps

With overnight index swaps (OIS), counterparties swap payments at a fixed
rate for payments based on fed funds effective. Just as FRAs are an over-the-
counter alternative to ED futures for hedging exposure to LIBOR rates, OIS
are an over-the-counter alternative to FF futures for hedging exposure to
fed funds effective. OIS have several advantages relative to fed funds. First,
as will become clear presently, OIS are more accurate than fed fund futures
for hedging the risk of rolling loans at fed funds effective. Second, OIS dates
are customizable, although particular maturities and forward structures do
trade with much more liquidity than others. Third, OIS are liquid out to two
to three years, while fed fund futures are liquid out to four to eight months.

OIS have become particularly well-known since the financial crisis of
2007–2009 through the LIBOR-OIS spread, which has been adopted as
a premier measure of stress in the financial system. The idea behind using
this spread as a measure of stress, along with the historical behavior of that
spread, will be presented in the next section.

Consider $100 million notional amount of a 14-day OIS swap, from
June 1 to June 14, 2010, in which party A agrees to pay .2% to party B
while party B agrees to pay compounded fed funds effective. The fixed side of
the swap is simple, with party A paying $100mm × 14×.2%

360 or $7,777.78 at
expiration of the swap. Using the fed funds effective rates from Table 15.12,
Table 15.15 shows how to calculate the floating rate payment. Starting
with a notional amount of $100 million, the notional accumulates at fed
funds effective on an actual/360 basis, where this accumulation includes
compounding. This means that interest over the first day, June 1, is based
on the original notional amount and fed funds effective for June 1, i.e.,
$100mm × .2%

360 or $555.556, while interest over June 10 is based on the
accumulated notional as of June 9 and fed funds effective for June 10, i.e.,
$100,004,777.87 × .18%

360 or 500.02. Note too that simple interest is earned
over non-business days, consistent with money market convention. Hence,
the total interest over June 4, 5, and 6 equals $100,001,638.90 × 3×.19%

360 or
$1,583.36. The floating payment of the OIS at expiration is the sum of the
interest payments in Table 15.15 or $7,278.01.

The important point to take away from the calculations of Table 15.15
is that the resulting floating rate payment replicates the interest a lender
would earn from rolling over an initial principal amount of $100 million in
the fed funds market for 14 days. Hence, the combination of the following
three trades locks in daily compounded lending at .2% over the life of the
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TABLE 15.15 Calculating the Floating Payment of a 14-Day OIS Swap

Accumulated
Date Rate Days Interest Notional

100,000,000.00
6/1/10 .20% 1 555.56 100,000,555.56
6/2/10 .20% 1 555.56 100,001,111.11
6/3/10 .19% 1 527.78 100,001,638.90
6/4/10 .19% 3 1,583.36 100,003,222.26
6/7/10 .19% 1 527.79 100,003,750.05
6/8/10 .19% 1 527.80 100,004,277.85
6/9/10 .18% 1 500.02 100,004,777.87
6/10/10 .18% 1 500.02 100,005,277.89
6/11/10 .18% 3 1,500.08 100,006,777.97
6/14/10 .18% 1 500.03 100,007,278.01

Total 14 7,278.01

swap: receive .2% fixed rate from the OIS swap; pay the realized interest
amount calculated as in Table 15.15; and earn interest from rolling $100
million in the fed funds market.

For OIS with maturities greater than one year, payments are annual. To
determine the payment dates, start from the maturity date and count back
in annual increments. An 18-month OIS, for example, would make its last
payment in 18 months and its earlier and first payment in 6 months.

The most obvious uses of OIS are for hedging borrowing and lending
in the fed funds market or borrowing and lending in a market where the
rate tracks fed funds closely. One important example of the latter is the
repo market. As discussed in Chapter 12, the general collateral repo rate is
usually somewhat below the fed funds rate. Hence, a market participant that
is borrowing or lending overnight in the repo market can hedge changes in
the repo rate by overlaying an OIS swap. The hedge is not perfect, of course,
because the spread between repo and fed funds can change, as also discussed
in Chapter 12.

The ability to customize OIS dates creates additional uses for the prod-
uct. Two relatively liquid examples of this include the following: one, OIS
between two sequential IMM dates, which, in combination with ED futures,
can be used to hedge or speculate on future spreads between LIBOR and fed
funds rates; two, OIS between two sequential meeting dates of the FOMC,
which can be used to hedge or speculate on the policy action taken at the
first of those two meetings.

This subsection, as part of a section on fed funds, described USD OIS.
OIS in other currencies are quite similar in spirit, although based on different
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overnight rates and, in some cases, different day-count conventions. For EUR
the OIS reference rate is EONIA; for JPY, TONAR;18 and for GBP, SONIA.

L IBOR-OIS AS AN INDICATOR
OF F INANCIAL STRESS

Consider a scenario in which a bank has decided to fund itself at a rate
that varies with fed funds effective and is choosing between two ways of
doing so. First, the bank can borrow directly in the fed funds market at
the fed funds rate. Second, the bank could borrow for three months at a
three-month LIBOR rate of 1%, pay fed funds effective through a three-
month OIS, and receive .8% over three months through that same OIS. In
this example, the three-month LIBOR-OIS spread is 1%–.8% or 20 basis
points, and the second of the bank’s funding options results in a total funding
cost of fed funds plus 20 basis points. Why would the bank prefer this second
option, at fed funds plus 20, when it could borrow overnight directly at fed
funds flat?

The answer is that, in the second option, the bank locks up its funding
source for three months. Should there be a credit event, which lowers the
creditworthiness of the individual bank or the perceived creditworthiness
of the banking system, or should there be a liquidity event, which makes
investors extremely reluctant to part with cash, the bank will have some time
to sort out its funding sources and requirements. And in the special case of
a short, intense crisis, the locked-up funding might allow the bank simply
to wait until the storm passes. By contrast, had the bank been borrowing
directly in the overnight fed funds market as a credit or liquidity event struck,
its access to the fed funds market and other funding alternatives might vanish
too quickly to be replaced. And were that the case, the bank might have to
sell assets or even itself at fire-sale prices or, in the most extreme crises, to
declare bankruptcy.

The implications of this discussion are that banks should be willing to
pay something to lock in their funding and that a market price for lock-
ing up three-month funding relative to overnight funding is given by the
LIBOR-OIS spread. Furthermore, the greater the concern about credit and
liquidity conditions, the greater that spread would be.

This interpretation of the LIBOR-OIS spread, combined with its behav-
ior over 2007–2009, to be described presently, has led to its adoption as a
key indicator of financial stress. Figure 15.5 shows the three-month LIBOR-
OIS spread from October 2005 to July 2010, for both USD and EUR. The
averages of these spreads from October 2005 to the beginning of July 2007

18The Overview briefly describes these rates.
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were about 8 basis points in USD and about 6 basis points in EUR, sugges-
tive of minimal perceived credit and liquidity risks. As the subprime crisis
intensified through the second half of 2007 and into 2008, these spreads
widened to new levels of 50 to 100 basis points. Then, from the bankruptcy
of Lehman Brothers in mid-September 2008, spreads spiked, with the USD
spread reaching a peak of 365 basis points on October 10, 2008. Since then,
as shown in the figure, the spread has fallen considerably.

TRADING CASE STUDY: SHORTING THE TED
SPREAD OF THE 1 3

8S OF MARCH 15, 2012

This case illustrates how to short a bond against ED futures, with focus on
hedging the stub and the complications of the hedging contracts’ maturing
over the life of the trade. Based on the analysis earlier in this chapter, a
trader decides to short the 1 3

8 s of March 15, 2012, against ED futures at a
TED spread of 50 basis points. The ED futures hedge is along the lines of
the analysis earlier in this chapter. To hedge the stub, however, the trader
finds it most convenient to buy fed fund futures, constructing this part of
the hedge along the lines of the hedging analyses earlier in this chapter.
Furthermore, when EDM0 matures, the new stub period is hedged with fed
fund futures.19

19It should be noted that hedging these stub periods with fed fund futures is not really
internally consistent, since fed funds is not a LIBOR-based rate. If the LIBOR-fed
funds basis is a particular concern, a LIBOR-fed funds basis swap can be added to
the trade. See Chapter 16.
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TABLE 15.16 Shorting the TED Spread of the 1 3
8 s of March 15, 2012, from

Setttlement Dates of June 1, 2012, to July 6, 2012

Hedge Coverage
Trade Principal/ Initial Ending
Date Security Start End Contracts Price Price P&L

5/28/10 1 3
8 s 6/1/10 3/15/12 −100mm 101.588 101.891 −302,650

5/28/10 FFM0 6/1/10 6/16/10 10 99.780 99.803∗ 950
5/28/10 EDM0 6/16/10 9/15/10 103 99.400 99.463 16,223
6/14/10 FFM0 6/16/10 7/1/10 10 99.810 99.823 542
6/14/10 FFN0 7/1/10 8/1/10 21 99.790 99.810 1,750
6/14/10 FFQ0 8/1/10 9/1/10 21 99.780 99.800 1,750
6/14/10 FFU0 9/1/10 9/15/10 10 99.770 99.795 1,042
5/28/10 EDU0 9/15/10 12/15/10 102 99.155 99.375 56,100
5/28/10 EDZ0 12/15/10 3/16/11 102 99.005 99.265 66,300
5/28/10 EDH1 3/16/11 6/15/11 101 98.875 99.170 74,488
5/28/10 EDM1 6/15/11 9/21/11 109 98.705 99.040 91,288
5/28/10 EDU1 9/21/11 12/21/11 100 98.495 98.880 96,250
5/28/10 EDZ1 12/21/11 3/15/12 94 98.245 98.660 97,525

Total price appreciation, including accrued interest 201,558

Repo loan of $101.588mm @.22% for 35 days 21,729

Grand Total 223,287

∗Weighted average sales price as hedge is reduced over time

Table 15.16 describes the P&L components of the short 1 3
8 s TED spread

trade inititated on May 28, 2010, and unwound on July 2, 2010, correspond-
ing to bond settlement dates of June 1 and July 6, respectively. Not shown
in the table are the initial and final TED spreads, 50 and 38 basis points
respectively.

The hedge implemented on May 28, 2010, is to buy 10 FFM0, 103
EDM0, 102 EDU0, etc. The ED contracts come directly from the hedge
derived earlier in this chapter while the 10 FFM0 are the implementation of
the 17 contracts required for the stub of that hedge. That many ED contracts,
at $25 per basis point, is equivalent to 17×25

41.67 or about 10 FF contracts at
$41.67 per basis point. Furthermore, it is most sensible to buy FFM0 to
cover the stub risk from June 1, 2010, to June 16, 2010, even though that
fed fund contract is sensitive to rates over the whole of June. This is the
usual difficulty of hedging with standardized contracts.

As time passes, two adjustments have to be made to the hedge that was
established at the initiation of the trade. First, from June 1 to June 16 the
FFM0 hedge has to be reduced gradually, along the lines of the discussion
earlier in this chapter. For this reason, the “Ending Price” of FFM0 in Table
15.16 is the weighted average price at which these 10 contracts are sold
over time.
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The second adjustment to the original hedging program occurs at the
maturity of EDM0 on June 14, 2010. The expiration of this contract means
that the interest rate exposure of the short bond position over the 92 days
from June 16 to September 1520 is no longer hedged. The total number
of fed funds contracts replacing the 103 ED contracts is 103×25

41.67 or about
62. Prorating these across the fed fund contracts by the number of days of
exposure in each month gives the following: 62 × 15

91 or 10 FFM0; 62 × 31
92 or

21 of each of FFN0 and FFQ0; and 62 × 14
92 or 10 of FFU0. The initial price

of each of these contracts reported in Table 15.16 is as of their purchase on
June 14.

The “Initial Price” and “Ending Price” columns of Table 15.16 show
that fixed income prices have increased, or rates fallen, over the course of
the trade, meaning that the short position in the bond lost money, while
the hedge made money. The sum of the price changes is $201,558 to which
is added the $21,729 in interest earned from the repo transaction used
to short that bond.21 But the best way to make sense of the P&L of the
trade is to recall that the TED spread of the bond fell 12 basis points,
from 50 to 38, and that the ’01 of the bond position, derived earlier in this
chapter, was $18,190. Therefore, the P&L was expected to be approximately
12 × $18,190 or $218,280.

20This exposure includes the day of June 16 but not of September 15.
21When shorting a bond, a trader pays its coupon interest but earns repo interest on
its sale price. See Chapter 12.
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CHAPTER 16
Swaps

P arts One and Two of this book have already devoted substantial atten-
tion to the valuation and risk of the fixed sides of interest rate swaps.

This chapter, therefore, focuses more on the valuation and risk of the
floating sides of swaps and on other assorted issues relating to swap mar-
kets. These latter topics include counterparty risk, recent legislative and
regulatory efforts to “clear” swaps, basis swaps, and constant-maturity
swaps (CMS).

SWAP CASH FLOWS

Through an interest rate swap two parties agree to exchange interest pay-
ments calculated at a fixed rate for interest payments calculated at a short-
term rate that changes over time. For discussion, consider the following
swap. On May 28, 2010, party A agrees to pay party B 1.235% on $100 mil-
lion semiannually for two years while party B agrees to pay party A three-
month LIBOR quarterly on that same amount over that same period. In the
terminology of the swap market, 1.235% is the fixed rate and three-month
LIBOR is the floating rate. Party A pays fixed and receives floating while
party B receives fixed and pays floating. The $100 million is the notional
amount of the swap, rather than face or principal amount, because it is used
solely to calculate the interest payment: the notional amount is never itself
exchanged. Table 16.1 gives the cash flows of this swap using illustrative
levels of three-month LIBOR realized on future dates.

Swaps settle T + 21, so for this swap, traded on May 28, 2010, interest
begins to accrue on June 2, 2010. Interest payments on the fixed leg of
the swap, given in Column (4) of Table 16.1, are paid semiannually and
computed on a 30/360 basis. The fixed payment dates of this swap are
December 2 and June 2 of each year, so long as these dates are business
days. If not, like June 2, 2012, which falls on a Saturday, the payment is

1Swaps denominated in GBP settle T + 0.

435
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TABLE 16.1 Cash Flows on a 1.235% Two-Year, $100 Million Interest Rate
Swap Against Three-Month LIBOR for Settle on June 2, 2010, with Illustrative
Future Levels of Three-Month LIBOR

(1) (2) (3) (4) (5) (6) (7)

Cash Flows

Actual With Fictional Notional
3-Month
LIBOR

Payment
Date

Actual
Days A Pays B Pays A Pays B Pays

.50% 6/2/10

.75% 9/2/10 92 127,778 127,778

.75% 12/2/10 91 617,500 189,583 617,500 189,583

.75% 3/2/11 90 187,500 187,500

.75% 6/2/11 92 617,500 191,667 617,500 191,667
1.00% 9/2/11 92 191,667 191,667
1.00% 12/2/11 91 617,500 252,778 617,500 252,778
1.00% 3/2/12 91 252,778 252,778

6/4/12 94 624,361 261,111 100,624,361 100,261,111

made on the following business day, i.e., June 4, 2012.2 When payment
does fall on the second day of the month, the 30/360 day count between
payments will be 180 and the payment will be 180

360 or one half times the
fixed rate times the notional amount. In the present example, the payment is
1
2 × 1.235% × $100mm or $617,500. When the payment date does not fall
on the second of the month, the interest payment is adjusted for the correct
number of days. For the payment falling on June 4, 2010, there are two extra
days of interest3 worth 2

360 × 1.235% × $100mm or $6,861, which, when
added to the 180-day payment of $617,500, gives $624,361.4 Note that
swaps are different from bonds in this respect. When a bond payment date
falls on a non-business day and payment is pushed to a subsequent business
day, the amount of interest is not increased. This difference is taken into
account, of course, by careful pricing methodologies.

2In the modified following convention, which is the most common for swaps, a
payment is delayed until the subsequent business day unless that delay pushes the
payment into a different calendar month. In that case, the payment is, instead,
brought forward to the nearest business day.
3With June 2 falling on a Saturday, the next payment would normally be on Monday,
June 4. However, there is a special bank holiday in London on June 4 and June 5 of
2012, so this payment would actually be made on June 6 and the interest adjusted
accordingly.
4Equivalently, there are 182 30/360 days between December 2, 2011, and June 4,
2011, so the payment is 182

360 × 1.235% × $100mm or $624,361.
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The interest payments of the floating leg of the swap are given in Col-
umn (5) of Table 16.1. The LIBOR rates, given in Column (1), are used to
compute these quarterly floating rate payments, which are set in advance but
paid in arrears. For the first quarterly payment, on September 2, 2010, the
payment is determined as follows. On May 28, 2010, three-month LIBOR is
observed to be .50%. (This setting or fixing date is not shown in the table.)
Next, two business days later, on June 2, 2010, interest begins to accrue at
this observed rate on an actual/360 basis. Then, 92 days later, on September
2, 2010, the payment of 92

360 × .5% × $100mm or $127,778 is made. Note
that setting in advance and paying in arrears implies that the amount of each
quarterly floating rate payment is known three months before it is made. To
take one more example, the .75% LIBOR observed two business days before
June 2, 2011, is used for calculating the payment accruing over the 92 days
between June 2, 2011, and September 2, 2011, i.e., 92

360 × .75% × $100mm
or 191,667.

It is noted here that the floating legs of EUR-denominated swaps are
typically set off Euribor, not EUR LIBOR. (See Chapter 15.)

Before moving on to valuation issues, note that swaps are complex
legal agreements, usually executed under the industry standard ISDA Master
Agreement. Details are available on the website of the International Swaps
and Derivatives Association.

THE VALUATION OF SWAPS

As first mentioned in Chapter 2, when valuing interest rate swaps it is
convenient to add a fictional payment of the notional amount to both the
fixed and floating legs so that the payment schedule of the swap is as depicted
in Columns (6) and (7) of Table 16.1. Under the assumption that swap
payments are default-free, an assumption that will be discussed later in this
chapter, adding this fictional payment from party A to party B and an equal
payment from party B to party A has no effect on the value of the swap. But,
with these fictional payments, the fixed leg of the swap resembles a fixed
rate coupon bond and the floating leg resembles a floating rate note.

Until the onset of the 2007–2009 financial crisis, it had been traditional
to assume that one could invest risklessly at the LIBOR index, or equiv-
alently, for example, that arbitrage arguments justify discounting a three-
month cash flow at three-month LIBOR. Under that assumption, as shown
later in this section, the floating leg of a swap (with its notional principal
payment) is worth par at reset dates. It then follows immediately that the
fixed leg of a swap, which is exchanged for the floating leg without any other
exchange of cash, must also be worth par. With the value of the fixed sides
of par swaps pinned down in this way, their valuation proceeds along the
lines of Part One. More specifically, discount factors, spot rates, or forward
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rates are derived from the cash flows of the fixed legs of par swaps and their
par prices, and then the fixed legs of non-par swaps are priced by arbitrage.

Since the onset of the financial crisis, however, this traditional valua-
tion methodology has been overturned. Federal (fed) funds rates and their
international equivalents, or Overnight Indexed Swap (OIS) rates, are now
recognized as better proxies for riskless investable rates. This change voids
the conclusion that the floating legs of LIBOR swaps are worth par and also
voids the valuation methodology for the fixed legs of swaps presented in Part
One. Furthermore, market participants now explicitly account for a related
flaw in the methodology of Part One. As will be shown in Chapter 17, since
the collateral posted to ensure the performance of swaps earns fed funds,
the value of non-par swaps cannot be computed from the value of par swaps
along the lines derived in Part One.

The widespread change in swap valuation methodology followed the
crisis because, as discussed in Chapter 15, the spread between LIBOR and
OIS, which had been reliably below 10 basis points for years before the
crisis, exploded to hundreds of basis points during the crisis. Hence, a valu-
ation methodology based exclusively on LIBOR quantities, which had been
deemed accurate enough before the crisis, was deemed so no longer. A wa-
tershed moment for the shift away from the traditional methodology was
in June 2010, when LCH.Clearnet, the most significant swap clearinghouse,
moved from LIBOR to OIS discounting.

To allow the reader to digest the fundamentals of swap valuation before
having to face all its nuances, this section presents the traditional, LIBOR-
based valuation, which is reasonably accurate when LIBOR-OIS spreads are
low. Chapter 17 explains and justifies the OIS-based approach.

The valuation of the floating side of a swap seems difficult at first because
the LIBOR settings on future dates are not known as of the initial valuation
date. With the fictional notional payment, however, the floating leg can, in
fact, be valued. Start at maturity and work backward, three months at a
time. Let the swap maturity be T years, the three-month LIBOR set three
months before maturity LT−.25, and the number of days in that three-month
period dT−.25. Then, taking LIBOR as the appropriate discount rate, the
value of 100 notional of the floating leg in T − .25 years is its date-T cash
flows discounted over those dT−.25 days:5

100 + 100 × LT−.25×dT−.25
360

1 + LT−.25×dT−.25
360

= 100 (16.1)

5If the number of days is not exactly three months, then the interest payment is
still based on three-month LIBOR but the rate used for discounting is not exactly
three-month LIBOR. In this case the value of the floating leg will be very slightly
different from par.
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In words, three months before maturity the floating leg is worth par. Intu-
itively, since the rate earned over the payment period is the same as the rate
used for discounting, its present value is just the face amount.

Now value the swap six months before maturity, in T − .5 years. Since,
by ( 16.1), the floating leg is worth 100 in T − .25 years, its value in T − .5
years is 100 plus its interest payment in T − .25 years all discounted at the
LIBOR set in T − .5 years. But this value is again par:

100 + 100 × LT−.5×dT−.5
360

1 + LT−.5×dT−.5
360

= 100 (16.2)

Continuing to roll backward in this way shows that the value of the floating
leg at initiation of the swap is worth par as well.

The argument just made proves that the value of the floating leg at the
beginning of each accrual period, including the initial settlement date of
the swap, is par. But what is the value of the floating leg on some pricing
date between initial settlement and the first payment date? Say that the first
LIBOR setting was L0, that there are d days from the pricing date to the
next payment, and that the appropriate rate for discounting over those d
days is L.6 Then, since the floating leg will be worth par immediately after
the next payment, the value of the floating leg as of the pricing date is

100 + 100 × L0×d0
360

1 + L×d
360

(16.3)

To summarize the pricing of the floating leg of a swap, the instant the
LIBOR setting is observed, the value of the floating leg as of the beginning
of the next interest accrual period is par. But a moment later, once the
next floating payment is fixed, (16.3) says that the value of the floating leg
equals the value of a short-term bond with coupon equal to the last observed
LIBOR setting and with maturity equal to the days until the next floating
payment date.

To illustrate the points made so far in this section, Table 16.2 prices,
as of May 28, 2010, 100 face amount of a fixed versus three-month LIBOR
swap that originally settled on December 15, 2009. The fixed rate is 1.386%,
the swap matures on December 15, 2011, and the previous three-month

6In practice, the rates for discounting swap cash flows that occur before the first
observable par swap are determined by a curve-fitting algorithm like that of Chap-
ter 21. Note that LIBOR of other terms cannot be used for this purpose without
adjustment. For example, payments of a fixed versus three-month LIBOR swap that
will be made in one month cannot be discounted by one-month LIBOR. See the
discussion of basis swaps and spreads later in this chapter, and Chapter 17.
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TABLE 16.2 Pricing a Swap as of May 28, 2010, that Originally Settled on
December 15, 2009

Previous LIBOR Setting .257%

Discount Fixed-Leg Floating-Leg
Date Factor “Cash Flows” “Cash Flows”

6/15/10 .999824 1
2 1.386 100 + 92

360 .257

12/15/10 .996185 1
2 1.386

6/15/11 .990908 1
2 1.386

12/15/11 .983968 100 + 1
2 1.386

Present Value 101.15 100.05
Net Present Value 1.10

LIBOR setting, in the middle of March 2010, was .257%. The discount
factors used in the table are those derived from a curve-fitting methodology,
like that of Chapter 21, as of May 28, 2010.

The two “Cash Flows” columns in Table 16.2 give the fictional cash
flows used for pricing the two legs of the swap. For the fixed leg this means
including the fictional notional at maturity. For the floating side this means
taking the value of the floating leg on the next floating payment date, i.e.,
on June 15, 2010, to be par, which means that its present value is found
by discounting par plus the coupon accrued over the 92 days since March
15, 2010.

The last two rows of Table 16.2 give the present value (PV) of each
leg of the swap and the net present value, or NPV of the swap as a whole.
NPV is defined, for the receiver of fixed, as the PV of the fixed leg minus
the PV of the floating leg. From the perspective of the receiver of floating,
the NPV is the PV of the floating leg minus the PV of the fixed leg, which
is just the negative of the NPV for the receiver of fixed. If not otherwise
specified, however, NPV is conventionally calculated from the perspective
of the receiver of fixed.

As mentioned in Part One, most swaps are initiated at par, that is, such
that the value of the fixed leg is par. And, by the analysis of this section,
the value of the floating leg at initiation is usually par as well. Hence, swaps
are usually initiated without any initial exchange of cash. If, however, a
swap is initiated with a rate different from the par rate (e.g., as part of
an asset swap transaction; see Chapter 19) or if, as a result of day count
idiosyncracies, the value of either leg is not exactly par (see Chapter 21),
then the NPV of the swap is paid by one party to the other at the time
of initiation. Note, however, that the receiver of any such up-front cash
payment generally has to post that NPV as collateral to ensure performance
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of obligations under the swap. Collateral posting is governed by the credit
support annex (CSA) of an ISDA Master Agreement. The economics of
posting collateral against swaps and the related pricing issues are a focus of
Chapter 17.

Once traded, a swap may be kept in place until its maturity or it may
be unwound early. Should both parties agree to unwind the swap, one party
would pay the other the NPV of the swap at that time. Say, for example,
that the parties to the swap described in Table 16.2 were to terminate the
swap on the pricing date of the table, i.e., on May 28, 2010. For both parties
to be willing to “tear up” this swap, the fixed payer would have to pay the
NPV, or 1.10 per 100 face amount, to the fixed receiver. The fixed payer
is content to pay 1.10 and to give up the floating payments worth 100.05
in exchange for no longer having to make fixed payments worth 101.15.
Similarly, the fixed receiver is content to give up the fixed payments worth
101.15 in exchange for receiving 1.10 and no longer having to make floating
payments worth 100.05.

To complete the discussion about unwinding swaps, it should be men-
tioned that if only party A wants to unwind a swap between parties A and
B, party A can, with the consent of party B, assign the swap to a third party,
C. In that case, after party A pays the NPV to or receives the NPV from
party C, as appropriate, the original swap becomes an agreement between
parties B and C. Market custom is for party B to agree to such an assignment
request unless there is a reasonable objection, most often related to the credit
of counterparty C. See the discussion of credit risk and interest rate swaps
later in this chapter.

A NOTE ON THE INTEREST RATE RISK OF SWAPS

Part Two developed methodologies to measure and hedge interest rate risk
and applied them to the fixed sides of swaps. With the discussion of the
previous section, these same methodologies can be applied to the floating
sides as well. In particular, the interest rate risk of the floating leg at any
particular time is the same as that of a bond making a single payment of
par plus interest on the next floating payment date. This leads to a repeating
pattern. Just after the setting of the next floating rate payment, the DV01 (or
duration) of the floating leg is approximately equal to the time to that next
payment. DV01 then falls with time, reaching nearly zero just before the
next payment date, after which payment it jumps back up to approximately
the time between resets. The generic name for the interest rate risk of the
floating leg is reset risk.

Strictly speaking, the DV01 of receiving fixed in a swap is equal to the
DV01 of its fixed leg minus the DV01 of its floating leg. This observation
is not particularly useful, however, because it makes much more sense to
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hedge the fixed and floating legs separately: the value of the fixed leg depends
on relatively long-term rates while the value of the floating leg depends on
short-term rates. Put another way, subtracting the DV01s and hedging the
net exposure with a relatively long-term security implicitly hedges the float-
ing leg with that same long-term security, which hedge results in unnecessary
curve risk. In practice, traders and portfolio managers who use a relatively
limited number of swaps do hedge the portfolio of fixed legs and the portfo-
lio of floating legs separately. The portfolio of the fixed legs is hedged using
any of the methods described in Part Two while the portfolio of floating
legs is hedged with short-term rate derivatives along the lines of Chapter 15.
Swap trading desks, on the other hand, with portfolios of very many swap
contracts, hedge using partial or forward bucket ’01s, as described in Chap-
ter 5, which methodologies automatically separate exposures arising from
different parts of the curve.

ON CREDIT RISK AND INTEREST RATE SWAPS

It is very important to distinguish between the credit risk that is inherent in
the LIBOR index and the credit risk of a swap agreement. The former, as
discussed in Chapter 15, arises because LIBOR is the rate on an unsecured,
short-term loan between large financial institutions. Since there is some
risk that a financial institution will default on its borrowings, LIBOR is
above the rates of equivalent maturity, safer loans, like U.S. Treasury bills
or the secured loans of repo transactions. Furthermore, since an interest
rate swap exchanges a fixed rate for future LIBOR rates, expectations and
risk premia with respect to future LIBOR rates will have an impact on
observed swap rates.

Completely separate from the risk of the LIBOR index, however, is the
counterparty risk of a swap agreement, i.e., the risk that one party to the
swap will default on its obligations to make contracted fixed or floating
payments. A swap of fixed versus the three-month Treasury bill rate with
a small corporation would have a substantial amount of counterparty risk
even though the floating rate index of the swap has almost no credit risk com-
ponent. Conversely, a swap of fixed versus a three-month commercial paper
rate with an agency of the U.S. government would have almost no counter-
party risk even though the level of the index reflects corporate credit risk.

The next important point to make in this section is that the counterparty
risk of a swap is relatively small, certainly in comparison with the credit risk
of a corporate bond. First, as a swap agreement requires the exchange of
only interest rate payments, there is no settlement risk with respect to a
terminal exchange of the notional amount (i.e., the risk that a payment of
notional is made but that no offsetting payment is received). Second, should
one counterparty default on an interest payment, the other counterparty
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need no longer make interest payments either. Hence, each counterparty is
at risk only for the NPV of the swap, i.e., the difference between the value
of receiving contracted cash flows and the value of paying contracted cash
flows. In the example of Table 16.2, the fixed receiver is at risk for 1.10 per
100 notional amount. By contrast, the holder of a corporate bond with the
same coupon and maturity, would be at risk for the full 101.15.7 The NPV of
a swap can certainly be substantially higher than 1.10—imagine a 20-year
swap that was initiated 10 years ago when rates were much higher—but
the NPV is always substantially smaller than the notional amount. This
is an important point to bear in mind when the swap exposure of a cor-
poration or a financial institution is quoted in terms of notional amount:
the true exposure is the NPV of the swap book, which is a much smaller
quantity. This discussion also reveals why adding fictional payments of the
notional amounts to both legs of the swap, so useful a device for valuation
in the absence of counterparty risk, can be misleading in the presence of
counterparty risk.

Some swaps, particularly those in which one counterparty is a non-
financial corporation, are subject to the counterparty risk described in the
previous paragraphs. Between dealers, other financial institutions, and many
other counterparties, however, this counterparty risk is largely eliminated
by means of collateral requirements. The details and mechanics of these
requirements are discussed in Chapter 17, but the salient point is as fol-
lows. Say that, in a swap between parties A and B, the NPV with respect to
party A is negative, i.e., A owes money in PV terms. In this situation, the
swap agreement would require A to post collateral to party B equal to this
amount owed. If A should then default, B can sell the collateral and be made
whole with respect to the value of the swap.

Ignoring bid-ask spreads, swaps that have collateral agreements are
usually initiated at prevailing or quoted market rates. Swaps without collat-
eral agreements, on the other hand, often include a credit-value adjustment
(CVA) in the fixed rate. This means that the weaker counterparty would
receive less than the prevailing rate if receiving fixed or pay more than the
prevailing rate if paying fixed. The stronger counterparty can collect these
spreads versus prevailing rates and hold them against future credit losses.
Or, if the credit of the counterparty can be traded in credit default swap
(CDS) markets (see Chapter 19) or private insurance markets, the stronger
counterparty might buy insurance against a counterparty default. This is
not a straightforward exercise, by the way, because the market for trading
individual credits is not particularly liquid and the exposure that has to be

7The credit-risk analogue to this swap in the bond context is actually a repo transac-
tion in which the borrower of the bond or lender of cash defaults. The lender of the
bond then loses the 101.15 value of the bond, but no longer has to repay borrowings
plus accrued interest of 100.05, for a total loss of 1.10.
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insured, namely the NPV of the swap, changes constantly. Finally, it is worth
noting that most institutions set limits on the amount of swap exposure they
have with each of their swap counterparties.

MAJOR USES OF INTEREST RATE SWAPS

The first major use of swaps to be discussed in this section is to hedge
future issuance of corporate debt. Once a corporation has decided to sell
bonds to fund its capital expenditures or operations, it may want to hedge
against rising interest rates from the time of its decision to raise funds until
the actual sale of the bonds. To hedge the future issuance of 10-year debt,
for example, it can pay fixed on a 10-year swap at the time of the decision
and unwind the swap at the time of the bond sale. Or, perhaps even more
effectively, it can pay fixed on a 10-year swap with forward settlement at the
time of the bond sale. In either case, if rates rise between the decision and
the bond sale, the corporation will have to pay a higher coupon rate on its
debt but will have gained from its swap position. Of course, if rates fall then
the corporation will not benefit from selling debt at a lower rate because
the PV of that gain will have been offset by losses from its swap position.
While hedging the risk of future issuance with swaps is perfectly reasonable,
substantial basis risk remains. First, swap rates reflect the short-term credit
risk of the banking system rather than long-term, generic, corporate credit
risk. Second, swap rates cannot possibly hedge the risk that the credit of a
particular corporation worsens relative to short-term bank credit.

A second use of interest rate swaps, also by corporations, is to create
synthetic floating rate debt. Consider a corporation that has decided to
borrow at short-term, floating rates, perhaps because it believes that interest
rates will not increase or perhaps because its assets are also short-term in
nature. In any case, the corporation can consider two options. First, issue and
plan to roll over short-term debt, like commercial paper. Second, issue long-
term floating rate debt. Both of these options have the desired interest rate
exposure, but each has serious drawbacks. With respect to issuing short-term
debt, only the most creditworthy companies can tap into the commercial
paper market. Even a company with the ability to sell commercial paper,
however, might be leery of bearing too much liquidity risk, i.e., the risk
of having to replace maturing short-term debt at a time of stress in its
own financial situation or in the wider financial system. Issuing long-term
floating rate debt solves for the problem of liquidity risk,8 but the market

8Naturally the maturities of the floating rate issues would have to be staggered so
that rolling over large amounts of debt never has to happen over a short period
of time.
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for long-term floating rate debt is very small. A popular solution for such
corporations, therefore, is to issue fixed rate debt and then receive fixed and
pay floating in a swap. The net effect of this strategy is to achieve floating
rate funding at some spread above three-month LIBOR or, if different, above
the floating rate index of the swap.

A third use of interest rate swaps is to hedge mortgage-related inter-
est rate risk. (Mortages and mortgage-backed securities are the subject of
Chapter 20.) As discussed in the Overview the mortgage market is the single,
largest fixed income market in the United States. This means that there is a
lot of interest rate risk to be hedged. Furthermore, because the interest rate
risk of mortgages and mortgage-backed securities changes over time, hedges
have to be adjusted over time. Significant hedging demand of this sort comes
from the portfolio businesses of the government-sponsored entities (GSEs),
in which they sell fixed rate debt and buy mortgages. Additional demand
comes from mortgage servicers because the value of their future fees, col-
lected in compensation for processing mortgage payments, is quite sensitive
to the level of interest rates.

The demand to hedge long positions in mortgages with swaps is so great,
in fact, that the market for swaps is sometimes distorted by mortgage-related
hedging activity. For example, rising mortgage rates, which usually increase
the interest rate risk of outstanding mortgages (see Chapter 20), generate a
demand to hedge this increased risk by paying fixed in swaps. This demand
has been substantial enough at times to push swap rates down significantly
relative to other rates (e.g., governments). A natural question is why this
effect is not offset by the demand to hedge short positions in mortgages by
receiving fixed in swaps. The answer is that homeowners are the main shorts
in the mortgage market, and they simply do not hedge their interest rate risk.

The final use of swaps to be mentioned here is to manage mismatches
between the durations of assets and liabilities. As discussed in the Overview,
the liabilities of pension funds and insurance companies tend to have longer
durations than the assets they wish to purchase. As a result of internal and
regulatory pressures, however, these institutions need to limit the mismatch
between their asset and liability durations. Receiving fixed in swap is an
effective way to lengthen asset duration and achieve this goal.

THE REGULATORY AND LEGISLATIVE MANDATES TO
CLEAR OVER-THE-COUNTER DERIVATIVES

Historically, interest rate swaps had been an over-the-counter (OTC) prod-
uct. The term OTC literally means that the product does not trade on an
organized exchange, in contrast with, to cite examples covered in earlier
chapters, bond and note futures, ED futures, and fed funds futures that
trade under the rules and procedures of a futures exchange. More broadly



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c16 JWBT539-Tuckman July 26, 2011 23:15 Printer: Courier Westford

446 SELECTED SECURITIES AND TOPICS

defined, OTC products are bilateral agreements in which two counterparties
independently set the terms of a trade, manage cash flows and any collateral
requirements, and bear all of the market and counterparty risks.

During and following the financial crisis of 2007–2009, a narrative
emerged in which the OTC derivatives market as a whole played a signifi-
cant role in the crisis. In particular, it was argued that the complex intercon-
nectedness of derivative counterparties, in combination with the inability
of regulators to map the resulting counterparty risks across the financial
system, allowed, caused, or exacerbated the crisis. It is beyond the scope
of this book to debate the merits of this narrative, but the bottom line is
that regulators, and then the Dodd-Frank law, now mandate the clearing of
various OTC derivatives.

Clearing has many meanings,9 but, in the current context, the regulatory
and legislative intent is for a clearinghouse, among other more technical
responsibilities, 1) to set and manage collateral requirements, and 2) to
be the central counterparty (CCP) for the trades it clears. To explain the
concept of a CCP, say that counterparties A and B agree that A will pay
fixed and receive floating in an interest rate swap that is cleared by a CCP.
In that case, A will enter into a contract with the CCP to pay fixed and
receive floating while B will enter into a contract with the CCP to receive
fixed and pay floating. Thus, A and B have the same market risk as in a
bilateral agreement, but counterparty risk to the CCP rather than to each
other. Note now that it makes perfect sense for a clearinghouse that acts as
a CCP to protect itself from counterparty defaults by setting and managing
collateral requirements.

A clearinghouse would want to set collateral requirements such that, in
a stress scenario, collateral that has been posted by defaulting counterparties
is sufficient to cover their losses, i.e., to make other counterparties whole.
But what if collateral posted by defaulting counterparties is not sufficient to
cover their losses? It is impractical to require enough collateral so that losses
are covered in every conceivable scenario: posting collateral is expensive10

and market participants would simply not trade through the clearinghouse
if collateral requirements were too onerous. Therefore, in a particularly sim-
ple structure, a clearinghouse sets prudent collateral requirements and the
owners or members of the clearinghouse contribute capital to cover any
losses not covered by posted collateral. To summarize the waterfall in this
structure, should some number of trading counterparties default, the clear-
inghouse uses their collateral to settle their obligations. If this collateral

9 For a book-length treatment, see Tina Hasenpusch, Clearing Services for Global
Markets, Cambridge University Press, 2009.
10 Even if cash collateral earns interest or if collateral can be posted in high-quality,
interest-bearing securities, having to post collateral almost always involves a subop-
timal allocation of scarce resources.
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is not sufficient, the clearinghouse uses its own capital to cover the resid-
ual obligations. And if even this capital is not sufficient, the clearinghouse
itself fails.11

An important policy question is whether clearinghouses, operating as
just described, reduce systemic risk relative to a system of bilateral agree-
ments. Regulatory and legislative action seem to rest on the assumption that
the answer is yes, but the question is hardly resolved.12 First, while it is often
claimed that a CCP “eliminates” counterparty risk, in actuality, it mutual-
izes counterparty risk; i.e., it spreads the risk across clearinghouse members.
To see this, suppose that each potential clearinghouse member diversifies
its business and, therefore, its counterparty risk, across all other potential
members. In that case, the counterparty risk of each, from the collection of
its bilateral trades, is the same as its counterparty risk from being a mem-
ber of a CCP. Second, there is no reason to believe that a regulated CCP
will manage counterparty risk better than individually regulated institutions
doing bilateral trades, particularly for less liquid and harder-to-price deriva-
tives. Third, if a CCP should ever default, the systemic damage could be
substantial. Fourth, forcing an institution to transfer some of its exposures
to a counterparty to a CCP while leaving other bilateral exposures to that
same counterparty intact would increase the total counterparty risk of the
institution so long as the portfolio of the two sets of exposures benefits from
any diversification.13 Fifth, while CCPs do have outstanding records with
respect to handling systemic disruptions, these records have been built in the
context of particularly liquid products, whether liquid inherently or liquid
because of a combination of inherent properties and CCP efforts. There is
no evidence, however, that these successful records can be replicated in the
case of less liquid products. Furthermore, even in the case of liquid products,
CCPs have come close to failure, e.g., after the stock market crash of ’87.14

A policy issue distinct from but very much related to clearing is the
standardization of contracts. Consider the highly successful U.S. note and
bond futures contracts described in Chapter 14. The market seems content to
trade U.S. Treasury interest rates through only a handful of contracts. More

11 Clearinghouse structures can be more complex than this simple description. For
example, clearinghouses might have the right to require owners or members to
contribute additional capital or even the right to use other counterparty collateral to
settle outstanding obligations.
12 The discussion in this paragraph was first presented in Bruce Tuckman, “Amending
Safe Harbors to Reduce Systemic Risk in OTC Derivatives Markets,” Center for
Financial Stability policy paper, April 22, 2010.
13 See Darrell Duffie and Haoziang Zhu, “Does a Central Clearing Counterparty
Reduce Counterparty Risk?” Stanford University, July 1, 2009.
14 See Leo Melamed, For Crying out Loud, John Wiley & Sons, Inc., 2009,
pp. 149–151.
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specifically, rather than design their own bilateral contracts with tailor-made
expiration dates, delivery rules, and delivery prices, market participants
choose to trade a few highly liquid contracts with a very limited number of
expiration dates, very particular delivery rules, and a single delivery price at
any time for each ticker. By contrast, trading in options on interest rate
swaps, or swaptions (see Chapter 18), is highly customized in the sense
that the buyer and seller choose from a very large menu of strikes, option
expiration dates, and terms of the underlying swap.

There are many market conventions used when initiating interest rate
swaps (e.g., day-count conventions, payment date schedules), but swaps,
for the most part, are still regarded as more customized than standardized.
First, some market participants do request particular fixed rates or payment
dates that deviate from convention, e.g., a corporate issuer of fixed rate
debt that wants to receive fixed in a swap at a rate and on payment dates
that correspond exactly to the coupon rate and payment dates of its debt.
Second, because swaps are initiated at par rates prevailing at the time of
trade and with payment schedules in intervals from the settlement date (as
discussed earlier in this chapter), there are an enormous number of distinct
swap contracts trading at any time.

Many swap market customers (i.e., non-dealers) and regulators argue
for increased standardization of swaps. As the most liquid trading happens
at the par rate with conventional payment dates (i.e., in regular intervals
from the settlement date), unwinding an existing swap proves expensive.
The dealer with whom the swap was initiated can demand an exit premium
or, equivalently, finding a counterparty willing to take on that particular
swap and willing to arrange an assignment from the initiating dealer proves
costly. As a result, rather than unwind an existing swap, most customers
(and, in fact, trading desks) hedge market risk by adding new swap trades.
This is far from ideal, however, for two reasons. First, if an original swap
and its offsetting swap are with different counterparties, market risk may
be hedged but counterparty risk remains. Second, the size and complexity
of trading books grow to extents that can be particularly problematic in
a crisis.

Some swap customers and dealers take the other side of this argument,
claiming that the ability to customize trades is worth the inconveniences
set out in the previous paragraph. It is often countered that dealers are
simply acting as an oligopoly to maintain their pricing power, particularly
in the matter of profits from unwinding trades. A natural compromise would
be to trade both customized and standardized swaps, although wide-scale
standardization is very difficult to achieve without the active participation
of the dealer community.

As of the time of this writing, regulators have succeeded in pushing deal-
ers to clear most interest rate swaps and the most liquid CDS with each other,
although dealer-customer trades remain bilateral. Regulators have also
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succeeded in standardizing liquid CDS contracts, which is discussed fur-
ther in Chapter 19. Much less standardization characterizes the interest rate
swap market, although customers and dealers have begun to trade swaps
with payments on International Money Market (IMM) dates (see Chap-
ter 15), which dramatically reduces the number of payment-date schedules
across swaps and, therefore, may improve their liquidity.

BASIS SWAPS AND SPREADS

Because short-term borrowing and lending in fixed income markets are keyed
off several distinct short-term interest rates, e.g.—fed funds, one-month
LIBOR, three-month LIBOR—market participants often find themselves
bearing basis risk across these rates. For example, a bank might borrow
money in the fed funds market but lend to clients at spreads to three-month
LIBOR; an investment bank might fund securities at repo, which is highly
correlated with fed funds, but finance customers at spreads to one-month
LIBOR; and a corporation might issue floating rate debt at a spread off
six-month LIBOR but invest temporary cash balances at rates keyed off
three-month LIBOR. Furthermore, apart from the need to hedge basis risks,
there is also demand to trade these bases, e.g., to bet that LIBOR rates
will widen relative to fed funds. Finally, both hedging and speculative de-
mand to trade bases increased through the financial crisis of 2007–2009,
as spreads that were small and not very volatile for the longest of times
rose to unprecedented levels and volatilities—recall the LIBOR-OIS spread
in Figure 15.5.

Bases are traded through basis swaps, in which market participants
swap interest payments keyed off one short-term rate for interest payments
keyed off another short-term rate. The most important permutations are
trading three-month LIBOR against one-month LIBOR, six-month LIBOR,
or fed funds, but many less common pairs trade as well, e.g., a LIBOR index
versus a short-term municipal rate index. In any case, to take one important
example for discussion, party A might agree to pay party B compounded
one-month LIBOR plus 25 basis points over three months on some notional
amount while party B agrees to pay three-month LIBOR to party A on that
same notional amount.15

Why is the spread in this last example 25 basis points rather than zero? A
particularly easy way to understand this is to consider a basis swap of some
high-yield corporate bond index rate against fed funds compounded over

15 For a more detailed treatment of basis swaps, see Carl Lantz, Michael Chang, and
Sonam Leki Dorji, “A Guide to the Front-End and Basis Swap Markets,” Credit
Suisse Fixed Income Research, February 18, 2010.
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three months. The high-yield rate has always been and will almost certainly
be above realized compounded fed funds. Therefore, it cannot possibly be
fair to receive the high-yield rate and pay only compounded fed funds flat
in exchange: it can be fair, however, to receive the high-yield rate and pay
compounded fed funds plus a basis swap spread in exchange. Viewing this
example from another perspective, the receiver of the high-yield rate through
a derivative contract is receiving that rate without bearing any of the credit
risk associated with high-yield bonds. Hence, the receiver of that relatively
high rate has to pay, in exchange, a positive spread over the relatively low
fed funds rate.

Returning now to the basis swap of three-month LIBOR against one-
month LIBOR, three-month LIBOR is very much expected to be greater than
one-month LIBOR compounded over three months. First, three-month loans
have more credit and liquidity risk than one-month loans. Second, over a
three-month horizon, three-month LIBOR is the average borrowing rate over
a fixed set of banks, while one-month LIBOR is a rate on a refreshed credit.
To explain, should the creditworthiness of one of the banks in the LIBOR
survey deteriorate so that its borrowing rate increases, that rate will prob-
ably be dropped from the calculation of LIBOR. (See Chapter 15.) Hence,
over an horizon of three months, three-month LIBOR can be the average
borrowing rate over a worse set of credits than one-month LIBOR, which
is another reason to expect three-month LIBOR to exceed compounded
one-month LIBOR.

The fact that basis swaps trade at a spread rather than flat, i.e., at a
spread of zero, raises the following issue under the traditional approach of
valuing the floating legs of swaps. If one assumes that one-month LIBOR
is the riskless investable rate, then a floating leg paying one-month LIBOR
is worth par. But, since the basis swap of one-month LIBOR against three-
month LIBOR does not trade flat, it cannot also be the case that a floating
leg paying three-month LIBOR is worth par. By implication, then, the fixed
payments of three-month LIBOR swaps could not be valued using the ap-
proach of Part One. Similarly, if three-month LIBOR is taken as the riskless
investable rate, then the fixed payments of one-month LIBOR swaps could
not be valued as in Part One. Chapter 17 shows how basis swap spreads are
used explicitly or implicitly to price swaps of one floating rate index when
another floating rate index is taken as the riskless investable rate. Consistent
with the main focus of that chapter and current industry practice, however,
the OIS curve is taken as the collection of riskless rates.

CONSTANT MATURITY SWAPS

This section discusses the pricing of a CMS in which one counterparty agrees
to pay fixed and receive a swap rate at some periodicity over the life of the
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swap on some notional amount. For example, quarterly payments at a fixed
rate might be exchanged for quarterly payments at the five-year swap rate
for two years. To begin this discussion, consider an agreement to exchange
a single cash flow in two years, in particular, to pay a fixed rate S on a unit
notional amount and to receive the prevailing five-year rate at that time on
the same notional amount. What is the fair value of this fixed rate today?

In the notation of earlier chapters, in particular Chapters 2 and 13, Ct (T)
denotes the T-year par swap rate at time t and C (t, t + T) denotes today’s
T-year swap rate t years forward. Similarly, At (T) denotes the T-year annu-
ity factor at time t, at the appropriate periodicity, and A(t, t + T) denotes
today’s T-year annuity factor t years forward. Note that, in this notation,
today’s quantities are denoted without time subscripts. In any case, the
payoff in two years of the single-payment CMS described in the previous
paragraph is

C2 (5) − S (16.4)

The first point to make about the CMS rate S is that it has to exceed the
five-year swap rate two years forward, C(2, 7). This will be demonstrated
by showing that if S = C(2, 7), a riskless arbitrage profit is available. Hence,
S has to be greater than C(2, 7) so that the payoff from the CMS swap in
(16.4) is not so large.

To construct the arbitrage trade, consider hedging the single-payment
CMS by receiving in a five-year swap two years forward on a notional of

1
A(2,7) . The value of this forward swap in two years is

1
A(2, 7)

× [C (2, 7) − C2 (5)] A2 (5) (16.5)

The total payoff of the trade, then, is the value of the CMS in (16.4),
with the assumption that S = C(2, 7), plus the value of the hedge in (16.5),
for a total of

[C(2, 7) − C2(5)]
[

A2 (5)
A(2, 7)

− 1
]

(16.6)

But this quantity is always positive. If the five-year rate has fallen relative to
its initial forward over the two years since the initiation of the trade so that
C(2, 7) > C2(5) and A(2, 7) < A2(5), both terms of (16.6) are positive. On
the other hand, if the five-year rate has risen relative to its initial forward so
that C(2, 7) < C2(5) and A(2, 7) > A2(5), both terms of (16.6) are negative
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so that the total payoff is positive. Intuitively, when rates have fallen, the
CMS loses and the hedge gains, but because the annuity factor has risen as
well, the hedge gains more than the CMS loses. Though, when rates have
risen, the CMS gains and the hedge loses, but because the annuity factor has
fallen as well, the hedge loses less than the CMS gains. Put another way, the
convexity of the payoff from the hedge in (16.5), which is not present in the
payoff from the CMS in (16.4), causes the profit and loss (P&L) from the
hedged position to be positive no matter which way rates move. In any case,
as reasoned earlier, it must be the case that S > C(2, 7).

The fair value of S relative to C (2, 7) is called a convexity correction,
terminology that follows from the intuition given in the previous paragraph.
Letting t be the maturity of the single-payment CMS and T the tenor of
the underlying swap rate, the appendix in this chapter shows that the fair
convexity correction of S, with semiannual compounding, is given approxi-
mately by

S − C (t, t + T) ≈ Var [Ct (T)]

⎛
⎜⎝ 1

C (t, t + T)
− T

[
1 + C(t,t+T)

2

]−2T−1

1 −
[
1 + C(t,t+T)

2

]−2T

⎞
⎟⎠

(16.7)

This convexity correction appears model dependent since it depends on
the variance of the swap rate Ct (T). However, this variance can be ap-
proximated by a normal swaption volatility (see Chapter 18) or calculated
more precisely from the prices of swaptions across a range of strikes.16 The
convexity correction in (16.7) can be expressed even more simply, how-
ever. Let D(T, C (t, t + T)) denote the yield-based duration of a T-year par
bond at a yield of C (t, t + T), the formula for which is given in equation
(4.45). Let Cnvx (T, C (t, t + T)) denote the yield-based convexity of that
same par bond at that same yield, the formula for which is given in equation
(4.52). Then,

S − C (t, t + T) ≈ Var [Ct (T)]
1
2Cnvx (T, C (t, t + T))

D(T, C (t, t + T))
(16.8)

As an example of using the convexity correction in (16.7), consider
pricing a CMS to pay the five-year swap rate annually for four years starting
in two years. For simplicity in this example, assume that the curve is flat at

16 See, for example, Jim Gatheral, The Volatility Surface, John Wiley & Sons, 2006,
Chapter 11.
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TABLE 16.3 An Example of Pricing a CMS Swap

(1) (2) (3) (4) (5)

Payment Discount 5-Year Swap Convexity Discounted
Date Factor Rate Volatility Correction Correction
(years) (bps) (bps) (bps)

2 .923845 84.85 1.88 1.74
3 .887971 103.92 2.83 2.51
4 .853490 120.00 3.77 3.22
5 .820348 134.16 4.71 3.86

Sum 3.485655 11.33
Running Correction 3.25

a semiannually compounded rate of 4% and that the volatility of all rates is
60 basis points per year.

Because the curve in this example is flat, the only term on the right-hand
sides of (16.7) or (16.8) that changes with the date of a payment is the
variance term: the convexity and duration terms depend only on the tenor
of the underlying swap, here five years, and on the forward swap rate to the
various payment dates, which, because the curve is flat, are all 4%. Hence,
in this example,

S − C (t, t + T) ≈ Var [Ct (T)]

(
1

4%
− 5

[
1 + 4%

2

]−11

1 − [
1 + 4%

2

]−10

)

= 2.616047 × Var [Ct (T)] (16.9)

Table 16.3 reports the remaining calculations. Column (1) lists the pay-
ment dates of the sample CMS swap. Column (2) gives the discount factors
for payments on that date calculated at the semiannually compounded rate
of 4%. Column (3) gives the volatility of the five-year swap rate under the
simplifying assumption that all rates have a volatility of 60 basis points.
For example, the terminal distribution of the swap rate in four years has a
volatility of 60

√
4 or 120 basis points. Column (4) gives the convexity cor-

rection for each payment using the expression (16.9). For example, for the

payment in four years, the correction is 2.616047 ×
(

120
10,000

)2
= .000377

or 3.77 basis points.
Column (4) in Table 16.3 gives the convexity corrections for each

payment, but the CMS swap, as a whole, makes four payments. To convert



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c16 JWBT539-Tuckman July 26, 2011 23:15 Printer: Courier Westford

454 SELECTED SECURITIES AND TOPICS

the four individual corrections to a single running rate, divide the sum of
their present values by the appropriate annuity factor. Column (5) gives
the present value of each correction, simply by multiplying each correction
by the appropriate discount factor, and the sum of those present values is
11.33 basis points. From Column (1), the value of an annuity of one unit of
currency on each of the payment dates is 3.486. Hence, the value of
receiving the corrections indicated in Column (4) at each of their respective
payment dates is the same as receiving 11.33

3.486 or 3.25 basis points on each of
those same dates.

Finally, then, the fair CMS rate in this example has to be 4.0325%.
First, since the curve is assumed flat at 4%, paying 4% plus the convexity
corrections in Column (4) of Table 16.3 is fair against receiving the five-
year swap rate on the dates indicated. Second, the value of paying those
individual corrections is the same as the value of paying 3.25 basis points
on each payment date. Therefore, 4% plus 3.25 basis points, or 4.0325%,
is fair against the five-year swap rate.

To compute the fair CMS rate when the term structure is not flat,
begin by finding the fair fixed rate on each payment date, which equals the
appropriate forward swap rate plus convexity correction for that payment
date. Then find the single fixed rate such that paying that fixed rate on each
payment date has the same present value as paying the fair fixed rates for
each payment date just computed.

APPENDIX: DERIVATION OF CONVEXITY
CORRECTION FOR CMS SWAPS

Chapter 18 shows that there exists a probability distribution for Ct (T) such
that two conditions hold. First, the T-year swap rate t years forward equals
the expectation today of the T-year swap rate in t years, i.e.,

C (t, t + T) = E0 [Ct (T)] (16.10)

Second, the fair market value of the CMS swap today, which is zero, is
given by

E0

[
Ct (T) − S

At (T)

]
= 0 (16.11)
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Solving for S in (16.11), using a property of covariance, and rearranging
terms,

S = E0 [Ct (T)] +
Cov

(
Ct (T) , 1

At(T)

)
E0

(
1

At(T)

) (16.12)

= C (t, t + T) +
Cov

(
Ct (T) , 1

At(T)

)
E0

(
1

At(T)

) (16.13)

where (16.13) follows from (16.10).
To approximate (16.13), assume that the term structure is flat so that

Ct (T) At (T) + Z [Ct (T)] = 1 (16.14)

where Z (y) denotes the price of a zero coupon bond with yield y and
maturity T years. Then, when compounding n times per year,

Z (y) =
(
1 + y

n

)−2T
(16.15)

Solving (16.14) for At (T) and substituting into ( 16.13),

S − C (t, t + T) =
Cov

(
Ct (T) ,

Ct(T)
1−Z[Ct(T)]

)
E0

(
Ct(T)

1−Z[Ct(T)]

) (16.16)

Now using the approximation that Cov [X, H (X)] = E
[ d

dX H (X)
] ×

Var [X],17

S − C (t, t + T) = Var [Ct (T)]
E0

(
d

dCt(T)
Ct(T)

1−Z[Ct(T)]

)
E0

(
Ct(T)

1−Z[Ct(T)]

) (16.17)

17 This approximation relies on an expansion of H (X) as the relationship is exact by
Stein’s lemma if X is normally distributed.
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Performing the differentiation in the numerator,

d
dCt (T)

Ct (T)
1 − Z [Ct (T)]

= 1
1 − Z [Ct (T)]

−
TCt (T)

[
1 + Ct(T)

n

]−nT−1

(1 − Z [Ct (T)])2 (16.18)

Substituting (16.18) into (16.17) and relying on another approxima-
tion18 together with the expectation in (16.10),

S − C (t, t + T) = Var [Ct (T)]
1

1−Z[C(t,t+T)] − TC(t,t+T)[1+ C(t,t+T)
n ]−nT−1

(1−Z[C(t,t+T)])2

C(t,t+T)
1−Z[C(t,t+T)]

(16.19)

Finally, simplifying and using (16.15),

S − C (t, t + T) = Var [Ct (T)]

⎛
⎜⎝ 1

C (t, t + T)
− T

[
1 + C(t,t+T)

n

]−nT−1

1 −
[
1 + C(t,t+T)

n

]−nT

⎞
⎟⎠

(16.20)

18 In particular, let x be a random variable with mean x. Then E[g′(x)]/E[g(x)] ≈
g′ (x) /g (x) .
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CHAPTER 17
Arbitrage with Financing and

Two-Curve Discounting

T his chapter covers two topics, which turn out to be related. The first topic
is arbitrage pricing in bond and swap markets under realistic financing

arrangements. The second is pricing swaps when the riskless investable rate
(e.g., fed funds) is not the same as the swaps’ floating rate index (e.g., three-
month London Interbank Offered Rate (LIBOR)).

So as not to overwhelm the reader with the nuances of this chapter
at the start of the book, Chapter 1 showed that discounting is shorthand
for arbitrage pricing of bonds under simplified financing arrangements. In
particular, it was assumed that the proceeds from shorting one set of bonds
could be used to purchase other bonds. However, as described in Chapter 12,
bonds are shorted through repos that require sale proceeds to be posted as
collateral. This means that the long side of an arbitrage has to be financed
by borrowing money in the repo market and introduces the complication
that the financing rates on the short and long side of an arbitrage need not
be the same. This chapter1 begins by deriving the connection between dis-
counting and arbitrage pricing for bonds under these more realistic financing
arrangements. It turns out that the results of Chapter 1, which comprise the
basic tool box for fixed income practitioners, hold true under the following
additional conditions. First, all bonds finance at the same rate. Second, in-
terim mispricings can be financed at that same rate. When these conditions
do not hold, the enforcement of the law of one price by arbitrage is not so
straightforward as presented in Chapter 1.

To price a fixed rate versus LIBOR swap, Chapters 2 and 16, relying
on the assumption that LIBOR is the riskless investable rate, conclude that
the floating leg of the swap is worth par. Then, the fixed leg exchanged
for that floating leg with no other exchange of cash must also be worth

1The authors would like to recognize Jean-Baptiste Homé for his important contri-
butions to this chapter.

457
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par. As a result, the fixed legs of par swaps can be treated like bonds with
prices equal to their face values, meaning that discount factors, spot rates,
or forward rates can be derived and that, along the lines of Chapter 1,
all other swaps, i.e., non-par swaps, can be priced by discounting their
fixed cash flows at those derived discount factors or rates. But this frame-
work ignores the financing arrangements of the swap market, in particular,
that one party has to post the net present value (NPV) of the swap to the
other and that this NPV earns some collateral rate. As it turns out, non-par
swaps can be priced off of a par swap curve under the following conditions.
First, all swaps have the same floating rate index. Second, the collateral rate
equals this floating rate index. Third, interim mispricings can be financed
at this floating rate index as well. These conditions can be seen as analo-
gous to those in the bond case upon realizing that the notional amount of a
swap always finances at its floating rate index while its NPV finances at the
collateral rate.

The second topic of the chapter is how to price fixed rate versus LIBOR
swaps if the riskless investable rate is taken to be not LIBOR but fed funds, or
the equivalent in another currency, with a term structure given by Overnight
Indexed Swap (OIS). Market participants have always recognized that a rate
like fed funds is closer to the ideal of a riskless investable rate than is LIBOR,
but the difference between LIBOR and OIS had been so small for so many
years that few cared about this seemingly subtle pricing issue. Similarly,
market participants have been aware that the collateral rate on fixed versus
LIBOR swaps is almost always fed funds, not LIBOR, so that even if LIBOR
were the riskless investable rate it is not theoretically correct to price non-
par LIBOR swaps from par swaps. In any case, attitudes changed completely
through the 2007–2009 crisis as the LIBOR-OIS spread rose to hundreds of
basis points (see Chapter 15). The resulting consensus to take fed funds as
the riskless investable rate means that the floating leg of LIBOR swaps is not
worth par and that the pricing methodology in Chapters 2 and 16 unravels.

For pricing fixed rate versus LIBOR swaps, this chapter lays out the
following framework, which is consistent with revised market practice, First,
because the fed funds rate is taken as riskless and investable, the floating
leg of an OIS swap is worth par, as is the fixed leg that is exchanged
for this floating leg with no other exchange of cash. Second, under the
conditions described above, i.e., collateral posted earns fed funds, etc., all
non-par OIS swaps can be priced from OIS par swaps. Third, under the
same conditions, a fixed versus LIBOR swap can be priced by a replication
argument using a (likely non-par) OIS swap and a LIBOR-fed funds basis
swap. Fourth, there is a shorthand for this arbitrage pricing of fixed versus
LIBOR swaps that requires two curves, the OIS curve for discounting and
another curve, specially constructed for the purpose, for projecting LIBOR
cash flows.
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BOND TRADING WITH FINANCING

Chapter 1 implicitly assumed that an arbitrageur could short a portfolio of
bonds that trades rich simply by promising to make its scheduled payments
and that the proceeds from that short could be used to buy a portfolio of
bonds that trades cheap. It followed, then, that the arbitrageur could pocket
the difference between the prices of the rich and cheap portfolios. In practice,
however, shorting the portfolio that trades rich is done through repo, which
generates no cash today. Therefore, the cash to buy the portfolio of bonds
that trades cheap has to be borrowed through repo. Note, by the way, that
for the purposes of this chapter, repo haircuts are ignored. Note too that
the discussion here assumes that the reader has fully digested the material
of Chapter 12.

Table 17.1 describes the results of shorting a bond for one period using
realistic financing arrangements, i.e., repo. The bond’s initial price is P0, its
terminal price is P1, and its repo rate over the period is r.

The net result of the one-period short position, shown in Table 17.1, is

P0 (1 + r ) − P1 (17.1)

which is positive if

P1 − P0

P0
< r (17.2)

Hence, a trader profits from a one-period short if the return of the bond
over that period is less than the repo rate.

In the case that the bond pays a coupon c over the term of the repo
agreement, then the trader has to make a payment of that amount to the

TABLE 17.1 Cash Flows from Shorting a Bond for
One Period

Date Transaction Cash Flow

0 Buy the repo at rate r −P0

Sell bond for P0 P0

Total 0
1 Buy bond for P1 −P1

Unwind the repo P0 (1 + r )
Total P0 (1 + r ) − P1
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TABLE 17.2 Cash Flow from a Single-Period Financed
Long Position

Date Transaction Cash Flow

0 Buy bond for P0 −P0

Sell the repo at rate r P0

Total 0
1 Sell bond for P1 P1

Unwind the repo −P0 (1 + r )
Total P1 − P0 (1 + r )

lender of the bond. In the special case that this coupon payment is due at the
end of the period considered in Table 17.1, the terminal cash flow changes to

P0 (1 + r ) − (P1 + c) (17.3)

Once again, the short makes money if the total return of the bond is less
than the repo rate.

If an arbitrageur is shorting one bond and buying another, it is clear
from Table 17.1 that shorting a bond or portfolio does not generate any
cash. Hence, to purchase the long side of the trade, an arbitrageur has to
borrow cash through a repo. For a financed long position of a single bond
over a single period, Table 17.2 shows that the net result is

P1 − P0 (1 + r ) (17.4)

Expression (17.4) can easily be used to show that this position is profitable
if the bond’s return over the period exceeds the repo rate. If the bond pays
a coupon c at the end of the period, then the terminal cash flow becomes

P1 + c − P0 (1 + r ) (17.5)

which is positive if the total return of the bond is greater than the repo rate.
As an aside, the arbitrage-free price of a single-period bond, i.e., with a

terminal coupon payment of c and a terminal price of P1 = 1, is immediately
evident from either (17.3) or (17.5). The short and long positions described
in this section require no cash at initiation. Therefore, to rule out arbitrage
opportunities, terminal profits must be zero as well. Mathematically,

1 + c − P0 (1 + r ) = 0 (17.6)

Or,

P0 = 1 + c
1 + r

(17.7)
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In terms of the forward rates of Chapter 2, equation (17.7) says that the
forward rate from date 0 to date 1, f (1), must equal the repo rate, r.

The cash flows described here can easily be extended to a multi-period
setting. If the unit price of a bond, its coupon rate, and its repo rate at time
t are Pt and rt, then the cash flow from a financed long position in the bond
from time t − 1 to time t is

Pt + c − Pt−1 (1 + rt−1) (17.8)

BOND ARBITRAGE WITH FINANCING

To illustrate the impact of financing arrangements on bond arbitrage, return
to the example presented in the section “Arbitrage and the Law of One
Price” in Chapter 1. As of May 28, 2010, the 3

4 s of November 30, 2011,
with a price of 100.190, were trading cheap relative to the set of bonds
used to calculate the discount factors for that date. As a result, a replicating
portfolio of those bonds could be constructed that made the same payments
as the 3

4 s but that could be sold for 100.255. The arbitrage trade proposed
in Chapter 1 was to buy the 3

4 s, sell the replicating portfolio, pocket the
.065 difference, and owe nothing on any future date. In light of the realities
of financing described in the previous section, however, this arbitrage trade
would actually be initiated through the transactions in Table 17.3. Note
that, unlike the narrative of Chapter 1, the initial cash flow of the trade is
zero, not the mispricing of .065.

Financing realities also cause the performance of the arbitrage trade over
time to differ from the account of Chapter 1. To explore these differences,
the next three subsections track the performance of the trade over a single
six-month period, i.e., through November 30, 2010, under three different
scenarios. Table 17.4 summarizes these scenarios and the respective proceeds
to the arbitrageur.

TABLE 17.3 Initial Transactions of the Arbitrage Trade of
Table 1.5 on May 28, 2010, With Financing

Transaction Cash Flow

Buy the 3
4 s for 100.190 −100.190

Sell the repo of the 3
4 s 100.190

Buy the repo of the replicating portfolio −100.255
Sell the replicating portfolio 100.255
Total 0
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TABLE 17.4 The Arbitrage Trade of Table 17.3 After Six Months in Three
Illustrative Scenarios

Scenarios

I II III

Repo 5/28:
3
4 s .149% .149% .149%
Replicating

portfolio
.149% 0% .149%

Prices 11/30:
3
4 s 100.50 100.50 100.40
Replicating

portfolio
100.50 100.50 100.50

Proceeds on
11/30

100.255
(
1 + .149%

2

)
100.255

(
1 + 0%

2

)
.065

(
1 + .149%

2

)
−100.190

(
1 + .149%

2

) −100.190
(
1 + .149%

2

) +100.40 − 100.50

= .065
(
1 + .149%

2

) = −.00964 = −.03495

Scenario I assumes that the 3
4 s and all of the bonds in the replicating port-

folio share the same repo rate and that the prices of the 3
4 s and of the repli-

cating portfolio converge over the period. The lesson of this scenario is that,
because of financing, the arbitrage profit of the trade is not the initial mispric-
ing of .065 at initiation of the trade but rather the future value of .065 when
the trade is closed, where the future value is computed using the repo rate.

Scenario II assumes that the repo rate paid to finance the 3
4 s exceeds the

repo rate earned on shorting the replicating portfolio and that, like Scenario
I, the prices of the two sides of the trade converge in six months. The lesson
here is that when financing rates differ across bonds, arbitrage trades of
this sort may not prove profitable at all. And this in turn implies that, with
different financing rates, the law of one price and the arbitrage pricing results
of Chapter 1 do not apply.

Scenario III returns to the assumption of equal repo rates across bonds,
but assumes that the prices of the 3

4 s and of the replicating portfolio diverge
over the period. The lesson of this final scenario is that, given the institutional
details of financing, if prices diverge an arbitrageur has to come up with
additional cash. If the arbitrageur cannot do so, the trade has to be unwound
at a loss which, if large enough, could threaten the viability of the arbitrageur
or of the sponsoring financial entity. If the arbitrageur can finance interim
divergences, then the ultimate profitability of the trade depends on the rates,
over time, at which these divergences are financed. In the special case that
these rates, over time, match the repo rates of the bonds, it turns out that
the terminal profit of the trade, whatever the time series of divergences, is
the future value of the initial mispricing at those realized repo rates.
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The three subsections that follow elaborate on the arbitrage trade exam-
ple in these scenarios. A proof in a more general setting is given in Appendix
A in this chapter.

Scenario I

All repo rates the same and single-period convergence. This scenario assumes
that all of the bonds trade at a six-month general collateral (GC) repo rate
of .149%, which is consistent both with the price of the six-month bond
in the replicating portfolio, as presented in Chapter 1, and with equation
(17.7) that links the first forward rate and the single-period repo rate.

By construction of the arbitrage portfolio, the .375 coupon payment
received from the 3

4 s exactly matches the coupon owed on the replicating
portfolio. Hence, after one period, the arbitrageur is left collecting the repo
loan proceeds from having shorted the replicating portfolio and repaying
the repo borrowing from having financed the purchase of the 3

4 s. The net
payoff, given in the last rows of the Scenario I column of Table 17.4 is
.065

(
1 + .149%

2

)
. This is just the future value of the initial mispricing com-

puted at the repo rate.

Scenario I I

Repo rate of the 3
4 s exceeds that of the replicating portfolio and single-

period convergence. This scenario assumes that the bonds in the replicating
portfolio are all trading special so that their repo rate is relatively low.
An obvious motivation for this assumption is that the short sellers are at-
tracted by the richness of these bonds, thus increasing the demand to borrow
them in the repo market and causing them to trade special. In particular,
this scenario assumes that the 3

4 s trade at the GC rate of .149%, as in
Scenario I, while the bonds in the replicating portfolio trade at a special
rate of 0%.

The one-period payoff in this scenario is calculated as that of Scenario
I, except that the repo loan from shorting the replicating portfolio earns the
special rate of 0%. The result of −.00964 is shown in the last rows of the
Scenario II column of Table 17.4. Hence, the arbitrageur loses money even
though the prices of the replicating portfolio and the 3

4 s converge from 6.5
cents to zero. Put another way, the expense of borrowing the specials (i.e.,
lending at 0%) overwhelms the initial relative mispricing.

A broader interpretation of this scenario is that apparent mispricings
may be explained by repo specialness. It might be that a bond trades rich
because it can be lent out profitably in the repo market or, without imposing
that causality, that arbitrageurs cannot take advantage of a bond’s richness
because it is expensive to borrow in the repo market.
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Scenario I I I

All repo rates the same but convergence is preceded by a period of divergence.
This scenario assumes that the price of the replicating portfolio rises to
100.50 but that the price of the 3

4 s rises only to 100.40. In other words,
the initial 6.5 cents of relative richness of the replicating portfolio diverges
to 10 cents instead of converging to something less than 6.5 cents. The
one-period payoff from the arbitrage trade is comprised of unwinding the
two repos, at the same rates as in Scenario I, but, in addition, of selling the
position in the 3

4 s and purchasing (i.e., covering the short of) the replicating
portfolio for a total of 100.40 − 100.50 or −.10. The net payoff of −.03495
is given in the last rows of the Scenario III column of Table 17.4.

Of course, the arbitrageur need not unwind the trade at this point but
could hold the position until maturity, when convergence in price is guaran-
teed. In fact, since the mispricing has increased from 6.5 cents to 10 cents in
the first six months, the arbitrageur might even consider putting on more of
the trade. In any case, to maintain the trade at its current size, the arbitrageur
has to roll the two repo positions instead of exiting the bond positions.
Selling the repo of the 3

4 s generates 100.40 while buying the repo of the
replicating portfolio requires 100.50. Therefore, rolling the arbitrage posi-
tion, which means settling the expiring repo trades for .065

(
1 + .149%

2

)
and

initiating the new ones for 100.40 − 100.50, results in the same cash flow as
the one-period payoff computed for this scenario, i.e., .03495. Put another
way, maintaining the trade requires a cash infusion of the same 3.5 cents.

The intuition behind the arbitrageur’s need to put up more cash is best
seen from the point of view of the arbitrageur’s repo counterparties. Since
the price of the replicating portfolio has risen to 100.50, the lender of this
portfolio requires 100.50 in cash collateral to continue lending the bonds.
However, since the price of the 3

4 s has risen to only 100.40, the lender of
cash is willing to lend only 100.40 against the 3

4 s. Hence, the arbitrageur
has to come up with .10 minus the net proceeds from the repo transactions
over the first six months of the trade.

The conclusion from this discussion is that to enforce the pricing rela-
tionships derived and used in earlier chapters an arbitrageur needs to be able
to finance cash requirements resulting from interim mispricings. The most
important source of cash for this purpose is the arbitrageur’s initial capital.
An important example would be a hedge fund that has collected capital from
principals and investors in order to conduct arbitrage and other investment
activities. If a trade should require cash, the hedge fund can dip into its cap-
ital base to stay in the trade. Of course, if the trade loses too much before
ultimate convergence, the hedge fund might have to unwind the trade at a
loss to preserve its capital buffer. Worse, in an extreme case, a fund might
fail because it has used so much of its capital in an unwind that its stability
is no longer tenable.
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It is a difficult problem to assign an interest rate to financings required
by interim mispricings. Since, as just discussed, this cash often comes from
an institution’s capital base, the most appropriate rate is often the cost
of that capital. An analysis of cost of capital, however, would take the
discussion of this chapter far afield. Instead, relying on the admittedly strong
assumption that these mispricings can be financed at the repo rate of the
bonds in the trade, a conceptually useful result emerges. Namely, the profit of
an arbitrage trade at convergence is the future value of the initial mispricing,
where this future value is computed at the realized, single-period repo rates
over the life of the trade. This result, a generalization of the single-period
result of Scenario I, is proved in Appendix A in this chapter.

SWAP TRADING WITH FINANCING

The cash flows of receiving fixed on a swap are qualitatively the same as
those from a financed bond purchase, with one key difference. First, to see
the similarities, assume that the bond price and the present value of the fixed
leg of the swap are always par and denote the bond coupon rate by c, the
repo rate at time t by rt, and the floating rate of the swap at time t by Lt.
Also, for simplicity, assume that the fixed and floating payment dates are
the same. Then, for unit notionals, Table 17.5 shows that the cash flows of
the long financed bond and swap positions are identical except for the fact
that the bond finances at the repo rate while the fixed cash flows of the swap
finance at the floating rate.

Second, to see the key difference between receiving fixed and financing
a bond purchase, drop the assumption of constant par values and denote the
price of the bond at time t per unit face amount by Pt and the net present
value at time t of receiving fixed on a unit notional by NPVt. This NPV is, as
in Chapter 16, the difference between the value of the fixed and floating legs,
including the fictional notional payments, where discounting is done with
rates derived from par swaps of fixed against Lt. Furthermore, because this
analysis looks only at payment dates, the value of the floating leg is par and

TABLE 17.5 Cash Flows from a Long Financed Bond Position and Receiving
Fixed in a Swap if Prices and Present Values Are Always Par

Cash Buy the Sell the Bond Receive Pay Swap
Flows Bond Repo Total Fixed Floating Total

Initial −1 1 0 0 0 0
Time t c −rt−1 c − rt−1 c −Lt−1 c − Lt−1

Final 1 −1 0 0 0 0
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TABLE 17.6 Cash Flows from a Long Financed Bond Position and Receiving
Fixed in a Swap

Swap Flows
Cash Buy the Sell the
Flows Bond Repo Cash Collateral

Initial −P0 P0 −NPV0 NPV0

Time t c −Pt−1 (1 + rt−1) + Pt c − Lt−1 −NPVt−1 (1 + rt−1) + NPVt

Time T 1 + c −Pt−1 (1 + rt−1) c − LT−1 −NPVT−1 (1 + rT−1)

the NPV is the present value of the fixed leg minus par. Then, Table 17.6
contrasts the cash flows of the long financed bond with those of receiving
fixed. (Note that the row with time T cash flows gives the sum of all flows
at the maturity date of the bond and swap, not just the principal flows as in
the last row of Table 17.5.)

The bond flows in Table 17.6 are just as given in expression (17.8). As
for the swap flows, the fixed receiver pays NPV0 to the fixed payer so that
both parties are willing to enter into the swap. Of course, if the fixed rate is
less than the par rate, this “payment” will be negative so the fixed receiver
is, in fact, receiving cash at the initial date. In any case, to ensure the fixed
payer’s performance on the swap contract, which has a net initial present
value of NPV0, the fixed receiver immediately takes NPV0 from the fixed
payer as collateral. Hence, the total cash flow at initiation is zero no matter
what the initial NPV.

At time t, the net cash flow to the fixed receiver is, of course, c − Lt−1.
But there are collateral flows as well. As customary in financial markets,
posted collateral earns interest. Let rt be the rate earned on swap collateral
from t − 1 to t, to emphasize that this rate and the repo rate are both rates
earned on collateral. At every date t, then, the fixed receiver returns collateral
taken the previous period with interest, for a flow of −NPVt−1 (1 − rt−1),
and takes the appropriate amount of collateral for date t, i.e., NPVt. At time
T, of course, the swap matures, the NPV is identically zero, and collateral
posting ends, so the collateral cash flow is just the return of the previous
period’s collateral with interest.

To interpret the results of Table 17.6, rewrite the total bond cash flow
at time t as

c + Pt − Pt−1 − Pt−1rt−1 (17.9)

To rewrite the total swap cash flow at time t similarly, define the present
value of the fixed side of the swap at time t (with the fictional notional
payment) as PVt so that NPVt = PVt − 1. Then, from Table 17.6, the total
swap cash flow at time t can be written as

c + PVt − PVt−1 − 1 × Lt−1 − NPVt−1 × rt−1 (17.10)
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Both the bond and swap expressions, (17.9) and (17.10) respectively,
have a fixed payment c and the price change of the fixed side, i.e., Pt − Pt−1

or PVt − PVt−1 respectively. But the expressions differ in financing. The
total value of the bond finances at the repo rate. The total value of the fixed
side of the swap, however, finances at a blended rate of the floating rate and
the collateral rate. More specifically, the total value of the fixed leg is PVt =
1 + NPVt. The face amount, i.e., 1, finances at the floating rate while the
NPV at time t, i.e., NPVt, finances at the collateral rate.

SWAP ARBITRAGE WITH FINANCING

It was concluded earlier that, in the bond context, discounting and arbitrage
pricing were equivalent only if all bonds financed at the same repo rate.
What is the analogous requirement ensuring that the fixed leg of all swaps
finance at the same rate? Based on the discussion of the previous section, the
floating rate would have to be common for all swaps, and the collateral rate
would have to equal that same floating rate. Only in that way would the
blended financing rate, highlighted in expression (17.10), be the same for
all swaps, regardless of their NPVs. Appendix A in this chapter proves that
discounting and arbitrage pricing for swaps are equivalent if these conditions
hold, along with the condition that interim mispricings can be financed at the
floating rate as well. For concreteness, however, this section works through
two examples of arbitrage relationships across swaps. Scenario I shows that,
under the conditions just specified, a high-coupon, one-year swap can indeed
be replicated by six-month and one-year par swaps. Scenario II shows that
this replication fails if the collateral rate does not equal the floating rate
index. For simplicity, as in the previous section, both fixed and floating legs
are assumed to make cash flows in six-month intervals.2

Both scenarios start from the USD swap curve as of May 28, 2010,
originally shown in Table 2.1 and reproduced here, in part, in Table 17.7.
According to the discounting methodology of Chapters 1 and 2, and the
Chapter 16 result that the floating leg is worth par, the NPV of 100 face
amount of a 1-year swap to receive 5% against LIBOR is

2.5

1 + .705%
2

+ 102.50(
1 + .705%

2

) (
1 + 1.046%

2

) − 100 = 4.0998 (17.11)

But is there an arbitrage trade, which takes financing into account,
that supports the valuation given in (17.11)? To begin, Table 17.8 uses the

2As the numerical examples are taken from the fixed versus three-month LIBOR
curve, the precise assumption here is that the floating leg pays compounded three-
month LIBOR every six months.
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TABLE 17.7 Selected Data from the USD Swap Curve
as of May 28, 2010, from Table 2.1

Term in Years Par Rate Forward Rate

0.5 .705% .705%
1.0 .875% 1.046%

methodology of Chapter 1 to find the portfolio of .5-year and 1-year par
swaps that replicates the cash flows of 100 face amount of a 5% swap. The
candidate arbitrage trade, therefore, is to receive fixed on the 5% swap and
to pay fixed on the replicating portfolio given in Table 17.8.

Scenario I

No relative mispricing and the rate earned on collateral equals the first
LIBOR set of .705%. In six months, LIBOR is .9%. In this scenario
Table 17.9 shows that, taking financing into account, the one-year, 5%
swap is, in fact, replicated by the portfolio given in Table 17.8. Dates 1 and
2 are six months and one year from the trade date, respectively.

Row (i) of Table 17.9 applies expression (17.10) to the 5% swap to
determine its flows on date 1. Column (4) of this row gives the date 1
present value of the swap. Since its date 2, fixed-leg cash flow is 102.5 and
the six-month rate in six months is .9% in this scenario, this present value is
102.5
1+ .9%

2
or 102.0408. The date 0 present value of the fixed leg, used in column

(5), is simply 100 plus the NPV calculated in (17.11), which NPV is also
used in column (7).

Rows (ii) and (iii) apply expression (17.10) to find the date 1 cash flows
of the swaps in the replicating portfolio, with the face amounts given in
Table 17.8. Since the 6-month, .705% swap matures on date 1, its date 1
present value in column (4) is simply its face amount. The date 2 cash flow
of the one-year .875% swap, by construction, matches the 102.5 date 2 cash
flow of the 5% swap. Its date 1 present value in column (4), therefore, is also
102.0408. Finally, because the present value of the fixed legs of par swaps

TABLE 17.8 Portfolio of .5- and 1-Year Par Swaps that Replicates
a 5%, 1-year Swap as of May 28, 2010

Replicating Portfolio Swap

Fixed Rate .705% .875% 5%
Term in Years .5 1.0 1.0
Face Amount 2.0463 102.0535 100
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TABLE 17.9 Replicating a One-Year Swap With Two Other Swaps, With Financing

(1) (2) (3) (4) (5) (6) (7)

Date 1 Terms of Expression (17.10)

Rate Face c PV1 −PV0 − face × L0 −NPV0 × r0

(i) 5.000% 100.0000 2.5000 102.0408 −104.0998 −100 .705%
2 −4.0998 .705%

2

(ii) .705% 2.0463 .0070 2.0463 −2.0463 −2.0463 .705%
2 0

(iii) .875% 102.0535 .4465 102.0408 −102.0535 −102.0535 .705%
2 0

(iv) Replicating Portfolio 2.5 + 102.0408 −104.0998 −104.0998 .705%
2

Date 2 Terms of Expression (17.10)

Rate Face c PV2 −PV1 − face × L1 −NPV1 × r1

(v) 5.000% 100.0000 2.5000 100.0000 −102.0408 −100 .9%
2 −2.0408 .9%

2

(vi) .875% 102.0535 .4465 102.0535 −102.0408 −102.0535 .9%
2 −(102.0408

−102.0535) .9%
2

(vii) Replicating Portfolio 102.5 −102.0408 −102.0408 .9%
2

469
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are, by definition, equal to their notional amounts, the entries in column (5)
are simply the negatives of these notional amounts.

Row (iv) of Table 17.9 adds rows (ii) and (iii) to obtain the total flows
from the replicating portolio. By inspection, rows (iv) and (i) are equal,
demonstrating that the date 1 flows, accounting for financing, are the same
for the 5% swap and its replicating portfolio.

Rows (v) and (vi) of Table 17.9 apply expression (17.10) to the date 2
flows of the 5% and .875% swaps, the .705% swap having already matured.
Row (vii), the flows from the replicating portfolio, which simplifies row (vi),
is, by inspection, equal to row (v). Hence, the date 2 flows, accounting for
financing, are also the same for the 5% swap and its replicating portfolio.

Scenario I I

No relative mispricing and the rate earned on collateral is .25%, less than the
floating rate index of .705%. In six months the floating rate index is .9%.

In this scenario, the rate r0 used in column (7) of Table 17.9 is .25%
instead of .705%. Thus, the financing of the 5% swap, given by the sum of
columns (6) and (7) of row (i), becomes

− 100
.705%

2
− 4.0998

.25%
2

(17.12)

while the financing of the replicating portfolio, given by columns (6)–(7) of
row (iv) remains at

− 104.0998
.705%

2
(17.13)

Expressions (17.12) and (17.13) are not equal because the NPV part of
the 5% swap finances at the now lower collateral rate while the replicating
portfolio, which is composed of par swaps, finances fully at LIBOR. Hence,
accounting for financing, the flows of the 5% swap and those of the so-called
replicating portfolio are not the same.

PRIC ING A USD LIBOR SWAP WITH
FED FUNDS AS THE INVESTABLE AND
COLLATERAL RATE

As recounted in the introduction to this chapter, the crisis of 2007–2009
pushed market practice to taking fed funds, or international equivalents, as
the riskless investable rate. In addition, collateral on swaps, including LIBOR
swaps, continues to earn fed funds. Using arbitrage arguments, this section
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derives the price of a fixed versus LIBOR swap under these conditions.
The resulting shorthand of two-curve discounting has rapidly become the
standard across the industry.

The three swaps used in the arbitrage argument are the following:

1. The fixed versus LIBOR swap, which exchanges a fixed rate cL for
LIBOR, Lt, paid at time t, and which earns fed funds on collateral. The
initial NPV of this swap is denoted by NPVL

0 . But, most importantly,
this NPV is not calculated using discount factors or rates from the par
swap curve. As shown in the previous sections, that methodology is
equivalent to arbitrage pricing only if collateral earns LIBOR, which is
not the case here. Instead, NPVL

0 is derived in this section by arbitrage
arguments.

2. An OIS or fixed versus fed funds swap, which exchanges a fixed rate
cFF for fed funds rt, paid at time t.3 Collateral posted against this swap,
consistent with market practice, earns fed funds. Then, since fed funds
is taken as the riskless investable rate, the floating leg of the swap is
worth par. Furthermore, since collateral earns fed funds, the arbitrage
pricing of any OIS can be found by discounting its fixed-leg cash flows
at rates derived from the par OIS curve. Putting all of this together, let
NPVFF

0 denote the NPV of the fixed and floating legs of the fed funds
swap calculated using the OIS curve.

3. A T-year basis swap (see Chapter 16) which exchanges fed funds rt, paid
at time t + 1, plus a fixed spread X(T), for LIBOR Lt, also paid at time
t. The basis swap spread X(T) is determined such that the basis swap
is fair, i.e., such that the parties do not need to exchange an up-front
payment when initiating the swap. Collateral posted against the basis
swap is also assumed to earn fed funds.

Proceeding to the arbitrage pricing of the LIBOR swap, Table 17.10
shows the cash flows of the various swaps. Row (iii) gives the flows from
the portfolio of receiving fixed versus fed funds and of receiving fed funds
versus LIBOR. Row (iv) gives the flows from receiving fixed versus LIBOR.
By inspection, the interim flows of these two rows are identical for cFF =
cL − X(T). Hence, for that cFF, arbitrage pricing requires that the NPV of the
portfolio equal the NPV of the fixed versus LIBOR swap, or, mathematically,
NPVL

0 = NPVFF
0 .

In conclusion, then, to price a T-year swap of a fixed rate cL versus
LIBOR that earns fed funds on collateral, compute the NPV of a fixed
versus fed funds swap with fixed rate cL − X(T) , where X(T) is the T-year
basis swap spread of fed funds versus LIBOR.

3More precisely, compounded fed funds over the period t to t + 1 is paid at time
t + 1.
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TABLE 17.10 Equivalence of a Combination of a Fixed Rate Swap vs. Fed Funds
and a Swap of Fed Funds vs. LIBOR to a Swap of a Fixed Rate vs. LIBOR

Initial Initial Interim
Transaction NPV Collateral Flows

(i) Rec Fixed vs. Fed Funds −NPVFF
0 NPVFF

0 cFF − rt

(ii) Rec Fed Funds vs. LIBOR 0 0 rt + X(T) − Lt

(iii) Total −NPVFF
0 NPVFF

0 cFF + X(T) − Lt

(iv) Rec Fixed vs. LIBOR −NPVL
0 NPVL

0 cL − Lt

For concreteness, consider the special case of unit notional, two-period
swaps. Let f (t) denote forward rates from the fed funds curve. Then, by the
argument just made,

NPVL
0 = NPVFF

0 = cL − X(2)
(1 + f (1))

+ 1 + cL − X(2)
(1 + f (1)) (1 + f (2))

− 1 (17.14)

This pricing rule defines a relationship between par swap rates and
basis spreads. By definition, the NPV of par swaps is 0. Hence, by equation
(17.14), the two-year par fixed versus LIBOR swap rate, CL(2), is such that

CL(2) − X(2)
(1 + f (1))

+ 1 + CL(2) − X(2)
(1 + f (1)) (1 + f (2))

− 1 = 0 (17.15)

Or,

CL(2)
(1 + f (1))

+ 1 + CL(2)
(1 + f (1)) (1 + f (2))

= 1 + X(2)
(1 + f (1))

+ X(2)
(1 + f (1)) (1 + f (2))

(17.16)

It is worth pointing out a qualitative difference between equation (17.16)
and the pricing of Chapter 16. In the latter, with LIBOR taken as the riskless
investable rate, the values of the fixed and floating legs of par LIBOR swaps
are both worth par. Contrast this with (17.16). The left-hand side of this
equation gives the present value of the fixed side of a LIBOR par swap when
the riskless investable rate and the collateral rate are fed funds. But since
LIBOR-OIS basis swap spreads are positive, the right-hand side is greater
than par. Equivalently, viewing the right-hand side of (17.16) as the value of
the floating side of the LIBOR swap, this value also exceeds par. This latter
view is quite intuitive: receiving fed funds is worth par when discounting at
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fed funds but, because X(T) is positive in the basis market, receiving LIBOR
is worth more than receiving fed funds.

Two-Curve Pric ing

In practice, when implementing the pricing methodology of earlier chapters,
swaps are valued by discounting both the fixed and floating legs, where fu-
ture floating rates are taken to be the forward rates of the curve. In this way
the value of the floating side of the swap is normally par, but the method-
ology is flexible enough to incorporate cash flow details that can slightly
increase or decrease the value of the floating leg. What is the analogous pro-
cedure for implementing the correct pricing of (17.16)? The answer is to use
two curves, one for discounting and one for projecting future rates. Details
are presented in Appendix B in this chapter but the basic idea is presented
in this subsection. Define projected floating rates L′

t such that the present
value of the floating side of any maturity equals that maturity’s equivalent
of the right-hand side of (17.16). For a two-period swap, for example, L′

1
and L′

2 have to be defined such that

L′
1

(1 + f (1))
+ 1 + L′

2

(1 + f (1)) (1 + f (2))

= 1 + X(2)
(1 + f (1))

+ X(2)
(1 + f (1)) (1 + f (2))

(17.17)

The computation of the L′
t can be done via (17.17), but it is even simpler

to find the L′
t such that the value of the fixed sides of all par swaps, like

the left-hand side of (17.16), equals the values of the floating sides, like the
left-hand side of (17.17). In this way, the basis swaps are implicitly, but
not explicitly, used in the calculations. In any case, after building up these
projected rates L′

t for every date, swaps can be valued without any reference
to the basis swap rates. The fixed side of any swap is valued by discounting
its cash flows at the rate corresponding to the riskless investable rate and
collateral rate (e.g., the left-hand side of (17.16)). The floating side is valued
by discounting the basis-adjusted projected floating rates by that same curve
(e.g., the left-hand side of (17.17)).

The Ef fect of L IBOR-OIS Spreads on Swap Valuat ion

This chapter has established that discounting using a par swap curve does
not accurately value non-par swaps when the two-curve approach is appro-
priate. But how large an error is made by proceeding in this theoretically
incorrect way? To answer this question, assume that trading desk #1, which
values all swaps off the par swap curve, incorrectly calculates NPV∗ as the
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TABLE 17.11 Swap Valuation Errors from Failing to Account for a Fed Funds
Collateral as of May 28, 2010. Spreads and errors are in basis points.

(1) (2) (3) (4)

Valuation Error in Terms of Swap Rates

Term LIBOR-OIS Basis 200bp over Par Rate 100bp over Par Rate

2 48 1.2 .6
5 38 2.3 1.2

10 30 3.6 1.8

value of receiving the fixed rate c1 versus three-month LIBOR. Trading desk
#2, which accurately values swaps using the methodology of this section,
computes that the fixed rate that truly generates a value of NPV∗ is c2. Then,
define the valuation error of trading desk #1 as c1 − c2.

Table 17.11 shows these errors calculated as of May 28, 2010, meaning
that the par swap curve and the LIBOR-OIS basis curve are taken as of that
date. Column (1) gives selected swap terms. Column (2) gives the LIBOR-
OIS money market basis swap spread of that term. Note that, according
to Figure 15.5, the level of these spreads is above that of the long-term
history but below that prevailing over most of the crisis. Columns (3) and
(4) give the valuation errors as defined in the previous paragraph. The higher
the swap rate, the larger the NPV and, therefore, the larger the error from
incorrectly accounting for the interest rate earned on collateral. The longer
the term, the larger the error from discounting obligations at LIBOR that
should be discounted at fed funds. While the orders of magnitude of these
errors might appear small at first, they should be understood in the context
of a market in which bid-ask spreads are .25 or .5 basis points.

Table 17.12 shows the errors calculated using the par swap curve as of
May 28, 2010, but with LIBOR-OIS basis at levels more consistent with the
crisis. Not surprisingly, the valuation errors are commensurately larger.

This subsection concludes with a discussion of the sign of the valuation
errors. Under a valuation that does not take into account the collateral rate,
it is advantageous to pay the NPV, which essentially invests it through the
swap at a relatively high rate, i.e., LIBOR, and to take that same NPV as
collateral, which essentially borrows it at a relatively low rate, i.e., fed funds.
Hence, the receiver of an above-par rate swap and the payer of a below-
par rate swap, who both receive collateral, value those swaps more than
would be indicated by discounting at par swap rates. In terms of the errors
in Tables 17.11 and 17.12, c2, the correct fixed rate associated with NPV∗,
which reflects the value of taking collateral, is lower than the incorrect rate
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TABLE 17.12 Swap Valuation Errors from Failing to Account for a Fed Funds
Collateral; Curve as of May 28, 2010; LIBOR-OIS Basis Representative of
Crisis Levels. Spreads and errors are in basis points.

(1) (2) (3) (4)

Valuation Error in Terms of Swap Rates

Term LIBOR-OIS Basis 200bp over Par Rate 100bp over Par Rate

2 100 2.1 1.1
5 60 4.2 2.1

10 45 5.8 2.9

associated with NPV∗, which does not reflect the value of taking collateral.
Hence c1 > c2 and the errors in the tables are all positive.

Bases other than L IBOR-Fed Funds

This section has focused on swap valuation when the floating rate is three-
month LIBOR and the collateral rate is fed funds. But the logic here applies
to other bases as well. For example, to value a fixed versus one-month
LIBOR swap, with collateral rate of fed funds, discounting has to be done
at fed funds while projected floating cash flows are determined implicitly or
explicitly by one-month LIBOR-fed funds basis swap spreads.

APPENDIX A: ARBITRAGE RELATIONSHIPS ACROSS
BONDS AND SWAPS WITH FINANCING

Proposition 1: Consider two bond portfolios constructed so that their
coupon and principal cash flows are identical. When longs and shorts have
to be financed by collateralized borrowing and lending, respectively, the ar-
bitrage arguments that the two portfolios must have the same price obtains
if, in addition to the usual assumption of trivial transaction costs:

� the two portfolios always finance at the same rate;
� interim mispricings can always be financed at that same rate.

Furthermore, under these conditions, an arbitrage that is long one port-
folio and short the other generates a cash flow at maturity equal to the
realized value of rolling over the intial mispricing to the maturity date at the
financing rate.
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Proof: Consider portfolios A and B that have been constructed so that their
coupon and principal cash flows are identical. Set the following notation:

� P A
t , P B

t : prices of the portfolios at time t, t = 1, . . . T
� r A

t , r B
t : financing rates on the portfolios from time t − 1 to time t. If

r A
t = r B

t then denote the financing rate by rt
� εt: the market richness (εt > 0) or cheapness ( εt < 0) of portfolio A

relative to portfolio B at time t in price terms, i.e.,

P A
t = P B

t + εt (17.18)

Assume without loss of generality that the trader decides to buy portfolio
A and short portfolio B. At initiation, at time 0, the trader does the following:

� Buy portfolio A for P A
t , borrow its price P A

t , and deliver it as collateral
against the loan.

� Sell portfolio B, lend its price P B
t , taking it as collateral against the loan.

Note that the total cash flow from these trades is zero.
Subsequently, on any date t, the trader does the following:

� Collect the coupon from portfolio A and pay the coupon to portfolio B,
which payments, by construction, are perfectly offsetting.

� Roll over the financing of portfolio A over the previous period t − 1 to t
by paying off the loan of P A

t−1

(
1 + r A

t

)
and taking out a new loan of P A

t .
� Roll over the short of portfolio B over the previous period by collecting

loan proceeds of P B
t−1

(
1 + r B

t

)
and making a new loan of P B

t .

The total cash flow on date t ≤ T is, therefore,

P A
t − P A

t−1

(
1 + r A

t

) − P B
t + P B

t−1

(
1 + r B

t

)
(17.19)

To focus first on the financing rates, assume for the moment that the
prices of these portfolios with identical coupon and principal cash flows are
the same, i.e., εt = 0 for all t. Then, (17.19) becomes

P B
t−1

[
r B

t − r A
t

]
(17.20)

But the quantity (17.20) will not be zero, as required for replication,
unless r A

t = r B
t for all t. In other words, even if the prices of the two portfolios

are identical over time, the total cash flows from carrying a long in one and a
short in the other will not cancel out unless the financing rates are the same.

Having established that the financing rates over time have to be the
same for the arbitrage strategy to work, let that single rate be simply rt and
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allow for the possibility of interim mispricing, i.e., that εt may be positive or
negative. Substituting (17.18) into (17.19), the cash flow on date t becomes

εt − εt−1 (1 + rt) (17.21)

Equation (17.21) demonstrates that the arbitrage trade of buying one
portfolio and shorting another may require cash injections or allow for cash
withdrawals if there are any market mispricings. Hence the condition in the
proposition that interim mispricings have to be financed in some way.

Now consider the special case that these mispricings are financed at
rates rt. The date 1 cash flow of (17.21), carried forward to date 2, is

[ε1 − ε0 (1 + r1)] (1 + r2) (17.22)

And the date 2 cash flow of (17.21) is

ε2 − ε1 (1 + r2) (17.23)

Adding (17.22) and (17.23) together, the terms with ε1 cancel, so that
the accumulated cash on date 2 is

ε2 − ε0 (1 + r1) (1 + r2) (17.24)

Continuing forward in this way, the accumulated cash at the maturity date
T is

− ε0 (1 + r1) (1 + r2) · · · (1 + rT) (17.25)

In words, the accumulated cash is the future value of the initial mispric-
ing. Since in this exposition the trader bought portfolio A and sold portfolio
B, portfolio A was presumably cheap at date 0, that is, ε0 < 0. Thus, the
quantity available at maturity given by (17.25) is positive and depends only
on the initial mispricing upon which the trader has originally decided to do
the arbitrage trade.

Proposition 2: Consider two swap portfolios against a single floating rate
index constructed so that their fixed-side coupon and (fictional) principal
cash flows are identical. The arbitrage arguments that the two portfolios
must have the same price obtains if, in addition to the usual assumption of
trivial transaction costs:

� the riskless investable rate and the rate earned on collateral posted
against the NPV of the swap portfolios equal that same floating
rate index;

� interim mispricings can always be financed at that floating rate index.
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Furthermore, under these conditions, an arbitrage that is long one port-
folio and short the other generates a cash flow at maturity equal to the
realized value of rolling over the initial mispricing to the maturity date at
the floating rate index.

Proof: Consider portfolios A and B that have been constructed so that their
coupon and principal cash flows are identical. Set the following notation:

� P A
t , P B

t : prices of the portfolios at time t, t = 1, . . . T, where discounting
is done at the curve corresponding to the floating rate index.

� F A
t , F B

t : total face or notional amount of the swaps in portfolios A and
B. Note that this amount can change over time as swaps in the portfolios
reach maturity.

� NPV A
t , NPVB

t : NPV of the portfolios, defined as the present value of
the fixed side minus the present value of the floating side, where all
discounting is done at the curve corresponding to the floating rate index.
For the fixed sides, the present values have already been defined as P A

t
and P B

t . For the floating side, as shown in Chapter 16, the present values
are simply the face amounts. Hence,

NPV A
t = P A

t − F A
t (17.26)

NPVB
t = P B

t − F B
t (17.27)

� Lt: the floating rate index over the period t − 1 to t. This need not
necessarily be a LIBOR index.

� rt: rate earned on collateral posted from time t − 1 to time t
� εt: the market richness (εt > 0) or cheapness (εt < 0) of portfolio A

relative to portfolio B at time t in price terms, defined as in (17.18)

Assume without loss of generality that the trader receives fixed on port-
folio A and pays fixed on portfolio B. At time 0, then, the trader does the
following:

� Agree to receive fixed and pay floating with portfolio A, pay NPV A
0 ,

take NPV A
0 as collateral, paying interest at the rate r1.

� Agree to pay fixed and receive floating with portfolio B, receive NPVB
0 ,

give NPVB
0 as collateral, receiving interest at the rate r1.

Note that the total cash flow from these trades is zero.
Subsequently, on any date t, the trader does the following:

� Receive fixed (including fictional principal payments) from A and pay
fixed (including fictional principal payments) through B, which pay-
ments, by construction, are perfectly offsetting.
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� Pay floating through A and receive floating through B (including fic-
tional principal payments) at Lt on face amounts F A

t−1 and F B
t−1, respec-

tively. Note that the fictional maturing principal of A paid is F A
t−1 − F A

t

while the fictional maturing principal of B received is F B
t−1 − F B

t . These
amounts have to be included because the fictional principal amounts
are included in the fixed payments of the two portfolios.

� Pay interest on NPV A
t−1 at the rate rt, return the collateral NPV A

t−1 and
take the revised collateral amount NPV A

t .
� Receive interest on NPVB

t−1 at the rate rt, return the collateral NPVB
t−1

and take the revised collateral amount NPVB
t .

Therefore, the total cash flow on date t is, after offsetting the fixed
payments,

−F A
t−1Lt − [

F A
t−1 − F A

t

] − NPV A
t−1 (1 + rt) + NPV A

t

+F B
t−1Lt + [

F B
t−1 − F B

t

] + NPVB
t−1 (1 + rt) − NPVB

t (17.28)

Substituting prices for NPVs using equations (17.26) and (17.27),

−F A
t−1Lt − [

F A
t−1 − F A

t

] − [
P A

t−1 − F A
t−1

]
(1 + rt) + P A

t − F A
t

+F B
t−1Lt + [

F B
t−1 − F B

t

] + [
P B

t−1 − F B
t−1

]
(1 + rt) − P B

t + F B
t (17.29)

And simplifying,

F A
t−1 [rt − Lt] + P A

t − P A
t−1 (1 + rt)

− [
F B

t−1 [rt − Lt] + P B
t − P B

t−1 (1 + rt)
]

(17.30)

To focus first on the rate earned on collateral posted, assume for the
moment that the prices of these portfolios with identical fixed-side payments
are the same, i.e., εt = 0 for all t. Then, (17.30) becomes

[
F A

t−1 − F B
t−1

]
[rt − Lt] (17.31)

Ignoring the trivial case of F A
t−1 = F B

t−1, in which the portfolios contain
exactly the same swaps so that a long and short position is identically no
position, the quantity (17.31) will not be zero, as desired, unless rt = Lt for
all t. In other words, even if the prices of the two fixed-side, cash-matched
portfolios are identical over time, the total cash flows from the arbitrage
position will not cancel out unless the rate earned on collateral posted equals
the floating rate index.
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Having established that the rate on collateral must equal the floating
rate index for the arbitrage strategy to work, allow for the possibility of
interim mispricing, i.e., that ε(t) may be positive or negative. With rt = Lt,
substituting (17.18) into (17.30 ) gives a date-t cash flow of

εt − εt−1 (1 + Lt) (17.32)

But this is completely analogous to (17.21), so continuing the argument
along the lines of the proof of Proposition 1 shows that the cash accumulated
by the arbitrage trade through the maturity date T is the future value of the
initial pricing with the floating index rates of compounding:

− ε0 (1 + L1) (1 + L2) · · · (1 + LT) (17.33)

APPENDIX B: PRIC ING SWAPS WITH THE
TWO-CURVE APPROACH

Proposition 3: Suppose that the riskless investable and collateral rates on
all swaps are rt and that the basis swap spread of X(T) makes payments
of rt + X(T) fair against the LIBOR index, Lt. Let the forward rates of the
curve corresponding to the short-term rate realizations rt be f (t). Then, the
NPV of a T-year swap that exchanges the fixed rate, c(T), for Lt is given by

NPV = [c(T) − X(T)] A(T) + d(T) − 1 (17.34)

where A(T) and d(T) are the annuity factors and discount factors, respec-
tively, from the curve described by the forward rates, f (t).

Proof: To price the swap of c(T) against LIBOR, note that this swap is
equivalent to the portfolio of the following two swaps:

� Receive c(T) − X(T) and pay rt
� Receive rt + X(T) and pay Lt

By definition of the basis swap spread, X(T), the NPV of the second
swap is zero. Hence, the NPV of the swap to be priced must equal the NPV
of the first swap. But, from Proposition 2, the NPV of this first swap is priced
by arbitrage arguments as

[c(T) − X(T)] A(T) + d(T) − 1 (17.35)
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Proposition 4: Suppose that the riskless investable and collateral rates on
all swaps are rt and that the basis swap spread of X(T) makes payments
of rt + X(T) fair against the LIBOR index, Lt. Then, swaps of fixed rates
against the LIBOR index can be priced by the following two-curve approach:

� Discount all cash flows, fixed and projected floating, at the forward
rates f (t).

� Project floating rate payments using adjusted LIBOR rates, L̂(t), which
are constructed iteratively for t = 1, . . . T from the following equation:

t∑
s=1

L̂(s)
(1 + f (1)) · · · (1 + f (s))

= 1 + X(t)A(t) − d(t) (17.36)

where A(t) and d(t) are the annuity factors and discount factors, respectively,
from the curve formed by the forward rates, f (t).

Proof: Under the proposed methodology, the NPV of a swap with maturity
T, the value of the fixed leg at the rate c(T) minus the value of the floating
leg, would be computed as follows:

NPV(T) = c(T)A(T) + d(T) −
[

T∑
t=1

L̂(t)
(1 + f (1)) · · · (1 + f (t))

+ d(T)

]

(17.37)

Substituting for the adjusted LIBOR rates using (17.36), this becomes

NPV(T) = c(T)A(T) + d(T) − [1 + X(T)A(T)] (17.38)

But, rearranging terms, equation (17.38) is exactly the correct NPV, as given
by (17.34) in Proposition 3. Hence, the two-curve methodology does price
all swaps correctly.

Corollary 1: The projected floating rate payments of the two-curve method
in Proposition 4 can be computed using the par swap rates against the
LIBOR index, C(t), instead of using the basis swap spreads X(t), through
the following equation:

t∑
s=1

L̂(s)
(1 + f (1)) · · · (1 + f (s))

= C(t)A(t) (17.39)
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Proof: Par swaps, by definition, have an NPV of zero. Hence, from (17.34),

[C(T) − X(T)] A(T) + d(T) = 1 (17.40)

Rearranging terms,

1 + X(T)A(T) − d(T) = C(T)A(T) (17.41)

But substituting (17.41) for the right-hand side of (17.36) gives the
desired result (17.39).
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CHAPTER 18
Fixed Income Options

T his chapter discusses some of the most popular fixed income options,
namely, caps and floors, swaptions, bond options, Eurodollar (ED) and

Euribor futures options, and bond futures options. These options can be, and
some often are, priced using the term structure models of Part Three. When
the objective is not to compute relative cheapness or richness, however, but
to interpolate between known market prices or to calculate hedge ratios,
practitioners often take the much simpler approach of using some form of
the Black-Scholes (BS) option pricing model.

First, the chapter describes the fixed income options listed in the previous
paragraph. The practice of applying BS in each context is explained, and
the less justifiable practices critiqued in favor of other methodologies. For
easy reference, common practitioner applications of BS are collected and
summarized in Tables 18.8 through 18.10.

The chapter focuses next on the skew, the fact that BS implied volatilities
vary with strike. The existence of the skew means that the BS model, even
when applied to European-style options of a single maturity, cannot capture
the richness of option prices in the market. The section on skew focuses on
swaptions and presents two commonly used approaches to model the skew.

The final section of the chapter presents the theory that justifies the
application of BS to the fixed income options described in this chapter.
Consistent with the rest of this book, every effort has been made to use a
minimum amount of advanced mathematics.

CAPS AND FLOORS

The easiest way to explain caps is to start by explaining caplets, even though
caps are the more traded derivative. At the end of a given accrual period, a
caplet pays the greater of zero and London Interbank Offered Rate (LIBOR)
minus a strike over the accrual period, where LIBOR is set at the beginning
of the accrual period. Consider, for example, a caplet with a three-month
LIBOR reset date of November 28, 2012, a payment date of February 28,
2013, and a strike of .97%. Note that there are 92 days over this accrual

483
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period. Then, if LIBOR on November 28, 2012, turns out to be L, then a
unit notional of the caplet will pay, on February 28, 2013,

92
360

[L − .97%]+ (18.1)

where [L − .97%]+ is another way of writing max [L − .97%, 0]. Note that
the payoff of a caplet looks like that of an option, but the maximum of zero
and the difference between the rate and the strike is part of the contract
rather than a result of optimal exercise behavior.

Caplets are typically valued by practitioners under the assumption that
forward LIBOR rates are normally distributed. Under this assumption, the
final section of the chapter shows that the value of a caplet with a reset at
time T and payment at time T + τ is given by

τd0 (T + τ ) ξ N (S0, T, K, σ ) (18.2)

where τ is the term of the reference rate, d0(T + τ ) is the discount factor to
the payment date, S0 is today’s forward rate from T to T + τ , K the strike,
σ the basis-point volatility of the forward rate, and ξ N the BS-style formula
defined in Appendix A in this chapter. Table 18.1 applies (18.2) to 100
notional of the caplet introduced previously, as of February 28, 2011. Note
that there are 639 days from the pricing date, February 28, 2011, to the
reset date, November 28, 2012. (Note that calendar days are used here for
easier readability, but business days are more commonly used in practice.)
The appropriate discount factor to the payment date, derived from the swap
curve, is .981801. Finally, a volatility of 77.22 basis points, the source of

TABLE 18.1 Pricing a Caplet with a LIBOR Reset
on November 28, 2012, and a Payment Date on
February 28, 2013, as of February 28, 2011

Quantity Value

S0 1.9077%
T 639

365 = 1.7507

τ 92
360 = .2556

K 0.97%
σ .7722%
d0(T + τ ) .981801
ξ N (S0, T, K, σ ) .01037

VCaplet
0 = 100 × τd0(T + τ ) ξ N .2602
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TABLE 18.2 The Structure and Pricing of a Two-Year Cap as of February 28,
2011

Cap Strike .97%

Cap Volatility .7722%

Dates

Reset Payment Forward Rate Caplet Premium

2/28/11 5/31/11 .310%
5/31/11 8/31/11 .377% .0027
8/30/11 11/30/11 .452% .0128
11/28/11 2/28/12 .599% .0300
2/28/12 5/29/12 .830% .0611
5/29/12 8/29/12 1.176% .1157
8/28/12 11/28/12 1.555% .1864
11/28/12 2/28/13 1.908% .2602

Sum .6688

which will be made clear below, is used to derive the price of 26.02 cents
per 100 notional amount.

Having explained a caplet, the discussion can turn to caps. A cap is a
portfolio of caplets, with the value of the cap being the sum of the value
of its component caplets. The implied volatility of a cap is the volatility
that, when used to value every component caplet, results in the market price
of the cap. This leads to some complexities, as will be discussed presently,
because the term structure of caplet volatility is not flat. In other words,
every caplet is appropriately valued at a particular volatility even though,
when quoting the price of a cap, all of its component caplets are valued at
the same volatility.

Table 18.2 illustrates the structure of a cap and how a cap price is
quoted using a two-year USD at-the-money (ATM) cap as of February 28,
2011. This cap is ATM because its strike of .97% equals the rate of the
corresponding swap which, in this case, is the two-year par swap rate. The
cap strike of .97% means that every component caplet has a strike of .97%.
The cap volatility of 77.22 basis points means that the price of the cap is
the sum of the component caplet values when each caplet is valued at a
volatility of 77.22 basis points. The reset and payment dates for each caplet
are given in the table, though the exact date logic will not be covered here.
The forward rates are derived from the swap curve and the caplet premiums
are calculated from the normal BS formula, using each respective forward
rate, a strike of .97%, and a volatility of 77.22 basis points, in addition
to the appropriate date parameters and discount factors along the lines of
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Table 18.1. In fact, the caplet in Table 18.2 that pays on February 28, 2013,
is the same caplet that was valued in Table 18.1.

Note that what might have been the first caplet in Table 18.2, with a
LIBOR reset at the start of the cap initiation and a payment on May 31,
2011, is omitted from the table. The payment from such a caplet would
be known as of the start of the cap and, as such, would have no option-
like premium—it would simply be worth its present value. In fact, in this
example, where the initial LIBOR setting is below the strike, at .310%, the
payment from this caplet would be zero. As a consequence of this line of
reasoning, this first caplet payment is usually omitted from a cap.

The two-year cap in the example is a spot starting cap, i.e., putting aside
the skipping of the first payment, the schedule of payments starts immedi-
ately. There is also an active market, however, in forward starting caps. In a
5 × 5 cap, the first reset would be in five years, the first payment in five years
plus the length of the accrual period (e.g., five years and three months), and
the last payment would be in 10 years. Finally, to close the discussion of
the structure of caps, for USD caps the reference rate is always three-month
LIBOR. For EUR caps, however, the reference rate is typically three-month
LIBOR for shorter-term caps and six-month LIBOR for longer-term caps.

As mentioned previously, if caplets traded individually, they would be
priced at individual volatilities, not at a single volatility as is the convention
for quoting cap prices. In other words, there is a term structure of caplet
volatilities. This term structure is interesting for use as another perspective on
the market price of volatility and for comparison with, and perhaps trading
opportunities against, similar volatility instruments, e.g., ED futures options.

In theory, the term structure of caplet volatility could be recovered
from caps of various terms, with the volatility of a three-month cap giving
the first caplet volatility, then the volatility of the six-month cap giving
the second caplet volatility, etc. The problem is complicated, however,
by the fact that the most traded and useful volatilities are ATM volatili-
ties, which, in the case of caplets, correspond to caplets with strikes equal
to their underlying forward rates. But the strikes of caplets that are part of
caps all have a single strike that cannot, in general, equal the underlying
forward for every component cap. And, as discussed in the next section, on
swaptions, and later in this chapter on skew, volatilities of options that are
not ATM can be significantly different from those ATM. Hence, the extrac-
tion of caplet volatilities from caps is often combined with some adjustment
for the caplet strikes not being ATM.

Floorlets and floors are analogous to caplets and caps. Using the same
notation as in the rest of this section, the payment of a floorlet at time T + τ ,
determined by the LIBOR rate set at time T, is

τ [K − L]+ (18.3)
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Assuming normal forward rates, the value of a floorlet is given by

τd0(T + τ ) π N (S0, T, K, σ ) (18.4)

where the function π N(·) is given in Appendix A in this chapter. The value
of a floor is the sum of the values of its component floorlets.

Applying put-call parity, the prices of an ATM caplet and an ATM
floorlet with the same expiration are equal, as are the prices of matched-
date ATM caps and floors. Say, for example, that the five-year swap rate
five years forward is 5%. Then paying fixed on this forward starting swap
and buying a 5 × 5 floor with a strike of 5% has exactly the same cash flows
as a 5 × 5 cap with a strike of 5%. But since, by definition, the value of the
forward swap is zero, the values of the cap and the floor must be the same.

SWAPTIONS

A swaption is an over-the-counter (OTC) contract that gives the buyer the
right, at expiration, to enter into a fixed-for-floating interest rate swap at the
maturity and strike rate agreed to in the contract. A receiver swaption gives
the buyer the right to receive fixed and pay floating while a payer swaption
gives the buyer the right to pay fixed and receive floating.

As an example, consider a $100 million 5.28% “5-year-5-year” or
“5y5y” receiver swaption traded on February 9, 2011. This option gives
the buyer the right, in five years, on February 9, 2016, to receive 5.85% and
pay LIBOR on $100 million for five years, that is, until February 9, 2021.
What is the value of this swaption at expiration? Following the notation of
Chapter 13, let C5 (5, 10) denote the par swap rate from year five to year 10,
i.e., the five-year par swap rate, five years from today. Also, let A5 (5, 10)
denote the value, five years from today, of an annuity of $1 per year, paid
on the fixed rate payment dates of a swap from year five to year 10. Then,
at the expiration of the swaption, in five years, the value of receiving 5.28%
for five years is

$100 mm × [5.28% − C5 (5, 10)]+ × A5 (5, 10) (18.5)

Inspection of the payoff (18.5) reveals that a 5y5y receiver swaption is
a put on the five-year par swap rate, five years forward. More generally, a
T-year-τ -year receiver swaption is a T-year put option on the τ -year par
swap rate, T-years forward. Similarly, a T-year-τ -year payer swaption is a
T-year call option on the τ -year par swap rate, T-years forward.

Table 18.3 applies BS to the example of this section. As just discussed,
the rate underlying the 5.28% 5y5y receiver option traded on February 9,
2011, is the forward par rate on a swap from February 9, 2016, to February



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c18 JWBT539-Tuckman August 4, 2011 10:3 Printer: Courier Westford

488 SELECTED SECURITIES AND TOPICS

TABLE 18.3 Calculating the Receiver Swaption
Price per 100 Notional Amount of Swaps

Quantity Value

S0 5.28%
T 5
τ 5
K 5.28%
σ 1.145%
A0 (T, T + τ ) 3.8285
π N (S0, T, K, σ ) .010213
VReceiver

0 = $100 mm × A× π N $3.91 mm

9, 2021. As of the pricing date, this forward rate was 5.28%. Hence S0 of
BS is 5.28% and the swaption of the example, with its strike at 5.28%,
was ATM. (A higher strike would have been in-the-money while a lower
strike would have been out–of-the-money.) For the 5.28% 5y5y, the other
parameters are clearly T = 5, τ = 5, and K = 5.28%. The value of the
annuity on the swap from February 9, 2016, to February 9, 2021, as of
February 9, 2011, was 3.8285. Finally, the cost of this receiver option on
the pricing date was 391 cents per 100 notional amount or $3.91 million
on $100 million. The final section of this chapter shows that the value of
a receiver swaption, per unit notional, when the underlying forward swap
rate is normally distributed, is

A0 (T, T + τ ) × π N (S0, T, K, σ ) (18.6)

where π N (·) is once again from Appendix A in this chapter. Setting
the market price of $3.91 million equal to $100 million times (18.6),
Table 18.3 shows that the implied volatility of this swaption is 1.145%.

The analogous formula for a payer swaption, per unit notional, is

A0 (T, T + τ ) × ξ N (S0, T, K, σ ) (18.7)

ATM swaption prices, which are by far the most commonly traded
swaptions, are quoted in a matrix of either premia or implied normal
volatilities. Table 18.4 is an example of the latter for USD swaptions as
of February 9, 2011. For example, the ATM option to receive or to pay in
a 10-year swap in two years, a 2y10y, is priced with an implied volatility of
116.4 basis points.1 The price of the 5y5y option introduced in the previous

1ATM calls and puts have the same BS values. This is easy to verify from Equations
(18.88) through (18.94).
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TABLE 18.4 USD ATM Swaption Normal Volatilities as of February 9, 2011

Swap Tenor

Option Exp. 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y 15y 30y

1m 56.1 80.1 99.1 107.5 116.0 115.5 114.6 113.9 112.7 112.3 105.6 97.0
3m 53.8 85.5 102.4 110.1 118.5 117.9 117.4 116.2 114.7 113.3 108.7 100.9
6m 69.2 96.2 106.9 113.4 119.9 119.0 118.1 117.2 116.2 115.1 110.3 104.0
1y 97.5 113.4 117.7 119.7 121.5 120.8 119.7 118.7 117.8 116.9 110.6 104.8
2y 121.6 123.3 123.9 122.6 122.0 121.0 119.8 118.7 117.6 116.4 109.2 102.8
3y 122.4 122.6 121.7 121.1 120.8 119.5 118.3 117.0 115.6 114.4 106.8 100.2
4y 120.5 119.9 119.2 118.3 117.6 116.4 115.3 114.2 113.0 112.0 104.0 97.1
5y 119.7 118.9 117.4 116.0 114.4 113.3 112.0 110.8 109.7 108.4 100.0 93.0
10y 99.4 99.1 97.7 96.5 95.4 94.2 92.9 91.7 90.4 89.1 81.4 75.2

489
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paragraph, also recorded in the table, is quoted at a volatility of 114.4
basis points.

Swaption skew, discussed later in this chapter, refers to the fact that
implied volatilities for ATM swaptions in Table 18.4 are valid only for
ATM swaptions. The broader swaptions market, therefore, actually trades
a volatility cube, where the third dimension represents strike, usually in 50
basis-point increments away from the forward par swap rate corresponding
to each entry of the swaption matrix. For a 5y5y as of February 9, 2011,
with the underlying par forward swap at 5.28%, a volatility cube would
show volatilities for the 5y5y at higher strikes of 5.78%, 6.28%, etc., and
for lower strikes of 4.78%, 4.28%, etc.

The skew applies not only for trading swaptions that are not ATM but
also for valuing or marking swaptions in position that were initiated ATM.
Consider the 5.28% 5y5y receiver swaption traded on February 9, 2011.
The underlying swap of this swaption, from initiation to expiration, is an
unchanging 5.28% swap from February 9, 2016, to February 9, 2021. As of
February 9, 2011, this swap was a par swap, but over time this will no longer
be the case. Say, for example, that one month later, on March 9, 2011, the
rate of the forward par swap corresponding to those dates is 5.40%. In
that case, the 5.28% receiver swaption can be characterized as a 4-year-11-
month-5-year that is 12 basis points out-of-the-money. Valuing the option,
therefore, requires an interpolation between the ATM and the 50 basis-
point, out-of-the-money volatilities, as well as an interpolation between
the 4y5y and 5y5y option expirations. In practice, these interpolations are
carried out by means of a stochastic volatility model, discussed later in this
chapter.

This section has described swaptions as if they are physically settled,
meaning that, at expiration, the counterparties enter into a swap at the
appropriate rate and maturity. In fact, however, swaptions in the United
States are almost always cash settled and, in Europe, approximately half
of all swaptions are cash settled. In the United States, the cash settlement
feature has no material effect on valuation because the cash settlement value
is found by multiplying the appropriate annuity factor, evaluated along the
swap curve, by the difference between the par rate and the strike in the case
of payers or the difference between the strike and the par rate in the case
of receivers. In Europe, however, where the annuity factor is computed at
a flat rate equal to the appropriate par swap rate, there can be very minor
valuation differences between the two forms of settlement.

As a final note, as of September 2010, some swaptions in Europe
are structured so that the premium is paid at the expiration date rather
than the trade date. This practice makes swaption valuation less sensi-
tive to the choice of the discounting curve, that is, to the issues raised in
Chapter 17.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c18 JWBT539-Tuckman August 4, 2011 10:3 Printer: Courier Westford

Fixed Income Options 491

BOND OPTIONS

Options on bonds, particularly government bonds, do trade over-the-
counter, but the market is not particularly active. On the other hand, embed-
ded options, i.e., options that are included as part of the agreement between
issuer and bondholders, are quite common. To take one example, on August
4, 2010, the Federal National Mortgage Association (FNMA) issued a 2%
bond maturing on November 4, 2014. Coupon payments were set for the
4th of November and the 4th of May of each year from November 4, 2010,
to November 4, 2014. Note that the first coupon, due only three months
after issuance, was for only 1% of the face amount and is known as a short
coupon.2 As part of the bond indenture, however, FNMA had the right to
call the bonds on February 4, 2011, at a price of 100. This means that FNMA
had the right, on February 4, 2011, to buy back every bond it had issued
for a price of par and, in so doing, have no further payment obligations.

The structure of the call option in the FNMA bond just described is a bit
unusual in the context of the corporate bond market. More usual structures
can be described as follows. First, after an initial period of noncallability
or call protection, the issuer has the right to call a bond on every coupon
payment date until maturity. A “10 non-call five,” for example, would be a
10-year bond first callable in five years.3 Second, the call price on the first
call date typically includes a premium, frequently equal to half the coupon,
so that a 5% coupon bond might be callable on the first call date at a price
of 102.50. Third, the schedule of call prices would typically decline linearly
from the first call price on the first call date to 100 at maturity.

The embedded call feature was initially designed for issuers to maintain
flexibility with respect to managing their debt rather than for them to pur-
chase call options when issuing debt. Issuers might want to retire debt so as
to alter their capital structures or so as to elminate restrictive covenants.4

But tracking down all holders of an issue and negotiating the repurchase
of their holdings is simply not practical. The solution was the call feature,
through which an issuer could instruct the trustee of an issue to pay the call
price and extinguish the debt. As time passed, however, and as interest rates
became more volatile, the value of the call feature as an interest rate option
was recognized and incorporated into the pricing of corporate securities.

The discussion now turns to pricing bond options. The typical structure,
which allows the issuer to exercise its call on many coupon payment dates

2The first coupon is a long coupon if a bond otherwise making semiannual payments
sets the accrual period for the first coupon payment at more than six months.
3An option with several exercise dates, which is between a European- and American-
style option, is called a Bermuda-style option.
4Chapter 19 lists some common bond covenants.
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and at a declining schedule of call prices, is handled most precisely through
the methods of Part Three. More specifically, in the context of a one-factor
model, the valuation procedure for a callable bond can be described as
follows:

1. Create an appropriate risk-neutral tree of short-term rates. In some
cases the short-term rate process would be designed to price bonds of
the issuer selling the callable bond, but in most cases the process would
correspond to swap or government bond benchmarks. Either way, but
almost certainly in the latter case, a bond-specific spread or option
adjusted spread (OAS) would be added to the rates for valuation.

2. Using the methodology of Part Three, calculate the value along the tree
of an otherwise identical, noncallable bond. In the case of the FNMA 2s
of 2014, the otherwise identical noncallable bond would have exactly
the same schedule of coupon and principal payments as the FNMA 2s,
but would not be callable.

3. Calculate the value along the tree of the call option embedded in the
callable bond. Consistent with the well-known methods for pricing an
American-style option along a tree, start from the maturity date of the
option and work backwards, using the rule that the value of the option
at any node equals the maximum of the value of immediately exercising
the option and the value of holding the option for another period. And,
of course, the value of holding the option for another period at any node
is its expected discounted value.

4. The value of the callable bond equals the value of the noncallable bond
minus the value of the option. This reflects the fact that the issuer has
effectively sold the noncallable bond and bought a call option on that
bond or, equivalently, that bondholders have bought the noncallable
bond and sold a call option on that bond.

With this valuation procedure in place, other computations are straight-
forward. Given a market price for the callable bond, an OAS can be com-
puted along the lines of Chapter 7. Also, the interest rate sensitivity of the
bond can be calculated by perturbing the short-term rate factor and re-
peating steps 1 to 4 or, for a metric more similar to yield-based DV01, by
perturbing the initial term structure and repeating the valuation procedure.

While term structure models are best suited for pricing callable bonds,
there are occasional uses for the BS model. First, there are special cases
like the FNMA 2s of 2014, introduced earlier, that are simpler, European-
style calls. Second, if the first call date is relatively distant, most of the
value of the call feature is the value of calling on that first call date. For
example, the embedded call in a 10-non-call-five structure is greater than,
but approximately equal to, the option to call the bond in exactly five years,
i.e., on the first call date only.
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TABLE 18.5 Calculating the Value of the Embedded
Option in the FNMA 2s of 2014, as of August 20, 2010

Quantity Value

S0 101.9193
T 163

365 = .446575
K 100
σ 2.813%

d0(T)
(
1 + .2888%×163

360

)−1 = .998694
ξ LN (S0, T, K, σ ) 2.074061
VBondCall

0 = d0(T) ξ LN 2.0714

LIBOR OAS −.0644%
Noncallable Price 102.6964
Callable Price 100.625

To illustrate the use of BS for callable bonds, consider the FNMA 2s of
2014, which traded at 100.625 as of August 20, 20140. The final section
of this chapter shows that, under the assumption that the forward bond
price is lognormally distributed, the value of a call option on a bond is
d0(T) ξ LN (S0, T, K, σ ), where S0 is the forward price of the bond for delivery
on date T, the other parameters are as usually defined, and ξ LN is as given
in Appendix A in this chapter. But the call option is not on the FNMA 2s
of 2014, but on the otherwise identical noncallable bond whose price is not
observed. Hence, both the forward price and the volatility are missing from
the list of needed parameters. Since FNMA bonds are essentially backed
by the U.S. government and have little credit risk, one strategy for pricing
is to rely on the swap market for rates and volatility. In particular, model
the forward price of the noncallable bond as an OAS to the swap curve and
take the volatility of the forward bond as the volatility of a forward swap
with the same cash flows. Then use BS to imply the OAS from that volatility
and the price of the callable bond.

Table 18.5 shows the results. With the noncallable forward bond trading
at an OAS of −6.44 basis points to the swap curve, its value is 101.9193.
Then, assigning that forward bond price a volatility of 2.813%, which is
taken from the swaptions market,5 and calculating a discount factor from a
swap market rate plus that same OAS, the BS price of the option is 2.071.
Subtracting this option value from the 102.6964 value of the noncallable
bond gives a callable price of 100.625, as desired.

5The appropriate swaption volatility was 78.43 basis points, the forward DV01 of
the noncallable bond .03656, and the forward noncallable price 101.9193. Hence,
the volatility of the forward price is 78.43 × .03656 ÷ 101.9193 or 2.813%.
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F IGURE 18.1 Price-Rate Curves of the Callable FNMA 2s of 2014, and of Two
Reference Bonds

This section concludes by discussing the interest rate behavior of callable
bonds. Figure 18.1 graphs the price-rate functions of the FNMA 2s of 2014,
as of August 20, 2010, and of two fictional reference bonds in a BS frame-
work with a flat term structure. The first reference bond, labeled “NC to
Maturity,” pays exactly the same cash flows as the FNMA bonds but is not
callable. These are the cash flows an investor would realize on the FNMA
bonds were they not to be called. The second reference bond, labeled “To Be
Called,” pays the same coupons as the FNMA to its call date, on February
4, 2011, and then returns principal plus accrued interest. These are the cash
flows an investor would realize on the FNMA bonds were they to be called
on February 4, 2011.

The NC to Maturity is a longer maturity bond than the To Be Called
bond, so its price-rate graph is steeper. For relatively high rates, the option
to call the FNMA bond is not likely to be exercised so the value of the
FNMA bond approximately equals that of the NC to maturity bond. For
relatively low rates, the option to call the FNMA bond is very likely to be
exercised so the value of the FNMA bond approximately equals that of the
To Be Called bond. For intermediate rates, the value of the FNMA bonds is
significantly below that of the two reference bonds. The difference between
the value of the NC to maturity bond and the value of the FNMA bond is
just the value of the call option.

Figure 18.1 also illustrates the negative convexity of callable bonds.
This can be seen directly from the shape of the FNMA price-rate curve.
Equivalently, the DV01 of the FNMA bond at high rates resembles the
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relatively high DV01 of the NC to Maturity bond while at low rates it
resembles the relatively low DV01 of the To Be Called bond. Hence the
DV01 of the FNMA bond declines with rate, i.e., it is negatively convex.

EURODOLLAR AND EURIBOR FUTURES OPTIONS

Chicago Mercant i le Exchange VERSUS NYSE
Euronext Futures Opt ions

The markets for ED futures options and Euribor futures options6 are ex-
tremely active. Like the underlying futures contracts, these American-style
call and put options are exchange traded and are highly standardized with
respect to expiration dates, strikes, maturities, and contract size.

Futures options are all, of course, options on futures contracts, but there
are two distinct types of futures options.

The first type, like the ED futures options traded on the Chicago
Mercantile Exchange (CME) in the United States, can be described as fol-
lows. The buyer of an option pays a premium and the seller of an option
receives a premium. Upon exercise or expiration of an in-the-money call op-
tion, the buyer receives the intrinsic value of the option and a long position
in the underlying futures contract at the prevailing market price. But since a
futures contract at the prevailing market price has no value, this total pay-
off equals the intrinsic value. Similarly, upon exercise of an in-the-money
put, the buyer receives the intrinsic value of the option and a short position
in the underlying futures contract at the prevailing market price.7

The second type of futures options, like the Euribor futures options
traded on NYSE Euronext, are themselves futures contracts. This means that
there is no initial payment or receipt of a premium. Daily settlement pay-
ments are made and received as the futures option price changes and the final
settlement price equals the intrinsic value of the option. Expressed another
way, for this second type of futures option there is no initial exchange of a
premium or final exchange of intrinsic value; all cash flows are in the form
of daily settlement payments.

The difference between the two types of futures options results in dif-
ferent pricing formulae and different rules for early exercise. Appendix B in

6Euribor futures are the EUR equivalent of ED futures, with the final settlement rate
depending on Euribor rather than USD LIBOR.
7Futures options of this type are “marked-to-market” in the sense that position
values are calculated daily for the purposes of computing margin requirements. But
there are no daily settlement payments flowing from option buyers to sellers or
vice versa. This is a good example of the why the terms “daily settlement” and
“marked-to-market” are confusing when used interchangeably.
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this chapter shows, in fact, that it is optimal to exercise ED futures options
early only when they are very much in-the-money and that it is not optimal
to exercise Euribor futures options early. This section, therefore, treats both
types of options as if they were European-style options.

CME ED Futures Opt ions

Quarterly ED options expire at the same time as their underlying ED futures
contract. An example, to be discussed presently, is an option to purchase a
June 2011 ED futures contract at its expiration in June 2011. Serial options
expire a month or two before the expiration of the underlying, e.g., an option
expiring in May 2011 to purchase a June 2011 contract. Lastly, mid-curve
options expire one, two, or five years before the underlying futures contract,
e.g., an option expiring in June 2011 to buy a June 2012 contract.

As the quarterly options are the most popular, an example of that kind
is discussed here. EDM1C 99.25 is the ticker for a call option on one EDM1
(i.e., the June 2011 contract) with a strike equal to 99.25 and an expiration
date the same as that of EDM1, namely, June 13, 2011.

Recall from Chapter 15 that ED futures are scaled to change in value
by $25 per basis point, and that the futures price F is really just a means of
quoting the futures rate f , that is,

F = 100 − 100f (18.8)

Then, if the final settlement price is F, the payoff of EDM1C 99.25 at
expiration is

max
[

F − 99.25
100

, 0
]

× 10,000 × $25 (18.9)

The factor 10,000 turns the result of the maximum function into basis
points. For example, if F = 99.50, then the max is .25%, which, multiplied
by 10,000, gives 25 basis points. Finally, substituting (18.8) into (18.9), the
payoff to EDM1C 99.25 becomes

$250,000 × max [.75% − f, 0] (18.10)

Therefore, while EDM1C 99.25 is referred to as a call option on EDM1’s
price struck at 99.25, it is really a put option on EDM1’s rate struck at
.75%. Similarly, references to put options on ED futures prices are really
call options on ED futures rates.

The justification for applying a BS-type formula in the case of ED futures
options is not so satisfying as in the case of the other options discussed in
this chapter. This is discussed further in the final section of this chapter.
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Other methods of pricing ED futures options can be justified readily, of
course, like the application of one of the term structure models of Part
Three. Nevertheless, practitioners do seem to apply a BS-type formula to
ED futures options as well.

When applying BS to ED options, practitioners assume that the futures
rate is normally distributed and use the pricing formula

$250,000 × d0(T) × π N (S0, T, K, σ ) (18.11)

where π N (·) is as defined in Appendix A in this chapter, S0 is the underlying
futures rate, T is the expiration time of the option, in years, K is the strike
rate, σ is the annual basis-point volatility of the futures rate, and d0(T) is
the current discount factor to the expiration of the option.

The analogous formula for an ED put option (which is a call on
rates) is

$250,000 × d0(T) × ξ N (S0, T, K, σ ) (18.12)

Table 18.6 illustrates the application of BS to EDM1C 99.25 as of
February 15, 2011. The price of EDM1 was 99.567, so S0 = .433%. There
are 118 days from February 15 to option expiration on June 13, so T = 118

365 .
An appropriate discount rate to expiration was .316%, so the discount
factor is .998965, as computed in the table. Finally, the price of EDM1C
99.25 was $881.25. With all of these quantities set, the volatility that sets
(18.11) to the market price of the option, i.e., $881.25, can be solved to be
about 62 basis points.

TABLE 18.6 Calculating the Price of EDM1C 99.25 as of
February 15, 2011

Quantity Value

S0 0.433%
T 118

365

K 0.75%
σ .6227%

d0(T)
(
1 + .316%×118

360

)−1 = .998965
π N (S0, T, K, σ ) .00352865
VED Call

0 = $250,000 × d0(T) π N $881.25
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NYSE Euronext Euribor Futures Opt ions

Unlike the case of CME ED futures options, pricing NYSE Euronext Euribor
futures options in a BS framework is easily justified, as demonstrated in the
final section of this chapter. The resulting formula for calls and puts on the
contracts (which are puts and calls on rates) are

€250,000 × π N (S0, T, K, σ ) (18.13)

€250,000 × ξ N (S0, T, K, σ ) (18.14)

Note that unlike other option pricing formulae in this chapter, expres-
sions ( 18.13) and (18.14) do not include a discount or annuity factor. The
formal derivation is given below, but the intuition is as follows. Since Euri-
bor futures options are futures, there is no up-front payment of a premium
and the option value does not have to earn a return from initiation to ex-
piration in the pricing measure. The same reasoning was used to explain
why a futures price equals its expected future value rather than its expected
discounted future value; see Chapter 13.

BOND FUTURES OPTIONS

Options on bond futures are exchange-traded and highly standardized, like
the underlying bond futures (see Chapter 14). To illustrate bond futures
options, consider an American-style put option on a Japanese bond fu-
tures. The seven-year Japanese government bond (JGB) futures has a size
of �100,000,000 and, as of February 11, 2011, had a price of 137.88.
A 135 put on this contract matures on May 31, 2011, and had a price
of �200,000.

Options on bond futures can be valued in the frameworks of Part Three
and Chapter 14. These methods describe how to create a risk-neutral tree
for the futures price. And from this tree, the value of a futures option
can be computed: start from the maturity date of the option and work
backwards, using the rule that the value of the option at each node is the
maximum of the value of holding the option and of exercising it immediately.
Of course, because the delivery option depends on the slope of the term
structure as well, many futures pricing models use a two-factor rather than a
one-factor model.

While simple conceptually, it should be clear from Chapter 14 that
building a futures model takes a good deal of effort. Therefore, practi-
tioners who do not otherwise need such a model tend to use BS for bond
futures options. Assume for the moment that the bond futures option is
a European-style option and that the bond futures contract has no deliv-
ery option. Under these assumptions, it is shown below that applying BS
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TABLE 18.7 Calculating the Price of JBM1P as of February 11, 2011

Quantity Value

S0 137.88
T 109

365 = .29863
K 135
σ 3.635%
d0(T)

(
1 + .216%×109

360

)−1 = .999346
π LN (S0, T, K, σ ) .200131
VF utPut

0 = 100,000,000 × d0(T) × 1
100 π LN 200,000

requires that the discount factor to the option expiration date be uncor-
related with the futures price of the bond. While not literally true, this is
not a bad assumption when applied to the most commonly occurring situ-
ation, namely, a short-term option on a relatively long-term bond futures.
In this situation the volatility of the short-term discount factor is small rel-
ative to the volatility of the bond futures price and the correlation of the
short-term discount factor with the long-term bond futures price is indeed
relatively small.

Making all of these necessary assumptions, in addition to assuming that
the futures price is lognormal, the final section of this chapter shows that a
put on a bond futures is approximated by d0(T) × π LN (S0, T, K, σ ), where
S0 is the futures price. From the description of the JGB futures put option
previously mentioned, along with an appropriate discount rate of .216%, the
appropriate parameters in this application are given in Table 18.7. Note that
there are 109 days from February 11, 2011, to the contract’s expiration on
May 31, 2011. Then using the formula just cited, the implied price volatility
is 3.635%.

Return now to the two assumptions made a moment ago to justify the
application of BS to bond futures options. First, assuming that these options
are European in style is not a serious problem. As shown in Appendix B
in this chapter, options on futures are exercised early only when they are
very much in-the-money. Hence, ignoring their American feature is usually
reasonable in practice. The second assumption, however, to ignore the de-
livery option, is more serious. The BS framework assumes that the volatility
of the futures price is constant. But as the bond most likely to be deliv-
ered changes, the DV01 of the futures contract changes and so does its
volatility. While less of a problem when the delivery option is signficantly
out-of-the-money, as it happens to be in the low-rate environment at the
time of this writing (see Chapter 14), the objection remains serious. After
all, one of the main motivations for using BS in the first place is to obtain
accurate deltas.
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SUMMARY OF APPLYING BS TO FIXED
INCOME OPTIONS

Tables 18.8 through 18.10 summarize the applications of BS in the fixed
income context, as used in the previous sections and as derived in the final
section of this chapter. As in those sections, ξ N and π N assume normality
of the underlying, ξ LN and π LN assume lognormality, and all four functions
are given in Appendix A in this chapter. The function d0(T) gives today’s
discount factor to time T while A0 (T, T + τ ) gives today’s annuity factor for
an annual payment of one unit of currency, with the appropriate frequency,
from time T to T + τ . The distributions listed give the most common prac-
titioner choice. The ED and Euribor futures options prices are scaled to the
standardized contract size. Caplets, floorlets, and swaptions prices are per
unit notional amount. Bond and bond futures options prices are in the units
of the price of the underlying. Finally, note that call options on ED futures
are puts on futures rates, so that π N is appropriate, while puts on ED futures
are calls on rates and ξ N is appropriate.

SWAPTION SKEW

Skew and Smi le

If the BS normal model were true for all swaptions of a given expiration and
tenor, a single basis-point volatility would price swaptions of all strikes.
Equivalently, the implied volatility of swaptions of all strikes would be
the same. As Figure 18.2 illustrates, however, this is not the case. As of
November 30, 2010, the 2y2y par forward rate was 2.01% and the ATM

TABLE 18.8 Parameters for Applying the BS Formula to Fixed Income Options, I

CME ED NYSE Euro Next
Futures Option Euribor Futures Option Caplet/Floorlet

S0 Futures rate Futures rate Fwd rate from T to
T + τ

T Option expiration Option expiration Rate observation
date

τ Term of futures
rate

Term of futures rate Term of forward
rate

σ Vol of rate
Distribution Rate normal
Call/Caplet $250,000d0(T) π N

€250,000π N τd0(T + τ ) ξ N

Put/Floorlet $250,000d0(T) ξ N
€250,000ξ N τd0(T + τ ) π N



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c18 JWBT539-Tuckman August 4, 2011 10:3 Printer: Courier Westford

Fixed Income Options 501

TABLE 18.9 Parameters for Applying the BS Formula to Fixed Income Options, II

Bond Option Bond Futures Option

S0 Forward bond price, delivery T Futures price, delivery T
T Bond option expiration Futures option expiration
σ Vol of price
Distribution Forward bond price lognormal Futures price lognormal
Call Price d0(T) ξ LN d0(T) ξ LN

Put Price d0(T) π LN d0(T) π LN

basis-point volatility was 99 basis points. But the solid line in Figure 18.2
shows that implied basis-point volatility was less than 99 basis points for
swaptions with strikes below 2.01% and greater than 99 basis points
for swaptions with strikes above 2.01%. The phenomenon that basis-point
volatility is not constant with strike is known as the skew. (The lognormal
model curve in the figure will be discussed shortly.) As an additional
example, Figure 18.3 presents the analogous picture for the 5y10y as of
the same date, with a par forward rate of 4.57% and an ATM basis-point
volatility of 106 basis points. In this figure, the extent of the skew varies
with strike, with implied volatilities significantly higher than the ATM
volatility for high strikes but only somewhat lower than the ATM volatility
for low strikes. A pattern like this is sometimes referred to as a smile.

Without going into more detail here, the implied volatility of an option
can be thought of as the expected gamma-weighted average of instantaneous
volatilities over possible paths of the underlying forward rate from its current
level to the strike. From this perspective, the market-implied volatilities in
Figures 18.2 and 18.3 show how instantaneous volatilities are expected to
vary directly with the forward rate.

TABLE 18.10 Parameters for Applying the BS Formula to
Fixed Income Options, III

Swaption

Receiver Payer

S0 Fwd swap rate, T to T + τ

T Swaption expiration
τ Tenor of fwd swap
σ Vol of rate
Distribution Rate normal
Price A0 (T, T + τ ) π N A0 (T, T + τ ) ξ N



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c18 JWBT539-Tuckman August 4, 2011 10:3 Printer: Courier Westford

502 SELECTED SECURITIES AND TOPICS

0

25

50

75

100

125

150

4.5%4.0%3.5%3.0%2.5%2.0%1.5%1.0%0.5%0.0%

Strike

Ba
si

s-
Po

in
t 

Vo
la

�
lit

y

Market Implied Normal Model Lognormal Model

F IGURE 18.2 2y2y Skew as of November 30, 2010

The lognormal version of BS exhibits the property that instantaneous
basis-point volatility is proportional to the forward rate. (See the discussion
of lognormal term structure models in Chapter 10.) Therefore, lognormal
BS should match market implied volatilities more closely than normal BS.
And this is indeed the case. The lognormal model curves in Figures 18.2
and 18.3 are computed in three steps. First, choose the volatility parameter
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of the lognormal model so that the ATM volatility matches the market.
Second, with that parameter, use the lognormal model to price swaptions
with different strikes. Third, use those prices and the normal model to
back out a basis-point volatility for each strike. The results in this rate
environment show that the lognormal model matches the market well for
high strikes, but not so well for low strikes.

The Shi f ted-Lognormal Model

The interpretation of implied volatility as reflecting the dependence of the
instantaneous volatility on the forward rate suggests formulating models
to generalize this dependence. The dynamics of the underlying rate in the
normal and lognormal BS models respectively can be written as

dSt = φ(St) σεt

√
dt (18.15)

εt ∼ N (0, 1) (18.16)

where φ (St) = 1 for the normal version and φ (St) = St for the lognormal
version. A popular alternative specification is the shifted-lognormal model,
which sets

φ (St) = a + St (18.17)

with a ≥ 0. The BS-style call option pricing formula resulting from (18.17)
is

CSLN (S0, T, K, σ ) = (a + S0) N (d1) − (a + K) N (d2) (18.18)

dSLN
1 = ln

( a+S0
a+K

) + 1
2σ 2T

σ
√

T
(18.19)

dSLN
2 = dSLN

1 − σ
√

T (18.20)

The shifted lognormal model is between the normal and lognormal
models in the following sense. When a = 0, (18.17) and (18.15) result in
an instantaneous basis-point volatility that is proportional to St, as in the
lognormal model. At the other extreme, as a approaches infinity, the instan-
taneous volatility approaches a constant, as in the normal model. To see
this, define σ = aσ so that φ (St) σ = (

1 + St
a

)
σ . Then, letting a approach

infinity while σ stays constant, which requires that σ approach 0, φ (St) σ

approaches the constant σ .
It turns out that the shifted-lognormal model does match market prices

more accurately than the lognormal model, but not accurately enough for
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Distribution

use across all strikes. Figure 18.4 adds to Figure 18.3 the 5y10y basis-
point volatilities from a shifted lognormal model with a = 1%. A value of
a that fits the market better, on average, could have been selected. But
taking a = 1%, which generates volatilities approximately equal to im-
plied volatilities for high strikes but much too low for low strikes, high-
lights the need for a different function φ (St) to match the market across
strikes. Of course, matching market prices does not ensure the accuracy
of the resulting deltas. To that end, as discussed at the end of this sec-
tion, the specified relationship between forward rates and volatilities has to
be adequate.

The SABR Model

The shifted lognormal model is an example of trying to fit the skew through
the dependence of instantaneous basis-point volatility on the level of the
underlying. Another approach is taken by stochastic volatility models, which
specify volatility as a factor in its own right. And if volatility is itself volatile,
then the underlying can experience relatively large random fluctuations as
large realized shocks to the underlying, e.g., εt in (18.16), can occur when
volatility is particularly high. Put another way, volatility of volatility leads
to probability distributions with relatively fat tails.
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The SABR model8 is a particularly popular stochastic volatility model
in the context of interest rate options. The dynamics of the model are given
by the following equations:

dSt = Sβ
t σtεt

√
dt (18.21)

εt ∼ N (0, 1) (18.22)

dσt = ασtvt

√
dt (18.23)

vt ∼ N (0, 1) (18.24)

E [εtvt] = ρ (18.25)

with 0 < β < 1, α ≥ 0, and 0 ≤ ρ ≤ 1. There are a few things to note about
this formulation. First, the SABR model approaches the normal model as
α and β approach zero, and is the same as the lognormal model as α ap-
proaches zero and β approaches one. Second, the initial value of volatility,
the parameter σ0, is most naturally used to match ATM swaption volatility.
Third, since Figures 18.2 and 18.3 show that implied volatility does not
increase as quickly for high strikes as indicated by the lognormal model, it
makes sense to have, in terms of (18.15), φ (St) = Sβ

t with β < 1. Fourth,
(18.25) says that the correlation between changes in the underlying and
changes in volatility is ρ.

An approximate solution of option prices resulting from (18.21) through
(18.25) is to use the lognormal BS formula with an implied volatility σ̂ equal
to

σ̂ = σ0

S1−β

0

⎧⎨
⎩1 −

(1−β−ρλ) ln
(

K
S0

)
2

+
[
(1−β)2 + (

2−3ρ2
)
λ2

]
ln2

(
K
S0

)
12

⎫⎬
⎭

λ = α

σ0
S1−β

0 (18.26)

From the specification of the SABR model in (18.25), the parameters
β and ρ control the skew, or the relationship between the underlying and
volatility, so that higher values of these parameters lead to more steeply
upward-sloping basis-point volatilities as a function of strike. The parameter
α controls the smile, or fat tails, so that higher values of α increase the basis-
point volatility of low and high strikes relative to intermediate strikes. In

8P.S. Hagan, D. Kumar, A.S. Lesniewski, and D.E. Woodward, “Managing Smile
Risk,” Wilmott, September 2002, pp. 84–108. SABR is an acronym for Stochastic
Alpha, Beta, Rho.
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TABLE 18.11 Fitted Beta Parameter of the SABR Model for USD Swaptions as of
November 30, 2010

Option Underlying Swap Tenor

Exp. 1y 2y 3y 4y 5y 7y 10y 30y

1y .925 .945 .967 .972 .956 .945 .847 .129
2y .798 .841 .867 .883 .882 .849 .763 .180
3y .836 .842 .840 .827 .806 .760 .671 .202
4y .823 .801 .783 .760 .737 .690 .608 .230
5y .786 .744 .713 .685 .655 .619 .560 .234
7y .639 .604 .572 .539 .507 .469 .413 .205

10y .512 .466 .425 .386 .349 .320 .277 .173

practice, the SABR model is flexible enough to capture the shape of market-
implied volatilities. In fact, given the similar effects of β and ρ, it is often
the case that only one of these parameters is necessary for a good fit. In the
5y10y example of this section, fixing ρ = 0 there are values of α and β that
result in basis-point volatilities almost identical to market levels: α = 0.35
and β = 0.56. This value of α says that a 35% volatility of volatility is
required to fit the market, while the value of β indicates that the market
relationship between the underlying and volatility is about halfway between
that of the normal and lognormal models.

While this discussion has emphasized the flexibility of the SABR model
in fitting the skew, all of the discussion has been in the context of the
5y10y. When describing the relationship between basis-point volatility and
strike for other expirations and tenors, different parameters of the SABR
model are required. In other words, there is no BS-style model that de-
scribes the skew across the entire volatility cube. To emphasize this point,
Tables 18.11 and 18.12 give the α and β parameters of the SABR model, with
ρ fixed at zero, that describe the USD swaption skew as of November 30,

TABLE 18.12 Fitted Alpha Parameter of the SABR Model for USD Swaptions as
of November 30, 2010

Option Underlying Swap Tenor

Exp. 1y 2y 3y 4y 5y 7y 10y 30y

1y 4% 16% 23% 27% 29% 33% 37% 38%
2y 21% 28% 31% 32% 34% 35% 37% 35%
3y 30% 33% 34% 35% 35% 36% 36% 35%
4y 34% 35% 35% 35% 35% 36% 36% 35%
5y 34% 35% 35% 35% 35% 35% 35% 34%
7y 34% 34% 33% 33% 33% 33% 32% 32%

10y 31% 31% 31% 30% 30% 29% 29% 30%
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2010. Shorter expiries and tenors trade at higher values of β, i.e., closer to
the lognormal model, while longer expiries and tenors trade at lower values
of β, i.e., closer to the normal model. The fitted values of α, by contrast, are
relatively stable across expiries and strikes, although there are some notable
exceptions at short expiries and tenors.

As a final note on the SABR model, the fact that the model is flexible
enough to fit the skew for a given expiry and tenor with ρ = 0 does not
mean that this correlation parameter should be set to zero. After all,
the point of the endeavor is to obtain accurate deltas, not to fit market
prices. Hence, in addition to fitting market prices, it might very well be
worthwhile to optimize simultaneously the choice of all three parameters,
α, β, and ρ. One popular choice is to constrain the parameters to match
the empirical backbone, i.e., the empirical relationship between ATM
basis-point volatility and forward rates.

Deltas from Dif ferent Skew Models

As mentioned at the start of this chapter, BS-style models are often used
by taking market prices as given and computing deltas. To understand the
significance of this use in the swaption context, consider calculating the delta
of a swaption using normal BS. The model assumes that as the underlying
forward rate changes, the basis-point volatility stays the same. But, as evident
from Figures 18.2 and 18.3, as the underlying rate changes, the swaption
moves further away from or closer to ATM and volatility rises or falls.
Furthermore, ATM volatility itself rises or falls with rates. The resulting
change in the option price due to these changes in basis-point volatility,
however, is not picked up by the normal BS delta. Hence, accurate deltas
require a model that accurately captures the change in basis-point volatility
as the underlying changes.

Figure 18.5 shows deltas of 5y10y payer swaptions as of November 30,
2011, as a function of strike for the normal BS, lognormal BS, and SABR
models, with the latter calibrated as in the previous section. (A delta of .5
here means that $100 million notional of a swaption would be hedged with
$50 million notional of the 5y10y ATM forward swap.) While all the models
are calibrated to have the same ATM basis-point volatility, the deltas from
the three models can differ significantly, even for the ATM payers.

THEORETICAL FOUNDATIONS FOR APPLYING
BLACK-SCHOLES TO SELECTED F IXED
INCOME OPTIONS

The purpose of this section is to justify the application of BS to the European-
style options earlier in this chapter. The outline of the argument is as
follows:
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Three Models

1. The next subsection shows that, given the functional form of a probabil-
ity distribution (e.g., normal, lognormal),9 there exist parameters (e.g.,
the mean) of that distribution such that V0, the arbitrage-free price of
any asset today, is given by

V0

N0
= E0

[
Vt

Nt

]
(18.27)

where Nt is the price at time t of an asset chosen as the numeraire, Vt is
value at time t of an asset being priced today, including reinvested cash
flows, and Et [·] gives expectations as of time t under the appropriately
parameterized probability distribution. Equation 18.27 is known as the
martingale property of asset prices.

2. Say that the rate or security price underlying an option at time t is St. It
follows from 1. that the value of a call option with strike K and time to
expiry T is

VCall
0 = N0 E0

[
(ST − K)+

NT

]
(18.28)

9Probability distributions actually have to satisfy certain technical conditions for
this statement to apply. As the normal and lognormal distributions satisfy these
conditions, however, this point receives no further attention here.
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while the value of a put is

VPut
0 = N0 E0

[
(K − ST)+

NT

]
(18.29)

3. The subsection on choosing the numeraire and BS pricing shows that,
in most of the contexts covered in this chapter, it is possible to choose
the numeraire such that

S0 = E0 [ST] (18.30)

and such that the valuation equations (18.28) and (18.29) can be writ-
ten, respectively, as

VCall
0 = h0 E0

[
(ST − K)+

]
(18.31)

VPut
0 = h0 E0

[
(K − ST)+

]
(18.32)

for some h0 that is known as of time 0.
4. If it is further assumed that St has a normal distribution with volatility

parameter σ , then, as described in Appendix A in this chapter, equations
(18.30) through (18.32) become the normal BS-style formulae

VCall
0 = h0ξ

N (S0, T, K, σ ) (18.33)

VPut
0 = h0π

N (S0, T, K, σ ) (18.34)

for the functions ξ N (·) and π N (·) defined in Appendix A in this chapter.
If, on the other hand, it is assumed that St has a lognormal distribution
with volatility parameter σ , equations (18.30) through (18.32) become
the lognormal BS-style formulae

VCall
0 = h0ξ

LN (S0, T, K, σ ) (18.35)

and

VPut
0 = h0π

LN (S0, T, K, σ ) (18.36)

where, again, the functions ξ LN (·) and π LN (·) are as defined in
Appendix A.
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Numeraires, Pric ing Measures, and Mart ingales

Def in i t ions and Statement of Result To begin, define the following two
concepts:

� Gains process. The gains process of an asset at any time equals the value
of that asset at that time plus the value of all its cash flows reinvested to
that time. For this purpose, all cash flows are reinvested and then rolled
at prevailing short-term interest rates.

� Numeraire asset. Given a particular numeraire asset, the gains process
of any other asset can be expressed in terms of the numeraire asset by
dividing that gains process by the gains process of the numeraire asset.
The gains process of a security in terms of the numeraire asset is called
the normalized gains process of that asset.

For concreteness, Table 18.13 gives an example of these concepts. The
asset under consideration is a long-term, 4% coupon bond with a face
amount of 100. The numeraire is a two-year zero coupon bond with a unit
face amount. The gains process is observed today, after one year, and after
two years.

The realization of the short-term rate, which in this example is the one-
year rate, is given in row (i). The realization of the bond price over time is
given in row (ii). A 4% coupon on 100 is paid on dates 1 and 2 and shown
in rows (iii) and (iv). The payment on date 1 is reinvested for one year at the
short-term rate on date 1, i.e., 2%. The gains process of the bond given in
row (v) is the sum of its price and reinvested cash flows, i.e., the sums of rows
(ii) through (iv). The price realization of the two-year zero coupon bond,
which is the chosen numeraire, is given in row (vi). Finally, the normalized
bond gains process, given in row (vii), is the bond gains process divided by
the price of the numeraire, i.e., row (v) divided by row (vi).

TABLE 18.13 Example of the Calculation of a Normalized Gains Process

End-of-Year Realizations

0 1 2

(i) Short-Term/1-Year Rate 1% 2% 1.5%
(ii) Bond Price 100 95 97.50
(iii) Date 1 Reinvested Coupon 4 4 (1.02) = 4.08
(iv) Date 2 Reinvested Coupon 4
(v) Gains Process 100 99 105.58
(vi) Price of 2-Year Zero/Numeraire 0.9612 0.9804 1.0
(vii) Normalized Bond Gains Process 104.04 100.98 105.58
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These definitions allow for the statement of the main result of this
subsection: in the absence of arbitrage opportunities, there exists a parame-
terization of a given probability distribution, or a pricing measure, such that
the normalized gains of any asset today equals the expected value of that
asset’s normalized gains in the future. Technically, there exist probabilities
such that the normalized gains process is a martingale. As the goal here is
intuition rather than mathematical generality, this result will be proven in
the context of a single-period, binomial process.

Setup and Arbitrage Pric ing The starting point is state 0 of date 0, after
which the economy moves to either state 0 or state 1 of date 1. Three assets
will be considered, A, B, and C, with current prices A0, B0, and C0, and
date 1, state i prices of Ai

1, Bi
1, and Ci

1.10 Without loss of generality here,
the date 1 prices include any cash flows of the securities on date 1.

In this framework, any asset can be priced by arbitrage relative to the
other two assets. The method is just as in Chapter 7. To price asset C by
arbitrage, construct its replicating portfolio, in particular, a portfolio with
α of asset A and β of asset B such that

C0
1 = αA0

1 + βB0
1 (18.37)

C1
1 = αA1

1 + βB1
1 (18.38)

Then, to rule out risk-free arbitrage opportunities, it must be the
case that

C0 = αA0 + βB0 (18.39)

Now let asset A be the numeraire and rewrite equations (18.37) through
(18.39) in terms of the normalized gains processes of assets B and C. To do
this, simply divide each of the equations by the corresponding value of the
numeraire asset A, i.e., divide (18.37) by A0

1, (18.38) by A1
1, and (18.39) by

A0. Furthermore, denote the normalized gains processes of the assets by B
and C. Then, equations (18.37) through (18.39) become

C
0
1 = α + βB

0
1 (18.40)

C
1
1 = α + βB

1
1 (18.41)

C0 = α + βB0 (18.42)

10 The date 1 prices must be such that at least one of the assets is risky. For asset B,
for example, this would mean that B0

1 �= B1
1 .
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Furthermore, solving (18.40) and (18.41) for α and β,

α = B
1
1C

0
1 − B

0
1C

1
1

B
1
1 − B

0
1

(18.43)

β = C
1
1 − C

0
1

B
1
1 − B

0
1

(18.44)

Pric ing Measure In the framework just described, it will now be shown
that there exists a pricing measure such that the expected normalized gains
process of each security is a martingale. More specifically, there is a prob-
ability p of moving to state 1 of date 1 (and 1 − p of moving to state 0 of
date 1) such that the expected value of the normalized gain of each security
on date 1 equals its normalized gain on date 0. Mathematically, it has to be
shown that there is a p such that

C0 = pC
1
1 + (1 − p) C

0
1 (18.45)

B0 = pB
1
1 + (1 − p) B

0
1 (18.46)

Solving (18.46) for p gives

p = B0 − B
0
1

B
1
1 − B

0
1

(18.47)

But this value of p also solves (18.45). To see this, start by substituting p
from (18.47) into the right-hand side of (18.45):

pC
1
1 + (1 − p) C

0
1 = B0 − B

0
1

B
1
1 − B

0
1

C
1
1 − B0 − B

1
1

B
1
1 − B

0
1

C
0
1 (18.48)

= B0
C

1
1 − C

0
1

B
1
1 − B

0
1

+ B
1
1C

0
1 − B

0
1C

1
1

B
1
1 − B

0
1

(18.49)

= B0β + α (18.50)

= C0 (18.51)

Equation (18.49) just rearranges the terms of (18.48); combining (18.49)
with (18.43) and (18.44) gives (18.50); and (18.50) with (18.42) gives
(18.51). Hence, as was to be shown, there is a pricing measure, in this
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case the probability p, such that the normalized gains processes of B and
C are martingales. And, of course, since nothing distinguishes A from the
other assets, a probability with the same properties could have been found
had B or C been chosen as the numeraire instead.

Summary While for pedagogical purposes this subsection proved its re-
sult only in the binomial context, this section will use the result in a more
general form, namely, that arbitrage-free pricing implies that a probabil-
ity distribution can be parameterized such that equation (18.27) holds. In
words, arbitrage-free pricing implies that a given probability distribution
can be parameterized such that the normalized gains process of any asset is
a martingale.

Choosing the Numeraire and BS Pric ing

As mentioned in the introduction to this section, in most of the contexts of
this chapter it is possible to choose a numeraire such that the underlying is a
martingale and such that the value of a call is given by h0ξ

N (S0, T, K, σ ) or
h0ξ

LN (S0, T, K, σ ), in the normal or lognormal cases, respectively, and the
value of a put by h0π

N (S0, T, K, σ ) or h0π
LN (S0, T, K, σ ) in the normal or

lognormal cases. In the cases for which this is possible, this subsection gives
the appropriate definition of the underlying, the appropriate numeraire, and
the resulting quantity h0. The functions ξ N, ξ LN, π N, and π LN are all given
in Appendix A in this chapter.

Caplets Caplets that mature at time T are written on a forward rate from
time T to T + τ , whose value, at time t, is denoted by ft (T, T + τ ). It will
first be shown that taking a T + τ -year zero coupon bond as the numeraire
makes this forward rate a martingale. Let dt (T) be the time-t price of a zero
coupon bond maturing at time T. By the definition of a forward rate of
term τ ,

ft (T, T + τ ) = 1
τ

(
dt (T)

dt (T + τ )
− 1

)

= 1
τ

(
dt (T) − dt (T + τ )

dt (T + τ )

)
(18.52)

Next, consider a portfolio that is long a T-year zero and short a T + τ -
year zero. Taking the T + τ -year zero as the numeraire, the normalized
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gains process of this portfolio is a martingale by the results of the previous
subsection. Mathematically,

1
τ

(
dt (T) − dt (T + τ )

dt (T + τ )

)
= 1

τ
Et

[
dT (T) − dT (T + τ )

dT (T + τ )

]

= 1
τ

Et

[
dT (T)

dT (T + τ )
− 1

]

= Et [ fT (T, T + τ )] (18.53)

where the last line of (18.53) just uses the definition of the forward rate.
Combining (18.52) and (18.53) shows that the forward rate is a martingale
under the chosen numeraire:

ft (T, T + τ ) = Et [ fT (T, T + τ )] (18.54)

Turning to the valuation of the caplet, its normalized gains process is
a martingale as well. Hence, taking expectations of its normalized gain as
of T + τ ,

VCaplet
0

d0(T + τ )
= E0

[
τ ( fT (T, T + τ ) − K)+

dT+τ (T + τ )

]
(18.55)

= E0
[
τ ( fT (T, T + τ ) − K)+

]
(18.56)

Finally, assuming that the forward rate fT (T, T + τ ) is normal with
variance σ 2T, and knowing from (18.54 ) with t = 0 that its mean is
f0 (T, T + τ ), the results of Appendix A apply and

VCaplet
0 = d0(T + τ ) τξ N ( f0 (T, T + τ ) , T, K, σ ) (18.57)

Swapt ions The underlying of a T-year into τ -year swaption is the forward
par swap rate from T to T + τ , which, at time t, is denoted by Ct (T, T + τ ). It
will first be shown that taking an annuity from T to T + τ as the numeraire
makes this forward par swap rate a martingale. Denote the price of this
annuity by At (T, T + τ ).

Consider receiving the fixed rate K on a swap from T to T + τ. Its value
at time t is

[K − Ct (T, T + τ )] At (T, T + τ ) (18.58)
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Applying the martingale property with this annuity as numeraire,

[K−Ct (T, T + τ )] At (T, T + τ )
At (T, T + τ )

= Et

[
[K−CT (T, T + τ )] AT (T, T + τ )

AT (T, T + τ )

]

Ct (T, T + τ ) = Et [CT (T, T + τ )] (18.59)

Hence, as claimed, the forward par swap rate is a martingale under this
numeraire.

To price a receiver swaption, note that the payoff is [K− CT (T, T + τ )]+

times AT (T, T + τ ). Therefore, its value can be calculated as the expectation
of its normalized payoff using the same numeraire:

VReceiver
0

A0 (T, T + τ )
= E0

[
(K − CT (T, T + τ ))+ AT (T, T + τ )

AT (T, T + τ )

]

= E0
[
(K − CT (T, T + τ ))+

]
VReceiver

0 = A0 (T, T + τ ) π N (C0 (T, T + τ ) , T, K, σ ) (18.60)

The last line of (18.60) follows from (18.59), the assumption that the for-
ward par swap rate is normal with variance σ 2T, and from the appropriate
result from Appendix A in this chapter.

Similarly, a payer option under the assumption of normality has
the value

VPayer
0 = A0 (T, T + τ ) ξ N (C0 (T, T + τ ) , T, K, σ ) (18.61)

Bond Opt ions Start with a European-style option, expiring on date T, writ-
ten on a longer-term bond. The underlying of this option is a forward
position in the bond for delivery on date T. It will first be shown that taking
the zero coupon bond maturing at time T to be the numeraire makes this
forward bond price a martingale. Proving this is a bit more complex than
the analogous results derived previously because the gains process of a bond
includes reinvested coupons. Therefore, to keep the presentation simple, the
martingale result will be derived in a three-date, two-period setting. The
current date is date 0 and the expiration or forward delivery date is date 2.
The bond is assumed to pay a coupon c on each of dates 1 and 2 and its price
at time t is denoted Bt. The numeraire is the zero coupon bond maturing
on date 2 with a price, on date t, of dt (2). Lastly, let r1 denote the current
one-period rate; r2 the one-period rate, realized one period from now; and f
the current one–period rate, one-period forward.
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Under these assumptions, and the expression of the zero coupon bond
price on various dates in terms of the prevailing one-period rates, the gains
process of the bond on the three dates is given by the following expressions:

� Date 0: B0
d0(2) = B0 (1 + r1) (1 + f );

� Date 1: B1+c
d1(2) = (B1 + c) (1 + r2);

� Date 2: B2+c(1+r2)+c
d2(2) = B2 + c (1 + r2) + c

Therefore, the martingale property for the bond says that

B0

d0(2)
= E0

[
B2 + c (1 + r2) + c

d2 (2)

]

B0 (1 + r1) (1 + f ) = E0 [B2 + c (1 + r2) + c] (18.62)

The term c (1 + r2) in the expectation on the right-hand side of (18.62)
requires some attention since r2 is not known as of date 0. The date-0 value
of a payment of c (1 + r2) on date 2 is, however, by the definition of forward
rates,

c (1 + f )
(1 + r1) (1 + f )

= c
1 + r1

(18.63)

So, applying the martingale property under the numeraire to a payment of
c (1 + r2) on date 2 requires that

c
1+r1

d0(2)
= E0

[
c (1 + r2)

d2 (2)

]

c (1 + f ) = E0 [c (1 + r2)] (18.64)

With this result, the discussion can return to the martingale property of
the bond in (18.62). Substituting (18.64) into (18.62),

B0 (1 + r1) (1 + f ) − c (1 + f ) − c = E0 [B2][
B0 − c

1 + r1
− c

(1 + r1) (1 + f )

]
(1 + r1) (1 + f ) = E0 [B2]

B0 (2) = E0 [B2] (18.65)

The left-hand side of the second line of (18.65) is the date 0 forward price
of the bond for delivery on date 2. (See Chapter 13.) The third line, then,
simply denotes this forward price by B0 (2). Hence, taking the zero coupon



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c18 JWBT539-Tuckman August 4, 2011 10:3 Printer: Courier Westford

Fixed Income Options 517

bond of maturity T as a numeraire, the forward price of a bond for delivery
on date T is a martingale.

Turning now to the price of an option on the bond, consider a call with
payoff (BT − K)+. Applying the martingale property to the option price and
assuming that the forward bond price is lognormal with volatility parameter
σ , the call option is priced as follows:

VBondCall
0

d0(T)
= E0

[
(BT − K)+

dT (T)

]
(18.66)

= E0
[
(BT − K)+

]
(18.67)

VBondCall
0 = d0(T) ξ LN (B0 (T) , T, K, σ ) (18.68)

An analogous argument for a put shows that

VBondPut
0 = d0(T) π LN (B0 (T) , T, K, σ ) (18.69)

Eurodol lar Futures Opt ions As mentioned in the text, the justification for
using a BS-type model for ED futures options is not straightforward. To
see the problem, focus on quarterly ED options. For these, the futures and
option expire on the same date so that, at expiration, the futures rate equals
the forward rate. Then proceed along the lines of a caplet to reach equation
(18.55), which is reproduced here with VEDPut

0 substituted for VCaplet
0 .

VEDPut
0

d0(T + τ )
= E0

[
τ ( fT (T, T + τ ) − K)+

dT (T + τ )

]
(18.70)

In the case of the caplet, the cash flow occurs at time T + τ so the
denominator inside the expectation equals one and the equation simplifies
to (18.56). In the case of the ED futures option, however, the cash flow occurs
at time T and no such simplification is possible. One approach around this
is to rewrite (18.70) as follows:

VEDPut
0

d0(T + τ )
= E0

[
τ ( fT (T, T + τ ) − K)+

dT (T + τ )

]

= E0

[
τ ( fT (T, T + τ ) − K)+

dT (T)
dT (T)

dT (T + τ )

]

= E0
[
τ ( fT (T, T + τ ) − K)+ {1 + fT (T, T + τ )}] (18.71)

The third line of (18.71) follows from the fact that, as of time T,
dT (T) = 1, and from the definition of the forward rate fT (T, T + τ ).
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Now, making the heroic assumption that the two terms inside the expec-
tation are uncorrelated—even though they both include the same forward
rate—equation (18.71) can be further rewritten as follows:11

VEDPut
0

d0(T + τ )
= E0

[
τ ( fT (T, T + τ ) − K)+

]
E0 [1 + fT (T, T + τ )]

= E0
[
τ ( fT (T, T + τ ) − K)+

]
[1 + f0 (T, T + τ )]

VEDPut
0 = d0(T) E0

[
τ ( fT (T, T + τ ) − K)+

]
= τd0(T) ξ N ( f0 (T, T + τ ) , T, K, σ ) (18.72)

The second line of (18.72) follows from the fact that, with the T + τ -
year zero coupon bond as the numeraire, the forward rate is a martingale.
The third line follows from the relationship between forward rates and
discount factors and the fourth line from the definition of ξ N in Appendix
A in this chapter together with the assumption made in the caplet case
that the forward rate is normally distributed. As mentioned earlier in this
chapter, the bottom line of (18.72) is used in practice despite the lack of a
straightforward theoretical justification.

Euribor Futures Opt ions Following the earlier discussion in this chapter
leading to equation (18.10), the terminal payoff of a Euribor futures call
option with strike K and expiring at time T, per unit notional, is

[K − fT (T, T + τ )]+

Given the daily settlement feature of Euribor futures options, the nu-
meraire of choice is the money market account, the value of one unit of
currency invested and then rolled every period, at the prevailing short-term
rate. Denoting the money market account by M (t) and the short-term rate
from time t − 1 to t by rt,

M (0) = 1 (18.73)

M (T) = (1 + r1) (1 + r2) · · · (1 + rT) (18.74)

11 Another commonly made assumption to obtain the same result is that the discount
factor in the denominator of the first line of (18.71) is nonstochastic, i.e., a constant.
This assumption, that the forward rate determining the ED option value is a random
variable while the relatively short-term discount factor to the option expiration date
is constant, can also be classified as heroic.
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The first point to make about the money market account is that it is the
numeraire of the risk-neutral short-term rate process described and used in
Part Three. To see this, apply the martingale property with the numeraire
to an arbitrary gains process Vt at time t:

V0

M (0)
= E0

[
VT

M (T)

]

V0 = E0

[
VT

(1 + r1) (1 + r2) · · · (1 + rT)

]
(18.75)

But the second line of (18.75) is just the condition derived in Part Three that
the value of a claim today equals its expected discounted value. (Part Three
valued interim cash flows by expected discounted value, but they could just
as easily have been invested at the short-term rate to a terminal date and
then discounted back to the initial date, which would more readily resemble
using (18.75) and the gains process.)

The second point to make about the money market as numeraire is that
futures prices are martingales under this numeraire. This was demonstrated
in Chapter 13 in terms of the language of Part Three, but is shown again in
Appendix C in this chapter in a manner consistent with the language of this
chapter, namely, gains processes and numeraires.

Turning now to Euribor futures options, because they are subject to daily
settlement and are futures contracts, their prices are also martingales with
the money market account as numeraire. Furthermore, if Ft is the underlying
futures price at time t then, at the expiration of a put option (call on rates)
at time T, the option is worth (FT − K)+. Putting together the martingale
property of the futures, (18.76), the martingale property of futures options,
(18.77), and the final settlement price of the futures options, (18.78), results
in the price of the Euribor futures put option at time t, denoted VEBPut

t :

F0 = E [FT] (18.76)

VEBPut
0 = E0

[
VEBPut

T

]
(18.77)

= E0
[
(FT − K)+

]
(18.78)

Assuming now that FT is normally distributed, applying Appendix A in
this chapter to equations (18.76) and (18.78) shows that

VEBPut
0 = ξ N (F0, T, K, σ ) (18.79)

Similarly, for the Euribor futures call option (put on rates),

VEBCall
t = π N (F0, T, K, σ ) (18.80)
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Bond Futures Opt ions As discussed in Chapter 13 and previously in this
chapter, in the context of Euribor futures options, futures prices are a mar-
tingale in the risk-neutral measure, i.e., when the numeraire is the money
market account, M (t). Hence, with Ft the underlying bond futures price at
time t,

F0 = E [FT] (18.81)

By the martingale property, the price of a put option on the futures is

VFutPut
0

M (0)
= E0

[
(K − FT)+

M (T)

]
(18.82)

Then, by the definition of the money market account,

VFutPut
0 = E0

[
(K − FT)+

(1 + r1) (1 + r2) · · · (1 + rT)

]
(18.83)

To continue, it has to be assumed that the discount factor is uncorrelated
with the futures price. This assumption was discussed and defended earlier
in this chapter. With this assumption equation (18.83) becomes

VFutPut
0 = E0

[
1

(1 + r1) (1 + r2) · · · (1 + rT)

]
E0

[
(K − FT)+

]
(18.84)

= d0(T) E0
[
(K − FT)+

]
(18.85)

where (18.85) follows from the risk-neutral pricing of a zero coupon bond.
(See Chapter 13.)

Finally, applying Appendix A to (18.81), (18.85) with the assumption
that the bond futures price has a lognormal distribution,

VFutPut
0 = d0(T) πLN (F0, T, K, σ ) (18.86)

For calls, the analogous result is

VFutCall
0 = d0(T) ξLN (F0, T, K, σ ) (18.87)

APPENDIX A: EXPECTATIONS FOR
BLACK-SCHOLES-STYLE OPTION PRIC ING

As the results in this appendix are part of the option pricing literature,
they are presented here for easy reference but without proof. Let EN [·]
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and ELN [·] denote the expectations operators under the normal and log-
normal distributions, respectively, and let N (·) denote the standard normal
cumulative distribution.

If ST is normally distributed with mean S0 and variance σ 2T, then

ξ N (S0, T, K, σ ) ≡ EN
0

[
(ST − K)+

]
= (S0 − K) N (d) + σ

√
T√

2π
e− 1

2 d2
(18.88)

π N (S0, T, K, σ ) ≡ EN
0

[
(K − ST)+

]
= (K − S0) N (−d) + σ

√
T√

2π
e− 1

2 d2
(18.89)

d = S0 − K

σ
√

T
(18.90)

If ST is lognormally distributed with mean S0 and variance S2
0 (eσ 2T − 1),

then

ξLN (S0, T, K, σ ) ≡ ELN
0

[
(ST − K)+

]
= S0 N (d1) − K N (d2) (18.91)

πLN (S0, T, K, σ ) ≡ ELN
0

[
(K − ST)+

]
= KN (−d2) − S0 N (−d1) (18.92)

d1 = ln
( S0

K

) + 1
2σ 2T

σ
√

T
(18.93)

d2 = d1 − σ
√

T (18.94)

APPENDIX B: EARLY EXERCISE OF
AMERICAN-STYLE FUTURES OPTIONS

Early Exercise of CME-type Futures Opt ions

It is optimal to exercise CME-type American-style futures options early only
when they are very much in-the-money or, equivalently, when their time
value is very low. The rule for exercising American-style options on cash
assets is different and not equivalently symmetric across calls and puts. For
non-dividend-paying assets, call options are never exercised early while put
options are exercised early if interest earned on the strike, from the time of
exercise to expiration, is large relative to time value.
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To demonstrate these results and isolate the differences between options
on futures and options on cash assets, consider two dates, dates 0 and 1,
with options expiring on date 1. As of date 0, date 0 prices are known but
date 1 prices are stochastic. Denote futures and cash prices on date i by Fi

and Pi, respectively, and denote the short-term rate over the period by r. In
the risk-neutral measure (see Chapters 7 and 13), date 0 futures and cash
prices are

F0 = E [F1] (18.95)

P0 = E
[

P1

1 + r

]
= E [P1]

1 + r
(18.96)

The intuition behind the difference between (18.95) and (18.96 ) is that
futures position are entered into without an initial investment, so they do
not earn an expected return in the risk-neutral measure. Cash assets, by
contrast, do require an initial investment and, therefore, earn an expected
return equal to the short-term rate in the risk-neutral measure. The sec-
ond equality in (18.96) follows because the short-term rate is known as
of date 0.

On date 0 the holder of an American-style option needs to decide
whether to hold the option to date 1 or to exercise early, on date 0. By
definition, it is optimal to hold the option if the value of holding exceeds the
value of immediate exercise.

Beginning with call options, let the strike price be K, and assume that
both F0 and P0 are greater than K so that the option is in-the-money on date
0 and might potentially be exercised early. In the risk-neutral measure, the
value of holding an option is the expected discounted value of its terminal
payoff. Hence, the condition for holding a call option on a futures is that

1
1 + r

E
[
(F1 − K)+

]
> F0 − K (18.97)

By the properties of the maximum function, the expectation in (18.97) can
be written as

E
[
(F1 − K)+

] = E [F1] − K + �FC (18.98)

�FC ≥ 0 (18.99)

The quantity �FC can be thought of as measuring the time value of the
option: it is the expected value of being able to choose whether to exercise or
not on date 1 compared with having to exercise on that date. The quantity
�FC is near zero for options that are way in-the-money and increases as
options moves out-of-the-money.
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Substituting (18.95) and (18.98) into (18.97) and rearranging terms
shows that a futures call option should be held if

�FC > r (F0 − K) (18.100)

In words, a futures call should be held if the time value of the option
exceeds the interest earned on the intrinsic value of the option. On the other
hand, if the call option is sufficiently in-the-money today, �FC will be close
enough to zero so that (18.100) will not obtain and it will be optimal to
exercise early.

The analogous argument for a call option on a cash asset proceeds as
follows. The condition for holding the call is

1
1 + r

E
[
(P1 − K)+

]
> P0 − K (18.101)

and the time value �CC is defined such that

E
[
(P1 − K)+

] = E [P1] − K + �CC (18.102)

�CC ≥ 0 (18.103)

Then, substituting (18.96) and (18.102) into (18.101) gives the condition
for holding a call option on a cash asset:

E [P1] − K + �CC

1 + r
>

E [P1]
1 + r

− K

�CC + Kr > 0 (18.104)

But (18.104) is always true, so a call option on a cash asset (with no inter-
mediate dividend payments) is never exercised early.

The contrast between the futures result in (18.100) and the cash result
in (18.104) can be explained as follows. Exercising a call on a cash asset re-
quires funds equal to the strike. Therefore, delaying exercise effectively earns
interest on the strike from exercise to expiration. By contrast, exercising a
call on a futures generates the intrinsic value: upon exercise the holder of the
option receives a settlement payment equal to the intrinsic value, F0 − K,
and is then put into a futures contract at the prevailing market price, F0,
which position has no market value at that time. Therefore, exercising a
call on a futures early earns interest on the intrinsic value from exercise
to expiration. If the time value of reserving the right to change one’s mind
about exercise is small, this interest earning dominates and early exercise
is optimal.
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Conditions for holding a put option on futures and cash assets can
be derived analogously, the details of which are left to the reader. For puts,
assume that K > F0 and K > P0 so that early exercise is potentially optimal.
Then, the results are that a futures put option should be held if

�FP > r (K − F0) (18.105)

�FP = E
[
(K − F1)+

] − (K − E [F1]) ≥ 0 (18.106)

and that a put option on a cash asset should be held if

�CP > Kr (18.107)

�CP = E
[
(K − P1)+

] − (K − E [P1]) ≥ 0 (18.108)

Contrasting the two conditions for put exercise, futures puts are held if
the time value exceeds the value of earning interest on the intrinsic value of
the put from exercise to expiration. Puts on cash assets are held if the time
value exceeds the interest earned on the strike from exercise to expiration.
Since the strike is much greater than the intrinsic value, it is much more
likely to hold a futures put than a put on a cash asset. Or, equivalently, it
is much more likely to exercise a put option on a cash asset early than to
exercise a futures put.

Note too that the rules for holding a futures option are symmetric across
calls and puts. Early exercise of either futures option results in the realization
of the intrinsic value that can be invested from exercise to expiration. By
contrast, the rules for holding options on cash assets are not symmetric
across calls and puts. The exercise of a call requires cash equal to the strike
and discourages early exercise. The exercise of a put generates cash equal to
the strike and encourages early exercise.

Table 18.14 summarizes the results of this subsection in terms of early
exercise conditions, which are found by reversing the inequalities of the
conditions for optimally holding options over the subsequent period.

TABLE 18.14 Summary of Conditions for Optimal
Early Exercise of CME-Type American-Style Options
on Non-Dividend Paying Cash Assets and on Futures

Cash Asset Futures

Call Never r (F0 − K) > �FC

Put r K > �CP r (K − F0) > �FP
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Early Exercise of NYSE Euronext-type
Futures Opt ions

After the daily settlement of a futures option of this type, the option has
no market value or intrinsic value. Therefore, unlike the futures options
described in the previous section, there is no intrinsic premium to be realized
from these options and no incentive to exercise early.

APPENDIX C: FUTURES PRICES ARE
MARTINGALES WITH THE MONEY
MARKET ACCOUNT AS A NUMERAIRE

Recall from Chapter 13 that the initial value of a futures contract is zero;
that the subsequent cash flows of a futures contract are its daily settlement
flows; and that, at maturity, the futures price is determined by some final
settlement rule. Consider a two-period, three-date framework for simplicity,
and let the futures price on date t be Ft. Then, the normalized gains process
is as follows:

� Date 0: V0
M(0) = 0;

� Date 1: V1
M(1) = F1−F0

1+r1
;

� Date 2: V2
M(2) = (F1−F0)(1+r2)+F2−F1

(1+r1)(1+r2)

Since the value of a futures contract on date 0 is zero, the martingale
property implies that the expectation of the normalized gains at any future
date is zero. In particular, for date 1,

0 = E0

[
F1 − F0

1 + r1

]
(18.109)

But since r1 is known as of date 0, it follows from (18.109) that

F0 = E0 [F1] (18.110)

As for date 2, the martingale property says that

0 = E0

[
(F1 − F0) (1 + r2) + F2 − F1

(1 + r1) (1 + r2)

]
(18.111)
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Using the law of iterated expectations, and the fact that r1 is known as
of date 0,

0 = E0

[
1

1 + r2
E1 [F2 − F1]

]
(18.112)

But, since F1 is known as of date 1, (18.112) implies that

F1 = E1 [F2] (18.113)

Finally then, combine (18.110) and (18.113) to see that

F0 = E0 [E1 [F2]] = E0 [F2] (18.114)

Together with (18.110), (18.114) shows that the futures price is a martingale
under the money-market account or risk-neutral measure, as desired.
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CHAPTER 19
Corporate Bonds and
Credit Default Swaps

C redit risk, the risk that the promised cash flows from an asset will not be
paid as promised, is a primary risk when investing in corporate bonds.

Say that a corporation sells $100 million principal amount of a bond is-
sue, contracting with bondholders to make coupon payments of 7.50% for
10 years and then to return the $100 million principal amount. There is
a risk that the corporation will experience financial difficulties before the
bonds mature and default on its contractual agreements. The result might
be a reorganization or liquidation in which bondholders not only fail to
receive the promised 7.50% interest payments but also fail to recover the
full $100 million principal amount.

Because corporate bonds are characterized by credit risk, investors de-
mand a higher promised return on corporate bonds than on safer forms of
investments, like U.S. Treasury bonds. While the corporation in the previ-
ous paragraph was selling its 7.50% 10-year bonds, the U.S. Treasury might
have been selling 10-year bonds at 3.50%. Part of the higher return paid by
corporations compensates investors for the expected losses due to default
and part is a risk premium for bearing default risk.

Since the late 1990s, corporate credit risk has traded not only through
corporate debt, but also through derivative contracts known as Credit
Default Swaps or CDS. The exposure to corporate default through CDS
is in many ways similar to a cash or direct exposure to corporate debt.
There are, however, two particularly important differences. First, since a
CDS contract is between two counterparties, each is exposed to the coun-
terparty risk of the other in addition to the corporate credit risk that is the
purpose of trading the contract. This counterparty risk can be mitigated,
however, by the taking and posting of collateral.1 Second, the financing
risks of a CDS position and a cash position are quite different. A counter-
party in a CDS contract can maintain exposure to credit through the CDS

1See Chapter 16 for details in the context of interest rate swaps.

527
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maturity date by meeting any collateral calls. By contrast, maintaining a
position in corporate bonds requires financing, either with capital, which
can be expensive, or through repo markets, which is subject to significant
liquidity risk.

This chapter begins with a description and discussion of the corporate
bond market, including ratings, the ratings agencies, and empirical data on
defaults and recovery rates. Spread measures of credit risk are next, from
the application of spread metrics introduced earlier in this book to asset
swap spreads. The rest of the chapter is dedicated to credit default swaps
(CDS), which have become enormously important in credit markets: how
they work, how they are quoted, how CDS spreads are compared with and
traded against bond spreads, and how implied hazard rates can be used to
compute the DV01 or duration of a bond subject to credit risk.

CORPORATE SECURIT IES

The Overview described the corporate life-cycle of debt financing, which
culminates in a corporation’s being large enough and creditworthy enough
to borrow funds in public markets. Almost all of the secondary trading in
corporate debt is over-the-counter.2

For short-term public borrowing, corporations sell commercial paper
(CP). CP is typically a discount (i.e., zero-coupon) security that can be unse-
cured, backed by a letter of credit from a bank, or backed by assets. From the
perspective of the issuer, CP is attractive because it is relatively inexpensive
and generally liquid. In addition, CP in the United States is exempt from
registration with the Securities and Exchange Commission (SEC), with its
attendant costs, prospectus disclosures, and other requirements, so long as
the CP issue matures in less than 270 days, and the corporation can argue
that the proceeds of the CP issue are being used for short-term purposes
(rather than, for example, building a factory). The disadvantage of selling
CP, of course, is the liquidity risk of having to roll short-term borrowing as
it matures.

For public borrowing with customized payments terms, corporations
sell medium-term notes (MTNs). Historically these were of intermediate
maturity and were so named to distinguish them from shorter-term CP
and longer-term corporate bonds. Currently, however, MTNs are just as
well characterized by their customization to suit the needs of issuers and
investors. MTNs first became popular in the United States in the early

2Secondary trading means trading after the initial sale of the issue. In over-the-
counter trading two parties set their own terms and conditions, in contrast with
trading that occurs under the auspices of an organized exchange.
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1980s when the SEC introduced shelf registration. This allowed issuers
to register once to sell bonds gradually over a two-year period at pay-
ment terms that can be set, based on market conditions, at the time of
each sale.

For public borrowing with relatively standard payment terms and with
maturities longer than those of CP, firms sell corporate bonds. In the United
States, these issues have to be registered with the SEC. Corporate bonds are
typically coupon-bearing securities with relatively standard payment terms
that often include a call option for an issuer to repurchase the securities at
some schedule of prices over time. (See Chapter 18.) A much smaller market
exists for corporate floating rate notes (FRNs). Each interest payment on
these bonds is usually London Interbank Offered Rate (LIBOR), observed
at the start of that payment’s accrual period, plus a fixed spread, although
sometimes LIBOR might be multiplied by a factor or leverage and the spread
might depend on the credit rating of the bond at the start of the accrual
period.

When selling a debt issue, a corporation enters into a contract with
debtholders, called an indenture, which is enforced by a trustee. Aside from
payment terms, the indenture specifies the priority of the issue in the event
of default. For example, one bond issue of a company might be secured by
a particular set of assets, a second might be unsecured but “senior,” and
yet another might be “subordinated.” In this example, should a corporation
be reorganized or liquidated according to “strict priority,” proceeds from
selling the ring-fenced assets would first be applied to satisfy the claims of
the secured bondholders. Any excess proceeds, together with other assets
and cash of the corporation, would next be applied to satisfy the claims
of the senior debtholders. Finally, whatever of value remains after that
would be used to satisfy the claims of the subordinated debtholders. Of
course, reorganizations and even liquidations often involve negotiation and
the courts, so that strict priority is not always applied to the settlement
of claims.

Indentures also include covenants to protect the claims of debtholders.
Examples include these: maintaining various financial ratios; restricting the
amount of cash that can be paid to stockholders; requiring a corporation to
repurchase a debt issue after a change of control; limiting the total amount
of new debt incurred by the corporation; and preventing the sale of debt
with higher seniority than a particular debt issue.

RATINGS, DEFAULT, AND RECOVERY

While investors very much need to understand the credit quality of indi-
vidual corporate bonds, this analysis requires substantial information and
expertise. Furthermore, it would seem inefficient for all investors to start
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TABLE 19.1 Cumulative Default Rates by Original Rating, 1970–2009

Age in High
Years Aaa Aa A Baa Ba Yield

1 0.0% 0.0% 0.1% 0.2% 1.2% 4.5%
2 0.0% 0.1% 0.2% 0.5% 3.2% 9.3%
3 0.0% 0.1% 0.3% 0.9% 5.6% 13.9%
4 0.0% 0.2% 0.5% 1.4% 8.1% 17.9%
5 0.1% 0.2% 0.7% 1.9% 11.9% 21.4%

10 0.5% 0.5% 2.0% 4.9% 20.0% 34.0%
15 0.9% 1.2% 3.6% 8.8% 29.7% 43.3%
20 1.1% 2.5% 5.9% 12.3% 37.2% 49.6%

Source: Moody’s.

from scratch when investigating the credit quality of a particular corporate
issuer or issue. Not surprisingly, therefore, rating agencies have developed
to help investors assess the credit quality of debt issues. The three major rat-
ing agencies are Moody’s, Standard and Poor’s (S&P), and Fitch. They are
normally paid by corporations to rate particular debt issues and by investors
to access the resulting ratings and analyses. Corporate bond ratings3 range
from Aaa by Moody’s and AAA by S&P and Fitch for the most creditworthy
issues to C by Moody’s and D by S&P and Fitch for issues already in default.
Issues with ratings of Baa and above by Moody’s and BBB- and above by
S&P and Fitch are considered investment grade; issues with lower rating are
considered speculative grade or, euphemistically, high yield.

Historica l Averages of Defaul t and Recovery Rates

For orders of magnitude with respect to default rates and the variation of
default rates across ratings, Table 19.1, from Moody’s, shows cumulative
default rates historically, by rating, as a function of age. For example, 29.7%
of issues rated Ba defaulted over the subsequent 15 years. As expected,
cumulative default rates increase as ratings decline.

As indicated in the introduction to this chapter, realized returns from
investing in corporate bonds depend not only on defaults but also on
losses given default. The recovery rate of an issue after default is defined
as the fraction of the principal amount ultimately returned to debtholders.
Table 19.2, also from Moody’s, shows average historical recovery rates for
senior unsecured debt as a function of rating. For the most part, recovery
rates do decline with rating, but, apart from Aaa-rated securities, the decline

3The scales for CP are different, e.g., for Moody’s, P-1, P-2, P-3, and NP, where “P”
is for Prime.
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TABLE 19.2 Average Recovery Rates for Senior Unsecured Debt, 1982–2009

Rating Aaa Aa A Baa Ba B Caa-C

Recovery 62% 44.4% 41.4% 43.8% 42.4% 37.5% 34.9%
Grade Investment Speculative
Recovery 43.5% 37.5%

Source: Moody’s.

is not particularly dramatic. This table also supports the industry practice
of using a recovery rate of 40% for assorted credit-market calculations.

Variab i l i ty of Defaul t and Recovery Rates

While it is tempting to focus on average default rates, like those presented
in Table 19.1, Figure 19.1 demonstrates that annual default rates can vary
significantly over time. Using S&P data, the heavy line in the figure shows a
time series of overall default rates, i.e., across rating classes and sectors, while
the three lighter, dashed lines show time series of high-yield default rates for
the United States, Europe, and emerging markets. The overall default rates
vary from less than .5% to about 4% and the high-yield default rates vary
from less than 1% to over 15%. Apart from their volatility over time, two
other remarks might be made about the default rates in the figure. One,
defaults are highly correlated across the three sectors, which is indicative
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of a systemic component. Two, the magnitude of the default rates over the
2007–2009 crisis were last matched at the time of the Enron and WorldCom
defaults in December 2001 and July 2002 respectively.

The double-line in Figure 19.1 gives the defaulting notional amount each
year, in billions of USD. From this perspective, the crisis of 2007–2009 was
many times more severe than any other episode over the last two decades.

Default rates and the mapping from ratings to default rates are very
important to investors, but are not a complete description of creditworthi-
ness over time. The most common path to default is not a single jump from
a top rating to default but a sequence of smaller downgrades. Investors
and rating agencies constantly assess the creditworthiness of issues, with
the latter adjusting ratings up or down as appropriate. Figure 19.2, using
S&P data, presents a time series of the percentage of issuers experiencing
upgrades and downgrades, as well as the commonly-cited ratio of upgrades
to downgrades. The percentage of upgrades or downgrades in a given year
is economically significant and volatile, ranging from about 5% to about
19% over the sample period. Also, systemic effects are reflected in the ra-
tio of upgrades and downgrades, just as they are in the default rates of
Figure 19.1. In fact, the ratio of upgrades to downgrades hits a trough or
reaches a peak at the same times that default rates reach a peak or hit
a trough.

Just as default rates in a particular year can be very different from
average historical default rates, so can recovery rates in a particular year
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be very different from the average historical recovery rates, like those in
Table 19.2. In fact, not surprisingly, default and recovery rates are highly
correlated over time. There is an additional problem, however, in using
average recovery rates, even when conditioned on the priority class of a
debt issue. To take a simple example, subordinated debt can recover a lot
more from an issuer with a relatively small amount of senior debt than from
an issuer with a relatively large amount of senior debt. More generally, the
value of the priority order of a debt issue can be very idiosyncratic to the
issuer’s capital structure, which can often be complex. As an illustration of
a particularly complicated priority structure, consider the following excerpt
with respect to a revised Chapter 11 plan for Lehman Brothers Holdings
Inc., filed at the end of January 2011:4

. . . [Senior unsecured creditors in Class 3 with claims against the
holding company should have a 21.4 percent recovery. . . . Senior
intercompany claims against the holding company in Class 4a are
in line for 16.6 percent. Intercompany claims against the hold-
ing company in Class 8a are to have 15 percent. . . . Senior third-
party guarantee claims against the holding company in Class 5a
are estimated to see 12.9 percent. . . . For Class 7 general unsecured
claims against the holding company, the recovery is an estimated
19.8 percent. . . .

The recovery on derivative claims and unsecured claims against
Lehman Commercial Paper Inc. is an estimated 51.9 percent. . . . For
derivative and general unsecured claims against Lehman Brothers
Special Financing, the recovery is 22.3 percent.

Pol icy Issues with Respect to the Rat ing Agencies

For a long time there has been controversy surrounding the role of rating
agencies in the financial system. Some of the major facets of this controversy
are as follows. First, regulatory bodies outsource some of their responsibili-
ties to privately-run rating agencies by making rules that depend on ratings.
The most prominent examples include international bank capital rules un-
der the Basel Accords; U.S. broker-dealer capital requirements; and quality
standards for the security holdings of U.S. money market funds. Second,
regulatory bodies choose which rating agencies can be used for regulatory

4Bill Rochelle, “Lehman, Summit, OTB, Townsends, Vitro: Bankruptcy,”
Bloomberg, January 26, 2011.
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purposes. These selections might very well confer special status and competi-
tive advantage on the chosen rating agencies and create undue concentration
in the ratings industry. Third, since issuers pay to have their issues rated,
rating agencies are consistently open to charges of conflicts of interest. Con-
troversy around rating agencies waxes and wanes over time, but becomes
more vociferous after rating agencies “miss” a significant default, e.g., keep-
ing investment-grade ratings on Enron and WorldCom until shortly before
they defaulted.

Not surprisingly, controversy flared dramatically through the 2007–
2009 financial crisis. The rating agencies had been earning a larger and
larger percentage of their revenues from rating mortgage-related structured
products, which performed very poorly through the crisis, including securi-
ties that were rated Aaa/AAA. In response, the Dodd-Frank Act of 2010 in
the United States made several changes to the status quo, two of which
will be mentioned here. First, regulatory bodies were given two years to re-
move all references to ratings from their rules and replace these ratings with
their own credit standards. This is a substantial undertaking, which, at the
time of this writing, is ongoing. Furthermore, this does not seem consistent
with the latest international banking accord, Basel III, which does not ex-
cise references to ratings in the determination of bank capital requirements.
Second, Dodd-Frank changed the law so that rating agencies can be held
liable for ratings that are used as part of a security’s registration statement.
And, because of this potential liability, rating agencies have to agree to have
their ratings so used. This provision misfired. The SEC requires that the
registration of asset-backed securities (ABS) include a rating. But soon after
Dodd-Frank became law in July 2010, the rating agencies, eager to avoid
potential liabilities, refused to attach their ratings to ABS registrations. As
a result, the ABS market ground to a halt for several days. The SEC re-
solved the impasse by temporarily suspending the requirement that ratings
be attached to ABS registration statements. At the time of this writing, this
temporary measure is still in place.5

CREDIT SPREADS

Credit spreads are the differences between the relatively high rates earned on
bonds that are subject to credit risk and the relatively low rates on securities
subject to little or no credit risk. The simplest measure of credit spreads is the
yield spread, which is the difference between the yield on the bond and the
yield or rate on a similar maturity (highly creditworthy) government bond

5The corporate bond market experienced a similar although less dramatic sequence
of events, resulting in ratings requirements being relaxed there as well.
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or par swap. While yields spreads are computed in practice, they suffer
from two drawbacks. First, they confound differences in the structure of
cash flows with credit risk. (See “Yield Curves and the Coupon Effect” in
Chapter 3.) Second, to the extent that the issuer of a bond has embedded
options (see Chapter 18), yield will be higher than it would be otherwise
and the yield spread will indicate a misleadingly high level of credit risk.

A better measure of credit spread will be referred to in this chapter as
the bond spread. This term includes the spread defined in Chapter 3, the
Treasury Euro Dollar (TED) spread in Chapter 15, and the more general
option-adjusted spread (OAS) defined in Chapter 7. In the credit context, a
bond spread is computed by assuming no default and finding the spread (or
term structure of spreads) over a benchmark curve that prices the bond as it
is priced in the market. As the market price incorporates the risk of default
while the pricing methodology just described does not, the resulting spread
is an indicator of credit risk. Bond spreads, unlike yields spreads, properly
account for any differences between the structure of cash flows of a bond and
those of the benchmark securities. Hence, the spread in Chapter 3 is suitable
for bonds without embedded options. For bonds with embedded options, the
OAS in Chapter 7 is appropriate since its computation is designed to incor-
porate the value of embedded options and to attribute to the OAS only the
remaining price difference, which, in the present application, is chiefly due to
credit spreads.

It is a sign of the times, as of this writing, that the market is following
the bond spreads of European government bonds. Table 19.3 gives bond
spreads for 5- and 25-year issues of several European governments, both
with respect to the LIBOR and Overnight Indexed Swap (OIS) benchmark
curves. Because LIBOR is higher than OIS (see Chapter 15), bond spreads

TABLE 19.3 Bond Spreads of European Government Bonds, in Basis Points, as of
December 10, 2010

5-Year 25-Year

Issuer LIBOR OIS LIBOR OIS

Germany −28.2 2.0 −5.0 16.1
Finland −21.7 8.7 −10.4 12.6
Netherlands −15.3 14.9 0.6 19.3
France −8.0 22.4 25.5 46.3
Belgium 82.0 112.4 79.7 100.7
Italy 114.1 144.3 168.6 190.0
Spain 213.6 244.0 243.9 263.3
Portugal 295.1 325.1 281.9 301.1
Ireland 455.7 486.2 438.6 462.3
Greece 931.5 961.7 525.9 545.8



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c19 JWBT539-Tuckman July 27, 2011 0:4 Printer: Courier Westford

536 SELECTED SECURITIES AND TOPICS

F IGURE 19.3 A Par-Par Asset Swap with Financing

against LIBOR are lower than bond spreads against OIS. In fact, as the
best sovereign credits are better than short-term bank credits, several of the
bond spreads against LIBOR are negative. In any case, the spreads in the
table dramatically indicate the perceived pecking order of creditworthiness
in European government issuers, from the solid credits of Germany, Finland,
the Netherlands, and France, to the intermediate credits of Belgium and Italy,
to the relatively impaired credits of Portugal, Ireland, Greece, and Spain.

The plan for the rest of this section is the following. The next subsection
introduces the popular measures of credit spreads known as asset swap
spreads. The following two subsections then illustrate differences across the
various measures of credit spread, first in the context of a simple example
and then in the context of a particular credit-impaired bond. Finally, the last
subsection describes credit spread measures for floating rate notes.

Asset Swaps and Asset Swap Spreads

The point of an asset swap is to use interest rate swaps to transform a fixed-
coupon bond into an asset that earns a spread over LIBOR. One flavor of
asset swaps, called the par-par asset swap, or, more simply, the par asset
swap, is illustrated in Figure 19.3. The light lines indicate cash flows at
initiation of the asset swap, the heavy lines indicate cash flows during its
life, and the dashed lines indicate cash flows at its termination. At initiation,
the purchaser of the bond or asset swapper buys the bond for P per 100 face
amount, earning a periodic coupon payment of c per 100 face amount.
The purchase of the bond is financed with 100 from the repo desk (or,
not shown, with some combination of repo and capital financing) and with
P − 100 that comes from an up-front payment from an interest rate swap.6

6To keep the focus on assets swap spreads, this discussion ignores collateral require-
ments and how they change over time, for both repo and swap agreements.
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Finally, through that interest rate swap, the asset swapper agrees to pay
the bond coupon c in exchange for receiving LIBOR plus the spread sPAR

on 100 face amount and for receiving the up-front payment just mentioned
of P − 100. Note that this trade requires no cash at initiation, and, so
long as the bond does not default, earns LIBOR plus sPAR minus the repo
rate on 100 over the life of the trade. The trade also neither generates
nor requires cash at initiation since the principal payment from the (non-
defaulting) bond is used to pay off the repo borrowing. Hence, so long as the
bond does not default, the asset swapper has converted the fixed cash flows
of the bond into floating payments of LIBOR plus sPAR on 100 notional
amount. (Repo or capital financing costs would be incurred with or without
the swap.)

What is the fair value of the asset swap spread, sPAR? Let d be the
discount factor corresponding to the maturity date of the swap and let AFixed

and AFloat be annuity factors from the swap curve, adjusted for payment
schedules, so that AFixed times the coupon payment gives the present value
of those coupon payments and 100sPAR times AFloat gives the present value
of the floating payments. Then the swap depicted in Figure 19.3 is fair
if the present value of all the payments received by the asset swapper equals
the present value of all the payments made by the asset swapper. Using
the device of the fictional notional payment at maturity and the result that
payments of LIBOR together with that fictional notional amount is worth
par (see Chapter 16), the fair-pricing condition is

(P − 100) + 100 + 100sPAR AFloat = cAFixed + 100d

sPAR = cAFixed + 100d − P

100AFloat
(19.1)

Note that sPAR depends on the credit risk of the bond through the bond’s
price, P: the lower this price relative to the present value of the same fixed
payments from an essentially default-free swap (see “On Credit Risk and
Interest Rate Swaps” in Chapter 16), the higher the spread. This is the sense
in which the par asset swap is a measure of credit risk.

The par asset swap package has minimal interest rate risk conditional on
no bond default. The floating side of the swap does have interest rate risk to
the next reset date, but even this small risk might very well be hedged by the
financing of the bond7 or with the addition of short-term rate derivatives

7Borrowing cash through repo to the term of the next payment would hedge the
interest rate risk of the next—and already set—LIBOR-based floating payment. If
repo borrowing is overnight, however, then ED futures or another rate derivative
might be used to hedge that risk.
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(see Chapter 15). The credit risk of the bond, however, is most certainly
retained. If the bond price falls due to a credit event, the value of the package
will fall. And, of course, if the bond defaults, the coupon and principal
payments from the bond might not be made in full while the asset swapper
still owes coupon payments through the swap in addition to the repayment
of repo borrowings (or return of capital).

To be more precise about the credit risk of the par asset swap position,
consider the profit and loss (P&L) impact at some time, in the future, of two
events: 1) the par asset swap spread jumps to s̃PAR; and 2) the bond defaults.
Note that for the purpose of quantifying the credit risk of the position going
forward, income earned from the initiation of the asset swap through the
event date is ignored.

If the new asset swap spread jumps to s̃PAR, an investor can sell the par
asset swap, i.e., sell the bond, receive fixed in the swap, etc. Using the analysis
of this subsection, this set of trades has no net initial or final payments, but
generates intermediate payments of s̃PAR plus LIBOR minus repo on the
face amount of the bond. But the existing long asset swap position earns
sPAR plus LIBOR minus repo on the face amount. Hence, the P&L from
the jump in the asset swap spread is the present value of the difference
between these interim cash flows, i.e., 100

(
sPAR − s̃PAR

)
ÃFloat, where ÃFloat

is the relevant annuity factor at the time of the jump in the asset swap
spread. If the creditworthiness of the bond improves so that the asset swap
spread falls, the original, long asset swap spread position makes money; if
the creditworthiness of the bond deteriorates so that the spread increases,
the long asset swap position loses money.

Moving to the default scenario, let R be the recovery rate. If the bond
defaults and the trade is unwound, the P&L is as follows. First, the bond is
worth its notional amount times the recovery rate, i.e., 100R, while it was
worth some price P̃ just before default. Second, 100 is owed on the repo
loan. Third, the swap has to be unwound at some net present value (NPV)
with respect to the asset swapper, to be denoted as ÑPV. Note that, since the
swap is fair at initiation, as soon as the asset swapper takes the swap’s initial
payment of P − 100, the NPV of the swap to the asset swapper is 100 − P.
This quantity will trend to zero over time as any premium or discount that
arises from fixed cash flows. In any case, just before default the total asset
swap position is worth P̃ − 100 + ÑPV while just after default it is worth
100R − 100 + ÑPV for a net change of 100R − P̃. This P&L expression
certainly shows that the asset swap loses money in the event of a default
when the recovery is low relative to the prevailing price. But the expression
also shows that the asset swap trade does have interest rate risk in the event
of default: the prevailing price, P̃, can differ from the original price because
of changes in interest rates.
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FIGURE 19.4 A Market Value Asset Swap with Financing

Delaying further discussion of the par asset swap until the numerical
example, Figure 19.4 depicts another flavor of asset swaps, called the market
value asset swap. In this case the purchaser of the bond or asset swapper
finances the purchase price P from the repo desk (or, again not shown,
with some combination of repo and capital financing). Through the swap,
the asset swapper pays the coupon c as in the par asset swap, but receives
LIBOR plus the spread sMkt on the notional amount P rather than on 100.
Then, at termination, the repo loan of P is repaid with the 100 principal
payment of the bond and a terminal payment from the swap of P − 100.
Netting all the pieces, if the bond does not default, the market value asset
swap converts the fixed payments of the bond into floating payments of
LIBOR plus sMkt on the notional amount P. Taking care to recall that the
notional amount of the swap is P, so that LIBOR plus the fictional notional
is worth P; that the spread is earned on P; and that the fictional notional on
the fixed side is also P, the fair pricing condition of the swap in this trade
requires that

P + sMktPAFloat + (P − 100) d = cAFixed + Pd

sMkt = cAFixed + 100d − P

P AFloat

= 100sPAR

P
(19.2)

Equations (19.1) and (19.2) show that the par and market value swaps
are very closely related. The asset swapper can transform the cash flows
of the bond so as to earn sPAR on 100 or so as to earn sMkt = 100sPAR

P on
P, which amount to the same size payments. The choice between the two
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TABLE 19.4 Various Measures of Credit Spreads for a
Two-Year, 4.25% Bond with Forward Rates of 1% Over the
First Year and 2% Over the Second Year

Bond Yield 10.013%
Par Swap Rate 1.495%
Yield Spread 8.518%
Bond Spread/OAS 8.525%
Par-Par Asset Swap Spread 7.855%
Market Value Asset Swap Spread 8.728%

kinds of asset swaps, therefore, is not one of economics but of collateral or
counterparty risk considerations.8

Numerical Example of Credit Spreads

Consider a simple, two-period, two-year example. Let the one-year forward
swap rates be f (1) = 1% and f (2) = 2%. A corporate bond has a coupon
of 4.25%, matures in two years, and sells at a price of 90. Table 19.4
reports various rates and spreads for this example. Note that the bond in
this example is perceived to be subject to a lot of credit risk. Despite having
a very much above-market coupon, its price is only 90. This perceived credit
risk is reflected in the large magnitudes of all of the credit spread measures
reported in the table.

The yield spread is simply the bond yield minus the par swap rate. As
mentioned in the introduction to this section, the coupon effect lowers the
bond yield and reduces the yield spread relative to the bond spread or OAS,
although the effect is small in this example.

8Begin with the case of a premium bond, i.e., P > 100. In the par asset swap the
swap desk advances money to the asset swapper in exchange for the promise of
future payments. If the asset swapper does not post collateral, this exposes the
swap desk to counterparty risk at the time of initiation. If the asset swapper does
post collateral, this poses an opportunity cost of posting collateral on the asset
swapper. Over time, however, as the asset swapper makes coupon payments, the
counterparty risk or collateral requirements decline. In the market asset swap, by
contrast, there is no initial swap payment and, therefore, no initial counterparty
risk or collateral requirement. Over time, however, as the asset swapper makes
payments, the obligation of the swap desk to pay P − 100 at termination becomes
counterparty risk for the asset swapper or a collateral requirement for the swap desk.
In the case of a discount bond, i.e., P < 100, the obligations flip: the par asset swap
initially exposes the asset swapper to counterparty risk or the swap desk to collateral
requirements while the market value swap still has no initial counterparty risk or
collateral requirements but, over time, exposes the swap desk to counterparty risk
or the asset swapper to collateral requirements.
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Since this bond has no embedded options, its spread is computed along
the lines of Chapter 3 and is the same as the bond’s OAS. In particular, the
spread s is such that

90 = 4.25
1.01 + s

+ 104.25
(1.01 + s) (1.02 + s)

(19.3)

Solving, s = 8.525%.
Rearranging the terms of (19.1), sPAR is such that

100sPAR
[

1
1.01

+ 1
1.01 × 1.02

]
= 4.25

1.01
+ 104.25

1.01 × 1.02
− 90 (19.4)

And solving, sPAR = 7.855%. Hence, a bondholder can transform the fixed
coupon payments of 4.25% into floating rate payments of the short-term rate
plus 7.855%. The market value asset swap spread is, according to (19.2),
simply the par spread normalized to price, i.e., 7.855% 100

90 or 8.728%.
Comparing (19.3) and (19.4) shows that the bond spread adds a spread

to the denominator in order to capture the difference between the bond
price, i.e., 90, and what the bond price would be without credit risk, i.e.,
the present value of the cash flows at the market forward rates. The asset
swap spread, on the other hand, explains this difference with a spread in
the numerator.

Some additional intuition about the difference between the bond and
asset swap spreads are gleaned from considering how these quantities are
related to return given that a bond does not default. As discussed in
Chapter 3, the bond spread is a component of return over the life of the
bond in the following sense: investing the bond price by compounding re-
turns at the forward rates plus the bond spread is equivalent to investing in
the bond so long as all coupon payments can be reinvested at those same
rates and spreads. In terms of this example,

90 (1.01 + 8.525%) (1.02 + 8.525%) = 4.25 (1.02 + 8.525%) + 104.25

= 108.947 (19.5)

For the market value asset swap, the relationship to return is somewhat
different: investing the bond price at the forward rates plus the bond spread
while compounding these returns at the forward rates (without spread) is
equivalent to investing in the bond so long as all coupon payments are
invested at the forward rates (without spread). In terms of this example,

90 [1 + (1% + 8.728%) 1.02 + (2% + 8.728%)] = 4.25 (1.02) + 104.25

= 108.586 (19.6)
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TABLE 19.5 Various Measures of Credit Spreads for the KB
Home 5 3

4 s of February 1, 2014, on November 10, 2008

Bond Yield 15.089%
Par Swap Rate 3.714%
Yield Spread 11.375%
Bond Spread/OAS 11.492%
Par-Par Asset Swap Spread 9.230%
Market Value Asset Swap Spread 13.443%

Appl icat ion: KB Home 5 3
4 s of February 1, 2014

This subsection presents credit spread measures for a particular distressed
bond, the 5 3

4 s of February 1, 2014, issued by KB Home, a U.S. residential
home-construction company.

Table 19.5 gives various rates and spread for the KB Home bond
on November 10, 2008. The bond is clearly distressed because, while the
matched-date par swap rate was 3.714%, this relatively high-coupon bond
sold for a full price of only 68.66. As a result, the credit risk measures in the
table are quite significant. Also, as in the numerical example of the previous
subsection, the yield spread is not very far from the bond spread and the
market value asset swap spread is greater than the bond spread.

This KB Home bond will be revisited in the context of CDS basis trades
in the next section of this chapter.

Credit Spreads for F loat ing Rate Notes

The spread on a floating rate note that is priced at par is a particularly pure
form of a credit spread—it is the spread over the short-term benchmark
received for bearing credit risk with no other consideration. Over time,
however, as the credit quality of the issuer changes, the price of a floating
rate note with a fixed spread will change. As a result, the spread is not so
pure a measure of credit risk because an investor is paying a premium or
getting a discount to face amount in addition to that spread. Hence, there is
a need to measure credit spreads even for floating rate notes.

One way to do this is to quote an effective spread that converts the
premium or discount into a run rate and adds it to the actual spread. Say
that the actual spread of the floater is sFloat, that the price of the floater is
P, and that the annuity corresponding to payment dates is, as before, AFloat.
Furthermore, let sEff be the effective spread. Then,

100sEff AFloat − 100 = 100sFloat AFloat − P (19.7)
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In words, investors are indifferent between receiving the spread sEff for a
price of 100 and receiving the spread sFloat for a price of P. Rearranging
terms,

sEff = sFloat + 100 − P
100AFloat

(19.8)

Another method of quoting an effective spread on a previously issued
floating rate note is to fix its cash flows at the benchmark forward rates plus
the actual spread. Then, find the bond spread that equates the present value
of these cash flows to the price of the floater.

CREDIT SPREADS AND DEFAULT RATES

The measures of credit spread developed in the previous section represent,
in various ways, the additional return an investor gets from holding a bond
that does not default. But, of course, bonds with credit risk sometimes do
default. It is natural to ask, therefore, whether, on average, the magnitude
of credit spreads offered in the market compensates for events of default.

To analyze this question, consider the bond spread. As explained in
Chapters 3 and 7, in the context of bonds that cannot default, the short-
term return of an interest-rate hedged position in a bond with a constant
bond spread equals the short-term rate plus that bond spread. But what if
the bond might default and, in particular, that the probability of default
over the next small time interval, dt, is λdt? Let r be the short-term rate,
s the bond spread, and R the recovery rate in the event of default. Then,
if the bond does not default over the next instant, which happens with
probability (1 − λdt), the return on an interest-rate hedged invesment is
(r + s) dt. However, if the bond does default, principal is lost but for the
recovered fraction R, implying a return of − (1 − R). Thus, the expected
return of an interest-hedged position in the bond over the next instant is

(1 − λdt) × (r + s) dt − λdt × (1 − R) (19.9)

As investors are risk averse, they prefer a riskless return of rdt to a
risky return with an expectation of rdt.9 But, for present purposes, ignore
risk aversion and assume that investors are content to earn a spread on
corporate bonds that compensates for the expected losses due to default. In

9More precisely, from asset pricing theory, this reasoning applies when the risk is
positively correlated with the wealth of the economy. This is certainly the case here
since corporate bond returns are higher when the economy is doing well.
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other words, the required expected return in (19.9) is equal to rdt. Equating
these two quantities, while ignoring the very small, higher-order terms, i.e.,
those with a factor of dt2, results in the following spread requirement:

rdt = (r + s) dt − λdt × (1 − R)

s = λ (1 − R) (19.10)

Since data are available on cumulative default rates, as in Table 19.1,
rather than on instantaneous default rates, the spread in equation (19.10)
has to be expressed in terms of the cumulative default probability to some
time T, denoted here as CD(T), instead of λ. It is shown in Appendix A in
this chapter that if the instantaneous default rate is constant at λ, then

CD(T) = 1 − e−λT (19.11)

Finally, then, substitute λ from (19.10) into (19.11) and solve for the
spread:

s = −1 − R
T

ln [1 − CD(T)] (19.12)

The top panel of Table 19.6 uses equation (19.12), data on five-year
cumulative default rates, and an assumed recovery rate of 40% to imply the

TABLE 19.6 Top: Spreads, in Basis Points, Required to Compensate for Realized
Default Risk Over Five-Year Periods; Bottom: the Widest and Tightest Market
Spreads Over the Sample, by Rating Category

Rating

Period
Investment

Grade B Caa
High
Yield

1970–74 10 89 60
1975–79 13 227 94
1980–84 20 384 293
1985–89 15 641 448
1990–94 2 219 292 172
1995–99 16 557 1,136 450
2000–04 8 108 473 132
2005–09 16 265 631 268

Market Spreads
Widest 619 1,825 2,992 1,857
Tightest 82 239 395 256

Source: Moody’s and Deutsche Bank.
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spreads that would have been necessary to compensate investors for realized
defaults over sequential five-year periods since 1970. The bottom panel
indicates the widest and tightest spreads over the sample. For the lower
ratings, the orders of magnitude of the ex-post required spreads are for
the most part bracketed by the widest and tightest spreads, although there
are some periods for which spreads implied by realized defaults are lower
than the tightest market spreads. Nevertheless, the widest market spreads
are much larger than anything justified by realized defaults. This might be
due to the market’s overestimation of default risk or to the existence of a
significant credit risk premium. For investment grade debt, however, market
spreads seem particularly wide: even the tighest market spread significantly
overcompensates investors for realized defaults over any of the five-year
periods. Once again, this might be due to overestimation of default risk or
a risk premium. Another possible explanation is that, because the default
rate of investment grade debt is so low, very long observation periods are
required to witness periods of significant defaults.

CREDIT DEFAULT SWAPS

Def in i t ions and Mechanics

Through a single-name CDS, a protection buyer or CDS buyer pays a pro-
tection seller or CDS seller in exchange for a compensation payment in
the event that an issuer of bonds defaults. These derivatives are useful for
hedging credit exposures to particular issuers and for betting on the credit-
worthiness of an issuer relative to implied market prices. The last subsection
discusses CDS on indexes.

A CDS contract is defined by a reference entity, a list of credit events,
a term or maturity, a reference obligation, and a notional amount. To take
one example, consider a five-year CDS on $1 million of the Senior Unsecured
7 1

2 s of May 15, 2016, issued by Hovnanian Enterprises (HOV), a U.S. home-
building company. A payment by the seller of this CDS would be triggered
if, before the maturity of the CDS in five years, the reference entity, HOV,
experiences a credit event, which typically includes bankruptcy, failure to
pay, obligation acceleration, repudiation, moratorium, and restructuring.
Furthermore, should such a credit event occur, the payment by the CDS
seller, or the CDS settlement, would be determined, in a manner to be
described presently, with reference to $1 million face amount of the 7 1

2 s of
May 15, 2016.

The purpose of the compensation payment of a CDS is to make a holder
of the reference obligation whole in the event of a default. Continuing with
the example, should HOV default and the value of the 7 1

2 s plummet to 20 per
100 face amount, the ideal compensation payment would be 80 per 100 face
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F IGURE 19.5 Physical and Cash Settlement of CDS Contracts

amount or $800,000 based on the notional amount of this particular CDS.
The actual payment is more complicated because of the difficulty in precisely
determining the market price of a corporate bond at any time, let alone
after a credit event. One solution to this difficulty is physical settlement,
described in the lower half of Figure 19.5 for a notional amount of 100.
In this process the protection buyer delivers 100 notional amount of a bond
to the protection seller and receives 100 in exchange. In terms of the example,
the buyer can deliver $1 million face amount of the 7 1

2 s to the seller and
receive $1 million in exchange. Hence, no matter what the market price of
the bond, the protection buyer has recovered the full face amount of the
bonds despite the credit event.

Requiring physical settlement of a particular issue might subject the
buyer to a squeeze. This same fear was described in Chapter 14 in the
context of note and bond futures, and the solution for CDS is the same
as the solution for futures, i.e., to permit delivery of any security in a list
of eligible securities. In the example, the buyer would typically be able to
deliver any HOV bond with the seniority of senior unsecured or better.
These seniority criteria for eligibility usually work well because, in a default,
seniority is the most important determinant of value.10 Of course, as in

10 In the case of a restructuring, the seniority criteria do not necessarily work well.
Short-term debt is often restructured advantageously relative to long-term debt,
resulting in cheaper, long-term debt being delivered through CDS contracts. Many
market participants wanted to avoid this side-effect of the delivery option and,
as a result, some contracts now restrict eligibility to relatively short-term debt in
the case of restructurings while other contracts have eliminated restructuring as a
credit event.
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the case of futures, the flexibility to deliver any of a list of eligible securities
creates a delivery option and a cheapest-to-deliver that impacts the valuation
of CDS contracts.

A second solution to the difficulty of pricing a corporate bond is to
hold an auction to determine bond prices and then use the resulting prices
for cash settlement. In the example, an industry organization would hold
an auction in which market participants could bid to buy and offer to sell
senior unsecured HOV bonds. If the clearing price turned out to be 20 per
100 face amount, then all sellers of CDS contracts on senior unsecured debt
of HOV would owe compensation payments of 100 − 20 or 80 per 100 face
amount. More generally, as shown in Figure 19.5, if the auction clearing
price is the recovery rate, R, per unit face amount, then the compensation
payment is 100 (1 − R). The auction process worked relatively well through
the 2007–2009 financial crisis. In October 2008, auctions set the price of
Lehman Brothers secured debt at about 9 per 100 face amount and of
Wahington Mutual senior debt at 57.11

In exchange for the compensation payment in the event of default, the
CDS buyer pays an up-front amount at the initiation of the trade and then
an actual/360 fee, premium, or coupon paid quarterly, until the earlier of
the maturity of the CDS or the issuer’s default. If the up-front payment is
zero, the premium is also known as the default swap spread or the CDS
spread. In the HOV example, as of November 10, 2008, the 7.5% reference
obligation was quite distressed: the price of five-year CDS protection was an
up-front payment of 55.5 per 100 face amount and a coupon of 500 basis
points per year. Note that in the event of default, the buyer owes accrued
interest on the coupon from the last payment date to the credit event, as
indicated in the center of Figure 19.5.

The structure of the coupon and up-front payments in CDS markets
changed dramatically since the crisis of 2007–2009. Previously, the coupon
of newly initiated CDS trades was set such that the up-front payment was
zero. This convention made it difficult to unwind trades. To take a simple
example, if counterparty A bought five-year protection from B at a spread
of 200 basis points and the market moved immediately to 180 basis points,
A could not unwind by selling protection to B at the new market level of
180 basis points—in that case A would still owe net cash flows of 20 basis
points. Hence, to “tear up” the original trade, A would have to make a
lump-sum payment to B that both accepted as representing the value of the

11 The auctions of the Federal National Mortgage Association (FNMA) and Federal
Home Loan Mortgage Corporation (FHLMC) debt in October 2008 also worked
in the sense of settling CDS contracts in an orderly way. However, the price results
were somewhat perverse. The auction prices of the senior debt issues were about 92
and 94 for FNMA and FHLMC, respectively, but the prices of the subordinated debt
issues were 99 and 100!
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20 basis-point change in market levels. The unwind is even more difficult to
value, of course, if six months passed and the now 4.5 years of protection
at 200 basis points has to be compared with 180 basis points of five-year
protection.

Since the crisis, in response to the prompting of regulators, CDS con-
tracts have become more standardized, particularly between dealers. First,
most trading occurs in CDS with terms of approximately five and 10 years
where exact maturity dates are limited to pseudo-International Money Mar-
ket (IMM) dates,12 i.e., the 20th days of March, June, September, or De-
cember. So, for example, all five-year contracts traded between June 21 and
September 20, 2010, will mature on September 20, 2015; all five-year con-
tracts traded between September 21 and December 20, 2010, will mature
on December 20, 2015; etc. Second, contracts have been standardized by
setting the coupon at either 100 or at 500 basis points annually, with an up-
front amount adjusting to credit conditions as appropriate. This convention
makes it particularly easy to unwind trades. If A bought protection from
B for an up-front payment of 5 and a spread of 100 basis points and then
the market moved to an up-front payment of 10 and a spread of 100 basis
points, A would simply sell protection to the same maturity to B for 10 and
no net position would remain.

The push for standardization of CDS and, more broadly, of derivatives,
is part of a larger discussion about the clearing of derivatives. See the sec-
tion “Regulatory and Legislative Mandates to Clear OTC Derivatives” in
Chapter 16.

Quot ing CDS Spreads and Calcu lat ing
Up-Front Payments

For low-quality credits, CDS are quoted in terms of up-front payments.
For high-quality credits, however, CDS are quoted in terms of spread from
which up-front payments are calculated and subsequently paid. This spread
represents what the market CDS coupon would be if there were no up-front
payment. In this section, therefore, the terms spread and quoted coupon will
be used interchangeably. Note that, for both low- and high-quality credits,
a CDS quoted coupon is more intuitive than the combination of a stan-
dardized coupon and an up-front payment. For example, in the illustration
to follow, it is more useful to say that €10 million of credit protection on
Deutsche Bank can be bought at an annual cost of $93,550 than to say that
this protection costs $100,000 per year after generating an initial up-front
payment of $22,272. Similarly, it is easier to compare two credits if protec-
tion for both are expressed as pure running costs. In any case, this section

12 See the subsection “Eurodollar Futures” in Chapter 15 for a description of
IMM dates.
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describes the market convention for converting quoted coupon to up-front
payments or vice versa.

The value of a CDS can be thought of as having two legs. The fee leg
is the payment of the coupon until the earlier of the event of default or the
maturity of the CDS. Note that this includes accrued coupon from a previous
payment date to the time of default. The contingent leg is the payment of
one minus the recovery rate per unit face amount, 1 − R, in the event of
default. To express the value of each of these legs mathematically, some
notation needs to be set. Let C be the standardized coupon rate on the CDS,
let C(T) be the quoted coupon rate, and let UF(T) be the up-front payment.
Let d(T) be the discount factor to time T. As in the previous section, let the
hazard rate be λ and the cumulative default probability to time T, CD(T).
Then, denote the cumulative survival probability by CS(T), which equals
one minus the cumulative default probability, or, from (19.11),

CS(T) = e−λT (19.13)

With this notation, the value of the fee leg, VFee, can be defined in terms
of a quoted quarterly coupon.13 The CDS actually pays the standardized
coupon C, but for the purposes of quoting a coupon rate, the value of the
fee leg is expressed in terms of this quoted rate:

VFee = C(T)
4

4T∑
i=1

CS(ti )d (ti ) + 1
2

C(T)
4

4T∑
i=1

[CS(ti−1) − CS(ti )] d (ti )

(19.14)

The first term of (19.14) is the expected value of the coupon payments.
The quarterly coupon payment at time ti is C(T)

4 and is made with proba-
bility CS(ti ), i.e., the probability that the reference entity has not defaulted
by time ti . Hence, C(T)

4 CS(ti ) is the expected coupon payment at time ti

and C(T)
4 CS(ti )d (ti ) is its discounted value. Summing across payment dates

gives the discounted expected value of all coupon payments conditional on
no default.

The second term of (19.14) is the expected value of the accrued coupon
payments made at the time of a default. First, CS(ti−1) − CS(ti ), the difference
between the probability of surviving to time ti−1 and the probability of
surviving to time ti, is equal to the probability of a default happening

13 For simplicity, equation (19.14) assumes that the length of accrual periods is
exactly .25. More precise calculations are illustrated in the numerical example to
follow.
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between time ti−1 and time ti. The accrued coupon payment in the event of
a default during a period depends on when the default happens within that
period. For simplicity, the convention is to assume that defaults happen in the
middle of coupon periods. Hence, the accrued coupon payment in the event
of a default between ti−1 and ti is 1

2
C(T)

4 , the expected value of that payment
is 1

2
C(T)

4 × [CS(ti−1) − CS(ti )], and the discounted value of that expectation
is 1

2
C(T)

4 × [CS(ti−1) − CS(ti )] d (ti ). Summing across payment dates gives the
total discounted expected value of accrued coupon payments conditional on
defaults in each period.

The value of the contingent leg, VCont, is defined as follows:

VCont = (1 − R)
4T∑
i=1

[CS(ti−1) − CS(ti )] d (ti ) (19.15)

The CDS pays 1 − R in the event of default. The probability of a default
between ti−1 and ti is CS(ti−1) − CS(ti ). Hence, the discounted expected
payment of the contingent leg of the CDS between ti−1 and ti is (1 − R)
times [CS(ti−1) − CS(ti )] times d (ti ). Summing across periods gives the total
discounted expected value of contingent leg payments.

With these definitions of the value of the two legs, the CDS is fair if the
value of the fee leg, received by the seller of protection and paid by the buyer
of protection, equals the value of the contingent leg, received by the
buyer of protection and paid by the seller of protection. To ensure that
the CDS is fair in this framework, therefore, find the hazard rate λ∗ such
that (19.14) equals (19.15). As part of this convention, by the way, the
recovery rate is usually set at 40%.

The link between the quoted coupon and the up-front fee—defined as
paid to the seller of protection—can now be made through the following
equation:

UF(T) = C(T) − C

4

[
4T∑
i=1

CS(ti )d (ti ) + 1
2

4T∑
i=1

[CS(ti−1) − CS(ti )] d (ti )

]

(19.16)

The right-hand side of (19.14) is the value of receiving the fee C(T). By
inspection then, the right-hand side of (19.16) is the value of receiving a fee
of C(T) − C. But this value is exactly what the up-front payment represents,
namely, the quantity that makes the seller of protection willing to accept the
standardized coupon C instead of the market quoted coupon C(T) (with no
up-front payment).
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Before proceeding to a numerical example, it is important to empha-
size that all of the expressions in this subsection are conventions to quote
up-front payments from quoted spreads or vice versa. In fact, the CDSW
function in Bloomberg performs these calculations. The manner in which
individual investors or traders determine the value of a CDS, however, need
not resemble these expressions at all.

The following CDS illustrates the calculation of an up-front payment
from a quoted spread. On March 21, 2011, an EUR denominated five-year
CDS on Deutsche Bank, AG, with a coupon of 100 basis points, was quoted
at a spread of 95.33 basis points. Table 19.7 details the calculations used in
determining the up-front spread. Column (1) gives the schedule of payment
dates. By the convention described in the previous section, this five-year

TABLE 19.7 Calculating the Up-Front Payment for the Five-Year 100 Basis Point
Deutsche Bank CDS as of March 21, 2011

Hazard Rate 1.61091%

(1) (2) (3) (4) (5) (6)

Cumulative Period
Payment Accrual Discount Survival Default
Date Term Days Factor Probability Probability

(years) % %

6/20/11 .249315 92 .996859 99.5992 .4008
9/20/11 .501370 92 .992676 99.1956 .4036
12/20/11 .750685 91 .987929 98.7980 .3976
3/20/12 1.000000 91 .982593 98.4020 .3960
6/20/12 1.252055 92 .976739 98.0033 .3987
9/20/12 1.504110 92 .970392 97.6061 .3971
12/20/12 1.753425 91 .963769 97.2149 .3912
3/20/13 2.000000 90 .956923 96.8295 .3854
6/20/13 2.252055 92 .949771 96.4372 .3924
9/20/13 2.504110 92 .942489 96.0464 .3908
12/20/13 2.753425 91 .935213 95.6614 .3850
3/20/14 3.000000 90 .927875 95.2822 .3792
6/20/14 3.252055 92 .920277 94.8961 .3861
9/20/14 3.504110 92 .912542 94.5116 .3845
12/20/14 3.753425 91 .904811 94.1328 .3788
3/20/15 4.000000 90 .897056 93.7596 .3732
6/20/15 4.252055 92 .889084 93.3797 .3799
9/20/15 4.504110 92 .881015 93.0013 .3784
12/20/15 4.753425 91 .873001 92.6285 .3728
3/20/16 5.002740 91 .864934 92.2572 .3713
6/20/16 5.254795 92 .856794 91.8834 .3738
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CDS matures on June 20, 2016, with scheduled quarterly payments starting
from June 20, 2011. Column (2) gives the term of each payment, in years,
from the settlement date of March 21, 2011. This column will be used to
calculate the survival and default probabilities. Column (3) gives the actual
number of days in each quarterly period. Since payments follow the actual/
360 convention, each payment will equal the coupon of 1% times the ap-
propriate accrual days divided by 360. Column (4) gives discount factors
derived from the EUR swap curve for March 21, 2011. Column (5) gives the
cumulative survival probabilities, to each payment date based on the hazard
rate given in the first row, i.e., 1.61%. The derivation of this hazard rate
will be described presently. Given this hazard rate, however, the cumulative
survival probability is given by (19.13). Hence, for the payment on June 20,
2012, CS(1.252055) = e−1.61091%×1.252055, which is 98.0033%. Finally, col-
umn (6) gives the probability of a default over each of the payment periods.
The probability of a default from settlement to June 20, 2011, is .4008%;
from June 20, 2011, to September 20, 2011, is .4036%; etc. These are
derived simply by subtracting sequential cumulative survival probabilities:
the probability of a default from June 20, 2011, to September 20, 2011,
is the probability of surviving to June 20, 2011, minus the probability of
surviving to September 20, 2011. Mathematically, 99.5992% − 99.1956%
is .4036%.

The hazard rate given in Table 19.7 is calculated so that the value
of the fee leg of the CDS equals the value of the contingent payment leg.
More specifically, with T = 5.25, C(T) = .9533%, R = 40%, and discount
factors as given in the table, the hazard rate is found such that the resulting
set of CS(ti ) set VFee in (19.14) equal to VCont in (19.15), except that, in this
applied example, actual accruals are used instead of the constant 1

4 accrual
term in those equations. At the resulting hazard rate of 1.61091%, the value
of each leg of the CDS is worth 4.5464% of face amount. Note that almost
all of the value of the fee leg in (19.14) comes from the first term of the
right-hand side of that equation. The value of the coupon payments given
survival is 4.5372% while the value of accrued coupon payments in the
event of default is only .0092%.

Once the CDS-implied hazard rate has been found, the up-front pay-
ment can be solved using equation (19.16). The set of CS(ti ) are taken from
Table 19.7 and C = 1%. For €10 million notional of CDS, the up-front
payment is €10 million times the result of (19.16), which turns out to
be −€22,272. Since the market quoted spread of .9533% is below the
standardized coupon of 1%, the buyer receives €22,272 for paying this
1% annually in exchange for contingent default benefits. Finally, upon
entering into this CDS the buyer has to pay one day of accrued inter-
est since the first accrual period of this standardized contract began on
March 20, 2011. The amount of accrued interest is 1

360 × 1% × €10 million
or €278.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c19 JWBT539-Tuckman July 27, 2011 0:4 Printer: Courier Westford

Corporate Bonds and Credit Default Swaps 553

CDS-Bond Basis

A trader or investor wanting to buy exposure to a particular credit can do
so by purchasing bonds issued by that credit or by selling protection on
the corresponding reference entity. Similarly, a trader or investor wanting
to sell exposure to a particular credit can short bonds or buy protection.
The natural question to ask, therefore, is whether exposure to this partic-
ular credit is cheaper in the CDS market than in the bond market or vice
versa. The generic name for the spread between the cost of protection in the
CDS market and some equivalent measure implied from bond prices is the
CDS-bond basis.

The framework of the previous section provides one methodology for
computing a CDS-bond basis. Given the price of a bond, compute the con-
stant hazard rate such that the discounted expected value of its cash flows
equals its price. Then, with this bond-implied hazard rate, compute a CDS-
equivalent bond spread, denoted C

Bond, such that a CDS with that hazard
rate would be fair. Mathematically, from equations (19.14) and (19.15),
find C

Bond such that

C
Bond

4
= (1 − R)

∑4T
i=1 [CS(ti−1) − CS(ti )] d (ti )∑4T

i=1 CS(ti )d (ti ) + 1
2

∑4T
i=1 [CS(ti−1) − CS(ti )] d (ti )

(19.17)

As an illustration of this measure of basis, consider the Deutsche Bank
floater that pays Euribor plus 50 basis points quarterly, matures on April 11,
2018, and, as of March 21, 2011, sold at a full price of 100.8335. Taking
the floater’s promised cash flows as EUR forward swap rates plus 50 basis
points and proceeding along the lines of Table 19.7 implies a hazard rate
of .62%, which is significantly below the 1.61% hazard rate implied by
the CDS market at that time. To continue, however, use the bond-implied
hazard rate of .62% and a recovery rate of 40% to solve that C

Bond in (19.17)
is 36.5 basis points. Comparing this CDS-equivalent bond spread with the
quoted CDS spread of 95.33 basis points indicates that, in this case, the bond
is rich to the CDS: the implied cost of protection from the price of the bond
is below the cost of protection in the CDS market. Hence, relying on this
metric alone, an investor wanting to buy exposure to Deutsche Bank credit
would sell protection in CDS while an investor wanting to sell exposure to
Deutsche Bank would short the bond.

Another measure of CDS-bond basis that has been very popular, al-
though more so before the standardization of CDS contracts, is the dif-
ference between the CDS quoted coupon (or the CDS coupon itself if the
up-front payment is zero) and the par asset swap spread. For the purposes
of explaining the appeal of this measure, assume that counterparties can
still enter into a CDS at a market premium such that the up-front pay-
ment is zero. In that case, so long as a bond does not default, writing CDS
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protection earns the CDS premium while a par asset swap, inclusive of fi-
nancing, earns the par asset swap spread plus LIBOR minus the cost of
financing. Neglecting the LIBOR-financing spread as small, though this is
not always the case (see Chapter 15), one might conclude that the CDS pre-
mium should approximately equal the par asset swap spread and, therefore,
that the difference between the CDS premium and the par asset swap spread
is a good measure of relative value. In fact, some practitioners believe that
there is an arbitrage relationship linking the two quantities. As it turns out,
this is not usefully true. (See Appendix B in this chapter) And in any case,
since the standardization of CDS contracts, it is no longer even practical to
trade a CDS with no up-front payment.

The main difficulty with any of the commonly used measures of the
CDS-bond basis, including the two introduced in this subsection, is that
they do not account for a fundamental difference between a CDS position
and a bond position. A CDS position does not require financing while a
bond position does. For discussion, fix a horizon of five years, a typical
CDS maturity. Maintaining a long bond position over that horizon requires
committing the purchase price of the bond for five years or borrowing the
purchase price through repo for five years. The former would result in a
very high implicit or explicit cost of capital while the latter, even if it were
possible to find a willing counterparty, would result in a very high borrowing
rate. Basically, lenders are generally unwilling to commit funds for a long
term when they might need those funds back in the interim, e.g., in times of
financial stress. Similarly, maintaining a short bond position over a five-year
horizon would require finding a counterparty willing to lend that bond long
term and face the risk that the bond would be needed, perhaps to raise funds,
at some interim time. This all implies that bonds can trade cheap to CDS
(negative basis) when funding is expensive and rich to CDS (positive basis)
when financing shorts is expensive. In fact, bonds did trade very cheap to
CDS during the crisis of 2007–2009, when funding was particularly difficult,
with the investment grade CDS-bond basis falling from near zero to negative
250 basis points.

Another difficulty in comparing CDS quoted coupons with bond spreads
is the CDS delivery option. Because buyers of protection have this op-
tion, they are willing to pay higher quoted coupons than would other-
wise be the case. A naive comparison of CDS and bond spreads, therefore,
would erroneously conclude that exposure is cheaper through CDS than
through bonds.

Example of a Negat ive Basis Trade

This subsection gives an example of a class of trades that have enjoyed
popularity (when they are making money) and notoriety (when they are
losing money), namely negative basis trades, which simultaneously buy a
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bond and CDS protection. The flavor of the trade considered here is to
profit from cash flows that are immunized to the event of default. Another
flavor, not illustrated here, is to buy protection on more or less than the face
amount of the bonds purchased so as to bet on the default outcome or on
the recovery rate.

The KB Home 5 3
4 s of February 1, 2014, was introduced earlier in this

chapter and reported to trade at a par asset swap spread of 9.23% as of
November 10, 2008. On the same date, the full price of the bond was 68.66
and an investor could purchase CDS protection for 664 basis points and no
up-front payment. The 259 basis-point difference between the par asset swap
spread of 9.23% and the CDS spread of 664 basis points attracted interest
in buying the bond at its relatively high asset swap spread and buying CDS
protection at its relatively low cost, i.e., this spread attracted interest in the
negative basis trade.

Table 19.8 shows the cash flows from 100 notional of this trade as-
suming a repo haircut of 50%, a repo rate of 2%, a capital cost rate of
K, and a recovery rate R. The bond costs 68.66 and then makes coupon
payments. If it matures it makes a final payment of 100 while, if it defaults,
it is worth 100R. Half of the purchase price is funded in repo and half with
capital, each half at its own running cost. Finally, buying protection through
the CDS costs a running 664 basis points, which, should the bond default,
results in a payment of 100 (1 − R).

According to Table 19.8, the trade pays 31.34 either at maturity or when
the bond defaults. The annual interim cash flow totals I(K) ≡ −1.5766 −
34.33K. To simplify the illustration, assume that, conditional on no default,
one quarter of the annual payment is made on February 1, 2009, and is
then made annually until maturity on February 1, 2014. Hence, the worst
outcome of the trade is for the bond not to default: the terminal payment is
31.34 whether or not there is a default but the negative, interim cash flows
have to be made only until default.

To determine whether the trade is worthwhile, the investor might as-
sume the worst case of no default and that interim payments can be financed

TABLE 19.8 KBH 5 3
4 s of February 1, 2014, Negative Basis Trade as of

November 10, 2008

Maturity:
Position Initiation Interim No Default Default

Bond −68.66 5.75 100 100R
Repo 34.33 −34.33 × 2% = −.6866 −34.33 −34.33
Capital 34.33 −34.33K −34.33 −34.33
CDS 0 −6.64 0 100 (1 − R)

Total 0 −1.5766 − 34.33K 31.34 31.34
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to maturity at the same cost of capital K. In that case, the breakeven cost of
capital such that the trade is profitable is such that

31.34 + 1
4

I (K) (1 + K)5 + I (K)
4∑

j=0

(1 + K) j = 0 (19.18)

Solving (19.18), the breakeven cost of capital is about 9.6%. Investors
with a cost of capital below that can be sure of profiting from the negative
basis, i.e., the cheapness of the bond relative to the cost of protection,
provided that the trade can indeed be held until default or maturity. In
particular, this caveat requires that both the repo and capital financing be
maintained at the rates indicated no matter what happens to the mark-to-
market or intermediate value of the trade and no matter what happens to
the general level of interest rates. In other words, the financing of the bond
matters to these trades and to assessing the difference between bond and
CDS spreads.

The DV01 or Durat ion of a Bond with Credit R isk

The framework of this section can be used to account for credit risk when
computing the interest rate risk of a bond. Yield-based DV01 and duration
assume that all of a bond’s cash flows will be paid on schedule. For a bond
with a significant probability of default, however, there may very well be
an early payment of whatever can be recovered from promised principal.
Whatever this might means for the bond’s price, it would seemingly shorten
the life of the bond and, therefore, decrease its interest rate sensitivity in a
way not captured by yield-based metrics of interest rate risk.

A more appropriate way to calculate the bond’s sensitivity to interest
rates would be to use a hazard rate, perhaps implied by CDS markets, to
compute the bond’s price both before and after a shift of the benchmark
rate curve. Along the lines of earlier subsections, the value of the bond
would be the sum of its discounted expected cash flows given no default
and its discounted expected recovery given default. More specifically, using
the notation of the rest of this section and a bond coupon rate of c paid
semiannually for T years, the bond value would be

100c
2

2T∑
i=1

CS(ti )d (ti ) + 100CS (t2T) d (t2T)

+ 100R
2T∑
i=1

[CS(ti−1) − CS(ti )] d (ti ) (19.19)
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Shifting the benchmark rate curve to obtain a new discount function, calcu-
lating a new price, and then computing a DV01 or duration would provide
a credit-risk adjusted measure of interest rate risk.

As a simple example, assume that the benchmark rate curve is flat at
4%, and consider a 10-year bond with a coupon of 6% and a price of 57.62.
This is clearly a very credit-impaired security. In any case, its yield can be
calculated to be 14% and its yield-based DV01 and duration to be .0365
and 6.34, respectively.

While a hazard rate might be available from CDS markets, it is also
reasonable to calculate a hazard rate such that, for a recovery rate of 40%,
expression (19.19) gives the bond’s market price. In the present example, this
hazard rate turns out to be 23%. Shifting the benchmark rate by one basis
point, applying (19.19) to get a shifted bond price, and then computing
sensitivities gives a DV01 of .0228 and a duration of 3.95. Hence, for
this bond, accounting for the probability that a default would result in an
early, partial payment of principal reduces duration dramatically from 6.34
to 3.95.

Index CDS

A significant part of trading in credit markets is through CDS indexes, which
are simply portfolios of CDS written on individual names. Through these
products investors can take a broad and diversified exposure to credit risk.
The two main indexes are iTraxx and CDX, which cover 125 investment
grade names domiciled in Europe and North America, respectively. The
buyer of an index receives a fee in exchange for offering protection while
the seller of an index pays a fee to purchase protection. After a credit event
with respect to one of the names in the index, the buyer of the index makes
a compensation payment and the seller receives a compensation payment.
The affected name is dropped from the index without replacement, which
reduces the notional amount of the contract.

The most popular CDS indexes are very much standardized. New CDS
indexes or index series are issued semiannually on pseudo-IMM dates with
maturities of three, five, seven, and 10 years, although the five-year maturity
is the most liquid. As an example of the issuance cycle, the protection from
the five-year iTraxx series 14 started on September 20, 2010, and ends on
December 20, 2015: it is the on-the-run series, i.e., the most recently issued,
from September 20, 2010, to March 20, 2011, when a new series is issued.
Therefore, the actual maturity of a five-year index is 63 months at issuance
and 57 months when a newer series becomes the on-the-run. The indexes
are also standardized with respect to coupon, like single-name CDS, along
the lines of the first subsection in this section.
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F IGURE 19.6 Cost of Protection of Five-Year CDS Indexes

Figure 19.6 shows the cost of protection for the on-the-run, five-year
iTraxx Main and CDX IG indexes, two investment grade indexes, and for
the iTraxx Crossover (XO) and CDX Crossover (XO) indexes, two indexes
of lower quality. The unfolding of the crisis of 2007–2009 is clearly evident
from the quoted cost of protection, with the spikes in the below-investment
grade indexes particularly dramatic.

The 2007–2009 crisis also saw the inversion of the term structure of
credit spreads. Figure 19.7 shows the difference between the iTraxx Main
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costs of 10-year and five-year protection, and of five-year and three-year
protection, along with the absolute five-year cost of protection. The term
structure of credits became downwardly sloping or inverted shortly after the
turmoil of September 2008 and stayed inverted well into 2009.

APPENDIX A: CUMULATIVE DEFAULT RATES

Proposition: If the default rate is constant at λ, then the cumulative default
probability to time t, CD (t), is 1 − e−λt.

Proof: Let V (t) be the survival probability to time t, i.e., the probability of
no default to time t. Then, the probability of no default to time t + �t, i.e.,
V (t + �t), is the probability that there is no default to time t and that there
is no default from then to time t + �t. Mathematically,

V (t + �t) = V (t) × (1 − λ�t) (19.20)

Rearranging terms,

λV (t) = −V (t + �t) − V (t)
�t

(19.21)

The limit of the right-hand side as �t approaches zero is the derivative
of V (t), denoted V′ (t). Hence,

λV (t) = −V′ (t) (19.22)

The solution to (19.22) is V (t) = e−λt. The cumulative default proba-
bility to time t is 1 − V (t) or 1 − e−λt, as was to be proved.

APPENDIX B: CDS-BOND BASIS AS THE
DIFFERENCE BETWEEN THE CDS SPREAD
AND THE PAR ASSET SWAP SPREAD

The theoretical justification for concluding that the CDS spread should ap-
proximately equal the par asset swap spread is not strong. This appendix
reviews the arbitrage arguments linking the two quantities. By showing how
many strong assumptions have to be used to demonstrate the equivalence of
the two quantities, this appendix effectively shows that the quantities need
not be equivalent. In addition, as mentioned in the text, since the standard-
ization of CDS coupons, trading the CDS spread, i.e., a coupon with no
up-front payment, is no longer practical.
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Consider the following trades:

� Buy a bond and pay fixed on a swap, as in the par asset swap trade of
the asset swap section earlier in this chapter. So long as the bond does
not default, this package earns LIBOR, L, plus sPAR quarterly and 100 at
maturity. If the bond does default, the asset swap subsection showed
that the position is worth 100R + ÑPV, where R is the recovery rate
and ÑPV is the NPV of the swap at the time of default. Recall too that
ÑPV is 100 − P just after the initiation of the asset swap trade and
zero at its termination.

� Raise 100 as required in the par asset swap trade of the asset swap
subsection. Instead of raising all 100 in short-term repo, however, do
the following:
� Sell repo to borrow 100 (1 − h) for a term equal to the remaining

maturity of the bond at a fixed spread of ρ∗ over LIBOR. The quantity
h represents the haircut applied to repo borrowing. (See Chapter 12.)

� Raise or use 100h of capital at a fixed spread k over LIBOR.
� Buy protection on 100 face amount of this particular bond though CDS

at a spread of sCDS (with no up-front payment).

Table 19.9 shows the net results of these trades. The total cash flows
are zero at initiation and at maturity in the case of no default. The payoff
in the case of default, however, depends on the NPV of the interest rate
swap at that time. The discussion will now make the sequential assump-
tions necessary to draw the conclusion that the CDS spread equals the asset
swap spread.

1. To make the arbitrage argument, the payoff in case of default has to
equal zero. But this cannot be true since ÑPV trends from 100 − P to
zero over time, fluctuating with interest rates. Neglecting this payoff
somehow, perhaps by considering only par bonds and positing small
changes in rates, the total value of the trades in Table 19.9 is zero at

TABLE 19.9 Arbitrage Pricing of CDS Spread

Maturity:
Position Initiation Interim No Default Default

Floater −100 100
(
L + sPAR

)
100 100R + ÑPV

Repo 100 (1−h) −100 (1 − h) (L + ρ∗) −100 (1 − h) −100 (1 − h)
Capital 100h −100h (L + k) −100h −100h
CDS 0 −100sCDS 0 100 (1 − R)
Total 0 100

(
sPAR − [hk + (1−h) ρ∗]−sCDS

)
0 ÑPV
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initiation, at maturity, and in the case of default. Therefore, by arbitrage,
the sum of the interim cash flows must be zero as well. This leads to the
following expression for the CDS-bond basis:

sCDS − sPAR = − [hk + (1 − h) ρ∗] (19.23)

In words, equation (19.23) says that the CDS-bond basis is the negative
of the weighted average cost of financing over LIBOR.

2. Add the unlikely assumptions that the asset swap position can be fi-
nanced fully in repo, i.e., h = 0, and that a proxy for the term repo
spread, ρ∗, is simply the current spread between the short-term repo
rate r and LIBOR, i.e., ρ∗ = r − L. Substituting these values of h and ρ∗

into (19.23) gives another expression for the basis:

sCDS − sPAR = L − r (19.24)

In words, equation (19.24) says that the basis is the LIBOR-repo spread.
In fact, this special case motivates some practitioners to define the basis not
as the difference between the CDS and par asset swap spreads, but as that
difference minus the LIBOR-repo spread.

3. Finallly, add the assumption that the bond finances at LIBOR, i.e.,
r = L. Substituting that condition into (19.24),

sCDS − sPAR = 0 (19.25)
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CHAPTER 20
Mortgages and

Mortgage-Backed Securities

T he Overview introduced and highlighted the importance and size of the
mortgage market in the United States. This chapter describes mortgage

loans and mortgage-backed securities (MBS), presents the most popular
methods used for valuation and hedging, and illustrates how prices behave
as a function of the relevant variables.

MORTGAGE LOANS

Mortgage loans come in many different varieties. They can carry fixed
or variable rates of interest and they can be extended for residential or
commercial purposes. This chapter will focus almost exclusively on fixed
rate residential mortgages. Residential mortgages typically mature in 15 or
30 years and constitute 80% of the total principal of securitized mortgages
in the United States.

Given the importance of the securitization process, which will be dis-
cussed ahead, residential loans are typically classified by how they might be
subsequently securitized. Agency or conforming loans are eligible to be secu-
ritized by such entities as Federal National Mortgage Association (FNMA),
Federal Home Loan Mortgage Corporation (FHLMC), or Government Na-
tional Mortgage Association (GNMA). The exact criteria vary by program,
but these loans are relatively creditworthy1 and limited in principal amount.

Non-agency or non-conforming loans have to be part of private-label
securitizations. The relevant loan types include jumbos, which are larger in
notional than conforming loans but otherwise similar; Alt-A, which deviate
from conforming loans in one requirement; and subprime, which deviate

1Typical criteria would be a Fair Isaac Corporation (FICO) score greater than 660,
a loan-to-value ratio of less than 80%, and full documentation of three years of
income. FICO scores and loan-to-value ratios are described in subsequent footnotes.

563
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from conforming loans in several dimensions. About 80% of subprime loans
are adjustable-rate mortgages (ARMs).

Given the role of subprime mortgages at the start of the 2007–2009
financial crisis, some further comment is in order. Borrowing and lending
in the subprime market revolved around the following strategy. A relatively
low-credit borrower would take out an ARM that carried a particularly
low initial rate, called a teaser, which would reset higher after two or three
years. In that time, however, should the credit of the borrower improve or
should housing prices increase, the borrower would be able to pay off that
first mortgage and borrow through a subsequent mortgage at a fixed rate
that would have been unattainable at the start. This strategy worked well
until the peak of housing prices in 2006. In fact, most subprime mortgage
originations occurred between 2004 and 2006. In any case, the subsequent
decline in housing prices and the resetting of ARMs to higher rates led to a
significant number of defaults: by May 2008 the delinquency rate for ARMs
reached 25%. The resulting foreclosures put further downward pressure
on housing prices. By September 2008, the average home price had declined
20% from its 2006 peak. By September 2009, about 14.4% of all U.S. mort-
gages were either delinquent or in foreclosure, and, in 2009–2010, between
4% and 5% of the total number of mortgages ended in repossessions. Fi-
nally, by September 2010, principal balance exceeded home price for 23%
of mortgages outstanding, with the percentages in the worst-performing
real estate markets even worse (e.g., California at 32.8% and Florida
at 46.4%).2

F ixed Rate Mortgage Payments

The most typical mortgage loan is a fixed rate, level payment mortgage. A
homeowner might borrow $100,000 from a bank at 4% and agree to make
payments of $477.42 every month for 30 years. The mortgage rate and the
monthly payment are related by the following equation:

$477.42
360∑
n=1

1(
1 + .04

12

)n = $100,000 (20.1)

In words, the mortgage loan is fair in the sense that the present value of the
monthly mortgage payments, discounted at the monthly compounded mort-
gage rate, equals the original amount borrowed. In general, for a monthly

2Source: Wells Fargo.
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payment X on a T-year mortgage with a mortgage rate y and an original
principal amount or loan balance of B (0),

X
12T∑
n=1

1(
1 + y

12

)n = B (0)

X
12
y

[
1 − 1(

1 + y
12

)12T

]
= B (0) (20.2)

which can be solved for X given y directly or y given X numerically as
needed. Note that the second line of (20.2) uses the summation formula in
Appendix D in Chapter 2.

The fixed monthly payment is often divided into its interest and principal
components, a division interesting in its own right as well as for tax purposes;
mortgage interest payments are deductible from income tax while principal
payments are not. Letting B (n) be the principal amount outstanding after
the mortgage payment due on date n, the interest component on the payment
on date n + 1 is

B (n) × y
12

(20.3)

In words, the monthly interest payment over a particular period equals the
mortgage rate times the principal outstanding at the beginning of that period.
The principal component of the monthly payment is the remainder, that is,

X − B (n) × y
12

(20.4)

In the example, the original balance is $100,000. At the end of the first
month, interest at 4% is due on this balance, which comes to $100,000 ×
.04
12 or $333.33. The rest of the monthly payment, $477.42 − $333.33 or
$144.08, is payment of principal. This $144.08 principal payment reduces
the outstanding balance from the original $100,000 to $100,000 − $144.08
or $99,855.92 at the end of the first month. Then, the interest payment due at
the end of the second month is based on the principal amount outstanding
at the end of the first month, etc. Continuing in this way produces an
amortization table, the first few rows of which are given in Table 20.1.

Figure 20.1 graphs the interest and principal components from the full
amortization table of this mortgage. The height of each bar is the full
monthly payment of $477.42, the darkly shaded height is the interest com-
ponent, and the lightly shaded height is the principal component. Early
payments are composed mostly of interest while later payments are com-
posed mostly of principal. This is explained by the phrase “interest lives off
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TABLE 20.1 First Rows of an Amortization Table, in
Dollars, of a 100,000 Dollar 4% 30-Year Mortgage

Payment Interest Principal Ending
Month Payment Payment Balance

100,000.00
1 333.33 144.08 99,855.92
2 332.85 144.56 99,711.36
3 332.37 145.04 99,566.31
4 331.89 145.53 99,420.78
5 331.40 146.01 99,274.77

principal.” Interest at any time is due only on the then outstanding principal
amount. As principal is paid off, the amount of interest necessarily declines.

While the outstanding balance of a mortgage on any date can be com-
puted through an amortization table, there is an instructive shortcut. Dis-
counting using the mortgage rate at origination, the present value of the
remaining payments equals the principal outstanding. This is a fair pricing
condition under the assumptions that the term structure is flat and that
interest rates have not changed since the origination of the mortgage.

To illustrate this shortcut in this example, after 5 years or 60 monthly
payments there remain 300 payments. The present value of these payments
at the mortgage rate of 4% is

$477.42
300∑
n=1

1(
1 + .04

12

)n = $477.42
12
.04

[
1 − 1(

1 + .04
12

)300

]

= $90,448 (20.5)
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F IGURE 20.1 Amortization of a $100,000 4% 30-Year Mortgage
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Hence, the scheduled principal amount outstanding after five years is
also $90,448.

This section describes the market convention of calculating the mortgage
payment from a single mortgage rate or vice versa. This in no way contradicts
the fact that the market values mortgages using an appropriate term structure
of rates and spreads.

If rates or spreads rise after origination, the present value of the remain-
ing mortgage payments will be worth less than the outstanding principal
amount while, if rates fall, this present value will exceed the outstanding
principal amount. The value of a mortgage, however, is not simply the
present value of its payments because of the borrower’s prepayment option,
which is introduced in the next subsection.

The Prepayment Opt ion

Mortgage borrowers have a prepayment option, that is, the option to pay the
lender the outstanding principal at any time and be freed of the obligation
to make further payments. In the example of the previous subsection, the
mortgage balance at the end of five years is $90,448. At that time, therefore,
the borrower can pay the lender this balance and no longer have to make
monthly payments.

The prepayment option is valuable when mortgage rates have fallen.
In that case, as mentioned previously, the present value of the remaining
monthly payments exceeds the principal outstanding. Therefore, the bor-
rower gains in present value from paying the principal outstanding in ex-
change for not having to make further payments. When rates have risen,
however, the present value of the remaining payments is less than the princi-
pal outstanding and prepayment would result in a loss of present value. By
this logic, the prepayment option is an American call option on an otherwise
identical, (fictional) nonprepayable mortgage. The strike of the option is the
principal amount outstanding and, therefore, changes after every payment.

When pricing the embedded options in bonds issued by government
agencies or corporations (see Chapter 18), it is reasonable to assume that
a relatively efficient call policy will prevail. In terms of a term structure
model, an efficient call policy means that an issuer will exercise a call option
if and only if the value of immediately exercising the option exceeds the
value of holding the option. If the mortgage borrowers faced as simple an
optimization problem, so that their prepayments were as easily predictable,
mortgages could be valued along the lines of Part Three of this book. How-
ever, prepayments of mortgages turn out to be much more difficult to model,
which is discussed later in this chapter.

While the prepayment option refers to the choice borrowers can make
to return outstanding principal, the term prepayment refers to any return of
principal above the amount scheduled to be returned by the amortization
table. When a mortgage borrower sells a property, for example, the principal
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becomes due no matter what the level of interest rates. Hence, to value
mortgages, prepayment models have to consider all forms of prepayments.

MORTGAGE-BACKED SECURIT IES

Until the 1970s banks made mortgage loans and held them until maturity,
collecting principal and interest payments until the mortgages were repaid.
The primary market was the only mortgage market. During the 1970s, the
securitization of mortgages began. The growth of this secondary market
substantially changed the mortgage business. Banks that might have had to
restrict mortgage lending, either because of limited capital or risk appetite,
could now continue to make mortgage loans since these loans could be
quickly and efficiently sold. At the same time, investors gained a new security
type through which to lend their surplus funds. Of course, one of the policy
questions raised by the 2007–2009 financial crisis was whether the mortgage
securitization process, for any of several reasons, had created too much
systemic risk.

Issuers of MBS gather mortgage loans into pools and then sell claims on
those pools to investors. In the simplest structure, a mortgage pass-through,
the cash flows from the underlying mortgages, that is, interest, scheduled
principal, and prepayments, are passed from the borrowers to the investors
with some short processing delay. Mortgage servicers manage the flow of
cash from borrowers to investors in exchange for a fee taken from those cash
flows. Mortgage guarantors guarantee investors the payment of interest and
principal against borrower defaults, also in exchange for a fee. When a
borrower does default, the guarantor compensates the pool with a lump-
sum payment and then, through the servicer, pursues the borrower and the
underlying property to recover as much of the amount paid as possible.
By the way, in comparison with U.S. lenders, European lenders have easier
recourse to borrower assets that are not part of the mortgaged property.

The Overview reported that U.S. mortgage debt was a little over $14
trillion in 2010. Of this total, $7.5 trillion had been securitized. This secu-
ritized amount is further subdivided into $5.4 trillion of agency securities,
i.e., securities guaranteed or issued by such entities as GNMA, FNMA,
and FHLMC, and the remainder private-label securities issued by private
financial institutions. These amounts outstanding are misleading, however,
with respect to new issuance. Since the 2007–2009 crisis to the time of this
writing, agency securities comprised almost all of new MBS issuance.

Mortgage Pools

Loans that are collected into a pool are usually similar with respect to
loan type, mortgage rate, and date of origination. Table 20.2 gives some
summary statistics, both at origination and as of December 2010, of a pool
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TABLE 20.2 Summary Statistics for FNMA Pool FG A47828,
3.5% 2004 Vintage at Origination and as of December 2010

Original Dec 2010

Number of Loans 91 69
Principal Amount $13,635,953 $9,326,596
WAC 3.940% 3.928%
WAM (months) 335 271

Source: Bloomberg.

of 30-year loans issued by FNMA in January 2005 of loans originated in
2004, i.e., of the 2004 “vintage.” The coupon of the pool, that is, the rate
paid to investors, is 3.5%. According to the table, the pool was issued with
91 loans and a total principal amount of about $13.6 million. The table
next reports two weighted averages, where the weighting is based on loan
size. The weighted-average coupon or WAC is the weighted average of the
mortgage rates of the loans and was 3.94% at issuance. Note that, as a
weighted average of loan rates, the term WAC somewhat confusingly uses
the word “coupon.” It is best to think of there being only one “coupon”
rate, namely the interest rate on the pool as a whole that is passed on to
investors. In any case, returning to the pool of Table 20.2, note that the 3.5%
coupon is less than the 3.94% original WAC: the difference between what
the borrowers pay and what the investors receive is paid to the servicer and
to the guarantor. Finally, the weighted-average maturity (WAM) of the loans
was 335 months. This original WAM on a pool of “30-year” loans means
that some of the loans were slightly seasoned (i.e., had been outstanding for
some amount of time) when the pool was issued.

The summary statistics of the FNMA 3.5% 2004 pool as of December
2010 show that a significant fraction of the pool has paid down. The pool’s
factor is the ratio of the current to the original principal amount outstanding,
which in this case is about 68%. A good deal of this is due to prepayments
rather than scheduled amortization. First, although the principal amount
of each loan is not provided here, only 69 of the original 91 loans are
still in the pool. Second, for an order of magnitude calculation, equation
(20.5) calculated that the scheduled principal outstanding of a 4% 30-year
loan after five years is a little over 90% of the original principal amount.
The WAC here is slightly less than 4% and the pool is not exactly five
years old, but the factor of 68% is significantly below 90%. Note that the
WAC of the pool has fallen very slightly since origination, indicating that
prepaying loans had slightly higher rates than loans remaining in the pool.
Finally, the WAM has fallen by 64 months or a bit over five years, indicative
mostly of the loans aging five years from issuance at the end of 2004 to
December 2010.
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TABLE 20.3 Agency Pool Issuance, in Billions of Dollars

2010 Full Year

Dec∗ Nov Oct Sep Aug Jul 2010∗ 2009 2008

Total 72 146 143 141 111 107 1,312 1,725 1,153

Issuer

FHLMC 21.6 38.6 37.4 36.4 28.4 26.6 351 462 341
FNMA 42.0 73.5 69.8 70.6 48.0 42.9 586 806 541
GNMA1 8.0 14.9 16.0 13.4 12.2 13.4 156 288 146
GNMA2 .6 19.3 19.5 20.3 22.0 24.5 219 169 125

Loan Type

30-Year 56.1 103 100 103 79.2 79.6 973 1,449 951
15-Year 11.9 25.3 24.7 21.7 15.3 13.4 187 181 93
ARM 1.6 7.1 6.8 4.9 6.8 8.0 67 33 78
Other 2.5 10.9 11.2 10.9 9.4 6.4 85 62 32

Coupon

<4% 8.4 12.4 11.0 4.6 1.2 .5 40 3 0
4%– 35.6 63.1 59.6 51.0 16.0 7.8 250 211 0
4.5%– 9.2 20.9 24.0 39.7 45.7 46.0 428 715 18
5%– 2.2 5.1 4.5 6.5 14.6 23.5 233 375 201
>5% .7 1.3 1.0 1.4 1.8 1.7 23 145 731

∗To Dec 10.
Source: Bloomberg.

While coupon and age are the most important characteristics of loans
and pools with respect to pricing, other characteristics are important as well,
as will be discussed further in the section on modeling prepayments. As a
result, issuers of MBS provide pool summary statistics on characteristics
other than those listed in Table 20.2. Examples include FICO scores,3 loan-
to-value (LTV) ratios,4 and the geographical distribution of the loans. For
the FNMA 3.5% 2004 pool, it happens that 100% of the loans are in
New Jersey.

Table 20.3 shows the issuance volumes of agency pools for the full years
2008, 2009, and 2010, along with monthly issuance for the second half of

3FICO scores, a product of Fair Isaac Corporation, measure a borrower’s ability to
pay based on credit history. The scores range from 300 to 850, with a score above
650 considered creditworthy by many lenders.
4The LTV ratio is the principal amount of the loan divided by the value of the
mortgaged property.
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2010. These volumes are also broken down by issuer, loan type, and coupon.
Total issuance fell dramatically in 2010 relative to 2009, reflecting lower
volumes of real estate transactions. Furthermore, the increase from 2008 to
2009 is in part due to the shift from private label to agency issuance men-
tioned earlier. The issuer breakdown reveals that FNMA is the largest issuer,
and the breakdown by loan type reveals the dominance of the 30-year mort-
gage. Mortgage loans, and therefore pools, are issued at prevailing market
rates, that is the rates that make them sell for approximately par. Thus, the
shift of dominant volume from the >5% bucket in 2008, to the 4.5%–5%
bucket in 2009, to the 4% bucket in September 2010, simply reflects the fall
in mortgage rates, and interest rates generally, over this time period.

Calculat ing Prepayment Rates for Pools

In any given month, some loans in a pool will prepay completely, some
will not prepay at all, and some—usually a small number—may curtail,
i.e., partially prepay. For the purposes of valuation it is conventional to
measure the principal amount prepaying as a percentage of the total principal
outstanding. The single monthly mortality rate at month n, denoted SMMn,
is the percentage of principal outstanding at the beginning of month n that is
prepaid during month n, where prepayments do not include scheduled, i.e.,
amortizing, principal amounts. The SMM is often annualized to a constant
prepayment rate or conditional prepayment rate (CPR). A pool that prepays
at a constant rate equal to SMMn has 1 − SMMn of the principal remaining
at the end of one month, (1 − SMMn)12 remaining at the end of 12 months,
and, therefore, 1 − (1 − SMMn)12 principal prepaying over those 12 months.
Hence, the annualized CPR is related to SMM as follows:

CPRn = 1 − (1 − SMMn)12 (20.6)

For example, if a pool prepaid .5% of its principal above its amortizing
principal in a given month, it would be prepaying that month at a CPR of
about 5.8%. Note that a pool has a CPR every month even though CPR is
an annualized rate.

Speci f ic Pools and TBAs

Agency mortgage pools trade in two forms: specified pools and TBAs. The
latter is an acronym for To Be Announced and only the acronym is used by
practitioners.

In the specified pools market, buyers and sellers agree to trade a partic-
ular pool of loans. Consequently, the price of a trade reflects the characteris-
tics of the particular pool. For example, the next section of this chapter will
argue that pools with relatively high loan balances are worth less to investors
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TABLE 20.4 Bid Prices for Selected FNMA 30-Year TBAs as of
December 10, 2010. Fractional prices are in 32nds; a “+” is half a
32nd or a 64th

4% 4.5% 5%

Jan 98 − 30+ 101 − 31+ 104 − 15+
Feb 98 − 21 101 − 22 104 − 09
Mar 98 − 10+ 101 − 12 104 − 01

Source: Bloomberg.

because these pools make relatively better use of their prepayment options.
Therefore, in the specified pools market, relatively high loan-balance pools
will trade for relatively low prices.

Much more liquid, however, is the TBA market, which is a forward
market with a delivery option. Table 20.4 gives bid prices for selected FNMA
30-year TBAs as of December 10, 2010. Consider a trade on that date of
$100 million face amount of the FNMA 5% 30-year TBA for February
delivery at a price of 104-09. Come February the seller chooses a 30-year
5% FNMA pool and delivers $100 million face amount of that pool to
the buyer for 104-09. Just as in the case of the delivery option in note and
bond futures (see Chapter 14), the TBA seller will pick the cheapest-to-
deliver (CTD) pool, that is, the pool that is worth the least subject to the
issuer, maturity, and coupon requirements. For example, following up on the
remark in the previous paragraph that pools with high loan balances are less
valuable than other pools, the TBA seller might wind up delivering a pool
with particularly high loan balances. In any case, ex-ante, TBA prices will
reflect the fact that the CTD pools will be delivered. In fact, specified pools
trade at a reference TBA price plus a pay-up that depends on the specified
pools’ characteristics versus those of the pools likely to be delivered.

As the TBA market is so liquid, especially the front contracts that trade
near par, there is particular focus in the broader mortgage market on the
contract that trades closest to, but below par. This contract is called the cur-
rent contract and its coupon the current coupon. In Table 20.4, since
the prices of the 4% and 4.5% January TBAs bracket par, 4% would be the
current coupon. Furthermore, the term current mortgage rate is sometimes
used to refer to the interpolated coupon at which a front TBA would sell for
par.5 Using the prices in Table 20.4 for this purpose, the current mortgage
rate would be about 4.17%.

While the TBA market is much more liquid than the specified pools
market, the latter has grown rapidly in recent years. First, episodes in which

5The term “current mortgage rate” is also used to refer to the rate borrowers pay on
newly originated mortgages.
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the delivery option was particularly valuable have made traders and in-
vestors increasingly aware of the risks posed by the delivery option. Second,
agencies have been supplying increasing amounts of granular data about the
characteristics of loans in pools, which allows for more effective specified
pools trading.

Dol lar Rol ls

Consider an investor who has just purchased a mortgage pool but wants to
finance that purchase over the next month. One alternative is an MBS repo.
Along the lines of Chapter 12, the investor could sell the repo, i.e., sell the
pool today while simultaneously agreeing to repurchase it after a month.
This trade has the same economics as a secured loan: the investor effectively
borrows cash today by posting the pool as collateral, and, upon paying back
the loan with interest after a month, retrieves the collateral.

An alternative for financing mortgages is the dollar roll. The buyer of
the roll sells a TBA for one settlement month and buys the same TBA for the
following settlement month. For example, the investor who just purchased
a 30-year 4% FNMA pool might sell the FNMA 30-year 4% January TBA
and buy the FNMA 30-year 4% February TBA. Delivering the pool just
purchased through the sale of the January TBA, which raises cash, and
purchasing a pool through the February TBA, which returns cash, is very
close to the economics of a secured loan. There are, however, two important
differences between dollar roll and repo financing.

First, the buyer of the roll may not get back in the later month the same
pool delivered in the earlier month. In the example, the buyer of the Jan/Feb
roll delivers a particular pool in January but will have to accept whatever
eligible pool is delivered in February. By contrast, an MBS repo seller is
always returned the same pool that was originally posted as collateral.

Second, the buyer of the roll does not receive any interest or principal
payments from the pool over the roll. In the example, the buyer of the
Jan/Feb roll, who delivers the pool in January, does not receive the January
payments of interest and principal.6 By contrast, as described in Chapter 12,
a repo seller receives any payments of interest and principal over the life of
the repo. While the prices of TBA contracts reflect the timing of payments,
so that the buyer of a roll does not, in any sense, lose a month of payments
relative to a repo seller, the risks of the two transactions are different. The
buyer of a roll does not have any exposure to prepayments over the month
being higher or lower than what had been implied by TBA prices while the
repo seller does.

6The record date for MBS is usually the last day of the month while pools delivered
through TBA settle on the 15th or 25th of the month depending on the underlying
issuer.
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Chapter 13 presented the forward drop, the difference between a spot
and forward price. The forward price is usually below the spot price because
buying a security forward sacrifices the relatively high rate of interest earned
on the security in exchange for the relatively low, short-term rate of interest
earned by investing the funds that would have gone into the spot purchase.
Put another way, the forward price is determined such that investors are
indifferent between buying a security forward and buying it spot. In an
important sense, the same reasoning applies to TBA prices and the roll: prices
of pools for later delivery tend to be lower because pools earn a higher rate of
interest than the short-term rate. Note how this rule characterizes the prices
in Table 20.4. Once again, however, the TBA delivery option complicates
the analysis. Consider the Jan/Feb roll as of January. If the delivery option
had no value, the forward price for February would be determined along the
lines of Chapter 13 and investors would be indifferent between: 1) buying
the pool and the roll, which is essentially buying a pool forward for February
delivery; and 2) buying a pool and holding it from January to February. But
if the delivery option has value, the February TBA price would be lower and
the forward drop would be larger than it would be otherwise.

In market jargon, the value of the roll is the difference in proceeds
between 1) starting with a given pool and buying the roll and 2) holding
that pool over the month. If the value of the roll is zero, as it would be if
the forward pricing methodology of Chapter 13 applied, the roll is said to
trade at breakeven. If the forward drop is larger so that the value of the roll
is positive, the roll is said to trade above carry. Given the delivery option of
TBAs, the roll would be expected to trade somewhat above carry without
necessarily implying a value opportunity.

To make the roll more concrete, consider the following example. Sup-
pose that the TBA prices of the Fannie Mae 5% for July 12 and August 12
settlements are $102.50 and $102.15, respectively. The accrued interest to
be added to each of these prices is 12 actual/360 days of a month’s worth
of a 5% coupon, i.e., 100 × (12/30) × 5%/12 or .167. Let the expected total
principal paydown, that is, scheduled principal plus prepayments, be 2% of
outstanding balance and let the appropriate short-term rate be 1%.

If an investor rolls a balance of $10 million, proceeds from selling the
July TBA are $10mm × (102.50 + .167)/100 or $10,266,700. Investing these
proceeds to August 12 at 1% earns interest of $10,266,700 × (31/360) × 1%
or $8,841. Then, purchasing the August TBA, which has experienced
a 2% principal paydown, costs $10mm × (1–2%) × (102.15 + .167)/100
or $10,027,066. The net proceeds from the role, therefore, are
$10,266,700 + $8,841 − $10,027,066 or $248,475.

If the investor does not roll, the net proceeds are the coupon plus prin-
cipal paydown, i.e., $10mm × (5%/12 + 2%) or $241,667.

In conclusion, then, the roll is trading above carry in this example, with
the value of the roll at $248,475 − $241,667 or $6,808.
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Other Products

This chapter focuses on pass-through MBS, but a few other products will
also be mentioned.

The properties of pass-through securities do not suit the needs of all
investors. In an effort to broaden the appeal of MBS, practitioners have
carved up pools of mortgages into different derivatives. One example is
planned amortization class (PAC) bonds, which are a type of collateralized
mortgage obligation (CMO). A PAC bond is created by setting some fixed
prepayment schedule and promising that the PAC bond will receive interest
and principal according to that schedule so long as the actual prepayments
from the underlying mortgage pools are not exceptionally large or small.
In order to fulfill this promise, other derivative securities, called companion
or support bonds, absorb the prepayment uncertainty. If prepayments are
relatively high and PAC bonds receive their promised principal payments,
then the companion bonds must receive relatively large prepayments. Al-
ternatively, if prepayments are relatively low and PAC bonds receive the
promised principal payments, then the companion bonds must receive rel-
atively few prepayments. The point of this structure is that investors who
do not like prepayment uncertainty can participate in the mortgage market
through PACs. Dealers and investors who are comfortable with modeling
prepayments and with controlling the accompanying interest rate risk can
buy the companion or support bonds.

Other popular mortgage derivatives are interest-only (IO) and principal-
only (PO) strips. The cash flows from a pool of mortgages are divided such
that the IO gets all the interest payments while the PO gets all the principal
payments. The unusual price rate behavior of these mortgage derivatives is
illustrated later in this chapter.

Constant maturity mortgage (CMM) products allow investors to trade
mortgage rates directly as a convexity-free alternative to trading prices of
MBS that depend on mortgage rates. A CMM index is constructed from 30-
year TBA prices to be the hypothetical coupon on a TBA for settlement in
30 days that trades at par. Market participants trade CMM mostly through
Forward Rate Agreements (FRAs) (see Chapter 15).

Mortgage options are calls and puts on TBAs. The most liquid options
are written on TBAs with delivery dates in the next three months.

PREPAYMENT MODEL ING

Earlier in this chapter it was noted that prepayment option is not as simply
modeled as are the contingent claims priced by the methods of Part Three.
Part of the reason for this is that some sources of prepayments are not de-
termined exclusively or even predominantly by interest rates, e.g., selling
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a home to buy a bigger or smaller one, divorce, default, and natural dis-
asters that destroy a property. Another reason is that the cost of focusing
on the prepayment problem, of figuring out the best action to take, and of
navigating the process through financial institutions can be quite large. In
any case, just because prepayments cannot be predicted by a simple opti-
mization model does not mean that they are suboptimal from the point of
view of mortgage borrowers. In any case, with the optimization problem
across borrowers so difficult to specify, prepayment modeling relies heavily
on empirical estimation of observed behavior.

A prepayment model uses loan characteristics and the economic
environment (i.e., interest rates and sometimes housing prices) to predict
prepayments. The most common practice identifies four components of pre-
payments, namely, in order of importance, refinancing, turnover, defaults,
and curtailments. These components are typically modeled separately and
their parameters estimated or calibrated so as to approximate available his-
torical data.

Ref inancing

In a refinancing a borrower pays off the principal of an existing mortgage
with the proceeds of a new one. One major motive of refinancing is to reduce
cost. A refinancing saves the borrower money if the rate on an available new
mortgage has declined sufficiently relative to the rate on the existing mort-
gage and the transaction costs of refinancing. The most likely reason for a
decline in the mortgage rate is that the general level of interest rates has de-
clined. But there are other reasons as well: the spread of mortgage rates over
benchmark rates has declined; the borrower’s credit rating has improved;
or the value of the mortgaged property has increased. Another important
motive of refinancing is to extract home equity. If a property value has in-
creased, a borrower might take out a new mortgage with a higher balance
than that on the existing mortgage so as to pay off that existing mortgage
and have cash remaining for other purposes. This is known as a cash-out
refinancing and was used extensively in the run-up to the 2007–2009 crisis.

Modeling the refinancing component of prepayments often starts with
an incentive function for a pool or group of loans in a pool and then defines
prepayments due to refinancing as a nondecreasing function of that incentive.
A simple example of an incentive might be

I = (WAC − R) × WALS × A− K (20.7)

where WAC is the weighted average coupon of the pool, R is the current
mortgage rate available to borrowers,7 WALS is the weighted-average loan

7The Primary Mortgage Market Survey Rate, published weekly by FHLMC, is often
used to represent the mortgage rate available to borrowers for conforming loans.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c20 JWBT539-Tuckman July 27, 2011 0:15 Printer: Courier Westford

Mortgages and Mortgage-Backed Securities 577

size of the pool, A is an annuity factor that gives the present value of an
annual dollar payment from the average loan (i.e., from a loan with a re-
maining maturity equal to the average maturity of the loans being modeled),
and K is an estimate of the fixed cost of refinancing. The current mortgage
rate is actually lagged by a month or two in an incentive function to reflect
lags in initiating and processing a refinancing application.

The logic of the incentive function (20.7) is that it estimates the present
value of the dollar gains to the borrower from refinancing. Refinancing
reduces the mortgage rate by WAC—R on a principal amount of WALS.
Then, to get the present value of this reduction, multiply by the appropriate
annuity factor. Lastly, subtract the fixed cost of refinancing to get the net
present value of refinancing. This theoretical argument in support of having
incentive increase with loan size is quite persuasive, but the proposition is
supported by empirical evidence as well. Average loan balances decline as
pools age, indicating that loans with higher balances prepay more quickly.
For orders of magnitude, average loan balances in newly issued agency pools
are typically larger than $175,000 but can be smaller than $80,000 for
older pools.

Having specified the incentive, prepayments, measured in terms of CPR,
are typically modeled as an S-curve of that incentive. One example of such
a function is

CPR (I) = T + 1
a + e−bI

(20.8)

where T is turnover, discussed in the next subsection, and a and b are
parameters that are calibrated to fit the empirical prepayment behavior of
pools, or groups of loans within pools, that are similar to the mortgages being
modeled. Figure 20.2 graphs the function (20.8) with an incentive measured
simply as the difference between the WAC and the current mortgage rate
available to borrowers. The generic shape of the S-curve is popular since it
reflects the empirical behavior that prepayments eventually flatten for very
low (negative) and very high incentives.

To capture the complex behavior of actual prepayments the parameters
a and b have to vary across loan types and also have to be functions of loan
characteristics and the economic environment within loan types. There are
very many examples. Since borrowers with relatively high creditworthiness
prepay relatively quickly for a given incentive, parameters are made to de-
pend on some proxy for credit, e.g.: spread at origination (SATO), which is
WAC or mortgage coupon relative to current coupon at origination; original
FICO; or original LTV. Since higher home prices make it easier for home-
owners to refinance, parameters can depend on general or local measures
of home price appreciation since origination, to the extent these data are
available. Another example is having parameters vary by state or locality
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to reflect observed differences in prepayment behavior across geographic
regions.

An additional and extremely important reason that the parameters a
and b cannot be constant is so that the prepayment function (20.8) can
model burnout. Figure 20.3 shows a time series for the monthly CPR for
the FNMA 30-year 7% 1995 along with the current coupon as a proxy for
the mortgage rate faced by borrowers. The very broad story of the figure is
consistent with prepayments increasing with incentive. For example, as the
mortgage rate fell from 8% in the beginning of 2000 to less than 4.5% in
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spring 2003, CPR increased and peaked at over 60%. But there is another
story at work in the figure. When this 1995 vintage pool first experienced
mortgage rates of between 6% and 6.50%, in fall 1998, CPR peaked at over
40%. But when the mortgage rate was between 6% and 6.50% in 2006 and
2007, average CPR was much lower. Similarly, CPR peaked at 60% when
the mortgage rate was around 4.5% to 5.5%, but with rates below 4.5%
after early 2009, CPR was mostly in the range of 10% to 15%. Finally, with
mortgage rates eventually falling to historic lows of less than 3.5%, CPR
essentially remained in that 10% to 15% range.

To explain the prepayment behavior just described, think about each
borrower in the pool as having some set of characteristics that determines
a propensity to prepay for a given incentive. For example, a financially
sophisticated borrower with a relatively high credit rating, a large loan bal-
ance, and a home that has appreciated in price will be the most likely to
refinance as mortgage rates decline. In terms of Figure 20.3, this borrower
most probably refinanced when rates fell to between 6% and 6.50% in
fall 1998. From then on, however, this and other borrowers who are most
likely to prepay are no longer in the pool. Therefore, with rates in that
same 6% to 6.50% range at a later date, like the period in 2006 and 2007
in the figure, prepayments will be determined by borrowers with a lower
propensity to refinance and, therefore, CPR will be lower. The phenomenon
of CPR being less responsive to incentive as a pool prepays is known as
burnout. In terms of the prepayment model (20.8), capturing burnout re-
quires that the parameters be a function of past levels of prepayment rates or
mortgage rates.

To mention one more example of how complex models of refinancing
can be, researchers have posited a media effect, in which a precipitous decline
in mortgage rates or mortgage rates reaching a new low creates media reports
and cocktail-party conversation that encourage even those borrowers with
relatively low propensities to refinance to do so. Capturing this phenomenon
in a model would require its parameters to depend on carefully chosen
summary statistics that describe the historical path of mortgage rates, e.g.,
the current mortgage rate relative to the lowest mortgage rate over the last
five years.

Turnover

Prepayments due to turnover occur when borrowers sell houses to relo-
cate, to change to a bigger or smaller house, as a result of a divorce, or
in response to other personal circumstances. This driver of prepayments
typically accounts for less than 10% of overall prepayment rates.

A turnover model for a particular group of loans begins with a base rate
that is adjusted to account for the seasonality of relocations, e.g., higher
in summer, lower in winter. The model would then add a seasoning ramp.
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Households are very unlikely to move just after taking out a mortgage. A
typical average assumption would be that turnover starts at zero at the time
of initiation and increases to the base rate after 30 months. The steepness of
the seasoning ramp is often made to depend on several factors. For example,
less creditworthy borrowers are more likely to prepay sooner after taking out
a mortgage as some will experience improvements to their creditworthiness.

While prepayments classified as due to turnover are for the most part
independent of interest rates, there is an interaction that cannot be ignored.
Borrowers are less likely to move if they enjoy a below-market mortgage
rate, or, put another way, if they would have to pay a higher rate on a new
mortgage after selling their homes and moving. This behavior is known as
the lock-in effect.

Defaul ts and Modi f icat ions

Defaults are a source of prepayments in the sense that mortgage guarantors
pay interest and principal outstanding when a borrower defaults. Over the
most recent cycle of increasing real estate values, modeling defaults had been
less important and had received less attention. This changed dramatically, of
course, in reaction to falling housing prices in the run-up to and progression
of the 2007–2009 crisis. In addition, mortgage modifications, which did not
exist previously, have become an important part of the landscape. From
the modeling perspective, more effort is being dedicated to using pertinent
variables, e.g., initial LTV ratios, FICO scores, and SATO (which are not
usually updated after mortgage issuance), and to incorporating the dynamics
of housing prices into the analysis.

Curta i lments

Curtailments are partial prepayments by a particular borrower. These tend
to be most important when loans are older and balances are low. This driver
of prepayments is modeled as a function of loan age and can, with only a
couple of years remaining to maturity, rise to a CPR of about 5%.

MBS VALUATION AND TRADING

This section describes how to combine models of the benchmark interest
rate with mortgage-specific model components to value MBS. As will be ex-
plained presently, while the term structure models of Part Three are relevant
for MBS valuation, the tree implementations of these models are not. There-
fore, the section begins with an alternate implementation, namely, Monte
Carlo simulation, to be followed by other valuation issues.
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Monte Carlo Simulat ion

Suppose for a moment that a one-factor tree implementation of a term
structure model was used to value MBS. The cash flows at any node of
the tree would be determined by scheduled cash flows and the prepayment
model. Then, the value of the MBS at any node would be the cash flow on
that date plus the expected discounted value of the MBS on the subsequent
date. The problem with this approach, however, is that it assumes that the
cash flows at any node depend only on the short-term rate at that node, or,
equivalently, on the term structure of interest rates at that node. But what
if prepayments at particular nodes depend on the history of interest rates
on the way to that node, as models of burnout require. In that case the
tree implementation fails because it does not naturally recall, for example,
whether a node five periods from the start was reached by two down moves
followed by three up moves, by three up moves followed by two down
moves, or by the sequence up-down-up-down-up. But the burnout effect
says that prepayments at a particular node will be less if that node was
reached by passing through a node with a relatively low interest rate. In
the jargon of valuation models, the tree implementation assumes that cash
flows are path independent while the cash flows from a burnout model are
path dependent.

The most popular solution to pricing path-dependent claims is Monte
Carlo simulation. To price a security in this framework, proceed as follows.
First, generate a large number of paths of interest rates at the frequency
and to the horizon desired. For this purpose paths are generated using a
particular risk-neutral process for the short-term rate. Second, calculate the
cash flows of the security along each path. In the mortgage context this would
include the security’s scheduled payments along with its prepayments. Note
that burnout and media effects can be implemented because each path is
available in its entirety as cash flows are calculated. Third, starting at the
end of each path, calculate the discounted value of the security’s cash flows
along each path. Fourth, compute the value of the security as the average of
the discounted values across paths.

Table 20.5 presents an extremely simple example of a 5% five-year,
annually-paying mortgage pool to illustrate the process along a single path.
The arrows at the top indicate that the process is moving forward in time,
from date 0 to 5. The interest rate, used as the mortgage rate and as the
discounting rate in this simple example, starts at 5%, is 5% at the end of the
first year, 4% at the end of the second year, etc. The next rows give, per 100
of original notional, the pool’s scheduled interest and principal payments
based on the amount outstanding at the beginning of each period, the pool’s
prepayments from some model, and the total cash flows on each date. Note
that the prepayment model can refer to the entire history of rates along the
path when computing prepayments.
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TABLE 20.5 Example of a Single Path in the Monte Carlo Framework in
the Mortgage Context

Date 0 1 2 3 4 5
→ → → → → → → → → → → → → → → → → → → → → → → →
Interest Rate 5% 5% 4% 3% 4%
Starting Principal 100.00 80.00 54.00 21.70 10.79
Interest Due 5.00 4.00 2.70 1.09 0.54
Principal Due 18.10 18.56 17.13 10.59 10.79
Prepayments 1.90 7.44 15.17 0.33 0.00
Total Cash Flow 25.00 30.00 35.00 12.00 11.32
← ← ← ← ← ← ← ←← ← ← ← ← ← ← ← ←← ← ← ← ← ← ←
Value 100.93 80.97 55.02 22.22 10.89 11.32

At this point the process starts from the last date and moves backwards
in time. The value of the pool on date 5 is simply the cash flow paid on that
date, which is 11.32. The value on date 4 is the present value of the date 5
cash flow, i.e., 11.32 (1.04)−1 or 10.89. The value on date 3 is the present
value of the date 4 value plus the date 4 cash flow, that is,

10.89 + 12
1.03

= 22.22 (20.9)

Continuing in this manner, the value of the MBS on date 0 along this path
is 100.93. Having gone through this process for all of the paths, the value
of the MBS is the average date 0 value across paths.

To reconcile Monte Carlo pricing with pricing using an interest rate
tree, recall equation (13.17), which, derived in the context of interest rate
trees, gives the price of a claim that is worth Pn in n periods. This equation
is reproduced here for convenience:

P0 = E

[
Pn

�n−1
i=0 (1 + ri )

]
(20.10)

In light of the discussion of this subsection, the term inside the brackets
is analogous to the price of a security along one path. The expectation is
analogous to the averaging across paths.

Two more comments will be made about the Monte Carlo framework.
First, measures of interest rate sensitivity can be computed by shifting the
initial term structure in some manner, repeating the valuation process, and
calculating the difference between the prices after and before the interest
rate shift. Second, while the Monte Carlo approach does accommodate
path-dependent cash flows, it has two major drawbacks. One, it is more
computationally and numerically challenging than pricing along a tree. Two,
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it is difficult in the Monte Carlo framework to value American- or Bermuda-
style options. (Examples in the mortgage context include mortgage options,
mentioned earlier, and callable CMOs.) For these options, which allow
early exercise, the value of the option at each node is the maximum of
the value of exercising the option immediately and the value of the option
not exercised. In a tree methodology, which starts at maturity and works
backwards, both of these values are available at each node. Along a Monte
Carlo path, however, the value of immediate exercise is always known, but
the value of the unexercised option is very difficult to compute. Starting a
new Monte Carlo pricing simulation at a particular date on a particular
path so as to compute the value of the unexercised option for that date and
path is possible, but doing so for every exercise date on every path is not
computationally feasible.

Valuat ion Modules

Computing values for MBS require several modules. In no particular order,
since they interact with another, these include a model of benchmark interest
rates, the scheduled cash flows of the MBS, a model of the mortgage rate, a
housing price model, and a prepayment model.

The model of benchmark interest rates can be along the lines of those
in Part Three, but, as described in the previous subsection, Monte Carlo
implementations usually replace tree implementations. The scheduled cash
flows of the MBS are straightforward, as described in the first section of this
chapter.

While glossed over in the example of the previous subsection, valuing
an MBS along a path requires both the benchmark or discounting rate as
well as the mortgage rate; discounting might be done at swap rates plus a
spread, but the incentive of a prepayment model depends on the current
mortgage rate. But determining the fair mortgage rate at a single date and
on a single path of a Monte Carlo valuation is a problem of the same
order of magnitude as the original problem of pricing a particular MBS!
Common practice, therefore, is to build a simple model of the mortgage
rate as a function of the benchmark rates, e.g., as a function of the 10-year
swap rate. A particularly simple approach—some say simplistic—is to use a
regression of the 30-year mortgage rate on the 10-year swap rate. Note, in
any case, that it may not be trivial to compute any longer-term swap rate at
points along a path of short-term rates for the same reason as highlighted
in the context of pricing options with early exercise. But the problem of
computing swap rates can often be handled by using a closed-form solution
or a numerical approximation consistent with the process generating the
path of short-term rates.

A model of the evolution of housing prices can be particularly useful
in modeling the default component of prepayments or prepayments more
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generally. The major difficulties, of course, are determining an appropriate
probability distribution for housing prices and appropriate correlations for
housing prices and interest rates.

Putting the modules together, cash flows are determined by the sched-
uled cash flows and the prepayment model. The prepayment model depends
on the interest rate model, the mortgage rate model, and the housing price
model. The mortgage rate model and the housing price model depend on
the interest rate model. And finally, the interest rate model is used to value
the cash flows.

MBS Hedge Rat ios

As mentioned earlier, interest rate sensitivites and hedge ratios can be com-
puted from MBS valuation models. Given the considerable investment re-
quired to build an MBS valuation model, however, some market partici-
pants, particularly those trading only the simplest products, e.g., TBAs, use
empirical hedge ratios or deltas. These can be computed from market data
using the tools of Chapter 6. Table 20.6 shows a major dealer’s empirical
hedge ratios as of December 2010 for various 30-year FNMA TBAs against
5- and 10-year U.S. Treasuries. For example, to hedge a long position in 100
face amount of the 4.0% TBAs, the current coupon, requires the sale of 66
face amount of on-the-run 10-year Treasuries or 115 face amount of 5-year
Treasuries.

As expected, the hedge ratios in Table 20.6 fall with coupon. Since
higher coupons prepay faster, they are effectively shorter-term securities
and, as such, have lower interest rate senstivities. Of course, this table says
nothing about the curve exposure of TBAs. It may be better to hedge with a

TABLE 20.6 Empirical Hedges of TBAs with U.S.
Treasuries as of December 9, 2010

Treasury Hedge Ratios
FNMA 30-Year
TBA Coupon 10-Year 5-Year

3% 0.93 1.64
3.5% 0.80 1.40
4% 0.66 1.15
4.5% 0.54 0.94
5% 0.43 0.75
5.5% 0.35 0.61
6% 0.28 0.50
6.5% 0.23 0.40

Source: JPMorgan Chase.
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combination of 5- and 10-year Treasuries, or even with a 7-year Treasury,
than to hedge with either a 5- or 10-year Treasury.

Opt ion Adjusted Spread

Option Adjust Spread (OAS) is the most popular measure of relative value
for MBS.8 Chapter 7 described how to compute OAS in the context of
interest rate trees. The method in a Monte Carlo framework is analogous:
find the single spread such that shifting the paths of short-term rates by that
spread results in a model value equal to the market price. To the extent that
the model accounts correctly for scheduled cash flows and prepayments,
the OAS represents the deviation of a security’s market price from its fair
value. Furthermore, as explained in Chapter 7, when OAS is constant the
return on a security hedged by a correct model is the short-term rate plus the
OAS. Of course, to the extent that a model does not correctly account for
prepayments, the OAS will be a blend of relative value and left-out factors.

The practical challenge of using models and OAS to measure relative
value is in determining when OAS really does indicate relative value and
when it indicates that the model is misspecified. A particular security is most
likely mispriced when its OAS is significantly positive or negative while,
at the same time, all substantially similar securities trade at an OAS near
zero. In practice, however, this is rarely the case. Much more common is
the situation in which a model finds relative value across a segment of the
market, e.g., finding that premium or high-coupon mortgages are relatively
cheap. Deciding whether that segment is really mispriced or whether the
model is miscalibrated is the art of relative value trading.

One useful approach in determining whether the OAS of a sector indi-
cates trading opportunities is to graph OAS over time and look for mean
reversion. It may prove profitable to buy high-coupon mortgages at high
OAS if the model finds that the sector used to trade at zero or negative OAS
or, even better, if the sector’s OAS oscillates with relatively high frequency
around zero. But if the OAS of high-coupon mortgages has been fixed at a
particular level over a long period of time, it is likely that it is a feature of the
market rather than a mispricing to be exploited. Another useful approach
is to determine whether there are any institutional or technical reasons to
explain why a particular segment of the market would trade rich or cheap.

8Another sometimes-used measure is the zero-volatility spread. This is computed
by assuming that forward rates are realized, computing prepayments, discounting
using those forward rates, and finding the spread above forward rates that results
in a model price equal to the market price. While easy to compute, this measure
has serious theoretical drawbacks. First, forward rates are not expected rates, so
valuation is not taking place along the expected path. Second, even if it were, price
equals the expected discounted value not the discounted expected value.
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The combination of an empirical finding of relative value combined with a
supporting story can be quite convincing.

Turning the discussion to hedging, it can be argued that OAS should be
uncorrelated with interest rate movements: the valuation model is supposed
to account completely for the effects of interest rates on cash flows and
discounting. Furthermore, it is most convenient that OAS be uncorrelated
with interest rates because, in that case, interest rate risk can be hedged
with the exposures calculated by the model. On the other hand, if OAS
is correlated with rates, then that correlation has to be hedged as well
to construct a truly rate-neutral position. All in all, this line of reasoning
suggests that relative value trading and hedging be restricted to models
that produce OAS that are essentially uncorrelated with rates. The only
counterargument would be that market mispricings or, alternatively, risk
preferences, may, in fact, be correlated with the level of rates.

Figure 20.4 shows the OAS of the FNMA 30-year TBA, as computed by
a major broker-dealer, along with the current coupon rate. The OAS of this
benchmark mortgage security displays relative value fluctuations from cheap
to rich and back, i.e., the series appears to be mean reverting. The OAS also
seems to be relatively uncorrelated with the level of mortgage rates. In short,
the model does seem like a good candidate for relative value trading. Turn
then to the 2007–2009 crisis. With credit concerns rife, the TBA OAS broke
out of its band, peaking at an unprecedented 100 basis point of cheapness.
Ex ante, should a trader have bought TBAs as the OAS of the TBA broke
out of its band during the crisis, reaching 60 or 70 basis points? Could the
trade be sustained through the OAS peak of 100 basis points so as to reap
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the profits of its eventually falling to zero? Or, ex ante, should the OAS
have been considered a reasonably accurate reflection of deteriorating credit
conditions and not an indicator of a relative value opportunity?

PRICE-RATE BEHAVIOR OF MBS

Figure 20.5 shows the rate behavior of a 5% 30-year MBS along with two
other price curves for reference. The dotted curve is the price-rate curve of
a (fictional) mortgage with scheduled interest and principal payments only,
that is, with no prepayments. Not surprisingly, the curve looks like that of
any security with fixed cash flows: it is decreasing in rates and positively
convex. The dashed curve gives the price of mortgage with a constant CPR
of 6%, which is the CPR of the S-Curve in Figure 20.2 for sufficiently
negative incentives. (The portion of this curve in the right half of the graph
coincides with the solid curve, which will be discussed presently.) Since a
fixed CPR leads to just another set of fixed cash flows, the price behavior of
the dashed line is, like the dotted line, qualitatively similar to any security
with fixed cash flows. A mortgage with a CPR of 6%, however, is effectively
a shorter-term security than an otherwise identical mortgage with a CPR
of 0%. Hence, the DV01 of the dashed curve is less than the DV01 of the
dotted curve at any given level of rates.

The solid curve in Figure 20.5 is the price-rate curve of a 5% 30-year
MBS with prepayments governed by the S-curve in Figure 20.2. For very
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high rates, i.e., negative incentives, the CPR of the MBS is 6% and the solid
line corresponds to the dashed line discussed in the previous paragraph. As
rates fall, and the value of the scheduled cash flows rise, CPR increases. This
means that principal is repaid at par and that the value of the MBS cannot
continue increasing as rates fall. This qualitative price-rate behavior is very
much like that of callable bonds with an important difference. Since the
exercise of callable bonds is close to efficient, a corporation that can call its
bonds at par does so: the bond’s value cannot, therefore, rise much above
par. In the case of mortgages, however, borrowers do not prepay when they
“ought” to, in a strict present value sense, enabling the value of a mortgage
at low rates to rise above par, as it does in the figure. Finally, note that,
because of the prepayment option, the price-rate curve of the mortgage is
negatively convex at lower rates. This is very much analogous to the negative
convexity of the price-rate curve of a callable bond.

Figure 20.6 graphs the price of the same 5% 30-year MBS, labeled here
as a pass-through, along with the prices of its associated IO and PO. When
rates are very high and prepayments low, the PO is like a zero coupon bond,
paying nothing until maturity. As rates fall and prepayments accelerate, the
value of the PO rises dramatically. First, there is the usual effect that lower
rates increase present values. Second, since the PO is like a zero coupon
bond, it will be particularly sensitive to this effect. Third, as prepayments
increase, some of the PO, which sells at a discount, is redeemed at par.
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Together, these three effects make PO prices particularly sensitive to interest
rate changes.

The price-rate curve of the IO is, of course, the pass-through curve minus
the PO curve, but it is instructive to describe the IO curve independently.
When rates are very high and prepayments low, the IO is like a security with
a fixed set of cash flows. As rates fall and mortgages begin to prepay, the cash
flows of an IO vanish. Interest lives off principal. Whenever some principal
is paid off there is less available from which to collect interest. But, unlike
callable bonds or pass-throughs that receive such prepaid principal, when
prepayments cause interest payments to stop or slow the IO gets nothing.
Once again, its cash flows simply vanish. This effect swamps the discounting
effect so that, when rates fall, IO values decrease dramatically. The negative
DV01 or duration of IOs, an unusual feature among fixed income products,
may be valued by traders and portfolio managers in combination with more
regularly behaved fixed income securities.

HEDGING REQUIREMENTS OF SELECTED MORTGAGE
MARKET PARTIC IPANTS

As mentioned earlier in the chapter, mortgage servicers are responsible for
managing mortgage loans and passing cash flows from the borrowers to the
lenders. Servicers are paid a fee for this service, typically between 20 and
50 basis points of the notional amount. If a loan is prepaid, the fee stream
from that loan ends. Hence, while the valuation of mortgage servicing rights
(MSR) is quite complex, some qualitative features of that business resemble
the characteristics of IOs. From this perspective, mortgage servicers stand to
lose revenue and value as rates fall. There is an offsetting effect, however: to
the extent that borrowers refinance and servicers collect fees on the newly
issued mortgages, and to the extent that lower rates actually increase the
notional of mortgages outstanding, servicers might not lose very much from
declining rates. But a servicer that has decided to hedge some of its revenue
stream from falling rates faces a challenge. Hedging an IO-like security with
a TBA would entail a severe convexity mismatch, conceptually similar to the
discussion in the context of futures and options in the hedging application of
Chapter 4, but quantitatively much worse a problem. Hedging with swaps
also entails a convexity mismatch and suffers, in addition, from mortgage-
swap basis risk, i.e., the risk that mortgage rates and swap rates move by
different amounts or, worse, in opposite directions. The risk profile of the
securities mentioned in the subsection “Other Products” in this chapter
might be better suited to this hedging problem, but their relative lack of
liquidity limits their usefulness to hedgers of the size of servicers.
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Lenders in the primary market, meaning financial institutions that lend
money directly to mortgage borrowers, also have interest rate risk to hedge.
From the time that the lender and borrower agree on the terms of a loan until
the time the lender sells the loan to be securitized, the lender is exposed to
the risk that rates will rise and result in the loan’s losing value. Selling TBAs
is a fine solution to this hedging problem. Secondary market originators that
buy mortgages from lenders in the primary market and sell these mortgages
through securitizations face the same risk as primary lenders. Rates may rise
between the time the mortgages are bought and the time they are sold.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c21 JWBT539-Tuckman July 27, 2011 0:48 Printer: Courier Westford

CHAPTER 21
Curve Construction

T his chapter begins with an introduction to the goals of constructing curves
of discount factors or rates and then recommends and presents in detail

two popular methodologies, namely, flat forwards and a smoothing of those
forwards based on piecewise quadratic interpolation. To present ideas and
techniques, the focus here is on building a single London Interbank Offered
Rate (LIBOR)-based curve. The techniques for implementing the two-curve
methodology of Chapter 17 are essentially the same.

INTRODUCTION

In some very special cases a security can be priced by arbitrage relative to a
set of other securities, e.g., a 5% 2-year swap can be priced relative to par
swaps with maturities of six months, 1 year, 1.5 years, and 2 years. More
frequently, however, arbitrage pricing is not possible because a security to
be priced makes cash flows on one set of dates while benchmark securities
make cash flows on another set of dates. Continuing with another swap ex-
ample, it might be necessary to value a 5% 13.4-year swap relative to a set
of more frequently traded swaps, none of which makes payments on exactly
the same set of dates as the 5% swap. Or, to take another example, it might
be necessary to calculate the spread to swaps of a 9% 7.3-year corporate
bond with annual coupon payments. Problems of this sort could, in theory,
be solved with the models of Part Three: a term structure model could be cal-
ibrated based on both historical data and selected current benchmark prices
and then used to price other securities, possibly with a spread. In practice,
however, securities with fixed cash flows are priced essentially by inter-
polating benchmark prices. More specifically, it is assumed that discount
factors, spot rates, or forward rates are described by some mathematical
function of term, i.e., some curve. This curve is then calibrated to price
benchmark securities correctly and used to discount cash flows occurring at
arbitrary dates in the future. Hence, a curve prices the 13.4-year swap not by

591
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arbitrage arguments, but essentially by interpolating nearby benchmark
swap rates, e.g., the 12- and 15-year rates.

In most applications there are three major objectives in building a curve.
One, the chosen benchmark securities, which typically include many liquid
securities along the term structure, should all be priced correctly with the
resulting curve.1 Two, the resulting curve is economically reasonable, e.g.,
the forward rates, which are being set to price the benchmarks, do not
wind up exhibiting wild oscillations. Three, bucket exposures are relatively
local, i.e., changing the rate of a benchmark security in one part of the
curve does not ripple through prices of securities elsewhere on the curve. As
will be discussed below, forcing a curve to be smooth can cause significant
violations of this locality property.

Given the benchmark status of LIBOR-based securities, these mar-
kets are the most widely used to calibrate pricing curves. Deposit rates
or forward-rate agreements (FRAs) might be used for the very short end of a
curve, Eurodollar (ED) futures rates are typically used for the short end, and
swap rates are the standard for the intermediate and long end. As discussed
in Chapter 17, however, federal (fed) funds-based curves, constructed from
OIS, are also used by practitioners.

Curve construction requires two steps: choosing a functional form for
the curve and then fitting that functional form to benchmark prices. Part of
the choice of functional form is whether the curve is expressed in terms of
discount factors, spot rates, or forward rates. The most popular choice is
forward rates. First, as has been made clear throughout this book, forward
rates are interesting quantities that are monitored and often traded. Second,
unlike discount factors and spot rates, forward rates are non-overlapping
and, therefore, can be shifted relatively independently. Third, as pointed out
in Part One, forward rates are essentially changes or derivatives of spot rates.
But the calculation of derivatives can be numerically unstable so that small
errors in determining spot rates can translate into large errors in implied
forward rates. Hence, since forward rates are of interest, it is numerically
safer to impose desirable curve properties directly on forward rates.

The chosen functional form of a curve is often fitted to benchmark se-
curity prices or rates by a process called bootstrapping. Basically, the first
segment of the curve is fit to the first benchmark security. Then, given that

1If benchmark prices are subject to significant observation errors, a curve might be
designed to minimize errors when pricing these benchmarks as opposed to forcing
all such errors to zero. For example, the most liquid government bond prices can be
affected by idiosyncratic factors, e.g., on-the-run effects, that should not be incorpo-
rated into a curve that is used to price other securities. In any case, as the benchmarks
have moved to LIBOR-based securities, many of which are quoted with very reliable
rates or prices, the exact fitting of benchmark securities has become the dominant
practice.
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segement, the second segment is fitted to the second benchmark security, etc.
A particularly easy example of bootstrapping was introduced in Chapters 1
and 2, where discount factors were extracted from government bond prices
and spot and forward rates from par swap rates. The simple functional
form of the curve in those chapters can be described as a set of sequential
six-month forward rates. The bootstrapping process began by finding
the six-month forward rate that priced a six-month security. Then, fixing
that six-month rate, the six-month rate six months forward was found that
priced a one-year security. Then, fixing those two rates, the six-month rate
one year forward was found to price a 1.5-year security, etc.

In the simple process in Chapters 1 and 2, the granularity of the func-
tional form was, for convenience, set at six months. In practice, however,
this granularity has to match the availability of benchmark securities. If, for
example, 10- and 12-year swaps are liquid enough to be taken as bench-
marks, with no other sufficiently liquid swap between them, it would not be
feasible to extract the six-month rate 10 years forward from traded securi-
ties. The 2-year rate 10 years forward, however, can be extracted from the
12-year swap rate given the prior extraction of rates up to 10 years.

FLAT FORWARDS

A very simple and widely-used functional form for pricing curves is that
of flat forwards. The assumption is that, between terms ti−1 and ti , the
instantaneous or continuously compounded forward rate is constant at some
value fi. With d (t) denoting the discount factor to term t, the flat forward
assumption implies that

d (t) = d (ti−1) e− fi (t−ti−1) (21.1)

Hence, given the discount factor to ti−1 and the discount factor to ti ,
the forward rate from from ti−1 and ti can be recovered. Put another way,
with a curve built to term ti−1 and a security maturing at term ti, boot-
strapping can continue with the extraction of the forward rate over that
incremental term.

Another property of flat forwards is that any forward rate can be written
as a weighted average of the collection of flat forward rates. To illustrate, say
that the flat forward between 10 and 12 years is 4% while the flat forward
between 12 and 15 years is 4.25%. Then what is the 3-year forward rate, f ,
between 11 and 14 years? First, by the definition of the rate f ,

d (14) = d (11) e−3 f (21.2)
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Second, by the assumption of flat forwards and the rates supplied, the
forward rate over the year 11 to year 12 is 4% while the forward rate over
the two years 12 to 14 is 4.25%. Hence,

d (14) = d (11) e−1×4%e−2×4.25% (21.3)

Putting (21.2) and (21.3) together,

− 3 f = −1 × 4% − 2 × 4.25% (21.4)

f = 1 × 4% + 2 × 4.25%
3

(21.5)

= 4.167% (21.6)

At first glance flat forwards might seem an odd assumption since the
forward rates jump from segment to segment. With respect to the objectives
of curve fitting, however, this functional form has desirable properties. It can
be easily adapted to fit benchmark securities, as will be seen in the next sec-
tion. The forward rates do jump across segments, but, in practice, the jumps
do not behave wildly, that is, flat forwards do not jump dramatically higher
and then dramatically lower, or vice versa. Finally, because flat forwards
consist of independent segments, one part of the forward curve can move
without affecting other parts of the curve. This feature has several benefits.
In particular, as fitting securities change price, the flat forwards move in a
stable and well-behaved manner. Also, as will be shown in a later section,
the independence of flat forward segments generates intuitively appealing
hedge ratios.

The benefits and weaknesses of the flat forward functional form will
become clearer through the discussion of piecewise quadratics below.
For now, however, the text turns to an example of constructing a flat
forward curve.

FLAT FORWARDS FOR A USD LIBOR CURVE

This section presents a detailed example of building a flat forward curve
using USD LIBOR derivatives as of May 28, 2010, for settlement on June 2,
2010. In particular, this curve matches the prices of the first 10 ED futures
contracts, swap rates in annual maturity increments from 3 to 10 years, and
then the 12-, 15-, 20-, 25-, 30-, and 40-year swap rates. Not discussed here,
but very common in practice, is to use a short-term rate, e.g., three-month
LIBOR, to fit a stub rate for the period from spot settlement to the beginning
of the period covered by the first ED contract.
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TABLE 21.1 Selected Fitted USD LIBOR Flat Forwards as
of May 28, 2010

From To Fwd Rate
(not inclusive) (inclusive) Cont. Comp. (%)

6/2/10 9/16/10 .5945
9/16/10 12/15/10 .8480
12/15/10 3/15/11 .9876
3/15/11 6/16/11 1.1138
6/16/11 9/15/11 1.2856
9/15/11 12/21/11 1.4821
12/21/11 3/21/12 1.7293
3/21/12 6/21/12 1.9553
6/21/12 9/20/12 2.1977
9/20/12 12/19/12 2.4363
12/19/12 6/3/13 2.7647

Table 21.1 lists the dates and continuously compounded forward rates
of the segments comprising the short end of the fitted curve, from the set-
tlement date to June 3, 2013, the maturity date of the 3-year swap.2 By
demonstrating how the forward rates in Table 21.1 correctly price the
10 ED futures contracts and the 3-year swap rate, it will be clear how
to derive these rates in the first place and how to derive the longer-term flat
forward rates.

Given the flat forward rates in Table 21.1, Table 21.2 describes the
pricing of ED contracts. Column (1) gives the tickers of the contracts while
columns (2) and (3) give the dates of the underlying LIBOR deposits, as
described in Chapter 15. For example, since EDM1 expires on June 13,
2011, its final settlement price is determined by three-month LIBOR set on
that expiration date, which, by definition, is the rate on a deposit settling
two business days later, on June 15, 2011, and maturing three months after
that, on September 15, 2011.

Column (4) of Table 21.2 gives the futures rate on the pricing date.3

Column (5) gives the forward rates corresponding to the same periods,
which are obtained by applying a model-specific convexity correction to the
futures rates in column (4). (See Chapter 13.) Column (6) simply transforms
the actual/360 rate in Column (5) to a continuously compounded rate.

2Since the scheduled maturity date, June 2, 2013, falls on a weekend, the final cash
flows are paid on the next business day, June 3, 2013.
3These rates do not correspond to settlement prices and, therefore, differ slightly
from the rates given in Table 15.3. In building curves, practice is to take a snapshot
of swap and ED futures rates when both markets are suitably liquid. This time need
not correspond to the futures close.
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TABLE 21.2 Pricing ED Futures Options with the USD LIBOR Flat-Forward Curve as
of May 28, 2010

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

LIBOR
Fut Fwd Fwd Days Rate Days Rate

Contract Start End Rate Rate Rate 1 1 2 2

Act/360 Continuously Compounded

(%) (%) (%) (%)

EDM0 6/16/10 9/16/10 .595 .5949 .5945 92 .5945
EDU0 9/15/10 12/15/10 .8745 .8462 .8453 1 .5945 90 .8480
EDZ0 12/15/10 3/15/11 .9925 .9888 .9876 90 .9876
EDH1 3/16/11 6/16/11 1.1225 1.1154 1.1138 92 1.1138
EDM1 6/15/11 9/15/11 1.2975 1.2859 1.2838 1 1.1138 91 1.2856
EDU1 9/21/11 12/21/11 1.5025 1.4848 1.4821 91 1.4821
EDZ1 12/21/11 3/21/12 1.7575 1.7331 1.7293 91 1.7293
EDH2 3/21/12 6/21/12 1.9925 1.9602 1.9553 92 1.9553
EDM2 6/20/12 9/20/12 2.2425 2.2012 2.1950 1 1.9553 91 2.1977
EDU2 9/19/12 12/19/12 2.4925 2.4412 2.4337 1 2.1977 90 2.4363
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Pricing EDM0 from the flat forward rates in Table 21.1 is partic-
ularly easy. The forward rate relevant for pricing EDM0 is that from
June 16 to September 16, 2010. But according to Table 21.1, the single
continuously-compounded forward rate over that entire 92-day period is
.5945%. Hence, the continuously compounded forward rate that prices
EDM0 is also .5945%, as reported in Column (6) of Table 21.2. Columns
(7) and (8) of that table simply indicate that the rate .5945% is applicable
to all 92 days.

Pricing EDU0 is a bit more complicated. The underlying deposit covers
the period September 15 to December 15. The applicable forward rate for
the one day from September 15 to September 16 is, according to Table 21.1,
.5945%. But the rate applicable over the rest of the period, the 90 days from
September 16 to December 15 is, according to that table, .8480%. Columns
(7) through (10) of Table 21.2 report this finding. Hence, by the discussion
in the previous section, the forward rate for EDU0 must be the weighted
average of the two relevant forward rates,

1 × .5945% + 90 × .8480%
91

= .8452% (21.7)

which, to rounding error, is the continuously-compounded market forward
rate reported in Column (6) of Table 21.2. Hence, the flat forward rates of
Table 21.1 do price EDU0.

To take one more example, the forward rate for EDM1, covering the
period from June 15, 2011, to September 15, 2011, is composed of one
day at 1.1138%, the forward rate relevant from June 15 to June 16, and
91 days at 1.2856%, the forward rate relevant over the period June 16 to
September 15. Hence, the forward rate for EDM1 is

1 × 1.1138% + 91 × 1.2856%
92

= 1.2837% (21.8)

which, again to rounding error, is the given market forward rate.
In this manner it can be verified that the flat forward rates of Table 21.1

do correctly price the ED futures rate given in Table 21.2.
Before continuing to pricing swaps, note the logic of choosing the flat

forward segments in Table 21.1. First, the segments are arranged so that
each ED futures rate determines the forward rate of one segment. Six-month
segments, for example, would not be a granular enough division of term to
fit all ED futures rates. On the other hand, the forward rates correspond-
ing to one-month segments could not be determined by ED futures rates
alone. Second, because the dates of the deposits underlying ED futures over-
lap, there is no way to choose nonoverlapping flat forward segments that
correspond exactly to underlying deposits.



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-c21 JWBT539-Tuckman July 27, 2011 0:48 Printer: Courier Westford

598 SELECTED SECURITIES AND TOPICS

An interesting alternate approach to choosing the segments is to set
their endpoints to correspond to central bank meeting dates. This allows
for an economic interpretation of the flat forwards as the short-term rate
targeted by the central bank, although this interpretation is not as clean
in the presence of a risk premium. Also, setting the segments in this way
creates some implementation complications analogous to those found in
the process of extracting implied Board of Governors of the Federal Reserve
System (Fed) policy changes from market rates in Chapter 15; there might be
no benchmark security or more than one benchmark security that determines
the forward rate from one meeting date to the next.

The demonstration that the flat forward rates of Table 21.1 correctly
price the fitting securities continues now with the 3-year par swap, which,
as of the pricing date, carried a rate of 1.6695%. Table 21.3 presents the
relevant calculations. Columns (1) and (2) give the accrual periods for the
floating rate payments. Column (3) to (7) compute the continuously com-
pounded forward rates over these accrual periods from the flat forward
rates in Table 21.1, along the same lines as the analogous computations in
Table 21.2. Column (8) converts the continuously compounded rates in
Column (7) to actual/360 rates. Columns (9) and (10) give the accrual fac-
tors for the floating and fixed rate payments, with the former using the actual/
360 day count and the latter using 30/360 day count. (See Chapter 16.) Fi-
nally, Column (11) gives the discount factor to each payment date from the
calculated forward rates. All of this data allows for the calculation of the
present value of the payments from the two legs of the swap.

The fixed side is straightforward. The payments, each equal to the swap
rate of 1.6695% time the fixed-rate accrual factor, are multiplied by the
respective discount factors and then added together. Note that the accrual
factors are not equal to .5 when the start and end of the accural periods
do not fall on the same day of the month. In any case, the present value of
the fixed cash flows in Table 21.3, without the fictional notional amount, is
.0490 per unit notional amount, shown in the penultimate row of the table.
With the present value of the fictional notional amount, which is just the
discount factor to June 3, 2013, i.e., .9510, the value of the fixed side is 1.0.

The value of the floating leg is a bit tedious when caculated very pre-
cisely. Chapter 16 showed that the value of the floating side of a swap is
par on reset dates because, essentially, all accrual periods correspond to
the term of the LIBOR index. To be very precise, however, accrual peri-
ods and LIBOR terms do not always line up exactly. In the 3-year swap of
Table 21.3, the payment date of June 2, 2012 is pushed from that Saturday
to the next business day on Wednesday, June 6.4 Therefore, the subsequent
accrual period begins on June 6, but ends on September 4, the first business

4Monday and Tuesday, June 4 and 5, are special London bank holidays in 2012 in
honor of the Queen’s Diamond Jubilee.
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TABLE 21.3 Pricing a 1.6695% 3-Year Swap with the USD LIBOR Flat-Forward Curve as
of May 28, 2010

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Accrual Period Days Rate Days Rate Acc. Factors Disc.
Start End 1 1 2 2 Fwd Fwd Float Fixed Factor

Continuously Compounded Act/360

(%) (%) (%) (%)

6/2/10 9/2/10 92 .5945 .5945 .5949 .2556 .998482
9/2/10 12/2/10 14 .5945 77 .8480 .8090 .8099 .2528 .5000 .996442
12/2/10 3/2/11 13 .8480 77 .9876 .9675 .9686 .2500 .994035
3/2/11 6/2/11 13 .9876 79 1.1138 1.0960 1.0975 .2556 .5000 .991255
6/2/11 9/2/11 14 1.1138 78 1.2856 1.2595 1.2615 .2556 .988069
9/2/11 12/2/11 13 1.2856 78 1.4821 1.4540 1.4567 .2528 .5000 .984445
12/2/11 3/2/12 19 1.4821 72 1.7293 1.6777 1.6812 .2528 .980279
3/2/12 6/6/12 19 1.7293 77 1.9553 1.9105 1.9154 .2667 .5111 .975297
6/6/12 9/4/12 15 1.9553 75 2.1977 2.1573 2.1631 .2500 .970051
9/4/12 12/3/12 16 2.1977 74 2.4363 2.3939 2.4011 .2500 .4917 .964263
12/3/12 3/4/13 16 2.4363 75 2.7647 2.7070 2.7162 .2528 .957688
3/4/13 6/3/13 91 2.7647 2.7647 2.7744 .2528 .5000 .951018

Value Floating Side: .0490
Value Fixed Side: .0490

599
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600 SELECTED SECURITIES AND TOPICS

day after the regularly scheduled payment date of September 2. But the
LIBOR deposit from June 6 matures on the valid business day of September
6, not September 4. Hence, the accrual period is different than the term of
the LIBOR index and the discounted value as of the reset date will not be
exactly par. Because of this (admittedly small) effect, instead of pricing the
floating leg as in Chapter 16, practitioners use forward rates to project future
LIBOR rates, multiply by the accrual factors, and discount to the present.
(See Chapter 17.) Applying this methodology, Table 21.3 calculates the value
of the floating leg by multiplying each actual/360 forward rate in Column (8)
by its accrual factor in Column (9) and its discount factor in Column (11) and
then summing the results. The total comes to .0490, shown in the last row of
the table. The fact that the values of the fixed and floating sides of the swap
are equal—with a fixed rate equal to the 3-year par rate of 1.6695%—means
that the flat forward rates of Table 21.1 have indeed correctly priced the
3-year swap. Note, by the way, that the pricing of the floating leg here as-
sumes that the day’s LIBOR reset has not yet happened. If it had, the first
projected forward rate would be replaced by that realized setting.

The illustration of pricing with flat forwards ends here, but it is clear
how to continue. The next flat forward segment will cover the period June
3, 2013, to June 2, 2014, the maturity of the 4-year swap. Furthermore,
the forward rate of this segment is set to ensure that the 4-year swap is
priced by the flat forward curve, along the lines of Table 21.3. Flat forward
segments continue to be added one at a time, with each corresponding
forward rate set so as to match another swap rate, until all of the fitting
securities have been used.

Figure 21.1 shows the resulting flat forward curve, along with a
smoother curve to be discussed in the next section. Despite its jumps, the
curve is well-behaved and reasonable. For many purposes the jumps hardly
matter in the short end, where the forward segments are about three months
in length. For intermediate and longer terms the jumps are noticeable but
their amplitudes change in a gradual and consistent fashion.

SMOOTH FORWARDS BY PIECEWISE QUADRATICS

For some applications, when jumps across flat forward rates are undesirable,
practitioners prefer a smoother forward rate function. One cost of moving
to smooth forwards is that such curves are more difficult to construct and
maintain. Illustrations will not be given here, but for a given functional
form it may be very difficult to fit a smooth curve to a particular set of
market data without introducing undesirable features. The cubic spline, for
example, which is very smooth in that neither the function nor its first
derivative nor its second derivative jumps, is notorious for oscillating wildly
unless carefully suited to the data at hand. A very much related cost of
moving to smooth forwards is that parts of the fitted term structure become
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F IGURE 21.1 Fitted USD LIBOR Curves as of May 28, 2010

dependent, in artificial and unwanted ways, on other parts of the term
structure. This locality property has been mentioned previously and will be
better understood through this section and the next.

One curve-fitting methodology that is popular as a compromise
between the advantages of flat forwards and the desirability of smoothness
is to build piecewise quadratic functions from the flat forwards. More
specifically, given a flat forward curve like the one built in the previous
section, find a set of piecewise quadratic functions that essentially smooth
out the flat forwards while maintaining the property that all benchmark
securities are priced correctly.

Mathematically, let the midpoint of the flat forward segement between
ti−1 and ti be

tm
i−1 = ti−1 + ti

2
(21.9)

Note that the flat forward rates are defined such that fi is the rate from ti−1

to ti. Hence, for example, the flat forward rate at tm
1 is f 2.

Define smooth continuously compounded forward rates with the piece-
wise functions, φi (t), i = 2, 3, . . . , N. (The first function, φ1 (t), will be han-
dled separately in a moment.) Each function gives the smooth forward rate
from one midpoint to the next, so that φi (t) is valid over the range tm

i−1 to tm
i .

Also, each function is defined to be quadratic, so that, for some constants
ai, bi, and ci,

φi (t) = ai + bi
(
t − tm

i−1

) + ci
(
t − tm

i−1

)2 (21.10)
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These piecewise quadratics are now constrained in the following ways.
First, the value of each quadratic function starts at a flat forward rate and
ends at the subsequent flat forward rate. This means, for example, that the
function φ2, which is valid from tm

1 to tm
2 , is constrained such that φ2

(
tm
1

) =
f2 and φ2

(
tm
2

) = f3. More generally,

φi
(
tm
i−1

) = fi (21.11)

φi
(
tm
i

) = fi+1 (21.12)

Second, the smooth forward rate over every flat forward segment equals
the flat forward rate over that segment. Consider, for example, the flat for-
ward segment from t2 to t3 with forward rate f 3. The smooth forward rate
from t2 to tm

2 is determined by the function φ2 while the smooth forward
from tm

2 to t3 is determined by the function φ3. Furthermore, analogous to
the discussion in the previous section, the forward rate over the interval t2 to
t3 using the smooth forward functions is simply the average of the instanta-
neous forward rates over that interval. Hence, for the smooth forward rate
functions to give the forward rate f 3 over the interval t2 to t3, it has to be
the case that

∫ tm
2

t2
φ2 (t) dt +

∫ t3

tm
2

φ3 (t) dt = (t3 − t2) f3 (21.13)

Or, more generally,

∫ tm
i−1

ti−1

φi−1 (t) dt +
∫ ti

tm
i−1

φi (t) dt = (ti − ti−1) fi (21.14)

Note that since the φi (t) are quadratic, these integrals are quite easy to
evaluate.

The first of the piecewise quadratics, φ1 (t), is defined over the interval
t0 to tm

1 (instead of from tm
0 to tm

1 ). Therefore, conditions (21.11), (21.12),
and (21.14) become

φ1
(
tm
0

) = f1 (21.15)

φ1
(
tm
1

) = f2 (21.16)∫ t1

t0
φ1 (t) dt = (t1 − t0) f1 (21.17)
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Using the functional form (21.10) for φ1 (t) , together with the restric-
tions (21.15) to (21.17), it is easy to show that5

φ1 (t) = f1 + f2 − f1(
tm
1 − tm

0

) (
t − tm

0

)
(21.18)

Taken together across quadratic segments, the conditions (21.14) ensure
that the forward rates over the flat forward segments are the same whether
computed with the smooth forward functions or with the flat forward rates.
But the flat forward rates were set so all of the benchmark securities are
priced correctly. Hence, all benchmark securities are priced correctly using
the smoothed forwards as well.

Given the flat forwards, the first quadratic function in (21.18), and the
rules (21.11), (21.12), and (21.14) for i = 2, the function φ2 (t) can be found.
Then, using that result, the flat forwards, and the rules with i = 3, φ3 (t) can
be found, etc. In this manner, then, all of the φi (t) can be computed.

The results of this process for the USD LIBOR curve as of May 28,
2010, are shown in Figure 21.1. By construction the smooth forward
rates pass through the midpoints of the flat forward segments at the flat
forward rates.

It should now be clear how imposing smoothness links one part of a
fitted curve with another. Say that the flat forward f 3 changes but that no
other flat forward rate changes. Then, from (21.13), φ3 (t) has to change.
(The function φ2 (t) cannot change without affecting earlier forwards.) But
this means from (21.14), with i = 4, that the function φ4 (t) has to change
so as to keep f 4 the same, which in turns means that φ5 (t) has to change to
keep f 5 the same, etc.

While the piecewise quadratic forward rates created here are continuous,
i.e., they do not jump like the flat forwards, they are not very smooth in a
mathematical sense. In particular, the first derivative of the smooth forward
curve jumps at the midpoints. Imposing more smoothness on the curve might
be appealing from an economic view of forward rates, but, having to add
conditions that equate the first derivatives of the segments would create
even more dependency across the term structure of the kind described in the
previous paragraph. It is in this sense that piecewise quadratics based on
flat forwards is viewed as a compromise between smoothness and desirable
locality properties. The next section illustrates the hedging implications of
this tradeoff.

5To show that (21.17) is satisfied, integrate both sides of (21.18) and then use the
definition of the midpoints in (21.9).
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LOCALITY PROPERTIES AND HEDGING

This chapter has pointed out that a desirable property of flat forwards is
that different parts of the term structure of forward rates can move indepen-
dently. It was also pointed out that methodologies that produce smoother
forwards, like the piecewise quadratics of the previous section or, as a more
extreme example, like cubic splines, tend to sacrifice this locality property.
This section illustrates an important manifestation of this sacrifice of locality
by comparing hedge ratios across curve building methodologies.

Consider a portfolio that pays 2.61% on a $100 million 5.5-year swap
and 3.853% on a $100 million 17-year swap. Table 21.4 gives two analyses
of the partial ’01s of the portfolio, one using the flat forward curve of
the chapter and one using the smooth forward curve. Partial ’01s were
discussed in Chapter 5, but the basic idea is the following. To assess the
risk of a portfolio to a particular benchmark security that is used to fit the
curve, shift the rate on that benchmark security by one basis point, keeping
the rates on all other benchmark securities unchanged. Then refit the curve
and calculate the change in portfolio value from its value before the shift.
Columns (2) and (5) report this change in value for the portfolio for an
increase of one basis point in the respective benchmark. Using flat forwards,
for example, increasing the 5-year par swap rate by one basis point increases

TABLE 21.4 Partial ’01 Analyses of a Portfolio Paying 2.61% on USD 100mm
5.5-Year Swaps and 3.853% on USD 100mm 17-Year Swaps Under Different
Curve Methodologies as of May 28, 2010

(1) (2) (3) (4) (5) (6) (7)

Flat Forwards Smooth ForwardsBenchmark
Swap P&L DV01 Hedge P&L DV01 Hedge

Term in Years ($) $/100 $ Notional ($) $/100 $ Notional

3 0 .02934 0 5 .02935 15,569
4 0 .03858 0 −2,281 .03859 −5,911,373
5 23,517 .04748 49,533,497 26,140 .04749 55,040,920
6 28,339 .05603 50,577,405 32,283 .05605 57,597,224
7 0 .06422 0 −4,338 .06423 −6,753,941
8 0 .07204 0 −4 .07206 −5,068
9 0 .07955 0 −8 .07957 −9,945

10 0 .08665 0 −7 .08667 −8,496
12 0 .09993 0 −11,972 .09995 −11,978,509
15 66,978 .11763 56,938,610 85,743 .11765 72,882,187
20 61,205 .14214 43,060,038 65,029 .14213 45,753,641
25 0 .16168 0 −10,697 .16166 −6,616,993
30 0 .17735 0 0 .17734 0
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the value of the portfolio by $23,517. Columns (3) and (6) give the DV01
of each benchmark security, i.e., the change in the value of receiving $100
notional amount in that benchmark should all rates fall by one basis point.
Finally, Columns (4) and (7) give the notional amount of each benchmark
security that, taken all together, hedges the partial ’01 exposures of the
portfolio. These numbers are just the profit and loss (P&L) sensitivity with
respect to each benchmark divided by the DV01 per unit notional amount
of that benchmark. For example, hedging the $23,517 P&L exposure of the
portfolio to the 5-year swap rate under flat forwards requires a notional
amount of 5-year swaps of

$23,517
.04748/100

(21.19)

or about $49.5 million.
The hedges calculated from the flat forward curve are local in that the

portfolio of 5.5-year and 17-year swaps can be hedged with 5-year, 6-year,
15-year, and 20-year swaps alone. Basically, each of the 5.5-year and 17-year
swaps can be hedged by the benchmarks surrounding it. By contrast, using
the smooth forward curve to calculate partial ’01s shows that the portfolio
is significantly sensitive to the 4-, 7-, 12-, and 25-year benchmark rates in
addition to the benchmark rates immediately surrounding the swaps in the
portfolio. Because forward rates are interconnected in the construction of
the smooth forward curve, changing the 25-year par rate and refitting the
curve, for example, generates a change in forwards that has a significant
effect on the value of a 17-year swap. It may well be that the best hedge
of a 17-year swap does require holdings in each of the 12-year, 15-year,
20-year, and 25-year swaps. But it is unlikely that this best hedge has been
generated by the quadratic and other assumptions used to construct the
smooth forward curve.
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Exercises

CHAPTER 1

1.1 What are the cash flow dates and the cash flows of $1,000 face value
of the U.S. Treasury 2 3

4 s of May 31, 2017, issued on May 31, 2010?
1.2 Use this table of U.S. Treasury bond prices for settle on May 15, 2010,

to derive the discount factors for cash flows to be received in 6 months,
1 year, and 1.5 years.

Bond Price

4 1
2 s of 11/15/2010 102.15806

0s of 5/15/2011 99.60120

1 3
4 s of 11/15/2011 101.64355

1.3 Suppose there existed a Treasury issue with a coupon of 2% matur-
ing on November 15, 2011. Using the discount factors derived from
Question 1.2, what would be the price of the 2s of November 15,
2011?

1.4 Say that the 2s of November 15, 2011, existed and traded at a price
of 101 instead of the price derived from Question 1.3. How could
an arbitrageur profit from this price difference using the bonds in the
earlier table? What would that profit be?

1.5 Given the prices of the two bonds in the table as of May 15, 2010,
find the price of the third by an arbitrage argument. Since the 3 1

2 s of
5/15/2020 is the on-the-run 10-year, why might this arbitrage price
not obtain in the market?

Bond Price

0s of 5/15/2020 69.21

3 1
2 s of 5/15/2020 ?

8 3
4 s of 5/15/2020 145.67
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610 EXERCISES

CHAPTER 2

2.1 You invest $100 for two years at 2% compounded semiannually. How
much do you have at the end of the two years?

2.2 You invested $100 for three years and, at the end of those three years,
your investment was worth $107. What was your semiannually com-
pounded rate of return?

2.3 Using the discount factors in the table, derive the corresponding spot
and forward rates.

Term
Discount

Factor

.5 .998752

1 .996758

1.5 .993529

2.4 Are the forward rates above or below the spot rates in the answers to
Question 2.3? Why is this the case?

2.5 Using the discount factors from question 2.3, price a 1.5-year bond
with a coupon of .5%. If over the subsequent 6 months the term
structure remains unchanged, will the price of the .5% bond increase,
decrease, or stay the same? Try to answer the question before calcu-
lating and then calculate to verify.

CHAPTER 3

3.1 The price of the 3
4 s of May 31, 2012 was 99.961 as of May 31, 2010.

Calculate its price using the discount factors in Table 2.3. Is the bond
trading cheap or rich to those discount factors? Then, using trial-and-
error, express the price difference as a spread to the spot rate curve
implied by those discount factors.

3.2 The yield of the 3
4 s of May 31, 2012, was .7697% as of May 31, 2010.

Verify that this is consistent with the price in Question 3.1.
3.3 The price of the 4 3

4 s of May 31, 2012, was 107.9531 as of May 31,
2010. What was the yield of the bond? Please solve by trial-and-error.

3.4 Did you get a higher yield for the 4 3
4 s from Question 3.3 than the yield

of the 3
4 s given in Question 3.2? Is that what you expected? Why or

why not?
3.5 An investor purchases the 4 3

4 s of May 31, 2012 on May 31, 2010, at
the yield given in Question 3.3. Exactly six months later the investor
sells the bond at that same yield. What is the price of the bond on the
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sale date and what is the investor’s total return from the bond over
those six months?

3.6 Interpret your answer to Question 3.5. a) In what way is the return
significant or interesting? b) Explain why an investor would buy a
premium bond when that bond is worth only par at maturity? How
does this relate to your work in Question 3.5?

3.7 Re-compute the sample return decomposition of Tables 3.2 and 3.3
of the text, replacing the assumption of realized forwards with the
assumption of an unchanged term structure.

3.8 Start with any upward-sloping term structure, e.g., from C-STRIPS
prices or even some made-up rates. Then replicate the 0-coupon, par,
and 9% coupon curves in Figure 3.2. Add a curve for a security that
makes equal fixed payments to various maturities, i.e., a mortgage.

3.9 In the subsection “News Excerpt: Sale of Greek Government Bonds in
March, 2010,” approximately what is the yield on seven-year Spanish
debt?

3.10 Return to Table 1.7 in the text, which shows that the 3 1
2 s of May 15,

2020, are 2.076 per 100 face amount away from being correctly priced
by C-STRIPS while the 8 3

4 s maturing on the same date are .338 per
100 face amount away. According to the discussion of the text, this
difference is due to the on-the-run premium of the 3 1

2 s that is reflected
in the price of its P-STRIPS. As of the same pricing date, however,
the yields of the 3 1

2 s and 8 3
4 s were only a few basis points apart, i.e.,

nothing like the difference justified by the more than 2% premium on
the price of the final principal payment. How is this possible?

CHAPTER 4

4.1 The following tables give the prices of TYU0 and of TYU0C 120 as
of May 2010 for a narrow range of the 7-year par rate. Please fill
in the other columns, ignoring cells marked with an “X.” Over the
given range, which security’s price-rate function is concave and which
convex? How can you tell?

TYU0

Rate Price DV01 Duration Convexity 1st Deriv 2nd Deriv

3.320% 115.5712 X X X X X

3.412% 114.8731 X X

3.504% 114.1715

3.596% 113.4668 X X

3.688% 112.7591 X X X X X
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TYU0C 120

Rate Price DV01 Duration Convexity 1st Deriv 2nd Deriv

3.320% .4564 X X X X X

3.412% .3483 X X

3.504% .2619

3.596% .1940 X X

3.688% .1415 X X X X X

4.2 Using the data in Question 4.1, how would a market maker hedge
the purchase of $50 million face amount of TYU0C with TYU0 when
the 7-year par rate is 3.596%? Check how well this hedge works by
computing the change in the value of the position should the rate
move instantaneously from 3.596% to 3.668%. What if the rate falls
to 3.320%? Is the P&L of the hedged position positive or negative?
Why is this the case?

4.3 Using the data from the answer to Question 4.1, how much would
an investment manager make from $100mm of TYU0C if the rate
instantaneously fell from 3.504% to 3.404%? Use a duration estimate.

4.4 Using the data in Question 4.1, provide a 2nd order estimate of the
price of TYU0C should the 7-year par rate be 3.75%.

4.5 The table below gives the prices, durations, and convexities of three
bonds. a) What is the duration and convexity of a portfolio that is
long $50mm face amount of each of the 5- and 10-year bonds? b)
What portfolio of the 5- and 30-year bonds has the same price and
duration as the portfolio of part a)? c) Which of the two portfolios has
the greater convexity and why?

Coupon Maturity Price Duration Convexity

2.50% 5 years 102.248 4.687 25.052

2.75% 10 years 100.000 8.691 86.130

3% 30 years 95.232 19.393 495.423

4.6 The following table gives yields, DV01s, and durations for three 15-
year bonds. The three coupon rates are 0%, 3.5%, and 7%. Which
coupon rate belongs to which bond? What is the shape of the term
structure of spot rates underlying the valuation of these bonds?

Bond Yield DV01 Duration

#1 3.50% .1159 11.59

#2 3.50% .0876 14.75

#3 3.50% .1443 10.26
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CHAPTER 5

5.1 Using the following instructions, complete a spreadsheet to compute
the two-year and five-year key-rate duration profiles of four-year
bonds. For the purposes of this question, key-rate shifts are in terms
of spot rates.
(a) In Column A put the coupon payment dates in years, from .5 to

5 in increments of .5. Put a spot rate curve, flat at 3%, in Column
B. Put the discount factors corresponding to this spot rate curve in
Column C. Now price a 3% and an 8% four-year coupon bond
under this initial spot rate curve.

(b) Create a new spot rate curve in Column D by adding a two-year
key rate shift of 10 basis points. Compute the new discount factors
in Column E. What are the new bond prices?

(c) Create a new spot rate curve in Column F by adding a five-year
key rate shift of 10 basis points. Compute the new discount factors
in Column F. What are the new bond prices?

(d) Use the results in parts (a) through (c) to calculate the key-rate
duration profiles of each of the bonds.

(e) Sum the key-rate durations for each bond to obtain the total du-
rations. Calculate the percentage of the total duration attributed
to each key rate for each bond. Comment on the results.

(f) What would the key-rate duration profile of a four-year zero
coupon bond look like relative to those of these coupon bonds?
How about a five-year zero coupon bond?

5.2 Continue with the setting and results of Question 5.1. Verify that a 3%
two-year bond has a duration of 1.925 that is completely concentrated
as a two-year key-rate duration. How would one hedge the key-rate
risk profile of the 8% four-year bond with the 3% two-year bond and
the 3% four-year bond? Note that the total value of the 8% bond and
of the hedge need not be the same. Comment on the result.

5.3 Use Table 5.6 for this question. A trader constructs a butterfly port-
folio that is short €100mm of the 10-year swap and long 50% of the
10-year swap’s total ’01 in 5-year swaps and 50% of the 10-year
swap’s total ’01 in 15-year swaps. What are the forward-bucket expo-
sures of the resulting portfolio?

CHAPTER 6

The following introduction applies to Questions 6.1 through 6.5.
You are a market maker in long-term EUR interest rate swaps. You

typically have to hedge the interest rate risk of having received from or
paid to a customer on a 20-year interest rate swap. Given the transaction
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costs of hedging with both 10s and 30s and the relatively short time you
wind up having to hold any such hedge, you consider hedging these 20-year
swaps with either 10s or 30s but not both. To that end you run two single-
variable regressions, both with changes in the 20-year EUR swap rates as
the dependent variable, but one regression with changes in the 10-year swap
rate as the independent variable and the other with changes in the 30-year
swap rate as the independent variable. The results over the period July 1,
2009, to July 3, 2010, are given in the following table.

Number of Observations 259

Independent variable Change in 10-year Change in 30-year

R-squared 89.9% 96.3%

Standard Error 1.105 .666

Regression Coefficients Value Std. Error Value Std. Error

Constant −.017 .069 −.008 .042

Independent variable 1.001 .021 .917 .011

6.1 What are the 95% confidence intervals around the constant and slope
coefficients of each regression?

6.2 Use the confidence intervals just derived. Can you reject a) the hypoth-
esis that the constant in the 10-year regression equals 0? b) That the
slope coefficient in the 30-year regression equals 1?

6.3 As the swap market maker, you just paid fixed in €100 million notional
of 20-year swaps. The DV01s of the 10-, 20-, and 30-year swaps are
.0864, .1447, and .1911, respectively. Were you to hedge with 10-year
swaps, what would you trade to hedge? And with 30-year swaps?

6.4 Approximately what would be the standard deviation of the P&L of a
hedged position of 20-year swaps with 10-year swaps? And if hedged
with 30-year swaps?

6.5 If you were to hedge with one of either the 10- or 30-year swaps, which
would it be and why?

6.6 Use the principal components in Table 6.5 and the par swap data in
Table 6.6 to hedge 100 face amount of 10-year swaps with 5- and
30-year swaps with respect to the first 2 principal components.

CHAPTER 7

7.1 A fixed income analyst needs to estimate the price of an interest rate
caplet that pays $1,000,000 next year if the one-year Treasury rate ex-
ceeds 3% and pays nothing otherwise. Using a macroeconomic model
developed in another area of the firm, the analyst estimates that the
one-year Treasury rate will exceed 3% with a probability of 25%.
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Since the current 1-year rate is 1%, the analyst prices the caplet as
follows:

25% × $1,000,000
1.01

= $247,525

Comment on this pricing procedure.
7.2 Assume that the true 6-month rate process starts at 5% and then

increases or decreases by 100 basis points every 6 months. The prob-
ability of each increase or decrease is 50%. The prices of 6-month,
1-year, and 1.5-year zeros are 97.5610, 95.0908, and 92.5069. Find
the risk-neutral probabilities for the six-month rate process over the
next year (i.e., two steps for a total of three dates, including today).
Assume, as in the text, that the risk-neutral probability of an up move
from date 1 to date 2 is the same from both date 1 states. As a check
to your work, write down the price trees for the 6-month, 1-year, and
1.5-year zeros.

7.3 Using the risk-neutral tree derive for Question 7.2, price $100 face
amount of the following 1.5-year collared floater. Payments are made
every six months according to this rule. If the short rate on date i is
ri then the interest payment of the collared floater on date i + 1 is
1
2 3.50% if ri < 3.50%; 1

2ri if 6.50% ≥ ri ≥ 3.50%; 1
2 6.50% if ri >

6.50%. In addition, at maturity, the collared floater returns the $100
principal amount.

7.4 Using your answers to Questions 7.2 and 7.3, find the portfolio of the
originally 1-year and 1.5-year zeros that replicates the collared floater
from date 1, state 1, to date 2. Verify that the price of this replicating
portfolio gives the same price for the collared floater at that node as
derived for Question 7.3

7.5 Using the risk-neutral tree from Question 7.2, price $100 notional
amount of a 1.5-year participating cap with a strike of 5% and a
participation rate of 40%. Payments are made every six months ac-
cording to the following rule. If the short rate on date i is ri then the
cash flow from the participating cap on date i + 1 is, as a percent of
par, 1

2 (ri − 5%) if ri ≥ 5% and 1
2 40% (ri − 5%) if ri < 5%. There is

no principal payment at maturity.
7.6 Question 7.3 required the calculation of the price tree for a collared

floater. Repeat this exercise under the same assumptions, but this time
assume that the OAS of the collared floater is 10 basis points.

7.7 Using the price trees from Questions 7.3 and 7.6, calculate the return
to a hedged and financed position in the collared floater from dates 0
to 1 assuming no convergence (i.e., the OAS on date 1 is also 10 basis
points.) Hint #1: Use all of the proceeds from selling the replicating
portfolio to buy collared floaters. Hint #2: You do not need to know
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the composition of the replicating portfolio to answer this question. Is
your answer as you expected? Explain.

7.8 What is the return if the collared floater converges on date 1, i.e., its
OAS equals 0 on that date?

CHAPTER 8

8.1 Describe as fully as possible the qualitative effect of each of these
changes on the instantaneous rates 10 and 30 years forward.
(a) The market risk premium increases.
(b) Volatility across the curve increases.
(c) Rates are not expected to increase as much as previously.
(d) The market risk premium falls and volatility falls in such a way as

to keep the 10-year forward rate unchanged.

CHAPTER 9

9.1 Assume an initial interest rate of 5%. Using a binomial model to
approximate normally distributed rates with weekly time steps, no
drift, and an annualized volatility of 100 basis points, what are the
two possible rates on date 1?

9.2 Add a drift of 20 basis points per year to the model described in
Question 9.1. What are the two rates now?

9.3 Consider the following segment of a binomial tree with 6-month time
steps. All transition probabilities equal .5.

5.360%

4.697%

3.99% 4.648%

3.964%

4.031%

Does this tree display mean reversion?
9.4 What mean reversion parameter is required to achieve a half-life of

15 years?

CHAPTER 10

10.1 The yield volatility of a short-term interest rate is 20% at a level of
5%. Quote the basis point volatility and the CIR volatility parameter.
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10.2 You are told that the following tree was built with a constant volatil-
ity. All probabilities equal .5. Which volatility measure is, in fact, a
constant?

5.49723%

4.69740%

4.014% 4.63919%

3.96420%

3.91507%

10.3 Use the closed form solution for the Vasicek model in Appendix A
in Chapter 10 to compute the spot rate of various terms with the
parameters θ = 10% , k = .035, σ = .02, and r0 = 4%. Comment on
the shape of the term structure.

CHAPTER 13

13.1 As of a spot settlement date of June 1, 2010, find the forward price of
the U.S. Treasury 3 5

8 s of February 15, 2020, for delivery on September
30, 2010. The spot price is 102 – 21 and the repo rate is .3%.

13.2 Using your answer to Question 13.1, compute the forward yield of the
3 5

8 s to September 30. Use equation (3.32) and a spreadsheet or other
application.

13.3 Use the risk-neutral tree, with annual steps, developed in the section
“Arbitrage Pricing in a Multi-Period Setting” in Chapter 9. Consider
a 5% 10-year bond that, 2 years from the starting date, takes on the
values 104.701, 98.126, and 92.061, corresponding to the nodes 4%,
5%, and 6%, respectively. What is the forward price of the bond for
delivery in two years? What is the futures price to that same delivery
date?

CHAPTER 14

14.1 The conversion factor of the 4s of August 15, 2018, into TYU0 is
.8774. If the price of TYU0 is 121.2039, what is the (flat) delivery
price of the 4s at that time? If the price of the 4s is 107.1652, what is
their cost of delivery at that time?

14.2 The following table gives the prices of TYU0 and of its deliverable
bonds in a particular term structure scenario on the delivery date that
corresponds to a 7-year par yield of 3.32%. Conversion factors are
also provided. Which bond is CTD in this scenario?
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Futures Price: 117.2606

Rate Maturity Price Conv. Factor

3 1
4 3/31/17 100.1567 .8538

4 1
2 5/15/17 107.9783 .9202

3 1
8 4/30/17 99.3447 .8471

2 3
4 5/31/17 96.9980 .8272

4 3
4 8/15/17 109.3542 .9314

4 1
4 11/15/17 106.0361 .9012

3 7
8 5/15/18 102.7277 .8732

4 8/15/18 103.2276 .8774

3 1
2 2/15/18 100.6805 .8547

3 3
4 11/15/18 101.0422 .8587

3 5
8 8/15/19 98.9248 .8401

3 1
8 5/15/19 95.5539 .8107

2 3
4 2/15/19 93.3962 .7909

3 3
8 11/15/19 96.8798 .8195

3 5
8 2/15/20 98.6522 .8332

3 1
2 5/15/20 97.6531 .8210

14.3 The 3
4 s of May 31, 2012, are deliverable into TUU0, the September

2010 2-year note contract. Assume that the delivery date of the con-
tract is September 30, 2010. The notional coupon of the contract is
6%. Approximately what is the conversion factor of the 3

4 s for delivery
into that contract?

14.4 The forward price of the 3 1
2 s of February 15, 2018, to September 30,

2010, is 103.1303. Its conversion factor for delivery into TYU0 is
.8547. If the price of TYU0 is 120, what is the net basis of the 3 1

2 s in
ticks?

14.5 A trader sells $50 million 3 1
2 s net basis at the level you calculated in

question 14.4. What is the trader’s position in the bond and in TYU0?
If the net basis of 3 1

2 s is 10 ticks as of the delivery date, what is the
trader’s profit or loss?

14.6 Figure 14.4 of the text graphs various net bases as option-like payoffs.
Describe how each of the following deliverable bonds would look if
added to this graph: the 3 1

4 s of 3/31/2017; the 4s of 8/15/2018; and
the 3 1

2 s of 5/15/2022.
14.7 How would the graphs in Figure 14.4 change if the curve steepened as

the 7-year par rate increased?
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CHAPTER 15

15.1 As of May 28, 2010, you are financing $100 million worth of inventory
of bonds in the repo market on an overnight basis. You plan to hold
these bonds until mid-September 2010. Using both the Eurodollar and
Fed funds futures listed in Tables 15.3 and 15.11, what trades can you
do to hedge against the risk that rates rise and increase your borrowing
cost? Will you have to adjust the hedge at all between May 28 and
mid-September?

15.2 Approximately what borrowing rate is locked in by the hedge in Ques-
tion 15.1?

15.3 Instead of the hedge constructed in Question 15.1, you decide to use
only Eurodollar contracts. How does the hedge change? How does
the locked-in rate compare with the previous hedge? Is this new hedge
riskier in any way than the previous hedge?

15.4 As of May 28, 2010, a 5% U.S. Treasury bond maturing on September
15, 2010, had a full price of 102.4055. Using the dates and rates of
Table 15.8, calculate the TED spread of the bond.

15.5 As of the end of July 2004, the fed funds target rate stood at 1.25%.
Say that the August fed fund futures rate at that time was 1.3516%.
What is the market implied probability of a 25 basis-point increase at
the August 10 meeting? If you’re willing to assume a 50% chance of
no change in policy, what are the implied probabilities of 25 and 50
basis-point increases?

CHAPTER 16

16.1 Recalculate swap cash flows as in Table 16.1 for a 1.5% swap rate
and a LIBOR rate that starts at 50 basis points on June 2, 2010, but
then increases by 50 basis points every three months, reaching 4% by
March 2, 2012.

16.2 Under the same simplifying assumptions used to price the CMS swap
in Table 16.3, what is the fair fixed rate against the 10-year swap rate
paid annually for four years starting in year 2?

CHAPTER 17

17.1 Consider 1- and 2-year swaps of annually-paying fixed vs. annually-
paying LIBOR with par rates of 2% and 2.75%, respectively. The
investable and collateral rates, given by the OIS curve, are 1% for 1
year and 2% for 1 year, 1 year forward. What is the NPV of receiving
3% for two years against LIBOR?



P1: TIX/b P2: c/d QC: e/f T1: g

JWBT539-Problem JWBT539-Tuckman August 17, 2011 12:47 Printer: Courier Westford

620 EXERCISES

17.2 Using the data from Question 17.1, what is the implied term structure
of basis swap spreads of OIS vs. LIBOR?

CHAPTER 18

18.1 Using the formulae in the text, recalculate the value of the caplet in
Table 18.1 by changing only the volatility from 77.22 basis points to
120 basis points.

18.2 Using the formulae in the text, calculate the value of an at-the-money
2y5y receiver swaption on $100 million notional when the term struc-
ture is flat at 4% and the appropriate volatility is 100 basis points.

CHAPTER 19

19.1 Consider a 10-year corporate bond with a coupon of 6%. The semi-
annual compounded swap curve is flat at 4% and the corporate bond
is trading at a LIBOR OAS of 3%. Calculate the par-par asset swap
spread and the market value asset swap spread.

19.2 Say that the cumulative default rate over a 10-year horizon for some
category of corporate bonds is 5%. If the recovery rate is 40%, what
is the spread that just compensates investors for expected losses?

19.3 The quoted spread on a one-year quarterly paying CDS is 110 basis
points while the standardized coupon is 100 basis points. Let the as-
sumed recovery rate be 40% and let the quarterly compounded term
structure of swap rates be flat at 3%. What is the up-front payment
for $10 million notional of the CDS? You will need to construct a
spreadsheet to perform these calculations.

19.4 Create a spreadsheet to recreate the duration calculations in the sub-
section “The DV01 or Duration of a Bond with Credit Risk.” Use this
spreadsheet to compute the duration in the example of that subsection
with a coupon of 8% instead of 6%, keeping the yield at 14%.

CHAPTER 20

20.1 Assume that the term structure of monthly compounded rates is flat
at 6%. Find the monthly payment of a $100,000 15-year level-pay
mortgage.

20.2 For the mortgage in Question 20.1, what is the interest component of
the monthly payment after five years?

20.3 An adjustable-rate mortgage (ARM) resets the interest rate periodi-
cally. How does the refinancing option of an ARM compare with the
option to prepay a fixed rate mortgage?
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20.4 Explain the intuition for each of the following results:
(a) When interest rates fall, holding all else equal, POs outperform

30-year fixed rate securities.
(b) When interest rates rise by 100 basis points, mortgage pass-

throughs fall by about 7%. When interest rates fall by 100 basis
points, pass-throughs rise by 4%.

(c) When interest rates decline, IOs and inverse IOs decline in price,
but IOs suffer more severely. (Like an IO, an inverse IO receives
no principal payments but receives interest payments that float
inversely with the level of rates.)

20.5 Recompute the value of the roll in the example of the text for a coupon
of 6%, a paydown percentage of 3%, and an August TBA price of
102.1. Keep all other quantities the same.
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Call protection, 491
Embedded, 491
Interest rate behavior, 494–495
Valuation with Black-Scholes models,
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Valuation with term structure

models, 491–492
Broker-Dealers, 19
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C
Capital asset pricing model (CAPM),

240
Caplets and caps, 483–486, 500,

513–514
Carry, see Carry-Roll-Down
Carry-Roll-Down, 95, 106–114, 116,

223
Forward swap rates, May 28, 2010,

85–87
Scenarios, 110–114

Cash carry, 95, 105, 106, 107,
116–117, 356–357, 384
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CDS, see Credit default swaps
Cheap securities, 55
Chinese ownership of U.S. Treasuries,

2–3
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Clearing mandates for over-the-counter

derivatives, 445–449
Commercial paper
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Financing risk implications, 14–15
Special purpose vehicles, 18
United States, 10

Compounding, 69–71, 87–89
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Continuous, 71, 88–89
Daily, 87–88
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Semiannual, 70–71, 87–88, 115

Concave curve, 125
Consistent estimators, 184
Constant-maturity Treasury swap,

219–221, 221–222
Contingent claim, 201
Convex curve, 124–125
Convexity, 123, 132–135

Asset-liability management, 140
Correction for CMS, 452–456
Estimating price changes, 137–139

Futures prices and rates, 369–371,
389

Model 1, 256
Portfolio, 142
Short position, 136
Term structure shape, 231–236,

239–240, 241, 243–248
Vasicek model, 271–272
Yield-based, 120, 123, 149–150

Barbell vs. bullet, 151–152
Par bond, 150
Zero-coupon bond, 150

Corporate bonds, 5, 49, 527–529
Asset swap spreads, 536–540
Bond spread, 535
Callable, 47
CDS-bond basis, 553–554, 559–561
Credit spreads, 534–543
Day-count convention, 65
DV01 or duration with credit risk,

556–557
Financing risk implications, 14
Hedging issuance, 444
Life insurance company assets, 18,

28
Negative basis trade, 554–556
Private placements, 13
Public issues, 13
Ratings, default, and recovery,

529–534
Refinancing, 5
Yield spread, 534

Cox-Ingersoll-Ross model, 277–280,
285

Coupon effect, 102–104
Coupon value of an ’01 (CV01), 164
Courtadon model, 278
Credit default swaps (CDS), 527–528

CDS-Bond basis, 553–554, 559–561
Default swap spread, 547
Definitions and mechanics, 545–548
Index, 557–559
Negative basis trade, 554–556
Physical vs. cash settlement, 546–547
Spread, 547
Standardization, 548
Up-front payment, 547–553
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Credit risk, 14, 527–528
Corporate bonds, 528–543
Credit spreads, 534–545
Default rates, 530–533, 543–545,
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Recovery rates, 530–533

Credit support annex (CSA), 441
Credit value adjustment, (CVA), 443
Curve construction, 591–605
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Flat forwards, 593–600
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604–605
Smooth forwards, 600–603
Stub rate, 594

Curve fitting, 261
CV01, see Coupon value of an ’01
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Day-count conventions, 51, 65
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Actual/360, 65
Money markets, 65, 164
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30/360, 65

Debt markets, see Fixed income markets
Defined-benefit pension plans, see

Pension funds
Defined-contribution pension plans, see

Pension funds
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Deposits

Fed reserve system, 16
Financing risk implications, 14–15,
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Household financial assets, 21,

36
Japanese banks, 37
Japanese postal savings system,

40
Monetary policy, 16–17
U.S. commercial banks, 13, 15

Derivatives of the price-rate function,
126, 130, 133–135, 138

Derivatives of the price-yield function,
142–143, 149
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Fixed income vs. equity, 225–227
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Over-the counter

Clearing mandates, 445–449
Notional amounts outstanding,

1–2
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Discount to face value, 101
Discount factors, 48, 51, 53–55, 58,

67–68, 73
Treasury STRIPS, 59–60
Relationship to rates, 69, 74–78

Discount securities, 65
Dollar value of an ’01 (DV01),

123–130, 153, 184
Asset-liability management, 140
Estimating price changes, 137–139
Forward rate agreements, 359–361
Negative, 129, 589
Portfolio, 141
Relationship to convexity, 132–137
Vs. duration, 130–132
Yield-based, 120, 123, 126, 142–149

Hedge of TIPS vs. nominal bonds,
172–174, 177–178

Par bonds, 146, 148–149
Perpetuities, 146, 148
Premium bond, 148–149
Vs. key-rate ’01 totals, 159
Zero-coupon bonds, 145–146, 149

Drift, 212, 217, 251, 262
Ho-Lee Model, 259–260
LMM, 300–307
Model 1, 251–253
Model 2, 257–259
Original Salmon Brothers model, 280
Vasicek model, 262–265
Time-dependent, 259

Duration, 123, 130–132, 154–155
Adjusted, 143
Asset-liability management, 140
Effective, 132
Estimating price changes, 137–139
Macaulay, 143 fn. 8
Modified, 143
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Duration (Continued )
Portfolio, 141–142
Risk premium, 237–239, 242–244
Yield-based, 120, 123, 142–149

Par bonds, 146–147
Perpetuities, 146–147
Vs. key-rate ’01 totals, 159
Zero-coupon bonds, 145–147

DV01, see Dollar value of an ’01

E
Efficient estimators, 184
Embedded options, see Bond options
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Euribor futures, see Futures, Euribor
Eurodollar futures, see Futures,
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Bank funding, 28, 30, 32
Deposit facility, 31–32
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Definition, 1
Debt markets, 1, 2, 19–34
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Factor models, 119–121, 123, 202–205,
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(FDIC) insurance, 14
Federal Funds, 417–419

Commercial banking source of funds,
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Effective rate, 418
Financing risk implications, 14–15
Target rate, 417
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Federal Home Loan Mortgage
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Government sponsored
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Federal National Mortgage Association
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sponsored entities

Federal Open Market Committee
(FOMC), 417–418

Market expectations at the start of
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cycle, 424–429
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106, 107, 110, 116–117,
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Financial crisis of 2007–2009
Bear Stearns, 334–336
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Federal reserve bank balance sheet,
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Fed funds rate, 419
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government debt, 38
JPMorgan Chase’s exposure to

Lehman Brothers, 336–339
Leverage of the banking sector, 16
LIBOR-OIS spread, 431–432, 438
Mortgage defaults and modifications,

580
Mortgage OAS, 586
OTC derivatives, 446
Regression hedge of 10-year EUR

swaps, 183–184
Repo financing, 19, 327, 329,

333–339
Special purpose vehicles, 18
Standardization of CDS, 548
Subprime mortgages, 564
Swaps pricing, 69 fn. 1, 326,

437–438
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Europe, 19–34

Money markets, 33–34
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Japan, 1–3, 34–45
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Flat price, see Quoted price
Flattening, 83–84, 155
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FOMC, see Federal Open Market
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363–371
Arbitrage pricing, 352–355
Forward drop, 356–357
Interest rate sensitivity, 359–361
Value, 352, 355–356

Forward bucket ’01s, 120, 154,
164–170

Payer swaption, 166–169
Forward drop, 356–357, 384
Forward loan, 69–70, 71, 75
Forward measure, 300
Forward rate agreements (FRAs),

403–404
Forward rates, see Rates, Forward
FRAs, see Forward rate agreements
Full price, 52–53, 62, 63, 64, 115,

116
Futures contracts and rates, 351,

361–371
Daily settlement, 361–363
Euribor, 407

Options, 495–497, 500, 518–519
Early exercise, 525

Eurodollar, 47, 368–371, 401,
405–407, 408–411,
415–417

Mid-curve, 312, 496
Options, 495–497, 500, 517–518

Early exercise, 521–524
Quarterly, 312, 496
Serial, 496

Fed fund, 401, 419–424
Market expectations at the start of
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cycle, 424–429

Martingale with money market
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525–526

Note and bond, 124, 373–399
Basis trades, 383–386, 386–388
Beta, 391
Cheapest-to-deliver, 376–378,

387–390
Conversion factor, 375, 378–380,

380–382
Convexity, 389
Cost of delivery, 376–378, 385
Daily settlement, 374–375
Deliverable basket, 373–4,

378–379
Delivery option, see Quality option
DV01-rate curve, 132, 389
End-of-month option, 375,

392–393
Europe and Japan, 373, 375
Gross basis, 383–386
Net basis, 383–386, 386–388,

399
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Options, 124, 395–396, 498–499

DV01-rate curve, 132
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Price-rate curve, 125
Valuation with Black-Scholes
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Valuation with term structure

models, 498
Price-rate curve, 124–125
Quality option, 374, 375,

380–383, 386–390, 390–391
Term structure models, 390–391
Timing option, 374, 391–392
Trading case study, 393–399

TIBOR, 407–408
Futures-forward difference, 366–371

G
Gains process, 510
Gaussian models, 253
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Fitting volatilities, 296–298
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Benchmark status, 48–49
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Japan, 38, 40, 41, 43–45, 52
United States, see Treasury securities
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Mortgage servicing rights, 589
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Short convexity position, 135–137
Tails, 371, 386, 399
20-year EUR interest rate swaps,

180–184
Ho-Lee model, 259–260, 281, 282
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Hybrid pension plans, see Pension funds
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IMM dates, 405, 449, 548
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Inflation-linked bonds, 47
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Curve risk, 120, 153, 154
Forward agreements, 359–361
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Interest rate swaps, see Swaps, Interest
rate

Investment banking, 19
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Government Debt, Japan
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Least-squares, see Regression hedging
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Household financial assets, 21–22
Japan, 36–37, 38–39, 39–40
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334, 336, 338
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564–567
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Pass-through, 568
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Mortgage-backed securities
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Prepayment rates, 571
Specific, 571–572

Prepayment models, 575–580
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Curtailments, 580
Defaults and modifications, 580
Media effect, 579
Refinancing, 576–579
S-curve, 577–578
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Turnover, 579–580
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TBAs, 571, 572–573
Valuation, 580–584
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DV01 and duration, 143–145
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PV01, see Present value of an ’01

Q
Quantitative easing by the Bank of

Japan, 42–43
Quoted price, 53, 62, 63, 116

R
Rates, 48, 69–70

Forward, 48, 69, 75–76, 77, 78–81,
81–82, 82–87, 91–92, 93, 99,
368–371

Continuously compounded,
88–89

Curve construction, 592
Decomposition, 241–248
Embedded vs. realized, 95
Realized, 108–109, 110,

111–112
Swap, 357–359
Yield, 357
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176–177, 178, 182
Two-variable, 180–184

Replacement rate of state pension plans,
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Replicating portfolio, see Arbitrage
pricing

Repo, see Repurchase agreements
Repurchase agreements (repo), 325,

327–349
Bear Stearns, 334–336
Broker-Dealer liabilities, 19
Commercial banking source of funds,
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European Central Bank financing of
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Fails, 347–348
Financing risk implications, 14–15,

333–339
Futures basis trades, 384
General collateral and rates, 330,
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Lehman Brothers, 336–339
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Return, 48, 95, 96–98
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With realized forwards, 111–112
With an unchanged term structure,

113
With unchanged yield, 113–114

Net, 97–98
Real, 172

Rich securities, 55
Risk aversion, 209, 210–211, 213, 236
Risk-neutral pricing, 211–214, 223, 245
Risk premium, 113, 114, 205, 229,

236–241, 243–245, 247–248,
259, 261, 262

Ho-Lee model, 259
Negative, 240
Model 2, 257–258
Vasicek model, 263

Risk weights, see Regression hedging
Roll-down, see Carry-Roll-Down
R-squares, see Regression hedging
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SABR model, 504–508
Sales and trading, 19
Serial correlation, 185
Settlement

U.S. Treasuries, 52
Sharpe ratio, 244, 258
Shifted lognormal model, 503–504
Short coupon, 491
Short-lived shock, 272
Short-rate models, 202–203, 204, 263

fn. 6, 287
Black-Karsinski model, 282–284
Cox-Ingersoll-Ross model, 277–280,

284
Drift, 251–273
Gauss+ model, 287–298
Ho-Lee model, 259–260
Model 1, 251–257, 284
Model 2, 257–259, 284
Model 3, 275–277, 284
Original Salomon Brothers model,

280–282
Vasicek model, 262–273, 284

Short selling, 56
Simple interest, 69–70

SONIA, 431
State variables, 289
Solvency II, 27, 83
Sovereign debt crisis, 6, 32, 83,

104–105, 535–536
Special purpose or investment vehicle

(SPV or SIV), 17–18
Spot loan, 74
Spot rates, see Rates, Spot
Spread, 48, 95, 98–99

Profit and loss decomposition,
105–106, 108–110, 116

Steepening, 84, 155, 161, 162
Stop-loss, 85
Swaps, 435–456

Basis, 449–450, 458
Benchmark status, 48–49
CMS (constant-maturity swaps),

450–456
Clearing, 445–449
Day-count conventions, 65
EUR swap curve, second quarter

2010, 69
Forward-starting, 166–168, 358,

403–404
Interest rate, 47, 69, 71–73

Arbitrage pricing with financing,
465–473, 477–480

Cash flows, 435–437
Credit risk, 442–444
Interest rate risk, 441–442
Major uses, 444–445
Net present value, 440, 458,

465–473
Notional amount, 71–72
Valuation, 437–441

OIS discounting, 437–438, 450,
458, 473–475

Overnight index (OIS), 401,
429–431, 438, 470–473

Two-curve pricing, 473, 480–482
Swaptions, 47, 487–490, 501, 514–515

Forward bucket ’01s of a payer
swaption, 166–167

Hedging forward bucket ’01s of a
payer swaption, 167–169

Physical vs. cash settlement, 490
Skew, 483, 490, 500–507
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Tangent line, 126, 136
Taylor approximations, 137–139,
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TED spread, 401, 411–415, 432–434
Terminal distribution, 253
Terminal measure, 301
Term structure models, 201–205,

226–227
Forward and futures prices, 363–366

Term structure of interest rates, 74, 76,
89, 91–93, 102, 104, 114

Expectations, risk premium, and
volatility, 229–248
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Gauss+ model, 294–295
Historical, 240–241
Interest rate risk, 119–120
Model 1, 255–256
Model 2, 258
Unchanged, 81–82, 107, 110,

112–113
Vasicek model, 268–270

Term structure of volatility, 169
Gauss+ model, 293–294
Ho-Lee model, 260
Model 1, 256–257
Model 2, 259
Model 3, 277
Vasicek model, 270–271, 273, 294

TIBOR, see Tokyo Interbank Offered
Rate
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Time-dependent volatility, 275–277,

283
Time value of money, 47, 48, 55
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407–408
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Rate
Treasury securities, 5–8, 51–53, 58
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Auction cycle, 7–8, 341–347
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Current issues, 341
DV01-rate curve, 132
Face amount, 51
Federal reserve bank balance sheet,
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Flight-to-quality trade, 6
Idiosyncratic pricing, 60–62
Inflation protected securities (TIPS),

7, 8
Hedging vs. nominal bonds,

172–180
Liquidity, 5
Maturity structure, 6–7
Notes, 7
Off-the-run, 341
On-the-run, 49, 341–347
Par value, 51
Price-rate curve, 124
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Savings bonds, 7
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Securities (STRIPS), 51,
58–59, 60–62, 102
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TIPS, see Treasury securities, Inflation

protected securities
Tree representation of rates and prices,

207–209, 214–219
Black-Karasinski model, 282–284
Ho-Lee Model, 260
Model 1, 252–253
Model 2, 258
Mortgage valuation, 580
Nonrecombining, 214, 264–265
Recombining, 215, 265–267,

283
Time step, 224–225
Vasicek model, 264–268

U
Unbiased estimators, 184
U.S. Treasury securities, see Treasury

securities
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V
Vanilla derivative, 201
Variation margin, 362–363
Vasicek model, 262–273, 277, 282, 284
Volatility

Basis-point, 251–252, 277–279
Lognormal model, 281–282
Multifactor exposures, 169
Portfolio, 119
Regression-hedged portfolio, 178
Short position, 137
Short-term rates, 229, 231–236
State-dependent, 214, 215

W
Wings of a butterfly trade,

190

Y
Yield, 48, 95, 99–105,

114–116
Unchanged, 111, 113–114

Yield-volatility, 278

Z
Zero coupon securities, 58, 65,

102–104
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